LAUTERBACH A

Application Note for
Complex Trigger Language

Application Note for Complex Trigger Language

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
Complex Trigger LANQUAGEccciiiirrsmriiiisssiniisssssssssssssssssssssssssssssssssasssssssssnssssssssanss s snsssanssssnsssan r—~
Application Note for Complex Trigger Languageccccrueccerissssmsssmsmssmssssssssssssssssssssssssnss 1
L 1= (o 5
L o o LU T o o 6
Basic Structure of CTL Programscccccuceemsismminssmmsssssisssssssssssssssssssssssssssssssasssssasssasansess 7
Complex Statements 8
Agents 9
Core Agents 9
Bus Monitors 11
Default Agent 11
State Machines 12
Using CTL State Machines 12
Multiple State Machines 13
TRACE32 Commands Using CTL Programscccccccucisemrrimissssssmmssssssssmssssssssssssssssssssssssnnes 14
CTL Onchip Triggers Logic 14
CTL for Trace Find 14
CTL Streaming Trace Trigger 15
CTL for Onchip Triggers LOGICcccccrrriirscsmmrisissmmssmissssmssssssssmssssssssnsss s sasssmsssssssssmssssssssnssnsnnas 16
CTL for TriCore MCDS 17
Supported Targets 17
Multicore Support 17
Selective Bus Trace 17
Automatic Configuration of the Trace Source Multiplexers 18
TriCore Data Trace: COREx Vs. SRI-CPUx 18
Limitations 19
Examples 20
CTL for Arm ETM 31
Examples for CTL Trace Findcccccccimiiiimmmminimsrmnsssssnsssss s s ssss s s sssss s s ssssss s 32
Use case 1: Checking Variable Access 32
Use case 2: Checking Timing Constraints - Address Duration 34
Use case 3: Checking Timing Constraints - Address Distance 36
Keyword Reference: CTL Conditions/TrQQerscccimmiimmnnsmnnssnisssssessssssssssssssess 38

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 2

BREAKPOINT
BusTrigger

BMC

COUNT

CLOCKS

CT™M

EXTIN

FALSE

FLAG

MACHINE

Program

ProgramFail
ProgramPass

Read

ReadWrite

SingleShot
SingleShot.Program
SingleShot.ProgramFail
SingleShot.ProgramPass
SingleShot.Read
SingleShot.ReadWrite
SingleShot.Write
NoSingleShot
NoSingleShot.Program
NoSingleShot.ProgramFail
NoSingleShot.ProgramPass
NoSingleShot.Read
NoSingleShot.ReadWrite
NoSingleShot.Write
STATE.LEAVE
STATE.ENTER
STATE.TRACEON
TASK

TIME

TRUE

Var

Var.Program

Var.Read
Var.ReadWrite
Var.status

Var.Write

Write

ZONE

ABCDE breakpoint

Incoming trigger signal

Benchmark counter event

Trigger on event counter

Trigger on clock cycles counter
Cross trigger

External input

Never condition

Flag status

Machine comparator

Program access comparator
Conditional instruction execution
Conditional instruction execution
Read access

Read or write access

Single shot comparators

Single shot program execution
Single shot conditional execution
Single shot conditional execution
Single shot read access

Single shot read or write access
Single shot write access

Non single shot comparators

Non single shot program execution
Non single shot conditional execution
Non single shot conditional execution
Non single shot read access

Non single shot read or write access
Non single shot write access

Leave the state transition (edge sensitive)
Enter the state transition (edge sensitive)
Active state of a TraceON action
Task comparator

Time counter comparator

Always condition

Specify HLL expressions

Flat function execution

Variable read access

Variable read or write access

tbd.

Variable write access

Write access

Zone comparator

38
38
38
38
39
39
39
40
40
40
41
41
42
42
43
44
44
44
45
45
46
46
47
47
47
48
48
48
49
50
50
51
51
51
52
53
53
53
54
54
54
55
55

©1989-2024 Lauterbach

Application Note for Complex Trigger Language

Keyword Reference: CTL ACLIONSccccicimriminimmmmmniss s s ssms s ssmss s snsssmsssnenas 56
Break Stop the program execution 56
BusCLOCKS tbd. 56
BusCount tbd. 56
BusTIME tbd. 56
BusTrigger tbd. 57
CLEAR Clear flag 57
CT™M Cross trigger 57
ENABLE Enable counter 58
EVENT Trace event 58
EXTOUT External output 59
FOUND Add the trace sample to the search items result 59
GOTO Change active state 59
INCrement Increment counter 60
RELOAD Reload counter 60
SET Set flag 61
Spot Shortly stop the program execution 61
TraceData Sample specified data event 62
TraceEnable Enable the trace on the specified event 63
TraceOFF Switch OFF the trace sampling 64
TraceON Switch ON the trace sampling 65
TraceTIME tbd. 65
TraceTrigger Stop sampling to the trace buffer on specified event 65

CTL Programming EFFOrSccciiiiirmriiiiicmnnnisssmss s sssssmmss s s ssmms s s ssmss s s ssmms s s sssssmms s s ssmmnnnnas 66

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 4

Application Note for Complex Trigger Language

Version 23-May-2024

History

15-Feb-2023 Added onchip CTL support for miniMCDS.

29-Jun-2022 Initial version.

NOTE: This manual is still under construction.

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 5

Introduction

Complex Trigger Language (CTL) is a high-level parallel programming language. The main idea behind CTL
is to offer TRACES32 users a simple and powerful interface to debug and trace complex scenarios without
any specific knowledge about the low-level onchip triggers logic. The language is defined to grant a fine
control of the debug logic and trace sources. CTL enables the user to fully benefit from the debug and trace
capabilities offered by the target while keeping the entire focus on debugging and testing.

Additionally to onchip triggers logic, CTL supports Trace.Find as a target. This empowers TRACE32 with an
advanced trace find feature. When operating in SPY mode, the trace find results could be used as a test
vehicle for onchip triggers. This enables CTL for targets that do not provide any hardware support to
implement complex triggers.

This document is divided into the following sections:

1. Basic Structure of CTL Programs

2. TRACE32 Commands Using CTL Programs
3. CTL for Onchip Triggers Logic

Separate sub-sections discuss peculiarities of each implementation for onchip CTL and present
selected use cases with example CTL programs:

- CTL for TriCore MCDS

- CTL for Arm ETM

Examples for CTL Trace Find

Keyword Reference: CTL Conditions/Triggers

Keyword Reference: CTL Actions

N o o &~

CTL programming errors

NOTE: In this document, simple triggers refer to breakpoints that are enabled via
Break.Set commands.
CTL is not intended to replace simple triggers, although most breakpoints could
be easily written in CTL as well. The reason is that the onchip trigger unit
programmed by CTL might behave differently from the trigger logic
programmed by simple triggers. E.g. for TriCore the stopping breakpoints set
via simple triggers are programmed to OCDS (break-before-make breakpoints).
While the CTL Break actions are programmed to MCDS (the cores are stopped
a few instructions after the trigger event).

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 6

Basic Structure of CTL Programs

CTL makes an abstraction of the target architecture whenever possible. Apart from a few exceptions, e.g.
special bus agents, the syntax is architecture-independent and valid for all CTL targets.

Following is the list of elements composing CTL programs:

. Complex statements

. Agents (optional)

J Levels (optional)

. Comments (start with // or ; and end with the next line break).

; this is a comment
// this is also a comment
[<agent>::]
[<level>:]
IF <condition> ; this is another comment
<action>

CTL is not white space sensitive, but it is recommended to use indentations for better readability of the
program.

CTL keywords are not case-sensitive. The following examples of CTL programs are similar:

if var.program(sieve)
traceenable program

IF Var.Program(sieve)
TraceEnable Program

Upper case letters indicate the short forms of CTL keywords and must not be omitted. All lower case letters
can be omitted. Following is a short form of the above example program:

if v.p(sieve)
te p

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 7

Complex Statements

Complex statements are the basic elements of any CTL program.

Each complex statement is composed of:
. One condition

. One or multiple action(s) to be performed when the condition is satisfied

A CTL condition starts with the keyword IF followed by a logical combination of one or more sub-
expressions. The condition’s sub-expressions could be issued from different or similar qualifier types
(program comparators, memory address comparators, access types,...).

A line break separates the condition from its associated action(s).
Multiple actions of a complex statement must be separated by line breaks.
Example:

// Enable program trace for the first instruction of the function sieve
IF Program (ENTRY:sieve)
TraceEnable Program

Details about CTL conditions and actions are provided in the following sections:
J Keyword Reference: CTL Conditions/Triggers

. Keyword Reference: CTL Actions

NOTE: Given that CTL is a parallel programming language, the order in which the
complex statements appear in a CTL program is not important. All the complex
statements are evaluated in parallel.

If the CTL program is implementing a state machine, all the complex statements
belonging to the active state are evaluated in parallel. Complex statements
belonging to the inactive levels of the state machine are not evaluated.

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 8

Agents

Each CTL condition is evaluated for a specified agent, and likewise, each CTL action is to be performed by a
specified agent. The syntax to specify an agent is as follows:

<agent_ name>: :

The CTL syntax allows using agents with global scopes or local scopes.

Local scope agents are to be specified as prefixes to the associated actions and/or sub-expressions of the
CTL conditions.

Example:

IF COREO::Program(ENTRY:sieve0) | |COREL: :Program (ENTRY:sievel)
INCrement mycounter

An agent that is not prefixing any action or condition’s sub-expression is a global scope agent.

The scope of a global agent starts from the specification of the agent name and ends with the specification
of another global scope agent name.

