
MANUAL

Complex Trigger Unit
for Nexus MPC5xxx

Complex Trigger Unit for Nexus MPC5xxx

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 ICD In-Circuit Debugger .. 

 Processor Architecture Manuals .. 

 Qorivva MPC5xxx/SPC5xx .. 

 Application Note for Nexus MPC5xxx .. 

 Complex Trigger Unit for Nexus MPC5xxx ... 1

 History ... 4

 Introduction .. 5

 Program Structure .. 7

 Conditions ... 8

 Declaration Reference ... 10

 ADDRESS Address selectors 10

 EVENTCOUNTER Event counter 11

 Event TRUE after n Clocks 12

 Event TRUE till n Clocks 12

 Event Windows 13

 FLAGS Flags 13

 HWME Hardware message events 14

 OTME Ownership trace message events 14

 TIMECOUNTER Time counter 15

 Timer Running till Overflow 16

 Timer TRUE after Time 16

 Timer TRUE till Time 16

 Time Windows 17

 TRIG External triggers 17

 Instruction Reference .. 19

 BREAK Analyzer stop 19

 Bus Bus trigger 19

 CONTinue Sequential level switching 20

 Counter Counter control 20

 Flag Flag control 23

 GOTO Level switching 24
Complex Trigger Unit for Nexus MPC5xxx | 2©1989-2024 Lauterbach

 Mark Recording markers 24

 Out Output control 25

 Sample Recording control 26

 Trigger Trigger control 28

 CTU Programming Examples .. 30

 Data Trace Message based events 30

 Example: Trace trigger on data value 31

 Example: Program break on data value 31

 Watchpoint hit message based events 32

 Example: Runtime measurement with markers 34

 Example: Program break based function runtime 37

 Using external signals with the CTU 38

 Example: Record single message on rising edge of trigger input 39

 Example: Program break based on pulse interval of IN input 40

 Appendix: Complex Trigger Unit Keyword Reference .. 41
Complex Trigger Unit for Nexus MPC5xxx | 3©1989-2024 Lauterbach

Complex Trigger Unit for Nexus MPC5xxx

Version 06-Jun-2024

History

18-Jun-2022 Initial version.
Complex Trigger Unit for Nexus MPC5xxx | 4©1989-2024 Lauterbach

Introduction

This application note describes the features and programming of the Complex Trigger Unit for MPC5XXX
processors with a parallel Nexus trace port.

The PowerTrace module contains the Complex Trigger Unit, short CTU. The CTU is a trigger sequencer that
provides additional trigger and filter possibilities. The usage of the CTU has no impact on the real-time
behavior of the processor.

The CTU is programmed by a special trigger language.

The main input events for the CTU together with a NEXUS adapter are:

• Watchpoint hit messages

• Data trace messages

• Ownership trace messages

• External trigger input pin

Based in this input events, the CTU can provide the following features:

• Trigger output signals

• Halt program execution

• Halt trace recording (trace trigger)

• Trace filtering

• Set marks in trace recording

The Complex Trigger Unit (CTU) is supported with following trace modules:

• PowerTrace Ethernet (LA-7707, LA-7690)

• PowerTrace II (LA-7692, LA-7693, LA-7694)

• PowerTrace PX (LA-3510)

Supported for port widths: MDO8, MDO12 and MDO16.

On-chip traces and Aurora NEXUS trace ports are not supported.
Complex Trigger Unit for Nexus MPC5xxx | 5©1989-2024 Lauterbach

Trigger RAM

(location of
compiled

Trigger Program)

MUX

4*16:1
4

4 Multiplexer groups

Level 0

MUX

4*16:1

Level 1

MUX

4*16:1

Level 2

MUX

4*16:1
4

Level 3

16 Input
Event

Qualifier

16

16

16

16

16

Available Input Event Qualifier:

4 Watchpoint Hit Messages
2 Data Trace Message
2 Ownership Trace Mess.
2 Hardware Event Mess.
1 TCODE Qualifier
2 Flags
1 External Input
1 Podbus Input
1 (reserved)

16

Time/Event
Counter 1

45 Bit

Time/Event
Counter 0

45 Bit

Time/Event
Counter 2

45 Bit

Zero

Zero

Zero

Counter Control

Level Control

Trace Control

Flags Control

Flags

Program Break Control

 Output Control

 Marker Control

 Podbus Control

Sample.ON/OFF/Enable
Break.Trace

Break.Program
Trigger.Podbus (via
 Podbus)

Out.A/B

Mark.A/B

Trigger.Podbus
Trigger.Pulse

GOTO,CONTINUE

FLAGS.ON/OFF/
TOGGLE

Counter.Enable/
ON/OFF
Complex Trigger Unit for Nexus MPC5xxx | 6©1989-2024 Lauterbach

Program Structure

A trigger program for the analyzer consists of the following parts:

Comments Comments are allowed anywhere in the trigger program. They begin with
a ";" or with “//“.

Declarations Declarations define input events which need to be declared. Such events
are address selectors, data selectors or counters.

Instructions Instructions control the action taken by the trigger unit. Usually they are
only executed when a defined condition becomes true. A condition is the
combination of internal or external events of the analyzer. An event is the
occurrence of a specific bus cycle, an access to an address or a
predefined data pattern.

Levels The beginning of a level is defined by the name of the level followed by a
colon ":". The end of a level is the beginning of the next level or the end of
the trigger program. All commands within a level and the global
commands are valid while the level is active. Commands outside the level
are not active. Only one level can be active at any time. Usually a trigger
program starts within the first written level or the level with the name
"START:".

Global instructions Global instructions are located between declarations and the first label,
i.e. the first local instruction. They are valid in all used levels. A trigger
program may consists of global instructions only.

