LAUTERBACH A

Application Note
for eMMC Analysis

Application Note for eMMC Analysis

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTS ciceeiiiiiiiemns s inisess s snnsss s s rassss e e s s e s ee e m s e e ea s m s e b e a s mn e e R e a s annn e nnnnnn =
Trace Application NOTES ... e s e e s s mmmsmssssssssssssssssssnnsnnnns =
B T = N T 1) r—~
Application Note for eMMC ANAlYSIScccerecrriiiiscmriiiirmr s s s s snamnnes 1
LT3 o 3

L £ oo LU T o o 4
TRACE32-based eMMC Access Log Solutionccccivivsmmmininsmsmnnnsesss s ssssssssssnans 5
Implementation Example for LINUX OS ...t ssssssssscmcse s s s e s s s ssssmmmmss s s s s seeeas 8
Comparison with the Software Method ftracecccccciiiiiiccnnis s 11

L0 o T T 1= T T N 13

= =T =T T = 14
Appendix A: Source Code EXampIlecocccmiimiirimmmimnissssrmnssss s s sssssnes 15
Appendix B: Time Detailsccccciiiiimmiiiinniinnness s s s s ssssss s snssses 18

©1989-2024 Lauterbach Application Note for eMMC Analysis | 2

Application Note for eMMC Analysis

Version 06-Jun-2024

History

17-dan-2022 New manual.

©1989-2024 Lauterbach Application Note for eMMC Analysis | 3

Introduction

The widespread use of eMMC storage in many of today’s applications raises the issue of premature device
degradation or wear-out resulting from intensive memory usage. To study this possible problem, it is
necessary to record the accesses to an eMMC device in order to obtain the required information that can be
subsequently analyzed to improve stability and reliability over the device’s expected lifespan. From this kind
of analysis, it's necessary to understand how your software application actually accesses a filesystem
mounted on an eMMC and if this can cause premature aging of the NAND-based memory device.

SD cards, eMMC and UFS memory chips are managed-NAND block devices, consisting of a NAND
controller, an internal firmware performing ECC operations, wear-levelling and bad-block management of
the raw NAND memory.

HOST PROCESSOR

UFS, e.MMC or SD IF

Managed NAND Flash

The specific architecture of a managed-NAND device can be extremely sensitive to certain read and write
access sequences performed by the host processor under the direction of the application software,
especially if these are frequently iterated.

A classic recording method (log) of these accesses requires the implementation of additional code that
captures information and saves it securely. The information can be saved on another permanent storage
device, for example an external USB drive. This software method is intrusive and in addition to the overhead
of monitoring the eMMC access, additional overhead is added in order to save the data.

This document proposes a different method of capturing and saving such information through the use of a
TRACE32 hardware-based trace tool. This can be done with minimal intrusion on the software and, in some
cases, almost zero. This tool captures the program and data trace transmitted by the cores of a SoC through
a dedicated trace port, and records it to its own dedicated memory.

©1989-2024 Lauterbach Application Note for eMMC Analysis | 4

TRACE32-based eMMC Access Log Solution

In all operating systems or device drivers that manage an eMMC memory device, some functions are
provided for device access which incorporate the eMMC JEDEC standard commands. Long-term
monitoring of the execution of these commands and their parameters is the best way to collect the data
necessary for the access analysis. After accessing the eMMC device, a function or a code point is usually
available where the eMMC command is completed. Monitoring this code point allows the detection of
additional information, such as the execution time of the command.

The code points where eMMC accesses start and finish can be provided by a program trace.

In order to provide the eMMC details, a tiny amount of instrumentation to the source code is required.
o If data trace is available, the eMMC details can be written to a static data structure.

. If no data trace is available, the eMMC details can be written to a register. This register must
have the special property that a write to the register generates a trace message containing the
register contents. An example for such a register is the ContextID register of Arm CoreSight.

The following data is traced in the TRACE32-based log solution:

. at the beginning of eMMC access (ptrace):
- eMMC device id
- command executed and related flags
- access address
- number of accessed memory blocks and their size

J at the end of the eMMC access (ptrace):
- eMMC device id
- command executed
- result code and other return codes

Since all trace entries receive a timestamp, the access duration can also be analyzed.

