LAUTERBACH A

Complex Trigger Unit
for Nexus MPC5xxx

Complex Trigger Unit for Nexus MPC5xxx

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACES2 DOCUMENTESuiiiiiiiiiieiiiiissseseennnanenmsnssssssssssssssssssesesesemmsnsnsnsmsmsmsmssssssssssssssssssssessensnsnnnnnnnn r—
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manualseeecciiiricrerrr s s e rssssnnececm s s sssssssesseeseresnnnnns =
QOKIVVA MP CSXXX/SPCSOXX ceeeeeeeiisiissssssssssereresssssssssssnnmnmsmsmssssssssssssssssssssssesesenesmmmsssnsnnnnnnnnnnnnns =
Application Note for NeXus MPCS5XXX ..cccciieriiiiiriissssssssmmmssmssssssssssssssssnnsmmsssssssssssssssssssnnnnnes =
Complex Trigger Unit for Nexus MPCOXXX ..ccccurireerrisemsmismsmsssssssmsssssmssssmsssssssssssssssssans 1

L 1= (o 4
4o T LW T £ o o 5

g CoTe | = 1y o TS £ ¥y (T 7
COoNAILIONSoiiiiii e rs s s e e e e s e e e e s e e s e e e e e s snessenasmsmsssssssssssssaaaaaaaaeeeraerenrnanannnnnn 8
Declaration Reference ... cccommiiiiicccccscssseccssn s rre s s ssmsns s s e e mmmmmn e e e 10
ADDRESS Address selectors 10
EVENTCOUNTER Event counter 11

Event TRUE after n Clocks 12

Event TRUE till n Clocks 12

Event Windows 13

FLAGS Flags 13

HWME Hardware message events 14

OTME Ownership trace message events 14
TIMECOUNTER Time counter 15

Timer Running till Overflow 16

Timer TRUE after Time 16

Timer TRUE till Time 16

Time Windows 17

TRIG External triggers 17
InStruction ReferencCe ... e e e e e e e e e s e s mnmnmm s e e e e 19
BREAK Analyzer stop 19

Bus Bus trigger 19
CONTinue Sequential level switching 20

Counter Counter control 20

Flag Flag control 23

GOTO Level switching 24
©1989-2024 Lauterbach Complex Trigger Unit for Nexus MPC5xxx 2

Mark Recording markers 24
Out Output control 25
Sample Recording control 26
Trigger Trigger control 28
CTU Programming EXamplesccccccciiiiemmniininssnississss s s ssssss s sssssssssssssnsasssnses 30
Data Trace Message based events 30
Example: Trace trigger on data value 31
Example: Program break on data value 31
Watchpoint hit message based events 32
Example: Runtime measurement with markers 34
Example: Program break based function runtime 37
Using external signals with the CTU 38
Example: Record single message on rising edge of trigger input 39
Example: Program break based on pulse interval of IN input 40
Appendix: Complex Trigger Unit Keyword Referenceccccuveciiiiimmnssnnisssnsssennns 41
©1989-2024 Lauterbach Complex Trigger Unit for Nexus MPC5xxx | 3

Complex Trigger Unit for Nexus MPC5xxx

Version 06-Jun-2024

History

18-dun-2022 Initial version.

©1989-2024 Lauterbach Complex Trigger Unit for Nexus MPC5xxx | 4

Introduction

This application note describes the features and programming of the Complex Trigger Unit for MPC5XXX

processors with a parallel Nexus trace port.

The PowerTrace module contains the Complex Trigger Unit, short CTU. The CTU is a trigger sequencer that

provides additional trigger and filter possibilities. The usage of the CTU has no impact on the real-time

behavior of the processor.

. PowerTrace Ethernet (LA-7707, LA-7690)
. PowerTrace Il (LA-7692, LA-7693, LA-7694)
. PowerTrace PX (LA-3510)

Supported for port widths: MDO8, MDO12 and MDO16.

The Complex Trigger Unit (CTU) is supported with following trace modules:

On-chip traces and Aurora NEXUS trace ports are not supported.

The CTU is programmed by a special trigger language.

The main input events for the CTU together with a NEXUS adapter are:

. Watchpoint hit messages

. Data trace messages

J Ownership trace messages
i External trigger input pin

Based in this input events, the CTU can provide the following features:

. Trigger output signals

J Halt program execution

J Halt trace recording (trace trigger)
. Trace filtering

. Set marks in trace recording

©1989-2024 Lauterbach

Complex Trigger Unit for Nexus MPC5xxx

5

Complex Trigger Unit (CTU) Diagramm

Level Control I GOTO,CONTINUE
4 Multiplexer groups
eI . Trace Control Sample.ON/OFF/Enable
| mux | LevelO P> Break Trace
4
1 4*16:1
S Program Break Control
——p Break.Program
16 Input mux | Levelt Trigger.Podbus (via
Event . e Podbus)
o 4*16:1
Qualifier Trigger RAM
L% Output Control
P OutAB
MUX Level 2
4
t 4*16:1
, Marker Control
Level 3 (location of =P Mark.A/B
| MUX eve4 compiled
! 441611 Trigger Program)
) Podbus Control
Trigger.Podbus
Available Input Event Qualifier: ' > Trigger.Pulse
4 Watchpoint Hit Messages Flags Control FLAGS. ON/OFF/
2 Data Trace Message TOGGLE
2 Ownership Trace Mess.
2 Hardware Event Mess. Counter Control
1 TCODE Qualifier Counter.Enable/
2 Flags ON/OFF
1 External Input
1 Podbus Input
1 (reserved)
_____ Zero Time/Event
Counter0 |«
16 45 Bit
Zero Time/Event
Counter1 =
45 Bit
e 20| Counter2
45 Bit

©1989-2024 Lauterbach

Complex Trigger Unit for Nexus MPC5xxx |

Program Structure

A trigger program for the analyzer consists of the following parts:

Comments

Comments are allowed anywhere in the trigger program. They begin with
a";" or with “//“.

