LAUTERBACH A

Training Linux Debugging
for Intel® x86/x64

Training Linux Debugging for Intel® x86/x64

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACES32 TraiNinNg .cicccccceriiiisssrriiiissssiisisssssiassssss s sasssssss s sssssss s sas s sss s easssssssseasssssss sassssnsnsenssssnsnnsansan =
Training INTEI® X86/X64cerveeeririerriiss i s s san s s s s s s s e s e an e s n e e e nmnnnaan r—~
Training Linux Debugging for Intel® X86/X64cccceceriimmrirmmissmsmssmssssnss s sssanenas 1
o Yo 11T 4 T] o 5
Documentation Updates 5
Related Documents and Tutorials 5
Basic Terms on Embedded LiNUXccoccciiiiiimnminnmmsnnnecsss s sssssssmsssssssssssssnas 6
Linux Components 6
The Kernel 6
Kernel Modules 7
Processes and Threads 7
Libraries (Shared Objects) 7

The Linux Awareness 7
Virtual Memory Management in Linux 9
Virtual Address Map of Linux 9
Debugger Memory Access 10

On Demand Paging 13
Run-Mode vs. Stop-Mode Debugging 14
Hardware Based Debuggers 14
Software Based Debuggers 15
Kernel Configuration 16
Setting up a Script for Linux-Aware Debuggingccccccvvcmmmmnismsmmnisssssmnnsssssessnnes 18
Linux Setup-Steps and -Commands 18
Set up the Debugger Address Translation 24

Mark the Kernel Address Space 27
Example Linux Setup-Scripts 28
Debugging the Linux COmponentsccccciiiiimmminimnninemssnssssssssssmsssssssssssssnas 31
The Kernel 31
Kernel Startup 31
Kernel Boot 33
Verifying Image and Symbols 34
Kernel Modules 35
Processes 37
Threads 39
©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64 2

Libraries 39

Task Related Breakpoints 41
Task Related Single Stepping 41
Task Context Display 42
Linux specific WINAOWScccceiimiiimmmmmmiss s sss e s s e ssms s s s ssmss s e samssnnnas 43
Display of System Resources 43
Kernel Module List 44
File System Information 45
Kernel Log Buffer 46
RAM Dump Generation 47
QLo 10 o == ¢ Lo T (3 T 48
O 49

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64 | 3

Training Linux Debugging for Intel® x86/x64

Version 06-Jun-2024

-
" Training Linux Debugging

File Edit View Var Break Run CPU Misc

(ML + e R

Trace Perf

Cov Linux Window Help

SRR ARl

iList] [= &[5 || $ B:TASKProcess
M step || M over |[MiDiverge|[« Return|[& Up » Go [NN Break ode | || magic command #thr state spaceid pid i
add]r[T sl[urcs ”—M][];ﬂ_‘_}‘ ICO3DE32C swapper 33. [running 0000 0. 3. 4. 5. 6. 7. 8.
char f1ags[SIZE+1]; — | [CEB2EC40 init - |sleeping 0001 1. I
! CEC4A070 ggevdd s]‘eepmg 0141 321. =
. . " % 3oy = CEL1EESBO us-daemon - sleeping 0225 549.
= [BEEE sieve of 1 EC326F0 @ rsyslood 4. |sleeping | 022E | 558. 562. 563. 564.
- register int i, primz, k; CE2BE770 console-kit-dae | 63. |sleeping 0240 576. 579. 580. 582. 58
2 areEl R o CE3146F0 xinetd - |sleeping 0291 657.
! CE315300 q‘nngetty - s]‘eepmg 029D 669.
31 — 0 (CEC26ECO ogin - |sleeping 02A1 673.
anzah) = 0; CEC50CCO ha%d—addon—stor - s]‘eepw‘ng 02FC 764.
R E=Fo & as g : _ CE1C6430 connman - |sleeping 0316 790.
B fer (U =08 © <= &6 A FEGEl 505 1 s W CE283200 wpa_supplicant - |sleeping 032F 815.
(3 =0+ 5 <« o Fnn T CED49100 corewatcher - |sleeping 035D 861.
&1 \;m‘ (1s0R T < @eER T) CE2EB280 kerneloops - |sleeping 035F 863.
- SE 39 % CECACDE0 crond - |sleeping 0398 920.
&p }F (flags[1) CECB21B0 bluetoothd - |sleeping 039a 922.
- m s : - CEC41140 xinetd - |sleeping 039E 926.
o3 PS¢ 1o 5k | [ceccaesn | bash - [slesping | 073k | 1335
& wrte ¢ B brze) | feecs3s00 e £ noe_3nd
i - i Display detailed -
IR i » < Il Display task struct ’
I fa BzTASK.DMESG [a|[®][] | & B:TASKModule Display Stack Frame
kernel ring buffer magic hame 5| Display Registers
<5>] 0.000000] Linux version 2.6.30-rce-mrst (die@diepc3) (gcc = FA3448C [Tibcre3Zc L| Switch Context
<6 0.000000] KERNEL supported cpus: El FA20A2C [crc32c L
<6>[0.000000] 1Intel GenuineIntel e Load Process Symbols
<6 0.000000] AMD AuthenticAMD Delete Process Symbols
<6 0.000000] NSC Geode by NSC
6] 0.000000] Cyrix Cyrixinstead Add Libraries to Symbol Autoloader
<6 0.000000] Centaur (entaufHau]s Add to Watched Processes
<6 0.000000] Transmeta GenuineTMx86 Delete from Watched P
<6 0.000000] Transmeta TransmetaCPU elete from Watched Frocesses
<6 0.000000] UMC UMC UMC UMC T
<6 0.000000] x86 hardware subarch: moorestown platform
<6 0.000000] SFI version 0.5, 2008(R) Intel -
: ey . Dump task entry o
UIEER Kill task
Trace this task
[trigger | [davices][tace |[Das][var J[st [PErRF |[S¥Stem |[Step |[Go][Break | ["SYmBOrTFrame | Regtar o™ | [previom
ND:0000:CEC33300 sieve 0 |system ready HLL up

©1989-2024 Lauterbach

Training Linux Debugging for Intel® x86/x64

Introduction

This training will have the main subjects:

J Basic terms on embedded Linux
o Kernel configuration
. Setting up a script for Linux-aware debugging

J Debugging Linux components by TRACE32 Linux menu

. Troubleshooting

Please note that this document only covers Linux debugging on Intel x86/x64. Please refer to “Training
Linux Debugging” (training_rtos_linux.pdf) if you are using a different processor architecture.

Documentation Updates

The latest version of this document is available for download from:

www.lauterbach.com/pdf/training_rtos_linux_x86.pdf

Related Documents and Tutorials

J For a complete description of the Linux awareness commands, refer to the “OS Awareness
Manual Linux” (rtos_linux_stop.pdf).

. For information about Linux run mode debugging, please refer to “Run Mode Debugging Manual
Linux” (rtos_linux_run.pdf) and “TRACE32 as GDB Front-End” (frontend_gdb.pdf).

. The Linux Debugging Reference Card includes an overview of frequently used TRACE32
commands for debugging targets running Linux.