Local instructions Local instructions are valid within one trigger level only. All local
instructions defined within a level and all global instructions are checked
simultaneously.
Complex Trigger Unit for Nexus MPC5xxx | 7©1989-2024 Lauterbach

Conditions

Conditions are combinations of events, which define when an instruction of the trigger program is executed.
Multiple instructions can be linked together in one line to share the same condition. If the condition is missing
for an instruction, it will be assumed 'TRUE'. The program

will produce the same results as

Input events can be combined by standard logical operators:

The brackets have the highest priority, the OR operator has the lowest.

The following two conditions will produce the same results:

As instructions can be used more than once in a level or in a statement line, it is possible to have conflicting
instructions or conditions. The following trigger program has two such conflicts:

Sample.enable

Sample.enable IF TRUE

(...)

! or N: for NOT

&& or :A: for AND

^^ or :X: for XOR

|| or :O: for OR

(BetaBreak&&User)||!(UserData&&!AlphaBreak)
 BetaBreak&&User||!UserData||AlphaBreak

START: Counter.ON count1, Counter.OFF count1 IF AlphaBreak
 GOTO Count_Level
 GOTO Error_Level IF Write&&BetaBreak
Level2:
...
Complex Trigger Unit for Nexus MPC5xxx | 8©1989-2024 Lauterbach

Instructions are executed from left to right

In the above example the flip-flop used for controlling the counter will be switched to OFF when an
AlphaBreak occurs.

Instructions are executed top to down

In the example above the instruction "GOTO Count_Level", which is "always valid", i.e. the jump to
"Count_Level", is programmed first. This programming is overwritten by the second "GOTO" with a jump to
"Error_Level" only when the condition "Write&&BetaBreak" is true.

The trigger unit remains in the "START" level for of one cycle and will then switch either to the trigger level
"Error_Level", or to "Count_Level" depending on the condition "Write&&BetaBreak".

If the order of the "GOTO" statements is changed:

then the first statement is completely overwritten.

Global statements have a low priority

Global statements are used, as they would have been typed before any other statement in a trigger level.

GOTO Error_Level IF Write&&BetaBreak
GOTO Count_Level
Complex Trigger Unit for Nexus MPC5xxx | 9©1989-2024 Lauterbach

Declaration Reference

ADDRESS Address selectors

The names of the address selectors are predefined and assigned to the breakpoints. Individual names
cannot be assigned.

These functions must be disabled, before using the breakpoints as address selectors. The breakpoints
AlphaBreak and BetaBreak have no fixed functions, they are the first choice for analyzer address selectors.
The CharlyBreak selector can be used as a background spot in multitasking environments.
DeltaBreak and EchoBreak have the same function as AlphaBreak and BetaBreak.

Address selectors can be used with previous declaration. In this case all breakpoints of that type are defined
in the analyzer program. Without declaration it is possible to use breakpoints, which were set by other
commands. This gives more flexibility in the assignment of breakpoints. Useful commands to set
breakpoints for the analyzer are:

An address selector declaration in the analyzer programming can define multiple addresses or address
ranges. One declaration line can define multiple addresses by using multiple segment ranges:

Multiple declaration lines can be used to define a more complex breakpoint definition:

Format: ADDRESS <breakpoint> <address> …

<breakpoint>: AlphaBreak
BetaBreak
CharlyBreak
DeltaBreak
EchoBreak

Break.Set Set breakpoints

Break.SetFunc Set breakpoints on functions entries

Break.SetLine Set breakpoints on HLL lines

Var.Break.Set Set breakpoints on HLL structures

sYmbol.ForEach Set breakpoints on a symbol pattern

ADDRESS AlphaBreak main||sieve||inchr||outchr

ADDRESS AlphaBreak main--sieve
ADDRESS AlphaBreak SD:0x0f2--0x0f7
ADDRESS AlphaBreak SP:0x10000..0x0ffffff
Complex Trigger Unit for Nexus MPC5xxx | 10©1989-2024 Lauterbach

The following declaration sets the selector at two consecutive bytes:

The size of HLL structures can be accessed by special functions. The declaration

marks the whole code of 'function3' with breakpoints. Using HLL expressions for the address is also
possible:

The following example makes a selective trace on all accesses to a variable:

EVENTCOUNTER Event counter

Any name can be assigned to the counter, as long as it doesn't conflict with the reserved names of other
events. The physical counters are selected automatically by the system, depending on their usage. If a event
counter reaches its declared value it will stop automatically. The event counters can be reloaded in real
time. However, program dependent dead times can result. The default value is equal to the maximum.

Each counter is released selectively and the state of the counters can be used as an input event. Event
ranges will occupy two universal counters.

This event delay counter will be re-loaded automatically during entering the delay level. The counter could
be released only general (Counter.Increment DELAY without any condition) in the delay level and could be
used as an input event for other commands like Sample.Enable, BREAK …

The current value of the counters are visible in real-time in the analyzer state window.

ADDRESS BetaBreak \\MOTSTEU\MOTOR1\Speed\value1++1

ADDRESS AlphaBreak V.RANGE(function3)

ADDRESS AlphaBreak V.RANGE("stra[2].count") V.RANGE("stra[1]")

; Declaration

ADDRESS AlphaBreak V.RANGE(flags)

; Global instruction

Sample.enable IF AlphaBreak

Format: EVENTCOUNTER <name> [<event>]

Analyzer Type Counters Max. Value

ICD 3 3.5e13
Complex Trigger Unit for Nexus MPC5xxx | 11©1989-2024 Lauterbach

Event TRUE after n Clocks

Declaration of an event counter called "CYCLE_CNT". The counter is always enabled and counts all CPU
cycles. The analyzer begins sampling after a delay of 500 CPU cycles.

Event TRUE till n Clocks

Declaration of an event counter called "NR_cnt", event argument is 48. The counter is always enabled. The
analyzer begins sampling immediately and stops recording after 48 sampled cycles.

