LAUTERBACH A

Application Note for
Trace-Based Code Coverage

Application Note for Trace-Based Code Coverage

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 DOCUMENTS ciceeiiiiiiiemns s inisess s snnsss s s rassss e e s s e s ee e m s e e ea s m s e b e a s mn e e R e a s annn e nnnnnn
Lo T [0703 T - T [

Application Note for Trace-Based Code COVErageccccrurmmminsmmmsssnissssmssnsssssssssssssssssnes

L 1= (o 6
INtended AUAIENCE ... r e annmmnnnn e 7
Lo T o 11T T) o 8
Supported Code Coverage Metrics 8
Code Coverage and Certification 9
Trace-Based Code Coverage 10
Test Variants 13
Merge Results and Generate Report 13
MC/DC, Condition and DeciSion COVErageccccrrmrrmimssmmssssissssmsssssssssssssssssssssasssssasssas 14
Multiple Code Coverage Modes 14
Preconditions for a Trace-Based Code Coverage 14
Occurring Observability Gaps 14
The Different Code Coverage Modes 16
Code Coverage Mode No Instrumentation 16
Code Coverage Mode Full Instrumentation 16
Code Coverage Mode Targeted Instrumentation 16

A Comparison of the Different Code Coverage Modes 17
Causes for Observability Gaps: An Overview 17
Evaluation of Switch Case Statements 19
Code Coverage WOrkfIOWcccceiiiiismmmiiiimnr s sssss s ssss s s s s s ssmms s s smmn e s 20
General Workflow 20
Measure Code Coverage 20
Merge Measurement Results 20
Workflow for the Individual Code Coverage Metrics 21
Object Code Coverage Workflow 21
Statement Coverage Workflow 22
Decision Coverage Workflow 23
Object Code Based (ocb) Decision Coverage Workflow 24
Condition Coverage Workflow 25
MC/DC Workflow 26
©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 2

Function Coverage Workflow 27
Call Coverage Workflow 28
0T o 0 o oo 29
Recommendations for the Build Toolchain 29
Build Process Statement Coverage 29
Build Process Function and ocb Decision Coverage 30
Build Process Call Coverage 31
Build Process MC/DC, Condition and Decision Coverage 32
Decision Making 32
Build Process for Code Coverage with Targeted Instrumentation/No Instrumentation 36
Build Process Code Coverage with Full Instrumentation 40
Trace Data Collection OVEIrVIEWccccicccicsscmmmmmmnnimsssssssssssssmssesssnsssssssssssssmmsssssssssessssssssssnsnns 42
TRACE32 Tool Configurations 42
Choose the Appropriate Trace Data Collection Variant 43
Preconditions 45
Reduce the Amount of Trace Data 45
Ensure a Fault-Free Trace Recording 46
Disable Timestamps for Trace Streaming 47
SMP Multicore Systems 47
Steps in Preparation for Trace Data Collectionccccceciiiinismrminisms s snaenens 48
Notes on the Individual Test Variants 48
Preparation for Function, Object Code, ocb Decision Coverage 49
Preparation for Statement Coverage 50
Preparation for Call Coverage 51
Preparation for MC/DC, Condition and Decision Coverage 52
Preparation for Targeted Instrumentation/No Instrumentation 52
Preparation for Full Instrumentation 54
Trace Data ColleCtion ... s mmm s s r s n e e s 56
Incremental Code Coverage 56
Data Collection 56
Example Script 58
Summary 58
Incremental Code Coverage in STREAM Mode 59
Data Collection 59
Example Script 62
Summary 62
RTS Mode Code Coverage 63
Data Collection 63
Example Scripts 66
Summary 68
SPY Mode Code Coverage 69
Operation States 69
©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 3

Data Collection 71
Example Script 73
Summary 74
Code Coverage with Virtual Targets 75
ART Mode Code Coverage 77
Data Collection 78
Example Script 79
Code Coverage ANAlYSISccccciiiiirecrriiiismnrrisssmss s ssms s s smss s mms s s e ssmms e s mmn s s e mmnnnnas 80
Code Coverage Tags 80
Object Code Coverage Evaluation 81
Evaluation 81
Example Script 85
Statement Coverage Evaluation 86
Evaluation 86
Example Script 89
Full Decision Coverage Evaluation 90
Interpretation 90
Evaluation 91
Example Script 95
Object Code Based (ocb) Decision Coverage Evaluation 96
Evaluation Strategy 96
Evaluation 98
Example Script 102
Condition Coverage Evaluation 103
Evaluation Strategy 103
Evaluation 104
Example Script 108
Modified Condition/Decision Coverage (MC/DC) Evaluation 109
Evaluation Strategy 109
Evaluation 110
Example Script 114
Function Coverage Evaluation 115
Evaluation Strategy 115
Example Script 118
Expert Usage 118
Call Coverage Evaluation 119
Evaluation 119
Details on Callers and Calles 123
Example Script 124
Expert Usage 125
Comment YOUr RESUILSccoiiiiiiiiiiniscss s nsms s s s s s s s san s s s s s e 126
TRACE32 Merge and Report TOOIccccccuiimiiiemmmmmnsssmnrinissssssssssssss s snsssssss s sssssssss s ssssssssssennsses 128
©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 4

Appendix A: TRACE32 Coverage Report Utilitycccocmmniissmmmnnissmsmnnnsmsssnsessssnsssenees 130

Appendix B: Assemble Multiple Test Runs at Address Levelccccccccmmmmiiniicssssssssssnsceeens 132
Save and Restore Code Coverage Measurement 132
Save and Restore Trace Recording 134

Appendix C: Assembler-Only Functions and Code COoveragecccrrrereamrrrsssameeressssnnnes 136
Object Code Coverage 136
Source Code Metrics 137

Appendix D: Data COVEIragecccuurserrrmmissssrmmsisssssmmsssssssmsssssssmasssssssssssssnssssssssssssssnssnnses 139
Trace Data Collection 139
Evaluation 140

Appendix E: Trace Decoding in Detailcccccooiiiiiiiiiiiiissmnsn s 143
Trace Decoding for Static Applications 143

Decoding in Stopped State for Static Applications 143
Decoding in Running State for Static Applications 143
RTS Decoding for Static Applications 144
Trace Decoding for Applications Using a Rich OS 145
Decoding in Stopped State (Rich OS) 145
Decoding in Running State (Rich OS) 145
RTS Decoding (Rich OS) 145

Appendix F: Coding GUIAEIINEScccociiiireemrrrrssce s resssmne s sssssmme s sssssmme s sesssmme e s sesssmms s s ensssmmens 147

Appendix G: Object Code Coverage Tags in Detailccccovviemmriniiscmmnnnissssn e 150
Standard Tags 150
Tags for Arm-ETMv1/v3/v4 for Arm/Cortex Architecture 151

Appendix E: Data Coverage in Detailccccciiiiimninnimnninsn s ssssssss s sssssmsens 153

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 5

Application Note for Trace-Based Code Coverage

Version 06-Jun-2024

History

04-Jun-24 Chapter 'Build Process for Statement Coverage' added.

29-May-24 Subchapter 'Evaluation of Switch Case Statements' added to chapter 'MC/DC, Condition and
Decision Coverage'.

26-Jan-24 The manual has been completely revised to integrate the new code coverage modes
targeted and full instrumentation.

07-Sep-23 EN50128 (railway) added to the chapter Trace-Based Code Coverage and Certification'.
The chapter now also lists the safety levels and the TRACES32 tool classification of the
individual standards.

19-Aug-20 Initial version of the manual.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 6

Intended Audience

Developers who want to:

. Collect code coverage data
. Perform code coverage on collected trace data
J Generate reports based upon this data

Although this is a generic manual, the screenshots were always made with a TriCore™ AURIX™ TC297T, if
nothing else is mentioned. Deviations from screen displays are likely in your target environment.

The manual is written in such a way that it is sufficient to only read the relevant chapters. If you read the
manual completely, this may lead to redundancies.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 7

Introduction

Supported Code Coverage Metrics

TRACES2 supports the following code coverage metrics:

Code coverage metric statement coverage

Statement coverage ensures that every statement in the program has been invoked at least once.
Statement in this context means block of source code lines.

Code coverage metric decision coverage

Every point of entry and exit in the program has been invoked at least once and every decision in the
program has taken all possible outcomes at least once.

Code coverage metric condition coverage

All conditions in the program have evaluated both true and false.

Code coverage metric MC/DC coverage

Every point of entry and exit in the program has been invoked at least once and every decision in the
program has taken all possible outcomes at least once. And each condition in a decision is shown to
independently affect the outcome of that decision.

Code coverage metric function coverage

Every function in the program has been invoked at least once.
Code coverage metric call coverage

Every function call has been executed at least once.

Code coverage metric object code coverage

Object code coverage ensures that each object code instruction was executed at least once and
all conditional instructions (e.g. conditional branches) have evaluated to both true and false.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 8

Code Coverage and Certification

Measuring code coverage is a prerequisite for certification in order to evaluate the completeness of test

cases and to prove that no unintended functionality is present. TRACE32 supports the following standards:

DO-178C (avionics)
Safety integrity levels: five levels from E to A, with level A being the highest level
Tool classification for TRACE32 code coverage: TQL-5

Supported code coverage metrics: statement coverage, decision coverage, MC/DC

EN 50128 (railway)
Safety integrity levels: five levels, SIL 0 to 4, with SIL 4 being the highest level
Tool classification for TRACE32 code coverage: T3

Supported code coverage metrics: statement coverage, branch coverage (decision coverage in
TRACES32), compound condition coverage (condition coverage in TRACES32)

IEC 61508 (industrial)
Safety integrity levels: five levels, basic integrity, SIL 1 to 4, with SIL 4 being the highest level
Tool classification for TRACE32 code coverage: T3

Supported code coverage metrics: statement coverage, branch coverage (decision coverage in
TRACE32), condition coverage, MC/DC as well as function coverage

IEC 62304 (medical)
Safety integrity levels: three levels, class A to C, with class C being the highest level
Tool classification for TRACE32 code coverage: T3

Supported code coverage metrics: the standard does not contain any directives in this regard;
select suitable subset according to software development plan

ISO 26262 (automotive)
Safety integrity levels: five levels, QM, ASIL A to D, with ASIL D being the highest level
Tool classification for TRACE32 code coverage: TCL2/3

Supported code coverage metrics: statement coverage, branch coverage (decision coverage in
TRACES2), condition coverage, MC/DC as well as function coverage.

For those whose application requires tool qualification, Lauterbach offers a Tool Qualification Support Kit
(TQSK for short). It contains everything needed to qualify a TRACES32 tool for use in safety-critical projects. If
you are interested, refer to the TRACE32 customer portal.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage |

9

https://www.lauterbach.com/register_tqsk.html

Trace-Based Code Coverage

Before we delve into TRACES2 trace-based code coverage, let's first examine conventional code coverage.

Conventional code coverage operates by instrumenting the source code so that coverage data is stored in
the target's RAM during test execution. Once the test run is complete, the conventional code coverage tool
retrieves and processes this data for code coverage analysis.

Now, let's move on to TRACE32 trace-based code coverage which requires two main conditions:

1. The core(s)-under-test must have the capability to generate trace data to monitor the program
flow.
2. Testing must be conducted with an executable that has a low level of compiler optimization.

During testing, generated trace data on the program flow is collected. TRACES32 retrieves and processes
this data for code coverage analysis.

For complex metrics such as Modified Condition/Decision Coverage (MC/DC), condition coverage, and
decision coverage, it may be necessary to instrument individual lines of source code. TRACES32's lightweight
instrumentation has only a minimal impact on code size.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 10

CONVENTIONAL Code Coverage TRACE32 TRACE-BASED Code Coverage

Source
Files

Code Coverage Tool

FULL SOURCE CODE
INSTRUMENTATION

ot

Build Process

Build Executable

Run Test on Target Hardware and
SAVE CODE COVERAGE DATA
IN TARGET RAM

Tt

Code Coverage Tool

¢ READ CODE COVERAGE DATA VIA
FUNCTIONAL INTERFACE OF THE TARGET

¢ Perform Code Coverage Analysis
¢ Generate Code Coverage Report

A

Code Coverage
Report

Can Be Required
for Complex Metrics

T
TRACE32 Debug & Trace Tool

! LIGHTWEIGHT SOURCE CODE |
{ INSTRUMENTATION

Source
Files

Build Process

Build Executable WITH LOW
COMPILER OPTIMIZATION LEVEL

TRACE32 Debug & Trace Tool

Run Test on Target Hardware and
RECORD PROGRAM FLOW TRACE

A

TRACE32 Debug & Trace Tool

e READ RECORDED PROGRAM FLOW
e Perform Code Coverage Analysis
* Generate Code Coverage Report

A
A

Code Coverage

*/ Report

Figure: Workflow comparison, conventional code coverage vs. TRACE32 trace-based code coverage.

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

11

TRACE32 trace-based code coverage is characterized by the following:

. No additional target resources are required beyond the program flow trace.
. Lightweight instrumentation results in minimal code and time overhead.

J It supports a wide range of code coverage metrics.

. It can be used in all test phases.

. It supports both C and C++.

J It can be used to generate comprehensive reports.

o Complete test automation is possible with TRACE32 PRACTICE, Python, or the TRACE32
Remote API.

The question now arises: which processors/chips have a trace interface suitable for code coverage
measurement with TRACE32?

L All processors/chips with an off-chip trace interface are suitable

You can find these processors/chips on the page https://www.lauterbach.com/supported-
platforms/chips, where they are tagged with "Off-Chip Trace" in the "Supported TRACE32
Solutions" column.

A PowerTrace module is required for trace recording. Trace.METHOD Analyzer is automatically
selected as soon as TRACE32 detects a PowerTrace module in its hardware configuration.

Some processors, like most Cortex-M processors, can export program flow via a 4-bit trace
interface. In such scenarios, a TRACE32 CombiProbe or a MikroTrace can also serve the
purpose. Trace.METHOD CAnalyzer is automatically selected as soon as TRACE32 detects a
TRACES32 CombiProbe or a MikroTrace module in its hardware configuration.

L Some processors/chips with an on-chip trace are suitable

Processors/chips with on-chip trace are tagged with "On-Chip Trace" in the "Supported
TRACERS2 Solutions" column on the page https://www.lauterbach.com/supported-
platforms/chips. The on-chip trace should be at least 1 MB in size so that it makes sense for the
TRACES32 code coverage. The Trace.METHOD Onchip command configure TRACE32 for
onchip tracing. Onchip tracing is also possible via XCP.

. Some chips that allow debugging and tracing via the USB stack are suitable

You can find these processors/chips on the page https://www.lauterbach.com/supported-
platforms/chips, where they are tagged with "USB Direct" in the "Supported TRACE32
Solutions" column. However, it is always advisable to contact your Lauterbach sales office.

The Trace.METHOD HAnalyzer command configures TRACE32 for USB tracing. Since this trace
memory is located on the host computer, you must define its size in advance using the
HAnalyzer.SIZE command.

There is also the option of performing the code coverage analysis with a TRACES32 Instruction Set Simulator
(Trace.METHOD Analyzer). The safety standards allow this for the test phases software unit and module
integration testing. See also TRACE32 Instruction Set Simulator and ISO 26262.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 12

https://www.lauterbach.com/supported-platforms/chips
https://www.lauterbach.com/supported-platforms/chips
https://www.lauterbach.com/supported-platforms/chips
https://www.lauterbach.com/supported-platforms/chips
https://www.lauterbach.com/supported-platforms/chips
https://www.lauterbach.com/supported-platforms/chips
https://support.lauterbach.com/downloads/files/trace32-instruction-set-simulator-and-iso-26262

If Lauterbach does not offer an Instruction Set Simulator for the core architecture you are using, you can also
use the TRACE32 Advanced Register Trace (Trace.METHOD ART). This is a single-step trace, which
makes program execution very slow. This method is therefore only suitable for unit testing.

TRACE32 Debuggers for virtual targets (Trace.METHOD Analyzer) should, because of their limitations,
only be used for code coverage if needed. For details refer to “Code Coverage with Virtual Targets”, page
75.

Test Variants

TRACE32 offers two variants for code coverage analysis:
Incremental Code Coverage

With incremental code coverage, the following two steps must be repeated until the test is complete.

1. Run program execution and record program flow to trace memory.
2. Upload trace contents to the host and perform code coverage analysis in TRACE32 PowerView
GUL.

Live Code Coverage

With live code coverage, everything is done at the simultaneous. Run program execution and record
program flow, stream trace data to host and perform code coverage analysis in TRACE32 PowerView GUI.

Live code coverage requires simpler scripts and is naturally faster due to the simultaneity of the steps.
However, it only works up to a certain bandwidth.

Incremental code coverage requires more complex scripts and is slower. However, it has the advantage that
it always works and that the two steps can be carried out by different teams.

Merge Results and Generate Report

Typically, code coverage is not measured in a single test run, but is approached gradually. This creates the
need to combine multiple results into one final report. TRACES32 offers the possibility to merge results and to
create an HTML report for all supported code coverage metrics.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 13

MC/DC, Condition and Decision Coverage

For these metrics, analyzing code coverage is more challenging, which is why TRACE32 supports these
metrics with multiple code coverage modes. Here is the background information on this.

Multiple Code Coverage Modes

Preconditions for a Trace-Based Code Coverage

Four criteria must be met for MC/DC, condition or decision coverage analysis based on the recorded
program flow:

1. TRACERS2 has to know the structure and the position of the conditions/decisions within the
source code. Since the conditions/decisions details are not included in the debug information
generated by the compiler, Lauterbach offers its own Clang-based command line tool named
t32cast for this purpose. t32cast analyzes the C/C++ sources and generates an extended code
analysis (.eca) file for each source file, that provides the conditions/decisions details.

2. Decisions are composed of one or more (atomic) conditions. And each condition in the source
code must be represented by a conditional branch or by a conditional instruction at object code
level.

3. An exact mapping of the conditions/decisions in the source code to the conditional

branches/instructions in the object code is required.

4. Conditional branches/instructions in the recorded program flow trace must allow to observe
whether a source code condition was evaluated true or false.

The figure below illustrates what has been described using MC/DC analysis as an example.

i< [BrList.Mix ComplexIf /COVerage] EI@
M Step W Over \AiDiverge < Return ¢ up » Go Il Break | M%Mode & ||t Find: coverage.c

id dec/cond true false coverage addr/Tine |code label mnemonic comment i
[1. 1. 1. mc,/dc 115 T (a & T(b > -100 [T T(c > 42)) && Identity(d) < 36) [~
6 1. L] - ok P:90000500 [001104DF ComplexIf:jeq 1, 0,

ok P:90000504 9C03B mow
6 2. - - ok P:90000508

ok P:9000050C |24

6

w

L] L ok P:9000050E
ok P:90000512 (74
ok P:90000514 002B0O06D

(Ix‘g(l(\(l(liﬁi

ok P:90000518 [24DA v16 d15,#0x24
6 4. - - ok P:9000051A |0004F27F jge d2,d15,0x90000522
stmt 116 outcome = TRUE;
ok P:9000051E (1252 movl6 d2,#0x1

ok P:90000520 |023C_ jl6 0x90000524

Practice has shown that criteria 2, 3 and 4 are not always fulfilled in every test scenario. When this is the
case, Lauterbach speaks of observabiltiy gaps.

Occurring Observability Gaps

Observabiltiy gap means that TRACES32 cannot monitor whether a condition has been evaluated as true or
false at a certain point in the program flow trace. In this case, no code coverage result can be displayed for
the related decision. The code coverage is incomplete if these gaps are not closed by other means.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 14

Many observability gaps can be avoided from the first place by writing code coverage friendly code (please
refer to “Appendix F: Coding Guidelines”, page 148 for details) and through a moderate compiler
optimization level. Moderate optimization also has the advantage of making the code coverage analysis
results clear and intuitive for the user to read.

Depending on the number of observability gaps, the following code coverage modes are available:

. No gaps

The four criteria are fully met. TRACE32 only requires the recorded program flow for the code
coverage analysis. Lauterbach has named this Trace-Based Code Coverage/No Instrumentation.

. Moderate number of gaps

With a moderate number of observability gaps, Lauterbach recommends inspecting them first and
then deciding whether the gaps need to be closed.

To close individual gaps, TRACE32 has the following code coverage mode:
- Trace-Based Code Coverage/Targeted Instrumentation

o Large number of gaps

A large number of gaps can have different causes: High compiler optimization level, an exotic
core architecture, not yet supported core/compiler pairing. A detailed overview of the possible
causes of observability gaps can be found in chapter “Causes for Observability Gaps: An
Overview”, page 18.

In the case of a high compiler optimization level, the following consideration must be made:

- If you want to keep high compiler optimization level, Lauterbach recommends Trace-Based
Code Coverage/Full Instrumentation which results in many instrumentation sites. This makes
the progam code larger and has an impact on the program runtime.

Technically, however, full instrumentation is simple, it gets by with two hook functions. This
makes further compiler optimizations possible.

- You can reduce the compiler optimization level. This makes the program code slightly larger
and therefore requires a little more program runtime. But the number of observability gaps
should decrease enough to be able to use Trace-Based Code Coverage/Targeted
Instrumentation with fewer instrumentation sites.

Please note that one hook function pair per observation gap is required for targeted
instrumentation within each function. This means that multiple hook functions are required. Of
course, this requires a little more memory for the instrumentation.

It is possible that the program code size for full instrumentation and targeted instrumentation is
approximately the same, in which case both instrumentations are equivalent.

TRACERS2 uses only body-less hook functions for instrumentation, whose calls
are visible in the recorded program flow. These are used to monitor whether an
instrumented source code condition has been evaluated as true or false

This form of instrumentation does not require any data memory.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 15

The Different Code Coverage Modes

The following code coverage modes result from what was described in the previous chapter.

Code Coverage Mode No Instrumentation

Since instrumentation is not used, code size and runtime remain the identical. The build process does not
need to be touched.

Code Coverage Mode Full Instrumentation

All decisions in the user application are instrumented so that TRACES32 can fully monitor them. This results
in a high number of instrumentation sites. Body-less instrumentation hook functions result in a moderately
larger code and a modest impact on runtime behavior.

Trace-Based Code Coverage/Full Instrumentation, however, requires an adaptation of the build
process.lt is very robust, and therefore serves as fall-back.

Code Coverage Mode Targeted Instrumentation

Only the decisions for which an observability gap has been detected are instrumented so that TRACES32 can
monitor them and thus close the gaps. This results in a small number of instrumentation sites. Body-less
instrumentation hook functions result in a slightly larger code and a small impact on runtime behavior.

Trace-Based Code Coverage/Targeted Instrumentation, however, requires a more complex build
process.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 16

A Comparison of the Different Code Coverage Modes

The following table provides an overview of what has been stated:

No Full Targeted
Instrumentation Instrumentation Instrumentation
Number of No High Low
Instrumentation Sites
Instrumentation — Two instrumentation A pair of
Technique hooks instrumentation hooks

per observability gap
within each function

Code Size Unchanged Moderately larger Slightly larger

Impact on Runtime No Modest Small

Build Process Unchanged Simple adaptation Complex adaptation
Code Coverage Based on program flow Based on program flow Based on program flow
Analysis

For practical performance, we have decided to pool Trace-Based Code Coverage/Targeted
Instrumentation and Trace-Based Code Coverage/No Instrumentation in this manual. This is based on
the following considerations:

J Source code for which no observability gaps were initially detected can lead to observability gaps
by adding new lines of code.

. Source code for which a few observability gaps were initially detected may no longer contain any
observability gaps after lines of code are deleted or modified.

Causes for Observability Gaps: An Overview

Finally, to close the chapter for those who are interested, here is an overview of the causes of observability
gaps.

No dedicated compiler support for the TRACE32 code coverage analysis

The large number of core architectures and the associated diversity of compilers represents a challenge for
Lauterbach. An impressive number of cores offer the possibility to generate program flow trace. And there
are a big number of compilers, especially for commonly used core architectures. The result is a large
amount of possible core architecture/compiler pairings. There is no generic heuristic for mapping source
code decisions to conditional branches/instructions at object code level that generates an exact result for
every possible pairing. In practice, TRACES32 has to tailor the mapping to the core architecture/compiler
combination. Much, especially for common core/compiler combinations is already tailored.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 17

For not yet supported core architecture/compiler pairings, for which the generic heuristic of TRACES32 does
not provide an exact result, criterion 3 is not to be met. Observabiltiy gaps that have occurred need to be
addressed.

Macros

A macro that is used in a decision/condition can in itself contain decisions/conditions. The compiler expands
all macros before compilation and handles the expanded statement as a single source block. During this
step the source code locations of the decisions/conditions inside the macro are lost. In this case, criterion 3
is violated. A mapping of the inside-macro-decisions to the conditional branches / instructions is no longer
possible. Observability gaps that have occurred need to be addressed.

Highly-optimized code

Highly-optimized code is not recommended for trace-based code coverage analysis. For one, individual
conditions may not be represented by conditional branches/instructions at the object code level. Criterion 2
is violated here. However, this can be remedied. Highly optimized code is particularly challenging because it
may not possible to map the decisions/conditions exactly to the conditional branches/instructions. The
violation of criterion 3 cannot be resolved in all cases.

Limitations of the trace protocol

The instruction set for a core architecture may contain conditional instructions. The compiler uses these to
implement source code conditions at object code level. For trace-based code coverage to work, the trace
protocol used must generate details about the execution of these conditional instructions. Unfortunately, this
is not always the case. Currently there is no option that advises the compiler not to use conditional
instruction. Observability gaps in program tracing are therefore inevitable. Criterion 4 is violated.

Instruction set complexity

The challenges described in 1-4 are essentially the ones faced by cores with general-purpose RISC
architecture. However, complex SoCs also contain coprocessors and special-purpose cores for which an
instruction trace is generated. Examples are DSPs, configurable cores with user-defined instructions, timer
IP and many more. Here, TRACE32 must always be specially adapted to the instruction set. In this respect,
it is always advisable to check with Lauterbach in good time.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 18

Evaluation of Switch Case Statements

To evaluate MC/DC, condition and decision for switch case statements, TRACE32 performs an implicit
conversion into an equivalent if-then expression. The equivalent if-then expression has the property that in
cases where several code paths lead to a single point, all code paths need to be executed at least once
before full code coverage is achieved. The following code example illustrates this concept:

Switch case statement Equivalent if-then expression
switch (color) { if (color == RED) {
case RED: offset = 10;
offset = 10; }
break; else 1f (color == BLUE) {
case BLUE: offset = 8;
offset = 8; }
break; else 1f (color == ORANGE) {
case ORANGE: offset = 6;
offset = 6; }
break; else 1if (color == YELLOW) {
case YELLOW: offset = 2;
case GREEN: }
offset = 2; else if (color == GREEN) {
break; offset = 2;
default: }
offset = -1; else {
break; offset = -1;
} }

Please note: In contrast to the original switch case statement, the converted if-then expression achieves
complete code coverage only when color had both the values YELLOW and GREEN.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 19

Code Coverage Workflow

General Workflow

Measure Code Coverage

The basic workflow for a code coverage test pass with TRACE32 is as follows:

Measure Code Coverage

e e

Build Process TRACES32

Build
Executable

Source
Files

Perform
Trace-Based
Code Coverage

Comment
Not Covered
Code Ranges

Export
Code Coverage

Result
A

TRACES2 provides a reporting tool for a detailed report on a single code coverage measurement. See
“Appendix A: TRACE32 Coverage Report Utility”, page 131.

Merge Measurement Results

Typically, code coverage is not measured in a single pass, but is approached gradually. This creates the
need to combine multiple exports into one final report. Lauterbach provides the t32covtool utility for this
purpose.

Generate Final Code Coverage Report

t32covtool Tool

Final
Code Coverage
Report

Merge the Code Coverage Results
and Create an Overall Report

A

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 20

Workflow for the Individual Code Coverage Metrics

Object Code Coverage Workflow

If you want to perform an object code coverage analysis, you must carry out the following steps:

1.

Build the executable.

Two steps are necessary for the object code coverage itself:

2.
3.

Load all files needed into TRACE32, see “Preparation for Object Code Coverage”.
Choose between the two test variants.

Live code coverage (RTS, SPY): The code coverage analysis is already performed while the
execution of the program is running.

Incremental code coverage: First start and stop the program execution to collect trace data and then
perform the code coverage analysis based on the collected data. Repeat these steps until sufficient
data are collected.

Decision-making aid and further tips can be found in “Trace Data Collection Overview”, page 43.
Details on the individual test variants can be found in “Trace Data Collection”, page 57.

Details on the object code coverage evaluation itself can be found in “Object Code Coverage
Evaluation”, page 82.

Add comments to the uncovered code ranges, see “Comment Your Results”, page 127.

Generate a code coverage report, see “Appendix A: TRACE32 Coverage Report Utility”, page
131. If you want to merge the results of several test passes before generating a report, see
“Appendix B: Assemble Multiple Test Runs at Address Level”, page 133.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 21

Statement Coverage Workflow

If you want to perform a statement coverage analysis, you must carry out the following steps.