. For a short video tutorial about Linux debugging, visit:
support.lauterbach.com/kb/articles/trace32-linux-debugging

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64 | 5

http://www.lauterbach.com/pdf/training_rtos_linux_x86.pdf
http://www.lauterbach.com/referencecards.html
https://support.lauterbach.com/kb/articles/trace32-linux-debugging

Basic Terms on Embedded Linux

This part describes essential basics and terms related to Linux and Linux-Debugging.

1. Linux Components

2 The Linux Awareness

3. Virtual Memory Management in Linux
4 Run-Mode vs. Stop-Mode Debugging

Linux Components

From the point of view of a debugger, a Linux system consists of the following components:

J The Linux kernel

. Kernel modules

J Processes and threads

J Libraries (shared objects)

Moreover, we can talk about two different spaces of executed code:
. Kernel space with privileged rights which includes the kernel

J User space with limited rights which includes processes, threads and libraries.
The kernel debug symbols (vmlinux) should be loaded in TRACES32 by the user. The debug symbols of
kernel modules, processes and libraries are automatically loaded on-demand by the TRACE32 Symbol

Autoloader. Please refer to the rest of this training, as well as to “OS Awareness Manual Linux”
(rtos_linux_stop.pdf) for more information.

The Kernel

The Linux kernel is the most important part in a Linux system. It runs in privileged kernel space and takes
care of hardware initialization, device drivers, process scheduling, interrupts, memory management... The
Linux kernel is generally contained in a statically linked executable in one of the object files supported by
Linux (e.g. “vmlinux”). You can also find the kernel in compressed binary format (zimage/ulmage). You will
see later in this training how to configure the Linux kernel for Linux-aware debugging.

Kernel threads:

It is often useful for the kernel to perform operations in the background. The kernel accomplishes this via
kernel threads. Kernel threads exist solely in kernel space. The significant difference between kernel threads
and processes is that kernel threads operate in kernel space and do not have their own address space.

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64 | 6

Kernel Modules

Kernel modules (*.ko) are software packages that are loaded and linked dynamically to the kernel at run
time. They can be loaded and unloaded from the kernel within a user shell by the commands
modeprobe/insmod and rmmod. Typically kernel modules contain code for device drivers, file systems, etc.
Kernel modules run at kernel level with kernel privileges (supervisor).

Processes and Threads

A process is an application in the midst of execution. It also includes, additionally to executed code, a set of
resources such as open files, pending signals, a memory address space with one or more memory
mappings...

Linux processes are encapsulated by memory protection. Each process has its own virtual memory which
can only be accessed by this process and the kernel. Processes run in user space with limited privileges.

A process could have one or more threads of execution. Each thread includes a unique program counter,
process stack and set of process registers. To the Linux kernel, there is no concept of a thread. Linux
implements all threads as standard processes. For Linux, a thread is a processes that shares certain
resources with other processes.

Libraries (Shared Obijects)

Libraries (shared objects, *.so0) are commonly used software packages loaded and used by processes and
linked to them at run-time. Libraries run in the memory space of the process that loaded them having the
same limited privilege as the owning process. Same as processes, also libraries are always loaded and
executed as a file through a file system.

The Linux Awareness

Debugging an operating system like Linux requires special support from the debugger. We say that the
debugger needs to be “aware” of the operating system. Since TRACES32 supports a wide range of target
operating systems, this special support is not statically linked in the debugger software but can be
dynamically loaded as an extension depending on which operating system is used. Additional commands,
options and displays will be then available and simplify the debugging of the operating system.The set of
files providing these operating system debugging capabilities is called here “awareness”.

To be able to read the task list or to allow process or module debugging, the Linux awareness accesses the
kernel’s internal structures using the kernel symbols. Thus the kernel symbols must always be available
otherwise Linux aware debugging will not be possible. The file vmlinux has to be compiled with
debugging information enabled as will be shown later.

The Linux awareness files can be found in the TRACES32 installation directory under
~~/demo/<arch>/kernel/linux/

The Linux awareness can be loaded using the command TASK.CONFIG or EXTension.LOAD.

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64 | 7

You can check the version of the loaded Linux awareness in the VERSION.SOFTWARE window. This
information will only be shown if the Linux awareness is already loaded.

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64 | 8

Virtual Memory Management in Linux

Before actually going into the details on how to debug a Linux system with TRACE32, we need to look at the
helping features of TRACE32 that make Linux debugging possible.

Virtual Address Map of Linux

We start by discussing the virtual address map used by a running Linux system. Basically the memory is
split into two sections: one section is reserved for the kernel and the second one for the user applications.
The kernel runs in supervisor/privileged mode and has full access to the whole system while user processes
run in user/non-privileged mode. The kernel has full visibility of the whole virtual address map, while the user
processes have only a partial visibility. It's the task of the kernel to maintain the virtual address map and also
the virtual to physical address translations for each user process.

The kernel space is exclusively used by the kernel, this means that a kernel logical/virtual address can have,
at a given time, one single virtual-to-physical address mapping. On the other hand, the user space is shared
by all running processes. Thus a virtual address in the user space can have different mappings depending
on the process to which this address belongs.

The kernel space includes the kernel logical address range which is mapped to a continuous block in
the physical memory. The kernel logical addresses and their associated physical addresses differ only
by a constant offset. We denote this kernel logical to physical address translation as “kernel default
translation”. The rest of the kernel space includes the kernel virtual addresses which do not have
necessarily the same mapping as the kernel default translation. This includes for instance kernel
modules and memory allocated with vmalloc.

For a 32 bit Linux, the logical start address of the kernel is fixed by the kernel CONFIG_PAGE_OFFSET
macro which is per default 0xCc0000000 and the end address is the value of the high_memory variable
minus one.

The virtual memory map for a 64 bit Linux kernel is described in the kernel documentation under
Documentation/x86/x86_64/mm. txt.

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64 | 9

Debugger Memory Access

Per default (i.e. with disabled debugger address translation) the debugger accesses the memory virtually
(through the core). This way, it is only possible to access memory pages which are currently mapped in the
translation look-aside buffers (TLB).

Alternatively, you can set up the debugger to access the memory physically. This way, the debugger will have
access to all the existing physical memory. However, Linux operates completely in virtual memory space: all
functions, variables, pointers etc. work with virtual addresses. Also, the symbols are bound to virtual
addresses. Hence, if the user tries to read the value of a variable for instance, the debugger has to find the
virtual to physical address translation for this variable and access it using its physical address.

The debugger can hold a local translation list. Translations can be added to this list manually using the
TRANSIation.Create command. This local translation list can be viewed using the TRANSIation.List
command. If the accessed virtual address has a translation in the local translation list then this translation is
used, otherwise if the translation “table walk” is enabled (TRANSIation.TableWalk ON) then the debugger
will read the target MMU page table(s) to find the virtual to physical address translation. We call this process
“debugger table walk”.

NOTE: The debugger local translation list has the highest priority in the debugger
translation process.

In contrast to the CPU address translation, if the virtual to physical address mapping is not found in the page
table when performing a debugger table walk, no page fault is generated. It is then not possible for the
debugger to access this address. A debugger memory access doesn’'t modify the MMU page tables.

Without further settings, the debugger can only access the current page table pointed by the CRS3 register.
However, each process as well as the kernel, has its own page table. Hence, by walking only through the
current page table, it is not possible to find the virtual to physical address mapping of a process which is not
the current executing one and as follows it is not possible to access the memory of such a process.