EVENTCOUNTER CYCLE_CNT 500.
Counter.Increment CYCLE_CNT IF TRUE
Sample.enable IF CYCLE_CNT

0 500. infinite

false true
Complex Trigger Unit for Nexus MPC5xxx | 12©1989-2024 Lauterbach

Event Windows

Declaration of an event counter called "EV_range" with an event range from 100 to 200. The counter is
always enabled and counts all CPU cycles. The analyzer begins sampling after 100 CPU cycles and stops
recording 100 cycles later. Two physical counters are used by the trigger unit.

FLAGS Flags

Flags are Flip-flops which can be controlled and read by the trigger unit. The hardware for the flags is
assigned automatically by the system, depending on their usage.

The complex trigger unit of ICD analyzer has 2 flags.

EVENTCOUNTER NR_cnt 0--48.
Counter.Increment NR_cnt
Sample.enable IF NR_cnt

EVENTCOUNTER EV_Range 100.--200.
Counter.Increment EV_range
Sample.enable IF EV_range

Format: FLAGS <name> …

0 48. infinite

true false

0 100. 200. infinite

false true false
Complex Trigger Unit for Nexus MPC5xxx | 13©1989-2024 Lauterbach

After programming the trigger unit, or after the command Analyzer.Init all flags are set to OFF. Flags can be
set, reset or toggled.

The following program samples only, when the variable 'var2' has the value zero:

HWME Hardware message events

Any name can be assigned to the hardware message event (HWME), as long as it doesn't conflict with the
reserved names of other events. 2 physical events are available and are selected automatically by the
system, depending on their usage as input events in conditions. HWME could be used to react on signals
set from the customer specific chip units in the hardware event register.

The following program samples only, when a UART access sets bit12 in the hardware event register:

OTME Ownership trace message events

Any name can be assigned to the ownership trace message event (OTME), as long as it doesn't conflict with
the reserved names of other events. 2 physical events are available and are selected automatically by the
system, depending on their usage as input events in conditions. OTME could be used to react on ownership
trace messages with a certain value.

FLAGS VAR2_IS_ZERO
ADDRESS AlphaBreak var2
DATA.W ZERO 0x0

Flag.TRUE VAR2_IS_ZERO IF AlphaBreak&&WRITE&&ZERO
Flag.FALSE VAR2_IS_ZERO IF AlphaBreak&&WRITE&&!ZERO

Sample.enable IF VAR2_IS_ZERO

Format: HWME <name> <mask>

HWME UART1 0x1000

Sample.enable IF UART1

Format: OTME <name> <value> [/ <unitname>]

<unitname>: DMA | ETPU1 | ETPU2 | ETPCDC | PPCCORE | UNIT0 | … | UNIT15
Complex Trigger Unit for Nexus MPC5xxx | 14©1989-2024 Lauterbach

The following program samples only, when a certain task is running. The hardware must be configured in the
way that OTMEs contain the actual task number.

TIMECOUNTER Time counter

Any name can be assigned to the counter, as long as it doesn't conflict with the reserved names of other
events. The physical counters are selected automatically by the system, depending on their usage. If a time
counter reaches its declared value it will stop automatically. The timers can be re-loaded in real-time.
However, program dependent dead times can result. The default value is equal to the maximum time. Each
timer is released selectively and the state of the counters can be used as an input event.

The current value of the counters can be viewed in real time in the analyzer state window.

Time values can be entered in the following units:

OTME task3 0x1234 ; OTME with PID 0x1234 for task3

Sample.ON IF task3 ; start recording cycles if a OTM with
Sample.OFF IF TCODE_OTM ; PID 0x1234 occurs and stop recording
 ; after the next OTM

Format: TIMECOUNTER <name> [<time>]

Analyzer Type Counters Max. Time Resolution

ICD 3 8 days 20 ns

Nanoseconds (ns)

Microseconds (us)

Milliseconds (ms)

Seconds (s)

Kiloseconds (ks)
Complex Trigger Unit for Nexus MPC5xxx | 15©1989-2024 Lauterbach

Timer Running till Overflow

Declaration of a time counter called Timer_1 without time argument. The counter is always enabled and
counts every time. After the maximum time the analyzer begins sampling.

Timer TRUE after Time

Declaration of a time counter "Timer_A", time argument is 500 us. The counter is always enabled. The
analyzer begins sampling after a time delay of 500 us.

Timer TRUE till Time

Declaration of a time counter called "Timer_B". The counter is always enabled. The analyzer begins
sampling immediately and stops recording after a time of 30 us.

TIMECOUNTER Timer_1

Counter.Increment Timer_1
Sample.enable IF Timer_1

TIMECOUNTER Timer_A 500us

Counter.Increment Timer_A
Sample.enable IF Timer_A

TIMECOUNTER Timer_B 0.us--30.us

Counter.Increment Timer_B
Sample.enable IF Timer_B

0 max.time infinite

false true

0 500.us infinite

false true
Complex Trigger Unit for Nexus MPC5xxx | 16©1989-2024 Lauterbach

Time Windows

Declaration of a timer called "Timer_C" with a time range from 100 to 200 microseconds. The counter is
always enabled and counts every time. The analyzer begins sampling after 100 us and stops recording
100 us later. Two physical counters are used by the trigger unit.

TRIG External triggers

External triggers allow the analyzer to react on external signals.

A trigger event is true, when the declared value matches the levels at the input probe. Bit masks and hex
masks are allowed to ignore input pins. The name for the trigger selector can be chosen freely.

Declaration of 3 trigger events called BANK0 with value 00, BANK1 with value 01 and BANK2 with value 02
on trigger input A.