Declarations

Declarations define input events which need to be declared. Such events
are address selectors, data selectors or counters.

Instructions

Instructions control the action taken by the trigger unit. Usually they are
only executed when a defined condition becomes true. A condition is the
combination of internal or external events of the analyzer. An event is the
occurrence of a specific bus cycle, an access to an address or a
predefined data pattern.

Levels

The beginning of a level is defined by the name of the level followed by a
colon ":". The end of a level is the beginning of the next level or the end of
the trigger program. All commands within a level and the global
commands are valid while the level is active. Commands outside the level
are not active. Only one level can be active at any time. Usually a trigger
program starts within the first written level or the level with the name
"START:".

Global instructions

Global instructions are located between declarations and the first label,
i.e. the first local instruction. They are valid in all used levels. A trigger
program may consists of global instructions only.

Local instructions

Local instructions are valid within one trigger level only. All local
instructions defined within a level and all global instructions are checked
simultaneously.

©1989-2024 Lauterbach

Complex Trigger Unit for Nexus MPC5xxx |

7

Conditions

Conditions are combinations of events, which define when an instruction of the trigger program is executed.
Multiple instructions can be linked together in one line to share the same condition. If the condition is missing
for an instruction, it will be assumed 'TRUE'. The program

Sample.enable

will produce the same results as

Sample.enable IF TRUE

Input events can be combined by standard logical operators:

(...)

! or N: for NOT
&& or :A: for AND
AN or:X: for XOR
Il or:0O:for OR

The brackets have the highest priority, the OR operator has the lowest.
The following two conditions will produce the same results:

(BetaBreak&&User) | | ! (UserData&s& ! AlphaBreak)
BetaBreak&&User| | |UserData| | AlphaBreak

As instructions can be used more than once in a level or in a statement line, it is possible to have conflicting
instructions or conditions. The following trigger program has two such conflicts:

START: Counter.ON countl, Counter.OFF countl IF AlphaBreak
GOTO Count_Level

GOTO Error_Level IF Write&&BetaBreak
Level2:

©1989-2024 Lauterbach Complex Trigger Unit for Nexus MPC5xxx | 8

Instructions are executed from left to right

In the above example the flip-flop used for controlling the counter will be switched to OFF when an
AlphaBreak occurs.

Instructions are executed top to down

In the example above the instruction "GOTO Count_Level", which is "always valid", i.e. the jump to

"Count_Level", is programmed first. This programming is overwritten by the second "GOTO" with a jump to
"Error_Level" only when the condition "Write&&BetaBreak" is true.

The trigger unit remains in the "START" level for of one cycle and will then switch either to the trigger level
"Error_Level", or to "Count_Level" depending on the condition "Write&&BetaBreak".

If the order of the "GOTQ" statements is changed:

GOTO Error_ Level IF Write&&BetaBreak
GOTO Count_Level

then the first statement is completely overwritten.
Global statements have a low priority

Global statements are used, as they would have been typed before any other statement in a trigger level.

©1989-2024 Lauterbach Complex Trigger Unit for Nexus MPC5xxx | 9

Declaration Reference

ADDRESS Address selectors

Format: ADDRESS <breakpoint> <address> ...

<breakpoint>: AlphaBreak
BetaBreak
CharlyBreak
DeltaBreak
EchoBreak

The names of the address selectors are predefined and assigned to the breakpoints. Individual names
cannot be assigned.

These functions must be disabled, before using the breakpoints as address selectors. The breakpoints
AlphaBreak and BetaBreak have no fixed functions, they are the first choice for analyzer address selectors.
The CharlyBreak selector can be used as a background spot in multitasking environments.

DeltaBreak and EchoBreak have the same function as AlphaBreak and BetaBreak.

Address selectors can be used with previous declaration. In this case all breakpoints of that type are defined
in the analyzer program. Without declaration it is possible to use breakpoints, which were set by other
commands. This gives more flexibility in the assignment of breakpoints. Useful commands to set
breakpoints for the analyzer are:

Break.Set Set breakpoints

Break.SetFunc Set breakpoints on functions entries
Break.SetLine Set breakpoints on HLL lines
Var.Break.Set Set breakpoints on HLL structures
sYmbol.ForEach Set breakpoints on a symbol pattern

An address selector declaration in the analyzer programming can define multiple addresses or address
ranges. One declaration line can define multiple addresses by using multiple segment ranges:

ADDRESS AlphaBreak main| |sieve| |inchr| |outchr

Multiple declaration lines can be used to define a more complex breakpoint definition:

ADDRESS AlphaBreak main--sieve
ADDRESS AlphaBreak SD:0x0f2--0x0f7
ADDRESS AlphaBreak SP:0x10000..0x0ffffff

©1989-2024 Lauterbach Complex Trigger Unit for Nexus MPC5xxx | 10

The following declaration sets the selector at two consecutive bytes:

ADDRESS BetaBreak \\MOTSTEU\MOTOR1\Speed\valuel++1

The size of HLL structures can be accessed by special functions. The declaration

ADDRESS AlphaBreak V.RANGE (function3)

marks the whole code of 'function3' with breakpoints. Using HLL expressions for the address is also
possible:

ADDRESS AlphaBreak V.RANGE ("stral[2].count") V.RANGE ("stral[l]l")

The following example makes a selective trace on all accesses to a variable:

; Declaration
ADDRESS AlphaBreak V.RANGE (flags)
; Global instruction

Sample.enable IF AlphaBreak

EVENTCOUNTER Event counter

Format: EVENTCOUNTER <name> [<event>]

Any name can be assigned to the counter, as long as it doesn't conflict with the reserved names of other
events. The physical counters are selected automatically by the system, depending on their usage. If a event
counter reaches its declared value it will stop automatically. The event counters can be reloaded in real
time. However, program dependent dead times can result. The default value is equal to the maximum.

Each counter is released selectively and the state of the counters can be used as an input event. Event
ranges will occupy two universal counters.