1.

Build the executable. Please pay attention to “Build Process Statement Coverage”, page 30.

Two steps are necessary for the statement coverage itself:

2.

Load all files needed for statement coverage into TRACE32, see “Preparation for Statement
Coverage”, page 51.

Choose between the two test variants.

Live code coverage (RTS, SPY): The code coverage analysis is already performed while the
execution of the program is running.

Incremental code coverage: First start and stop the program execution to collect trace data and then
perform the code coverage analysis based on the collected data. Repeat these steps until sufficient
data are collected.

Decision-making aid and further tips can be found in “Trace Data Collection Overview”, page 43.
Details on the individual test variants can be found in “Trace Data Collection”, page 57.

Details on the statement coverage evaluation can be found in “Statement Coverage Evaluation”,
page 87.

Add comments to the uncovered code ranges, see “Comment Your Results”, page 127.

To generate a code coverage report, see “Appendix A: TRACE32 Coverage Report Utility”,
page 131. If you want to merge the results of several test passes before generating a report, see
“TRACE32 Merge and Report Tool”, page 129.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 22

Decision Coverage Workflow

Before you start with the decision coverage analysis, you should have read the chapter “MC/DC, Condition
and Decision Coverage”, page 15.

If you want to perform a decision coverage analysis, you must carry out the following steps.

1.

Decide on the Appropriate Code Coverage Mode:
- Targeted Instrumentation/No Instrumentation or
- Full Instrumentation

Generate all files needed for decision coverage, see “Build Process Decision Coverage”.
Please pay attention to “Recommendations for the Build Toolchain”, page 30.

Two steps are necessary for the decision coverage itself:

3.

Load all files needed for decision coverage into TRACE32, see “Preparation for Decision
Coverage”. Read the sub-chapter on the code coverage mode that you decided to use.

Choose between the two test variants.

Live code coverage (SPY): The code coverage analysis is already performed while the execution of
the program is running. RTS mode cannot be used for decision coverage at present.

Incremental code coverage: First start and stop the program execution to collect trace data and then
perform the code coverage analysis based on the collected data. Repeat these steps until sufficient
data are collected.

Decision-making aid and further tips can be found in “Trace Data Collection Overview”, page 43.
Details on the individual test variants can be found in “Trace Data Collection”, page 57.

Details on the decision coverage evaluation can be found in “Full Decision Coverage Evaluation”,
page 91.

Add comments to the uncovered code ranges, see “Comment Your Results”, page 127.

To generate a code coverage report, see “Appendix A: TRACE32 Coverage Report Utility”,
page 131. If you want to merge the results of several test passes before generating a report, see
“TRACE32 Merge and Report Tool”, page 129.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 23

Object Code Based (ocb) Decision Coverage Workflow

If you want to perform object code based decision coverage analysis, you must carry out the following steps.

1.

Build the executable. Please pay attention to Build Process ocb Decision Coverage.

Two steps are necessary for the ocb decision coverage itself:

2.

Load all files needed for ocb decision coverage into TRACES32, see “Preparation ocb Decision
Coverage”.

TRACERS2 basically offers two variants of code coverage analysis:

Live code coverage (RTS, SPY): The code coverage analysis is already performed while the
execution of the program is running.

Incremental code coverage: First start and stop the program execution to collect trace data and then
perform the code coverage analysis based on the collected data. Repeat these steps until sufficient
data are collected.

Decision-making aid and further tips can be found in “Trace Data Collection Overview”, page 43.
Details on the individual test variants can be found in “Trace Data Collection”, page 57.

Details on the ocb decision coverage evaluation can be found in “Object Code Based (ocb)
Decision Coverage Evaluation”, page 97.

Add comments to the uncovered code ranges, see “Comment Your Results”, page 127.

Generate a code coverage report, see “Appendix A: TRACE32 Coverage Report Utility”, page
131. If you want to merge the results of several test passes before generating a report, see
“Appendix B: Assemble Multiple Test Runs at Address Level”, page 133.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 24

Condition Coverage Workflow

Before you start with the condition coverage analysis, you should have read the chapter “MC/DC,
Condition and Decision Coverage”, page 15.

If you want to perform a condition coverage analysis, you must carry out the following steps.

1.

Decide on the Appropriate Code Coverage Mode:
- Targeted Instrumentation/No Instrumentation or
- Full Instrumentation

Generate all files needed for condition coverage, see “Build Process Condition Coverage”.
Please pay attention to “Recommendations for the Build Toolchain”, page 30.

Two steps are necessary for the condition coverage itself:

3.

Load all files needed for the condition coverage into TRACES32, see “Preparation for Condition
Coverage”. Read the sub-chapter on the code coverage mode that you decided to use.

TRACERS2 basically offers two variants of code coverage analysis:

Live code coverage (SPY): The code coverage analysis is already performed while the execution of
the program is running. RTS mode cannot be used for condition coverage at present.

Incremental code coverage: First start and stop the program execution to collect trace data and then
perform the code coverage analysis based on the collected data. Repeat these steps until sufficient
data are collected.

Decision-making aid and further tips can be found in “Trace Data Collection Overview”, page 43.
Details on the individual test variants can be found in “Trace Data Collection”, page 57.

Details on the condition coverage evaluation can be found in “Condition Coverage Evaluation”,
page 104.

Add comments to the uncovered code ranges, see “Comment Your Results”, page 127.

To generate a code coverage report, see “Appendix A: TRACE32 Coverage Report Utility”,
page 131. If you want to merge the results of several test passes before generating a report, see
“TRACE32 Merge and Report Tool”, page 129.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 25

MC/DC Workflow

Before you start with the MC/DC analysis, you should have read the chapter “MC/DC, Condition and
Decision Coverage”, page 15.

If you want to perform a MC/DC analysis, you must carry out the following steps:

1.

Decide on the Appropriate Code Coverage Mode:
- Targeted Instrumentation/No Instrumentation or
- Full Instrumentation

Generate all files needed for MC/DC, see “Build Process MC/DC”. Please pay attention to
“Recommendations for the Build Toolchain”, page 30.

Two steps are necessary for MC/DC itself:

3.

Load all files needed for the MC/DC into TRACES32, see “Preparation for MC/DC”. Read the
sub-chapter on the code coverage mode that you decided to use.

TRACERS2 basically offers two variants of code coverage analysis:

Live code coverage (SPY): The code coverage analysis is already performed while the execution of
the program is running. RTS mode cannot be used for MC/DC at present.

Incremental code coverage: First start and stop the program execution to collect trace data and then
perform the code coverage analysis based on the collected data. Repeat these steps until sufficient
data are collected.

Decision-making aid and further tips can be found in “Trace Data Collection Overview”, page 43.
Details on the individual test variants can be found in “Trace Data Collection”, page 57.

Details on MC/DC evaluation can be found in “Modified Condition/Decision Coverage (MC/DC)
Evaluation”, page 110.

Add comments to the uncovered code ranges, see “Comment Your Results”, page 127.

To generate a code coverage report, see “Appendix A: TRACE32 Coverage Report Utility”,
page 131. If you want to merge the results of several test passes before generating a report, see
“TRACE32 Merge and Report Tool”, page 129.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 26

Function Coverage Workflow

If you want to perform a function coverage analysis, you must carry out the following steps:

1.

Generate all files needed for function coverage, see “Build Process Function Coverage”.
Please pay attention to “Recommendations for the Build Toolchain”, page 30.

Two steps are necessary for the function coverage itself:

2.

Load all files needed for the function coverage into TRACES32, see “Preparation
Function,Coverage”, page 45.

TRACERS2 basically offers two variants of code coverage analysis:

Live code coverage (RTS, SPY): The code coverage analysis is already performed while the
execution of the program is running.

Incremental code coverage: First start and stop the program execution to collect trace data and then
perform the code coverage analysis based on the collected data. Repeat these steps until sufficient
data are collected.

Decision-making aid and further tips can be found in “Trace Data Collection Overview”, page 43.
Details on the individual test variants can be found in “Trace Data Collection”, page 57.

Details on the function coverage evaluation can be found in “Function Coverage Evaluation”, page
116.

Add comments to the uncovered code ranges, see “Comment Your Results”, page 127.

To generate a code coverage report, see “Appendix A: TRACE32 Coverage Report Utility”,
page 131. If you want to merge the results of several test passes before generating a report, see
“TRACE32 Merge and Report Tool”, page 129.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 27

Call Coverage Workflow

If you want to perform a call coverage analysis, you must carry out the following steps.

1. Generate all files needed for call coverage, see “Build Process Call Coverage”, page 32.

Two steps are necessary for the call coverage itself:

2. Load all files needed for the call coverage into TRACE32, see “Preparation for Call Coverage”,
page 52.
3. TRACERS2 basically offers two variants of code coverage analysis:

Live code coverage (RTS, SPY): The code coverage analysis is already performed while the
execution of the program is running.

Incremental code coverage: First start and stop the program execution to collect trace data and then
perform the code coverage analysis based on the collected data. Repeat these steps until sufficient
data are collected.

Decision-making aid and further tips can be found in “Trace Data Collection Overview”, page 43.
Details on the individual test variants can be found in “Trace Data Collection”, page 57.

Details on the call coverage evaluation can be found in “Call Coverage Evaluation”, page 120.
4. Add comments to the uncovered code ranges, see “Comment Your Results”, page 127.

5. To generate a code coverage report, see “Appendix A: TRACE32 Coverage Report Utility”,
page 131. If you want to merge the results of several test passes before generating a report, see
“TRACE32 Merge and Report Tool”, page 129.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 28

Build Process

Recommendations for the Build Toolchain

NOTE: It is recommended to configure the toolchain so that code optimizations are
disabled and no jump tables are used. The following list shows recommended
compiler configurations for selected toolchains:

. GNU Compiler Collection (GCC): -00 -fno-jump-tables
. Wind River Diab Compiler: -Xoptimized-debug-off -Xdebug
-source-line-barriers-on -Xswitch-table-off

Build Process Statement Coverage

Apart from the “Recommendations for the Build Toolchain”, page 30, there are no additional
recommendations for the build process here. However, TRACE32 currently does not consider two special
cases.

Let's review the definition of statement coverage: “The statement coverage ensures that each statement in
the program has been called at least once. In this context, an instruction is a block of source code lines.”
There are two cases that must be taken into account:

. The compiler does not generate object code for a source code line

Optimizations may cause the compiler to omit object code for certain source code lines.
However, TRACE32's code coverage analysis depends on the object code, as only this is
captured in the program flow trace recording. Source code lines are tagged for statement
coverage based on a suitable mapping between the object code and the source code.

Here is a small source code example where the compiler could optimize by generating a single
conditional branch for the two source code lines:

if (terminate == TRUE)
break;

After loading the program, TRACES32 does not display line numbers for source code lines without
corresponding object code. These lines are ignored in the statement coverage analysis, which
may lead to inaccuracies. Therefore, we recommend verifying the results by manually inspecting
the source code.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 29

L The compiler uses conditional instructions to handle simple conditions

if (a == 5)
b =7 ;
CMP R3, #5 CMP R3, #5
BNE not_equal MOVEQ R4, #7
MOV R4, #7

not_egual:

In this case, it is advisable to first verify whether the trace protocol of the core under debug
supports conditional instructions, specifically indicating if the condition code check passed or
failed. You can use the COVerage.INFO command or the CPU.Feature(CONDTRACE) function to
do this.

- If the trace protocol does not support conditional instructions, statement coverage cannot be
performed for the affected source code lines.

- Even if the trace protocol supports conditional instructions, you must ensure that object code is
generated for every source code line. Otherwise, you will encounter the problem described in the
previous section under 'The compiler does not generate object code for a source code line.

Build Process Function and ocb Decision Coverage

The following recommendations apply here for the build process:

J Function Coverage
It is recommended to disable function inlining so that the results are clear and intuitively readable.

. ocb Decision Coverage
It is recommended to disable most if not all optimizations to avoid false-positive or false-negative
results. Please also check “Appendix F: Coding Guidelines”, page 148.

Apart from that, the executable can be generated as usual.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 30

Build Process Call Coverage

TRACES2 requires the following inputs for call coverage in addition to the C/C++ source files:
. A folder with the .eca files

o A non-instrumented executable

All input/outputs of the build process that are required for the call coverage analysis are marked in figure
“Build Process Call Coverage” with an arrow pointing downwards.

For call coverage you must deactivate the inlining of functions and reduce the optimization.

To measure call coverage TRACES32 needs to identify the locations of function calls. Since this information is
not contained in the debug information generated by the compiler, Lauterbach offers its own Clang-based
command line tool called t32cast for this purpose. t32cast analyzes the C/C++ sources and generates an
extended code analysis file (.eca) for each source file, which contains the required location information. To
generate these files, t32cast offers the following command:

t32cast eca -o <output-file> <input-file>

More details can be found in “Command Line Parameters of t32cast” in Application Note for t32cast,
page 7 (app_t32cast.pdf).

It is recommended to integrate t32cast into your build process so that the ECA files are generated in addition
to the executable.

Build Process Call Coverage

It
9 “
Source

Files »| Static Code Analysis A—J

n .eca

Extended
Code Analysis
Data

Executable

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 31

Build Process MC/DC, Condition and Decision Coverage

Decision Making

As described in “MC/DC, Condition and Decision Coverage”, page 15, several code coverage modes are
available for these metrics.

Before you adapt the build process for TRACE32 code coverage
J you must decide on the appropriate code coverage mode.

J you can check whether you are able to use a TRACE32 Instruction Set Simulator instead of a
debugger with target during the build process.

Decide on the Appropriate Code Coverage Mode

The goal of this step is to select the appropriate mode from the TRACE32 code coverage modes. The
number of observability gaps is decisive for this.

The following steps are necessary to determine the number of observability gaps:
1. Build the executable.

Please pay attention to “Recommendations for the Build Toolchain”, page 30.
2. Use t32cast to generate the ECA files for all C/C++ files.

The .eca files contain the conditions/decision details that are necessary for the detection of the
observability gaps. To create an ECA file with t32cast, please use the command:

t32cast eca -o <eca-file> <c-file>

More details can be found in “Command Line Parameters of t32cast” in Application Note for
t32cast, page 7 (app_t32cast.pdf).

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 32

3. Load all files needed for observability gap detection into TRACE32.

The following files must be loaded:

- Executable, which includes the paths to the source files

- Generated .eca files
Load All Files Needed for the Observability Gap Detection

Extended

Source
Files

Code Analysis

Data

TRACE32 with Debugger and Target

Verify Mapping of Source Code
Decisions/Conditions to Object Code

A

The following commands can be used for this purpose.

; basic debugger setup for the target

; load the elf executable

7

Data.LOAD.E1lf

; load the

sYmbol .ECA.LOADALL /SkipErrors

.eca files

the elf file includes the paths to the source files
"my app.elf"

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

33

4. Perform the observability gaps detection.

Configure and perform the mapping of the decisions/conditions to the object code. An observabiltiy
gap is detected, if a decision/condition is not mapped to a conditional branch/instruction.

; clear message AREA
AREA .CLEAR

; configure mapping

; configure TRACE32 to consider trace event of conditional
; branches/instructions as source for monitoring

; decisions/conditions for code coverage

sYmbol .ECA.BINary.ControlFlowMode.Trace ON

; perform mapping
sYmbol .ECA.BINary.PROCESS
TRACE32 generates warnings when gaps in the mapping are detected

7

There are two ways to inspect the observabiltiy gaps:

; display warnings in message AREA
AREA.view

; display decision/condition mapping overview
sYmbol .ECA.BINary.view

2 [B:sVmbol. ECA.BINary.view] = =R
FilterMapped FilterType tree control
ALL ~ ALL ~ Expand/Collapse All
[tree type |address mapped |dec mapped |cond
“\coverage_tcZ\coverage ..000450--0x90000AC7 | 25 32 51 63 A~
“M\coverage_tc2\main ..000ACB--0x900004D5 0 0 0 0
“M\coverage_tc2\Global P:0xFFFFFFFF--0x0 |0 0 0 0 v

The following function returns the number of recognized observabiltiy gaps.

I sYmbol.ECA.BINary.GAPNUMBER()

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage |

34

The result can be no, few or many observabiltiy gaps. Please be aware that fewer enabled optimization
switches should result in a lower amount of observability gaps.

Depending on the result, you have to choose your code coverage mode. Decision-making aid can be found
in “MC/DC, Condition and Decision Coverage”, page 15.

Decide on the Use of TRACE32 Instruction Set Simulator

In many cases it will be possible to use a TRACES32 Instruction Set Simulator (ISS) instead of the TRACE32
debugger with target during the build process. The advantage would be that you do not have to allocate a
debugger/target configuration for the build process. In addition, no license is required to use the ISS in this
usage scenario.

The prerequisite for this is that the ISS detects the same observabiltiy gaps as the debugger/target
configuration. You should check this before you make this decision.

Use the command sYmbol.ECA.BINary.EXPORT.GAPS to export the observabiltiy gaps to a JSON file.

; export observabiltiy gaps from target test to JSON file
sY¥mbol .ECA.BINary.EXPORT.GAPS gaps_ from target_ test.json

Then perform the same test with a TRACE32 Instruction Set Simulator and export the detected
observabiltiy gaps to a JSON file as well.

; export observabiltiy gaps from ISS test to JSON file
sY¥mbol.ECA.BINary.EXPORT.GAPS gaps_from iss_ test.json

If both JSON files are identical, a TRACES2 Instruction Set Simulator can be used for the build process.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 35

Build Process for Code Coverage with Targeted Instrumentation/No Instrumentation

Build Process Code Coverage with Targeted Instrumentation/No Instrumetation

..
.

o : “
Sl eeeeneeenes p| Targeted Instrumentation > Instrumented

Files » Static Code Analysis A_J Source Files

.eca

Extended
Code Analysis
Data

Executable

Instrumented
Executable

TRACE32

JSON

List of Detected
Observability
Gaps

Detect
Observability Gaps

...............

A

TRACES2 requires the following inputs for code coverage with target instrumentation/no instrumentation in
addition to the C/C++ source files:

J A folder with the .eca files
J A non-instrumented executable, in the case that no observabiltiy gaps were detected
. An instrumented executable, in the case that observabiltiy gaps were detected.

All input/outputs of the build process that might be required for code coverage are marked in figure “Build
Process Code Coverage with Targeted Instrumentation/No Instrumentation” with an arrow pointing
downwards.

If you want to perform code coverage with targeted instrumentation/no instrumentation, you need to extend
your build process as follows:

1. Add t32cast to generate the ECA files for all C/C++ files.

To create an ECA file with t32cast, please use the command:

t32cast eca --export-cfg -o <eca-file> <c-file>

More details can be found in “Command Line Parameters of t32cast” in Application Note for
t32cast, page 7 (app_t32cast.pdf).

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 36

2. Add TRACE32 to perform the observability gap check.

TRACE32 can be called from the Make file with a script that performs the check automatically. Please
refer to “Command Line Arguments for Starting TRACE32” in TRACES32 Installation Guide, page
54 (installation.pdf) for details. This could look like the following:

t32ecagaps.json: $(NAME).elf $(ECA)
S (T32GRP) \t32marm.exe -c ../common/trace32.cfg -s ../common/export_gaps.cmm $ (NAME).elf

You should have checked in step “Decide on the Use of TRACE32 Instruction Set Simulator”,
page 36, if you can use a TRACES2 Instruction Set Simulator instead of a debugger/target
configuration.

The script that runs in TRACES32 must include the following steps.

; basic debugger setup for the target or basic ISS setup

; load the elf executable
; the elf file includes the paths to the source files
Data.LOAD.Elf "my app.elf"

; load the .eca files
sYmbol .ECA.LOADALL /SkipErrors

; delete JSON file, if existing
IF FILE.EXIST(gaps.json)
(

RM gaps.json

; configure mapping

; configure TRACE32 to consider trace event of conditional
; branches/instructions as source for monitoring

; decisions/conditions for code coverage

sYmbol .ECA.BINary.ControlFlowMode.Trace ON

; perform mapping
sYmbol .ECA.BINary.PROCESS

; export observabiltiy gaps to JSON file
IF sYmbol.ECA.BINary.GAPNUMBER()>O0.

(
sYmbol .ECA.BINary.EXPORT.GAPS gaps.json

TRACER32 only generates a fresh JSON file if gaps are detected in the observation.

An existing JSON file is deleted here, as TRACES32 decides in this manual on the basis of the
existence of the JSON files whether it must load the instrumented or the non-instrumented
executable. However, this is only one possible approach.

3.A If TRACE32 has not generated a JSON file, build the non-instrumented executable.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 37

3.B If TRACE32 has generated a JSON file, use t32cast for targeted instrumentation..

The result of this step should be a structure of directories (Instrumented Sources in the figure below)
with the following content:

(C:)
—(Original Sources <org_dir>)

starti.c |-
control.c | [~
diagnosis.c _]

—(Instrumented Sources <instr_dir>)

IJ:

start starti.c | [
control control.c | [~

diagnosis diagnosis.c H

- For each source file that contains observabiltiy gaps, there is an instrumented version of this file in
the Instrumented Sources directory (hatched rectangles for instrumented source files in the figure
above).

1L

- For each source file that does not contain observabiltiy gaps, there is a copy of the original in the
Instrumented Sources directory (white rectangles for not-instrumented source files in the figure
above).

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 38

To perform the code instrumentation task with t32cast, please use the following commands:

; create additional C source files with definitions of the

; lnstrumentation hooks

t32cast instrument --mode=mcdc --gen-instr-source-files
--probe-dir=<instr dir>

; the files t32pp.c and t32pp.h created this way have to be compiled
; together with the instrumented source files

; process all source files

; use JSON file with observabiltiy gaps as input for targeted
; instrumentation and instrument all decisions for which
; a observabiltiy gap was detected

; source files without observabiltiy gaps are simply
; copied to <instr_dir>

t32cast instrument --mode=mcdc --filter=gaps.json
-0 <instr dir\file> <org dir\file>

Whereby the switch mode=mcdc must also be used for condition and decision coverage.

4.B Build the instrumented executable.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 39

Build Process Code Coverage with Full Instrumentation

Build Process for Full Instrumentation

E] t32cast
Source H Full Instrumentation " Instrumented
Files | Static Code Analysis Source Files
) \ A-
ﬂ .eca

Extended
Code Analysis
Data

Instrumented
Executable

TRACES2 requires the following inputs for code coverage with full instrumentation in addition to the C/C++

source files:
o A folder with the .eca files
o An instrumented executable

All input/outputs of the build process that are required for code coverage are marked in figure “Build Process
Code Coverage with Full Instrumentation” with an arrow pointing downwards.

If you want to perform code coverage with full instrumentation, the build process must be extended so that
t32cast creates an ECA file for each source code file that is compiled. Please use the command:

t32cast eca --export-cfg -o <eca-file> <c-file>

More details can be found in “Application Note for t32cast” (app_t32cast.pdf).

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 40

In addition, all C/C++ source files must be instrumented with t32cast. The result of this step should be a
structure of directories that contains all instrumented source files.

; create additional C source files with definitions of the
instrumentation hooks

t32cast instrument --mode=mcdc --gen-instr-source-files
--probe-dir=<instr_ dir>

the files t32pp.c and t32pp.h created this way have to be compiled

together with the source files

I

7

; instrument all decisions in all source files
t32cast instrument --mode=mcdc -o <instr dir\file> <org dir\file>

Whereby the switch mode=mcdc must also be used for condition and decision coverage.

Finally, an instrumented executable must then be generated.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 41

Trace Data Collection Overview

TRACE32 Tool Configurations

The following TRACE32 tools are suitable for code coverage:

. TRACE32 Debugger and Off-Chip Trace

. TRACE32 Debugger and On-Chip Trace

L TRACES32 Instruction Set Simulator

The TRACE32 Instruction Set Simulator simulates the instruction set, but does not model timing

characteristics and peripherals. However, the simulator provides a bus trace so that code coverage is easy
to perform.

. TRACE32 Advanced Register Trace (ART)

If Lauterbach does not offer an Instruction Set Simulator for the core architecture you are using, you can also
use the TRACES32 Advanced Register Trace (Trace.METHOD ART). This is a single-step trace, which
makes program execution very slow. This method is therefore only suitable for unit testing.

. TRACE32 Debugger for virtual targets with trace support

TRACE32 Debuggers for virtual targets should, because of their limitations, only be used for code coverage
if needed. For details refer to “Code Coverage with Virtual Targets”, page 76.

A TRACES32 debug and trace tool is of course the best choice, as it allows testing in the target environment
and thus integrates hardware and software. But for test phases that do not have these requirements, a
TRACE32 Instruction Set Simulator can be a good choice. It has a number of advantages: it allows early
testing when the target hardware is not yet available, scales well and delivers results quickly.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 42

Choose the Appropriate Trace Data Collection Variant

The following overview is intended to help new users to make a decision for the appropriate trace data
collection method. It is deliberately simplified and complex details are avoided.

If you are using a TRACE32 Advanced Register Trace (Trace.METHOD ART), please refer to “ART Mode
Code Coverage”, page 78.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 43

‘pasn s SO You e i a|geyns Ajpanouisal Alup

suod
aoeJ} yipimpueqg-ybly

‘suod aoely ypimpueqg-ybiy 1o} 8|gens JoN o} 9|qeyins JoN auou suoloLIISay
abelanod uonoun4
abelanod [|en
abeianod uoIsIoap o0 e e e SO
abeIan09 Juswalels abeianon
abetanod apo9 1098lq0 pauoddns
DIIOD Ddd 10} snxaN
XXGDdS WLS/XXXGDIN 10} SNX8N s|020j04d
2J0011] uoaunu| 4o} SADN IIe IIe IIe aoel]
XOHOD /Wiy 10} #A W13 ‘INLd ‘€A NLT pajoddng
IN-X8109) Jo} 8qoidiquio) Jo aded
208l JoMod
sjabue) |enuIp
IN-X8109) o} 8qoidIiquio) pue adein IN-X8H09 Jo} 8goidiquo) pue adel] aoel} diyouQ 19pI1023y
aoel | Jamod aoel | lamod Joje|nwis 188 uononisul 3oVl payoddng
"unJ }se} yoea
Ul papJodal aq ued ejep
0 Junowe Jable| e ‘awy
Buipiooal je Jandwod
SOy 8y} 0} pawealls "un. }sa} a|6uls e ul papJodal
S| ejep aoeJ} 9ouUIS 8Q Ued ey} ejep JO Junowe ay}
S)WI| AJowaw aoel} 8y} Jo 8z1S 8y |
"9IqISIA ‘a|qisiA Ajpidel aie 'sunJ 1s9) pajeadal
Alo1eIpawiwl aJe synsal abelanod apo) s)|nsal abeianod apo) | salinbal abeianod apo) 'sun. 1s9)
pajeadal saiinbal abetanod apo)
‘siseq ‘pazAjeue
‘pazAjeue | Ajpw} e uo pazAjeue pue uay} pue paplodal ‘pazAjeue uay) pue
Apoalip pue paplodal si ejep adel| pap.iooal S| ejep aoel] 1841} SI B}Ep 8%€el] papJlooal 1S4l SI ejep adel | uonduosaqg
Buiweang yyum (2eqiey) IEI
S1d AdS [ejuswialou] lejuawiaiou] uono9||09

44

Application Note for Trace-Based Code Coverage

©1989-2024 Lauterbach

Preconditions

Reduce the Amount of Trace Data

It is recommended to reduce the amount of trace data to the required minimum to make best use of the
available trace memory. If trace information is exported off-chip via a dedicated trace port this reduction
can also help to avoid an overload of the trace port.

It is recommended to configure the onchip trace logic:

. to generate only trace information for the program flow.
. to generate additionally trace information for the task switches if a rich OS such as Linux is used.
o to not generate chip timestamps if supported by the trace protocol.

Details of how to do this can be found in the manuals:

U Arm: “Training Arm CoreSight ETM Tracing” (training_arm_etm.pdf), “Training Cortex-M
Tracing” (training_cortexm_etm.pdf)

. MPC5xxx/SPC5xxx, QorlQ and RH850: “Training Nexus Tracing” (training_nexus.pdf)
. TriCore: “Training AURIX Tracing” (training_aurix_trace.pdf)

J For other processor architectures, please refer to the corresponding “Processor Architecture
Manuals”.

For target systems using a rich OS such as Linux a method of determining task switches must also be
included in the trace data. More information can be found here:

“Training Linux Debugging” (training_rtos_linux.pdf).

- For other operating systems, please refer to the corresponding “OS Awareness Manuals”
(rtos_<os>.pdf).

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 45

Ensure a Fault-Free Trace Recording

Before you start with code coverage, it is recommended to check if the trace recording is working properly.
Here is a simple script:

Go

Break

SILENT.Trace.Find FLOWERROR /ALL
IF FOUND.COUNT () !'=0.