TIMECOUNTER Timer_C 100.us--200.us

Counter.Increment Timer_C
Sample.enable IF Timer_C

Format: TRIG.<channel> <name> <data> …

<channel>: A
B

TRIG.A BANK0 00
TRIG.A BANK1 01
TRIG.A BANK2 02

0 30.us infinite

true false

0 100.us 200.us infinite

false true false
Complex Trigger Unit for Nexus MPC5xxx | 17©1989-2024 Lauterbach

The trigger selector named CS_PERF becomes true if value of the bit mask 01010xx appears on trigger
input B.

The analyzer breaks when a write access and a low signal on line 0 of trigger input A is performed.

Several trigger event declarations.

TRIG.B CS_PERF 0y01010xx

TRIG.A EXT_CS 0y0xxxxxxx0 ;declaration

BREAK IF EXT_CS&&Write ;global instruction

; declarations

TRIG.A T_sel0 0x55 ; trigger selector on the input
; TRIGGER A with the value 0x55

TRIG.B T_sel1 0x0x5 ; trigger selector on the input
; TRIGGER B with a hex mask, all
; values with ;the low nibble 5

TRIG.B SEL_B 0y0xxxxxxx0 ; trigger selector with a bit mask
; bit number 0 low

TRIG.A T_RANGE 0x10--0x20 ; trigger selector range, values
; between 0x10 to 0x20

TRIG.A TEV_VAL 33.||55.||0xfe ; trigger selector with 3 different
; values

TRIG.B TEV_NEX 77. 88. 99. ; identical as above without
; logical OR

;global or local instruction

Counter.Increment CNT_1 IF SEL_B ; the counter counts if the trigger
; input TRIGGER A bit 0 is low
Complex Trigger Unit for Nexus MPC5xxx | 18©1989-2024 Lauterbach

Instruction Reference

BREAK Analyzer stop

Mode description.

When the analyzer BREAKs, it stops recording and the trigger unit is switched off. The analyzer can be read
out while in break state, similar to the OFF state.

The analyzer stops, whenever the address "Subr_end" appears on the address bus.

Bus Bus trigger

In order to be able to trigger more than one TRACE32 system, several trigger lines are available on the inter-
trigger bus.

Format: BREAK [.<mode>] [IF <condition>]

<mode>: PROGRAM
TRACE

PROGRAM This event is usually used to stop the user program (asynchronous breakpoint).

TRACE Stops only the recording of the analyzer.

ADDRESS BetaBreak Subr_end
...

BREAK IF BetaBreak

...

Format: Bus.<mode> [IF <condition>]

<mode>: A

A Activates bus trigger lines A.
Complex Trigger Unit for Nexus MPC5xxx | 19©1989-2024 Lauterbach

CONTinue Sequential level switching

A sequential level switch (to the next written level) will be done, when the specified condition is true. If no
further written level is present, the analyzer is stopped.

In the example the analyzer will change to level "infunc" after an access to an Alpha breakpoint and stop the
analyzer after the next access to an Beta breakpoint:

Counter Counter control

This instruction controls the trigger units counters. The instructions Counter.ON and Counter.Increment
will be programmed automatically, if they are not used in the trigger program. The counters have to be
declared according to their functions (see also declaration EVENTCOUNTER, and TIMECOUNTER).

Format: CONTinue [IF <condition>]

start: CONTinue IF AlphaBreak

infunc: CONTinue IF BetaBreak
 Sample.enable

Format: Counter[.<mode>] <counter_name> [IF <condition>]

<mode>: Enable (obsolete)
Increment
OFF
ON
Restart

Enable (obsolete) Releases counters when the specified condition is true.

Increment Releases counters when the specified condition is true.

OFF Switches the enable Flip-flop OFF.

ON Switches the enable Flip-flop ON.

Restart The counter is reset to zero.
Complex Trigger Unit for Nexus MPC5xxx | 20©1989-2024 Lauterbach

The instructions ON, OFF and Increment (Enable) function as controlled as a switch and a key in series. If
the switch is closed (Counter.ON) it remains closed until it is opened by Counter.OFF. The key is closed
only for the cycle which meets the specified condition, i.e. an event counter will make a step.

The counter is incremented whenever the switch and the key are closed.

If neither ON/OFF nor Increment (Enable) are used in the complete trigger program, the switch and the key
are closed, therefore the counter counts time or events (cycles) depending on its declaration.

If only Increment (Enable) is used in the trigger program, the switch ON/OFF is closed automatically, that
means counting is controlled only by Increment (Enable).

If only ON/OFF is used in the trigger program, the key Increment (Enable) is closed automatically, that
means counting is controlled by ON/OFF only.

NOTE: In all cases during the first cycle the switch ON/OFF is closed!

Counter CYCLE_CNT is counting every CPU cycle.

EVENTCOUNTER CYCLE_CNT ; declaration

Counter.Increment CYCLE_CNT ; global or local instruction

switch key

ON/OFF Increment (Enable)

switch key

ON/OFF Increment (Enable)

switch key

ON/OFF Increment (Enable)

switch key

ON/OFF Increment (Enable)
Complex Trigger Unit for Nexus MPC5xxx | 21©1989-2024 Lauterbach

Counter CCC0 is incremented by 1 every time, when addr1 has been reached.

Counter EV_LIMIT is counting occurrence of Func1. After 100 counts it stops recording via the analyzer
break command.

The trigger program is sampling all cycles and waiting in level "Level0" to access address "TRAP_S". After
this event the level changes to level "Level1" and the counter "T_LIMIT" is released to the count time. After
50 us the sampling is stopped by the analyzer break command.

The time counter "MESURE_T" starts counting at the entry of Level5. It stops time measurement when
reaching the Level7. The counter contains the time between entrance in Level5 and entrance in Level7.