This event delay counter will be re-loaded automatically during entering the delay level. The counter could
be released only general (Counter.Increment DELAY without any condition) in the delay level and could be
used as an input event for other commands like Sample.Enable, BREAK ...

Analyzer Type Counters Max. Value

ICD 3 3.5e13

The current value of the counters are visible in real-time in the analyzer state window.

©1989-2024 Lauterbach Complex Trigger Unit for Nexus MPC5xxx | 11

Event TRUE after n Clocks

Declaration of an event counter called "CYCLE_CNT". The counter is always enabled and counts all CPU
cycles. The analyzer begins sampling after a delay of 500 CPU cycles.

EVENTCOUNTER CYCLE_CNT 500.
Counter.Increment CYCLE_CNT IF TRUE

Sample.enable IF CYCLE_CNT
0 500. infinite
|-— false true

Event TRUE till n Clocks

Declaration of an event counter called "NR_cnt", event argument is 48. The counter is always enabled. The
analyzer begins sampling immediately and stops recording after 48 sampled cycles.

©1989-2024 Lauterbach Complex Trigger Unit for Nexus MPC5xxx | 12

EVENTCOUNTER NR_cnt 0--48.
Counter.Increment NR_cnt
Sample.enable IF NR_cnt

0 48. infinite

Event Windows

Declaration of an event counter called "EV_range" with an event range from 100 to 200. The counter is
always enabled and counts all CPU cycles. The analyzer begins sampling after 100 CPU cycles and stops
recording 100 cycles later. Two physical counters are used by the trigger unit.

EVENTCOUNTER EV_Range 100.--200.
Counter.Increment EV_range
Sample.enable IF EV_range

0 100. 200. infinite
t———— false true false
FLAGS Flags
Format: FLAGS <name> ...

Flags are Flip-flops which can be controlled and read by the trigger unit. The hardware for the flags is
assigned automatically by the system, depending on their usage.

The complex trigger unit of ICD analyzer has 2 flags.

©1989-2024 Lauterbach Complex Trigger Unit for Nexus MPC5xxx | 13

After programming the trigger unit, or after the command Analyzer.Init all flags are set to OFF. Flags can be
set, reset or toggled.

The following program samples only, when the variable 'var2' has the value zero:

FLAGS VAR2_IS_ZERO
ADDRESS AlphaBreak var2
DATA.W ZERO 0x0

Flag.TRUE VAR2_IS_ZERO IF AlphaBreak&&WRITE&&ZERO
Flag.FALSE VAR2_IS_ZERO IF AlphaBreak&&WRITE&&!ZERO

Sample.enable IF VAR2_IS_ZERO
HWME Hardware message events
Format: HWME <name> <mask>

Any name can be assigned to the hardware message event (HWME), as long as it doesn't conflict with the
reserved names of other events. 2 physical events are available and are selected automatically by the
system, depending on their usage as input events in conditions. HWME could be used to react on signals
set from the customer specific chip units in the hardware event register.

The following program samples only, when a UART access sets bit12 in the hardware event register:

HWME UART1 0x1000

Sample.enable IF UART1

OTME Ownership trace message events
Format: OTME <name> <value> [| <unitname>]
<unitname>: DMA | ETPU1 | ETPU2 | ETPCDC | PPCCORE | UNITO | ... | UNIT15

Any name can be assigned to the ownership trace message event (OTME), as long as it doesn't conflict with
the reserved names of other events. 2 physical events are available and are selected automatically by the
system, depending on their usage as input events in conditions. OTME could be used to react on ownership
trace messages with a certain value.

©1989-2024 Lauterbach Complex Trigger Unit for Nexus MPC5xxx | 14

The following program samples only, when a certain task is running. The hardware must be configured in the
way that OTMEs contain the actual task number.

OTME task3 0x1234 ; OTME with PID 0x1234 for task3
Sample.ON IF task3 ; start recording cycles if a OTM with
Sample.OFF IF TCODE_OTM ; PID 0x1234 occurs and stop recording

; after the next OTM

TIMECOUNTER Time counter

Format: TIMECOUNTER <name> [<time>]

Any name can be assigned to the counter, as long as it doesn't conflict with the reserved names of other
events. The physical counters are selected automatically by the system, depending on their usage. If a time
counter reaches its declared value it will stop automatically. The timers can be re-loaded in real-time.
However, program dependent dead times can result. The default value is equal to the maximum time. Each
timer is released selectively and the state of the counters can be used as an input event.

Analyzer Type | Counters ‘ Max. Time ‘ Resolution
ICD | 3 ‘ 8 days ‘ 20 ns

The current value of the counters can be viewed in real time in the analyzer state window.

Time values can be entered in the following units:

Nanoseconds (ns)
Microseconds (us)
Milliseconds (ms)
Seconds (s)

Kiloseconds (ks)

©1989-2024 Lauterbach Complex Trigger Unit for Nexus MPC5xxx | 15

Timer Running till Overflow

Declaration of a time counter called Timer_1 without time argument. The counter is always enabled and
counts every time. After the maximum time the analyzer begins sampling.

TIMECOUNTER Timer_ 1

Counter.Increment Timer_1
Sample.enable IF Timer_ 1

0 max.time infinite

Timer TRUE after Time

Declaration of a time counter "Timer_A", time argument is 500 us. The counter is always enabled. The
analyzer begins sampling after a time delay of 500 us.

TIMECOUNTER Timer_A 500us

Counter.Increment Timer_ A
Sample.enable IF Timer_ A

0 500.us infinite

Timer TRUE till Time

Declaration of a time counter called "Timer_B". The counter is always enabled. The analyzer begins
sampling immediately and stops recording after a time of 30 us.