A possible example of access monitoring is shown below:

i‘j B::Trace. FindAll, Address address.offset{mmc_start_request) OR Address address.offset{mmc_request_done) OR Cycle info /List run cycle symbol %eTimeFixed Time Zero data E@
50244 [run cycle [symbol ti.zero data

-0473174155 [O] info 4.542859208s 80000900 A
-0473169125 | 3| ptrace \\wmlinux\core_core\mmc_start_request 4,542990735s =
-0473169093 | 3| info 4.542991878s B0G36D6D =
-0473169086 | 3| info 4.542991903s 80000012 ~
-0473169078 | 3| info 4.542991928s 80042400 "~
-0473169060 | 3| info 4.542992328s 80000085

-0473169052 | 3| info 4.542994103s 80000200

-0473169045 | 3| info 4,542994178s 80000400

-0473017774 | 0| ptrace “\\wmlinux‘\core_core\mmc_request_done 4,549135007s

-0473017415 4.549142177s B0636D6D

-0473017408 | O 1nfo 4.549142202s 80000012

-0473017400 | 0| info 4.549142227s 80000000

-0473017393 | 0| info 4.549142228s 80000900

-0473011322 | 2| ptrace ‘\‘\wmlinux\core_core‘\mmc_start_request 4.5492691435s

-0473011312 | 2| info 4,.549270272s B0G636D6D

-0473011294 | 2| info 4.549270323s 80000012

-0473011286 | 2| info 4.549270348s 80042800

-0473011279 (| 2| info 4.549270372s 80000085

-0473011260 | 2| info 4.549271873s 80000200

-0473011253 | 2| info 4.549271898s 80000400

-0472852525 [0| ptrace ‘\\wmlinux\core_core‘\mmc_request_done 4.555422827s

-0472852137 | 0| info 4,555432798s B0G636D6D

-0472852130 | 0| info 4.555432848s 80000012

-0472852122 | 0| info 4.555433348s 80000000

-0472852115 | 0| info 4.555433398s 80000900

-0472845755 | 2| ptrace ‘\\wmlinux\core_core\mmc_start_request 4,555566242s

-0472845734 | 2| info 4.555567223s B0G36D6D v

©1989-2024 Lauterbach Application Note for eMMC Analysis | 5

This is, typically, a few trace records for each eMMC access. Stress tests have verified that logging an
eMMC access (functions mmc_start_request () and mmc_request_done () with related data)
requires about 416 trace records in the PowerTrace memory and these accesses occur on average every
4 mSec.

This corresponds to approximately 1GB/416 = 2.5 million eMMC logs, or approximately 10,000 seconds
(2h45min) for each gigabyte of trace storage. The PowerTrace family provides either 10 million eMMC

logs (11h) for a 4GB PowerTrace or 20 million (22h) for an 8GB module. By extending the trace duration with
trace streaming, the limit becomes the size of the computer hard-disk/SSD or the TRACES32 limit which is

1 Tera-frame, i.e., 2.5 billion eMMC logs (over 100 days!).

The recorded trace data can be filtered and saved to a file, and then converted into a more suitable format
for analysis using a PRACTICE or Python script, or an external conversion program.

The trace information for a single eMMC access can, for example, be converted into the format shown
below, which is more suitable for importing into specific eMMC analysis tools:

24.228827980 mmc_start_req cmd:
host=mmcl

CMD25

arg=01620910

f1lags=000000B5

blksz=00000200

blks=00000010

24.231239610 mmc_request_done:
host=mmcl

CMD25

err=00000000

respl=00000900

resp2=00000000

These tools perform a complete analysis of the eMMC device application accesses, in terms of addresses
accessed, frequency and access methods.

The end-goal is calculating the Write Amplification (WA) seen by the eMMC (or by any other managed-
NAND block device). Write Amplification (WA) is defined as the ratio of NAND physical writes and the host
induced writes (WA = NAND writes / Host Writes).

When the host writes logical sectors of the eMMC, the internal MMC controller erases and re-programs
physical pages of the NAND device. This could cause a management overhead. Large sequential writes
aligned to physical page boundaries typically result in minimal overhead and optimal NAND write activity
(WA=~1). Small-chunks of random writes could result in a higher overhead (WA>>1).