Example:

COREO: :
IF Program(sieve0)
TraceEnable Program
IF Var.Write (mstaticl)
TraceEnable Write Address Data
COREl::
IF Var.Program(func2)
TraceEnable Write Address Data

Two types of agents are to be distinguished:

J Core agents
. Bus agents/monitors
Core Agents

The syntax to specify a core agent is as follows:

CORE<n>: :

The index n refers to the logical core number controlled by the TRCAE32 PowerView instance.

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 9

SplitCORE:: and JoinCORE: : are multicore agents. These are used to specify that a complex statement
is to be evaluated for all the cores that are assigned to the PowerView instance (except for limitations from
the target). The difference between Sp1itCORE: : and JoinCORE: : is as follows:

J SplitCORE: : specifies that each statement is to be evaluated for each core separately.
J JoinCORE: : specifies that all cores collaborate to evaluate a statement.
Example 1:

The TRACE32 PowerView instance is controlling 2 cores of the target CPU (CORE.ASSIGN 1. 2.).
In the following CTL program COREL : : is used as global scope agent:

CORELl: :
IF Var.Write(mstatic)
TraceEnable Program

This enables program flow trace of the second core if write access to the variable mstatic is performed by
the same core.

Example 2:
The TRACE32 PowerView instance is controlling 2 cores of the target CPU (CORE.ASSIGN 1. 2.).
In the following CTL program SplitCORE: : is used as a global scope agent:

SplitCORE: :
IF Var.Write(mstatic)
TraceEnable Program

When loading this CTL program, the complex statements is programmed for both cores separately. This
means that:

J The program flow trace of the first core is enabled when the latter performs a write access to the
variable mstatic.

. The program flow trace of the second core is enabled when the latter performs a write access to
the variable mstatic.

Example 3:
The TRACE32 PowerView instance is controlling 2 cores of the target CPU (CORE.ASSIGN 1. 2.).
In the following CTL program JoinCORE: : is used as global scope agent:

JoinCORE: :
IF Var.Write(mstatic)
TraceEnable Program

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 10

When loading this CTL program, both cores collaborate to evaluate the complex statement. This means that
the program flow trace of both cores is enabled when one of both cores performs a write access to the
variable mstatic.

Bus Monitors

When using bus agents the trace sources are observed at the level of bus transactions. Thus, no program
trace or program triggers are available for bus agents.

The list of bus agents is architecture-dependent. The list of available agents varies also depending on the
target CPU.

In some cases, the bus name is used as the CTL agent. In other cases, bus agents refer either to bus
masters initiating the transaction (e.g. DMA) or bus slaves incurring the transaction (e.g. memory units).

Examples of bus agents:

J SPB: : is to be used for observing the transactions on the Shared Peripheral Bus (SPB) of a
TriCore AURIX device.
J SRI-LMU: : is to be used for observing accesses to Local Memory Unit and EMEM of an AURIX
TC2x device via the Shared Resource Interface (SRI) fabric.
. SRI-DMA: : is to be used for observing DMA transactions on AURIX TC3x device via the SRI
fabric.
Default Agent

If no agent is specified, Sp1itCORE: : is used as the default agent.
In the following example, both CTL programs are equivalent.
Example:

IF Var.Program(sieve)
TraceEnable Program

SplitCORE: :
IF Var.Program(sieve)
TraceEnable Program

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 11

State Machines

Using CTL State Machines

State machines could be used for debugging sequential events. The syntax to specify levels of state
machines is as follows:

<level_ name>:

The scope of a state machine level starts from the specification of the level name and ends with the
specification of another level name.

The complex statements belonging to the scope of a state machine level are only evaluated when the level is
active.

The first level specified in a CTL program is handled as the start level.

Transitions between different levels of a state machine are to be specified using GOTO <target_level>
actions.

Example:

COREO: :
start:
// transition to levell statement
IF Program (ENTRY:sieve)
GOTO levell
levell:
// transition back to start level
IF Program(RETURN:sieve)
GOTO start
// stopping statement
IF Var.Write(mstaticl==2)
Break

In this example, the CTL program implements a state machine with 2 levels/states.

The state machine is initially at the start state. As soon as core0 executes the entry point of sieve ()
function, a state transition to 1evell occurs. When executing the return instruction of the function
sieve (), a state transition back to the level start occurs.

This implicates that 1evell is active as long as core0 is executing the function sieve () orone of its
nested functions. The level start is active otherwise.

Only when 1evell is active the stopping statement is evaluated.

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 12

Activating this CTL program will cause the target to Break when the following conditions are fulfilled:
. The agent core0 is executing the function sieve () or one of its nested functions.

. The agent core0 writes the value 2 to the variable mstaticl.

If initially, core0 is already in sieve (), the stopping statement would not be evaluated until the next
execution of sieve (), triggering a state machine transition to 1evell.

Multiple State Machines

CTL allows programming multiple state machines. Levels that belong to a state machine are to be prefixed
by the state machine name as follows:

<state _machine>.<level_name>:

Example:

In the following CTL program m1 and m2 are independent state machines:

J ml specifies that the target is to be stopped if funcl () is called by func9 () or one of its nested
functions.
o m2 specifies that the target is to be stopped if the variable mstatic1l is written outside func2 ()

or one of its nested functions.

ml.start:
IF Program (ENTRY: func9)
GOTO ml.levell
ml.levell:
IF Program (RETURN: func9)
GOTO ml.start
IF Program (ENTRY: funcl)

Break
A e e
// implementation of the state machine m2
A e e bl
m2.levelO:
IF Program (ENTRY: func?2)
GOTO m2.levell
IF Var.Write(mstaticl)
Break
m2.levell:

IF Program (RETURN: func?2)
GOTO m2.levelO

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 13

TRACE32 Commands Using CTL Programs

CTL could be used with different targets:
J CTL for Onchip Triggers Logic

. CTL for Trace Find

U CTL Streaming Trace Trigger

This section presents different CTL targets and their corresponding TRACE32 commands.

CTL Onchip Triggers Logic

CTL for onchip trigger logic (or Onchip CTL) requires that the target CPU provides the onchip logic to
implement complex triggers. While the complexity level is limited by the onchip resources provided by the
trigger unit, onchip CTL has the fastest response time compared to other CTL targets.

The following table recapitulates the list of TRACE32 commands that are used for onchip CTL.

Break.Program Opens interactive softkey-driven editor for CTL programs

Break.ReProgram Activates existing program file

Break.ViewProgram Opens a window that shows the state of the CTL trigger unit

Break.CLEAR Resets onchip trigger logic that is programmed by CTL. This
command doesn’t reset simple triggers.

More information about CTL onchip triggers can be found in the chapter CTL for Onchip Triggers Logic.

CTL for Trace Find

Using CTL for trace find allows searching for the occurrence(s) of complex events in the trace recording, e.g.
sequential events happening in a specific or even arbitrary order.

After the CTL program for trace find is activated, the commands Trace.Find and Trace.FindAll are to be
used to find the matching items in the trace recording that are fulfilling the complex search criteria as
specified by the CTL program.

CTL for trace find does not require any onchip triggering logic. Thus, CTL for trace find has unlimited
complexity and can be used with any target providing trace capabilities.

When using <trace>.Mode STREAM, it is possible to analyze trace results while streaming using the option
/SPY:

Trace.FindAll /SPY

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 14

The search result could be used as a test vehicle for onchip triggers: The trace stream file is processed and
analyzed at runtime (while the target is running and the trace is armed) to search for items fulfilling the
complex search criteria as specified by the CTL program. The target and/or the trace recording could be
stopped (Break or TraceTrigger) when the scenario of interest is recorded and detected.

Compared to Onchip CTL, CTL for Trace Find has a longer response time. The response time is affected by:
. The processing capacity of the host computer.

. The bandwidth of the whole trace transmission chain (from TRACES32 debug and trace tool to the
hard drive of the host computer).

The following table recapitulates the list of the TRACE32 commands that are used for CTL Trace Find.

Trace.FindProgram Opens interactive softkey-driven editor for trace find CTL programs
Trace.FindReProgram Activates existing program file for trace find target
Trace.FindViewProgram Opens a window that shows the state of the CTL trace find program

CTL Streaming Trace Trigger

tbd.
RTS.Program tbd.
RTS.ReProgram tbd.
RTS.ViewProgram tbd.
RTS.CLEAR tbd.

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 15

CTL for Onchip Triggers Logic

To use onchip CTL, the target CPU must provide hardware support to implement complex triggers.

The following subsections are independent. Each is discussing onchip CTL implementation for a specific
target architecture. Selected use cases and example CTL programs are presented.

- CTL for TriCore MCDS
- CTL for Arm ETM

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 16

CTL for TriCore MCDS

Supported Targets

Onchip CTL is only supported for AURIX devices with available MCDS modules (MCDS, MCDSlight, or
miniMCDS). CTL support for miniMCDS requires TRACE32 release 2023/02 or newer.

The PRACTICE function MCDS.Module.NAME() could be used to check the name of the MCDS module for
the selected CPU.

Multicore Support

The MCDS module of TriCore devices is restricted to generating trace and trigger information for a limited
number of cores. The consequence is that the multicore agents are restricted to the TriCore cores that are
assigned to the PowerView instance, and that are selected as core agents via the MCDS window or using
the commands MCDS.ProgramTrace.Agents and MCDS.DataTrace.Agents.

Selective Bus Trace

CTL provides a simple interface for selective bus trace. The complex statements are to be assigned to the
appropriate bus agents.

. The agent SPB: : is to be used for tracing and triggering over the System Peripheral Bus (SPB).