EVENTCOUNTER CCC0
ADDRESS AlphaBreak addr1

; declarations

Counter.Increment CCC0 IF AlphaBreak ; global or local instruction

EVENTCOUNTER EV_LIMIT 100.
ADDRESS AlphaBreak Func1

; declarations

Counter.Increment EV_LIMIT IF AlphaBreak
BREAK IF EV_LIMIT

; global or local
; instructions

TIMECOUNTERR T_LIMIT 50.us
ADDRESS BetaBreak TRAP_S

; declarations

Sample.enable ; global instruction

Level0: CONTinue IF BetaBreak
Level1: Counter.Increment T_LIMIT
 BREAK IF T_LIMIT

; local instructions

TIMECOUNTER MEASURE_T
ADDRESS AlphaBreak sp:0x1000
ADDRESS BetaBreak sp:0x1025

; declarations

Sample.enable ; global instruction

start: Counter.OFF MEASURE_T
...

Level5: Counter.ON MEASURE_T
 CONTinue IF AlphaBreak
Level6: CONTinue IF BetaBreak
Level7: Counter.OFF MEASURE_T
...

; switch off counter
; (counter is on when the
; trigger program starts)

; Switch on counter

; Switch off counter
Complex Trigger Unit for Nexus MPC5xxx | 22©1989-2024 Lauterbach

Retrigger Timer1 when it has expired.

The execution will stop if the interrupt service routine INT_Service needs more than 225 us or less than
200 us.

Flag Flag control

Flags are used to mark event occurrences. Flags have to be declared at the beginning of a trigger program.
The default state at the beginning is OFF. The current state of the used flags is visible in real time in the
analyzer state window. Flags are also sampled in the trace buffer.

Counter.Restart Timer1 IF Timer1

TIMECOUNTER OVERUNDERFLOW 200us--225us
ADDRESS AlphaBreak INT_Service_Start
ADDRESS BetaBreak INT_Service_End

; declaration

...
LLL1: Counter.Restart OVERUNDERFLOW
 CONTinue IF AlphaBreak

; local instructions

LLL2: Counter.Increment OVERUNDERFLOW
 Trigger.A IF BetaBreak
 CONTinue IF OVERUNDERFLOW

LLL3: Counter.Increment OVERUNDERFLOW
 Trigger.A IF !OVERUNDERFLOW
 GOTO LLL1 IF BetaBreak

Format: Flag.<mode> <name> [IF <condition>]

<mode>: FALSE
OFF (obsolete)
ON (obsolete)
Toggle
TRUE

FALSE, OFF Resets the flag.

TRUE, ON Sets the flag.

Toggle Reverses the current state.
Complex Trigger Unit for Nexus MPC5xxx | 23©1989-2024 Lauterbach

 Set Flag1 if timer_1 has not expired.

Toggle Flag4 if data_event occurs.

GOTO Level switching

Change the current level of the trigger unit. GOTO may be used more than once in a level.

The following table shows the number of trigger levels available on each analyzer hardware:

Mark Recording markers

Four markers can be used to mark specific events in trace memory. They make it easier to find and display
special events, allow time displays between the markers and detailed statistic analysis. The markers are set
when the specified condition is true. They cannot be used as input events to the trigger unit, like Flags.

FLAGS Flag1 ; declaration

Flag.TRUE Flag1 IF !timer_1 ; global or local instruction

Flag.Toggle Flag4 IF data_event

Format: GOTO <level> [IF <condition>]

<level>: name
START

Analyzer Type Trigger Levels

ICD 4

Format: Mark. <name> [IF <condition>]

<name>: A
B

Complex Trigger Unit for Nexus MPC5xxx | 24©1989-2024 Lauterbach

The following program is used for detailed performance analysis of functions. It samples the entry and exit
points of each function and marks the entries with 'A' markers and the exits with 'B' markers:

Out Output control

Six signals can be generated to trigger other devices (e.g. analyzers or oscilloscopes) or to stimulate the
target hardware. Two of these signals are accessible via coaxial socket connectors at the back of the
analyzer chassis, the others can be accessed via an output probe at the front of the analyzer chassis.

Release trigger line A if address selector CharlyBreak is active.

The trigger output lines for the socket “OUT” at the front of the chassis can be accessed via an output probe.
The output probe's pin assignment is described in document trace_user.pdf.

Sample.enable IF AlphaBreak
Sample.enable IF BetaBreak
Mark.A IF AlphaBreak
Mark.B IF BetaBreak

Format: Out. <mode> [IF <condition>]

<mode>: A
B
C

A Activates the universal bidirectional coaxial output A at the back of the analyzer
chassis.

B Activates the universal coaxial output B at the back of the analyzer chassis.

C Activates the universal trigger outputs located at the front socket connector
"OUT".

Out.A IF CharlyBreak
Complex Trigger Unit for Nexus MPC5xxx | 25©1989-2024 Lauterbach

Sample Recording control

Control trace memory recording. The instructions Sample.ON and Sample.Enable will be programmed
automatically, if they aren't used in the trigger program.

These instructions do not effect the recording of the trigger event (marked with T), the first cycle (marked
with Go) and last cycle before the user program will stop (marked with BRK).

Format: Sample[.<mode>] [IF <condition>]

<mode>: Enable
OFF
ON

enable Releases trace memory for recording when the specified condition is true.

OFF Disables the Flip-flop for sampling.

ON Enables the Flip-flop for sampling.
Complex Trigger Unit for Nexus MPC5xxx | 26©1989-2024 Lauterbach

The instructions ON, OFF and Enable function as a controlled switch and a key in series. If the switch is
closed (Sample.ON) it remains closed till it is opened by Sample.OFF. The key is closed only for the cycle
which meets the specified condition, i.e. one bus cycle is stored in the trace buffer.

Only if the switch and the key are closed sampling is done.

If neither ON/OFF nor Enable are used in the complete trigger program, the switch and the key are closed,
that means all cycles are recorded (Implicit global Sample.ON IF TRUE and Sample.enable IF TRUE).