TIMECOUNTER Timer_B 0.us--30.us

Counter.Increment Timer B
Sample.enable IF Timer_B

©1989-2024 Lauterbach Complex Trigger Unit for Nexus MPC5xxx |

16

0 30.us infinite

Time Windows

Declaration of a timer called "Timer_C" with a time range from 100 to 200 microseconds. The counter is
always enabled and counts every time. The analyzer begins sampling after 100 us and stops recording
100 us later. Two physical counters are used by the trigger unit.

TIMECOUNTER Timer_C 100.us--200.us

Counter.Increment Timer_C
Sample.enable IF Timer_C

0 100.us 200.us infinite

TRIG External triggers
Format: TRIG.<channel> <name> <data> ...
<channeb: A
B

External triggers allow the analyzer to react on external signals.

A trigger event is true, when the declared value matches the levels at the input probe. Bit masks and hex
masks are allowed to ignore input pins. The name for the trigger selector can be chosen freely.

Declaration of 3 trigger events called BANKO with value 00, BANK1 with value 01 and BANK2 with value 02
on trigger input A.

TRIG.A BANKO 00
TRIG.A BANK1l 01
TRIG.A BANK2 02

©1989-2024 Lauterbach Complex Trigger Unit for Nexus MPC5xxx | 17

The trigger selector named CS_PERF becomes true if value of the bit mask 01010xx appears on trigger

input B.

TRIG.B CS_PERF 0y01010xx

The analyzer breaks when a write access and a low signal on line 0 of trigger input A is performed.

TRIG.A EXT_CS 0yOxxxxxxx0 ;declaration

BREAK IF EXT_CS&&Write ;global instruction

Several trigger event declarations.

; declarations

TRIG.A T_sel0 0x55

TRIG.B T _sell 0x0x5

TRIG.B SEL_B 0OyOxxxxxxx0

TRIG.A T_RANGE 0x10--0x20

TRIG.A TEV_VAL 33.]|55.]|0xfe

TRIG.B TEV_NEX 77. 88. 99.

;global or local instruction

Counter.Increment CNT_1 IF SEL_B

7

trigger selector on the input
TRIGGER A with the value 0x55

trigger selector on the input
TRIGGER B with a hex mask, all
values with ;the low nibble 5

trigger selector with a bit mask
bit number 0 low

trigger selector range, values
between 0x10 to 0x20

trigger selector with 3 different
values

identical as above without
logical OR

the counter counts if the trigger
input TRIGGER A bit 0 is low

©1989-2024 Lauterbach

Complex Trigger Unit for Nexus MPC5xxx | 18

Instruction Reference

BREAK Analyzer stop
Format: BREAK [.<mode>] [IF <condition>]
<mode>: PROGRAM
TRACE

Mode description.

PROGRAM This event is usually used to stop the user program (asynchronous breakpoint).

TRACE Stops only the recording of the analyzer.

When the analyzer BREAKS, it stops recording and the trigger unit is switched off. The analyzer can be read
out while in break state, similar to the OFF state.

The analyzer stops, whenever the address "Subr_end" appears on the address bus.

ADDRESS BetaBreak Subr_end

BREAK IF BetaBreak

Bus Bus trigger

Format: Bus.<mode> [IF <condition>]

<mode>: A

In order to be able to trigger more than one TRACE32 system, several trigger lines are available on the inter-
trigger bus.

A Activates bus trigger lines A.

©1989-2024 Lauterbach Complex Trigger Unit for Nexus MPC5xxx | 19

CONTinue Sequential level switching

Format: CONTinue [IF <condition>]

A sequential level switch (to the next written level) will be done, when the specified condition is true. If no
further written level is present, the analyzer is stopped.

In the example the analyzer will change to level "infunc" after an access to an Alpha breakpoint and stop the

analyzer after the next access to an Beta breakpoint:

start: CONTinue IF AlphaBreak

infunc: CONTinue IF BetaBreak
Sample.enable

Counter Counter control
Format: Counter[.<mode>] <counter_name> [IF <condition>]
<mode>: Enable (obsolete)
Increment
OFF
ON
Restart

This instruction controls the trigger units counters. The instructions Counter.ON and Counter.Increment
will be programmed automatically, if they are not used in the trigger program. The counters have to be
declared according to their functions (see also declaration EVENTCOUNTER, and TIMECOUNTER).

Enable (obsolete) Releases counters when the specified condition is true.
Increment Releases counters when the specified condition is true.
OFF Switches the enable Flip-flop OFF.

ON Switches the enable Flip-flop ON.

Restart The counter is reset to zero.

©1989-2024 Lauterbach Complex Trigger Unit for Nexus MPC5xxx |

20

The instructions ON, OFF and Increment (Enable) function as controlled as a switch and a key in series. If
the switch is closed (Counter.ON) it remains closed until it is opened by Counter.OFF. The key is closed
only for the cycle which meets the specified condition, i.e. an event counter will make a step.

switch key
| |
ON/OFF Increment (Enable)

The counter is incremented whenever the switch and the key are closed.

If neither ON/OFF nor Increment (Enable) are used in the complete trigger program, the switch and the key
are closed, therefore the counter counts time or events (cycles) depending on its declaration.

switch key

| |]]
ON/OFF Increment (Enable)

If only Increment (Enable) is used in the trigger program, the switch ON/OFF is closed automatically, that
means counting is controlled only by Increment (Enable).

switch key

]] | |
ON/OFF Increment (Enable)

If only ON/OFF is used in the trigger program, the key Increment (Enable) is closed automatically, that
means counting is controlled by ON/OFF only.

switch key
|]]
ON/OFF Increment (Enable)

NOTE: In all cases during the first cycle the switch ON/OFF is closed!
Counter CYCLE_CNT is counting every CPU cycle.

EVENTCOUNTER CYCLE_CNT ; declaration

Counter.Increment CYCLE_CNT ; global or local instruction

©1989-2024 Lauterbach Complex Trigger Unit for Nexus MPC5xxx | 21

Counter CCCO is incremented by 1 every time, when addr1 has been reached.