U The TriCore MCDS module is using trace multiplexers to select which trace sources are to be
observed on the Shared Resource Interconnect (SRI) fabric. SRl agent names are formed by the
SRI- prefix, followed by the name of the trace source as defined by Trace Source Multiplexer
setting options in the Infineon documentation. Following are some examples:

- SRI-LMU:: AURIX TC2x agent name to observe access to LMU SRAM and EMEM via SRI.
- SRI-OLDA:: AURIX TC3x agent name to observe access to Online Data Acquisition via SRI.
- SRI-DMA:: AURIX TC3x agent name to observe DMA transactions via SRI.

- SRI-CPU1:: AURIX TC2x/TC3x agent name to observe access to TriCore1 local memories
via SRI.

Not all trace sources are available for all target CPUs. The exhaustive list of available bus agents for each
CPU selection could be displayed by clicking on the advanced button of the MCDS window.

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 17

Automatic Configuration of the Trace Source Multiplexers

When activating a CTL program, an automatic configuration of the MCDS trace source multiplexers is
performed. TRACES32 combines the list of agents issued from the following configurations and configures
the trace source multiplexers accordingly:

. The list of agents that are used by the compiled CTL program.

o The list of core agents that are selected by the commands MCDS.ProgramTrace.Agents and
MCDS.DataTrace.Agents

. The list of bus trace agents that are selected by the command MCDS.BusTrace.Agents

. The status of the peripheral trace that is configured by the command MCDS.PERipheralTrace

An error is thrown if there is no valid MCDS configuration to observe all the selected agents at the same
time. The user must decide which agents are most important to be observed for his use case.

When a CTL program is activated, the configuration of the trace source multiplexers
performed by the same PowerView instance via the commands
MCDS.SOURCE.Set is discarded.

®)

TriCore Data Trace: COREx Vs. SRI-CPUXx

Using the MCDS module of AURIX devices there are 2 options to observe memory accesses relatively to a
TriCore core:

. Observe the read/write accesses performed by the core (e.g. when executing a load or store
instruction). In this configuration, the TriCore core is observed as a bus master.

o Observe the read/write accesses to the core local memories via the SRl fabric. In this configuration,
the TriCore core is observed as a bus slave incurring the access.

Different CTL agents are to be used in both cases.
Example:

COREO: : is used to observe the first core assigned to the PowerView instance as a master. In this case,
memory accesses performed by the core are to be observed.

SRI-CPUO: : is used to observe TriCore0 as an SRl slave. In this case, accesses to the core local
memories via SRl are to be observed. The agents are distinguished by the physical index of the TriCore
cores (SRI-CPUL: : refers to TriCorel, ..., SRI-CPUS5: : refers to TriCore5).

MCDS module of AURIX TC2x allows a selected TriCore to be observed as a core (read/write accesses
generated by the core are observed) and SRl slave at the same time. E.g. a CPU source Multiplexer could
be configured to observe the core accesses, and a SRI source multiplexer could be configured to observe
the same core as SRl slave.

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 18

As opposed to AURIX TC2x, MCDS module of AURIX TC3x only allows the core to be observed either as a
master or as an SRl slave but not both at the same time. CTL throws an error when a user program causing
such a conflict is enabled.

Limitations
J The current implementation of onchip CTL for TriCore doesn’t support complex statements that
combine conditions and actions issued from different agents.
. JointCORE: : agent is currently not supported by onchip CTL for TriCore.
J Due to known behavior of the MCDS module, there is a dead time of up to 2 MCDS clock cycles

during counters, flags, and state changes. This must be considered by the user when writing CTL
programs or analyzing the test results.

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 19

Examples

In this section, selected CTL use-cases for TriCore MCDS are presented.

Use case 1: Debug Memory Overwrite

User Story - Part 1:

In this example, an AURIX TC3x emulation device is used (e.g. TC397XE)

The user expects the variable vdouble to be only changed by the function func2c. But this gets
overwritten by other values than the function func2c is expected to write.

As a first test, the following CTL program is used to check if TriCore0 is performing any write access to
vdouble from outside the function func2c.

CTL Program:

COREO: :
IF Var.Write(vdouble) &&!Var.Program (func2c)
TraceEnable Program

By prefixing a qualifier with “Var.’, the address range of the specified HLL expression is used.
Results:

The test shows that the startup code _c_init_entry and other functions (WorkSieve and func?7) are
also writing to vdouble (see the trace chart in the following screenshot).

N TRACE32 PowerView for TriCore - O *
File Edit View Var Break Run CPU Misc Trace Perf Cov TC3% Window Help
(M AT rn | 28 0 EnEscs @22
|! [B::Break.Program] EI@
& Setup... & Save & Save As., B quit | #iFind.. [11|25 it Compile j-jnkﬂtqw
1
2 |CORED: : .
3 IF Var.Write(vdouble)&&!Var.Program(func2c)
4 TraceEnable Program|
5
v
[ok] DEFault ALL Program Read Write other prEvious
ity (===
2 Setup... || iif Groups..|| 38 Config..| (¥ Goto... | (¥ Goto... | #4Find... | {0 In |04 Out|[EH Full
&00. 000ms —400. 000ms —200. 000ms 0.0
address @y | | | | |
(other) ¥]]]]]]
—c_init_entryky))))))
'n'or‘k"S:'l eve Ko N A
unc? [
B::
components trace Data Var List PERF S¥Stem other prEvious
embedded indema_ctlomm, fine 23 | mode: CTL (EDMED) | fire: 4| col |0 |stopped MIX Up

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 20

User Story - Part 2:

The variable vdouble is located in the DSPR of TriCore0. The user requirement is to check that no other
TriCore cores or bus agents are also writing to this variable. To achieve this, TriCore0 is to be observed as
SRl slave using the agent SRI-CPUO: :

Considering that the write access might be part of a 64-bit burst write, the address range needs to be
extended to cover a 64-bit aligned range. PRACTICE functions and other arithmetic calculations could be
invoked by the CTL program. In this example the PRACTICE function ADDRESS.OFFSET() is used to
retrieve the variable address in-order to calculate the 64-bit address range to be observed.

CTL Program:

SRI-CPUO: :
IF Write((Address.OFFSET (vdouble) & (~0x7)) ++0x7)
TraceEnable Write Address Data

Results:

This second test proves that no other write access to vdouble is performed by any agent other than
TriCoreO: The resulting Trace.List window in the following screen shot is empty.

N TRACE32 PowerView for TriCore - O *
File Edit View Var Break Run CPU Misc Trace Perf Cov TC3% Window Help

(MM A I e »n |2 0 0 sdaa @2

H (===
2 Symbols || #iDump | SiList | G, View | 88 MMU

variable (global scope)
Vistdf lashappisieveivdoubTe

i

D:70000004--700000D7

|! [B::Break.Program] EI@
&Setup... & Save & Save As., B quit | #iFind.. [11|25 it Compile j-jnkﬂtqw
1
2 |SRI-CPUD:: "
3 IF Write({Address.OFFSET (vdouble)&{~0x7))++0x7)
4 TraceEnable Write Address Data v
[ok] DEFault ALL Program Read Write other prEvious
- | (===
address type action resource |
D:7000000D0--70000007 [Write | | W | (pTot2) --(vdoubTe+0x3] 4
SRI-CPUO: : IF Write(BREAKPOINT-1)
TraceEnable Write Address Data v

(== =]
J2 Setup...|| B8 Config-. | 1Y Goto... || F4Find... | i Chart | BE Profile | BEMIPS | % More | X Less

record |run |address cycle |data symbol ti.ba

—— NOTHING TO SHOW

£ >
B::
components trace Data Var List PERF SYStem other previous
embedded indemo_ctlomm, fine 23 | mode: CTL (EDIED) | fine: 4 | ok |0 |stopped MIX up

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 21

Use case 2: Trace Complex Events Using CTL Flags

In this example, an AURIX TC3x emulation device is used (e.g. TC397XE)

User Story:

In the used test application the variable mcount is incremented each iteration of the function mainloop.
The user needs to measure the runtime of the function sieve which is called once by mainloop iteration.
Runtime measurement is to be started after a specified number of iterations.

The user requirements for this test case are as follows:
J Trace all write accesses to mcount (the address and the write values are to be sampled).

. Starting from the iteration number 20000 of the function mainloop, the entry and return instructions
of the function sieve are to be traced.

J The measurements are to be stopped after collecting 1000 runtime samples.
CTL Program:

CTL flags can be used to implement the test requirements:

IF Var.Write (mcount)
TraceEnable Write Address Data

IF Var.Write (mcount==20000.)
SET myFlag

IF (Program(ENTRY:sieve) | |Program(RETURN:sieve))&&FLAG (myFlag)
TraceEnable Program

IF Var.Write (mcount==21000.)
Break
Results:

The Trace.List window shows that program trace (for the entry and return instructions of the function sieve)
is started after the value 20000 (0x4E20) is written to mcount .