But since the Linux kernel manages the switching of the MMU for all processes, kernel structures hold the
pointers for the translation pages tables for every process. The debugger just needs to get this information
from the kernel data structures to be able to access the memory for any running task in the system. It is the
task of the Linux awareness to get the page table descriptors for all running tasks on the system. You can
display these descriptors by execution the TRACE32 commands TRANSIation.ScanID and
TRANSIation.ListID.

To be able to access the kernel logical range at any time, the debugger needs
to know the kernel logical to physical address translation.

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64 | 10

Space IDs

Under Linux, different processes may use identical virtual address. To distinguish between those addresses,
the debugger uses an additional identifier, called space ID (memory space identifier). It specifies which
virtual memory space an address refers to. The space ID is zero for all tasks using the kernel address space
(kernel threads). For processes using their own address space, the space ID equals the lower 16bits of the
process ID. Threads of a particular process use the memory space of the invoking parent process.
Consequently threads have the same space ID as the parent process (main thread).

If you enter commands with a virtual address without the TRACE32 space ID,
the debugger will access the virtual address space of the current running
task.

The following command enables the use of space IDs in TRACES32:

I SYStem.Option.MMUSPACES ON

SYStem.Option.MMUSPACES ON doesn’t switch on the processor MMU. It just
extends the addresses with space IDs.

O

After enabling the address extension with the memory space IDs, a virtual address looks like
“001E:10001244", which means virtual address 0x10001244 with space ID 0x1E (pid = 30.).

You can now access the complete memory:

Data.dump 0x10002480 ; Will show the memory at virtual address
; 0x10002480 of the current running task

List 0x2F:0x10003000 ; Will show a code window at the address
; 0x10003000 of the process having the space
; 1id Ox2F

Data.dump A:0x10002000 ; Will show the memory at physical address
; 0x10002000

Symbols are always bound to a specific space ID. When loading the symbols, you need to specify, to which
space ID they should belong. If you load the symbols without specifying the space ID, they will be bound to
space ID zero (i.e. the kernel’'s space ID). See chapter “Debugging the Linux Components”, page 31 for
details.

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64 | 11

Because the symbols already contain the information of the space ID, you don’t have to specify it manually.

Data.dump myVariable ; Will show the memory at the virtual
; address of “myVariable” with the space ID
; of the process holding this variable

IS IS

44 B:Data.dump 0:08048FDD (o=@]=] 44 B:Data.dump 0xBB9:0x08048FDD (o=@]=]
address 0 4 01234567 i address 0 4 01234567 i
ND:0141:08048FD8 | 00090000#0000036F Li7u0%is » ND:0BB9:08048FD8 | ECB3ELGOPFCASC/ 28 553c(7Er =+
ND:0141:08048FEQ | 00000010 0D696918 i%i5iis - ND:0BE9:08048FEQ | 00000000 00E445C7 L1Li5ESY
virtual address of current process 0x141 virtual address of specified process 0xBB9
121 B::Data.dump A:0x08048FDD === iti] B:Data.dump flags [o[@]==]
address 0 4 01234567
AR5 0803 ot | ECOTBFOOCEOOEFT0 Seee vee—! ND:0BBJ70804A3E8 [FOOOLOT0L OT000I0L 3i5it2ie +
AND:08048FEOJ 5803304 FDO27781 53%\iwis - BEEREE SRR 00010001 00010100 5,55
access to physical address A:0x8048FDD Symbol “flags” with process 0xBB9
NOTE: Address extension with the memory space IDs is per default disabled in

TRACE32. The command SYStem.Option.MMUSPACES ON has thus to be
included at the start of the Linux debugging script.

If the Linux awareness is enabled, the debugger tries to get the space ID of the current process by accessing
the kernel’s internal data structures. If this fails e.g. because of wrong symbol information, an access error,
or simply because the kernel's data structures have not been yet initialized (in case you stop the target early
in the kernel boot process), the debugger sets the current space ID to 0xFFFF and shows the message
“task error” in the status line.

Go |[Break || symbol |[Frame | [Register |
(task error) _________JUNNESRREY

You can ignore the “task error” message as long as the kernel has not yet booted. In case you still get this

error after the kernel boot, then you probably have a wrong configuration or a problem with the kernel debug
symbols.

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64 | 12

On Demand Paging

Linux is designed for heavy MMU usage with on-demand paging. On-demand paging means that code and
data pages are loaded when they are first accessed. If the process tries to access a memory page that is not
yet loaded, it creates a page fault. The page fault handler then loads the appropriate page.

The following screen shots show an example of on-demand paging. The instruction pointer is near the page
boundary at the address 0x4 0EFFB. The next memory page beginning at 0x40F000 cannot be accessed
by the debugger since it doesn’t have a mapping in the MMU page table of the current process.

-

E’ilB::List.auto | = ||E|| 3 |
[M Step][W Over]@Diverge][+ Return][¢ up][b Go][11 Break]%Mode] Find:
addr/1ine |code Tlabel mnemonic comment |
XP:0836:000000000040EFES (5D pop rbp -
XP:0836:000000000040EFE9 |C3 ret
XP:0836:000000000040EFEA |55 push rbp
2 2 4889ED mowv rbp,rsp
XP:0836:000000000040EFEE [4883ECL0 sub rsp,+0x10
XP:0836:000000000040EFF2 [48897DF8 mov qword ptr [rbp-0x8],rd
XP:0836:000000000040EFF6 [B3/8E04300 mov eax,0x43E078
XP:0836:000000000040EFFB |[488B55F8 mov rdx,qword ptr [rbp-0x8|_
XP:0836:000000000040EFFF |48 ?2P?7?7°7777? 1
XP:0836:000000000040F000 |77 ?2P?7?7°7777?
XP:0836:000000000040F001 |77 ?2P?7?7°7777?
XP:0836:000000000040F002 |77 ?2P?7?7°7777?
XP:0836:000000000040F003 |77 ?2P?7?7°7777?
XP:0836:000000000040F004 |77 ?2P?7?7°7777?
XP:0836:000000000040F005 |77 ?2P?7?7°7777?
XP:0836:000000000040F006J?? 77?7?7777 -
4 | i b
$4 B:MMU.Dump PageTable 0:40E000 [==
logical physical
836:000000000040e000--000000000040EFFF A:000000004B9BC000--000000004B9BCFFF =
836:000000000040F000--000000000040FFFF
836:0000000000410000--0000000000410FFF A:000000004B9BE000--000000004B9BEFFF -
2

We set an on-chip breakpoint somewhere in the next memory page and resume the execution. A page fault
then occurs and the memory page is loaded and gets a mapping in the current page table.