If only Enable is used in the trigger program, the switch ON/OFF is closed automatically, then sampling is
controlled only via the Enable (implicit global Sample.ON IF TRUE).

If only ON/OFF is used in the trigger program, the key Enable is closed automatically, then sampling is
controlled only via ON/OFF (implicit global Sample.enable IF TRUE).

The following statements are equally and will sample all bus cycles:

NOTE: In all cases during the first cycle the switch ON/OFF is closed!

Sample.Enable IF TRUE
Sample.enable
S.e
s

switch key

ON/OFF Enable

switch key

ON/OFF Enable

switch key

ON/OFF Enable

switch key

ON/OFF Enable
Complex Trigger Unit for Nexus MPC5xxx | 27©1989-2024 Lauterbach

Sample only write cycle:

The analyzer starts and waits in Level0 without recording till the appearance of the declared address
selector AlphaBreak (INT3_Service). That cycle (memory access to AlphaBreak) causes one sample and
change to the level "Level1". In this level all cycles are recorded.

Trigger Trigger control

Trigger other systems.

Whenever a write access with data word 0x0EE55 is performed on the data bus, the spot system executes
a spotpoint.

Sample.enable IF Write

; declaration area
ADDRESS AlphaBreak INT3_Service
...

; local area
Level0: Sample.enable IF AlphaBreak
 CONTinue IF AlphaBreak
Level1: Sample.enable
...

Format: Trigger.<mode> [IF <condition>]

<mode>: PODBUS (only ICD)
Pulse

PODBUS Activates bus trigger line A from PODBUS

Pulse Releases a pulse of the pulse generator (PULSE).

;declaration
DATA.W DAT_1 0x0EE55

;global or local instruction
Trigger.Spot IF DAT_1&&Write
Complex Trigger Unit for Nexus MPC5xxx | 28©1989-2024 Lauterbach

Whenever a write access to the memory address func_9 is executed a pulse is generated on the STROBE
probe. The pulse width and polarity is controlled by the PULSE command.

The execution will stop at write access to address SD:0x1488 with the data 0x30.

If a memory access to address "TRAP" is executed the exception unit will issue the selected exception.

; declaration
ADDRESS BetaBreak func_9

; global or local instruction
Trigger.Pulse IF BetaBreak&&Write

; declaration
ADDRESS AlphaBreak sd:0x1488
DATA.B Stop_value 0x30

; global or local instruction
Trigger.A IF AlphaBreak&&Stop_value&&Write

; declaration
ADDRESS BetaBreak TRAP

; global or local instruction
Trigger.eXception IF BetaBreak
Complex Trigger Unit for Nexus MPC5xxx | 29©1989-2024 Lauterbach

CTU Programming Examples

Data Trace Message based events

Stop the sampling to the trace buffer if a 1 as a byte is written to the variable flags[3].

To declare the input event - write of byte 1 to the address flags[3] - a Data Trace Message Qualifier has to
be used. The CTU provides 2 Data Trace Message Qualifiers. The 2 Data Trace Message Qualifiers can be
used to qualify 2 single Data Trace Message Qualifiers or to qualify 1 Data Trace Message Qualifier for an
address range.

The special feature of a Data Trace Message Qualifier is that the full data address and the full data value is
reconstructed by the PowerTrace hardware in real-time out of the compressed information provided by the
Data Trace Messages.

Data Trace Message Qualifiers have to be declared before they can be used in a trigger program.

The CTU can either stop the sampling to the trace buffer or the program execution when the trigger event
defined by the Data Trace Message Qualifier occurs.

Format: ADDRESS <selector> <address>| <range> /HARD [<option> …]

<selector>: AlphaBreak
BetaBreak
CharlyBreak
DeltaBreak
EchoBreak

<option>: Read | Write | ReadWrite
Data.auto <value> | Data.Byte <value> | Data.Word <value> |
Data.Long <value>

ADDRESS AlphaBreak 0x7403 /HARD /Write /DATA.Byte 0x01

ADDRESS AlphaBreak V.RANGE(flags[3]) /HARD /Write /DATA.Byte 0

ADDRESS AlphaBreak V.RANGE(flags) /HARD /Write /DATA.Byte 1

Format: BREAK.TRACE | BREAK.PROGRAM [IF <condition>]
Complex Trigger Unit for Nexus MPC5xxx | 30©1989-2024 Lauterbach

Example: Trace trigger on data value

Full example for stopping the sampling to the trace buffer:

Example: Program break on data value

Full example for a data value breakpoint on MPC55XX (e200z1, z3, z6 cores do not provide DVC). In order
to prevent FIFO overflows, data trace is limited to the variable of interest. The stop of the program execution
is delayed (asynchronous stop). For this reason the defined event is marked with an “A” marker in the trace
listing.

NEXUS.DTM Write ;enable data trace messaging for write accesses

Analyzer.ReProgram ;set trigger program
(
 ADDRESS AlphaBreak V.RANGE(flags[3]) /HARD /WRITE /DATA.Byte 1
 BREAK.TRACE IF AlphaBreak
)

Go ;run application

Var.Break.Set flags[3] /Write /TraceData ;data trace only for flags[3]
TrOnchip.EVTI ON ;use EVTI to halt the core as fast as possible

Analyzer.ReProgram ;set trigger program
(
 ADDRESS AlphaBreak V.RANGE(flags[3]) /HARD /WRITE /DATA.Byte 1
 BREAK.Program IF AlphaBreak
 MARK.A IF AlphaBreak
)

Go ;run application

WAIT !STATE.RUN() ;wait until core halted
Analyzer.List MARK DEFault ;show program flow with markers

The reconstruction of the full data address and the full data value by the
PowerTrace hardware can fail if too many data trace messages are generated in
quick succession.
Complex Trigger Unit for Nexus MPC5xxx | 31©1989-2024 Lauterbach

Watchpoint hit message based events

Analyze the run-time behavior of the function sieve.