©1989-2024 Lauterbach Application Note for eMMC Analysis | 6

This becomes important when considering the life of the raw-NAND memory inside the eMMC, which has a
finite number of program/erase cycles. See the table below:

ltem Value

Device Capacity 8GB

Write Endurance 2K Program/Erase Cycles
Data Written Per Day to Device 2GB

Expected Life w/ WA=1 =(8x2000)/(2*1) 8,000 days

Expected Life w/ WA=5 =(8x2000)/(2*5) 1,600 days

To estimate the WA for any particular eMMC device, and hence its expected lifetime on your application, you
can capture the log file of the activity.

Once a log is obtained, it's recommended to contact your eMMC vendor to get more information about the
log analysis tools required for analyzing the specific eMMC product.

©1989-2024 Lauterbach Application Note for eMMC Analysis | 7

Implementation Example for Linux OS

Below is an example of how the TRACE32-based log method can be applied to a Linux system. The solution
is based on light instrumentation of the mmc_start_request () and mmc_request_done () functions
defined in the Linux “drivers/mmc/core/core. c” source code file. Relevant eMMC device accesses are
captured through the instrumentation code and they are written to a static data structure making them
immediately traceable if data trace is available in the SoC. If data trace is not possible, the instrumentation
code writes the data to the Arm CoreSight Context ID register.

The solution was successfully tested on the DAVE Embedded Systems “MITO 8M Evaluation Kit” (see
https://www.dave.eu/en/solutions/system-on-modules/mito-8m). The kit consists of three boards: SoM,
SBCX carrier board, adapter board. This setup provides off-chip trace via a parallel trace port or a PCle
interface. The SoM is equipped with the NXP i.MX8M processor based on the Quad Core Arm Cortex-A53
CPU. The Linux kernel version used is 4.14.98.

The instrumentation code is provided in “Appendix A: Source Code Example”, page 15 or in the
~~/demo/etc/trace/emmc/ folder. The zero initialization of the T32_mmc structure is guaranteed by
Linux, since this variable is allocated in the bss section. The instrumentation is normally disabled but can be
enabled by writing the value "1" in the enabl e field of the T32_mmc structure. The identifier of the eMMC
device to be traced must be written in the dev field. Both of these operations can be performed from a
TRACE32 script via the Var.set command:

Var.set T32_mmc.enable = 1
Var.set ((char*)&T32_mmc.dev) = "mmcO"

The infoBit field can be written as follows:

Var.set T32_mmc.infoBit = 0x80000000

In order to distinguish between data written in the Context ID register by the instrumentation code from those
written by Linux for task switches, the range of values used by the instrumentation code must be reserved so
that they are not interpreted as task switch identifiers. The command ETM.ReserveContextID can be used

for this:

ETM.ReserveContextID 0x80000000--Oxffffffff

The cycle type task is assigned to Linux task switches, the cycle type info is assigned to the
instrumented code.

It's important to note that the Linux kernel must be compiled for debug (see “Training Linux Debugging”
(training_rtos_linux.pdf)).

©1989-2024 Lauterbach Application Note for eMMC Analysis | 8

https://www.dave.eu/en/solutions/system-on-modules/mito-8m

To reduce the amount of trace information generated by the target and to allow long-term trace via
TRACE32 streaming (Trace.Mode STREAM), filters can be applied to isolate the eMMC code and its writes
to the Context ID register. The Break.Set command can be used for this purpose:

Break.RESet

Break.Set mmc_request_done /Program /TraceON
Break.Set mmc_request_done\94 /Program /TraceOFF
Break.Set mmc_start_request /Program /TraceON

Break.Set mmc_start_request\38 /Program /TraceOFF

Where the filters marked as /TraceOFF are mapped to program addresses immediately after the
instrumentation.

Tracing task switch information is not required for the eMMC analysis, but if you want that task switch data
generated by the OS is included in the filtered trace flow, add an additional filter to the __switch_to ()
function (arch/armé64/kernel /process.c) where it calls the static inline
contextidr_thread_switch () function

Break. Set _ _switch_to+0x74 /Program /TraceON
Break. Set _ _switch_to+0x80 /Program /TraceOFF

The recorded trace data can be filtered and saved to a file, and then converted into a more suitable format
for analysis using a PRACTICE or Python script, or an external conversion program.