-

E'_l [B::List.auto] |E||E”E|
[M Step][W Over]@Diverge][+ Return][¢ up][b Go][11 Break]%Mode] Find:
addr/1ine |code Tlabel mnemonic comment |
XP:0836:000000000040EFES (5D pop rbp -
XP:0836:000000000040EFE9 |C3 ret
XP:0836:000000000040EFEA |55 push rbp
XP:0836:000000000040EFEB [4889E5 mov rbp,rsp
XP:0836:000000000040EFEE [4883EC10 sub rsp,+0x10
XP:0836:000000000040EFF2 [48897DF8 mov qword ptr [rbp-0x8],rd
XP:0836:000000000040EFF6 [B3/8E04300 mov eax,0x43E078
XP:0836:000000000040EFFB |[488B55F8 mov rdx,qword ptr [rbp-0x8|_
XP:0836:000000000040EFFF |[48589D1 mov rcx, rdx i
2 2 BAZ21020000 mowv edx,0x221
XP:0836:000000000040F007 [BEOLOODOOO mov esi,0x1
XP:0836:000000000040F00C (4889C7 mov rdi, rax
XP:0836:000000000040F00F [ES8LC38FFFF call 0x402830
XP:0836:000000000040F014 (B33C000000 mov eax,0x3C
XP:0836:000000000040F019 (54C0 test al,al
XP:0836:000000000040F01BJ74ZB je 0x40F048 -
4 | i b
$4 B:MMU.Dump PageTable 0:40E000 [==
logical | physical |
836:000000000040e000--000000000040EFFF A:000000004B98C000--000000004B9BCFFF | «
836:000000000040F000--000000000040FFFF A:000000004898D000--000000004B9BDFFFE
836:0000000000410000--0000000000410FFF A BYBE -— BYBEFFF |~
4

©1989-2024 Lauterbach

Training Linux Debugging for Intel® x86/x64

13

Run-Mode vs. Stop-Mode Debugging

There are two main alternatives for debugging a Linux target: hardware based (stop mode) and software
based (run mode). This chapter gives a small introduction regarding the differences between stop and run
mode debugging which are both supported by TRACE32.

Hardware Based Debuggers

A hardware-based debugger uses special hardware to access target, processor and memory (e.g. by using
the JTAG interface). No software components are required on the target for debugging. This allows
debugging of bootstraps (right from the reset vector), interrupts, and any other software. Even if the target
application runs into a complete system crash, you are still able to access the memory contents (post
mortem debugging).

A breakpoint is handled by hardware, too. If it is reached, the whole target system (i.e. the processor) is
stopped. Neither the kernel, nor other processes will continue. When resuming the target, it continues at the
exact state, as it was halted at the breakpoint. This is very handy to debug interrupts or communications.
However, keep in mind that also “keep alive” routines may be stopped (e.g. watchdog handlers).

The debugger is able to access the memory physically over the complete address range, without any
restrictions. All software parts residing in physical memory are visible, even if they are not currently mapped
by the TLBs. If the debugger knows the address translation of all processes, you gain access to any process
data at any time.

The “on demand paging” mechanism used by Linux implies that pages of the application may be physically
not present in the memory. The debugger cannot access such pages (including software breakpoints), as
long as they are not loaded.

Advantages:

. bootstrap, interrupt or post mortem debugging is possible

. no software restrictions (like memory protection, ...) apply to the debugger

. the full MMU table and code of all processes alive can be made visible

. only JTAG is required, no special communication interface as RS232 or Ethernet is
needed

Disadvantages:

. halts the complete CPU, not only the desired process
. synchronization and communications to peripherals usually get lost
L debug hardware and a debug interface on the target are needed

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64 | 14

Software Based Debuggers

Software based debuggers, e.g. GDB, usually use a standard interface to the target, e.g. serial line or
Ethernet. There is a small program code on the target (called “stub” or “agent”) that waits for debugging
requests on the desired interface line and executes the appropriate actions. Of course, this part of the
software must run, in order for the debugger to work correctly. This implies that the target must be up and
running, and the driver for the interface line must be working. Hence, no bootstrap, interrupt or post mortem
debugging is possible.

When using such a debugger to debug a process, a breakpoint halts only the desired process. The kernel
and all other processes in the target continue to run. This may be helpful, if e.g. protocol stacks need to
continue while debugging, but hinders the debugging of inter-process communication.

Because the debugging execution engine is part of the target program, all software restrictions apply to the
debugger, too. In the case of a gdbserver for example, which is a user application, the debugger can only
access the resources of the currently debugged processes. In this case, it is not possible to access the
kernel or other processes.

Advantages:

L halts only the desired process

. synchronization and communications to peripherals usually continue
J no debugger hardware and no JTAG interface are needed

Disadvantages:

. no bootstrap, interrupt or post mortem debugging is possible

o all software restrictions apply to the debugger too (memory protection, ...)

L only the current MMU and code of this scheduled process is visible

. actions from GDB change the state of the target (e.g page faults are triggered)
. one RS232 or Ethernet interface of the target is blocked

The GDB Remote Serial Protocol (RSP) is used by some emulators/simulators (e.g. QEMU) as a debug
protocol. In this case, the debug stub is part of the emulator itself. We talk this in this case about stop mode
debugging.

Software based debugging is less robust and has many limitations in
comparison to hardware based debugging. Thus, it is recommended to use
JTAG based debugging if possible.

)

Run mode debugging is not covered by this training, for more information please refer to “Run Mode
Debugging Manual Linux” (rtos_linux_run.pdf) and “TRACE32 as GDB Front-End” (frontend_gdb.pdf).

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64 | 15

Kernel Configuration

Before going forward with writing Linux TRACES32 scripts and debugging the different Linux components, we
will show the important kernel configurations that have influence on Linux debugging.

Compile The Kernel With Debug Info

To be able to do Linux aware debugging, the vmlinux file must be compiled with debug info enabled. Thus,
you need to ensure that CONFIG_DEBUG_INFO is enabled in the kernel configuration. Please also make
sure that CONFIG_DEBUG_INFO_REDUCED is not set (Reduce debugging information).

Linux/x86 3.18.0 Kernel Configuration
File Edit Option Help

1=

Option

T IO T O T T T T PPoTT

;I | Option

Z-File systems

- Caches

- CD-ROM/DVD Filesystems

- DOS/FAT/NT Filesystems

- Pseudo filesystems

- Miscellaneous filesystems
- [Network File Systems Compile the kernel with debug info (DEBUG_INFO) o
- Native language support
-I-Kernel hacking

-~ printk and dmesg options If you say Y here the resulting kernel image will include

& Compile-time checks and compiler options debugging info resulting in a larger kernel image.

-Memory Debugging This adds debug symbols to the kermel and modules (gcc -g), and

is needed if you intend to use kernel crashdump or binary object
tools like crash, kgdb, LKCD, gdb, etc on the kernel.

mpile the kernel with debug info
-[Reduce debugging information (NEW)
-JProduce split debuginto in .dwo nles (NEW
-[]Generate dwarf4 debuginfo (NEW)
i~[Enable _ deprecated logic |

CONFIG_DEBUG_INFO:

[kmemcheck: trap use of uninitialized memory

- Debug Lockups and Hangs Say Y here only if you plan to debug the kernel.
- Lock Debugging (spinlocks, mutexes, etc...)
-RCU Debugging If unsure, say N.
[Tracers Symbol: DEBUG_INFO [=y]
- Runtime Testing Type : boolean
- CI5ample kernel code Prompt: Compile the kernel with debug info
Location:
- [JKGDB: kernel debugger > Kernel hacking —

- Security options - |-= Compile-time checks and compiler options
Frmtanran) hic ADI _I_I Defined at lib/Kconfig.debug:120
4 L Depends on: DEBUG KERNEL [=v] && !COMPILE TEST [=nl LI

Moreover the option “Produce split debug info in .dwo files” (CONFIG_DEBUG_INFO_SPLIT) has to be
disabled.