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 22

=R o
J2 Setup... || 38 Config... [Goto... | #1Find... | i Chart | BE Profile | B MIPS | % More | X Less
record |run |address cycle |data symbol . back |
-00035538 D:70000030 wr-data 00004EL3 ..c39%_sieve_intmem\taskc mcount 30.300us
-00035523 D:70000030 wr-data D0004E14 ..c39%_sieve_intmem\taskc\mcount 30.380us _
-00035509 D:70000030 wr-data 00004E15 .c39x_sieve_intmem\taskc'mcount 30.410us =
-00035494 D:70000030 wr-data 00004E16 .c39%_sieve_intmem‘taskc'mcount 30.380us W
-00035479 D:70000030 wr-data 00004EL17 .c39x_sieve_intmem\taskc'mcount 30.320us
-00035465 D:70000030 wr-data 00004E18 .c39x_sieve_intmem\taskc'mcount 30.300us &
-00035451 D:70000030 wr-data 00004E19 .c39x_sieve_intmem\taskc'mcount 30.380us
-00035437 D:70000030 wr-data 00004E1A ..c39x_sieve_intmem\taskcmcount 30.410us
-00035422 D:70000030 wr-data 00004E1E .c39x_sieve_intmem\taskc'mcount 30.380us
-00035407 D:70000030 wr-data 00004E1C .c39x_sieve_intmem\taskc'mcount 30.320us
-00035392 D:70000030 wr-data 00004E1D .c39x_sieve_intmem\taskcmcount 30.300us
-00035378 D:70000030 wr-data 00004ELE ..c39x_sieve_intmem\taskc'mcount 30.380us
-00035364 D:70000030 wr-data 00004ELF .c39x_sieve_intmem\taskc'mcount 30.410us
-00035349 D:70000030 wr-data 00004E20 .c39x_sieve_intmem\taskcmcount 30.380us
-00035338 P:70100BE4 ptrace LEC39_sieve_intmem\taskchsieve 25.040us
#define MAX_SIZE 128
char flags[MAX_SIZE+1];
static int sieveivoid) * sieve of erathostenes *
register int i, prime, k;
int count,
771 int size ((mcount)%20000) 7 (MAX_SIZE>>3) : MAX_SIZE;
_d.n d15,0x70000030
d0, #0x4E20
— TRACE ENAELE
-00035324 P:70100C54 ptrace ._sieve_intmem‘taskcsieve+0x70 36.120us
790
retlé
-00035319 | P:70100B7A ptrace Wve_intmemtaskcimainloop+0x234 0.000us
728 = Ox12;
5 Px.0000334 d1s
-00035311 D:70000030 wr-data 00004E21 .c39%_sieve_intmem‘taskc\mcount 0.590us
—— TRACE EMAELE
-00035300 P:70100BE4 ptrace ~te39%_sieve_intmem‘taskc\sieve 25.020us
#define MAX_SIZE 128
char flags[MAX_SIZE+1];
static int sieveivoid) * sieve of erathostenes *
register int i, prime, k;
int count;
771 int size = ((mcount)%20000) 7 (MAX_SIZE->>3) : MAX_SIZE;
1 d15,0x70000030
d0, #0x4E20
— TRACE ENAELE
-00035290 | | P:70100C54 ptrace ._sieve_intmem‘taskc'sieve+0x70 4.790us v

The window Trace.STATistic.AddressDURation shows that 1000 runtime measurements of the function

sieve are recorded (samples: 1000). In a single iteration, the execution time of sieve took longer time

(max: 36.12ps) than in usual runs (avr:4.741ps)

= | BiTrace. STATistic. AddressDURation sieve sVmbol EX[T(sieve) = =R
& Setup... || [l Chart @l Zoom lil Zoom |§| Full
samples: 1000. avr: 4.741us min: 4.710us max: 36.120us
total: 638.195ms in: 4.741ms out: 633.453ms ratio: 0.742%
up to |count ratio 1% 2% 5% 10% 20% 50% 100
< 4. 000us 0. 0. 000%
6. 000us 999. | 99.900%
8. 000us 0. 0. 000%
10. 000us 0. 0. 000%
12.000us 0. 0. 000%
14.000us 0. 0. 000%
16. 000us 0. 0. 000%
18. 000us 0. 0. 000%
20.000us 0. 0. 000%
22.000us 0. 0. 000%
24, 000us 0. 0. 000%
26.000us 0. 0. 000%
28.000us 0. 0. 000%
30.000us 0. 0. 000%
32.000us 0. 0. 000%
34.000us 0. 0. 000%
36.000us 0. 0. 000%
> 1. 0.100% |+

©1989-2024 Lauterbach

Application Note for Complex Trigger Language

23

Use case 3: Counting Events

User Story:

In the used test application the variable mcount is incremented each iteration of the main loop.

The user needs to start sampling the program flow after a given number of iterations. The user requirements
for this test case are as follows:

J Trace all write accesses to mcount (the address and the write values are to be sampled).
J Starting from the 5™ iteration of the main loop, the program flow trace is to be enabled.
. The target is to be stopped after the 10" iteration of the main loop.

CTL Program:

In the following example program, a CTL counter “mycounter” is used to count the number of write access
to the variable mcount.

IF Var.Write (mcount)
TraceEnable Write Address Data
INCrement mycounter

IF COUNT (mycounter>=5.)
TraceEnable Program

IF COUNT (mycounter>=10.)
Break

Results:

Test results shown in the following screenshot could be interpreted as follows:

A The status bar shows the state “stopped by MCDS”. This indicates that an MCDS trigger has stopped
the target.

B The trace find window shows that the target executed the main loop for exactly 10 iterations (10 writes to
mcount are recorded).

C The trace list window shows that the program flow trace was enabled starting from the 5 iteration.

D The trace chart shows that the program trace was enabled during the last 5 iterations: The leaf function
sieve which is called once per main loop was called exactly 5 times.

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 24

[TRACE32 PowerView for TiCore
Fie Edit View Var Break Run CPU Misc Tace Pef Cov TC39 Window Help
(MW A+ pnE 700 tud sdad @12

(™ [B=Break. Program]

ar.Write
TraceEnable Write Address Data
INCresent mycounter

IF COUNT (mycounters=5,)
TraceEnable Program

IF COUNT (mycounter>=10.3
Break

€ »

Sx_sieve_intf lash'taskcmcount

~3x_sieve_intflash taskc\mcount

wOn_sieve_ nl"m\"lash\taskc\-cuunt
ash

~Sx_sieve_intf las
~_sieve_intf] uh\tul:c\u:ount
«Ox_sieve_intflash\taske\mcount

sieve_intflash\taskc\mcount
00000009 ..3%_s1eve_intflash taske\meaunt

T BerTrace.List

] B Trace Chart.s¥mbal /Track

$Mors | Xless

52 Qwfg... (3 Goto... ﬁnndm ¢ Chart imﬂal HMPS |

girun laddrgsy Jovele

> ¢ M|

D:70000010 wr-data
D:70000010 wr-data
D:70000010 wr-data
0: 70000010 wr-data

sieve_intflash)taskc\mcount
mooon x_sieve_intflash\taske\meount
_sieve_intflash\taskc\mcount
mooou: M1we_mtf'luh tul:(\nount

6 ptrace
40, d0, 0x0, #0x10

mel_u_-m_lo_

7500 =5$000 2500 T

| -
{ I
€73 = [(mcount % period) »= period/2 1 7 -1 1 +1;] !
1d.w 15, 0x 70000010 q
d.w d1,0x70000034 1 1
div e2,dl5,dl 1 { 1
Td.w d1,0x70000034 [} 1, | |
ge d1%,d1, #0x0 U M |]
caddnl6 dl,d15,#0x1 N F | |
shalé d1,#-0x1] 1 [}]]
it d3,d1, 0xBO000B4A l = L]
00005441 | | P:B0ODDOB4A prrace ~sieve_intflash\taske\mains0x5A = I n
movlé d15,#0x1 L] L] L] L] L |
674 plotl = p\utl + sign * inc;
1d.h d1,0x70000038
) madd d0,d1,d15 ,d0 ~
1< > >
(components| | wace || Data || Var ||}Ttst || perF |[svstem || Step || Go [Break || svmbol || Frame |[Regster || P | [MM [masaon | | fhe | i
C-T: 00005449 [stopped by MCDS = | M [P

©1989-2024 Lauterbach

Application Note for Complex Trigger Language

25

Use case 4: Check Timing Constraint - Address Duration

User Story:

In a real-time context, the execution time of the function mainloop must not exceed a maximum specified
time of 35 ps. In rare cases, it happens that the execution time exceeds 60 ps.

An AURIX TC3x emulation device is used, but the target board doesn’t provide an AGBT interface. Only an
onchip trace buffer of 2MBytes is available. The user estimates that, when the error case occurs, the
program flow history available in the onchip trace buffer should be enough to track down the issue. The
requirements are as follows:

J Unconditional program flow trace must be enabled.

o To track the number of execution loops, all write accesses to the variable mcount must be
recorded.

. When detecting the error case (i.e. the execution time of the function mainloop exceeds a

maximum specified duration of 35 ps) the trace recording must be kept enabled till the next return
of the function mainloop is executed.

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 26

CTL Program:

// Enable unconditional program flow trace
IF TRUE ()
TraceEnable Program

// Sample all write access to mcount

IF Var.