©1989-2024 Lauterbach Application Note for eMMC Analysis | 9

Use the command Trace.FindALL to filter and format trace data required for the eMMC analysis.

Trace.FindAll

/List Run CYcle sYmbol

, Address ADDRESS.OFFSET (mmc_start_request)
OR Address ADDRESS.OFFSET (mmc_request_done) \
OR CYcle info OR CYcle task \

%TimeFixed TIme.Zero Data

NOTE:

‘OR Cycle task’is optional.

j-j Bu:Trace.FindAll, Address mmc_start_request OR Address mmc_request_done OR CYcle info /List Run CYcle s¥Ymbol Data %eTimeFixed Time.Zero EI@

50244 [run [cycle

symbao |

data t1.zero

-0011449044
-0011448817
-0011448810
-0011448801
-0011448794
-0011444581
-0011444570
-0011444563
-0011444555
-0011444548
-0011444540
-0011444533
-0011420223

0
0
0
0
0

3 P P B B Bl Bl Bl

ptrace
info
info
info
info
ptrace
info
info
info
info
info
info
ptrace

LWwmlTnuxcore__coreymmc_request_done

BO636D6D
80000012
80000000
80000900

“amlinux'core__core'\mmc_start_request

BO636D6D
80000012
80044400
800000B5
80000200
80000400

“Ywmlinux'core__core'\mmc_request_done

27.634221785s

.634224955s
.634224980s
.634225005s
.634225030s
.634316938s
.634316980s
.634317005s
.634317030s
.634317055s
.634317080s
.634317105s
.640405810s

> < m >

If the trace data are available as required, they can be saved in a file using the PRinTer.File command and
the command prefix WinPrint.

PRinTer .FILE mmclog.txt ASCIIE

WinPrint.Trace.FindAll ,
Address mmc_request_done OR CYcle info \
/List Run CYcle sYmbol Data %$TimeFixed TIme.Zero

Address mmc_start_request OR \

©1989-2024 Lauterbach

Application Note for eMMC Analysis

10

Comparison with the Software Method ftrace

In Linux, eMMC access log solutions based on purely software methods are already available. The ftrace
framework provides this capability, as well as being able to log many other events. The term “ftrace” stands
for “function tracer” and basically allows you to examine and record the execution flow of kernel functions.
The dynamic tracing mode of ftrace is implemented through dynamic probes injected into the code, which
allow runtime definition of the code to be traced. When tracing is enabled, all the collected data is stored by
ftrace in a circular memory buffer. In the framework there is a virtual filesystem called tracefs (usually
mounted in /sys/kernel/tracing) which is used to configure ftrace and collect the trace data. All
management is done with simple operations on the files in this directory.

Comparative tests performed on the DAVE Embedded Systems “MITO 8M Evaluation Kit” target showed
that the ftrace impact compared to the TRACE32-based log solution is considerably higher in several
respects. This is understandable, considering that ftrace is a general-purpose trace framework designed to
trace many possible events, while the instrumentation required for the TRACES32 log method is specific and
limited to the pertinent functions. Moreover, ftrace requires some buffering (ring buffer) and saving data to a
permanent memory, while the solution based on TRACES2 uses off-chip trace to save the data externally in
real time. The following tables show a comparison between ftrace and the TRACE32 solution.

Instrumentation size

vmlinux vmlinux vmlinux instrumentation instrumentation
code size data source code size (*) data size (*)
files
Clean 12.79MB 10.78MB 4640
TRACE32 12.79MB 10.78MB +0 +372 byte +64 byte
(+0%) (+0%) (41source
code lines
in mmc
driver)
ftrace 14.78MB 11.77MB +836 +1.99MB +0.99MB+??MB
(+15.6%) (+9%) (+18%) ring buffer (**)

(*) ftrace instrumentation applies to the whole Linux kernel. TRACES32 instrumentation applies to the
functions mmc_start_request () and mmc_request_done () only.

(**) the actual size of the ftrace ring buffer can be configured during runtime but is typically between
10-100MB.