EVENTCOUNTER CCCO ; declarations
ADDRESS AlphaBreak addrl
Counter.Increment CCCO IF AlphaBreak ; global or local instruction

Counter EV_LIMIT is counting occurrence of Funci. After 100 counts it stops recording via the analyzer
break command.

EVENTCOUNTER EV_LIMIT 100. ; declarations
ADDRESS AlphaBreak Funcl

Counter.Increment EV_LIMIT IF AlphaBreak ; global or local
BREAK IF EV_LIMIT ; lnstructions

The trigger program is sampling all cycles and waiting in level "Level0" to access address "TRAP_S". After
this event the level changes to level "Level1" and the counter "T_LIMIT" is released to the count time. After
50 us the sampling is stopped by the analyzer break command.

TIMECOUNTERR T_LIMIT 50.us ; declarations
ADDRESS BetaBreak TRAP_S

Sample.enable ; global instruction

LevelO: CONTinue IF BetaBreak ; local instructions
Levell: Counter.Increment T LIMIT
BREAK IF T _LIMIT

The time counter "MESURE_T" starts counting at the entry of Level5. It stops time measurement when
reaching the Level7. The counter contains the time between entrance in Level5 and entrance in Level7.

TIMECOUNTER MEASURE_T ; declarations
ADDRESS AlphaBreak sp:0x1000

ADDRESS BetaBreak sp:0x1025

Sample.enable ; global instruction
start: Counter.OFF MEASURE_T ; switch off counter

; (counter is on when the
; trigger program starts)

Level5: Counter.ON MEASURE_T

CONTinue IF AlphaBreak
Level6: CONTinue IF BetaBreak
Level7: Counter.OFF MEASURE_T

; Switch on counter

; Switch off counter

©1989-2024 Lauterbach Complex Trigger Unit for Nexus MPC5xxx | 22

Retrigger Timer1 when it has expired.

Counter.Restart Timerl IF Timerl

The execution will stop if the interrupt service routine INT_Service needs more than 225 us or less than
200 us.

TIMECOUNTER OVERUNDERFLOW 200us--225us ; declaration
ADDRESS AlphaBreak INT_Service_Start
ADDRESS BetaBreak INT_Service_ End

... ; local instructions
LLL1: Counter.Restart OVERUNDERFLOW
CONTinue IF AlphaBreak

LLL2: Counter.Increment OVERUNDERFLOW
Trigger.A IF BetaBreak
CONTinue IF OVERUNDERFLOW

LLL3: Counter.Increment OVERUNDERFLOW
Trigger.A IF !OVERUNDERFLOW
GOTO LLL1 IF BetaBreak

Flag Flag control

Format: Flag.<mode> <name> [IF <condition>]

<mode>: FALSE
OFF (obsolete)
ON (obsolete)
Toggle
TRUE

Flags are used to mark event occurrences. Flags have to be declared at the beginning of a trigger program.
The default state at the beginning is OFF. The current state of the used flags is visible in real time in the
analyzer state window. Flags are also sampled in the trace buffer.

FALSE, OFF Resets the flag.
TRUE, ON Sets the flag.

Toggle Reverses the current state.

©1989-2024 Lauterbach Complex Trigger Unit for Nexus MPC5xxx | 23

Set Flag1 if timer_1 has not expired.

FLAGS Flagl ; declaration

Flag.TRUE Flagl IF !timer_1 ; global or local instruction

Toggle Flag4 if data_event occurs.

Flag.Toggle Flag4 IF data_event

GOTO Level switching
Format: GOTO </evel [IF <condition>]
<level>: name
START

Change the current level of the trigger unit. GOTO may be used more than once in a level.

The following table shows the number of trigger levels available on each analyzer hardware:

Analyzer Type Trigger Levels
ICD 4
Mark Recording markers
Format: Mark. <name> [IF <condition>]
<name>: A
B

Four markers can be used to mark specific events in trace memory. They make it easier to find and display
special events, allow time displays between the markers and detailed statistic analysis. The markers are set
when the specified condition is true. They cannot be used as input events to the trigger unit, like Flags.

©1989-2024 Lauterbach Complex Trigger Unit for Nexus MPC5xxx | 24

The following program is used for detailed performance analysis of functions. It samples the entry and exit
points of each function and marks the entries with 'A' markers and the exits with 'B' markers:

Sample.enable IF AlphaBreak
Sample.enable IF BetaBreak

Mark.A IF AlphaBreak
Mark.B IF BetaBreak
Out Output control
Format: Out. <mode> [IF <condition>]
<mode>: A
B
C

Six signals can be generated to trigger other devices (e.g. analyzers or oscilloscopes) or to stimulate the
target hardware. Two of these signals are accessible via coaxial socket connectors at the back of the
analyzer chassis, the others can be accessed via an output probe at the front of the analyzer chassis.

A Activates the universal bidirectional coaxial output A at the back of the analyzer
chassis.

B Activates the universal coaxial output B at the back of the analyzer chassis.

C Activates the universal trigger outputs located at the front socket connector
"OouT".

Release trigger line A if address selector CharlyBreak is active.

Out.A IF CharlyBreak

The trigger output lines for the socket “OUT” at the front of the chassis can be accessed via an output probe.
The output probe's pin assignment is described in document trace_user.pdf.

©1989-2024 Lauterbach Complex Trigger Unit for Nexus MPC5xxx | 25

Sample Recording control

Format: Sample[.<mode>] [IF <condition>]
<mode>: Enable

OFF

ON

Control trace memory recording. The instructions Sample.ON and Sample.Enable will be programmed
automatically, if they aren't used in the trigger program.

These instructions do not effect the recording of the trigger event (marked with T), the first cycle (marked
with Go) and last cycle before the user program will stop (marked with BRK).

enable Releases trace memory for recording when the specified condition is true.
OFF Disables the Flip-flop for sampling.
ON Enables the Flip-flop for sampling.