Write (mcount)

TraceData

// State Machine implementation to stop
// tracing and Break if the mainloop
// execution time exceeds 35us.

levelO:
IF

levell:
//
IF

/7
IF

/7
/7
IF

/7
IF

level3:

/7
/7
IF

Program (ENTRY :mainloop)
GOTO levell

Restart the timer at entry to levell
STATE.ENTER ()
RELOAD task_timer

Keep counting as long as levell is active
TRUE ()
ENABLE task_timer

mainloop return with no timeout detected
=> Go back to levelO

Program (RETURN:mainloop)

GOTO levelO

A timeout is detected => Go to level3
TIME (task_timer>=35.us)
GOTO level3

level3 is only reached if a time-out is detected

=> Stop tracing and break at return of the mainloop
Program (RETURN:mainloop)

TraceTrigger

Break

©1989-2024 Lauterbach Application Note for Complex Trigger Language

27

Results:

N TRACE32 PowerView for TriCore - O *

File Edit View Var Break Run CPU Misc Trace Perf Cov TC3% Select Demo Window Help
(M AT rn | 28 0 EnEscs @22

il [= =]=]
J2 Setup... || iif Groups.|| 38 Config-. || (¥ Goto... | (¥ Goto... | #4Find... | {0 In |04 Out|[EH Full
5

-150.000us -100. 000uUs -50.000us 0.0
1 1 1 I

address {J
other) ki

funclofd =m0~ mm
mainToopi mme . W | mwil.
funcllpy . .

m ol oW e o omn
| I I
funcl3iy 1 | ' | '
funcld iy I
funcl7& 1
func206 1
func24iy 1
func2s ik |
func26hk |
func2sik |
encode iy
subst
sieve II _
ma | R—
func2il B
funcliy oI 1.
funczakk
funczbik
func2chi
func2d SRR | | [|
initlinkedListiy| ® 0 ® 0 o® L]
func4 &y

El

| I I
func3fy 1 . IR X IR
funesiy | . HIE X S
funcé iy | | | X X
funczpel 0 L L L L
funcdg) w. @ B B . n
funcoiy 1 o . LB X . A

& Setup... || [l Chart @l Zoom lil Zoom |§| Full

samples: 1202. avr: 30.286us min: 30.150us
total: 36.531ms in: 36.404ms out: 127.840us

up to |count ratio 1% 2% 5% 10%
< 30.000us 0. 0. 000%
35.000us 1201. | 99.916%
40. 000us
45. 000us
50.000us
55.000us

[=j=j=j=]

efleeoe
[=1
(=1
E

~

w

[=1

(=1

(=]

B

]
[=R=N=11{ N

components trace Data Var List PERF other prEvious

PT0100954 \ibe3 sieve intmemitash f mainioop+(ad stopped by MCDS MIX |UP

[E]

A The status bar shows the state “stopped by MCDS”. This indicates that an MCDS trigger has stopped
the target.

B The Trace.STATistic.AddressDURation window shows that the execution time of the function
mainloop has once exceeded the duration of 35 ps.

The maximum measured duration of mainloop is 61.660 ps.

The Trace.Chart.sYmbol window shows that the function sieve took a longer execution time than

the usual runs. The user must examine the program flow trace and focus his analysis on the
function sieve.

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 28

Use case 5: Check Timing Constraint - Address Distance

User Story:

In a real time context, a function func10 must be called at least once every 35 ps. In rare cases, the time
distance between 2 consecutive calls exceeds 60 ps.

An onchip trace configuration on AURIX TC3x emulation device is used. The user needs to examine the
program flow trace when the timing constraint is violated. The requirements are as follows:

J Unconditional program flow must be enabled.

. When the timing constraint is violated, the program flow recording is to be kept enabled until the
next call of func10 is executed.

CTL Program:

// Enable unconditional program flow trace
IF TRUE ()
TraceEnable Program

// Set monitoring flag and reload the distance timer at every
// execution of the funcl0 entry
IF Program(ENTRY:funclO)

SET monitoring_flag

RELOAD distance_tmr

// Keep incrementing the distance timer as long as the monitoring
// flag is set
IF FLAG (monitoring flag)

ENABLE distance_tmr

// Set a time-out flag when the value of the distance monitoring
// timer exceeds 35 us
IF Time (distance_tmr>35.us)

SET timeout_flag

// Stop trace recording at the first execution of funclO entry
// following a time-out
IF FLAG (timeout_flag) &&Program (ENTRY: funcl0)

TraceTrigger

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 29

Results:

N TRACE32 PowerView for TriCore - | X
File Edit View Var Break Run CPU Misc Trace Perf Cov TC3% CTLDemo Window Help
MW A4+ ||t 28 Ml e s @B
-
& Setup.. | [l Chart 21 Zoom = Zoom & Ful
samples: 1208. avr: 30.26%us min:
total: 36.585ms in: 36.565ms out:
up to |count ratio 1% 2% 5% 10% 20% 50% 100 |
< 30.000us . 0. 000%
35.000us 1207. | 99.917%
40. 000us 0. 0. 000%
45. 000us 0. 0. 000%
50.000us 0. 0. 000%
55.000us 0. 0. 000%
| 65.000us 1.| 0.082% |+ | i
B Trace.List =8 Eo
B Setup... | B8 Config- | (1 Goto..| F4Find.. | e Chart | EEProfile | BRMIPS | 4 More | X Less
record |run |address cycle |data symbol ti.back |
~
364 vl7 = 03 _
movl6 dz, #0x0 El
365 for (0; 1 <3 ; i++ v
movl6 di15
e N ey A
I + watchpoint TraceTrigger :
-00000006 - = 0.050us
-00000004 | P:70100072 ptrace wem'ysieve\ funcli+0x0A 0.000us ¥
as o [
EE| m m
1209 [run [address cycle [data symbol t1.back
-00015609 P:70100068 ptrace .e_intmem\sieve\funcll 30.270us
-00013867 P:70100068 ptrace ~e_intmem'sieve\funcll 30.320us _
-00012141 P:70100068 ptrace ~e_intmem'sieve\funcll 30.270us =
-00010402 P:70100068 ptrace ~e_intmem'sieve\funclOf 30.210us .,
-00008678 P:70100068 ptrace ~e_intmem'sieve\funcll 30.190us
-00006952 P:70100068 ptrace ~e_intmem'sieve\funcll 30.270us "
-00005210 P:70100068 ptrace ~e_intmem'sieve\funcll 30.320us
-00003484 — P:70100068—ptrace — —.e_intmem'sieve\funcll 30.270us—
-00000010 P:70100068 ptrace ~e_intmem'sieve\ funclo 60. 860us ¥
B::
components trace Data Var List PERF other previous

A The Trace.STATistic.AddressDIStance window shows that, over 1208 recorded trace samples, the
timing constraint is violated once.

B The maximum recorded time distance between consecutive calls of func10 is 60.86 ps.

C The watchpoint mark the occurrence of the TraceTrigger action

D The column “ti.back” shows that the distance between the last 2 calls of func10 exceeds 35 s for

the first time.

©1989-2024 Lauterbach

Application Note for Complex Trigger Language |

30

CTL for Arm ETM

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 31

Examples for CTL Trace Find

Use case 1: Checking Variable Access

User Story:

The user needs to find all write access to a variable v1ong from outside the function main.

Trace Find Program: vliong_access.ct

IF Var.Write(vlong) &&!Var.Program (main)

FOUND

Results:

The results could be explored using the TRACE32 PowerView:

1. Click on the compile button in the CTL Trace Find editor.

2. Open a trace chart window with the /Track option by executing the command

Trace.Chart.sYmbol /Track

3. Navigate through the matching items using the button Find. Each time the trace chart window
will be updated; the function that is performing the access is highlighted. Alternatively, the

FindAll button could be used to list all the matching items in the Trace.FindAll window.

B setup... % Save || TFSavehs. | B Quit | #iFind.. | 91|25 i Compie | FiFind FindAll || #3 Fdiedragn
1 ~
2 |IF Var.write{vlong)&%&!Var.Program(main)
3
v
IF GOTO RELOAD || INCrement | ENABLE CLEAR SET other previous
L
iyl o || =] 2R
2 Setup... | iif Groups.. | 38 Config..| (¥ Goto... | (¥ Goto... | #4Find... | {0 In |04 Out| EH Full
+13300 +13350 +13400 +13450
address iy | | | |
sievel IEEG—G— @ 0 ~
funcz iy I N I .
funclgyl -E = 00
funcZafy| |
funcZbiy|
func2chy|
func2dgl = = | |
£ 0E > £
$3 B:Trace FindAll
18200 run |address cycle |[data symbol |
+00000711 D:70000020 wr-data 00BCG14E ..tc39%_sieve_intmem\taskcvlong o
H00000716 D:70000020 wr-data B541B341 .tc39x_sieve_intmem‘taskcivlong =
H000007 25 D:70000020 wr-data 1E4C5727 .tc39x_sieve_intmem‘taskcivlong =
+00000735 D:70000020 wr-data 3BDC4D00 ..tc39%_sieve_intmem'\taskc'vlong v
H00000744 D:70000020 wr-data ODF194CC ..tc39x_sieve_intmem‘taskcivlong
H000007 82 D:70000020 wr-data ODF194CC ..tc39x_sieve_intmem‘taskcivlong (o
H000007 87 D:70000020 wr-data ODF1EGBF ..tc39x_sieve_intmem‘taskc'vlong
H00000794 D:70000020 wr-data ODF2B8AA5 .tc39x_sieve_intmem‘taskcivlong
H00000801 D:70000020 wr-data ODF3807E ..tc39x_sieve_intmem‘taskc'vlong W

©1989-2024 Lauterbach

Application Note for Complex Trigger Language

32

A scripting approach could also be used. The following PRACTICE script prints the names of matching
items’ functions to the message area window.

// activate the CTL find program from the file vlong_access.ct
Trace.FindReProgram ~~~~/vlong_access.ct

// search for the first trace record fulfilling the CTL program search

// criteria
Trace.Find

WHILE FOUND ()
(

// print the name of the matching item’s function to the area window
PRINT sYmbol .FUNCTION (TRACK.ADDRESS.PROG())

// search for the next trace record fulfilling the CTL program search
// criteria
Trace.Find

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 33

Use case 2: Checking Timing Constraints - Address Duration

User Story:
The user needs to perform post-mortem analysis of a trace recording. The trace is loaded to a TRACE32

Instruction Set Simulator. The user needs to verify that the execution time of the function mainloop does
not exceed a specified time of 35 ps.