In the ftrace-based solution, an increase in kernel size of approximately 15% (code) and 9% (data) is
observed compared to the kernel without ftrace. During the execution of ftrace it's also necessary to reserve
additional memory for the ring buffer. The number of source files used in building the kernel increases by
18% when the ftrace framework is included. The weight of the instrumentation required by TRACES32, on the
other hand, is practically negligible both in terms of code and data.

©1989-2024 Lauterbach Application Note for eMMC Analysis | 11

Instrumentation time intrusion

Average duration at No ftrace No ftrace With ftrace
measuring points No TRACE32 instr. With TRACE32 instr. No TRACE32 instr.
*)

mmc_start_request 6.950us 8.108us (+1.158us) 36.875us
mmc_request_done 0.770us 1.364us (+0.594us) 63.031us

(*) measuring points are the part of functions where the instrumentation is added.

The functions average duration analysis of eMMC accesses highlights the greater weight required by ftrace.
The tests were performed under the following conditions.

Test scenario: R/W access to mmc0 with command:

stressapptest -s 20 -f /mnt/mmc0/filel -f /mnt/mmc0/file2 ;duration = 20s

Results in /mnt/mmc0 (16MB)

-rw-r--r-- 1 root root 8388608 Dec 3 16:30 filel
-rw-r--r-- 1 root root 8388608 Dec 3 16:30 file2

Setup for ftrace

echo 1 > /sys/kernel/debug/tracing/tracing_ on

echo 1 > /sys/kernel/debug/tracing/events/mmc/enable

echo 20000 > /sys/kernel/debug/tracing/buffer_size kb ; 20MB buffer size
echo > /sys/kernel/debug/tracing/trace

cat /sys/kernel/debug/tracing/trace_pipe > /home/root/test/ftrace.txt

Please note that the ftrace pipe is saved to a file on a different memory device (mmc1).

Additional, more detailed charts are provided in “Appendix B: Time Details”, page 18, which show that
using ftrace also involves a greater dispersion of the runtime durations compared to both the kernel without
ftrace and the kernel instrumented only with the code for TRACES32. In particular, the functions
mmc_start_request () and mmc_request_done () have a few us constant execution time without
ftrace, and show a very variable execution time with ftrace, with a maximum time up to 279us and 285us
respectively.

©1989-2024 Lauterbach Application Note for eMMC Analysis | 12

Conclusion

TRACE32 hardware-based trace tools provide the same log data as recorded by ftrace but with minimal
changes to the kernel (a few lines in a file) and a tiny time penalty. It also does not use any additional
memory (ram and file system) and allows for extremely long measurement times.

The following table summarizes the advantages and disadvantages of the two considered solutions:

TRACES32 and ftrace.

TRACE32

+ Light kernel instrumentation

+ No additional memory required

+ Long-term analysis (few hours up to
over 100 days)

+ Can be ported to other OS / eMMC
device drivers

— HW-based solution: requires a
debug and trace tool and offchip-
trace capable processor and
target

ftrace

+ SW-based solution

— Available for Linux kernel only

— Heavy kernel instrumentation

— Time intrusion in eMMC
operation

— Kernel program and data size
increase

— 10-100 MB of ram required for ring
buffer

— Additional storage device to save
the ring buffer

— For each eMMC operation ftrace
saves roughly 876 byte of log
information

Please contact your eMMC vendor to obtain more information on how TRACES32 logs can be used to
calculate your application lifespan. This is very important milestone to improve the storage performance
stability of your platform and for making sure the expected reliability requirements are met.

©1989-2024 Lauterbach

Application Note for eMMC Analysis | 13

References

Design Considerations for Embedded Products, Western Digital Corporation, 2018

https://link.westerndigital.com/content/dam/customer-
portal/en_us/external/public/cps/p/White_Paper_Design_Considerations_v1.0.pdf

Automotive Workload Analysis, Western Digital Corporation, September 2021

https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-
digital/collateral/white-paper/white-paper-automotive-workload-analysis.pdf

©1989-2024 Lauterbach Application Note for eMMC Analysis | 14

https://link.westerndigital.com/content/dam/customer-portal/en_us/external/public/cps/p/White_Paper_Design_Considerations_v1.0.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/collateral/white-paper/white-paper-automotive-workload-analysis.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/collateral/white-paper/white-paper-automotive-workload-analysis.pdf