©1989-2024 Lauterbach Complex Trigger Unit for Nexus MPC5xxx | 26

The instructions ON, OFF and Enable function as a controlled switch and a key in series. If the switch is
closed (Sample.ON) it remains closed till it is opened by Sample.OFF. The key is closed only for the cycle
which meets the specified condition, i.e. one bus cycle is stored in the trace buffer.

switch key
| |
ON/OFF Enable

Only if the switch and the key are closed sampling is done.

If neither ON/OFF nor Enable are used in the complete trigger program, the switch and the key are closed,
that means all cycles are recorded (Implicit global Sample.ON IF TRUE and Sample.enable IF TRUE).

switch key

ON/OFF Enable

If only Enable is used in the trigger program, the switch ON/OFF is closed automatically, then sampling is
controlled only via the Enable (implicit global Sample.ON IF TRUE).

switch key

ON/OFF Enable

If only ON/OFF is used in the trigger program, the key Enable is closed automatically, then sampling is
controlled only via ON/OFF (implicit global Sample.enable IF TRUE).

switch key
| | |
ON/OFF Enable
NOTE: In all cases during the first cycle the switch ON/OFF is closed!

The following statements are equally and will sample all bus cycles:

Sample.Enable IF TRUE
Sample.enable

S.e

S

©1989-2024 Lauterbach Complex Trigger Unit for Nexus MPC5xxx | 27

Sample only write cycle:

Sample.enable IF Write

The analyzer starts and waits in LevelO without recording till the appearance of the declared address
selector AlphaBreak (INT3_Service). That cycle (memory access to AlphaBreak) causes one sample and
change to the level "Level1". In this level all cycles are recorded.

; declaration area
ADDRESS AlphaBreak INT3_Service

; local area

Level(: Sample.enable IF AlphaBreak
CONTinue IF AlphaBreak

Levell: Sample.enable

Trigger Trigger control
Format: Trigger.<mode> [IF <condition>]
<mode>: PODBUS (only ICD)
Pulse

Trigger other systems.

PODBUS Activates bus trigger line A from PODBUS

Pulse Releases a pulse of the pulse generator (PULSE).

Whenever a write access with data word OXOEES5 is performed on the data bus, the spot system executes
a spotpoint.

;declaration
DATA.W DAT 1 OxOEES55

;global or local instruction
Trigger.Spot IF DAT_l&&Write

©1989-2024 Lauterbach Complex Trigger Unit for Nexus MPC5xxx | 28

Whenever a write access to the memory address func_9 is executed a pulse is generated on the STROBE
probe. The pulse width and polarity is controlled by the PULSE command.

; declaration
ADDRESS BetaBreak func_9

; global or local instruction
Trigger.Pulse IF BetaBreak&&Write

The execution will stop at write access to address SD:0x1488 with the data 0x30.

; declaration
ADDRESS AlphaBreak sd:0x1488
DATA.B Stop_value 0x30

; global or local instruction
Trigger.A IF AlphaBreak&&Stop_value&&Write

If a memory access to address "TRAP" is executed the exception unit will issue the selected exception.
; declaration
ADDRESS BetaBreak TRAP

; global or local instruction
Trigger.eXception IF BetaBreak

©1989-2024 Lauterbach Complex Trigger Unit for Nexus MPC5xxx | 29

CTU Programming Examples

Data Trace Message based events

Stop the sampling to the trace buffer if a 1 as a byte is written to the variable flags[3].

To declare the input event - write of byte 1 to the address flags[3] - a Data Trace Message Qualifier has to
be used. The CTU provides 2 Data Trace Message Qualifiers. The 2 Data Trace Message Qualifiers can be
used to qualify 2 single Data Trace Message Qualifiers or to qualify 1 Data Trace Message Qualifier for an
address range.

The special feature of a Data Trace Message Qualifier is that the full data address and the full data value is
reconstructed by the PowerTrace hardware in real-time out of the compressed information provided by the
Data Trace Messages.

Data Trace Message Qualifiers have to be declared before they can be used in a trigger program.

Format: ADDRESS <selector> <address>| <range>/HARD [<option> ...]

<selectors: AlphaBreak
BetaBreak
CharlyBreak
DeltaBreak
EchoBreak

<option>: Read | Write | ReadWrite
Data.auto <value> | Data.Byte <value> | Data.Word <value> |
Data.Long <value>

ADDRESS AlphaBreak 0x7403 /HARD /Write /DATA.Byte 0x01
ADDRESS AlphaBreak V.RANGE (flags[3]) /HARD /Write /DATA.Byte 0

ADDRESS AlphaBreak V.RANGE (flags) /HARD /Write /DATA.Byte 1

The CTU can either stop the sampling to the trace buffer or the program execution when the trigger event
defined by the Data Trace Message Qualifier occurs.

Format: BREAK.TRACE | BREAK.PROGRAM [IF <condition>]

©1989-2024 Lauterbach Complex Trigger Unit for Nexus MPC5xxx | 30

Example: Trace trigger on data value

Full example for stopping the sampling to the trace buffer:
NEXUS.DTM Write ;enable data trace messaging for write accesses

Analyzer.ReProgram ;set trigger program

(
ADDRESS AlphaBreak V.RANGE (flags([3]) /HARD /WRITE /DATA.Byte 1

BREAK.TRACE IF AlphaBreak

Go ;run application

Example: Program break on data value

Full example for a data value breakpoint on MPC55XX (e200z1, z3, z6 cores do not provide DVC). In order
to prevent FIFO overflows, data trace is limited to the variable of interest. The stop of the program execution
is delayed (asynchronous stop). For this reason the defined event is marked with an “A” marker in the trace

listing.

Var .Break.Set flags[3] /Write /TraceData ;data trace only for flags[3]
TrOnchip.EVTI ON ;use EVTI to halt the core as fast as possible

Analyzer.ReProgram ;set trigger program

(
ADDRESS AlphaBreak V.RANGE (flags([3]) /HARD /WRITE /DATA.Byte 1

BREAK.Program IF AlphaBreak

MARK.A IF AlphaBreak
)
Go ;run application
WAIT !STATE.RUN() ;wait until core halted

Analyzer.List MARK DEFault ;show program flow with markers

The reconstruction of the full data address and the full data value by the
PowerTrace hardware can fail if too many data trace messages are generated in
quick succession.