CONFIG_DEBUG_INFO=y
CONFIG_DEBUG_INFO_REDUCED is not set
CONFIG_DEBUG_INFO_SPLIT is not set

Disable Randomization

For some processor architectures, the Linux kernel offers a security feature which allows to randomize the
virtual address at which the kernel image is loaded (CONFIG_RANDOMIZE_BASE). This option has to be
disabled in the kernel configuration, otherwise the debug symbol addresses loaded from the vl inux file
do not match anymore the kernel code/data. As an alternative to disabling this option, you can add
“nokaslr” to the kernel boot parameters.

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64 | 16

Disable Lockup and Hang Detection

The Linux kernel provides the possibility to detect soft lockups and hung tasks by acting as a watchdog. This
can be enabled under Kernel hacking > Debug Lockups and Hangs. The corresponding kernel
configuration options are CONFIG_SOFTLOCKUP_DETECTOR and CONFIG_DETECT_HUNG_TASK.

If the program execution is stopped for a certain period of time, the soft lockup and hang detection could
trigger a kernel panic. It is thus recommended to disable this detection in the kernel configuration.

CPU Power Management

The Linux kernel CPU power management could cause for some processor architectures that single cores
are not accessible by the debugger when in power saving state. CPU power management can be disabled
in the Linux kernel configuration by disabling the options CONFIG_CPU_IDLE and CONFIG_CPU_FREQ.

Idle states can also be disabled for single cores from the shell by writing to the file

/sys/devices/system/cpu/cpu<x>/cpuidle/state<x>/disable. Alternatively, you may remove
the idle-states property from the device tree if available.

On some Linux distributions, power management can be disabled using specific kernel command line
parameters (e.g. “*jtag=on” or “nohlt”). Please refer to the documentation of the kernel command line
parameters of your Linux distribution for more information.

Kernel Modules Related Configurations

The kernel contains all section information if it has been configured with CONFIG_KALLSYMS=y. When
configuring the kernel, set the option “General Setup”-> “Configure standard kernel features” -> “Load

all symbols” to yes. Without KALLSYMS, no section information is available and debugging kernel modules
is not possible.

- General setup L ..
IRQ subsystem [#]Enable 16-bit UID system calls
RCU Subsystern [Sysctl syscall support
O cContral Group suppart Bl L oad all symbols for debugginghsymoops
[ONamespaces suppart [lInclude all symbols in kallsyms
E-:-nfigure standard kernel features jexpe e 15 Supporn for hot-pluggable devices

Extracting the Kernel Configuration

The Linux awareness includes a script (getconfig. cmm) that can be used in order to extract the kernel
configuration file from a running Linux kernel. You just need to stop the program execution and call the script

e.g.

Break
DO ~~/demo/arm/kernel/linux/getconfig.cmm

The script will extract a config.gz file from the kernel. Please note that this script only works if
IKCONFIG_PROC (enable access to .config through /proc/config.gz) is enabled in the kernel configuration.

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64 | 17

Setting up a Script for Linux-Aware Debugging

This chapter will introduce the typical steps to prepare the TRACE32 debugger for convenient Linux-
Debugging. Sample Linux debugging setup script files are presented at the end of this chapter.

Linux Setup-Steps and -Commands

To be able to do Linux aware debugging, some configuration needs to be done in TRACE32. The minimal
setup includes the following steps:

. Connect to the target platform

. Load the Linux kernel symbols

J Set up the debugger address translation

. Load the Linux awareness and the Linux menu

These are the only needed configuration steps if you want to attach to a running Linux kernel. In case you
want to debug the kernel boot, then you additionally need to make sure to stop the execution before the
kernel start.

Moreover, it is possible to download the kernel image to the RAM using the debugger. We will discuss in this
chapter which setup is needed in this case.

You can find Linux demo scripts in the TRACE32 installation directory under
~~/demo/x86 /kernel/linux/board and ~~/demo/x64/kernel/linux/board.

Debugger Reset for Linux Debugging

Especially if you restart debugging during a debug session you are not sure about the state the debugger
was in. It is thus recommended to use the command RESet in order to reset the debugger settings. .

RESet ; reset debugger completely

The RESet command doesn’t reset the target but only the debugger
environment.

Moreover, it is also good to clear all debugger windows before connecting to the target using the WinCLEAR
command.

WinCLEAR ; clear all debugger windows

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64 | 18

Debugger Setup

You need to set up the debugger to be able to connect to the target platiorm. The needed setup highly
depends on the used target platform. Start-up scripts for different target platforms are available in the
TRACE32 demo directory. You can use the TRACE32 menu “File” -> “Search for Scripts..” to find suitable
demo scripts for your target board. Please also refer to “Intel® x86/x64 Debugger” (debugger_x86.pdf).

Additional settings related to OS-aware debugging are needed. These settings are presented below.

Address Extension

Switch on the debugger’s virtual address extension to use space IDs. The addresses in the List and
Data.dump windows will be extended with a space ID (e.g 0000:FFFFFFF81472C9A).

= BuList

TR

=1

[Mstep |[M Over |[uAaDiverge][¢ Return ||

Break | ¥]Mode | Find:

addr/1ine |code

¢up [pGo [
label

mnemonic co

XP:0000:FFFFFFFFB1472C98 [F390
312
EE . QQQQ EEEEEEEEﬁJﬂ E a&a& 1858

c—
176

XP:0000:FFFFFFFF81472C9D [AS08
XP:0000:FFFFFFFF81472C9F [74F7

XP:0000:FFFFFFFF81472CAl

|«

. pause .
(addr[nr / BITS_PER_LONG])) != 0;

e

mov rax,qword ptr [r

Tocal_irg_enable();
while (!need_resched())

t2 = ktime_get();

ES9ABDBFFF

1

SYStem.Option.MMUSPACES ON £

test al,0x8
je OxFFFFFFFF81472C

cpu_relax|

call OxFFFFFFFF8106EA ~

»

enable space IDs to virtual addresses

Remark: Older documentation and TRACE32 software uses SYStem.Option.MMU ON instead of
SYStem.Option.MMUSPACES ON. Please use only the new naming.

The SYStem.Option.MMUSPACES should be enabled at the beginning of the
script before loading any debug symbols.

Set Single Step Behavior

While single stepping, external interrupts may occur. On some architectures, this leads with the next single
step into the interrupt handler. This effect normally disturbs during debugging. The following sequence
masks external interrupts while executing assembler single steps. Keep interrupts enabled during HLL single
steps to allow paging while stepping through source code.

SETUP.IMASKASM ON
SETUP.IMASKHLL OFF

; suppress interrupts during assembler stepping
; allow interrupts while HLL single stepping

©1989-2024 Lauterbach

Training Linux Debugging for Intel® x86/x64 |

19

If an assembler single step causes a page fault, the single step will jump into
the page fault handler, regardless of the above setting. The debugger will restore
the interrupt mask to the value before the single step. So it might be wrong at this
state and cause an unpredictable behavior of the target.