(
PRIVATE &msg
&msg="FLOWERRORS were found in the analyzed trace recording."
s&msg="&msg It is recommended to check"
&msg="&msg if the trace recording works properly."
ECHO FOUND.COUNT () "&msg"
)
ELSE
(
ECHO "The analyzed trace recording does not contain FLOWERRORS."
)
ENDDO

The code coverage analysis can tolerate individual FLOWERRORS. However, it is recommended to ensure
that the number of FLOWERRORS is as small as possible.

The code coverage analysis can tolerate gaps in the trace caused by TARGET FIFO OVERFLOWS but this
will result in gaps in the coverage data.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 46

Disable Timestamps for Trace Streaming

All general rules applying to trace streaming are described under Trace.Mode STREAM.

Raw trace data TRACES32 tool timestamps

Raw trace data Data stream to host

Trace port

Trace buffer

TRACE32 TRACE32
trace tool debug module

Since the timestamps that TRACE32 assigns for the trace records have no significance for code coverage,

they do not have to be streamed to the host computer. This considerably reduces the data rate. Please use
the command Trace.PortFilter MAX for this purpose.

The current PortFilter setting is displayed in the TRACE32 state line when you enter the command
Trace.PortFilter followed by a space.

E::Trace.PortFilter
PortFilter : AUTO -> PACK

[ok] OFF MIN PACK MAX AUTO
P:9000055A \\coverage_tc2\coverage\ComplexWhile+0x32

SMP Multicore Systems

If code coverage is performed on an SMP system, it is typically sufficient to prove that the object or source
code line was executed by one of the cores. For this reason the core number of the trace records is ignored,
when the trace information is transferred to the code coverage system.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 47

Steps in Preparation for Trace Data Collection

Notes on the Individual Test Variants

This chapter describes which files need to be loaded into TRACES32 for trace data recording and code
coverage analysis. In fact, some files are only required for the code coverage analysis. First, general notes
on the individual test variants:

Incremental code coverage (one test run with repeated cycles)

With incremental code coverage, the following two steps must be repeated until the test is complete.

1. Run program execution and record program flow to trace memory.
2. Upload trace contents to the host and perform code coverage analysis in TRACE32 PowerView
GUL.

For this test scenario, we recommend loading all files in advance.
Incremental code coverage (two separate test runs)

In this test variant, the recording of the trace data and the code coverage analysis are mostly carried out by
two different teams.

1. The trace team is exclusively responsible for trace recording. Each individual trace recording is
saved in a file (command Trace.SAVE). The trace files are then passed on to the code coverage
team for analysis.

This means that the trace team does not have to load any files that are only required for code
coverage. Files that are only required for the code coverage analysis are therefore marked with (code
coverage only) in this chapter.

2. The code coverage team is exclusively responsible for the code coverage analysis. Each
individual trace file is loaded (command Trace.LOAD), the code coverage analysis is performed
and the result is added incrementally to the preceding analysis results.

The code coverage team must always load all files.
Live code coverage (RTS, SPY)

With live code coverage, everything is done at the simultaneous. Run program execution and record
program flow, stream trace data to host and perform code coverage analysis in TRACE32 PowerView GUI.

For this test variant, all files must be loaded in advance. Since everything has to be performed quickly here,
the executable must be mirrored in the TRACE32 Virtual Memory. (The code is usually read from the target
memory to perform the decoding of the trace data. But this procedure is too slow for live code coverage.)

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 48

Preparation for Function, Object Code, ocb Decision Coverage

All trace data collection variants can be used here.

Statement, Function, Object Code and ocb Decision Coverage

Source
Files

Load all Needed Files

The following files need to be loaded into TRACE32:
J Executable, which includes paths to all source files

J TRACES32 OS Awareness, if an operating system is used by the target application

The following commands can be used for this purpose:

; basic debug and trace setup

; load the elf executable
; the elf file includes the paths to the source files

Data.LOAD.El1lf "my app.elf"

; mirror the executable to the TRACE32 Virtual Memory
; live code coverage (RTS, SPY) only
Data.LOAD.El1lf "my app.elf" /VM

; load the 0OS Awareness
TASK.CONFIG myos.t32

; detect memory address ranges at the end of functions that were
; address range

sYmbol .CLEANUP.AlignmentPaddings

inserted due to memory alignment and removes them from the function

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage

| 49

Preparation for Statement Coverage

All trace data collection variants can be used here.

Statement, Function, Object Code and ocb Decision Coverage

Source
Files

Load all Needed Files

The following files need to be loaded into TRACE32:
J Executable, which includes paths to all source files

J TRACES32 OS Awareness, if an operating system is used by the target application

The following commands can be used for this purpose:

; basic debug and trace setup

; load the elf executable
; the elf file includes the paths to the source files

Data.LOAD.El1lf "my app.elf"

; mirror the executable to the TRACE32 Virtual Memory
; live code coverage (RTS, SPY) only
Data.LOAD.El1lf "my app.elf" /VM

; load the 0OS Awareness
TASK.CONFIG myos.t32

; detect memory address ranges at the end of functions that were
; address range

sYmbol .CLEANUP.AlignmentPaddings

inserted due to memory alignment and removes them from the function

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage

| 50

Preparation for Call Coverage

All trace data collection variants can be used here.

Call Coverage

Extended
Code Analysis
Data

Source
Files

* Load all Needed Files

The following files need to be loaded into TRACE32:
J Executable, which includes paths to all source files
. Generated .eca files (code coverage only)

J TRACES32 OS Awareness, if an operating system is used by the target application

The following commands can be used for this purpose:

; basic debug and trace setup

; load the elf executable
; the elf file includes the paths to the source files
Data.LOAD.El1lf "my app.elf"

; mirror the executable to the TRACE32 Virtual Memory
; live code coverage (RTS, SPY) only
Data.LOAD.El1lf "my app.elf" /VM

; load the .eca files
sYmbol.ECA.LOADALL /SkipErrors

; load the 0S Awareness
TASK.CONFIG myos.t32

; detects memory address ranges at the end of functions that were

; inserted due to memory alignment and removes them from the function
; address ranges.

sYmbol .CLEANUP.AlignmentPaddings

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 51

Preparation for MC/DC, Condition and Decision Coverage

All trace data acquisition modes can be used here, but not RTS mode.

The preparation is different for the individual code coverage modes:
J Targeted Instrumentation/No Instrumentation

o Full Instrumentation

Preparation for Targeted Instrumentation/No Instrumentation

MC/DC, Condition and Decision Coverage

or Extended
So_u sl Code Analysis
Files Data

® Load all Needed Files
* Run Static Preprocessing for Code Coverage

A
The following files need to be loaded into TRACE32:
J Not-instrumented executable or the instrumented executable. Each executable includes the
paths to all source files.
NOTE: Please note that TRACE32 performs the code coverage analysis for the
instrumented executable with the original, non-instrumented source code

files.

For this reason, the paths to the source code files included in the
instrumented executable file must always be adapted accordingly. The
sYmbol.SourcePATH command group offers various ways of doing this.
An introduction to this topic can be found in “Option and Commands to
Get the Correct Paths for the Source Files” in Training Source Level
Debugging, page 9 (training_hll.pdf)

. Generated .eca files (code coverage only)

. TRACES32 OS Awareness, if an operating system is used by the target application.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 52

After loading all the necessary files, static preprocessing must be performed to prepare the MC/DC,
condition or decision coverage analysis (code coverage only).

The following framework can be used for this purpose:

; basic debug and trace setup
; load appropriate executable

; adjust the links to source files in "my app_targeted.elf" so that
; they refer to the non-instrumented source files
IF FILE.EXIST(gaps.json)
(
Data.LOAD.E1lf "my app_ targeted.elf"
sYmbol.SourcePATH.Translate "c:/my app/instrumented" "c:/my app/source"
PRINT "Executable with targeted instrumentation loaded."
)
ELSE
(
Data.LOAD.E1lf "my app.elf"
PRINT "Not-instrumented executable loaded."

; load the .eca files
sYmbol .ECA.LOADALL /SkipErrors

; load the 0OS Awareness
TASK.CONFIG myos.t32

detects memory address ranges at the end of functions that were
inserted due to memory alignment and removes them from the function

; address ranges
sYmbol .CLEANUP.AlignmentPaddings

; Configuration of static preprocessing in preparation for
, code coverage analysis

; consider conditional opcodes in the object code
sYmbol .ECA.BINary.ControlFlowMode.Trace ON

; consider source code instrumentation probes in "my app_targeted.elf"
IF &instrumented

(
sYmbol .ECA.BINary.ControlFlowMode.INSTR ON

; perform the static analysis for MC/DC, condition and decision coverage
sYmbol .ECA.BINary.PROCESS

IF sYmbol.ECA.BINary.GAPNUMBER()>0.

(
PRINT sYmbol.ECA.BINary.GAPNUMBER() " observability gaps detected. \
Please check the remaining observability gaps."

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage

Preparation for Full Instrumentation

MC/DC, Condition and Decision Coverage

Source
Files

Extended
Code Analysis
Data

¢ Load all Needed Files
¢ Run Static Preprocessing for Code Coverage

A

The following files need to be loaded into TRACE32:

o Instrumented executable

NOTE:

Please note that TRACES32 performs the code coverage analysis for the
instrumented executable with the original, non-instrumented source code
files.

For this reason, the paths to the source code files included in the
instrumented executable file must always be adapted accordingly. The
sYmbol.SourcePATH command group offers various ways of doing this.
An introduction to this topic can be found in “Option and Commands to
Get the Correct Paths for the Source Files” in Training Source Level
Debugging, page 9 (training_hll.pdf)

. Generated .eca files (code coverage only)

J TRACES32 OS Awareness, if an operating system is used by the target application.

After loading all the necessary files, static preprocessing must be performed to prepare the MC/DC,
condition or decision coverage analysis (code coverage only).

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage | 54

The following framework can be used for this purpose:

; basic debug and trace setup

; load executable
Data.LOAD.El1lf "my app full.elf"

; load the .eca files
sYmbol .ECA.LOADALL /SkipErrors

; adjust the paths to source files in "my_ app_full.elf" so that
; they refer to the non-instrumented source files
sYmbol.SourcePATH. Translate "c:/my app/instrumented" "c:/my app/source"

; load the 0S Awareness
TASK.CONFIG myos.t32

; detects memory address ranges at the end of functions that were

; inserted due to memory alignment and removes them from the function
; address ranges

sYmbol .CLEANUP.AlignmentPaddings

; Configuration of static preprocessing in preparation for
, code coverage analysis

; configure TRACE32 to consider trace event of conditional
; branches/instructions as source for monitoring

; decisions/conditions for code coverage

sYmbol .ECA.BINary.ControlFlowMode.Trace ON

; configure TRACE32 to consider trace source code instrumentation probes
; in "my_app_full.elf" as source for monitoring decisions/conditions for
; code coverage

sYmbol .ECA.BINary.ControlFlowMode.INSTR ON

; perform the static analysis for MC/DC, condition and decision coverage
sYmbol .ECA.BINary.PROCESS

IF sYmbol.ECA.BINary.GAPNUMBER()>O0.

(
PRINT sYmbol.ECA.BINary.GAPNUMBER() " observability gaps detected. \
Please check the remaining observability gaps."

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 55

Trace Data Collection

Incremental Code Coverage

Incremental coverage is supported by all processor architectures which provide information about program
flow that is saved to trace buffer and all TRACES32 configurations. It also supports all code coverage metrics
supported by TRACES32. It is a reliable fallback methods that can be used in the vast majority of

situations.

Data Collection

1. Set the trace to Leash Mode either via the Trace configuration window or via the command
Trace.Mode Leash. This ensures that the target will halt when the trace buffer becomes nearly
full, preventing loss of data. Stack or Fifo mode can also be used if Leash Mode is not supported.

2. Enable the Autolnit checkbox or use the command Trace.Autolnit ON to ensure that the trace
buffer is always cleared before the trace recording is started.

Trace Pedf Cov TC2%xT &B::Trace EI@
/& Configuration...
& CTS Settings... METHOD
MCDS Settings... Oonchip @ Analyzer | CAnalyzer | Hanalyzer (Integrator Probe O1Probe OlLA
4 List R O ART O LoGGER (O SNOOPer O FDX O NONE
nm Timing ¥
il Chart N state used ACCESS TDelay
() DISable auto - 0. 4 Tronchip
g Save trace data... @® OFF 0. 0% - TRACEPORT
52 Load reference data... O Arm SIZE CLOCK #2 MCDS
Reset Ortrigger [1610612736. | | | | 100.0MHz @ BMC
O break
SPY Mode Mode
O Fifo [sLave » advanced
commands O stack
@ Init @ Leash
& SnapShot (O STREAM
4 List PIPE
[AutoArm RTS
©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 56

3. Start program execution and wait until it stops.

4. After program execution has stopped, the trace data can be added to the coverage system with the
COVerage.ADD command or by using the +ADD button in the COVerage Configuration window, or
by selecting ‘Add Tracebuffer’ from the Cov menu (shown in the image below).

Cov Window Hel
P & B:COVerage.state EI@
12 Configuration...
j) METHOD
@ List Ranges
(@ List Functions @® MNCremental SPY RTS (U ART
@ List Modules
@ List Variables state Option
OFF StaticInfo Trace
(& Add Tracebuffer ® &
7 OoN RTS
@ Create Report... &
SourceMetric
Reset .
commands ObjectCode ~ commands
+ ADD =2 Load
@ Init &3 Save
RESet (9 List
(L3 istMadle
(L9 ListFunc
18 LISTLIne
(L9 Listvar
5. The code coverage measurement can be displayed by using the ListFunc button in the
COVerage Configuration window.
89 8:COV.ListFunc (o B s
B setup...| (Y Goto... | @it +add | Bload.. Psae. @mnit
address tree coverage objectcode (0% 50% 100 |branches bytes i
P:90000440--900009BD © \coverage partial 8. 293% | me—— 92.307% 6 3 1406. 1382. a
P:90000440--9000044D ® BooleanAssignmentNotOp ok 100. 000% | me——— (100, 000% 3 (C 14. 14,
P:9000044E--900004 55 0] eanAssignmentRelExpr ok 100. 000% | e— - 0. (C 8. 8.
P:900004 56--90000463 oleanAssignmentRelExprTrans ok 100. 000% | e——— 100 . 000% 1. (C 14. 14.
P:900004 64--9000047 5 oleanExprCoupledTerms ok 100. 000% | e———— 100 . 000% 4. (C 18. 18.
P:90000476--90000485 0] eanExprMixedOps ok 100. 000% |e————— 100 000% 3. 0. C 16. 16.
P:900004 86--90000495 01 eanExpr Same0ps ok 100. 000% | e——— (100, 000% 3. 0. C 16. 16.
P:900004 96--900004CF mplexDowhile ok 100. 000% | me— (100, 000% 5 0. C 58. 58.
P: 900004 D0--900004FF mp lexFor ok 100. 000% | ee——— 100 . 000% 5 (C 48. 48.
P:90000500--90000527 mplexIf ok 100. 000% | e———— 100 . 000% 4 (C 40. (
P:90000528--90000569 mplexwhile ok 100. 000% |ee————— 100 000% 5 (0. C 66.
P:9000056A--9000056F lentity ok 100. 000% | me— - 0. 0. 0. 0. 6. 6.
P:90000570--90000591 ®MultiLine partial 58. 823% |me— 41.666% 1. 2. 1. 2. 34. 20. v
< >

Details on the code coverage analysis itself are provided in the chapter “Code Coverage Analysis”,
page 81.

6. If more trace data is required, repeat step 3 and 4 until the desired level of coverage is obtained.

If the data recording and the code coverage analysis are executed by different teams, it is possible to save
the collected trace data and process it at a later point in time. Please refer to the commands Trace.SAVE
and Trace.LOAD.

You can use the COVerage.EXPORT.JSONE command to export the result of the test run. With the
Lauterbach command line tool t32covtool, you can accumulate coverage data that was collected at different
times, with different builds and different target configurations. For details refer to “TRACE32 Merge and
Report Tool”, page 129.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 57

Example Script

The entire process can be automated by creating a PRACTICE script. It is assumed that the preconditions
listed in “Preconditions”, page 46 are satisfied before running the script. In the example script default
settings are commented out.

// Trace.METHOD as automatically selected by TRACE32
Trace.Mode Leash
// Trace.AutoArm ON
Trace.AutoInit ON
COVerage.RESet
// COVerage.METHOD INCremental
RePeaT 10.
(
Go.direct
WAIT !STATE.RUN /()
COVerage.ADD
)
COVerage.ListFunc

// export test result for later reuse
COVerage.EXPORT.JSONE coverage_datal

Summary

A characteristic feature of incremental code coverage is that the individual steps are executed one by one.
Trace information is recorded while the program is running. After the program has been stopped, the
command COVerage.ADD ensures that:

J the raw trace data is uploaded to the host computer
J the raw trace data is decoded to reconstruct the complete program flow
. the program flow is finally added to the code coverage system

This workflow is summarized in the diagram below.

running 1 stopped 1 running L stopped
1 I 1
D T Uploading 3 Beceding
| | | |
' Command: COVerage.ADD ' ' Command: COVerage.ADD '

Details about the code coverage analysis itself are provided in the chapter “Code Coverage Analysis”,
page 81.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 58

Incremental Code Coverage in STREAM Mode

If a TRACES32 trace hardware tool such as PowerTrace is used it is possible to stream the trace data to a file

on the host file system. Information about the general conditions for trace streaming can be found in the

command description of the Trace.Mode STREAM command.

If the trace data is streamed to the host computer, longer recording times can be achieved. Incremental code
coverage in STREAM mode supports all code coverage metrics supported by TRACES32.

In case of large amounts of trace data, processing may take a long time. TRACES32 provides two alternative

methods to avoid this situation.

The first method is RTS, which is supported for all major architectures. RTS means that trace data is

processed while being recorded and the code coverage results are displayed dynamically. Please see “RTS
Mode Code Coverage”, page 64 for additional information.

If RTS is not supported for your core architectures, then SPY Mode Code Coverage can be an alternative.
Please see “SPY Mode Code Coverage”, page 70 for more details.

Data Collection

1. Set the trace to STREAM Mode either via the Trace Configuration window or via the
Trace.Mode STREAM command.

2. Enable the Autolnit checkbox or use the command Trace.Autolnit ON to ensure that the trace

buffer is always cleared before the trace recording is started.

£ List
nm Timing

iy Chart

Reset

Trace Perf Cov TC2%T
/& Configuration...
& CTS Settings...

MCDS Settings...

g Save trace data...

g Load reference data...

& BuTrace

METHOD

O onchip ® Analyzer

state

O pisable
@® OFF

O Arm

O trigger
O break
O spy

commands
@ Init

& SnapShot
i List
1 AutoArm

AutoInit

CAnalyzer

used

=

0.
SIZE

O ART

Mode
O Fifo
O stack
O Leash
® STREAM
PIPE
RTS

HAnalyzer () Integrator

ACCESS

Probe

O LOGGER () SNOOPer O FDX

TDelay

(o] 2)

OtProbe OlLA
O NONE

auto i

0.

ZJF TrOnchip

0%

CLOCK

[]

Mode
M sLave

% MCDS
) BMC

» advanced

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

59

3. TRACERS2 by default opens a streaming file in the directory for temporary files
(OS.PresentTemporaryDirectory()).

The streaming file can be optionally set using the command Trace.STREAMFILE. It is
recommended to use the fastest drive available on the host, ideally not the boot drive.

Trace.STREAMFILE "d:\temp\mystream.t32"

4., The maximum size allowed for a streaming file can be optionally set with the help of the
Trace.STREAMFileLimit command.

; limit the size of the streaming file to 5 GBytes
Trace.STREAMFileLimit 5000000000.

Please be aware, that the trace recording is stopped, when the size limit for the streaming file is
reached.

5. Since code coverage does not need any timestamp information, please use the command
Trace.PortFilter MAX to instruct TRACES32 to stream only the raw trace data. Further
background information can be found in the chapter “Disable Timestamps for Trace Streaming”,

page 48.

6. Start the program execution.

7. The program execution on the target must be stopped in order to perform the code coverage
analysis.

- The user may manually stop the program execution.
- A breakpoint may be used to stop the program execution.

- With the help of a script, the program execution may be stopped after a specific period of time.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 60

8. After the program execution has stopped, the trace data can be added to the coverage system with
the COVerage.ADD command or by using the +ADD button in the COVerage Configuration
window, or by selecting ‘Add Tracebuffer’ from the Coverage menu (shown in the image below).

Cov | Window Help & B:COVerage.state EI@
12 Configuration...
1 @ List Ranges LIETEEY
@ IEHEnnetions ® NCremental SPY RTS ART
@ List Modules
@ List Variables state Option
OFF StaticInfo &TI’BCE
Create Report... @on &RTS
SourceMetric
L=l commands ObjectCode ~ commands
+ ADD =2 Load
@ Init &3 Save
RESet (38 List
(i) ictMdile
L8 LIStLine
(L3 Listvar
9. Intermediate results can be displayed by using the ListFunc button in the COVerage
Configuration window.
19 B:COV.ListFunc =0 e ==
&setup... (A Goto... | 1ERList +Add | Bload.. Bsae. @i

tree

coverage [objectcode (0% 50% 100 lbranches
08, 293% | me— 92.307%

address
P :90000440--3000098D

6. 3. 382.
P:90000440--9000044D 100. 000% | ee— (100 . 000% 3. 0. 14.
P:9000044E--900004 55 100. 000% | ee— - 0. 0. 8.
P:900004 56--90000463 100. 000% 100. 000% 1. 0. 14,
P:90000464--9000047 5 100. 000% | me— (100, 000% 4 0. 18.
P:90000476--900004 85 100. 000% | ee————— (100 . 000% 3 0. 16.
P:900004 86--90000495 100. 000% | me— (100 . 000% 3 0. 16.
P:900004 96--900004CF 100. 000% | me— (100 . 000% 5 0. 58.
P:900004D0--900004FF 100. 000% | e——— (100, 000% 5 0. 48.
P:90000500--90000527 100. 000% 100. 000% 4 0. 40.
P:90000528--90000569 ok | 100. 000% | ee——— (100 . 000% 5 0. 66.
P:9000056A--9000056F Identity ok | 100. 000% | ee——————— - 0. 0. 6.

P:90000570--90000591 MultiLine partial 58. 823% |m— 41.666% 1. 2 0. v
>

Details on the code coverage analysis itself are provided in the chapter “Code Coverage Analysis”,
page 81.

10. Steps 6 and 8 can be repeated until the desired level of coverage is obtained.

If the data is recorded at a test site and there is no time for evaluation, it is possible to save the collected raw
trace data and process it at a later point in time. Please refer to the commands Trace.STREAMSAVE and
Trace.STREAMLOAD.

You can use the COVerage.EXPORT.JSONE command to export the result of the test run. With the
Lauterbach command line tool t32covtool, you can accumulate coverage data that was collected at different
times, with different builds and different target configurations. For details refer to “TRACE32 Merge and
Report Tool”, page 129.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 61

Example Script

In this example script default settings are commented out. It is assumed that the preconditions listed in
“Preconditions”, page 46 are satisfied before running the script.

// Trace.METHOD Analyzer or Trace.METHOD CAnalyzer
// Trace.AutoArm ON
Trace.AutoInit ON

Trace.Mode STREAM
Trace.STREAMFile "D:\streamfile.t32"
Trace.STREAMFileLimit 5000000000.

Trace.PortFilter MAX

COVerage.RESet
// COVerage.METHOD INCremental

Go

WAIT 10.s

Break
COVerage.ADD
COVerage.ListFunc

// export test result for later reuse
COVerage .EXPORT.JSONE coverage_datal

Summary

The advantage of incremental code coverage with streaming is that larger amounts of trace data can be
recorded in a single test run. However, before the recorded trace data can be processed, the program
execution must be stopped. The command COVerage.ADD ensures that:

J the raw trace data is decoded to reconstruct the complete program flow

. the program flow is added to the code coverage system

This workflow is summarized in the diagram below.

running I stopped
|

Recording
Streaming l |
I Command: COVerage.ADD |

Details about the code coverage analysis itself are provided in the chapter “Code Coverage Analysis”,
page 81.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 62

RTS Mode Code Coverage

TRACE32 can process the trace data during recording. This operation mode of the trace is called RTS.

RTS is currently supported for the following processor architecture/trace protocols:
o Arm ETMv3, PTM and Arm ETMv4

. Nexus for MPC5xxx and QorlQ

J TriCore MCDS

If RTS is not supported for your core architectures, then SPY mode code coverage could be an alternative.
Please refer to “SPY Mode Code Coverage”, page 70.

RTS requires a TRACES32 trace hardware tool such as PowerTrace and streaming of the trace data to a file
on the host file system has to work without issues. Information on the general conditions for trace streaming
can be found in the command description of the Trace.Mode STREAM command.

RTS mode code coverage supports only the following code coverage metrics: statement coverage, function
coverage, object code coverage and ocb decision coverage.

Data Collection

1. Switch the RTS system to ON in the RTS.state window or with the help of the RTS.ON command.

& B:RTS (=N HoR >
rts utilisation
() OFF
® 0N 26266560, EITors
35211988, StopOnError

commands database no access to code

RESet 1. MB [StopOnNoaccesstocode

& Init taskswitches fifofulls

[stopOnFifofull
Il PROfile state bad addreszes

COVerage stopped | []5topOnBadaddress
@Listl\dodule unknown tasks
ISTATistic [stopOnUnknowntask
= | ListModule diagnostics

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 63

2. Open a COVerage.ListFunc window by using the ListFunc button in the COVerage

Configuration window or by using the command COVerage.ListFunc. Please be aware that trace

data recorded in RTS mode are only processed by TRACES32 as long as one window in TRACE32

displays code coverage information.

Cov | TC2%xT Window
&g:nﬁglraﬁnn_

& B:COVerage

—— METHOD
[E® List Ranges) .
i . INCremental SPY RTS ART
[g, List Functions
[g, List Modules X
@ state Option
List Variables
OFF StaticInfo 2 Trace
3 Add Tracebuffer ® ON 2 RTS
E] Create Report.. SourceMetric
Reset commands ObjectCode hd commands
ADD Load
Init g Save
RESet (9 List
(LB | ictadila
(9 ListFunc
L8 ListLine
(L9 Listvar
3. Start the program and observe the measured code coverage.
189 B::COV.ListFunc
B setup...| (Y Goto... | @List +add | Bload.. Psae. @mnit
address tree coverage lobjectcode [0% 50% 100 |branches
P:90000440--900009BD | = ‘\coverage partial 98, 293 | 92.307% 6 3. 2.
P:90000440--9000044D BooleanAssignmentNotop ok | 100.000% 100. 000% 3 0. 0.
P:9000044E--900004 55 0] eanAssignmentRelExpr ok | 100.000% - 0. 0. 0.
P:900004 56--90000463 oleanAssignmentRelExprTrans ok | 100.000% 100. 000% 1. 0. 0.
P:90000464--9000047 5 oleanExprCoupledTern ok | 100.000% 100. 000% 4 0. 0.
P:90000476--90000485 0] eanExpriixedops ok | 100.000% 100. 000% 3 0. 0.
P:900004 86--900004 95 07 eanExpr SameOps ok | 100.000% 100. 000% 3 0. 0.
P: 900004 96--900004CF mp 1 exDowhi ok | 100.000% 100. 000% 5 0. 0.
P:900004D0--900004FF mplexFor ok | 100.000% 100. 000% 5 0. 0.
P:90000500--90000527 mplexIf ok | 100.000% 100. 000% 4 0. 0.
P:90000528--90000569 mplexwhile ok | 100.000% 100. 000% 5 0. 0.
P:9000056A--9000056F lentity ok | 100.000% - 0. 0. 0.
P:90000570--90000591 ®MultiLine partial 58. 823% | e— 41.666% 1. 2 2

Details on the code coverage analysis itself are provided in the chapter “Code Coverage Analysis”,

page 81.

4. Stop the program exucution when your tests are completed.

RTS discards the trace data after it is processed by default. If you want to keep the trace data for additional

verification tasks perform these configuration steps before setting up RTS mode code coverage as

described above.

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

64

1. Set the trace to STREAM mode either via the Trace Configuration window or the
Trace.Mode STREAM command.

2. Enable the Autolnit checkbox or use the command Trace.Autolnit ON to ensure that the trace
buffer is always cleared before the trace recording is started.

Trace Perf Cov TC2WT & BiTrace EI@
&‘hﬁw@“L METHOD
& cr Seﬁlnss... O oOnchip @ Analyzer | Canalyzer | HAnalyzer (Integrator (' Probe ~ O1TProbe OLA
- FiDSSE&mg&” , OarRT OLoGGER O snooPer O FDX O NONE
Y 151
zai Timing ¢ state used ACCESS TDelay
fi Chart ’ () DISable auto - 0. 4 Tronchip
g Save trace data... ® OFF 0. 0% ~ TRACEPORT
52 Load reference data... Oarm SIZE cLOCK B MCDs
Reset O trigger l:l &) BMC
O break
Ospy Mode Mode
O Fifo I sLAVE » advanced
commands O stack
@ Init O Leash
& SnapShot (® STREAM
£ List PIPE
[A Antnarm RTS

AutoInit

3. TRACERS2 by default opens a streaming file in the directory for temporary files
(OS.PresentTemporaryDirectory()).

The streaming file can be optionally set by using the command Trace.STREAMFILE. It is
recommended to use the fastest drive available on the host, ideally not the boot drive.