The basic ideas for this analysis are:

• generate a watchpoint hit message (WHM) at the entry and at the exit of the function sieve.

• sample only these watchpoint hit messages to the trace buffer.

• to differentiate between the watchpoint hit messages generated for the function entry and those
generated for the function exit, mark the Watchpoint Trace Messages generated for the function
entry with an A marker and the Watchpoint Trace Messages generated for the function exit with a
B marker

Watchpoint hit messages have to be declared before they can be used in a trigger program.

The following trigger instructions are available to control the sampling to the trace buffer:

Format: ADDRESS <selector> <address>| <range> /Onchip /Program

<selector> AlphaBreak
BetaBreak
CharlyBreak
DeltaBreak
EchoBreak

ADDRESS AlphaBreak sieve /Program /Onchip

ADDRESS BetaBreak sYmbol.EXIT(sieve) /Program /Onchip

Format: Sample[.<mode>] [IF <condition>]

<mode>: Enable
OFF
ON

Enable Releases trace memory for recording when the specified condition is true.

OFF Switch the sampling to the trace buffer to OFF

ON Switch the sampling to the trace buffer to ON.
Complex Trigger Unit for Nexus MPC5xxx | 32©1989-2024 Lauterbach

The following trigger instructions are available to mark a record in the trace buffer:

Format: Mark[.<marker>] [IF <condition>]

<marker>: A
B

Complex Trigger Unit for Nexus MPC5xxx | 33©1989-2024 Lauterbach

Example: Runtime measurement with markers

Now the full example:

If the run-time analysis of the function sieve showed, that the function sieve took several times much longer
then you expected, a new trigger program can help you to find the reason for this behavior.

The basis idea of this new trigger program is:

• stop the program execution if the function sieve takes longer the 80 µs.

To write this trigger program 2 new concepts of the trigger programming language are required:

• Time Counters

• Trigger Levels

NEXUS.BTM OFF ;optional: disable program/data trace for maximum
NEXUS.DTM OFF ;accuracy (only watchpoint messages are used)

Analyzer.ReProgram ;set trigger program
(
 ADDRESS AlphaBreak sYmbol.BEGIN(sieve) /Program /Onchip
 ADDRESS BetaBreak sYmbol.EXIT(sieve) /Program /Onchip

 Mark.A IF AlphaBreak
 Mark.B IF BetaBreak
)

Go ;run application
WAIT 2.s
Break

Analyzer.STATistic.DURation ;display a function run-time statistic
Analyzer.PROfileChart.DURation ;display a function run-time chart
Complex Trigger Unit for Nexus MPC5xxx | 34©1989-2024 Lauterbach

Time Counters: The CTU provides 3 45-bit time counter with a resolution of 20 ns. Before a Time Counter
can be used in a trigger program it has to be declared.

The following trigger instructions can be used to control the Time Counters:

If a Time Counter is used in a condition, the Time Counter is a true event when it has reached the declared
time value. The current contents of a Time Counter can be see in the Trace.state window.

Format: TImeCouNTer <name> [<time>]

TImeCouNTer sievec 80.us

TImeCouNTer interrupt_response 10.ms

Format: Counter[.<mode>] <counter_name> [IF <condition>]

<mode>: Increment
OFF
ON
Restart

Increment Increment the counter if the specified condition is matched.

OFF Switch the counter to ON if the specified condition is matched.

ON Switch the counter to OFF if the specified condition is matched.

Restart The counter is reset to zero if the specified condition is matched.

Counter.Increment sievec IF AlphaBreak

Counter.Restart interrupt_response IF BetaBreak

Break.Program IF sievec
Complex Trigger Unit for Nexus MPC5xxx | 35©1989-2024 Lauterbach

Trigger Level: The CTU provides 4 trigger levels.

• A trigger level starts at its label.

• A trigger level ends at the following label or at the end of the trigger program.

• The levels determine which trigger instructions are active at the same time.

Changing a trigger level is done by the following trigger instruction:

Format: GOTO <level> [IF <condition>]
Complex Trigger Unit for Nexus MPC5xxx | 36©1989-2024 Lauterbach

Example: Program break based function runtime

Here the full example:

The complex trigger unit also provides flags to store an internal state. This state can be used as element of
conditions.

Analyzer.ReProgram
(
 ADDRESS AlphaBreak sYmbol.BEGIN(sieve) /Program /Onchip
 ADDRESS BetaBreak sYmbol.EXIT(sieve) /Program /Onchip

 TImeCouNTer sievec 80.us

 start:
 GOTO insieve IF AlphaBreak

 insieve:
 Counter.Increment sievec
 Counter.Restart sievec, GOTO start IF BetaBreak
 BREAK.PROGRAM IF sievec&&!BetaBreak
)

Go
WAIT !STATE.RUN()
PRINT "Function sieve exceeded maximum runtime!"

Format: Flag[.<action>] [IF <condition>]

<mode>: FALSE
TRUE
Toggle
Complex Trigger Unit for Nexus MPC5xxx | 37©1989-2024 Lauterbach

Using external signals with the CTU

The CTU supports two input signals. The IN input of the NEXUS adapter, and the PodBus trigger signal.

The IN input is labeled “IX0” on the NEXUS AutoFocus adapter LA-7630 and “IN0” on LA-7610.

The PodBus trigger signal can be either an internal source (Debug module, Power Probe or Power Integrator
logic analyzers) or it can stem from an external source through the “Trigger” connector of the debug module.

There are also output signals available. The OUT output of the NEXUS adapter, and the PodBus trigger
signal.

The OUT output is labeled “OX0” on the NEXUS AutoFocus adapter LA-7630 and “OUT0” on LA-7610.