Open a Terminal Window

You can open a serial terminal window in TRACES32 using the TERM command:

TERM.RESet ; reset old TERM settings
TERM.METHOD COM coml 115200. 8 NONE 1STOP NONE
; for coml0 use \\.\comlO

TERM.SIZE 80. 1000. ; define size of the TERM window
TERM.SCROLL ON ; enable scrolling

TERM.Mode VT100

TERM.view ; open the TERM window
SCREEN.ALways ; TERM window always updated

You can also use the term.cmm script available in the TRACES2 installation under
~~/demo/etc/terminal /serial which takes two arguments: the COM port and the baud rate e.g.

DO ~~/demo/etc/terminal/serial/term.cmm COM1 115200.

TRACE32 allows to send data to the terminal window from a script file using the command TERM.Out:

TERM.OUT "bootm 0x20000000" 10. ; 10. is the ascii code of LF

Moreover, TRACES32 allows to set a trigger for the occurrence of a specific string in the terminal window
using the command TERM.TRIGGER. The PRACTICE function TERM.TRIGGERED(<channel>) returns
then if the trigger has occurred.

; wait until the string "login" appears in the terminal window
TERM.TRIGGER "login:"
WAIT TERM.TRIGGERED (D:0)

Load the Kernel Symbols

You can load the kernel symbols using the Data.LOAD.EIf command. Without any further options, this
command loads the symbols and download the code to the target. In order to only load the kernel symbols

into the debugger without downloading the code, you need to use the /INOCODE option.

Data.LOAD.El1f vmlinux /NOCODE

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64 | 20

For some older GNU compilers, you also need to use the /GNU option:

Data.LOAD.El1f vmlinux /NOCODE /GNU

Displaying the Source Code

If you are not running TRACES32 on the host where you compiled your kernel, the debugger, which uses per
default the compile path to find the source files, will not find these files. The List window will display in this

case hatches instead of the source code:

=1 BuList EI@

M Step | B Over | \AsDiverge « Return|| ¢ Up » Go || NN Break || | Mode |6 - Find: Pain.c

addr/Tine |source
50

Sl

=]

514
515

Ll

v

The easiest way to inform the debugger about the path of the source file is to do a right mouse click in the

hatched area then select Resolve Path. A file search dialog will appear.

=1 BuList EI@

M Step | B Over | \AsDiverge « Return|| ¢ Up » Go || NN Break || | Mode |6 - Find: Pain.c

addr/Tine |source

505

A Toggle Bookmark

Ll

/ " Erooi_lrl?m Address y/
= ﬁ Breakpoint... ¢
g Ereakpoints »
=) gemeaner .

+¥+ Set PC Here

& Resolve Path

2 View Info
Copy Address L4

You just need then to browse to the source code file. The result of Resolve Path is a source path translation
which will be used to locate all kernel source code files. This means that you have to resolve the path of a
single source code file and all other kernel sources will be automatically found by TRACES32.

You can see the result of Resolve Path using the command sYmbol.SourcePATH.List.
? Bus¥mbol.SourcePATH.List EI@

2K Dekete Al Cw Reload || Verbose || 3 Sources...|| 2 Errors... B2 Store...| 52 Gete... || 52 Load... || + Add Dr...
dir |base |cach |rec |igno |dyn |hit |directory |

" home' kjmalikernely” -= “C:\Training\Linux‘"”

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64

| 21

Using the button Store..., the resulting sYmbol.SourcePATH.Translate command can be saved in a
PRACTICE script.

sYmbol .SourcePATH.Translate "\home\kjmal\kernel\" "C:\Training\Linux\"

Download the Kernel

It is normally the task of the boot-loader to load the kernel e.g. from the hard drive to the RAM. However, you
can also use the debugger to download the kernel to the target memory over JTAG. In this case you just
need to omit the /NoCODE option in the Data.LOAD.EIf command. We use here the memory class 2:
(absolute addressing) to download the code on the physical memory:

Data.LOAD.E1f vmlinux A:0

This command will load the kernel symbols and download the kernel at the physical address 0x0.

To be able to start the kernel, you can either set up the registers and the kernel boot parameters with the
debugger or download the kernel when the instruction pointer is at the kernel entry point (at this time,
everything has already been set up by the boot-loader).

Downloading the Kernel Code at the Kernel Entry

You can set an on-chip breakpoint at the kernel entry point which is usually at the address 0x01000000
and let the system run. When you stop at the breakpoint, you can then download the kernel to the target
memory. In this case, no further settings are needed since everything has been prepared by the boot-loader:

Go 0x01000000 /Onchip
WAIT !STATE.RUN ()

Data.LOAD.E1f vmlinux A:0

Then you can simply continue the execution:

Go ; let the kernel boot

Downloading the Kernel after the Boot-loader Target Initialization

You can stop the boot-loader just after the target initialization and download the kernel. This way, you need to
set the values of several registers and to set up the kernel boot parameters manually. Moreover, you need to
enable the protected mode and the 64bit mode for the 64bit kernel.

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64 | 22

Setting the CPU Registers

The instruction pointer should be set to value defined by CONFIG_PHYSICAL_START and the stack
pointer to a valid address e.g. 0x00010000.

Register.RESet ; reset all registers
Register.Set ESP 0x00010000 ; initialize stack pointer
Register.Set EIP 0x01000000 ; set IP to start of vmlinux

Setting the Kernel Boot Parameters

The kernel boot parameters are located in a structure of type (struct boot_params) pointed by the
register ESI. You can access this structure after the kernel has booted using the boot_params symbol.

&f| B:Var.View %open boot_params EI@

=l boot_params = (~
screen_info = (orig_x = 0, orig_y = 0, ext_mem_k = 0, orig_video_page = 0, orig_video_
apm_bios_info = (version = 0, cseg = 0, offset = 0, cseg_16 = 0, dseg = 0, flags = 0,
e _EadZ = (0, 0, 0, 0),
- thoot_addr = 0,

ist_info = (signature = 0, command = 0, event = 0, perf_level = 0],

_pad3 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, 0, 0, O, 0, 0),

hd0_info = (0, 0, 0, 0, 0, 0, O, 0, O, O, O, O, O, O, O, 0),

hdl_info = (0, 0, 0, O, 0, 0, O, 0, O, O, O, O, O, O, O, 0), -

4 T S

In the following example, we first set the boot_params area to zero and then set the parameters
alt_mem_k, hrd.type_pf_loader, hdr.ramdisk_image and hdr.ramdisk_size (since we use
a ramdisk as a file system) as well as the boot command line ptr hdr.cmd_line_ptr. The offsets of the

structure elements are hard coded.