Trace.STREAMFILE "d:\temp\mystream.t32"

4, The maximum size allowed for a streaming file can be optionally set with the help of the
command Trace.STREAMFileLimit.

; limit the size of the streaming file to 5 GBytes
Trace.STREAMFileLimit 5000000000.

Please be aware, that the trace recording is stopped, when the size limit for the streaming file is
reached.

5. Since code coverage does not need any timestamp information, please use the command
Trace.PortFilter MAX to instruct TRACES32 to stream only the raw trace data. Further
background information can be found in the chapter “Disable Timestamps for Trace Streaming”,
page 48.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 65

You can use the COVerage.EXPORT.JSONE command to export the result of the test run. With the
Lauterbach command line tool t32covtool, you can accumulate coverage data that was collected at different
times, with different builds and different target configurations. For details refer to “TRACE32 Merge and
Report Tool”, page 129.

Example Scripts

This example script discards the trace data after it is processed; default settings are commented out. It is
assumed that the preconditions listed in “Preconditions”, page 46 are satisfied before running the script.

// Trace.METHOD Analyzer or Trace.METHOD CAnalyzer

; Set breakpoint to end of test run
Break.Set vTestComplete

COVerage.RESet
RTS.ON
COVerage.ListFunc

Go

WAIT !STATE.RUN()

// export test result for later reuse
COVerage.EXPORT.JSONE coverage_datal

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 66

This example script saves the trace data to a streaming file; default settings are commented out.

// Trace.METHOD Analyzer or Trace.METHOD CAnalyzer
// Trace.AutoArm ON
Trace.AutoInit ON

Trace.Mode STREAM
Trace.STREAMFile "D:\streamfile.t32"
Trace.STREAMFileLimit 5000000000.

Trace.PortFilter MAX

; Set breakpoint to end of test run
Break.Set vTestComplete

COVerage.RESet
RTS.ON
COVerage.ListFunc

Go
WAIT !STATE.RUN /()
Trace.List

// export test result for later reuse
COVerage .EXPORT.JSONE coverage_datal

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 67

Summary

The big advantage of RTS mode code coverage is that all necessary steps run in parallel. Large amounts of
trace data can be processed quickly. Code coverage measurement becomes available immediately.

The following steps are performed concurrently with trace data collection:

J The raw trace data are streamed to the host computer, optionally it can be saved to the
streaming file

The raw trace data are decoded to reconstruct the program flow

The program flow is added to the code coverage system

The code coverage results are updated

running | Stopped
|

Recording
Streaming
RTS Decoding

Details about the code coverage analysis itself are provided in the chapter “Code Coverage Analysis”,
page 81.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 68

SPY Mode Code Coverage

TRACE32 supports processing of trace data while being recorded for all architectures:
. TRACE32 trace hardware tool such as PowerTrace is required

J Streaming of the trace data to a file on the host file system is working without issues

Information about the general conditions for trace streaming can be found in the description of
the command Trace.Mode STREAM.

SPY mode code coverage achieves lower processing speeds than RTS mode code coverage, but supports
all code coverage metrics supported by TRACES32.

Operation States

For SPY mode code coverage, trace streaming is periodically suspended in order to decode the raw trace
data and to process it for code coverage. Please be aware that TRACES32 does not suspend trace streaming
if the trace memory of the TRACES32 trace tool, that operates as a large FIFO, is filled more the 50%.

running 1 stopped
1

Recording

Streaming Streaming Streaming

P
1s

Legend:

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 69

TRACE32 indicates the current trace state by changing between Arm and SPY.

. Arm: Trace data is being recorded and streamed to the streaming file on the host computer.
J SPY: Trace data is being recorded and the content of the streaming file is processed for code
coverage.
& BuTrace EIIEI
METHOD
Oonchip @ Analyzer | CAnalyzer | Hanalyzer (Integrator Probe O1Probe OlLA
O ART O LoGGER (O SNOOPer O FDX O NONE
state used ACCESS TDelay
(O DISable | auto ~ 0. ZJF TrOnchip
C OFF 806289408, 0% TRACEPORT
O Arm SIZE CLOCK % MCDS
O trigger l:l &3 BMC
O break
> @sSpPy Mode Mode

O Fifo [sLave » advanced

commands O stack
@ Init O Leash
& SnapShot (® STREAM
4 List PIPE
[AutoArm RTS
[AutoInit
components trace Data Var List other previous
runing || ML up

The Trace field of the TRACE32 state line
changes between Arm and SPY

=1

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 70

Data Collection

1. Set the trace mode to STREAM either via the Trace configuration window or via the
Trace.Mode STREAM command.

2. Enable the Autolnit checkbox or use the command Trace. ON to ensure that the trace buffer is

always cleared before the trace recording is started.

Trace Perf Cov TC2WT
/& Configuration...
& CTS Settings...
MCDS Settings...
List >
Timing ¥
Chart ¥

Save trace data...

ROED & Bl

Load reference data...

Reset

& BuTrace EI@
METHOD
Oonchip @ Analyzer | CAnalyzer | Hanalyzer (Integrator Probe O1Probe OlLA
OarT OLoGGER O snOOPer O FDX (O NONE
state used ACCESS TDelay
(O DISable auto ~ 0. ZJF TrOnchip
® OFF 0. 0% v TRACEPORT
O Arm SIZE CLOCK % MCDS
O trigger l:l &3 BMC
O break
O spy Mode Mode
O Fifo SLAVE » advanced
commands O stack
@ Init O Leash
& SnapShot (® STREAM
i# List PIPE
AutoArm RTS

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

71

3. TRACERS2 by default opens a streaming file in the directory for temporary files
(OS.PresentTemporaryDirectory()).

The streaming file can be optionally set using the command Trace.STREAMFILE. It is
recommended to use the fastest drive available on the host, ideally not the boot drive.

Trace.STREAMFILE "d:\temp\mystream.t32"

4., The maximum size allowed for a streaming file can be optionally set with the help of the
command Trace.STREAMFileLimit.

; limit the size of the streaming file to 5 GBytes
Trace.STREAMFileLimit 5000000000.

Please be aware, that the trace recording is stopped, when the size limit for the streaming file is
reached.

5. Since code coverage does not need any timestamp information, please use the command
Trace.PortFilter MAX to instruct TRACES32 to stream only the raw trace data. Further
background information can be found in the chapter “Disable Timestamps for Trace Streaming”,
page 48.

6. Set the coverage method to SPY by using the command COVerage.METHOD SPY or by
selecting SPY in the COVerage configuration window.

7. Enable SPY mode code coverage by the command COVerage.ON or by selecting the ON radio
button in the state field.

Cov TC2%T Window A8 M= = e
é’g“ﬁ"“ﬁ“‘ METHOD
@) List Ranges OMCremental @SPY | RTS | ART
[g, List Functions
[g_, List Modules e Option
s OoFF [staticInfo 2 Trace
€3 Add Tracebuffer @®on PRTS
E*) Create Report... SourceMetric
Reset commands ObjectCode ~ commands
+ ADD =2 Load
@ Init &3 Save
RESet (38 List
(i) ictMdile
(L8 ListLine
(L3 Listvar

8. Open a COVerage.ListFunc window by using the ListFunc button in the COVerage configuration
window or by using the command COVerage.ListFunc. Please be aware that trace data recorded in
SPY mode code coverage is only periodically processed by TRACES2, if at least one window in
TRACER32 displays code coverage information.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 72

9. Start the program and observe directly the results of the code coverage.

<

19 B:COV.ListFunc ==
& setup...| (Y Goto... | iEBList +Add | Sload.. | BSave.. | @it
address tree coverage lobjectcode (0% 50% 100 |branches bytes i
P:90000440--9000098D | = \coverage partial | 98.293% 92.307% 1406, 136, ~
P:90000440--9000044D B0o] eanAssignmentNotop ok | 100 000% 100. 000% 4.
P:9000044E--90000455 Boo]eanAssignmentRelExpr ok | 100.000% - 8.
P:90000456--90000463 Boo]eanssignmentRelExprTrans ok | 100.000% 100. 000% 14.
P:90000464--90000475 Boo] eanExprCoupledTerms ok | 100.000% 100. 000% 18.
P:90000476--90000485 Boo] eanExpriii xedops ok | 100.000% 100. 000% 16.
P:90000486--90000495 oo eanExpr Sameops. ok | 100 000% 100. 000% 16.
£:90000496--900004CF Comp]exDowhile ok | 100.000% 100. 000% 58.
P:900004D0--900004FF ComplexFor ok | 100.000% 100.000% 48.
P:90000500--90000527 @ Comp]exIf ok | 100.000% 100. 000% 40,
P:90000528--90000569 @ Complexivhile ok | 100.000% 100. 000% 66.
P:9000056A--9000056F Identity ok | 100 000% - 6. 6
P:90000570--90000591 @ Multiline partial | 58.823% mem—m— 41.666% 34. 20. v

>

Details on the code coverage analysis itself are provided in the chapter “Code Coverage Analysis”,
page 81.

10. Stop the program execution when your tests have completed.

You can use the COVerage.EXPORT.JSONE command to export the result of the test run. With the
Lauterbach command line tool t32covtool, you can accumulate coverage data that was collected at different

times, with different builds and different target configurations. For details refer to “TRACE32 Merge and

Report Tool”, page 129.

Example Script

In the script the default settings are commented out. It is assumed that the preconditions listed in

“Preconditions”, page 46 are satisfied before running the script.

// Trace.METHOD Analyzer or Trace.METHOD CAnalyzer

// Trace.AutoArm ON
Trace.AutoInit ON

Trace.
Trace.
Trace.

Trace.

; Set

Break.

COVerage
COVerage
COVerage.
COVerage

Go
WAIT

Mode STREAM

STREAMFile

STREAMFileLimit 5000000000.

PortFilter MAX

breakpoint to end of test run

Set vTestComplete

List

.RESet
.METHOD SPY
ON
.ListFunc

I|STATE.RUN ()
Trace.

"D:\streamfile.t32"

// export test result for later reuse
COVerage .EXPORT.JSONE coverage_datal

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage |

73

Summary

SPY Mode Code Coverage can process trace data concurrently while recording. However, it does not
achieve the same processing speeds as RTS mode code coverage.

The following steps are involved:

J Trace information is recorded continuously.
. The raw trace data is streamed to a file on the host computer, but the streaming is periodically
suspended:

- to decode the raw trace data to reconstruct the program flow
- to add the program flow to the code coverage system

- to update code coverage results

running [stopped

Recording

Streaming Streaming

p— p—
1s 1s

Legend:

Details about the code coverage analysis itself are provided in the chapter “Code Coverage Analysis”,
page 81.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 74

Code Coverage with Virtual Targets

Tracing the program execution on a virtual target slows down its performance. To minimize this impact,

Lauterbach works closely together with manufacturers such as Synopsys. The basic idea is that some parts

of the code coverage processing are offloaded to the virtual target. This information is uploaded to the

TRACE32 code coverage system with the command COVerage.ADD after the program execution has been
stopped. The MCD interface comes with built-in support for this.

To use this feature the following conditions must be met:

J PBI=MCD must be specified in the TRACES32 configuration file, usually ~~/config.t32.

. The Virtual Target must support program address tagging.

COVerage.Mode FastCOVerage ON must be set. If the Virtual Target does not support program

address tagging, TRACES2 will display the error message “function not implemented”.

Cov | TC2%xT Window
/2 Configuration...
@ List Ranges

@ List Functions

@ List Modules

@ List Variables

@ Add Tracebuffer
E*) Create Report...

Reset

& B:COVerage
METHOD
® INCremental

state
OFF
®on

commands
+ ADD
@ Init
RESet

spy (RTS OART

Option
StaticInfo

SourceMetric
ObjectCode

Mode
FastCOVemge

(o] 2)

& Trace

commands
2 Load
g Save
(L8 List
(30 ListModule
[Q ListFunc
(L3 ListLine
(3 ListVar

The program addressed tagged in the virtual target can be used for:

J Object code coverage (see “Object Code Coverage Evaluation”, page 82)

. Statement coverage (see “Statement Coverage Evaluation”, page 87)

J Decision coverage (ocb) (see “Object Code Based (ocb) Decision Coverage Evaluation”, page
97)

J Function coverage (see “Function Coverage Evaluation”, page 116)

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

75

https://www.lauterbach.com/mcd_api.html

An example script might look like this:

COVerage.RESet

COVerage.METHOD INCremental

COVerage.Mode FastCOVerage ON

Go

; Use a breakpoint or time-out to control length of runtime
Break

COVerage.Add

COVerage.ListFunc

Details about the code coverage analysis itself are provided in the chapter “Code Coverage Analysis”,
page 81.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 76

ART Mode Code Coverage

ART is an acronym for Advanced Register Trace. The ART trace operates by single stepping on assembler

level. After each step, the contents of the CPU registers are uploaded to TRACES32 and stored in a similar
fashion as a program flow trace.

This pseudo-trace data can be used for code coverage. This is not supported for all processor architectures.
The Coverage.METHOD ART can only be selected if supported. Please be aware that ART has a
significant impact on the real-time performance of the target. Each step takes 5 to 10 ms.

Cov TC2%xT Window &B::COVerage.state EI@
&_’ Conhoations METHOD
@) List Ranges O INCremental SPY (JRTS
[g, List Functions
[g_, L?st Mo.dules e Option
s @® oFF [staticInfo & Trace
€3 Add Tracebuffer Oon PRTS
E*) Create Report... SourceMetric
Reset commands ObjectCode v commands
ADD =2 Load
@ Init &3 Save
RESet (38 List
(B ListModule
(L3 ListFunc
(L3 ListLine
(L3 Listvar

Trace data recorded with ART can be used for:

. Object code coverage (see “Object Code Coverage Evaluation”, page 82)

. Statement coverage (see “Statement Coverage Evaluation”, page 87)

J Decision coverage (ocb) (see “Object Code Based (ocb) Decision Coverage Evaluation”, page
97)

. Function coverage (see “Function Coverage Evaluation”, page 116)

Where possible, it is recommended to use the TRACES32 Instruction Set Simulator with Trace.METHOD
Analyzer instead of ART. This has a better performance and supports all code coverage metrics.

The TRACE32 Instruction Set Simulator simulates the instruction set, but does not model timing
characteristics and peripherals. However, the simulator provides a bus trace so that code coverage is easy
to perform. For details on how to start the TRACE32 Instruction Set Simulator refer to “TRACE32
Instruction Set Simulator” in TRACES32 Installation Guide, page 56 (installation.pdf).

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 77

Data Collection

Before you start do not forget to switch debugging to mixed or assembler mode by using the Mode.Asm or
Mode.Mix commands.

1. Select Trace.METHOD ART in the Trace configuration window.

2. Set the size of the ART buffer, using either the command ART.SIZE <n> or by entering the value
in the SIZE field of the Trace configuration window.

Trace Pedf Cov TC2%xT &B-.'.Trace EI@
¢ Configuration.. METHOD
&CTSSEﬁ'”Q_S"' Oanalyzer | Cénalyzer - Onchip @ART (OLOGGER Osnoorer OFDX — OLA
MCDS Settings... Hanalyzer () Integrator () Probe IProbe
List >
i Timing ¥ e el
iorlfehar ’ O DiSable
g Save trace data... ® OFF 0.
g Load reference data... O Arm SIZE
Reset Otrigger
O break
Mode
commands @ Fifo
@ Init O stack
& SnapShot
! [JBreakpoints
[AutoArm
AutoInit

3. Set COVerage.METHOD ART in the COVerage configuration window.
4. Enable ART code coverage with COVerage.ON.

il TC29 1 Window & B:COVerage.state EI@
&_’ R METHOD
@) List Ranges O INCremental SPY (JRTS @ART
[g, List Functions
[g_, L?st Mo.dules e Option
s OoFF [staticInfo & Trace
3 Add Tracebuffer @ on 2 RTS
E*) Create Report... SourceMetric
Reset commands ObjectCode ~ commands
ADD =2 Load
@ Init &3 save
RESet (38 List
(B ListModule
(L3 ListFunc
(L3 ListLine
(L3 Listvar

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 78

5. Open a COVerage.ListFunc window, single step the target and observe the result.

(L3 B::COV ListFunc oo =]
J2setup...|| ¥ Goto... | WP List +Add | Pload... | Psave.. @mit

address tree coverage [objectcode |0% 50% 100 |branches bytes i

P:40000030--400013C0 | = \diabc partial 4.232% = 1 5009. 212, [a
P:40000030--4000004B funco never 0. 000% 0 28. 0
P :4000004C--4000007F funcl ok 100. 000% 0 52. 2
P:40000080--40000113 func2 partial 59.459% 1 148. 88
P:40000114--40000173 func2a never 0.000% (96. (
P:40000174--400001CF funczb never 0.000% (92. C
P:400001D0--400002A7 func2c never 0.000% 0 216. 0
P:400002A8--4000030F func2d never 0.000% 0 104. 0
P:40000310--4000032F func3 never 0.000% 0 32. 0
P:40000330--4000039F funcd never 0.000% 0 112. 0
P:400003A0--400003EB func§ never 0.000% 0 76. 0
P:400003EC--40000477 funcé never 0.000% 0 140. 0
P:40000478--40000508 ® func? never 0.000% 0. 0 148. 0
P :4000050C--4000070F ® funcd never 0.000% 0. 0 516. 0
P:40000710--40000797 @ func9 never 0.000% 0. 0 136. 0
P:40000798--40000BEF func10 never 0.000% 0. (1112. (

P :40000BF0--40000C87 funcll never 0.000% C 0. C 1s52. 0. v

Details about the code coverage analysis itself are provided in the chapter “Code Coverage Analysis”,

page 81.

Example Script

A simple example is shown below.

Mode .Mixed

Trace.RESet

Trace.METHOD ART
Trace.SIZE 65535.

COVerage.RESet
COVerage .METHOD ART

COVerage .ON

Step 65534.

COVerage.ListFunc

7

7

; Set the size of the ART buffer

Single step on assembler level to capture data
Open a Window to see results

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage |

79

Code Coverage Analysis

Code Coverage Tags

Statement coverage

stmt: At least one corresponding object code instruction generated for the source code line has
been executed.

incomplete: None of the object code instructions generated for the source code line has been
executed.

Decision coverage

dc: Decisions have taken all possible outcomes at least once.
incomplete: There is at least one possible outcome missing for the decision.
Condition coverage

cc: Conditions have evaluated both, true and false.

incomplete: Condition have not evaluated both, true and false.

MC/DC
mcdc: Each condition in decision is shown to independently affect the outcome of that decision.

incomplete: There is at least one condition in the decision for which has not yet proven to
independently affect the outcome of the decision.

Function coverage
func: At least one function's object code instructions has been executed.

incomplete: None of the function's object code instructions has been executed.

Call coverage

call: All unconditional branches that represent a function call have been executed at least once. If
a function does not include an unconditional branch that represent a function call, the function is
tagged with call if at least one corresponding object code instruction generated for the function has
been executed.

incomplete: At least one unconditional branch that represent a function call has not been
executed. Or no object code instruction generated for the function has been executed for all call-
less functions.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 80

Object Code Coverage Evaluation

Object code coverage: Object code coverage ensures that each object code instruction was executed at
least once and all conditional instructions (e.g. conditional branches) have evaluated to both true and false.

There are two tagging schemes:

o ok | only exec | not exec | never
For Arm/Cortex cores that use the protocols Arm-ETMv1 or Arm-ETMv3, as well as Arm-ETMv4 with
ETM.COND ON.

L ok | taken | not taken | never
Otherwise.

For details refer to “Appendix G: Object Code Coverage Tags in Detail”, page 151.

Evaluation

If you want to use the trace data stored in the code coverage system for object code coverage, select the
SourceMetric ObjectCode in the COVerage configuration window or use the command
COVerage.Option SourceMetric ObjectCode.

Cov TC2%T Window &B::COVerage.state EI@
&_’ Conhoations METHOD
@? g ® INCremental SPY (JRTS (JART
[g, List Functions
[g_, Lfst Mo.dules e Option
o) S OFF [staticInfo &2 Trace
(3 Add Tracebuffer ®on 2 RTS
E*) Create Report... SourceMetric
Reset commands ObjectCode ~ commands
+ ADD =2 Load
@ Init &3 Save
RESet (38 List
(B ListModule
(L3 ListFunc
(L3 ListLine
(L3 Listvar

The following commands show a tabular analysis:

COVerage.ListModule
COVerage.ListFunc
COVerage.ListLine

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 81

The following command shows the tagging on source and object code level.

I List.Mix /COVerage

This TRACE32 command displays the object code tagging for the function MultiLine:

List.Mix MultiLine /COVerage

i} BaList.Mix MultiLine /COVerage = =R
M Step W Over || JAyDiverge |+ Return ¢ up » Go Il Break | %|Mode &= t.| % Find: | | coverage.c
true false coverage addr/1ine |code 1abel mnemonic |comment =
"~
static unsigned MultiLine(struct Compound *compound)
not taken 198 if ((compound->a = TRUE
ok P:90000570 |[4F54 MultiLine:Td16.w d15, [a4]
not taken P:90000572 |151E jeqlé d15,#0x1,0x9000057C
ok 199 || compound-=b == TRUE
ok P:90000574 |414C Td16.w d15, [a4]0x4
ok P:90000576 |L31E jeql6 d15,#0x1,0x9000057C
taken 200 || compound->c = TRUE
ok P:90000578 |424C Td16.w d15,[a4]0x8
taken P:90000574A |195E jnel6 d15,#0x1,0x9000058C
taken 201 &% (compound—>d =— TRUE
ok P:9000057C |434C Td16.w d15, [a4]0x0C
taken P:9000057E |151E jeqlé d15,#0x1,0x90000588
never 202 || compound->e =— TRUE
never P:90000580 |444C 1d16.w di15, [a4]0x10
never P:90000582 |131E jeqlé d15,#0x1,0x90000588
never 203 || compound—>f = TRUE)
never P:90000584 |454C 1d16.w di5,[a4]0x14
never P:90000586 |135E jnel6 d15,#0x1,0x9000058C
ok 204 return TRUE;
ok P:90000588 |L282 movl6 d2,#0x1
ok P:9000058A 033C} jl6 0x90000590
ok 206 return FALSE;
ok P:9000058C (0282 mov16 d2,#0x0
ok P:9000058E |013C jl6 0x90000590
ok 207 (}
ok P:90000590 |9000 retle
- b
J

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage |

82

The screenshot on the previous page was taken with the Infineon TriCore™ debugger. Its instruction set
contains no conditional instructions beyond conditional branches. Thus the object code is tagged as follows:

ok

The object code instruction is fully covered.

If the object code is a conditional branch it is tagged with ok if the
conditional branch has be at least once faken and not taken.

All other object code instructions are tagged with ok if they have
been executed at least once.

never

The object code instruction has never been executed.

taken

If the object code is a conditional branch it is tagged with taken if the
conditional branch has be at least once taken, but never not taken.

not taken

If the object code is a conditional branch it is tagged with not taken if
the conditional branch has be at least once not taken, but never
taken.

This TRACE32 command displays a tabular analysis of all functions of the module "coverage". A module
usually corresponds to a source code file.

COVerage.ListFunc.sYmbol \coverage

2 BusYmbolINFO ‘\coverage

(o8)

| 2 Symbols | %% Dump = List Q, view | E&mmu
moduTe
\\coverage_tcZ'coverage
P:90000440--900009BD
module info
a e: ELF-C
TASKING VX-toolset for TriCore: C compiler
.\coverage. c
L B::COVerage.ListFunc.s¥mbol \coverage EI@
2 Setup...|| (¥ Goto... | (G List + Add | P load... | EPsave..| @ it
address tree coverage |objectcode [0% 50% 100
P:90000440--900009BD | = ‘coverage partial 52, 6315 |we— ~
P :90000440--9000044D BooleanAssignmentNotOp ok | 100.000%
P :9000044E--90000455 BooleanAssignmentRelExpr ok | 100.000%
P:90000456--90000463 BooleanAssignmentRelExprTrans ok | 100.000%
P :90000464--90000475 BooleanExprCoupledTerms ok | 100.000%
P:90000476--90000485 BooleanExprMixedOps ok | 100.000%
P :90000486--90000495 BooleanExprSameQps ok | 100.000%
P : 900004 96--900004CF ® ComplexDowhile never 0. 000%
P:900004D0--900004FF ComplexFor never 0.000%
P :90000500--90000527 ® ComplexIf partial 35. 000% |——
P:90000528--90000569 ® Complexwhile never 0. 000%
P : 9000056A--9000056F Identity never 0. 000%
P:90000570--90000591 ®MultiLine partial 58. 823% |——
P:90000592--900005A7 NestedExpr ok 100.000%
P : 900005A8--900005C9 NestedExprTrans ok | 100.000%
P :900005CA--90000615 RunCover ageDemo partial B1. 578% | ——
P:90000616--90000647 SwitchCase taken 92, 000% | e——
P:90000648--9000065D TernaryExpr ok | 100.000% v
< >

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

83

Further details are displayed if you open the window in its full size:

() B:COVerage ListFunc.s¥mbol \coverage (= |
2 setup...| (¥ Goto... | (@ List +Add | Bload.. Fsave.. @it
address tree coverage [objectcode (0% 50% 100 branches bytes i
P:90000440--9000098BD | = \coverage partial 52.631% 55.769% 25. 7. 1. 19 1406. 40, [
P:90000440--9000044D Boo]eanAssignmentNotOp ok | 100. 000% s 100 0005 3. 0. 0. 0. 14. 14.
P:9000044E--90000455 Boo]eanAssignmentRelExpr ok | 100. 000% — - 0. 0. 0. 0. 8. 8.
P:90000456--90000463 Boo]eanAssignmentRelExprTrans ok | 100.000% 100. 000% 1. 0. 0. 0. 14. 14.
P:90000464--90000475 BooleanExprCoupledTerms ok
P:90000476--90000485 BooleanExpriixedops ok | |branches bytes
P:90000486--90000495 BooleanExprSame0ps ok T5. 760% pL 7 1 19 1406 =40
P :90000496--900004CF = ComplexDowhile never . - o . - . " L
P:900004D0--900004FF & ComplexFor never | |100. 000% 3. 0. 0. 0. 14. 14.
P:90000500--90000527 ® ComplexIf partial _ 0 0 0 0 8]
P :90000528--90000569 = CompTlexwhile never o o o -
P:9000056A--9000056F Id_‘entity never 100. 000% 1. 0. 0. 0 14. 14
P:90000570--90000591 @ MuTtiLine partia 4 0 0)
P:90000592--900005A7 NestedExpr ok 100. 000% 2 U. U. ! 18. 18
P:900005A8--900005C9 NestedExprTrans ul1< 100. 000% 3 0. 0. 0 16. 16
P :900005CA--90000615 RunCoverageDeno partia 3 0 0 0
P :90000616--90000647 SwitchCase taken 100. 000% . . oo = 16. 16
P :90000645--90000650 @ TernaryExpr ok 0. 000% 0. 0. 0. 5 58. 0
P:9000065E--9000067 3 @ TernaryExprTrans ok 0. 000% 0. 0. 0. 5 48, 0. |v
- 37.500% 1. 1. 0. 2 40.
0.000% 0. 0. 0. 5 66.
- 0. 0. 0. 0 6.
41.666% 1. 2. 1. 2 34.
- 0. 0. 0. 0 22.
100.000% 2. 0. 0. 0 34.
- 0. 0. 0. 0 76.
90. 000% 4. 1. 0. 0 50.
100.000% 1. 0. 0. 0 22.
100.000% 1. 0. 0. 0 22. 22
Conditional branches
branches Percentage calculated according to the

following formula:

2 x ok + taken + nottaken
2 x (ok + taken + nottaken + never)

ok Number of conditional branches that are both
taken and not taken

taken Number of conditional branches that are only
taken

not taken Number of conditional branches that are only
not taken

never Number of conditional branches that are

neither taken nor not taken

Byte count
bytes Number of bytes
ok Number of bytes that are already tagged as ok

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 84

Example Script

// Demo script "~~/demo/t32cast/eca/measure_mcdc.cmm"

// Select code coverage metric object code
COVerage.Option SourceMetric ObjectCode

// List code coverage results at source and object code level
List.Mix MultiLine /COVerage

// List code coverage results at function level
COVerage.ListFunc.sYmbol \coverage

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 85

Statement Coverage Evaluation

Statement coverage: Statement coverage ensures that every statement in the program has been invoked
at least once. Statement in this context means block of source code lines.

TRACES32 interpretation: A source code line achieves statement coverage when at least one
corresponding object code instruction has been executed.