©1989-2024 Lauterbach Complex Trigger Unit for Nexus MPC5xxx | 31

Watchpoint hit message based events

Analyze the run-time behavior of the function sieve.

The basic ideas for this analysis are:

. generate a watchpoint hit message (WHM) at the entry and at the exit of the function sieve.
. sample only these watchpoint hit messages to the trace buffer.
. to differentiate between the watchpoint hit messages generated for the function entry and those

generated for the function exit, mark the Watchpoint Trace Messages generated for the function
entry with an A marker and the Watchpoint Trace Messages generated for the function exit with a

B marker

Watchpoint hit messages have to be declared before they can be used in a trigger program.

Format:

<selector>

ADDRESS <selector> <address>| <range> /Onchip /Program

AlphaBreak
BetaBreak
CharlyBreak
DeltaBreak
EchoBreak

ADDRESS AlphaBreak sieve /Program /Onchip

ADDRESS BetaBreak sYmbol.EXIT (sieve) /Program /Onchip

The following trigger instructions are available to control the sampling to the trace buffer:

Format: Sample[.<mode>] [IF <condition>]
<mode>: Enable
OFF
ON
Enable Releases trace memory for recording when the specified condition is true.
OFF Switch the sampling to the trace buffer to OFF
ON Switch the sampling to the trace buffer to ON.

©1989-2024 Lauterbach

Complex Trigger Unit for Nexus MPC5xxx | 32

The following trigger instructions are available to mark a record in the trace buffer:

Format: Mark[.<marker>] [IF <condition>]
<markers: A
B

©1989-2024 Lauterbach Complex Trigger Unit for Nexus MPC5xxx | 33

Example: Runtime measurement with markers

Now the full example:

NEXUS.BTM OFF ;optional: disable program/data trace for maximum
NEXUS.DTM OFF ;accuracy (only watchpoint messages are used)
Analyzer.ReProgram ;set trigger program

(
ADDRESS AlphaBreak sYmbol.BEGIN(sieve) /Program /Onchip

ADDRESS BetaBreak sYmbol.EXIT (sieve) /Program /Onchip

Mark.A IF AlphaBreak
Mark.B IF BetaBreak

Go ;run application

WAIT 2.s

Break

Analyzer.STATistic.DURation ;display a function run-time statistic
Analyzer.PROfileChart.DURation ;display a function run-time chart

If the run-time analysis of the function sieve showed, that the function sieve took several times much longer
then you expected, a new trigger program can help you to find the reason for this behavior.

The basis idea of this new trigger program is:

J stop the program execution if the function sieve takes longer the 80 ps.

To write this trigger program 2 new concepts of the trigger programming language are required:
J Time Counters

. Trigger Levels

©1989-2024 Lauterbach Complex Trigger Unit for Nexus MPC5xxx | 34

Time Counters: The CTU provides 3 45-bit time counter with a resolution of 20 ns. Before a Time Counter
can be used in a trigger program it has to be declared.

Format: TImeCouNTer <name> [<time>]

TImeCouNTer sievec 80.us

TImeCouNTer interrupt_response 10.ms

The following trigger instructions can be used to control the Time Counters:

Format: Counter[.<mode>] <counter_name> [IF <condition>]
<mode>: Increment

OFF

ON

Restart
Increment Increment the counter if the specified condition is matched.
OFF Switch the counter to ON if the specified condition is matched.
ON Switch the counter to OFF if the specified condition is matched.
Restart The counter is reset to zero if the specified condition is matched.

If a Time Counter is used in a condition, the Time Counter is a true event when it has reached the declared
time value. The current contents of a Time Counter can be see in the Trace.state window.

Counter.Increment sievec IF AlphaBreak
Counter.Restart interrupt_response IF BetaBreak
Break.Program IF sievec
Complex Trigger Unit for Nexus MPC5xxx | 35

©1989-2024 Lauterbach

Trigger Level: The CTU provides 4 trigger levels.

. A trigger level starts at its label.
. A trigger level ends at the following label or at the end of the trigger program.
. The levels determine which trigger instructions are active at the same time.

Changing a trigger level is done by the following trigger instruction:

Format: GOTO </evel> [IF <condition>]

©1989-2024 Lauterbach Complex Trigger Unit for Nexus MPC5xxx | 36

Example: Program break based function runtime

Here the full example:

Analyzer.ReProgram

(
ADDRESS AlphaBreak sYmbol.BEGIN(sieve) /Program /Onchip

ADDRESS BetaBreak sYmbol.EXIT(sieve) /Program /Onchip
TImeCouNTer sievec 80.us

start:
GOTO insieve IF AlphaBreak

insieve:
Counter.Increment sievec
Counter.Restart sievec, GOTO start IF BetaBreak

BREAK.PROGRAM IF sievec&&!BetaBreak

Go
WAIT !STATE.RUN ()
PRINT "Function sieve exceeded maximum runtime!"

The complex trigger unit also provides flags to store an internal state. This state can be used as element of

conditions.
Format: Flag[.<action>] [IF <condition>]
<mode>: FALSE
TRUE
Toggle

©1989-2024 Lauterbach Complex Trigger Unit for Nexus MPC5xxx | 37

Using external signals with the CTU

The CTU supports two input signals. The IN input of the NEXUS adapter, and the PodBus trigger signal.
The IN input is labeled “IX0” on the NEXUS AutoFocus adapter LA-7630 and “INO” on LA-7610.

The PodBus trigger signal can be either an internal source (Debug module, Power Probe or Power Integrator
logic analyzers) or it can stem from an external source through the “Trigger” connector of the debug module.