Appendix A: Source Code Example

static struct T332 _mmc_struct {

unsigned int enable;
unsigned int infoBit;
unsigned int dev;
unsigned int * pHost;
unsigned int cmd ;
unsigned int arg;
unsigned int flags;

unsigned int blksz;
unsigned int blocks;

unsigned int err;

unsigned int resp0;

unsigned int respl;

unsigned int resp2;

unsigned int resp3;
} T32_mmc;

int mmc_start_request (struct mmc_host *host, struct mmc_request *mrq)
{

int err;
mmc_retune_hold (host) ;

if (mmc_card _removed (host->card))
return -ENOMEDIUM;

mmc_mrg_pr_debug (host, mrg, false);
WARN_ON ('host->claimed) ;

if (T32_mmc.enable) ({
T32_mmc.pHost = (unsigned int *)mmc_hostname (host) ;
if ((*T32_mmc.pHost)==T32_mmc.dev) {
if (mrg->cmd) {
write_sysreg((*T32_mmc.pHost)|T32_mmc.infoBit,
contextidr ell);

isb();

T32 mmc.cmd = (mrq—>cmd—>opcode)|T32_mmc.infoBit;
write_sysreg (T32_mmc.cmd, contextidr_ell);

isb();

T32_mmc.arg = (mrg->cmd->arg) |T32_mmc.infoBit;
write_sysreg (T32_mmc.arg, contextidr_ell);

isb();

T32_mmc.flags = (mrg->cmd->flags) |T32_mmc.infoBit;
write_sysreg (T32_mmc.flags, contextidr_ell) ;
isb();

©1989-2024 Lauterbach Application Note for eMMC Analysis

if (mrg->data) {

T32 mmc.blksz = (mrq—>data—>b1ksz)|T32_mmc.infoBit;
write_sysreg (T32_mmc.blksz, contextidr_ell) ;

isb();

T32 _mmc.blocks = (mrq—>data—>blocks)|T32_mmc.infoBit;

write_sysreg (T32_mmc.blocks,
isb();

err = mmc_mrqg prep (host, mrq) ;
if (err)

return err;

void mmc_request_done (struct mmc_host *host,

{

struct mmc_command *cmd = mrg->cmd;
int err = cmd->error;

if (lerr || !cmd->retries

|l
mmc_should_fail_ request (host, mrq) ;

if ('host->ongoing mrq)

contextidr_ell) ;

struct mmc_request *mrq)

mmc_card_removed (host->card)) {

led_trigger_event (host->led, LED_OFF) ;

if (mrg->sbc) {
pr_debug ("%$s:
mmc_hostname (host) ,
mrg->sbc->error,
mrg->sbc->resp([0],
mrg->sbc->resp(2],

req done <CMD%u>:

pr_debug("%$s: reqg done (CMD%u): %d:
mmc_hostname (host), cmd->opcode,
cmd->resp[0], cmd->respll],
cmd->resp[2], cmd->respl3]);

if (mrg->data) {
pr_debug ("%$s:
mmc_hostname (host) ,

%d:
mrg->sbc->opcode,

%d bytes transferred:

%08x %08x %08x %08x\n",

mrg->sbc->resp[l],
mrg->sbc->resp[3]) ;

%08x %08x %08x %08x\n",
err,

gd\n",

mrg->data->bytes_xfered, mrg->data->error) ;

©1989-2024 Lauterbach

Application Note for eMMC Analysis

16

if (mrg->stop) {
pr_debug ("%$s: (CMD%u) : %d: %08x %08x %$08x %08x\n",

mmc_hostname (host), mrg->stop->opcode,
mrg->stop->error,

mrg->stop->resp[0], mrg->stop->respll],
mrg->stop->resp[2], mrg->stop->respl3]);

}

if (T32_mmc.enable) {
T32_mmc.pHost = (unsigned int *)mmc_hostname (host) ;
if ((*T32_mmc.pHost)==T32_mmc.dev) {

3
/*

write_sysreg((*T32_mmc.pHost)|T32_mmc.infoBit,
contextidr ell) ;

isb();

T32 mmc.cmd = (cmd—>opcode)|T32_mmc.infoBit;

write_sysreg (T32_mmc.cmd, contextidr_ell);

isb();

T32_mmc.err = (err) |T32_mmc.infoBit;

write_sysreg (T32_mmc.err, contextidr_ell);

isb();

T32_mmc.respl0 = (cmd—>resp[0])|T32_mmc.infoBit;

write_sysreg (T32_mmc.respl, contextidr_ell) ;

isb();

* Request starter must handle retries - see
* mmc_wailt_for_ reqg done() .