The following tagging is performed:

. stmt | incomplete

Evaluation

If you want to use the trace data stored in the code coverage system for statement coverage, select the
SourceMetric Statement in the COVerage configuration window or use the command
COVerage.Option SourceMetric Statement.

Cov | TC2%xT Window

& & B:COVerage EI@
Conhoations METHOD
@? g @® Cremental SPY (RTS (JART
[g, List Functions
[g_, List Modules e Option
o) S OFF [staticinfo & Trace
(3 Add Tracebuffer ®on 2 RTS
E*) Create Report... SourceMetric
Reset commands Statement ~ commands
+ ADD =2 Load
@ Init &3 Save
RESet (38 List
(B ListModule
(L3 ListFunc
(L3 ListLine
(L3 Listvar

The following commands show a tabular analysis:

COVerage.ListModule
COVerage.ListFunc

The following command shows the tagging on source code level.

I List.HIl /COVerage

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 86

This TRACE32 command displays the statement coverage tagging for the function MultiLine:

List.Hl1l MultiLine /COVerage

BuList.HIl MultiLine /COVerage

(o] 8)

M Step ® Over || A Diverge ¢ Return ¢ up » Go Il Break | % Mode &= t- Find: coverage.c

true false coverage addr/1ine |source i
"~
static unsigned MultiLine(struct Compound *compound)
stmt 198 | if ((compound-=a == TRUE
stmt 199 || compound-=b == TRUE
stmt 200 || compound-=c == TRUE)
) stmt 201 &% (compound->d == TRUE
incomplete 202 || compound->e — TRUE
incomplete 203 || compound—>f — TRUE)) {
stmt 204 _ return TRUE;
stmt 206 | return FALSE;
stmt 207 [}
stmt

210 [static void TestMultiline(void)

The source code lines are tagged as follows:

stmt At least one corresponding object code instruction generated for the
block of source code lines has been executed.

incomplete None of the object code instructions generated for the block of
source code lines has been executed.

Object code instructions show the corresponding tags for object code coverage, if statement coverage is

selected.

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage | 87

This TRACE32 command displays a tabular analysis of all functions of the module "coverage". A module

usually corresponds to a source code file.

COVerage.ListFunc.sYmbol \coverage

? BusYmbolINFO \coverage EI@
| 2 Symbols | %% Dump = List Q, view | E&mmu
moduTe

\\coverage_tc2'\coverage

P:90000440--9000098BD

module info
anguage: ELF-C . .
TASKING VX-toolset for TriCore: C compiler

- ZCoverage. C

L B::COVerage.ListFunc.s¥mbol \coverage EI@
2 Setup...|| (¥ Goto... | (G List + Add | P load... | EPsave..| @ it
address tree coverage | statement [0% 50% 100
P:90000440--900009BD | = ‘coverage Tncomplete 98.067% ~
P :90000440--9000044D BooleanAssignmentNotOp stmt | 100.000%
P :9000044E--90000455 BooleanAssignmentRelExpr stmt | 100.000%
P:90000456--90000463 BooleanAssignmentRelExprTrans stmt | 100.000%
P :90000464--90000475 BooleanExprCoupledTerms stmt | 100.000%
P:90000476--90000485 BooleanExprMixedOps stmt | 100.000%
P:90000486--90000495 BooleanExprSameQps stmt | 100.000%
P : 900004 96--900004CF ComplexDowhile stmt | 100.000%
P:900004D0--900004FF ComplexFor stmt | 100.000%
P:90000500--90000527 ComplexIf stmt 100.000%
P:90000528--90000569 ® Complexwhile stmt | 100.000%
P:9000056A--9000056F Identity stmt 100.000%
P :90000570--90000591 ®MultiLine incomplete F7.777% | —
P:90000592--900005A7 NestedExpr stmt | 100.000%
P:900005A8--900005C9 NestedExprTrans stmt | 100.000%
P :900005CA--90000615 RunCover ageDemo incomplete 94.117%
P:90000616--90000647 SwitchCase stmt 100.000%
P:90000648--9000065D TernaryExpr stmt | 100.000% v
< >

Tags for Statement Coverage

Statement coverage is achieved for a group of HLL source code statements as soon as one of its
associated assembly instructions has been partially executed.

. stmt: All source code line blocks of the function/module are tagged with stmt.

J incomplete: At least one source code line block of the function/module is tagged with incomplete.

If a tag marks the coverage status of HLL source code statements, the following definitions apply:

J stmt: The measured code coverage of the HLL source code statement(s) is sufficient to achieve

statement coverage.

J incomplete: The measured code coverage of the HLL source code statement(s) is not sufficient

to achieve statement coverage.

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

88

Further details are displayed if you open the window in its full size:

1ED B::COVerage.ListFunc.sYmbol \coverage
& setup... | A Goto... | @B List +add | Pload.. |E2save..| @ mit
address ‘tree coverage | statement [0% 50% 100 lines
P:90000440--900009BD [= ‘.coverage TncompTete 98, 0675 |me— 207. 203.
P:90000440--9000044D BooleanAssignmentNotOp stmt | 100. 000% |se—— 2. 2.
P:9000044E--90000455 BooleanAssignmentRelExpr stmt | 100. 000% |se—— 2. 2.
P:90000456--90000463 BooleanAssignmentRelExprTrans stmt | 100. 000% |se—— 4. 4.
P:90000464--90000475 BooleanExprCoupledTerms stmt | 100. 000% |se—— 5. 5.
P:90000476--90000485 ooleanExpriixedOops stmt | 100. 000% |se—— 5. 5.
P:90000486--90000495 ooleanExprSameOps stt | 100. 000% | ee— 5. 5.
P:90000496--900004CF omplexDowhile stmt | 100. 000% |se—— 8. 8.
P :900004D0--900004FF omplexFor stt | 100. 000% | ee— 8. 8.
P:90000500--90000527 omplexIf stt | 100. 000% | ee— 5. 5.
P:90000528--90000569 omplexwhile stmt | 100. 000% |se—— 9. 9.
P :9000056A--9000056F Identity stt | 100. 000% | ee— 2. 2.
P:90000570--90000591 ® MultiLine incomplete TTTT7Y | — 9. 7.
P:90000592--900005A7 estedExpr stt | 100. 000% | ee— 2. 2.
P :900005A8--900005C9 estedExprTrans stt | 100. 000% | ee— 7. 7
P:900005CA--90000615 unCoverageDemo incomplete 94, 117% |e— 17. 16.
P:90000616--90000647 witchCase stt | 100. 000% | ee— 17. 17
P:90000648--9000065D ernaryExpr stmt | 100.000% 2. 2

Line count

line Number of source code line blocks

ok Number of source code line blocks tagged with
stmt

Byte count

bytes Number of bytes

ok Number of bytes tagged with stmt

Example Script

// Demo script "~~/demo/t32cast/eca/measure_mcdc.cmm"

// Select code coverage metric statement
COVerage.Option SourceMetric Statement

// List code coverage results at source code line level
List.Hl1ll MultiLine /COVerage

// List code coverage results at function level
COVerage.ListFunc.sYmbol \coverage

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

89

Full Decision Coverage Evaluation

The following diagram defines the terms used in this chapter:

AN
(|Alland||(B|) lor
I

Conditions

TRACE32 distinguishes between two forms of decision coverage:
. full decision coverage and

J object code coverage based decision coverage - ocb in short (for details refer to “Object Code
Based (ocb) Decision Coverage Evaluation”, page 97)

Interpretation

TRACES32 Interpretation: A decision achieves decision coverage when all decision paths achieve
statement coverage. The following screenshot illustrates this:

=/ [BrList 0x30000500 /COVerage] EI@
M Step B Over || \AsDiverge | « Return ¢ up » Go Il Break | [|Mode &= T Find: coverage.c

id dec/cond true false coverage addr/1ine |[source |
[1. 1. 1. dc 115 1T (a && (b > -100 [I(c > 42)) && Identity(d) < 36) { =

stmt 116) outcome = TRUE;

else {

stmt 119 . outcome = FALSE;

stmt 121 | return outcome;

stmt 122 |}

L

Each decision receives its own ID.

Source code lines that represent decisions are tagged as follows:

. dc | incomplete

All other source code lines use the corresponding tags for statement coverage.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage |

Evaluation

If you want to use the trace data stored in the code coverage system for full decision coverage, select the
SourceMetric Decision in the COVerage configuration window or use the command
COVerage.Option SourceMetric Decision.

Cov | TC2%T Window & B:COVerage.state EI@
K Lo i METHOD
& List Ranges @MCremental /SPY | RTS | ART
[g, List Functions
[g_, L?st Mo.dules state Option
[g, List Variables OFF [StaticInfo &Trace
5 Add Tracebuffer @on P RTS
E*) Create Report... SourceMetric
Reset commands Decision bl commands
+ ADD £ Load
& Init EESave
RESet (8 List
@Lisﬁ\-‘lodule
(L8 ListFunc
(L8 ListLine
(L8 Listvar

The following commands show a tabular analysis:

COVerage.ListModule
COVerage.ListFunc

The following command shows the tagging on source code level.

I List.HIl /COVerage

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 91

This TRACE32 command displays the decision coverage tagging for the function ComplexDoWhile:

List.HLL ComplexDoWhile /COVerage

=/ [BiListHLL ComplexDoWhile /COVerage] =R =R
M Step W Over | A Diverge 4 Return ¢ up » Go Il Break | !%Mode & ||t Find: coverage.c
id dec/cond true false coverage addr/Tine |source |
stmt 57 |static unsigned CompTexDowhiTe(int const a, int const b, int const ¢, int const d) &
stmt 59| unsigned num_cycles = Ou;
do {) o
2 1. 1. 1. dc 62 if (num_cycles > 1u) {
stmt 63 R reak;
stmt 65 . Hu\n_(yc'l es++;
3 1. 1. 1. dec 67 while (((!(Identity(a) »= -45) && Identity(b)) && Identity(c)) || d):
stmt 69 [return num_cycles;
stmt 70|} b4

Decisions are tagged as follows:

dc

Decisions have taken all possible outcomes at least once.

incomplete

There is at least one possible outcome missing for the decisions.

Not executed decision paths are tagged with incomplete at source code level. Already taken decision paths

are tagged with stmt.

i=] [BrList 0x90000500 /COVerage]

[|

M Step W Over | JADiverge ¢ Return ¢ up

id dec/cond true false coverage addr/1ine |source
[i 0. 115

» Go Il Break | % Mode & t. Find: coverage.c

1. incomplete
incomplete

I
it (a & (b > -100 ['(c > 42)) &% Identity(d) < 36) { ~
116 - outcome = TRUE;

else §{
outcome = FALSE;

121 return outcome;

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage | 92

This TRACE32 command displays a tabular analysis of all functions of the module "coverage". A module
usually corresponds to a source code file.

COVerage.ListFunc.sYmbol \coverage

(o8)

? BusYmbolINFO \coverage

| 2 Symbols | %% Dump = List Q, view | E&mmu

oduTe
\\coverage_tcZ'coverage

P:90000440--9000098BD

: ELF-C
TASKING VX-toolset for TriCore: C compiler

- ZCoverage. C

L B::COVerage.ListFunc.s¥mbol \coverage EI@
2 Setup...|| (¥ Goto... | (G List + Add | P load... | EPsave..| @ it
address tree coverage | decision [0% 50% 100
P:90000440--900009BD | = ‘coverage Tncomplete 96.135%
P :90000440--9000044D BooleanAssignmentNotOp stmt+dc | 100.000%
P :9000044E--90000455 BooleanAssignmentRelExpr incomplete 50.000%
P:90000456--90000463 BooleanAssignmentRelExprTrans stmt+dc | 100.000%
P :90000464--90000475 BooleanExprCoupledTerms stmt+dc | 100.000%
P:90000476--90000485 BooleanExprMixedOps stmt+dc | 100.000%
P :90000486--90000495 BooleanExprSameQps stmt+dc | 100.000%
P : 900004 96--900004CF ComplexDowhile stmt+dc | 100.000%
P : 900004D0--900004FF ComplexFor stmt+dc | 100.000%
P :90000500--90000527 ComplexIf stmt+dc | 100.000%
P:90000528--90000569 ® Complexwhile stmt+dc | 100.000%
P:9000056A--9000056F Identity stmt+dc 100.000%
P:90000570--90000591 ®EMultiLine stmt+dc 100.000%
P:90000592--900005A7 NestedExpr incomplete 50.000%
P : 900005A8--900005C9 NestedExprTrans stmt+dc | 100.000%
P :900005CA--90000615 RunCover ageDemo incomplete T6.470% | ——
P:90000616--90000647 SwitchCase stmt+dc | 100.000%
< >

Tags for Decision Coverage

Decision coverage is achieved for a group of HLL source code statements as soon as all of its associated
assembly instructions have been fully covered.

. stmt+dc: All source code line blocks of the function/module are tagged with dc or stmt.

. incomplete: At least one source code line block of the function/module is tagged as incomplete.

If a tag marks the coverage status of HLL source code statements, the following definitions apply:

J stmt+dc: The measured code coverage of the HLL source code statement(s) is sufficient to
achieve decision coverage.

. incomplete: The measured code coverage of the HLL source code statement(s) is not sufficient
to achieve decision coverage.

93

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage |

Further details are displayed when you open the window in its full size:

16 B:COVerage ListFunc s¥imbol \coverage == E=E ==
&2 setup...| A Goto... | ([EBList +add | Bload.. Esave.. @it
address tree coverage | decision [0% 50% 100 Tines dec bytes I
P:90000440--9000098D | = ‘coverage ncompTete 74.396% 207. 1%4. 32. 19. 22, 1406. 1012. [A
P:90000440--9000044D Boo]eanAssignmentNotop stmt+dc | 100.000% 2. 2. 1. 1. 1. 14. 14
P:9000044E--90000455 # BooleanAssignmentRelExpr incomplete | 50.000% |mmmmm— 2. 1. 1. 0 0. 8. 8
P:90000456--90000463 BooleanAssignmentRe1ExprTrans stmt+dec | 100.000% 4. 4. 1. 1 1. 14. 14.
P:90000464--90000475 Boo]eanExprCoupledTerms stmt+dc | 100.000% 5. 5. 1. 1 1. 18. 18.
P:90000476--900004 85 @ Brm]‘ eanExprMixedops stnrt+jc Haalasad - - - s -
P:90000486--90000495 BooleanExprsameOps stmt+dc 1
P:90000496--900004CF Comp]exDowhile incomplete lines = dec - — bytes =
P:900004D0-- 900004 FF ® ComplexFor stmt+dc 207. 154. 32. 19. 22 1406. 1012.
P:90000500--90000527 ComplexIf stmt+de 2 2 1 1 1 14 14
P:90000528--90000569 Complexwhile incomplete . o . . . o
P:9000056A--9000056F ® Identity stmt+dc 2. 1. 1. 0. 0 8. 8.
P:90000570--90000591 MultiLine stmt+dc 4 4 1 1 1 14 14
P:90000592--90000547 NestedExpr incomplete . o . . . o
P:900005A8--900005C9 ® NestedExprTrans stmt+dc 5. 5. 1. 1. 1 18. 18.
P:900005CA--90000615 RunCover ageDeno incomp]lete 5 g 1 1 16 16
P:90000616--90000647 SwitchCase incomplete . = . . . o
P:90000648--90000650 ® TernaryExpr stmt+dc 5. 5. 1. 1. 1 16. 16. |v
I 8. 0. 2. 0. 0 58. 0.
8. 8. 3. 3. 3 48. 48. |
5. 5. 1. 1. 1. 40. 40.
9. 2. 3. 0. 0. 66. 26.
2. 2. 0. 0. 0. 6. 6.
9. 9. 6. 6. 6. 34. 20.
2. 1. 1. 0. 0. 22. 22.
7. . 2. 2. 2. 34. 34.
17. 12. 3. 0. 0. 76. 0.
17. 15. 0. 0. 0. 50. 42,
2. 2 1. 1. 1 22. 22

Line count

lines

Number of source code line blocks within the
function/module

ok

Number of source code line blocks tagged with
dc or stmt

Decision count

dec Number of decisions within the function/module
true Number of decisions evaluated as true

false Number of decisions evaluated as false

Byte count

bytes

Number of bytes within the function/module

ok

Number of bytes tagged with dc or stmt

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage | 94

Example Script

// Demo script "~~/demo/t32cast/eca/measure_mcdc.cmm"

// Select code coverage metric decision
COVerage.Option SourceMetric Decision

// List code coverage results at source code line level
List.Hll ComplexDoWhile /COVerage

// List code coverage results at function level
COVerage.ListFunc.sYmbol \coverage

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 95

Object Code Based (ocb) Decision Coverage Evaluation

The following diagram defines the terms used in this chapter:

AN
(|Alland||(B|) lor
I

Conditions

TRACE32 distinguishes between two forms of decision coverage:
J full decision coverage (for details refer to “Full Decision Coverage Evaluation”, page 91) and

. object code coverage based decision coverage - ocb in short

Evaluation Strategy

Decision coverage: Every point of entry and exit in the program has been invoked at least once and every
decision in the program has taken on all possible outcomes at least once.

TRACES32 Interpretation: ocb decision coverage is achieved if full object code coverage is achieved.

This eliminates the prerequisites necessary for full decision coverage. However, the following should be
considered:

Unoptimized code can lead to false negative results. False negative means that decisions are tagged as
incomplete although decision coverage has already been achieved. That means ocb decision coverage may
need more test cases than full decision coverage

Optimized code can lead to false positive results if a condition is no longer represented by a conditional
branch/instruction or the trace protocol provides no information about the state of conditional instructions.
False positive means that decision coverage is indicated too early.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 96

Since the source code is not analyzed for ocb decision coverage, TRACE32 does not know where decisions
are located. Therefor source code lines are tagged as follows:

. dc+stmt | incomplete
= [BList P:0x30000500 /COV] = =S
M Step B Over | M Diverge | « Return ¢ up » Go I Break | !%|Mode &= T Find: coverage.c
id dec/cond true false coverage addr/1ine [source |
1 ~
unsigned outcome = FALSE;
stmt+dc 115 if (a && (b > -100 || !{c > 42)) && Identity(d) < 36) {
stmt+dc 116) outcome = TRUE;
else {
stmt+dc 119 . outcome = FALSE;
stmt+dc 121 | return outcome;
stmt+dc 122 |}
v

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 97

Evaluation

If you want to use the trace data stored in the code coverage system for ocb decision coverage, select the
SourceMetric Decision in COVerage state window or use the command
COVerage.Option SourceMetric Decision.

Cov TC2%T Window & B:COVerage.state EI@
K Lo i METHOD
& List Ranges @MCremental /SPY | RTS | ART
[g, List Functions
[g_, L?st Mo.dules state Option
[g, List Variables OFF [StaticInfo &Trace
€3 Add Tracebuffer @®on PRTS
E*) Create Report... SourceMetric
Reset commands Decision bl commands
+ ADD £ Load
& Init §Sa\re
RESet (8 List
@Lisﬂdodule
(L8 ListFunc
(L ListLine
(L8 Listvar

The following commands show a tabular analysis:

COVerage.ListModule
COVerage.ListFunc

The following command shows the tagging on source code level.

I List.HIl /COVerage

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 98

This TRACE32 command displays the ocb decision coverage tagging for the function ComplexDoWhile:

List.HLL ComplexDoWhile /COVerage

= [BuList P:0x90000496 /COV]

[=[= =]

M Step B Over | JyDiverge & Return ¢ up b Go Il Break | Y% Mode & t. Find: coverage.c

id dec/cond true false coverage addr/Tine |source |
stmt+dc 57 [static unsigned CompTexDowhile(int const a, int const b, int const c, int const d)}
stmt+dc 59| unsigned num_cycles = Ou;

do {) o

stmt+dc 62 if (num_cycles > 1u) {
stmt+dc 63 reak;
stmt+dc 65 Hu\n_(yc'l es++;
stmt+dc 67 while (((!(Identity(a) »= -45) && Identity(b)) && Identity(c)) || d):
stmt+dc 69| return num_cycles;
stmt+dc 70 [} v

Source code lines are tagged as follows:

dc+stmt The source code line achieved full object code coverage and thereby
either decision or statement coverage.

incomplete The source code line did not achieve full object code coverage and
thereby no decision or statement coverage.

Object code instructions get object code tagging, if ocb decision coverage is performed.

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage |

99

This TRACE32 command displays a tabular analysis of all functions of the "coverage" module. A module

usually corresponds to a source code file.

COVerage.ListFunc.sYmbol \coverage

2 BusYmbolINFO ‘\coverage

(o8)

0

| 2 Symbols | %% Dump

= List

Oy, View

3 mmu

oduTe
\\coverage_tcZ'coverage

P:90000440--9000098BD

: ELF-C

- ZCoverage.cC

: TASKING VX-toolset for TriCore: C compiler

L B::COVerage.ListFunc.s¥mbol \coverage EI@
2 Setup...|| (¥ Goto... | (G List + Add | P load... | EPsave..| @ it
address tree coverage | decision [0% 50% 100 |
P:90000440--900009BD | = ‘coverage Tncomplete 74.390% |m— ~
P :90000440--9000044D BooleanAssignmentNotOp stmt+dc | 100.000%
P :9000044E--90000455 ® BooleanAssignmentRelExpr stmt+dc | 100.000%
P:90000456--90000463 ooleanAssignmentRelExprTrans stmt+dc | 100.000%
P :90000464--90000475 ooleanExprCoupledTerms stmt+dc | 100.000%
P:90000476--90000485 ooleanExprMixedips stmt+dc | 100.000%
P :90000486--90000495 ooleanExprSame0ps stmt+dc | 100.000%
P : 900004 96--900004CF omplexDowhile incomplete 0. 000%
P : 900004D0--900004FF ComplexFor stmt+dc | 100.000%
P :90000500--90000527 ComplexIf stmt+dc | 100.000%
P:90000528--90000569 ® Complexwhile incomplete 33.333% |—
P:9000056A--9000056F Identity stmt+dc 100.000%
P :90000570--90000591 ®EMultiLine incomplete 44, 444%
P:90000592--900005A7 NestedExpr stmt+dc | 100.000%
P : 900005A8--900005C9 NestedExprTrans stmt+dc | 100.000%
P : 900005CA--90000615 RunCover ageDemo incomplete B8. 235% |— v
< >
Tags for Object Code Based (ocb) Decision Coverage
. stmt+dc: All source code lines of the function/module are tagged with stmt+dc.
. incomplete: At least one source code line of the function/module is tagged with incomplete.

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

100

Further details are displayed when you open the window in its full size:

£ B:COVerage ListFunc.s¥mbol \coverage =N ===
2 setup...| A Goto... | @List +add | Sload. | Psave.. @ mit
address tree coverage | decision [0% 50% 100 Tines dec bytes i
P:90000440--9000098D | = \coverage Tncomplete | 74. 306% |mmms 207. 154. 1406. 1012. |
P:90000440--39000044D ® BooleanAssgnmentNotop stmt+dc | 100, 000% (m— 2. 2. 14. 1a.
P:9000044E--90000455 ® BooleanAssignmentRe] Expr Stit+dc | 100, 000% |m— 2. 2. 8. 8
P+ 900004 56--30000463 BooleanssignmentRelExprTrans Stmtdc | 100 000% |m— 1. 1 14. 14
P:00000464--30000475 u]leanExpr(uupledTerms 5tmt+§c 100, 000% |me—— 5. 5 18. 18
P:90000476--90000485 0leanExprMixedOps stmt+dc | 100 14
P: 900004 86--30000495 oleanExprSameOps stmt+dc | 100 ines _ dec bytes __
P: 900004 96--900004CF mplexDohile incomplete 0 207. 154. 1406. 1012.
P:300004D0--900004FF mplexFor stmt+dc | 100 2 2 14 14
P:90000500--90000527 omplexIf stmt+dec | 100 . - . -
P:90000528--90000569 ® Complexwhile incomplete | 33 2. 2. 8. 8
P:9000056A--3000056F ® Identity stmt+dc | 100 4 4 14 14
P:90000570--90000591 ®MuTtiline incomplete | 44 . . .
P:90000592--900005A7 # NestedExpr stmt+dc | 100 5. 5. 18. 18
P:900005A8--300005C9 NestedExprTrans stmt+dc | 100 5 5 16 16
P:900005CA--30000615 RunCoverageDemo incomplete 88 5' 5' 16' 16
= 8. 0. 58. 0. o
8. 8. 48. 48
5. 5. 40. 40
9. 3. 66. 26
2. 2. 6. 6
9. 4. 34. 20
2. 2. 22. 22
7. 7. 34. 34
17. 15. 76. 70
Line count
lines Number of source code lines within the
function/module
ok Number of source code lines tagged with
stmt+dc
Byte count
bytes Number of bytes within the function/module
ok Number of bytes tagged with stmt+dc

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 101

Example Script

// Demo script "~~/demo/t32cast/eca/measure_mcdc.cmm"

// Select code coverage metric decision
COVerage.Option SourceMetric Decision

// List code coverage results at source code line level
List.Hll ComplexDoWhile /COVerage

// List code coverage results at function level
COVerage.ListFunc.sYmbol \coverage

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 102

Condition Coverage Evaluation

The following diagram defines the terms used in this chapter:

/\

(|Alland||B])
I

Conditions

Evaluation Strategy

Condition coverage: All conditions in the program have evaluated both true and false.

TRACES32 Interpretation: A condition achieved condition coverage when the execution of its conditional
branches/instructions results in both a true and false outcome.

Each decision receives its own ID. The atomic conditions of which the decision is composed are numbered
consecutively. Each atomic condition is represented by a conditional branch/instruction.

=% [BaList 0x 90000500 /COVerage] =R
M step B Over || MADiverge ¢ Return ¢ up b Go 1l Break % Mode &=f ||t Find: coverage.c
id dec/cond true false coverage addr/1ine |code labe 'I mnemonic comment |
1. 1. 1. T 115 if (a & (b > -100 [T I(c > 42)) & Identity(d) < 36} I ~
6 1. [} * ok P:90000500 |001104 IZF ..un;.ﬂﬂx f:jeq d4,#0x0, E\xJEI(IU(ISu
ok P:30000504 03 v C\J.S #-0x¢
6 Ze - - ok P:90000508 3 dl5,ds, UXJUE'('E‘SL(
ok P:9000050C |2A di5,#0x2A
6 ik L - ok P:9000050E (\LS d6,0x90000522
ok P:90000512 |74 d4
ok P:90000514 |0 (‘XJ('('(‘('SJ-—\
ok P:90000518 24D d15,#0x24
6 4, L * ok P:9000051A (‘('(‘ F 7F d2,d15,0x90000522
stmt 116 outcome = TRUE;
ok P:9000051E |12582 dz, #0x1
ok P:90000520 |023C_ 0x90000524
F L4

([a) && ! ([b>-100) || ! ((c>42)) && (Identity(d)<36))
I i I I

Cond. 6.1 Cond. 6.2 Cond. 6.3 Cond. 6.4

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 103

Source code lines that contain conditions are tagged as follows:

. cc | incomplete
All other source code lines use the corresponding tags for statement coverage.

Evaluation

If you want to use the trace data stored in the code coverage system for condition coverage, select the
SourceMetric CONDition in the COVerage configuration window or use the command
COVerage.Option SourceMetric CONDition.

Cov TC2%T Window &8 BiCOVeragesstate = =R
K Lo i METHOD
@) List Ranges @ MNCremental SPY (JRTS (JART
[g, List Functions
[g_, L?st Mo.dules state Option
s OFF [staticInfo & Trace
5 Add Tracebuffer @on P RTS
E*) Create Report... SourceMetric
— commands COMNDition v commands
+ ADD &2 Load
& Init §Sa\re
RESet (D List
@Lisﬂdodule
(L3 ListFunc
(L3 ListLine
(L3 Listvar

The following commands show a tabular analysis:

COVerage.ListModule
COVerage.ListFunc

The following command shows the tagging on source code level.

I List.HIl /COVerage

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 104

This TRACE32 command displays the condition coverage tagging for the function ComplexDoWhile:

List.HLL ComplexDoWhile /COVerage

=/ [BiListHLL ComplexDoWhile /COVerage] =R =R
M Step W Over | A Diverge 4 Return ¢ up » Go Il Break | !%Mode & ||t Find: coverage.c
id dec/cond true false coverage addr/Tine |source |
stmt 57 §tat'ic unsigned ComplexDoWhile(int const a, int const b, int const ¢, int const d)
stmt 59| unsigned num_cycles = Ou;
do { .
2 1 1 1 cc 62 if (num_cycles > 1u) {
stmt 63 reak;
stmt 65 nun_cycles++;
3 1 1. 1 cc 67 while (((!(Identity(a) »= -45) && Identity(b)) && Identity(c)) || d);
stmt 69| return num_cycles;
stmt 70 |3

Decisions are tagged as follows:

CcC

The conditions have evaluated both, true and false.

incomplete

The conditions have not evaluated both, true and false.

TRACES2 displays the result in mixed mode in such a way that it is clear which atomic conditions are still

missing for a full condition coverage.