The PodBus trigger signal can trigger any device on the PodBus (Debug module, Power Probe or Power
Integrator logic analyzers). It can also be used to trigger external devices using the “Trigger” connector of the
debug module.

Format: [<action>] [IF <condition>]

<condition>: BUSA | !BUSA (PodBus trigger signal)
IN | !IN (IN connector of NEXUS adapter)

Format: [<action>] [IF <condition>]

<action>: TRIGGER.PODBUS (PodBus trigger signal)
OUT.A (OUT connector of NEXUS adapter)
Complex Trigger Unit for Nexus MPC5xxx | 38©1989-2024 Lauterbach

Example: Record single message on rising edge of trigger input

The next example demonstrates how to control trace recording based on an external signal connected to the
Trigger input of the debug module.

Analyzer.ReProgram
(
waitrisingedge:
 Sample.Enable IF BUSA
 GOTO waitfallingedge IF BUSA

waitfallingedge:
 GOTO waitrisingedge IF !BUSA
)
)

;configure Trigger connector as high-active input
TrBus.Connect In
TrBus.Mode HIGH
Complex Trigger Unit for Nexus MPC5xxx | 39©1989-2024 Lauterbach

Example: Program break based on pulse interval of IN input

The next example demonstrates how to use a flag to monitor a state change. Mark B is set on every rising
edge of the IN signal. The program execution is halted if the time interval of two rising edges is shorter than
10ms.

Analyzer.ReProgram
(
 TImeCouNTer interval 10.ms
 FLAGS lastin

 ;FLAG lastin is value of IN, delayed by one CTU cycle
 FLAG.TRUE lastin if IN
 FLAG.FALSE lastin if !IN
 ;generate MARK.B on rising edge of IN
 MARK.B if IN&&!lastin

waitnext:
 Counter.ON interval
 Counter.Restart interval if IN&&!lastin
 GOTO criticaltime if IN&&!lastin

criticaltime:
 GOTO waitnext if interval ;interval elapsed -> OK
 GOTO timeviol if IN&&!lastin&&!interval ;pulse within interval -> fail

timeviol:
 Counter.OFF interval
 BREAK.PROGRAM
)

Go
WAIT !STATE.RUN()
PRINT "Found two pulses within one 10ms interval"
Analyzer.List Trigger.0 MARK.B TIME.MARKBB DEFault
Complex Trigger Unit for Nexus MPC5xxx | 40©1989-2024 Lauterbach

Appendix: Complex Trigger Unit Keyword Reference

Input Event Meaning

IN external input event IN0 or IN1 occurred

CM, TCODE_2, TCODE_CM correlation message

DBM, TCODE_3, TCODE_DBM direct branch message

DBSM, TCODE_B, TCODE_DBSM direct branch sync message

DRM, TCODE_6, TCODE_DRM data read message

DRSM, TCODE_E, TCODE_DRSM data read sync message

DSM, TCODE_0, TCODE_DSM debug status message

DWM, TCODE_5, TCODE_DWM data write message

DWSM, TCODE_D, TCODE_DWSM data write sync message

EM, TCODE_8, TCODE_EM error message

EM_0, TCODE_8_0 error message 0 - OTM loss

EM_1, TCODE_8_1 error message 1 - BTM loss

EM_2, TCODE_8_2 error message 2 - DTM loss

EM_3, TCODE_8_3 error message 3 - r/w access error

EM_5, TCODE_8_5 error message 2 - invalid access opcode

EM_6, TCODE_8_6 error message 6 - WHM loss

EM_7, TCODE_8_7 error message 7 - BTM/DTM/OTM loss

EM_8, TCODE_8_8 error message 8 - BTM/DTM/OTM/WHM loss

EM_24, TCODE_8_24 error message 24

EM_31, TCODE_8_31 error message 31

HBM, TCODE_1C, TCODE_HBM hardware event message

HWM, TCODE_38, TCODE_HWM hardware event message

HWSM, TCODE_1D, TCODE_HWSM hardware event sync message

IBM, TCODE_4, TCODE_IBM indirect branch message

IBSM, TCODE_C, TCODE_IBSM indirect branch sync message

OTM, TCODE_2, TCODE_OTM ownership trace message
Complex Trigger Unit for Nexus MPC5xxx | 41©1989-2024 Lauterbach

RBM, TCODE_1E, TCODE_RBM repeat branch message

RFM, TCODE_1B, TCODE_RFM resource full message

WHM, TCODE_F, TCODE_WHM watchpoint hit message
Complex Trigger Unit for Nexus MPC5xxx | 42©1989-2024 Lauterbach

	Complex Trigger Unit for Nexus MPC5xxx
	History
	Introduction
	Program Structure
	Conditions
	Declaration Reference
	ADDRESS Address selectors
	EVENTCOUNTER Event counter
	Event TRUE after n Clocks
	Event TRUE till n Clocks
	Event Windows

	FLAGS Flags
	HWME Hardware message events
	OTME Ownership trace message events
	TIMECOUNTER Time counter
	Timer Running till Overflow
	Timer TRUE after Time
	Timer TRUE till Time
	Time Windows

	TRIG External triggers

	Instruction Reference
	BREAK Analyzer stop
	Bus Bus trigger
	CONTinue Sequential level switching
	Counter Counter control
	Flag Flag control
	GOTO Level switching
	Mark Recording markers
	Out Output control
	Sample Recording control
	Trigger Trigger control

	CTU Programming Examples
	Data Trace Message based events
	Example: Trace trigger on data value
	Example: Program break on data value
	Watchpoint hit message based events
	Example: Runtime measurement with markers
	Example: Program break based function runtime
	Using external signals with the CTU
	Example: Record single message on rising edge of trigger input
	Example: Program break based on pulse interval of IN input

	Appendix: Complex Trigger Unit Keyword Reference