Trace Find Program: check_address_duration.ct

start_level:
// Detected Entry of the main loop
IF Program (ENTRY:mainloop)
GOTO check_level

check_level:
// Reset the task_timer
IF STATE.ENTER ()
RELOAD task_timer

// Enable the task timer as long as check_level is active
IF TRUE ()
ENABLE task_timer

// Go back to start_level at Return from the function
// mainloop
IF Program(RETURN:mainloop)

GOTO start_level

// task_timer exceeds 35 us

// => a timout is detected

IF TIME (task_ timer>=35.us)
GOTO timout_level

timout_level:
// Search for the next return from mainloop and
// mark it as FOUND and go back to start_level to
// continue the test
IF Program(RETURN:mainloop)
FOUND
GOTO start_level

A PRACTICE script could be used to set bookmarks for all the trace records breaking the timing constraint.

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 34

PRIVATE &index
Trace.FindReProgram ~~~~/check_address_duration.ct

BookMark.RESet
&index=1.

// Find the first trace record matching the CTL find program criteria

Trace.Find
WHILE FOUND ()

(
// Compose a unique bookmark name
&bookmark="BM_"+"&index"
// Set a bookmark for the FOUND trace record
Trace.Bookmark "&bookmark" TRACK.RECORD ()
&index=&index+1.
// Find the next trace record matching the CTL find program criteria
Trace.Find

)

Results:

In this example, the timing constraint was broken four times. These are identified by the bookmarks “BM_1”,
“‘BM_2”, “BM_3”, and “BM_4".

& Setup... ||l Chart @l Zoom lil Zoom |§| Full
samples: 69999, avr: 30.280us min: 30.210us max: 61.680us
total: 2.126s in: 2.120s out: 6.449ms ratio: 99.696%
up to |count ratio 1% 2% 5% 10% 20% 50% 100 |
< 30.000us 0. 0. 000%
40. 000us 69995, | 99.994%
50.000us 0. 0. 000%
&0. 000us o 0. 000%
70.000us 4 0.005% |+
80. 000us o 0. 000%
o 0. 000%
A B:BookMarkList =0 =R
X Delete Al E?;Store... ﬁLoad... I§ Create...
bookmark addr/record |symbol/time source |
0.267361080s Analyzer
0.874756170s Analyzer
1.482151260s /:
2.089546350s
>

[=[=]==]

J2 Setup... | iif Groups..| 38 Config..| (¥ Goto... | (¥ Goto... | #4Find... | {0 In |04 Out| EH Full
| 1.482000000s 1.48250

range i}

E mainloop sy
func2 &y

funcl &y
funczakk
funczbik
func2chi
func2dik
initLinkedListiy
func4 &y

func3 gy

funcs &y

TeAD 2 = N> < L i | L ! S

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 35

Use case 3: Checking Timing Constraints - Address Distance

User Story:

Runtime analysis of the user application program flow using Trace.STATistic.AddressDIStance shows that
a function classifyabs is called at least once each 1 ms. In some cases (3 times/4095 samples) the time
distance between consecutive calls of classifyAbs exceeds 6 ms. A trace find program can be used to
locate the trace samples where the timing constraint gets violated.

Trace Find Program: check_address_distance.ct

// For each trace sample corresponding to the entry of the function
// classifyAbs:
// + Set a flag “monitoring flag”
// + Reload the distance monitoring timer “distance_tmr”
IF Program(ENTRY:classifyAbs)
SET monitoring flag
RELOAD distance_tmr

// As long as the monitoring flag is set, keep incrementing
// the distance monitoring timer
IF FLAG (monitoring flag)

ENABLE distance_tmr

// In case the monitoring timer exceeds a limit of 1 ms
// + The timout flag is set
// + The monitoring flag is cleared
// + The distance timer is reset
IF Time (distance_tmr>1.0ms)
SET timeout_flag
CLEAR monitoring flag
RELOAD distance_tmr

// The next trace sample representing the entry of the function
// classifyAbs with the timeout flag set is added to the trace find
// results of interest (FOUND)
// The timeout flag is cleared for processing the rest of the trace
// samples
IF Program(ENTRY:classifyAbs)&&FLAG (timeout_flag)

FOUND

CLEAR timeout_flag

The trace find program could compiled/activated via the command Trace.FindReProgram . Trace samples
of interest can be listed using the command Trace.FindAll e.g. as follows:

// Activate the trace find program
Trace.FindReProgram ~~~~/check_address_distance.ct
// Display the trace find results

Trace.FindAll

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 36

Results:

0
+00824157 | O

P:701009F0 ptrace

N TRACE32 PowerView for TriCore - | X
File Edit View Var Break Run CPU Misc Trace Perf Cov TC27xT Window Help
ME AL »n |2 O EHNESES @ 2P
P
| B:Trace STATistic. Address A [= =]=]
& Setup.. | [l Chart 21 Zoom = Zoom & Ful
samples: 4095. avr: 5.320us min: 0.620usf| max: 6.265ms B
total: 32.031ms in: 21.787ms out: 10.245ms -
up to |count ratio 1% 2% 5% 10% 20% 50% 100 |
< 0. 000us . 0. 000%
1. 000ms 4092. | 99.926%
2. 000ms 0. 0. 000%
3. 000ms 0. 0. 000%
4. 000ms 0. 0. 000%
5. 000ms 0. 0. 000%
7.000ms 3.| 0.073% |+ | ! A I
’;, J 0.| o0.000% |
$1 BTrace FindAll =N EER
| 3 [run address cycle |data symbo | o1. back |
00343619 [O P:701009F0 ptrace -classiTyAbs —
00583786 P:701009F0 ptrace .classifyabs

7. 064ms |‘ _
i

9 B::Trace FindAll, Address classifyA e Program /Ti ||:|||EI||EI§|
4096 |run |address cycle |data symbo | t1.back |
00627522 | O P:701009F0 ptrace -classiTyAbs 820us ~
H+00627566 | O P:701009F0 ptrace ~classifyabs 820us _
H00627609 | O P:701009F0 ptrace ~classifyabs 820us =

+00627 P:701009F0 ptrace .classifyAbs 820us i =
P:701009F0 ptrace .classityAbs 2

~classifyabs

coooooobEHoloo ol
-~y
[
(=]
B
wn

+00824236 O P:701009F0 ptrace

H+00824276 | O P:701009F0 ptrace ~classifyabs 720us

+00824315 | O P:701009F0 ptrace ~classifyabs 720us

H+00824359 O P:701009F0 ptrace ~classifyabs B00us

00824403 | O P:701009F0 ptrace ~classifyabs 820us

00824446 | O P:701009F0 ptrace ~classifyabs B00us

H+00824490 | O P:701009F0 ptrace ~classifyabs 820us W
B::

components trace Data Var List PERF other previous
C-T: +00824157 25.845ms | C-Z: +25.845ms 0 |stopped by MCDS HLL |UP

A The Trace.STATistic.AddressDIStance window shows that, over 4095 recorded trace samples, the

timing constraint is violated 3 times.

The maximum recorded time distance between consecutive calls of classifyAbs is 6.265 ms.

C The time displayed in ti.back column of Trace.FindAll window is not corresponding to the time

distance between 2 consecutive calls of classifyabs. Actually, this represents the time distance
between 2 samples of classifyAbs violating the timing constraint.

D The window Trace.FindAll, Address classifyAbs CYcle Program /Track is to be used to examine the

maximum time distance between 2 consecutive calls of classifyAbs

©1989-2024 Lauterbach

Application Note for Complex Trigger Language

37

Keyword Reference: CTL Conditions/Triggers

BREAKPOINT ABCDE breakpoint
Format: BREAKPOINT (<type>)
<type>: Alpha | Beta | Charly | Echo

BusTrigger Incoming trigger signal
Format: BusTrigger (<channel>)

BMC Benchmark counter event
Format: BMC (<event>)

This condition is only supported if the target processor provides an Embedded Trace Macrocell (ETM) and
BenchMark Counters. Refer to the corresponding “Processor Architecture Manuals™.

Example:

IF BMC (dcachemiss)
INCrement counterl

COUNT Trigger on event counter

Format: COUNT (<name/count>)

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 38

CLOCKS Trigger on clock cycles counter

Format: CLOCKS (<name/count>)

Example:

Enable program trace for 100 clock cycles starting from the execution of the first instruction of the sieve
function.

start:
IF Program (ENTRY:sieve)
GOTO levell
levell:
// Reset the clock counter at state change to levell
IF STATE.ENTER ()
RELOAD clock_counter

// Enable Program trace and clock_counter as long as
// levell is active
IF TRUE ()

TraceEnable Program

ENABLE clock_counter

// Stop tracing when the clock counter reach the limit of 100 cycles

IF CLOCKS(clock_counter>=100.)
TraceTrigger

CTM Cross trigger

Format: CTM (<channel>)

This condition is only supported if the target processor provides an Embedded Trace Macrocell (ETM) and a
CoreSight Trigger Matrix (CTM).

EXTIN External input

Format: EXTIN (<channel>)

This condition is only supported if the target processor provides an Embedded Trace Macrocell (ETM).

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 39

FALSE Never condition

Format: FALSE ()
FLAG Flag status
Format: FLAG (<name/value>)
Example:

Enable program trace for the address range of the function sieve if the variable mstaticl has a value of
2:

IF Var.Write(mstaticl==2)
SET myflag

IF Var.Write(mstaticl!=2)
CLEAR myflag

IF Var.Program(sieve) &&FLAG (myflag)
TraceEnable Program

MACHINE Machine comparator

Format: MACHINE (<machine>)

This condition is only supported if the target processor provides an Embedded Trace Macrocell (ETM) and
hypervisor extensions.