=4 [BrList.Mix ComplexDoWhile /COVerage] [E=x E=RE==)
M Step W Over | \ADiverge | ¢ Return ¢ up » Go 1l Break || ¥%|Mode & ||t- Find: coverage.c
id dec/cond true false coverage addr/Tine |code label mnemonic comment |
3 1. 0. 1. incomplete 67 while (((!(Identity(a) >= —45) &% Identity(b)) &% Identity(c)) [d); ~
ok P:900004A8 |53402 6 d4,d8
ok P:900004AA |0060006D 0x9000056A
ok P:900004AE [OFFD303B d0,#-0x2D
3 1 - * ok P:900004B2 |000B0Z27F d2,d0, 0x900004C8
ok P:900004B6 |9402 4,d9
ok P:900004B8 [0059006D 0x9000056A
3 e * taken P:900004BC |2676 d2,0x900004C8
never P:900004BE |A402 d4,
never P:900004C0 |0055006D call 0x9000056A ; Identity
3 3. never P:900004C4 |FFEEOZDF Jne d2 ,#0x0, 0x900004A0
3 4 # | not taken P:900004C8 |ECEE jnzlé d15,0x900004A0 v

Object code instructions show the corresponding tags for object code coverage, if condition coverage is

selected.

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage |

105

This TRACE32 command displays a tabular analysis of all functions of the module "coverage". A module

usually corresponds to a source code file.

COVerage.ListFunc.sYmbol \coverage

? BusYmbolINFO \coverage EI@
| 2 Symbols | %% Dump = List C, view | #§mmu
moduTe
\\coverage_tcZ'coverage
P:90000440--900009BD
module info
anguage: ELF-C
s TASKING VX-toolset for TriCore: C compiler
sour ..\coverage.c
@ B::COVerage. ListFunc.s¥Ymbol \coverage EI@
2 Setup...|| (¥ Goto... | (G List + Add | P load... | EPsave..| @ it
address tree coverage | condition [0% 50% 100 |
P:90000440--900009BD | = ‘coverage Tncomplete 93.236% ~
P :90000440--9000044D BooleanAssignmentNotOp stmt+cc | 100.000%
P :9000044E--90000455 BooleanAssignmentRelExpr incomplete 50. 000% |—
P:90000456--90000463 ooleanAssignmentRelExprTrans stmt+cc | 100.000%
P :90000464--90000475 ooleanExprCoupledTerms stmt+cc | 100.000%
P:90000476--90000485 ooleanExprMixedips stmt+cc | 100.000%
P:90000486--90000495 ooleanExprSame0ps stmt+cc | 100.000%
P : 900004 96--900004CF ComplexDowhile stmt+cc | 100.000%
P:900004D0--900004FF ComplexFor stmt+cc | 100.000%
P :90000500--90000527 ComplexIf stmt+cc | 100.000%
P:90000528--90000569 Complexiwhile stmt+cc | 100.000%
P : 9000056A--9000056F Identity stmt+cc | 100.000%
P :90000570--90000591 MultiLine incomplete 33.333% |—
P:90000592--900005A7 NestedExpr incomplete 50. 000% |—
P:900005A8--900005C9 NestedExprTrans stmt+cc | 100.000%
P :900005CA--90000615 unCover ageDemo incomplete T6.470% | ——
P:90000616--90000647 SwitchCase stmt+cc | 100.000% v
< >
Tags for Condition Coverage
. stmt+cc: All source code line blocks of the function/module are tagged with cc or stmt.
. incomplete: At least one source code line block of the function/module is tagged with incomplete.

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

106

Further details are displayed if you open the window in its full size:

£ B:COVerage ListFunc.s¥mbol \coverage =N ===
2 setup...| A Goto... | @List +add | Sload. | Psave.. @ mit
address tree coverage | condition [0% 50% 100 Tines cond bytes i
P:90000440--9000098D = \coverage Tncomp lete 93, 736% |w— 207. 193. 90. 59. 66 1406. 1384, [A
P:90000440--9000044D # BooleanAssignmentNotOp stmt+cc 100. 000% |s———— 2. 2. 3. 3. 3 14. 14
P:9000044E--900004 55 # BooleanAssignmentRelExpr incomplete 50. 000% |e———— 2. 1. 1. 0. 0 8. 8
P:90000456--30000463 BooleanAssignmentRelExprTrans stmt+cc 100. 000% ‘ 4. 4. 1. 1. 1 14. 14
P00000476- 90000188 | & BooleanErbrirbasere ™ Thmbie | Do = > * * 2 T
E;BUUUMBE"BUUUUHS Buu]eanExgrsameOpg stmt+cc lines _ cond bytes
P: 900004 96--900004CF ComplexDolhile stmt+cc 207. 193. 90. 59. 66, 1406. 1384
P:900004D0--300004FF ComplexFor stmt+cc 2 2 3 3 2 14 14
P:90000500--90000527 ComplexIf stmt+ec - = - - - - M
D 000036 0000%eE | = Somplexunile inagad f,f' j } O O lf' b
: - uTtiLine incomplete . 4. . 1. 1. . 14.
Rl Slriire HSA 5. 5. ry ry ry 18. 18.
P1900005 - 20000615 Rent e Thane incomp ete 5. 5. 3. 3. 3. 16. 16.
P:90000616--30000647 Switchcase ttsce 5. 5. 3. 3. 3. 16. 16. .|~
I 8. 8. 5. 5. 5. 58. 58
8. 8. 9. 9. 9. 48. 48. —
5. 5. 4. 4. 4. 40. 40
9. 9. 9. 9. 9. 66. 66
2. 2. 0. 0. 0. 6. 6
9. 3. 36. 12. 18. 34. 20
2. 1. 2. 0. 0. 22. 22
7. 7. 2. 2. 2. 34. 34
17. 13. 3. 0. 0. 76. 74
17. 17. 0. 0. 0. 50. 50
Line count
lines Number of source code line blocks within the
function/module
ok Number of source code line blocks tagged with
cc or stmt
Condition count
cond Number of conditions within the
function/module
true Number of conditions evaluated as true
false Number of conditions evaluated as false
Byte count
bytes Number of bytes within the function/module
ok Number of bytes tagged with cc or stmt

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 107

Example Script

// Demo script "~~/demo/t32cast/eca/measure_mcdc.cmm"

// Select code coverage metric condition
COVerage.Option SourceMetric CONDition

// Load .eca files so that TRACE32 knows which source code lines

// represent decisions
sYmbol.ECA.LOADALL /SkipErrors

// List code coverage results at source code line level
List.Hll ComplexDoWhile /COVerage

// List code coverage results at function level
COVerage.ListFunc.sYmbol \coverage

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 108

Modified Condition/Decision Coverage (MC/DC) Evaluation

The following diagram defines the terms used in this chapter:

o

(|Alland|(B]) |or|[C
T

Conditions

Evaluation Strategy

Modified Condition/Decision Coverage: Every point of entry and exit in the program has been invoked at
least once and every decision in the program has taken all possible outcomes at least once. Each condition

in a decision is shown to independently affect the outcome of that decision.

=) [BList Mix Complexf /COVerage] == EERT=
M Step B Over | A Diverge| « Return ¢ up » Go Il Break | % Mode & T Find: coverage.c
id dec/cond true false coverage addr/1ine |code label mnemonic comment |
6 1. 1. 1. mc/dc 115 if (a && 1(b > —100 [T I(c > 42)) && Identity(d) < 36) { ~
6 il - - ok P:90000500 UULLU DF LJIPTQX fijeq d4, —UXU UxJOOUU‘rr
ok P:90000504 3B d15,#-0x
6 2e - - ok P:90000508 d15 .dE .(lx‘JCICIOO 22
ok P:9000050C |2 d15,#0x24A
6 3. * * ok P:9000050E d15,d6,0x30000522
ok P:90000512 |7 d4,d7
ok P:90000514 (‘("B('("OE 0x3000056A
ok P:90000518 |24 d15,#0x24
6 4 - - ok P:9000051A UUEI F27F j d2,d15,0x90000522
stmt 116 outcome = TR
ok P:9000051E [L282 movl6 d2,#0x1
ok P:90000520 |023C jl6 0x90000524
v
. Each decision receives its own ID.
. The conditions belonging to the decision are numbered consecutively.
. Each condition is represented by a conditional branch/instruction.

The point for true is set in the true column if the condition has been independently tested for true.

applies to false.

Source code lines that contain decisions are tagged as follows:

. mc/dc | incomplete

All other source code lines use the corresponding tags for statement coverage.

The same

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 109

Evaluation

If you want to use the trace data stored in the code coverage system for MC/DC, select the SourceMetric
MCDC in the COVerage state configuration or use the command
COVerage.Option SourceMetric MCDC.

Cov | TC2%T Window ¥ BiCOVerage = =R
& Configuration... METHOD
& List Ranges @MCremental /SPY | RTS | ART
[g, List Functions
[g_, Lfst Mo.dules state Option
[g, List Variables OFF [StaticInfo &Trace
€3 Add Tracebuffer @®on PRTS
E*) Create Report... SourceMetric
Reset commands MCDC = commands
+ ADD £ Load
@ Init 52 save
RESet £ List
(B ListModule
(L8 ListFunc
(L3 ListLine
(L3 Listvar

The following commands show a tabular analysis:

COVerage.ListModule
COVerage.ListFunc

The following command shows the tagging on source code level.

I List.HIl /COVerage

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 110

This TRACE32 command displays the MC/DC coverage tagging for the function ComplexDoWhile:

List.HLL ComplexDoWhile /COVerage

=4 [BsList.HLL ComplexDoWhile /COVerage] =N =R
M Step W Over | A Diverge | « Return ¢ up » Go Il Break || ¥Mode & ||t Find: coverage.c
id dec/cond true false coverage addr/Tine |source i
stmt 57 [static unsigned CompTexDowhile(int const a, int const b, int const ¢, int const d) &
stmt 59| unsigned num_cycles = Ou;
do .
2 1. 1. 1. mc/dc 62 if (num_cycles > 1u) {
stmt 63 R reak;
stmt 65 . nun_cycles++;
3 1. 1. 1. me/de 67 while (((! Identity(a) »= -45) && Identity(b)) && Identity(c)) || d);
stmt 69 | return num_cycles;
stmt 70|}
v

Decisions are tagged as follows:

mc/dc Each condition in a decision is shown to independently affect the
outcome of that decision.

incomplete There is at least one condition in the decision for which has not yet
proven to independently affect the outcome of the decision.

TRACERS2 displays the result in mixed mode in such a way that it is clear which conditions are still missing
for MC/DC.

= [BrList /COVerage] (= e
M step W Over | A Diverge | « Return ¢ up » Go Il Break | M Mode & t. Find: cuverage c
id dec/cond true false coverage addr/Tine [code 1abe1 mnemonic i
4 1. 0. 1. 1incomplete 89 while ((I(a > —?0) &% '(Idenhty(h) = 39))—“ '(c <= -13) [[(Identity(d) < 39)) { ~
ok P:9000053C |FFFBAD3B mov d15,#-
4 ale * taken P:90000540 |00088F3F il d15, d8 0x90000550
never P:90000544 9402 movl6 d4,do
never P: 90000546 |0012006D call OXSOOOOSEA
never P:9000054A |27DA movl6 d15,#0x27
4 2 never P:9000054C |FFF42F5F jne di5s, d2 0x90000534
ok P:90000550 [FFFF3038 mov d15.#-0x0D
4 3l - not taken P:90000554 (7FFOAF3F jlt d15,d10,0x90000534
ok P:90000558 [B402 movl6 da,d11
ok P:9000055A |0008006D call ('XJ('(‘('('S‘.‘J-—\
ok P:9000055E |27DA movl6 d15,#0x2
4 4. # not taken P:90000560 [/FEAF23F jlt dz, dlS 0)(90000534
v

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 111

This TRACE32 command displays a tabular analysis of all functions of the "coverage" module. A module

usually corresponds to a source code file.

COVerage.ListFunc.sYmbol \coverage

? BusYmbolINFO \coverage EI@
| 2 Symbols | %% Dump = List Q, view | E&mmu
moduTe

\\coverage_tc2'\coverage

P:90000440--9000098BD

module info
anguage: ELF-C . .
TASKING VX-toolset for TriCore: C compiler

- ZCoverage. C

L B::COVerage.ListFunc.s¥mbol \coverage EI@
2 Setup...|| (¥ Goto... | (G List + Add | P load... | EPsave..| @ it
address tree coverage mcdc |0% 50% 100
P:90000440--900009BD | = ‘coverage Tncomplete 93.236%
P :90000440--9000044D BooleanAssignmentNotOp stmt+mc/dc | 100.000%
P :9000044E--90000455 BooleanAssignmentRelExpr incomplete 50. 000% |—
P:90000456--90000463 BooleanAssignmentRelExprTrans stmt+mc/dc | 100.000%
P :90000464--90000475 BooleanExprCoupledTerms stmt+mc/dc | 100.000%
P:90000476--90000485 BooleanExprMixedOps stmt+mc/dc | 100.000%
P :90000486--90000495 BooleanExprSameQps stmt+mc/dc | 100.000%
P:90000496--900004CF ComplexDowhile stmt+mc/dc | 100.000%
P:900004D0--900004FF ComplexFor stmt+mc/dc | 100.000%
P:90000500--90000527 ComplexIf stmt+mc/dc | 100.000%
P:90000528--90000569 ® Complexwhile stmt+mc/dc | 100.000%
P:9000056A--9000056F Identity stmt+mc/dc | 100.000%
P :90000570--90000591 ®EMultiLine incomplete 33.333% |—
P:90000592--900005A7 NestedExpr incomplete 50. 000% |—
P:900005A8--900005C9 NestedExprTrans stmt+mc/dc | 100.000%
P :900005CA--90000615 RunCover ageDemo incomplete T6.470% | ——
P:90000616--90000647 SwitchCase stmt+mc/dc | 100.000%
< >

Tags for Modified Condition/Decision Coverage (MC/DC)

MC/DC is achieved for a group of HLL source code statements as soon as the independence effect of all
of its associated conditional branches/instructions has been demonstrated.

stmt+mc/dc: All source code lines of the function/module are tagged with mc/dc or stmt.

incomplete: At least one source code line of the function/module is tagged with incomplete.

If a tag marks the coverage status of HLL source code statements, the following definitions apply:

stmt+mc/dc: The range contains one or more HLL source code statements. The measured code
coverage of the HLL source code statement(s) is sufficient to achieve MC/DC.

mc/dc: The HLL source code statement(s) contain a decision. The measured code coverage of
the HLL source code statement(s) is sufficient to achieve MC/DC.

stmt: The HLL source code statement(s) do not contain a decision. The measured code
coverage of the HLL source code statement(s) is sufficient to achieve statement coverage.

incomplete: The measured code coverage of the HLL source code statement(s) is not sufficient
to achieve MC/DC.

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage | 112

Further details are displayed if you open the window in its full size:

(£ B:COVerage ListFunc.sVmbol \coverage =N <
P setup...| A Gow... | @it +add || Bload.. | Psave. | @it
address tree coverage mede (0% 50% 100 lines dec cond bytes |
P:90000440--900009BD B \coverage Mcnmp'\ete 93, 2367 |m— 207, 193. 32. 20. 90. 59. 66. 1406. 1384. [A
P:90000440--9000044D BooleanAssignmentNotOp stwt+me/de 100. 000% ee—— 2. 2. 1. 1. 3. 3. 3. 14. 14.
P :9000044E--90000455 BooleanAssignmentRelExpr [incomplete 50. 000% | ee—— 2. 1. 1. 0. 1. 0. 0. 8. 8.
P :90000456--90000463 BooleanAssignmentRelExprTrans |stmt+mc/dc 100. 000% 4. 4. 1. 1. 1. 1. 1. 14. 14
P :90000464--90000475 BooleanExprCoupledTerms stmt+mc/dc 100. 000% 5. 5. 1. 1. 4. 4. 4. 18. 18
P:90000476--90000485 BooleanExpriixedops start+me/dc 100.000% 5. 5. 1. 1. 3. 3. 3. 16. 16.
P:90000486--90000495 EunWeanExprsa\weﬂps stmt+me/dc 100. 000% 5. 5. 1, 1. 3. 3. 3. 16. 16.
D o0000400- 200000KE | & comp]saponile Tiras | dec : “cond . - . bytes |
B 130000398 -90000368 | 3 comPlSEibi1e 207. 193. 32. 70. 90. 59. 6. 1406. 1384
e e I 2. 2. 1. 1. 3. 3. 3. 14. 14
P:90000592--900005A7 NestedExpr 2. 1. 1. 0. 1. 0. 0. 8. 8
D o00002CA 2000063 | & NescovexBoirans 4. 4. 1. 1. 1. 1. 1. 14. 14
P:90000616--90000647 SwitchCase 5 . 5 R l . J_ R 4 . 4 R 4 R 18 . J_6
= 5. 5. 1. 1. 3. 3. 3. 16. 16
5. 5. 1. 1. 3. 3. 3. 16. 16
8. 8. 2. 2. 5. 5. 5. 58. 58
8. 8. 3. 3. 9. 9. 9. 48. 48
5. 5. 1. 1. 4. 4. 4. 40. 40
9. 9. 3. 3. 9. 9. 9. 66. 66
2. 2. 0. 0. 0. 0. 0. 6. 6
9. 3. 6. 0. 36. 12. 18. 34. 20
2. 1. 1. 0. 2. 0. 0. 22. 22
7. 7. 2. 2. 2. 2. 2. 34. 34
17. 13. 3. 0. 3. 0. 0. 76. 74
17. 17. 0. 0. 0. 0. 0. 50. 50
Line count
lines Number of source code lines within the
function/module
ok Number of source code lines tagged with
mc/dc or stmt
Decision count
dec Number of decisions within the function/module
ok Number of decisions tagged with mc/dc
Condition count
cond Number of conditions within the
function/module
true Number of conditions that have been
independently tested for true
false Number of conditions that have been
independently tested for false

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 113

Byte count

bytes Number of bytes within the function/module
ok Number of bytes tagged with mc/dc or stmt
Example Script
// Demo script "~~/demo/t32cast/eca/measure_mcdc.cmm"

// Select code coverage metric MC/DC
COVerage.Option SourceMetric MCDC

// Load .eca files so that TRACE32 knows which source code lines

// represent decisions
sYmbol.ECA.LOADALL /SkipErrors

// List code coverage results at source code line level
List.Hll ComplexDoWhile /COVerage

// List code coverage results at function level
COVerage.ListFunc.sYmbol \coverage

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 114

Function Coverage Evaluation

Function coverage: Every function in the program has been invoked at least once.

TRACES32 interpretation: A function achieves function coverage when at least one corresponding object
code instruction has been executed.

Functions are tagged as follows:

. func | incomplete
Source code lines show the corresponding tags for statement coverage, if function coverage is performed.

Object code coverage tagging is applied to instructions.

Evaluation Strategy

If you want to use the trace data stored in the code coverage system for function coverage, select the
SourceMetric Function in the COVerage configuration window or use the command
COVerage.Option SourceMetric Function.

Cov TC2%T Window &B::COVerage.state EI@
&_’ Configuration... METHOD
@? g ® INCremental SPY (JRTS (JART
[g, List Functions
[g_, List Modules e Option
o) S OFF [staticinfo & Trace
€3 Add Tracebuffer @®on PRTS
E*) Create Report... SourceMetric
Reset commands Function ~ commands
+ ADD =2 Load
@ Init &3 Save
RESet (38 List
(B ListModule
(L3 ListFunc
(L3 ListLine
(L3 Listvar

The following command shows a tabular analysis:

I COVerage.ListModule

The following command shows the tagging at function level.

I COVerage.ListFunc

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 115

This TRACE32 command displays the function coverage tagging for all functions of the "coverage" module.

A module usually corresponds to a source code file.

COVerage.ListFunc.sYmbol \coverage

2 BusYmbolINFO ‘\coverage

(o8)

0

| 2 Symbols | %% Dump

= List & mmu

Oy, View

oduTe
\\coverage_tcZ'coverage

P:90000440--9000098BD

module info

: ELF-C
: TASKING VX-to

- ZCoverage.cC

olset for TriCore: C compiler

L B::COVerage.ListFunc.s¥mbol \coverage EI@
2 Setup...|| (¥ Goto... | (G List + Add | P load... | EPsave..| @ it
address tree coverage | function [0% 50% 100
P:90000440--9000098D Bl \coverage func 100. 000% ~
P :90000440--9000044D BooleanAssignmentNotOp func | 100.000%
P :9000044E--90000455 BooleanAssignmentRelExpr func | 100.000%
P:90000456--90000463 BooleanAssignmentRelExprTrans func | 100.000%
P :90000464--90000475 BooleanExprCoupledTerms func | 100.000%
P:90000476--90000485 BooleanExprMixedOps func | 100.000%
P :90000486--90000495 BooleanExprSameQps func | 100.000%
P : 900004 96--900004CF ComplexDowhile func | 100.000%
P : 900004D0--900004FF ComplexFor func | 100.000%
P :90000500--90000527 ComplexIf func | 100.000%
P:90000528--90000569 Complexiwhile func | 100.000%
P:9000056A--9000056F Identity func 100.000%
P:90000570--90000591 MultiLine func 100.000%
P:90000592--900005A7 NestedExpr func | 100.000%
P : 900005A8--900005C9 NestedExprTrans func | 100.000%
P:900005CA--90000615 RunCoverageDemo func | 100.000%
P:90000616--90000647 SwitchCase func | 100.000% v
< >

The functions are tagged as follows:

func

At least one function's object code instructions has been executed.

incomplete

None of the function's object code instructions has been executed.

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

116

This TRACE32 command displays a tabular analysis of all modules.

COVerage.ListModule

[B::COVerage.ListModule EI@
& Setup...|| A Goto... | (@BList +add | Bload... | E2save..| @ nit
address tree coverage | function [0% 50% 100
multiple .Cstart Ffunc | 100.000%
P:900000A4--90000241 \cinit incomplete 50, 000% |e—
P :900003AA--900003BD ‘trapass incomplete 0. 000%
P :900003BE--900003D1 “trapbus incomplete 0. 000%
P:900003D2--900003E5 “trapcont incomplete 0. 000%
P :900003E6--900003F9 “trapinst incomplete 0. 000%
P : 900003FA--90000408 Er apmmu incomplete 0. 000%
P :9000040C--9000041F “Erapnmi incomplete 0. 000%
P:90000420--90000433 ‘trapprot incomplete 0. 000%
P : 900004 34--900004 3F “trapsys incomplete 0. 000%
P:90000440--900009BD ‘\coverage func | 100.000%
P:900009BE--900009CRB \main incomplete 0.000%
none “Glaobal
< >

Tags for Function Coverage

Function coverage is achieved for a function as soon as soon as its function body has been partially

executed.
J func: All functions of the module have achieved function coverage.
. incomplete: At least one function of the module has not achieved function coverage.

If a tag marks the coverage status of a function, the following definitions apply:

J func: The measured code coverage of the function(s) is sufficient to achieve function coverage.
. incomplete: The measured code coverage of the function(s) is not sufficient to achieve function
coverage.

If a tag marks the coverage status of HLL source code statements, the following definitions apply:

J stmt: The measured code coverage of the HLL source code statement(s) is sufficient to achieve
statement coverage.

. incomplete: The measured code coverage of the HLL source code statement(s) is not sufficient
to achieve statement coverage.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 117

Further details are displayed if you open the window in its full size:

@ B:COVerage.ListModule EI@
& setup... | [Goto... | [List + add | Pload.. P save.. @ it
address tree coverage | function [0% 50% 100 func bytes |
muTtipTe cstart func [100.000% 8. 8 460. 454, T
P:900000A4--90000241 heinit incomplete 50.000% 4. 2 414. 96
P:900003AA--900003BD “trapass incomplete 0.000% 1.) 20. 0
P:900003BE--900003D1 ‘trapbus incomplete 0.000% 1. 0 20. 0
P:900003D2--900003E5 trapcont incomplete 0.000% 1. 0 20. 0
P:900003E6--900003F9 “trapinst incomplete 0.000% 1. 0 20. 0
P:900003FA--90000408 Erapmmu incomplete 0.000% 1. 0 18. 0
P:9000040C--9000041F “trapnmi incomplete 0.000% 1. 0 20. 0
P:90000420--90000433 ‘trapprot incomplete 0.000% 1. 0 20. 0
P:90000434--900004 3F “trapsys incomplete 0.000% 1. 0. 12. 0.
P:90000440--9000098D ‘\coverage func | 100.000% | ee———— 31. 31. 1406. 1392.
P:900009BE--900009CB ymain incomplete 0.000% 1. 0. 14. 0. |w
Function count
func Number of functions
ok Number of functions tagged with func
Byte count
bytes Number of bytes
ok Number of bytes tagged with func
Example Script

// Demo script "~~/demo/t32cast/eca/measure_mcdc.cmm"

// Select code coverage metric function
COVerage.Option SourceMetric Function

// List code coverage results at function level
COVerage.ListFunc.sYmbol \coverage

// List code coverage results at module level
COVerage.ListModule.s¥Ymbol \coverage

Expert Usage

The following commands provide details on inlined functions:

sYmbol.List.InlineBlock List inlined code blocks

COVerage.ListInlineBlock List object code coverage for inlined blocks

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage

118

Call Coverage Evaluation

Call Coverage: Every function call has been executed at least once.

Please note that TRACES32 also includes calls to libraries (e.g. software floating-point libraries) in its call.

TRACES32 interpretation: A function achieves call coverage when each unconditional branch that
represents a function call has been executed a least once.

Functions are tagged as follows:

. call | incomplete

Source code lines show the corresponding tags for statement coverage, if call coverage is performed.

Object code coverage tagging is applied to instructions.

Evaluation

If you want to use the trace data stored in the code coverage system for call coverage, select the
SourceMetric Call in COVerage state window or use the command COVerage.Option SourceMetric Call.

Cov TC2%T Window &B::COVerage.state EI@
&_’ Conhoations METHOD
@? g ® INCremental SPY (JRTS (JART
[g, List Functions
[g_, L?st Mo.dules e Option
o) S OFF [staticinfo & Trace
€3 Add Tracebuffer @®on PRTS
E*) Create Report... SourceMetric
Reset commands Call ~ commands
+ ADD =2 Load
@ Init &3 Save
RESet (38 List
(B ListModule
(L3 ListFunc
(L3 ListLine
(L3 Listvar

The following command shows a tabular analysis:

I COVerage.ListModule

The following command shows the tagging at function level.

I COVerage.ListFunc

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 119

This TRACE32 command displays the call coverage tagging for all functions of the "coverage" module. A
module usually corresponds to a source code line.

COVerage.ListFunc.sYmbol \coverage

2 BusYmbolINFO ‘\coverage

(o8)

| 2 Symbols | %% Dump

= List C, View | 88 Mmu

moduTe

\\coverage_tcZ'coverage
P:90000440--900009BD
module info
anguage: ELF-C
TASKING VX-toolset for TriCore: C compiler
.\coverage. c
L B::COVerage.ListFunc.s¥mbol \coverage EI@
2 Setup...|| (¥ Goto... | (G List + Add | P load... | EPsave..| @ it
address tree coverage call |0% 50% 100
P:90000440--9000098D Bl \coverage call 100. 000% ~
P :90000440--9000044D BooleanAssignmentNotOp call | 100.000%
P :9000044E--90000455 BooleanAssignmentRelExpr call | 100.000%
P:90000456--90000463 BooleanAssignmentRelExprTrans call | 100.000%
P :90000464--90000475 BooleanExprCoupledTerms call | 100.000%
P:90000476--90000485 BooleanExprMixedOps call | 100.000%
P :90000486--90000495 BooleanExprSameQps call | 100.000%
P : 900004 96--900004CF ComplexDowhile call | 100.000%
P : 900004D0--900004FF ComplexFor call | 100.000%
P:90000500--90000527 ComplexIf call 100.000%
P:90000528--90000569 Complexiwhile call | 100.000%
P:9000056A--9000056F Identity call 100.000%
P:90000570--90000591 MultiLine call 100.000%
P:90000592--900005A7 NestedExpr call | 100.000%
P : 900005A8--900005C9 NestedExprTrans call | 100.000%
P :900005CA--90000615 RunCover ageDemo call | 100.000%
P:90000616--90000647 SwitchCase call 100.000% v
< >

The functions are tagged as follows:

call All unconditional branches that represent a function call have been
executed at least once.
If a function does not include an unconditional branch that represent a
function call, the function is tagged with call if at least one
corresponding object code instruction generated for the function has
been executed.

incomplete At least one unconditional branch that represent a function call has not
been executed.
No object code instruction generated for the function has been
executed for all call-less functions.