&bpb=0x20000 ; base address of boot parameters
Register.Set ESI &bpb ; set ESI to point to struct boot_params
Data.Set (&bpb+0x0000)++0x0£fff 0xO0 ; empty boot params area

Data.Set &bpb+0x01le0 %$Long 0x3fc00 ; alt_mem_k=(256-1)*1024kB=256-1MB
Data.Set &bpb+0x0210 %$Byte 0x80 ; hdr.tpye_of_loader = U-Boot
Data.Set &bpb+0x0218 %Long 0x02000000 ; hdr.ramdisk_image

Data.Set &bpb+0x021c %Long 0x00800000 ; hdr.ramdisk_size

Data.Set &bpb+0x0228 %Long &bpb+0x1000 ; cmd_line_ptr
Data.Set &bpb+0x1000 "console=ttyS1l,115200 console=ttyUSBO "
Data.Set , "initrd=0x02000000,0x800000 root=/dev/ram "
Data.Set , "mem=240M slram=appdisk, 0x0F000000,+0x1000000 "
Data.Set , O

Set up the Protected Mode

The Linux kernel runs in protected mode. If you stop the bootloader before the protected mode has been
enabled then you need to prepare the registers and descriptor tables manually for the protected mode. You
can use for this the setup_protected_mode.cmm script available in the TRACE32 demo directory.

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64 | 23

Set up the 64 Bit Mode

In case you are using a 64 bit kernel, you also need to set the CPU in 64 bit mode. A script is also available
for this purpose in the TRACE32 demo directory under
~~/demo/x64/kernel/linux/board/setup_64bit_mode.cmm

Download the File System

In case you are using a ramdisk image as file system, you can download this image to the target memory
using the Data.LOAD.Binary command:

Data.LOAD.Binary ramdisk.image.gz A:0x02000000 /NoClear

You need to use the /NoClear option here, otherwise the already loaded kernel symbols will be cleared. We
also use here the “A:” memory class to force downloading the data to the physical memory. We use the
0x02000000 address since this is what has been specified in the kernel boot parameters
(“initrd=0x02000000").

Set up the Debugger Address Translation

The following settings have to be done by the Linux-aware debugging script in order to give the debugger
access to the whole system including kernel, kernel modules and user space applications.

Kernel Page Table and Default Translation

The debugger needs to have access, at any time, to the kernel page table which contains translations for
mapped address ranges owned by the kernel. Moreover, the kernel may use one of different formats to store
translations in the kernel page table. The Linux-aware debugging script has thus to inform the debugger
about the format and the logical address of the kernel page table as well as the logical to physical address
translation for kernel addresses.

All these settings can be done using the command MMU.FORMAT e.g

MMU . FORMAT STD swapper_pg dir 0xc0000000--Oxcfffffff 0xO

The first argument of this command is the format of the kernel page table. Please check “OS Awareness
Manual Linux” (rtos_linux_stop.pdf) for actual format specifier.

The second argument is a kernel symbol pointing to the start of the kernel page table and is usually called
swapper_pg_dir fora 32bit kerneland init_level4 pgt or init_top_pgt for a 64bit kernel.

The third argument is the kernel logical to physical address translation called kernel translation or default

translation. This range should at least include the whole kernel page table. You can generally use the kernel
_text label as start of this range and the label _end minus 1 as its end.

MMU .FORMAT LINUX swapper_pg dir _text--(_end-1) 0x80000000

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64 | 24

The last argument is the physical address that corresponds to the used logical range start. You can get this
address using the command MMU.List PageTable with the logical address as argument e.g.

MMU.List PageTable _text

Example setup for x64:

LOCAL &base_addr
IF sYmbol.EXIST(init_leveld_pgt)
&base_addr="1init_leveld_pgt"

ELSE
&base_addr="1init_top_pgt"
MMU .FORMAT LINUX64 &base_addr _text--(_end-1) 0x01000000

Direct and Kernel Text Mappings

For x64, you additionally need to create static translations for the direct mapping and the kernel text
mapping. Please refer to Documentation/x86/x86_64/mm. txt for more information about these

address mappings.

TRANSlation.Create Oxfff£880000000000--Oxffffc7fffffffE£ff 0x0
TRANSlation.Create Oxffffffff80000000--Oxffffffff9FfEfffEff 0x0

COMMON Range

With enabled space IDs, debug symbols as well as address translation are specific to one space ID. In user
space, the List window displays for instance only the debug symbols of the current process. Moreover, in
order to do the virtual to physical translation for an address with a given space ID, the debugger accesses
the page tables corresponding to that space ID. User space application may be however executing in kernel
space on behalf of the kernel. This means that it is usual to have the program counter pointing to a kernel
address, e.g. a kernel function, with a user process space ID. The debugger has to display in kernel space
the kernel symbols and use the kernel page tables independently of the space ID. The command
TRANSIation.COMMON informs the debugger about common address range for all processes, i.e.
everything above the process address range including kernel and kernel modules.

For a 32 bit kernel, the common range starts at CONFIG_PAGE_OFFSET (e.g. 0xC0000000) and ends at
OxFFFFFFFF.

TRANSlation.COMMON 0xc0000000--Oxffffffff

The following common range can always be used for 64 bit kernels as user space is always below the
address 0x£000000000000000.

; common range for 64 bit kernels:
TRANSlation.COMMON 0xf000000000000000--Oxffffffffffffffff

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64 | 25

Enable The Address Translation

The debugger address translation and MMU table walk have to be enabled respectively using the
commands TRANSIation.ON and TRANSIation.TableWalk ON.

TRANSlation.TableWalk ON
TRANSlation.ON

If the table walk is enabled, when accessing a virtual address which has no mapping in the debugger local
address translation list (TRANSIation.List), the debugger tries to access the MMU page tables to get the
corresponding physical address and then accesses the memory physically.

Set up the Linux Awareness

We need to load now the Linux awareness and Linux menu in TRACE32.

o For kernel versions 2.x, the Linux awareness is based on the file linux2.t32 located under
~~/demo/<X86/X64>/kernel/linux/linux—2.x/

. The Linux awareness for kernel versions 3.x and newer is based on the file linux.t32 located under
~~/demo/<x86 |x64>/kernel/linux/awareness/

; load the awareness on x64

TASK.CONFIG ~~/demo/x64/kernel/linux/awareness/linux.t32

; load Linux menu:

MENU.ReProgram ~~/demo/x64/kernel/linux/awareness/linux.men

The Linux menu file includes many useful menu items developed for the TRACE32-GUI to ease Linux

Debugging.
Linux | Window Help
&4 Display Processes % Contents
4 Display ps-like “ Index
% Display Tasks 4 Find
% Display Modules “‘I‘:; Tree
Display File System 4
& Display g ﬁTRACBE PowerView User Manual
Process Debuggin 4 & Load Symbols...
j;l' o ﬁ Processor Architecture Manual
Meodule Debugging ¥ | i Delete Symbols...)
X X - ﬁ Debugger Users Guide
Library Debugging L4 Debug Process on main...
o Watch Processes L4 LI
4 Symbol Autocloader L4 voe) Linux Awareness Manual
49 T 4 Sc.an Process MMU Pages...
4 Display Process MMU Tables
&% Display Kernel Log 4 Display Kernel MMU Tables

[&) Linux Terminal

. ,
B Configure Terminal... tlzg Training Manuals
f"] Demo Scripts

4] Generate RAM Dump
J& Welcome to TRACE32

ﬁ Linux Awareness Manual
Lauterbach Homepage
Support L4
JA About TRACE32...

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64 | 26

The Linux awareness and Linux menu are based on scripts available under:
~~/demo/<x86 [x64>/kernel /linux/awareness

These scripts are called by the Linux awareness and the Linux menu. You should thus always load the
awareness from the TRACES32 installation directory to avoid compatibility problems between the Linux
awareness and the mentioned scripts. If you load the Linux awareness outside the TRACE32 installation,
you will get the warning “please use awareness files from TRACE32 installation directory”.