*/

if (mrg->done)
mrg->done (mrq) ;

©1989-2024 Lauterbach

Application Note for eMMC Analysis

17

Appendix B: Time Details

The Trace.STATistic.AddressDURation command was used for all time measurements.

1. Time duration analysis: mmc_start_request

No ftrace, no TRACE32 instrumentation

= BuTrace.STATistic. AddressDURation mmc_start_request sdhci_request EI@
(& setup...|[i Chart |[& zoom || = zoom || ElFul |
samples: 4630. avr: 6.950us min: 2.490us max: 63.419%s
total: 29.011s dn: 32.180ms out: 28.979s ratio: 0.110%
up to |count ratio 1% 2% 5% 10% 20% 50% 100 |
< 0.000us . 0.000% -
5.000us 1562. | 33.736%
10.000us 2494. | 53.866%
15.000us 475. | 10.259%
20.000us 93. 2.008% |e——
25.000us 0. 0.000%
30.000us 0. 0.000%
35.000us 0. 0.000%
40.000us 0. 0.000%
45.000us 2. 0.043% |+
50.000us 1. 0.021% |+
55.000us 2. 0.043% |+
60.000us 0. 0.000%
65.000us 1. 0.021% |+
70.000us 0. 0.000%
75.000us 0. 0.000%
80.000us 0. 0.000%
= 0. 0.000% v
4 I3
No ftrace, with TRACES32 instrumentation
= BuTrace.STATistic. AddressDURation mmc_start_request sdhci_request EI@
(& setup...|[i Chart |[& zoom || = zoom || ElFul |
samples: 4538. avr: 8.108us min: 2.138us max: 131.49%0us
total: 29.923s in: 36.7%ms out: 29.886s ratio: 0.122%
up to |count ratio 1% 2% 5% 10% 20% 50% 100 |
< 0.000us . 0.000% -
10.000us 3493, | 76.972%
20.000us 1030. | 22.697%
30.000us 2. 0.044% |+
40.000us 1. 0.022% |+
50.000us 9. 0.198% |+
60.000us 0. 0.000%
70.000us 1. 0.022% |+
80.000us 0. 0.000%
90. 000us 0. 0.000%
100. 000us 0. 0.000%
110.000us 0. 0.000%
120.000us 1. 0.022% |+
130.000us 0. 0.000%
140.000us 1. 0.022% |+
150.000us 0. 0.000%
160. 000us 0. 0.000%
= 0. 0.000% v
4 I3

©1989-2024 Lauterbach

Application Note for eMMC Analysis

18

With ftrace, no TRACES32 instrumentation

= BuTrace.STATistic. AddressDURation mmc_start_request sdhci_request EI@
(& setup...|[i/ chart || S zoom || S zoom | [ElFull |
samples: 4669. avr: 36.875us min: 4.774us max: 279.477us
total: 41.875s in: 172.170ms out: 41.703s ratio: 0.411%
up to |count ratio 1% 2% 5% 10% 20% 50% 100 |
< 0.000us 0. 0.000% -
20.000us 2935. | 62.861%
40.000us 312. 6.682%
60.000us 12. 0.257% |+
80.000us 1049. | 22.467%
100.000us 10. 0.214% |+
120.000us 15. 0.321% |+
140.000us 72. 1. 542% |se—
160.000us 27. 0.578% |+
180.000us 88. 1. 884% |e—
200.000us 74. 1. 584% |mm—
220.000us 45. 0.963% |+
240.000us 3. 0.064% |+
260.000us 10. 0.214% |+
280.000us 17. 0.364% [+
300.000us 0. 0.000%
320.000us 0. 0.000%
> 0. 0.000% -
4 F