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 40

Program Program access comparator

Format: Program (<item>)

<item>: [<logical_operator>] [ENTRY: | RETURN: | RANGE:] <addr/data>
<logical _ ~l=l!=l<l<=1>=1>

operator>:

ENTRY: Address of the function entry point.

RETURN: Address of the function exit (function epilogue)

RANGE: Function address range

If nothing is specified in front of a function name, ENTRY is default.
Example:

IF Program(ENTRY:sieve)
TraceON Program

IF Program(RETURN:sieve)
TraceOFF Program

ProgramFail Conditional instruction execution
Format: ProgramFail (<item>)
<item>: [<logical_operator>] [ENTRY: | RETURN: | RANGE:] <addr/data>
<logical _ ~l=l!=l<l<=1>=1>
operator>:

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 41

ProgramPass Conditional instruction execution

Format: ProgramPass (<item>)
<item>: [<logical_operator>] [ENTRY: | RETURN: | RANGE:] <addr/data>
<logical _ ~l=l!=l<l<=1>=1>
operator>:
Read Read access
Format: Read (<item>)
<item>: [<logical_operator>] <addr/data>
<logical_ ~l=ll=l<l<=l>=1>
operator>:
Example:

IF Read(flags)
TraceEnable ALL

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 42

ReadWrite Read or write access

Format: ReadWrite (<item>)
<item>: [<logical_operator>] <addr/data>
<logical_ ~l==ll=l<l<=l>=1>
operator>:

Example 1:

IF ReadWrite (mstaticl)
TraceData DEFault

Example 2:

IF ReadWrite(vint==1000)
SET myFlag

IF FLAG (myFlag) &&Program (ENTRY:sieve)
Break

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 43

SingleShot Single shot comparators

The SingleShot conditions are only supported if the target processor provides an Embedded Trace
Macrocell with a single shot comparator (e.g. ETMv4).

SingleShot.Program Single shot program execution
Format: SingleShot.Program (<item>)
<item>: [<logical_operator>] [ENTRY: | RETURN: | RANGE:] <addr/data>
<logical_ ~l=ll=l<l<=l>=|>
operator>:
Example:

IF SingleShot.Program (ENTRY:sieve)
TraceEnable Program

SingleShot.ProgramFail Single shot conditional execution
Format: SingleShot.ProgramFail (<item>)
<item>: [<logical_operator>] [ENTRY: | RETURN: | RANGE:] <addr/data>
<logical_ ~l=ll=l<l<=l>=|>
operator>:

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 44

SingleShot.ProgramPass Single shot conditional execution

Format: SingleShot.ProgramPass (<item>)
<item>: [<logical_operator>] [ENTRY: | RETURN: | RANGE:] <addr/data>
<logical _ ~l=l!=l<l<=1>=1>
operator>:
SingleShot.Read Single shot read access
Format: SingleShot.Read (<item>)
<item>: [<logical_operator>] <addr/data>
<logical ~l==ll=l<l<=1l>=]>
operator>:
Example:

IF SingleShot.Read (mstaticl)
TraceData Read Address Data

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 45

SingleShot.ReadWrite Single shot read or write access

Format: SingleShot.ReadWrite (<item>)
<item>: [<logical_operator>] <addr/data>
<logical _ ~l=l!=l<l<=1>=1>
operator>:

Example:

IF SingleShot.ReadWrite (mstaticl)
TraceData DEFault

SingleShot.Write Single shot write access
Format: SingleShot.Write (<item>)
<item>: [<logical_operator>] <addr/data>
<logical _ ~l==ll=l<l<=1l>=]>
operator>:
Example:

IF SingleShot.Write(flags)
TraceEnable ALL

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 46

NoSingleShot Non single shot comparators

The NoSingleShot conditions are only supported if the target processor provides an Embedded Trace
Macrocell with a single shot comparator (e.g. ETMv4).

NoSingleShot.Program Non single shot program execution
Format: NoSingleShot.Program (<item>)
<item>: [<logical_operator>] [ENTRY: | RETURN: | RANGE:] <addr/data>
<logical_ ~l=ll=l<l<=l>=|>
operator>:
Example:

IF NoSingleShot.Program(ENTRY:sieve)
TraceEnable Program

NoSingleShot.ProgramFail Non single shot conditional execution
Format: NoSingleShot.ProgramFail (<item>)
<item>: [<logical_operator>] [ENTRY: | RETURN: | RANGE:] <addr/data>
<logical_ ~l=ll=l<l<=l>=|>
operator>:

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 47

NoSingleShot.ProgramPass Non single shot conditional execution

Format: NoSingleShot.ProgramPass (<item>)
<item>: [<logical_operator>] [ENTRY: | RETURN: | RANGE:] <addr/data>
<logical _ ~l=l!=l<l<=1>=1>
operator>:
NoSingleShot.Read Non single shot read access
Format: NoSingleShot.Read (<item>)
<item>: [<logical_operator>] <addr/data>
<logical ~l==ll=l<l<=1l>=]>
operator>:
NoSingleShot.ReadWrite Non single shot read or write access
Format: NoSingleShot.ReadWrite (<item>)
<item>: [<logical_operator>] <addr/data>
<logical _ ~l==ll=l<l<=l>=1>
operator>:

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 48

NoSingleShot.Write Non single shot write access

Format: NoSingleShot.Write (<item>)
<item>: [<logical_operator>] <addr/data>
<logical _ ~l=l!=l<l<=1>=1>
operator>:

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 49

STATE.LEAVE

Leave the state transition (edge sensitive)

Format: STATE.LEAVE ()

Example:

start:
IF Program (ENTRY:sieve)
GOTO levell

IF STATE.LEAVE ()
RELOAD blink_ counter

levell:
IF Program (RETURN:sieve)
GOTO start

IF Program (ENTRY:Blink)

INCrement blink_counter

IF COUNT (blink_ counter>2)
Break

STATE.ENTER

Enter the state transition (edge sensitive)

Format: STATE.ENTER ()

Example:

start:
IF Program (ENTRY:sieve)
GOTO levell

levell:
IF STATE.ENTER ()
RELOAD blink counter

IF Program(RETURN:sieve)
GOTO start

IF Program (ENTRY:Blink)

INCrement blink_counter

IF COUNT (blink_ counter>2)
Break

©1989-2024 Lauterbach

Application Note for Complex Trigger Language | 50

STATE.TRACEON Active state of a TraceON action

Format: STATE.TRACEON ()

This condition is only supported if the target processor provides an Embedded Trace Macrocell (ETM)
versions older than ETMv4.

TASK Task comparator

Format: TASK (<task>)

This condition is only supported if the target processor provides an Embedded Trace Macrocell (ETM).

TIME Time counter comparator

Format: TIME (<name/time>)

Example:

start:
IF Program (ENTRY:sieve)
GOTO levell

levell:
IF ENTRY ()
RELOAD sievetimer
TraceON Program
IF TRUE ()

ENABLE sievetimer

IF Program (RETURN:sieve)
TraceOFF Program
GOTO start

IF TIME (sievetimer>200.us)
Break

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 51

TRUE Always condition

Format: TRUE ()

Example:

start:
IF Program (ENTRY:sieve)
GOTO levell
levell:

IF TRUE ()

TraceEnable Program

IF Program (RETURN:sieve)
GOTO start

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 52

Var Specify HLL expressions

Var prefix allows to specify the HLL expression in the syntax of the used programming language (e.g. C,
C++).

Then condition will consider the full function/variable range.

Var.Program Flat function execution
Format: Var.Program (<item>)
<item>: [<logical_operator>] [ENTRY: | RETURN: | RANGE:] <var/data>
<logical_ ~l=ll=l<l<=l>=1>
operator>:
Example:

// Trace all write access when executing instructions in the sieve
// function address range
IF Var.Program(sieve)

TraceData Write Address Data

Var.Read Variable read access
Format: Var.Read (<item>)
<item>: [<logical_operator>] <var/data>
<logical ~l==ll=l<l<=1l>=1]>
operator>:

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 53

Var.ReadWrite Variable read or write access

Format: Var.ReadWrite (<item>)
<item>: [<logical_operator>] <var/data>
<logical _ ~l=l!=l<l<=1>=1>
operator>:
Var.status tbd.
Format: Var.status (<item>)
<item>: [<logical_operator>] <var>
<logical ~l==ll=l<l<=1l>=]>
operator>:
Var.Write Variable write access
Format: Var.Write (<item>)
<item>: [<logical_operator>] <var/data>
<logical _ ~l==ll=l<l<=l>=1>
operator>:
Example:

IF Var.Write(vint==1000)
SET myflag

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 54

Write Write access

Format: Write (<item>)
<item>: [<logical_operator>] <addr/data>
<logical_ ~l==ll=l<l<=l>=1>
operator>:

Example:

IF Write(0x70001000!=0x55)
TraceEnable ALL

ZONE Zone comparator

Format: ZONE (<zone>)

This condition is only supported if target processor provides an Embedded Trace Macrocell (ETM).

tbd. only if (EMU_ArmHypervisor Il EMU_ArmSecure || EMU_EtmV4)) && ! EMU_EtmWithoutProgramAd
dressComparators).

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 55

Keyword Reference: CTL Actions

Break Stop the program execution

Format: Break

Example:

// Stop if any write access to mstaticl is generated by an instruction
// from outside the sieve function range

IF var.Write(mstaticl)&&!Var.Program(sieve)

Break
BusCLOCKS tbd.
Format: BusCLOCKS <counter>
BusCount tbd.
Format: BusCount <counter>
BusTIME tbd.
Format: BusTIME <counter>

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 56

BusTrigger tbd.