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage |

120

The full-width COVerage.ListFunc window provides details on the function calls:

. calls column: number of function calls within the function
J ok column: number of function calls that have already been executed
19 B::COV.ListFunc =N e =)
& setup... | A Goto... | @B List +add | Pload.. |E2save..| @ mit
address ‘tree coverage call [0% 50% 100 func calls |
P:90040440--9004098BD [= ‘.coverage TncompTete 51, 612% |m— 31. 16. 87. 35.] »
P:90040440--9004044D BooleanAssignmentNotOp call| 100.000% |s————— 1. 1. 0. 0.
P:9004044E--90040455 BooleanAssignmentRelExpr call| 100.000% |s————— 1. 1. 0. 0.
P:90040456--90040463 BooleanAssignmentRelExprTrans call| 100.000% |s————— 1. 1. 0. 0.
P:90040464--90040475 BooleanExprCoupledTerms call| 100.000% 1. 1. 0. 0.
P:90040476--90040485 BooleanExpriixedOps call| 100.000% |s————— 1. 1. 0. 0.
P:90040486--90040495 BooleanExprSameOps call| 100.000% |s—— 1. 1. 0. 0.
P:90040496--900404CF ComplexDowhile incomplete 0.000% 1. 0. 3. 0.
P:900404D0--900404FF ComplexFor incomplete 0.000% 1. 0. 1. 0.
P:90040500--90040527 ComplexIf incomplete 0.000% 1. 0. 1. 0.
P:90040528--90040569 Complexwhile incomplete 0.000% 1. 0. 2. 0.
P:9004056A--9004056F Identity incomplete 0.000% 1. 0. 0. 0.
P:90040570--90040591 MultiLine incomplete 0.000% 1. 0. 0. 0.
P:90040592--900405A7 NestedExpr call 100. 000% | e—— 1. 1. 0. 0.
P:900405A8--900405C9 NestedExprTrans call 100. 000% | me— 1. 1. 0. 0.
P RunCoverageDemo EL e —— 1.
P:90040616--90040647 SwitchCase incomp lete 0.000% 1. 0. 0. 0.
P:90040648--9004065D TernaryExpr call| 100.000% |s—————— 1. 1. 0. 0.] ¥
< >

If a function is tagged as incomplete you can inspect its details. Either by doing a left mouse double click on

the function‘s name or by using the following command:

List.Mix RunCoverageDemo /COVerage

=% [BuList.Mix RunCoverageDemo /COVerage] EIIEI
M Step ® Over || A Diverge ¢ Return ¢ up » Go Il Break | % Mode &= t- Find: coverage.c
coverage addr/1ine |code label mnemonic comment i
vold RunCoverageDemo(void) A~
static unsigned tic = lu;
stmt 651 while (TRUE)
ok P:900405CA |243C 0x90040612
stmt 652 tic ! H
ok P:900405CC |00001F85 1d.w d15,0x10000000
ok P:900405D0 |OFEA eql6 d15,d15,#0x0
ok P:90040502 |0000LFAS st.w 0x10000000,d15
stmt 654 TestObcEqualsMcdc();
ok P:90040506 |01A4006D ca 0x9004091E
stmt 655 TestObcDiffersMcdc(tic);
ok P:900405DA |00001485 d.w d4,0x10000000
ok P:900405DE |0179006D call 0x900408D0
stmt TestMaskingMcdc();
ok P:900405E2 |0119006D ca 0x90040814
stmt 658 TestNoBranchCtxNotop();
ok P:900405E6 |014F006GD ca 0x90040884
stmt 659 TestNoBranchCtxRelExpr();
ok P:900405EA |0162006D call 0x900408AE
stmt 660 TestTernaryExpr();
ok P:900405EE |01D5006D call 0x90040998
stmt 661 TestExprNesting();
ok P:900405F2 |00F8006D ca 0x900407E2
stmt 662 TestMultiline();
ok P:900405F6]|01L20006D call 0x90040836
incomplete 663 TestSwitchCase(tic);
never P:900405FA |00001485 1d.w d4,0x10000000
never P:900405FE |01A5006D call 0x90040948
incomplete 665 TestComplexIf();
never P:90040602 |008F006D call 0x90040720
incomplete 666 TestComplexFor();
never P:90040606 |0062006D call 0x900406CA
incomplete 667 TestComplexwhile();
never P:9004060A |00B9006D call 0x9004077C
incomplete 668 TestComplexDowhile();
never P:9004060E |0033006D call 0x90040674
W

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage |

121

This TRACE32 command displays a tabular analysis of all modules.

COVerage.ListModule

(LB B:COV.ListModule = =R
& setup... | A Goto... | ([EBList +add | Bload... | E2save..| @ nit
address tree coverage call |0% 50% 100
multiple \Ccstart Tncomplete 98. 695%
P:900000A4--90000241 \cinit incomplete 18, 357% |
P :900003AA--900003BD ‘trapass incomplete 0. 000%
P :900003BE--900003D1 “trapbus incomplete 0. 000%
P:900003D2--900003E5 “trapcont incomplete 0. 000%
P :900003E6--900003F9 “trapinst incomplete 0. 000%
P : 900003FA--90000408 Er apmmu incomplete 0. 000%
P :9000040C--9000041F “Erapnmi incomplete 0. 000%
P:90000420--90000433 ‘trapprot incomplete 0. 000%
P : 900004 34--900004 3F “trapsys incomplete 0. 000%
P:90000440--900009BD ‘\coverage call 100. 000%
P:900009BE--900009CRB \main incomplete 57, 142% | ne—
none “Glaobal
< >

The following tags are used for the summary:

call: All functions of the module are tagged with call.

incomplete: At least one function of the module is tagged with incomplete.

Further details are displayed if you open the window in its full size:

18 B::COV.ListModule =N e =)
& setup... | A Goto... | @B List +add | Pload.. |E2save..| @ mit

address ‘tree coverage call [0% 50% 100 func calls bytes |
multiple \cstart Tncomplete 98.695% 460. 454
P:900000A4--90000241 “cinit incomplete 18.357% | 414, 96
P:900003AA--900003BD ‘trapass incomplete 0.000% 20. 0
P:900003BE--900003D1 “trapbus incomplete 000% 20. 0
P:900003D2--900003E5 ‘trapcont incomplete 0.000% 20. 0
P:900003E6--900003F9 “trapinst incomplete 0.000% 20. 0
P:900003FA--90000408 ‘\trapmmu incomplete 0.000% 18. 0
P:9000040C--9000041F “trapnmi incomplete 0.000% 20. 0
P:90000420--90000433 “‘trapprot incomplete 0.000% 20. 0
P:90000434--9000043F ‘trapsys incomplete 0.000% 12. 0
P :90000440--9000098D ‘\coverage call 100.000% 31 31. 87 8 14086 1394
P :900009BE--900009CB \main incomplete 57.142% 14, 8

none “Glabal

Function count

func Number of functions
ok Number of functions tagged with call
Byte count

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

122

bytes

Number of bytes

ok

Number of bytes tagged with call

Details on Callers and Calles

For a detailed analysis it is helpful to get details about the calling and the called functions.

COVerage.ListCalleRs
COVerage.ListCalleEs
List.Mix /COVerage /Track

Display call coverage with caller details at source code line level
Display call coverage with callee details at source code line level

Display a source listing that displays source and object code. This

window is used here to inspect the object code details.

All callers of the function Identity are inspected in this example. The COVerage.ListCalleRs window,
displays all source code lines from which the function Identity is called. If you select a source code line, you
can inspect the corresponding object code in the List.Mix window. This is enabled by the Track option.

(LB B:COVerage.ListCalleRs = =R
2 Setup...|| (¥ Goto... | (G List + Add | P load... | EPsave..| @ it
address tree coverage call |0% 50% i
P:9000057A--9000057F = Idemt‘ltyr call 100.000% ~
P:900004BA--900004BD "ag g ok 100. 000% |e—————————
P:900004C8--900004CB age_t erage 98 ok 100. 000% |s——
_§E=
P:90000502--90000505 XX g T ge o 100. 000% |e————————
P:90000524--90000527 ok 100. 000%
P:90000556--90000559 ok 100. 000% |e—————————
P:9000056A--9000056D ok 100. 000% |e—————————
P:90000634--90000637 ok 100. 000% |e—————————
P:90000580--900005A1 call 100. 000% |e—————————
P:900008D6--900008D9 ok 100. 000% |e—————————
P:900008E8--900008EB C ok 100. 000% |e—————————
P :900005A2--900005B7 a NestedExpr call | 100.000% | eo—————
P:90000818--9000081B Vhcoverage_tec2), 304--320 ok 100. 000%
P:90000824--90000827 coverage te2h 321--321 ok 100.000%
P:900005B8-- —
P:90000830--| = [BsListMix /COVerage /Track] [E=5 =R
Egggggggc__ M Step M Over || A Diverge | ¢ Return ¢ up b Go Il Break | % Mode &= t- Find:
coverage addr/1ine |code label mnemonic comment i
stmt 98 while (((T(Identity(a) >= -45) && Identity(b)) && Identitylc)) || d); =
ok P:900004B8 |8402 mov16 4,d8
ok P:900004BA |0060006D cal 0x9000057A
ok P:900004BE |OFFD303E mov d0,#-0x2D
ok P:900004C2 |000BO2Z7F jge dz d0, 0x900004D8
ok P:900004C6E |9402 mov16 ,d9
ok P:900004C8 |0059006D call UX‘JUUUUS. A
ok P:900004CC |2676 jzl6 d2,0x900004D8
ok P:900004CE |a402 mov1l6 d4,d10
P: 0055006D 0x9000057A
o P:900004D4 |FFEEOQZDF jne 2,#0x0,0x900004B0
ok P:900004D8 |ECEE nzl6 d15,0x900004B0
stmt 100 return num_cycles;
ok P:900004DA |B202 mov1l6 d2,d11
ok P:900004DC (013C jl6 0x900004DE
stmt 101 |} v

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage |

123

All call made by the function TestObcEqualsMcdc are inspected in this example. The
CQOVerage.ListCalleEs window, displays all source code lines which represent a function call. If you select a

source code line, you can inspect the calls in detail in the List.Mix window. This is enabled by the Track

option.

(L] B:COVerage.ListCalleEs

(o8)

2 Setup...|| (3 Goto...
address

(38 List

+ Add | 52 Load...

Z%Save...

@ Init

coverage

call

0% 50%

P:9000098E--90000991
P:90000998--90000998
|__P:900009A2—-900009A5_
:900009AC--900009AF
:900009B2--900009BF
:900009B4--90000987
:900009BA--9000098BD
:900009C0--90000A0F
:900009C6--900009C9
:900009CC--900009CF
:900009D2--900009D5

TUUUUOUVOUD

tree
P:90000988--900009B1

=] TestObcEqua]sMcdc

\ age_ age .” 699
\\coverae _tcl \covera 700--700 ‘E 100. 000%
0

rage

age
a TestS1mp1eIFFunct1onCa11

ca

ge b,

v/ 01--701

\393--402
\403--403

\206--207
\208--208
,209--209

100. 000%
100. 000%
100. 000%

100.
100.
100.
100.
100.
100.
100.
100.

000%
000%
000%
000%
000%
000%
000%
000%

B::List.Mix /COVerage /Track

(o8)

M Step
coverage

W Over

e Diverge
addr/Tine [code

+ Return ¢ up
Tabel

» Go

11 Break
mnemonic

"% Mode |62 T

Find:

comment

[

coverage.c

=Ry e e =Ry e e

'U'U'U

698

190000988
:9000098A
:9000098C
:9000098E

190000992
190000994
190000996
190000998

700

:9000099C
:9000099E
:900009A0

P :900009A2

701

* Set of test vectors Tor
Boo]eanExprSameOps 1, 0, 0)
1482 TestObcEqualsMc cdc:
0582
0682
FD84FF6D _
BooleanExprSameQps (0, 1, 0)
0482
1582
0682
FD7FFF6D _
BooleanExprSameQps (0, 0, 1)
0482
0582
1682

BooleanExprSameOps(0, 0, 0)

both MC/DC and OBC */
&1 %

4, #0x1

, #0x0
6,#0x0
0x90000496

4,#0x0

L HOx1
6,#0x0
0x90000496

P:90000946
P:900009A8
P:900009AA
P :900009AC

0482
0582
0682
EIL'._ SFFED] 1

4,#0x0
, #0x0
6,#0x0
0x90000496

P: 90000980 |2000

Ll

; BooleanExprSa

Example Script

// Demo script

// Select code coverage metric call
COVerage.Option SourceMetric Call

// Load
// represent function calls
sYmbol.ECA.LOADALL /SkipErrors

// List code coverage results at function level
COVerage.ListFunc.sYmbol \coverage

// List code coverage results at module level
COVerage.ListModule.s¥Ymbol \coverage

"~~/demo/t32cast/eca/measure_mcdc.cmm"

.eca files so that TRACE32 knows which source code

lines

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

124

Expert Usage

The following commands provide details on inlined functions:

sYmbol.List.InlineBlock List inlined code blocks

COVerage.ListinlineBlock List object code coverage for inlined blocks

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 125

Comment Your Results

Address-based bookmarks can be used to comment not covered code ranges, which are fine but not

testable in the current system configuration.

5] [BeList P:0:d2EC /COV] = EoR 5
[M Step][W Over][+ Mext][+ Return][¢ up][» Go][1l Break] ¥ Mode] Find: jpeg.c
coverage addr/1ine |code 1abel mnemonic |comment Loy
ol SP:00001308 [7C9E2378 mr r3c,r4 -
ok 160 struct jpeg_error_mgr *err = cinfo-serr;
ok SP:0000130C |83BF0000 Twz r29,0x0(r31)
taken 162 if (msg_level < 0) { B
ok SP:00001310 |2C1E0OOD cmpwi r30,0x0
taken SP:00001314 4080003(/ bge 0x1350
* It's a warning message. Since corrupt files may generate many
* warnings, the policy implemented here is to show only the first
ﬁ/warn'ing, unless trace_level »= 3.
never 168 1 err—>num_warnings — 0 err—>trace_level >= 3
never SP:00001318 |819D006C Program Address 12,0x6C(r29
never SP:0000131C |2C0C0000 + GoTil 12,0x0
never SP:00001320 |41820010 en

4 a Breakpoint...
e Breakpoints
i Display Memory

gE Toggle Bookmark
Af Set PC Here
% Edit Source

i View Info

k1330 i

iE] [BList P:0:d 2EC /COV] [=] =]
[Mistep |[% over || $next |[[Return|[@ up |[»Go |[M Break |[¥ Mode | Find: ipeg.c
coverage addr/1ine |code 1abel mriemonic |comment Ly
ol SP:00001308 [7C9E2378 mr r3o,r4 -
ok 160 struct jpeg_error_mgr *err = cinfo-serr;
ok SP:0000130C [83BF0000 Twz r29,0x0(r31)
taken 62 if (msg_level < 0) { D
ok SP:00001310 |2C1EQOOD cmpwi r30,0x0
taken SP:00001314 4080003C/ bge 0x1350
* It's a warning message. Since corrupt files may generate many
* warnings, the policy implemented here is to show only the first
ﬁ/warn'ing, unless trace_level »>= 3.
err—>num warnings — 0 |[[err
never SP:00001318 e R R N - =
never SP:0000131C ﬁ% Bu:BM.CHAMNGE "" SP:0:1318
never SP:00001320 5
— name o
error_notest2
— address / symbol
emit_message\9 v
— remark
Mot testable in current configuration -
 —— [set | [Dpeete | [cancel

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

126

List all bookmarks:

I BookMark.List

@ B:BookMark.List

=8 Eon

(3 Delete Al || 52 store... | 22 Load... |[glf Create..)
bookmark addr /record symbol/time source line remark N
"ATTocation” C:000011F0 [Jpeg_mem_availabTe J:\ANDY\mpc55xx-Jpegi.jpeg. C 63. Mot testabTe in current system configuration .
"Decompress" €:0000166C i]?_input_buffer\5+0x4 1:%ANDY\mpc55xx-]peg\]peg. 386. Mo decompress data available
"Output_array" C:00007788 |jcopy_sample_rows J:\AND\mpc55xx-]Jpegijutils. c 1119. Mo test pattern
"Flash" €:00001CC8 111a5i:_b‘iu_setup\13 J:\AND\mpc55xx-]peg\]peg. c 11160. Mo MAND flash in this configuration
N"Error_notest2" €:00001318 [emit_message'9 J:\ANDYmpc55xx-Jpeg\jpeg. c 1168. Mot testable in current configuration s
T [| 3
The current bookmarks can be saved to a file and reloaded later on.
I STOre <file> BookMark
©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 127

TRACE32 Merge and Report Tool

Typically, code coverage is not measured in a single test pass, but is approached gradually. This creates the

need for:
. saving the results from single test passes.
. merging the saved results and/or to generate an overall report.

As already described, the COVerage.EXPORT.JSONE command allows you to export information on the
functions and source code lines from the code coverage system to a JSON file. Lauterbach offers the
command line tool t32covtool to merge the exported results and/or create an overall report. t32covtool runs
on Windows and Linux.

t32covtool can be used for the source metrics statement, full decision,
condition coverage, MC/DC as well as call and function coverage.

o It cannot process object code metrics and is therefore not suitable for object
code and object code based decision coverage.

The command line tool t32covtool and its options.

I t32covtool <options> <input>

-f Optional, overwrite output directory if existing.
--force-overwrite

-h Print help.
--help

-j Merge JSON files into a summary JSON file.
--output-json <file>

-m Choose source code metric for report. Supported metrics are:
--source-metric <metric> statement, decision, condition, mcds, call, function

-0 <dir> Optional, set output directory.
--outputdir <dir>

-V Print version.
--version

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 128

Example 1

Generate an HTML report

- specify the source metric decision.

- specify report_24 as output directory, advise t32covtool to overwrite the directory if it already exists.
- specify the input files.

t32covtool --source-metric decision
--outputdir report_24 --force-overwrite
export_unittestl.json export_unittest2.json export_unittest3.json

Example 2

Generate an html report and a summary JSON file

- specify the source metric decision.

- specify report_24 as output directory, advise t32covtool to overwrite the directory if it already exists.
- specify the files name for the accumulated JSON.

- specify the input files.

t32covtool --source-metric decision
--outputdir report_24 --force-overwrite --output-json sum.json
export_unittestl.json export_unittest2.json export_unittest3.json

Example 3

Generate an accumulated JSON file.
- specify the files name for the accumulated JSON.
- specify the input files.

t32covtool --output-json sum.json
export_unittestl.json export_unittest2.json export_unittest3.json

You can find a sample script for using the command line tool t32covtool at
~~/demo/coverage/merge_demo/merge_unittests/demo.cmm.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 129

Appendix A: TRACE32 Coverage Report Utility

After the code coverage measurement is completed, a code coverage report has to be generated in order to
document the results. TRACES32 includes a Coverage Report Utility for this purpose.

Choose Create Report... in the Cov menu to open the TRACE32 Coverage Report Utility.

Cov | TC2%xT Window
& Configuration...
@ List Ranges

@ List Functions

@ List Modules

@ List Variables

@ Add Tracebuffer
E) Create Report...

Reset

£ Coverage Report Utility 7.0.0+r16185 = =R

Hierarchic code coverage report split over multiple files

Options:

DECISION | Source Code Metric: What code coverage criteria should be used for HLL lines?
ASK ~ | Existing: What should happen, if the output-folder already exists?

3. | Compression Level
XML viewable via browser. Some browser need opt. '--allow-file-access-from-files'
SORDER | Order: In what order should source code lines be displayed?

SINGLE ~ . |DECISION * Format: What format should be used to display the code coverage?

[Data: Include data sections [Jaline: Show absolute line numbers
Parameters:
| C:T32_TriCore_29_June/demo/t32cast/eca/report_2020-07-06 | 1! | Output Folder

SYMBOL | Filter: What do the items in the whitelist represent?

e

Address range
or list of symbols

(%) Create Report

o)

Open report in browser when finished Help

Push the Create Report button to generate a standard report.

The implementation of the dialog can be found in the following PRACTICE script:
" ~~/demo/coverage/multi_file_report/create_report.cmm™ .

The comments in the script contain information against which browsers the script was tested and which

additional setting might be necessary. It is recommended to read this in advance.

PEDIT ~~/demo/coverage/multi_file_ report/create_report.cmm

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

130

If you start the script with parameters, the script is directly executed.

CD.DO ~~/demo/coverage/multi_file_report/create_report.cmm \
"manual" "SYMBOL" "\coverage" \
"METRIC=DECISION EXISTING=REPLACE COMPRESSION=2"

Note

For larger projects it is recommended to copy the object code into the TRACE32 Virtual Memory. This
makes the creation of the report faster. Here a short script example.

Data.Load.elf my_project /VM ; Load your code again, this time
; into the TRACE32 Virtual Memory.

Trace.ACCESS VM ; Advise TRACE32 to use the code
; loaded to the TRACE32 Virtual
; Memory for trace decoding

; Create your report

Trace.ACCESS auto ; Reset the TRACE.ACCESS to its
; default

If you use dynamic memory management (MMU) with SYStem.Option MMUSPACES ON, the following
command sequence is recommended:

TRANSlation.SHADOW ON ; Allow several address spaces
; in TRACE32 Virtual Memory

Data.LOAD.El1f my_project 0x2::0 /VM ; Load your code again, e.g. to
; space ID 0x2, this time into
; the TRACE32 virtual memory

Trace.ACCESS VM ; Advise TRACE32 to use the code
; loaded to the TRACE32 Virtual
; Memory for trace decoding

; Create your report

Trace.ACCESS auto ; Reset the TRACE.ACCESS to its
; default
TRANSlation.SHADOW OFF ; Reset TRANSlation.SHADOW to

; its default

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 131

Appendix B: Assemble Multiple Test Runs at Address Level

There are two ways to assemble multiple test runs.

. Save and reload the data content of the code coverage system
. Save and reload the complete trace information
NOTE: Please make sure that you only assemble test runs that were carried out with

the identical executable(s).

Save and Restore Code Coverage Measurement

COVerage.SAVE <file> This command saves the following data in the specified <file>:
object code coverage tagging based on addresses
the MC/DC status of all conditions based on their addresses

The default extension is .acd (Analyzer Coverage Data).
To assemble the results from several test runs, you can use:

J Your TRACES32 debug and trace tool connected to your target hardware.

. Alternatively you can use a TRACE32 Instruction Set Simulator (see “TRACE32 Instruction Set
Simulator” in TRACE32 Installation Guide, page 56 (installation.pdf)).

Before you load an acd file into TRACE32 with the following command you need to make sure, that:

. the test executable has been loaded into memory
. the debug symbol information for the test executable has been loaded
J if needed for the selected code coverage metric, .eca files are loaded

COVerage.LOAD <file> /Replace Load coverage data from <file> into the TRACE32 code
coverage system. All existing coverage data is cleared.

COVerage.LOAD <file> /Add Add coverage data from <file> to the TRACE32 code
coverage system.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 132

Example script

Save data content of the code coverage system:

COVerage.SAVE testrunl.acd

COVerage.SAVE testrun2.acd

Assemble coverage data from several test runs:

; Basic setups

Data.LOAD.E1f jpeg.elf ; Load code into memory and
; debug info into TRACE32

// sYmbol.ECA.LOADALL /SkipErrors ; Load .eca files if needed
COVerage.LOAD testrunl.acd /Replace

COVerage.LOAD testrun2.acd /Add

COVerage.Option SourceMetric Statement ; Specify code coverage metric

COVerage.ListFunc ; Display code coverage for
; all functions

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 133

Save and Restore Trace Recording

I Trace.SAVE <file> Save trace buffer contents to <file>.

Saving the trace buffer contents enables you to re-examine your tests in detail any time.

To assemble the results from several test runs, you can use:
J Your TRACES32 debug and trace tool connected to your target hardware.

. Alternatively you can use a TRACE32 Instruction Set Simulator (see “TRACE32 Instruction Set
Simulator” in TRACE32 Installation Guide, page 56 (installation.pdf)).

In either case you need to make sure, that the debug symbol information for the test executable has been
loaded into TRACE32 PowerView.

Trace.LOAD <file> Load trace information from <file>to TRACE32.

The default extension is .ad (Analyzer Data).

COVerage.ADD Add loaded trace information into the TRACES32 code
coverage system.

Example script

Save trace buffer contents of several tests to files.

Trace.SAVE testl.ad

Trace.SAVE test2.ad

Reload saved trace buffer contents and add them to the code coverage system.

; Basic setups

Data.LOAD.El1f jpeg.elf ; Load debug info into TRACE32

// sYmbol.ECA.LOADALL /SkipErrors ; Load .eca files if needed

Trace.LOAD testl.ad ; Load trace information from
; file

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 134

COVerage.ADD

Trace.LOAD test2.ad

COVerage.ADD

COVerage.Option SourceMetric Statement

COVerage.ListFunc

Trace.LOAD test2.ad
Trace.List

add the trace information
into code coverage system

load trace information from
next file

add the trace information
into code coverage system

specify code coverage metric

Display coverage for all
functions

load trace information from
file for detailed
re-examination

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 135

Appendix C: Assembler-Only Functions and Code Coverage

Object Code Coverage

Code that is not part of a source code function is discarded for the object code coverage. If you want to

include this code you have to assign a function name to it:

sYmbol.INFO <symbol>

sYmbol.RANGE(<symbol>)
specified symbol.

sYmbol.NEW.Function <name> <addressrange> Create a function.

sYmbol .NEW.Function t32_ malloc sYmbol.RANGE(_ _malloc)

sYmbol .NEW.Function t32_ insert sYmbol.RANGE(__insert)

The manually created functions are assigned to the \\Usen\Global module.

Display details about a debug symbol.

Returns the address range used by the

£ B:COVerage ListModule (=N~
& setup... | A Goto... | EdList +Add | & Load... | 5 save... @ Init
address tree coverage [objectcode [0% 50% 100 |branches bytes i
P:00012320--000125D7 ijeg thrans never 0.000% 0.000% 0. 0. 0. 17. 696. 0. &
P:000125D8--00012CDB \\jpeg\jdapistd partial 24, 498% |mm— 22.368% 7. 0. 3. 28. 1796. 440.
P:0001544C--00015C97 \\jpeg\chario never 0.000% 0.000% 0. 0. 0. 12. 588. 0.
none ‘\\Jpeg\Global
none = \\User\Global
P:000131CC--000131EF ®t32__insert ok | 100. 000% |se—— 0. 0. 0. 36. 36.
P:000132F8--000134DB ®t32__malloc partial 68, 595K |m— 79.166% 9. 0. 1. 2. 484. 32. %
< >

The object code lines of the assembler functions are marked with the same tags as the object code lines of

source code functions.

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage |

136

Source Code Metrics

Code that is not part of a source code function is discarded for coverage. If you want to include this code you
have to assign a function to it:

sYmbol.INFO <symbol> Display details about a debug symbol.
sYmbol.RANGE(<symbol>) Returns the address range used by the
specified symbol.
sYmbol.NEW.Function <name> <addressrange> Create a function.
sYmbol.NEW.Module <name> <addressrange> Create a module.

Functions created with the sYmbol.NEW.Function command are grouped under the module name
\\WUsen\Global. No address range is assigned to this module. Alternatively, several functions can be
aggregated under a newly created module. An address range has to be assigned to the new module
\Global\<name> when it is created and it then includes all functions that are located within its address
range.

sYmbol .INFO _ malloc
sYmbol.INFO __ insert

sYmbol .NEW.Module t32_module P:0x000131cc--0x00134db

sYmbol .NEW.Function t32_ malloc sYmbol.RANGE(__malloc)

sYmbol .NEW.Function t32_insert sYmbol.RANGE(__ insert)

€] B:COVerage ListModule
Zcetup... A Goto.. (@ List +add | Rload.. Bsave..| @ mnit
address tree coverage | statement 0% 50% 100 lines
P:000116D8--0001231F \\jpeg\jdmaster Tncomplete 52.941% |— 204,
P:00012320--00012507 “\jpeg\jdtrans incomplete 0.000% 44,
P:000125D8--00012CDB ‘\\Jpeg\jdapistd incomplete 26.415% |m— 106.
P:000131CC--000134DB = \\User\t32_module |incomplete 71.538% |m— 130.
P:000131CC--000131EF ®t32__insert stmt | 100, 000 |e— 9.
P:000132F8--000134DB t32_malloc incomplete 659, 421% |—————— 121.

Depending on the selected source code metric, the assembler functions or the modules are tagged as

follows:
Metric Tag Description
all source code incomplete At least one assembler line within the function
metrics is tagged with never, taken or not taken.
Statement stmt All assembler lines are tagged with ok.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 137

Metric Tag Description

Decision stmt+dc All assembler lines are tagged with ok.
CONDition stmt+cc All assembler lines are tagged with ok.
MCDC stmt+mc/dc All assembler lines are tagged with ok.
Function func All assembler lines are tagged with ok.
Call call All assembler lines are tagged with ok.

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

138

Appendix D: Data Coverage

Trace Data Collection

Since off-chip trace ports usually do not have enough bandwidth to make all read/write accesses (and the
program flow) visible, they are rather unsuitable for data coverage. For test phases in which testing in the
target environment is not yet required, a TRACES32 Instruction Set Simulator can be used well for data
coverage.