Format: [<action>] [IF <condition>]
<condition>: BUSA | 'BUSA (PodBus trigger signal)
IN | !IN (IN connector of NEXUS adapter)

There are also output signals available. The OUT output of the NEXUS adapter, and the PodBus trigger
signal.

The OUT output is labeled “OX0” on the NEXUS AutoFocus adapter LA-7630 and “OUT0” on LA-7610.
The PodBus trigger signal can trigger any device on the PodBus (Debug module, Power Probe or Power

Integrator logic analyzers). It can also be used to trigger external devices using the “Trigger” connector of the
debug module.

Format: [<action>] [IF <condition>]
<action>: TRIGGER.PODBUS (PodBus trigger signal)
OUT.A (OUT connector of NEXUS adapter)

©1989-2024 Lauterbach Complex Trigger Unit for Nexus MPC5xxx | 38

Example: Record single message on rising edge of trigger input

The next example demonstrates how to control trace recording based on an external signal connected to the
Trigger input of the debug module.

Analyzer .ReProgram

(

waitrisingedge:
Sample.Enable IF BUSA
GOTO waitfallingedge IF BUSA

waitfallingedge:
GOTO waltrisingedge IF !BUSA
)

)

;configure Trigger connector as high-active input
TrBus.Connect In
TrBus.Mode HIGH

©1989-2024 Lauterbach Complex Trigger Unit for Nexus MPC5xxx | 39

Example: Program break based on pulse interval of IN input

The next example demonstrates how to use a flag to monitor a state change. Mark B is set on every rising
edge of the IN signal. The program execution is halted if the time interval of two rising edges is shorter than
10ms.

Analyzer.ReProgram

(

TImeCouNTer interval 10.ms
FLAGS lastin

;FLAG lastin is value of IN, delayed by one CTU cycle

FLAG.TRUE lastin if IN
FLAG.FALSE lastin if !'IN
;generate MARK.B on rising edge of IN
MARK.B if IN&&!lastin
wailtnext:
Counter.ON interval
Counter.Restart interval if IN&&!lastin
GOTO criticaltime if IN&&!lastin
criticaltime:
GOTO waitnext if interval ;interval elapsed -> OK

GOTO timeviol if IN&&!lastin&&!interval ;pulse within interval -> fail

timeviol:
Counter.OFF interval
BREAK . PROGRAM

Go

WAIT !STATE.RUN ()

PRINT "Found two pulses within one 10ms interval"
Analyzer.List Trigger.0 MARK.B TIME.MARKBB DEFault

©1989-2024 Lauterbach Complex Trigger Unit for Nexus MPC5xxx | 40

Appendix: Complex Trigger Unit Keyword Reference

Input Event

Meaning

IN

external input event INO or IN1 occurred

CM, TCODE_2, TCODE_CM

correlation message

DBM, TCODE_3, TCODE_DBM

direct branch message

DBSM, TCODE_B, TCODE_DBSM

direct branch sync message

DRM, TCODE_6, TCODE_DRM

data read message

DRSM, TCODE_E, TCODE_DRSM

data read sync message

DSM, TCODE_0, TCODE_DSM

debug status message

DWM, TCODE_5, TCODE_DWM

data write message

DWSM, TCODE_D, TCODE_DWSM

data write sync message

EM, TCODE_8, TCODE_EM

error message

EM_0, TCODE_8_0

error message 0 - OTM loss

EM_1, TCODE_8_1

error message 1 - BTM loss

EM_2, TCODE_8_2

error message 2 - DTM loss

EM_3, TCODE_8_3

error message 3 - r/'w access error

EM_5, TCODE_8_5

error message 2 - invalid access opcode

EM_6, TCODE_8_6

error message 6 - WHM loss

EM_7, TCODE_8_7

error message 7 - BTM/DTM/OTM loss

EM_8, TCODE_8_8

error message 8 - BTM/DTM/OTM/WHM loss

EM_24, TCODE_8_24

error message 24

EM_31, TCODE_8_31

error message 31

HBM, TCODE_1C, TCODE_HBM

hardware event message

HWM, TCODE_38, TCODE_HWM

hardware event message

HWSM, TCODE_1D, TCODE_HWSM

hardware event sync message

IBM, TCODE_4, TCODE_IBM

indirect branch message

IBSM, TCODE_C, TCODE_IBSM

indirect branch sync message

OTM, TCODE_2, TCODE_OTM

ownership trace message

©1989-2024 Lauterbach

Complex Trigger Unit for Nexus MPC5xxx

41

RBM, TCODE_1E, TCODE_RBM repeat branch message

RFM, TCODE_1B, TCODE_RFM resource full message

WHM, TCODE_F, TCODE_WHM watchpoint hit message

©1989-2024 Lauterbach Complex Trigger Unit for Nexus MPC5xxx | 42

	Complex Trigger Unit for Nexus MPC5xxx
	History
	Introduction
	Program Structure
	Conditions
	Declaration Reference
	ADDRESS Address selectors
	EVENTCOUNTER Event counter
	Event TRUE after n Clocks
	Event TRUE till n Clocks
	Event Windows

	FLAGS Flags
	HWME Hardware message events
	OTME Ownership trace message events
	TIMECOUNTER Time counter
	Timer Running till Overflow
	Timer TRUE after Time
	Timer TRUE till Time
	Time Windows

	TRIG External triggers

	Instruction Reference
	BREAK Analyzer stop
	Bus Bus trigger
	CONTinue Sequential level switching
	Counter Counter control
	Flag Flag control
	GOTO Level switching
	Mark Recording markers
	Out Output control
	Sample Recording control
	Trigger Trigger control

	CTU Programming Examples
	Data Trace Message based events
	Example: Trace trigger on data value
	Example: Program break on data value
	Watchpoint hit message based events
	Example: Runtime measurement with markers
	Example: Program break based function runtime
	Using external signals with the CTU
	Example: Record single message on rising edge of trigger input
	Example: Program break based on pulse interval of IN input

	Appendix: Complex Trigger Unit Keyword Reference