Format: BusTrigger [DEFault | 0 | 1]

This action is only supported if the target processor provides an Embedded Trace Macrocell (ETM) and a
CoreSight Trigger Matrix (CTM).

DEFault tbd.
0 tbd.
1 tbd.
CLEAR Clear flag
Format: CLEAR <flag>
Example:

IF Program (ENTRY:sieve)
SET flag_sieve

IF Program(RETURN:sieve)
CLEAR flag_sieve

IF Var.Write(mstaticl)&&!FLAG(flag_sieve)
TRACEENABLE Program Write Address Data

CTM Cross trigger

Format: CTM[0I112]3]

This condition is only supported if the target processor provides an Embedded Trace Macrocell (ETM) and a
CoreSight Trigger Matrix (CTM).

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 57

0 tbd.

1 tbd.
2 tbd.
3 tbd.
ENABLE Enable counter
Format: ENABLE <counter> | <timer>

Enable counting while the condition is verified.
Example:

IF Program (ENTRY:sieve)
SET flag_sieve

IF Program(RETURN:sieve)
CLEAR flag_sieve

IF FLAG(flag_sieve)
ENABLE timer_ sieve
TRACEENABLE Program

IF TIME (timer_ sieve>10.us)
TraceTrigger

EVENT Trace event

Format: EVENT[0112]3]

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 58

EXTOUT External output

Format: EXTOUT[0I112]3]

0 thd.

1 thd.

2 tbd.

3 tbd.

FOUND Add the trace sample to the search items result
Format: FOUND
Example:

IF Program (ENTRY:sieve)
FOUND

GOTO Change active state

Format: GOTO <state>

Example:
start:
IF Program (ENTRY:sieve)
GOTO levell
levell:

IF Program(RETURN:sieve)
GOTO start
IF Var.Write(mstaticl)
TraceData Write Address Data

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 59

INCrement

Increment counter

Format

INCrement <counter>

Example:

IF Program(ENTRY:sieve)
INCrement sieve_cnt
TraceEnable Program

IF COUNT (sieve_cnt==10.)

Break
RELOAD Reload counter
Format RELOAD <counter>
Example:

start:

IF Program (ENTRY:sieve)

GOTO levell

levell:

IF

IF

IF

IF

Program (RETURN: sieve)
GOTO start
Program (ENTRY :Blink)
INCrement blink_counter
STATE . ENTER ()
RELOAD blink_counter
COUNT (blink_counter>2)
Break

©1989-2024 Lauterbach

Application Note for Complex Trigger Language |

60

SET Set flag

Format SET <flag>

Example:

IF Var.Write (mstaticl)
Set myflag

IF Program(ENTRY:sieve) &&FLAG (myflag)
Break

Spot Shortly stop the program execution

Format Spot

Example:

IF Program (ENTRY:sieve)
Spot

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 61

TraceData Sample specified data event
Format TraceData [DEFault | Read | Write | ReadWrite | Address | Data]
DEFault Is equivalent to ReadWrite Address Data.
Read Sample read cycles.
Write Sample write cycles.
ReadWrite Sample read and write cycles.
Address Sample cycle address.
Data Sample cycle data.
NOTE: TraceData [Read | Write | ReadWrite] without specifying Address or Data will
sample cycle address and data.
Example:

// Trace all the write cycles that are performed by the instructions
// in the address range of the function sieve
IF Var.Program(sieve)

TraceData Write Address Data

By using the action TraceData, the status of unconditional program trace is not changed. E.g. if unconditional
program trace is enabled, the resulting trace recording will contain unconditional program trace additionally
to the selective data trace for the specified events.

©1989-2024 Lauterbach

Application Note for Complex Trigger Language | 62

TraceEnable Enable the trace on the specified event

Format TraceEnable <parameter>
<parameters: [DEFault | ALL | Program | Read | Write | ReadWrite | Address | Data]
DEFault Sample the event depending on the condition. e.g. if the condition is a program

condition the program cycles are sampled.

ALL Sample program, read, and write cycles. For the read and write cycles, the
sample address and data are included.

Program Sample program cycles.

Read Sample read cycles.

Write Sample write cycles.

ReadWrite Sample read and write cycles.

Address Sample cycle address.

Data Sample cycle data.

NOTE: TraceEnable [Read | Write | ReadWrite] without specifying Address or Data

will sample cycle address and data.

Example 1:
// Trace program and all the write cycles that are performed by the
// instructions in the address range of the function sieve

IF Var.Program(sieve)
TraceEnable Program Write Address Data

Example 2:

// Trace all the write cycles to mstaticl

IF Var.Write (mstaticl)
TraceEnable DEFault

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 63

TraceOFF Switch OFF the trace sampling

Format TraceOFF <parameter>

<parameter>: [DEFault | ALL | Program | Read | Write | ReadWrite | Address | Data]
DEFault tbd.

ALL Switch off sampling program, read, and write cycles.

Program Switch off sampling program cycles.

Read Switch off sampling read cycles.

Write Switch off sampling write cycles.

ReadWrite Switch off sampling read and write cycles.

Address Switch off sampling cycle address.

Data Switch off sampling cycle data.

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 64

TraceON Switch ON the trace sampling
Format TraceON <parameter>
<parameters: [DEFault | ALL | Program | Read | Write | ReadWrite | Address | Data]
DEFault tbd.
ALL Switch on sampling program, read, and write cycles.
Program Switch on sampling program cycles.
Read Switch on sampling read cycles.
Write Switch on sampling write cycles.
ReadWrite Switch on sampling read and write cycles.
Address Switch on sampling cycle address.
Data Switch on sampling cycle data.
TraceTIME tbd.
Format TraceTIME
TraceTrigger Stop sampling to the trace buffer on specified event
Format TraceTrigger <cycles> | <percent>

A trigger delay could be specified in number of cycles or percentage of the trace buffer size.

©1989-2024 Lauterbach

Application Note for Complex Trigger Language | 65

CTL Programming Errors

©1989-2024 Lauterbach Application Note for Complex Trigger Language | 66

	Application Note for Complex Trigger Language
	History
	Introduction
	Basic Structure of CTL Programs
	Complex Statements
	Agents
	Core Agents
	Bus Monitors
	Default Agent

	State Machines
	Using CTL State Machines
	Multiple State Machines

	TRACE32 Commands Using CTL Programs
	CTL Onchip Triggers Logic
	CTL for Trace Find
	CTL Streaming Trace Trigger

	CTL for Onchip Triggers Logic
	CTL for TriCore MCDS
	Supported Targets
	Multicore Support
	Selective Bus Trace
	Automatic Configuration of the Trace Source Multiplexers
	TriCore Data Trace: COREx Vs. SRI-CPUx
	Limitations
	Examples

	CTL for Arm ETM

	Examples for CTL Trace Find
	Use case 1: Checking Variable Access
	Use case 2: Checking Timing Constraints - Address Duration
	Use case 3: Checking Timing Constraints - Address Distance

	Keyword Reference: CTL Conditions/Triggers
	BREAKPOINT ABCDE breakpoint
	BusTrigger Incoming trigger signal
	BMC Benchmark counter event
	COUNT Trigger on event counter
	CLOCKS Trigger on clock cycles counter
	CTM Cross trigger
	EXTIN External input
	FALSE Never condition
	FLAG Flag status
	MACHINE Machine comparator
	Program Program access comparator
	ProgramFail Conditional instruction execution
	ProgramPass Conditional instruction execution
	Read Read access
	ReadWrite Read or write access
	SingleShot Single shot comparators
	SingleShot.Program Single shot program execution
	SingleShot.ProgramFail Single shot conditional execution
	SingleShot.ProgramPass Single shot conditional execution
	SingleShot.Read Single shot read access
	SingleShot.ReadWrite Single shot read or write access
	SingleShot.Write Single shot write access
	NoSingleShot Non single shot comparators
	NoSingleShot.Program Non single shot program execution
	NoSingleShot.ProgramFail Non single shot conditional execution
	NoSingleShot.ProgramPass Non single shot conditional execution
	NoSingleShot.Read Non single shot read access
	NoSingleShot.ReadWrite Non single shot read or write access
	NoSingleShot.Write Non single shot write access
	STATE.LEAVE Leave the state transition (edge sensitive)
	STATE.ENTER Enter the state transition (edge sensitive)
	STATE.TRACEON Active state of a TraceON action
	TASK Task comparator
	TIME Time counter comparator
	TRUE Always condition
	Var Specify HLL expressions
	Var.Program Flat function execution
	Var.Read Variable read access
	Var.ReadWrite Variable read or write access
	Var.status tbd.
	Var.Write Variable write access
	Write Write access
	ZONE Zone comparator

	Keyword Reference: CTL Actions
	Break Stop the program execution
	BusCLOCKS tbd.
	BusCount tbd.
	BusTIME tbd.
	BusTrigger tbd.
	CLEAR Clear flag
	CTM Cross trigger
	ENABLE Enable counter
	EVENT Trace event
	EXTOUT External output
	FOUND Add the trace sample to the search items result
	GOTO Change active state
	INCrement Increment counter
	RELOAD Reload counter
	SET Set flag
	Spot Shortly stop the program execution
	TraceData Sample specified data event
	TraceEnable Enable the trace on the specified event
	TraceOFF Switch OFF the trace sampling
	TraceON Switch ON the trace sampling
	TraceTIME tbd.
	TraceTrigger Stop sampling to the trace buffer on specified event

	CTL Programming Errors