Since TRACES2 Instruction Set Simulators provide full program and data flow trace based on a bus trace
protocol, no special setup is required.

i BuTrace.List EI@
B setup...|| 1 Goto... | FyFind... | el Chart | EProfile | I MIPS & Mare Y Less
record run |address cycle |data symbaol ti.back i
00000444 P:900408BA Tetch 0378 ycoverage'coverage'\TestMuTti1 Tine+0xZ8 0.100us
st16.w [a10]0x0C,d15 =
+00000445 D:70003FF4 wr-data 00000001 0.100us ™
+00000446 P:900408BC fetch 01DA ‘\coverage'coverage'\TestMultiline+0x2A 0.100us ¥
compound. e = TRUE; A~
mov1l6 d15,#0x1
+00000447 P:900408BE fetch 0478 M\ coverage'coverage\TestMultiline+0x2C 0.100us
st16.w [al0]0x10,d15
+00000448 D:70003FF8 wr-data 00000001 0.100us
+00000449 P:900408C0 fetch 01DA ‘\coverage'coverage'\TestMultiline+0x2E 0.100us
compound. f = TRUE; v
< >

If you want to use an onchip trace or an offchip trace port for data tracing, please refer to the following
documents for setup details:

. Arm: “Training Arm CoreSight ETM Tracing” (training_arm_etm.pdf), “Training Cortex-M
Tracing” (training_cortexm_etm.pdf)

. MPC5xxx/SPC5xxx, QorlQ and RH850: “Training Nexus Tracing” (training_nexus.pdf)
. TriCore: “Training AURIX Tracing” (training_aurix_trace.pdf)

J For other processor architectures, please refer to the corresponding “Processor Architecture
Manuals”.

Please note that data coverage only makes sense if the trace does not contain a high number of TARGET
FIFO OVERFLOWS.

It is recommended to use incremental coverage for data coverage (see “Incremental Code Coverage”,
page 57).

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 139

Evaluation

If you want to use the trace data stored in the coverage system for data coverage, select the SourceMetric
ObjectCode in the COVerage configuration window or use the command
COVerage.Option SourceMetric ObjectCode.

Cov | TC2%xT Window
/2 Configuration...
@ List Ranges

@ List Functions

@ List Modules

@ List Variables

@ Add Tracebuffer
E*) Create Report...

Reset

& B:COVerage.state
METHOD
® NCremental

state
OFF
®on

commands
+ ADD
@ Init
RESet

Option
StaticInfo

& Trace
2 RTS

SourceMetric
ObjectCode ~

commands

=2 Load

§Sa\re

(38 List
(B ListModule
(L3 ListFunc
(L3 ListLine
(L3 Listvar

The following commands show a tabular analysis:

COVerage.List

COVerage.ListVar

The following command shows the tagging per address.

I Data.View %Var <address>/COVerage

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

140

This TRACE32 command shows the coverage tagging on address range level:

COVerage.List

@ B:COVerage.List EI@
2 Setup...|| (3 Goto... (L8 Modules (9 Functions|| (L8 Lines + Add 2 Load... | B2 Save... @ Init
address coverage
P:00000000--4000401F |never ~
P:40004020--40004023 read and write ‘Ndiabchdiabchfunc2\fstatic
P:40004024--40004027 |never “Mdiabchdiabch funcdstatl
P:40004028--4000402B |read and write ‘Mdiabchdiabc funcdstat?2
P:4000402C--4000402F |never “Wdiabchdiabchfunc26'xl
P:40004030--40004033 jwrite only “Mdiabchdiabchvfloat v
< >

This TRACE32 command shows the coverage tagging at address level starting with the address of the

variable fstatic:

Data.View %Var fstatic /COVerage

Q [B::Data.View %aVar fstatic /COVerage]

coverage address | data [value
never SD:4000401F | 00

readwrite SD:40004020 | 98 fstatic = -1735838008

readwrite SD:40004021 | 89

readwrite SD:40004022 | 36

readwrite SD:40004023 | C8
never SD:40004024 | 48 statl = 1207966566 t
never SD:40004025 | 00 t1+0x1
never SD:40004026 | 1B t1+0x2
never SD:40004027 | 66 1+0x3

readwrite SD:40004028 | 48 stat? = 1207966297

readwrite SD:40004029 | 00 +0x1

readwrite SD:40004024 | 1A +0x2

readwrite SD:4000402B | 59 2+0%3
never SD:4000402C | 48 x1[0] = 72 X
never SD:4000402D(00 x1[1] = 0O x1+0x1
never SD:4000402E | 10 x1[2] = 16 x1+0x2
never SD:4000402F | 31 x1[3] = 49 *x1+0x3
write 5SD:40004030| 3F wfloat = 1.6 t
write 5D:40004031 | cC | at+0x1 v

< >

The data addresses are tagged as follow:

readwrite The data address was read at least once and written at least once.
read The data address has been read at least once.

write The data address has been written at least once.

never The data address was neither read nor written

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

141

This TRACE32 command displays the data coverage at variable level.

COVerage.ListVar

@ B:COVerage.ListVar EI@
& Setup...|| A Goto... | (@BList +add | Bload... | E2save..| @ nit
address tree coverage |read 0% 50% 100 |
D:400040D4--400040D7 funcptr write | 0.000% ~
D:400040E8--400040F7 vbfield p-rd p-wr | 75.000% | ee———
D:400040F8--40004108 ast p-wr read 100.000%
D:40004110--40004127 viripplearray p-write | 0.000%
D:40004128--40004134A flags readwrite |100. 000% v
< >

Each static variable occupies a fixed address range. This results in the following tagging for variables:

readwrite Read and write accesses were performed for all addresses within
the address range of the variable.

read Only read accesses were performed for all addresses within the
address range of the variable.

write Only write accesses were performed for all addresses within the
address range of the variable.

p-write Write accesses were performed only to a part of the address range
of the variable. No read accesses were performed.

p-read Read accesses were performed only to a part of the address range
of the variable. No write accesses were performed.

p-wr read Write accesses were performed only to a part of the address range
of the variable. Read accesses were performed for all addresses.

p-rd write Read accesses were performed only to a part of the address range
of the variable. Write accesses were performed for all addresses.

p-rd p-wr Both read and write accesses were performed only to a part of the
address range of the variable.

never Not a single address of the address range of the variable was read
or written.

The tags rdwr ok, write ok, read ok and partial indicate that TRACES32 cannot clearly recognize whether
the address range contains program code or data. Please check your TRACE32 configuration or contact

your local technical support.

A complete list of all data coverage tags can be found in “Appendix E: Data Coverage in Detail”, page

154.

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage | 142

Appendix E: Trace Decoding in Detail

Before the recorded trace data can be analyzed, it must be decoded first.

P : 900004CE trace

-0003813128
P:90000682 ptrac

-0003813126

77
77

mov1l6 d5, #0x0
77 CompTlexDowhile
<

Raw trace data

Comp1 exDolhi '\ e

£ BrTrace.List MCDS []
& seup...| L Goto... | #1Find...| Ml chart| ElProfile| B MIPS | 4 More| X Less
record /mcds |
-0003813132 [T PTU_TCX T12 0Ox8 A0x08 ~
-0003813131 p
-0003813130 |1 PTU_TCX TT3 OxE ~0x06 =
-0003813129 v
-0003813128 PTU_TCX TT3 Ox4 AOx02 A
~0003813127
-0003813126 |1 PTU_TCX TT1 0x22C 4 BTrace.List /Track (=N~
-0003813125
0003813124 & setup...| 13 Goto... | #4Find... | Adchart | EProfile | EMEFS % More X Less
-0003813123 |1 PTU_TCX TT2 OxE AOxOE record run address cycle |data symbo]l i
-0003813122 return num_cycTes; A
-0003813121 |1 PTU_TCX TT3 Ox0 AOxOE mov J.J d2,d11 =
-0003813120 jl 0x900004CE =
< -0003813130 | P 900004CE ptrace ‘\coverage_tc2\coverage\ComplexDowhile+0x38 7
— 70 J— ~
retl6

'\e—46 0, 0, 0

—46000
-46, 0, 0, O

Decoded trace data

Trace Decoding for Static Applications

The object and source code is required to decode trace raw data recorded of static programs.

Decoding in Stopped State for Static Applications

This decoding is used for incremental code coverage and incremental code coverage in stream mode.

TRACES32 state: program execution stopped, no recording of trace data.

TRACE32 can read the object code from the target memory. Links to the source code files are part of the

debug symbol information maintained by TRACE32.

Decoding in Running State for Static Applications

This decoding is used in SPY mode code coverage.

TRACES32 state: program execution is running, trace data is recorded, but trace streaming is stalled while

trace decoding is performed.

TRACE32 can read the object code from the target memory, if the core allows the debugger to read memory
while the program execution is running (see also Run-time Memory Access).

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

| 143

However, TRACE32 can decode the trace data much faster if it does not have to access the target memory.
That is why it is highly recommended to copy the object code into the TRACE32 Virtual Memory. This is
achieved by the /PlusVM option when the program is loaded. The PlusVM option directs TRACES2 to load
the object code into the target memory plus into the TRACE32 virtual memory.

Data.LOAD.Elf ~~~~/tricore/coverage_tc2.elf /RelPATH /PlusVM

The Data.COPY command is another possibility. It allows to copy the content of the target memory directly
to the TRACE32 Virtual Memory.

I Data.Copy <address_range> VM:

NOTE: The object code required for trace decoding must be available in the TRACE32
Virtual Memory before the program execution and the trace recording is started.

RTS Decoding for Static Applications

This decoding is used in RTS mode code coverage.
TRACES32 state: program execution is running, trace data is recorded and streamed to the host computer.

If trace data is decoded at program runtime and processed while streaming, decoding has to be as fast as
possible. An important prerequisite is that the object code is located in the TRACE32 Virtual Memory. This
is achieved by the /PlusVM option when the program is loaded. The PlusVM option directs TRACE32 to
load the object code into the target memory plus into the TRACE32 virtual memory.

Data.LOAD.E1lf ~~~~/tricore/coverage_tc2.elf /RelPATH /PlusVM

The Data.COPY command is an another possibility. It allows to copy the content of the target memory
directly to the TRACE32 Virtual Memory.

I Data.Copy <address_range> VM:

NOTE: The object code required for trace decoding must be available in the TRACE32
Virtual Memory before the program execution and the trace recording is started.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 144

Trace Decoding for Applications Using a Rich OS

Also in this case, the object code and source code are needed to decode the trace raw data. But paging
used by the operating system makes decoding more complex.

Since the onchip trace logic generates the program flow data based on virtual addresses, TRACE32 has to
know the valid memory space for each trace record in order to read the object code from the physical
memory for trace decoding. A task or context switch in the trace recording normally identifies the memory
space for the subsequent logical addresses.

Decoding in Stopped State (Rich OS)

This decoding is used for incremental code coverage and incremental code coverage in stream mode.

TRACER32 state: program execution stopped, no recording of trace data.

Trace decoding is performed in three steps:

1. TRACERS2 reads the current task list and all task page tables with the help of the TRACE32 OS
Awareness from the target, when the program execution is stopped.

2. Task/context switches from the trace recording are decoded with the help of the task list.

3. The object code for each task is then read with the help of its page table. Links to the source
code files are part of the debug symbol information, which TRACE32 maintains for each memory
space.

Reading the object code fails, when a task/context switch from the trace recording can not be
decoded with the help of the current task list, e.g. because the task was terminated.

Decoding in Running State (Rich OS)

This decoding is used in Spy mode code coverage.

TRACER3?2 state: program execution is running, trace data is recorded, but trace streaming is stalled while
trace decoding is performed.

TRACE32 has no access to the current task list and the task page tables while the program execution is
running. The TRACE32 Virtual Memory must contain the task list, all task page tables and the object code
to enable TRACES32 to decode the raw trace data.

This requires a complex setup. Please contact the Lauterbach support in this case.

RTS Decoding (Rich OS)

This decoding is used in RTS mode code coverage.

TRACES32 state: program execution is running, trace data is recorded and streamed to the host computer.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 145

TRACE32 has no access to the current task list and the task page tables while the program execution is
running. The TRACE32 Virtual Memory must contain the task list, all task page tables and the object code
to enable TRACERS2 to decode the raw trace data.

This requires a complex setup. Please contact the Lauterbach support in this case.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 146

Appendix F: Coding Guidelines

The following coding guidelines are recommended for full decision and condition coverage as well as for
MC/DC. If you follow these coding guidelines you avoid false negative results. False negative means that a
decision/conditions is tagged as incomplete although coverage has already been achieved.

Nevertheless, it is possible that the compiler itself generates such constructs at high optimization levels.

Avoid Simple Decisions in Assignment Context

It is likely that these conditions are not represented by a conditional branch/instruction at object code level.

In this example no conditional branch/instruction was generated for the condition a==b.

18 - — dincomplete
o

P:9000044E
P:90000452

374
P:90000454

373

21005408 Bool
013C

9000

= [BuList P:0x9000044E /COV] [l s
M Step W Over | A Diverge 4 Return ¢ up » Go Il Break | !%Mode & ||t Find: coverage.c
id dec/cond true false coverage addr/Tine |code label mnemonic comment |
~
/* Relational expression as decision

Expression showing a decision in non-branching context. Compilers ma
choose to model Boolean assignments with conditional or unconditiona
instructions instead of conditional branches that are not suitable for
the trace-based measurement of code coverage.

return a=0>b

q d2,d4,d5

j16 0x90000454

retlé v

It is recommended to write the source code in a way that ensures that the conditional branches/instructions
required for the trace-based code coverage are generated.

54 [BrList P:0x90000456 /COV] = EER(==]
M step M Over | A Diverge | 4 Return ¢ up » Go 1l Break || ¥ Mode |&=f||t- Find: coverage.c
id dec/cond true false coverage addr/Tine |code label mnemonic comment |
q ralen transformation for relational exp ~
a in
00 to
of expression.
17 1. i il dc 357 if (a ==b) {
17 1. - - ok P:90000456 |3004545F EBooleanA.:jne d4,d5,0x900004 5
stmt 358 return TRUE;
ok P:9000045A [12 movl6 d2, #0x1
ok P:9000045C . jle 0x90000462
stmt 360 return FALSE;
ok P:9000045E (02 movl6 d2,#0x0
ok P:90000460 (01 jl6 0x90000462
stmt 361 |}
ok P:90000462 |9000 retl6 v

A few examples:

; source code not suitable for

; trace-based code coverage

return a == b;

I

7

if

}

source code suitable for
trace-based code coverage

(a == b) {
return TRUE;

return FALSE;

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage |

147

source code not suitable for
trace-based code coverage

I

I

identity(a != b);

source code not suitable for
trace-based code coverage

’

’

return (a >= b) ? a : b;

Avoid Nesting of Decisions

; source code suitable for
; trace-based code coverage

tmp = FALSE;

if (a != b) {
tmp = TRUE;

}

identity(tmp) ;

source code suitable for
trace-based code coverage

’

’

if (a >= b) {
return a;

}

return b;

It is very likely that not all conditions are represented by a conditional branch/instruction at object code level.

This is illustrated by the following example:

source code not suitable for
trace-based code coverage

’

’

return a > (b + (b && c));

source code suitable for
trace-based code coverage

’

’

if (b && c) {
tmp = 1;

if (a > (b + tmp)) {
return TRUE;

}
return FALSE;

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage | 148

In this example no conditional branches/instructions were generated for the conditions.

[BuList P:0x0000592 /COV] =x
M Step B Over || JADiverge | ¢ Return ¢ up b Go Il Break % Mode @ +.| "3 Find: ‘ | coverage.c
id dec/cond true false coverage addr /1ine |code |1abel mnemonic |comment =
/* Decision with nested Boolean expression -~

Expression showing a nested Boolean expression. Compilers may choose to
model nested expressions with conditional or unconditional instructions
instead of conditional branches that are not suitable for the trace-
based measurement of code coverage.

13 — — — incomplete 2?1 return (a > (b + ((float) b <))),

6
ok :9000059A FOG].OF}? extr.u dlS,dlS,OxO,?Oxl
ok F542 addle d5,d15
ok :900005A0 21204508 1t d2,d5,d4
ok P:900005A4 (013C jle6 0x900005A6
stmt 72
ok P:900005A6 [9000 retl6 v

If the code is written in a way that suits for trace-based code coverage, all necessary conditional
branches/instructions were generated.

B::List P:0x900005A8 /COV

M Step W Over | JMAuDiverge ¢ Return ¢ up P Go Il Break | !%|Mode |&2f t.| % Find: ‘ | coverage.c
id dec/cond true false coverage addr/Tine |code |1abel mnemonic [comment =
.{. - -~
/* Equivalence transformation for decision with nested Boolean expression
* Equivalent expression after transformation. The nested Boolean
* expression is extracted and put into a branching context. Compilers
* typically choose to use conditional branches for modelling this type of
* structure.
stmt 249 'injt tmp = 0;
ok P:900005A8 0082 NestedEx.. :mov16 do, #0x0
11 1. 1. 1. dc 251 if ((float) b <) {
ok P:900005AA |[F141054B itof di5,d5
ok P:900005AE |[FOOLGF4E cmp. T d15,d15,d6
ok P:900005B2 |[FOG10F37 extr.u d15,d15,0x0,#0x1
11 1. - * ok P:900005B6 |026E jz16 d15,0x900005BA
stmt 252 tmp = 1;
ok P: 90000588 1082} movl6 d0,#0x1
12 1. 1. 1. dc 255 if (a = (b + tmp)) {
ok P:900005BA |0542 addl6 ds5,do
12 1. L] . ok P:900005BC |0004457F jge d5, d4,0x900005¢C4
stmt 256 return TRUE;
ok P:900005C0 (1282 mov16 d2,#0x1
ok P:900005C2 033(} j16 0x900005C8
stmt 258 return FALSE;
ok P:900005C4 |0282 movl6 d2,#0x0
ok P:900005C6 [013C j16 0x900005C8
stmt 259 [}
ok P:900005C8 |9000 retl6 v

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage |

149

Appendix G: Object Code Coverage Tags in Detail

Standard Tags

Standard tagging applies to all core architectures and all trace protocols. The only exception are Arm/Cortex
cores that use the protocols Arm-ETMv1 or Arm-ETMVv3, as well as Arm-ETMv4. However, for the Arm-
ETMv4 protocol, this only applies if no trace information about the execution of conditional non-branch
instructions is generated in order to save bandwidth (command ETM.COND OFF).

The following tags are used for object code coverage tagging:

Tag Tagging object Description
ok conditional branch The conditional branch has be at least once
taken and not taken.
conditional instruction The object code instruction has been executed
at least once with its condition code true and
once with its condition code false.
all other object code The object code instruction has been executed
instructions at least once.
taken conditional branch The conditional branch has be at least once
taken, but never not taken.
conditional instruction The object code instruction has been executed
at least once with its condition code true, but
never with its condition code false.
not taken conditional branch The conditional branch has be at least once not
taken, but never taken.
conditional instruction The object code instruction has been executed
at least once with its condition code false, but
never with its condition code true.
never all object code instructions The object code instruction has never been
executed.

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage | 150

The following tags apply for analysis at the source code, function or module level:

Tag Tagging object Description
ok range of object code All object code instructions within the range are
instructions tagged with ok.
partial range of object code Not all object code instructions within the range
instructions are tagged with ok.
branches range of object code All object code instructions within the range
instructions were executed, but there is at least one
conditional branch/conditional instruction that
is only faken and one that is only not taken.
taken range of object code All object code instructions within the range
instructions were executed, but there is at least one
conditional branch/conditional instruction that
is only taken.
not taken range of object code All object code instructions within the range
instructions were executed, but there is at least one
conditional branch/conditional instruction that
is only not taken.
never range of object code Not a single object code instruction within the
instructions range has been executed.

Tags for Arm-ETMv1/v3/v4 for Arm/Cortex Architecture

The following tags are used for object code coverage tagging:

Tag

Tagging object

Description

ok

conditional branch

The conditional branch has be at least once
taken and not taken.

conditional instruction

The object code instruction has been executed
at least once with its condition code true and
once with its condition code false.

all other object code
instructions

The object code instruction has been executed
at least once.

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage | 151

Tag

Tagging object

Description

only exec conditional branch The conditional branch has be at least once
taken, but never not taken.
conditional instruction The object code instruction has been executed
at least once with its condition code true, but
never with its condition code false.
not exec conditional branch The conditional branch has be at least once not
taken, but never taken.
conditional instruction The object code instruction has been executed
at least once with its condition code false, but
never with its condition code true.
never all object code instructions The object code instruction has never been

executed.

The following tags apply for analysis at the source code, function or module level:

Tag Tagging object Description
ok range of object code All object code instructions within the range are
instructions tagged with ok.
partial range of object code Not all object code instructions within the range
instructions are tagged with ok.
cond exec range of object code All object code instructions within the range
instructions were executed, but there is at least one
conditional branch/conditional instruction that
is only only exec and one that is only not exec.
only exec range of object code All object code instructions within the range
instructions were executed, but there is at least one
conditional branch/conditional instruction that
is only only exec.
not exec range of object code All object code instructions within the range
instructions were executed, but there is at least one
conditional branch/conditional instruction that
is only not exec.
never range of object code Not a single object code instruction within the

instructions

range has been executed.

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage | 152

Appendix E: Data Coverage in Detail

The data addresses are tagged as follow:

readwrite The data address was read at least once and written at least once.
read The data address has been read at least once.

write The data address has been written at least once.

never The data address was neither read nor written

Each static variable occupies a fixed address range. This results in the following tagging for variables:

readwrite Read and write accesses were performed for all addresses within
the address range of the variable.

read Only read accesses were performed for all addresses within the
address range of the variable.

write Only write accesses were performed for all addresses within the
address range of the variable.

p-write Write accesses were performed only to a part of the address range
of the variable. No read accesses were performed.

p-read Read accesses were performed only to a part of the address range
of the variable. No write accesses were performed.

p-wr read Write accesses were performed only to a part of the address range
of the variable. Read accesses were performed for all addresses.

p-rd write Read accesses were performed only to a part of the address range
of the variable. Write accesses were performed for all addresses.

p-rd p-wr Both read and write accesses were performed only to a part of the
address range of the variable.

never Not a single address of the address range of the variable was read
or written.

rdwr ok The address range achieved full object code coverage, and at least
one read and one write access occurred to address range.

write ok The address range achieved full object code coverage, and at least
one write access occurred to address range.

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage | 153

read ok The address range achieved full object code coverage, and at least
one read access occurred to address range.

partial The address range did not achieve full object code coverage. The
amount of read and write accesses that have taken place is not
further specified.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 154

The coverage status of HLL source code statements that have associated data values is indicated by the
following tags if a data trace is available:

rdwr ok: The HLL source code statement(s) have been fully covered. All associated assembly
instructions have been fully covered and at least one read and write access to the data values
has been recorded.

write ok: The HLL source code statement(s) have been fully covered. All associated assembly
instructions have been fully covered and at least one write access to the data values has been
recorded.

read ok: The HLL source code statement(s) have been fully covered. All associated assembly
instructions have been fully covered and at least one read access to the data values has been
recorded.

partial: The HLL source code statement(s) have not been fully covered. At least one of the
associated assembly instructions has not been fully covered. The amount of read and write
accesses that have taken place is not further specified.

readwrite: The HLL source code statement(s) have never been executed. None of the associated
assembly instructions has been executed and all of the data values have been read and written
at least once.

write: The HLL source code statement(s) have never been executed. None of the associated
assembly instructions has been executed and all of the data values have been written at least
once and not read.

read: The HLL source code statement(s) have never been executed. None of the associated
assembly instructions has been executed and all of the data values have been read at least once
and not written.

p-rd write: The HLL source code statement(s) have never been executed. None of the
associated assembly instructions has been executed and all of the data values have been written
at least once. In addition at least one data value has been read.

p-wr read: The HLL source code statement(s) have never been executed. None of the
associated assembly instructions has been executed and all of the data values have been read at
least once. In addition at least one data value has been written.

p-rd p-wr: The HLL source code statement(s) have never been executed. None of the associated
assembly instructions has been executed and at least one of the data values has been read and
one written.

p-write: The HLL source code statement(s) have never been executed. None of the associated
assembly instructions has been executed and at least one of the data values has been written.

p-read: The HLL source code statement(s) have never been executed. None of the associated
assembly instructions has been executed and at least one of the data values has been read.

never: The HLL source code statement(s) have never been executed. None of the associated
assembly instructions has been executed and neither read nor write accesses to the data values
have been recorded.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 155

	Application Note for Trace-Based Code Coverage
	History
	Intended Audience
	Introduction
	Supported Code Coverage Metrics
	Code Coverage and Certification
	Trace-Based Code Coverage
	Test Variants
	Merge Results and Generate Report

	MC/DC, Condition and Decision Coverage
	Multiple Code Coverage Modes
	Preconditions for a Trace-Based Code Coverage
	Occurring Observability Gaps
	The Different Code Coverage Modes
	Code Coverage Mode No Instrumentation
	Code Coverage Mode Full Instrumentation
	Code Coverage Mode Targeted Instrumentation

	A Comparison of the Different Code Coverage Modes
	Causes for Observability Gaps: An Overview

	Evaluation of Switch Case Statements

	Code Coverage Workflow
	General Workflow
	Measure Code Coverage
	Merge Measurement Results

	Workflow for the Individual Code Coverage Metrics
	Object Code Coverage Workflow
	Statement Coverage Workflow
	Decision Coverage Workflow
	Object Code Based (ocb) Decision Coverage Workflow
	Condition Coverage Workflow
	MC/DC Workflow
	Function Coverage Workflow
	Call Coverage Workflow

	Build Process
	Recommendations for the Build Toolchain
	Build Process Statement Coverage
	Build Process Function and ocb Decision Coverage
	Build Process Call Coverage
	Build Process MC/DC, Condition and Decision Coverage
	Decision Making
	Build Process for Code Coverage with Targeted Instrumentation/No Instrumentation
	Build Process Code Coverage with Full Instrumentation

	Trace Data Collection Overview
	TRACE32 Tool Configurations
	Choose the Appropriate Trace Data Collection Variant
	Preconditions
	Reduce the Amount of Trace Data
	Ensure a Fault-Free Trace Recording
	Disable Timestamps for Trace Streaming

	SMP Multicore Systems

	Steps in Preparation for Trace Data Collection
	Notes on the Individual Test Variants
	Preparation for Function, Object Code, ocb Decision Coverage
	Preparation for Statement Coverage
	Preparation for Call Coverage
	Preparation for MC/DC, Condition and Decision Coverage
	Preparation for Targeted Instrumentation/No Instrumentation
	Preparation for Full Instrumentation

	Trace Data Collection
	Incremental Code Coverage
	Data Collection
	Example Script
	Summary

	Incremental Code Coverage in STREAM Mode
	Data Collection
	Example Script
	Summary

	RTS Mode Code Coverage
	Data Collection
	Example Scripts
	Summary

	SPY Mode Code Coverage
	Operation States
	Data Collection
	Example Script
	Summary

	Code Coverage with Virtual Targets
	ART Mode Code Coverage
	Data Collection
	Example Script

	Code Coverage Analysis
	Code Coverage Tags
	Object Code Coverage Evaluation
	Evaluation
	Example Script

	Statement Coverage Evaluation
	Evaluation
	Example Script

	Full Decision Coverage Evaluation
	Interpretation
	Evaluation
	Example Script

	Object Code Based (ocb) Decision Coverage Evaluation
	Evaluation Strategy
	Evaluation
	Example Script

	Condition Coverage Evaluation
	Evaluation Strategy
	Evaluation
	Example Script

	Modified Condition/Decision Coverage (MC/DC) Evaluation
	Evaluation Strategy
	Evaluation
	Example Script

	Function Coverage Evaluation
	Evaluation Strategy
	Example Script
	Expert Usage

	Call Coverage Evaluation
	Evaluation
	Details on Callers and Calles
	Example Script
	Expert Usage

	Comment Your Results
	TRACE32 Merge and Report Tool
	Appendix A: TRACE32 Coverage Report Utility
	Appendix B: Assemble Multiple Test Runs at Address Level
	Save and Restore Code Coverage Measurement
	Save and Restore Trace Recording

	Appendix C: Assembler-Only Functions and Code Coverage
	Object Code Coverage
	Source Code Metrics

	Appendix D: Data Coverage
	Trace Data Collection
	Evaluation

	Appendix E: Trace Decoding in Detail
	Trace Decoding for Static Applications
	Decoding in Stopped State for Static Applications
	Decoding in Running State for Static Applications
	RTS Decoding for Static Applications

	Trace Decoding for Applications Using a Rich OS
	Decoding in Stopped State (Rich OS)
	Decoding in Running State (Rich OS)
	RTS Decoding (Rich OS)

	Appendix F: Coding Guidelines
	Appendix G: Object Code Coverage Tags in Detail
	Standard Tags
	Tags for Arm-ETMv1/v3/v4 for Arm/Cortex Architecture

	Appendix E: Data Coverage in Detail