©1989-2024 Lauterbach Application Note for eMMC Analysis | 19

2. Time duration analysis: mmc_request_done

No ftrace, no TRACE32 instrumentation

= B:TraceSTATistic.AddressDURation ADDRESS.OFFSET(mmec_request_done) ADDRESS.OFFSET(mmc_request_done\33) /CORED | = || & |[x=534]
(& setup...|[i Chart |[& zoom || = zoom || ElFul |
samples: 4484, avr: 0.770us min: 0.0l6us max: 5.670us
total: 28.938s in: 3.452ms out: 28.934s ratio: 0.011%
up to |count ratio 1% 2% 5% 10% 20% 50% 100 |
< 0.000us 0. 0.000% -
0.500us 2618. | 58.385%
1.000us 459. | 10.236%
1.500us 452. | 10.080%
2.000us 365. 8.140%
2.500us 289. 6.445%
3.000us 163. 3. 635% |———
3. 500us 85. 1. 895% |e—
4.000us 29. 0.646% [+
4.500us 15. 0.334% [+
5.000us 7. 0.156% |+
5.500us 1. 0.022% |+
6.000us 1. 0.022% |+
6.500us 0. 0.000%
7.000us 0. 0.000%
7.500us 0. 0.000%
8.000us 0. 0.000%
= 0. 0.000% v
4 I3

No ftrace, with TRACE32 instrumentation

= B:TraceSTATistic.AddressDURation ADDRESS.OFFSET(mmec_request_done) ADDRESS.OFFSET(mme_request_done\33) /CORED | = || & |[s25]
(& setup...|[i Chart |[& zoom || = zoom || ElFul |
samples: 4528, avr: 1.364us min: 0.016us max: 60.013us
total: 29.012s in: 6.186ms out: 29.006s ratio: 0.011%
up to |count ratio 1% 2% 5% 10% 20% 50% 100 |
< 0.000us 0. 0.000% A
5.000us 733. | 95.318%

10.000us 19. 2.470% |e———

15.000us 9. 1.170% |mm

20.000us 3. 0.390% |+

25.000us 1. 0.130% |+

30.000us 0. 0.000%

35.000us 0. 0.000%

40.000us 2. 0.260% [+

45.000us 1. 0.130% |+

50.000us 0. 0.000%

55.000us 0. 0.000%

60.000us 0. 0.000%

65.000us 1. 0.130% |+

70.000us 0. 0.000%

75.000us 0. 0.000%

80.000us 0. 0.000%
= 0. 0.000% »

J 4 }

©1989-2024 Lauterbach Application Note for eMMC Analysis | 20

With ftrace, no TRACES32 instrumentation

= B:Trace STATistic.AddressDURation ADDRESS.OFFSET(mmec_request_done) ADDRESS.OFFSET(mmc_request done\33) /CORED [= |[& |[=23]
(& setup...|[i/ chart || S zoom || S zoom | [ElFull |
samples: 4494, avr: 63.031us min: 1.115us max: 285.255us
total: 25.9555 din: 283.26lms out: 25.671s ratio: 1.091%
up to |count ratio 1% 2% 5% 10% 20% 50% 100 |
< 0.000us 0. 0.000% -
20.000us 2403. | 53.471%
40.000us 163. 3. 027 |—
60.000us 64. 1.424% |mem—
80.000us 179. 3. 983% |—
100. 000us 34. 0.756% +
120.000us 183. 4,07 2% | we—
140.000us 696. | 15.487%
160.000us 372. 8.277%
180. 000us 38. 0.845% ¢
200. 000us 84. 1. 569% |we—
220.000us 239. 5. 315% |n—
240.000us 15. 0.333% «
260. 000us 12. 0.267% ¢
280. 000us 11. 0.244% ¢
300. 000us 1. 0.022%
320.000us 0. 0.000%
> 0. 0.000% '
4 2

©1989-2024 Lauterbach

Application Note for eMMC Analysis

21

	Application Note for eMMC Analysis
	History
	Introduction
	TRACE32-based eMMC Access Log Solution
	Implementation Example for Linux OS
	Comparison with the Software Method ftrace
	Conclusion
	References
	Appendix A: Source Code Example
	Appendix B: Time Details