Disable Watchdogs and Lockup Detection

The Linux kernel includes mechanisms to detect lockups and hangs. These mechanisms could interfere with
the debug functionality. Lauterbach provides within the Linux awareness a script to disable watchdogs and
lockup detection by writing to specific kernel variables. This script can be found in the TRACE32 demo
directory under <arch>/kernel/1linux. Since the script accesses kernel variables, you should call it
after the MMU has been enabled e.g. after stopping at start_kernel:

Go start_kernel /Onchip
WAIT !STATE.RUN ()
DO ~~/demo/x64/kernel/linux/disable_watchdogs.cmm

Please contact the Lauterbach support in case you don't find this script in your TRACES32 installation.

Mark the Kernel Address Space

For better visibility, you can mark the kernel address space to be displayed with a red bar.!

GROUP.Create "kernel" 0xC0000000--0xFFFFFFFF /RED ; 32 bit kernel

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64 | 27

Example Linux Setup-Scripts

You can find demo startup scripts for different target boards in the TRACE32 installation directory under
~~/demo/x86/kernel /linux/board and ~~/demo/x64 /kernel/linux/board. You can also

search for the newest scripts in the Lauterbach home page under the following link:

https://www.lauterbach.com/frames.html?scripts.html

The first example script set up Linux aware debugging for a 32 bit kernel running on the Intel Galileo board.

In this example the kernel is already running on the target.

REset
WinCLEAR

SYStem.CPU QUARK

SYStem.Option.MMUSPACES ON ; enable space IDs to virtual addresses

SYStem.Attach

SETUP.IMASKASM ON ; lock interrupts while single stepping

; Open a serial terminal window
DO ~~/demo/etc/terminal/serial/term.cmm COM1 115200.

; Open a Code Window -- we like to see something
WINPOS 0. 0. 75. 20.

List

SCREEN

; Load the Linux kernel symbols
Data.LOAD.El1f vmlinux /NOCODE

MMU . FORMAT PAE swapper_pg_dir 0xC0000000--0xCFFFFFFF 0x0
TRANSLATION.COMMON 0xC0000000--0xFFFFFFFF
TRANSLATION.TableWalk ON

TRANSlation.ON

; Initialize Linux Awareness

PRINT "initializing multi task support..."

; loads Linux awareness:

TASK.CONFIG ~~/demo/x86/kernel/linux/linux-3.x/linux3.t32

; loads Linux menu:

MENU.ReProgram ~~/demo/x86/kernel/linux/linux-3.x/linux.men

; Group kernel area to be displayed with red bar
GROUP.Create "kernel" 0xC0000000--OxFFFFFFFF /RED

ENDDO

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64

28

https://www.lauterbach.com/frames.html?scripts.html

The second example script set up Linux aware debugging for a 64 bit kernel running on the Crown Beach
Board. We connect to the target using the SYStem.Up command which reset the cores. We let then boot-
loader initialize the target hardware. The boot-loader is stopped before the Linux kernel is loaded. We
continue then the setup using the debugger.The kernel as well as the ramdisk image are downloaded to the
target memory over JTAG. The script also set the initial values for the CPU registers and the kernel boot
parameters.

RESet

; setup of ICD

PRINT "initializing..."

SYStem.CPU ATOMZ5XX

SYStem.JtagClock 20MHz

SYStem.Option.MMUSPACES ON ; enable space IDs to virtual addresses
SYStem.Up

; Open a serial terminal window
DO ~~/demo/etc/terminal/serial/term.cmm COM1 115200.

SETUP.IMASKASM ON ; lock interrupts while single stepping

; Let the boot monitor set up the board

Go

PRINT "target setup..."
WAIT 10.s

Break

; Load the Linux kernel code and symbols
Data.LOAD.El1f vmlinux A:0 /GNU

; Loading RAM disk
Data.LOAD.Binary ramdisk.image.gz A:0x02000000 /NoClear /NoSymbol

; Initialize CPU protected mode. 0x10000 is the GDT base address
DO setup_protected_mode.cmm 0x10000

; Set PC on physical start address of the kernel
Register.Set EIP 0x01000000
; Initialize stack pointer
Register.Set ESP 0x00010000

; Setup boot_params in a separate script (please refer to 4.Db)
DO setup_boot_params.cmm

; Open a Code Window -- we like to see something
WINPOS 0. 0. 75. 20.

List

SCREEN

continued on next page.

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64 | 29

continued:

PRINT "initializing debugger MMU..."
LOCAL &base_addr
IF sYmbol.EXIST(init_leveld_pgt)
&base_addr="init_leveld_pgt"
ELSE
&base_addr="1init_top_pgt"
MMU.FORMAT LINUX64 &base_addr Oxffffffff80000000--OxffffffffOfffffff 0xO

TRANSLATION.Create Oxfff£880000000000--0Oxffffc7EfEEELEfEEEE 0x0
TRANSLATION.Create Oxfffffff£f80000000--OxfEffELfEfLOEfLLfEEELE OxO
TRANSLATION.COMMON Oxfff£880000000000--Oxffffffffffffffff
TRANSLATION.TableWalk ON

TRANSlation.ON

; Initialize Linux Awareness

PRINT "initializing multi task support..."

; loads Linux awareness:

TASK.CONFIG ~~/demo/x64/kernel/linux/linux-3.x/linux3.t32

; loads Linux menu:

MENU.ReProgram ~~/demo/x64/kernel/linux/linux-3.x/linux.men

; Group kernel area to be displayed with red bar
GROUP.Create "kernel" Oxffffffff80000000--Oxffffffffffffff£ff /RED

; set CPU in 64bit mode (see IA-32 manual, Vol 3 Ch 9.8.5), specify GDTB
; and page directory

DO ../setup_64bit_mode.cmm

Go x86_64 start_kernel
WAIT !STATE.RUN ()

SYStem.Option.CO0Hold ON ; prohibit power down

PRINT "booting Linux..."
Go

ENDDO

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64 | 30

Debugging the Linux Components

Each of the components used to build a Linux system needs a different handling for debugging. This chapter
describes in detail, how to set up the debugger for the individual components.

“OS Awareness Manual Linux” (rtos_linux_stop.pdf) gives additional detailed instructions.

The Kernel

We differentiate here between the part of the kernel boot running with disabled MMU, that we call kernel
startup, and the rest of the kernel.

Kernel Startup

The Linux kernel starts executing with disabled MMU, i.e. at physical address space. The debug symbols of
the kernel startup are however mapped to virtual addresses. The boot-loader jumps into the kernel startup
routine (phys_startup_32 / phys_startup_64) generally located at the address 0x01000000. It
starts at physical address space, does some initialization and set up the MMU. Finally the kernel startup
switches into logical address space.

] [BaList] [==
[Mistep |[M over |@Diverge | Return][@up | »Go || INBreak |Iﬁl\ﬂode | Find: hea
addr/1ine |code Tabel mnemonic com_

* Compute the delta between the address I am -

* address I am actually running at.
k-4

Teaq _text(%rip), %rbp
XP.:0000000001.000000 |488D2DF9FFFEFE _text: lea rbp, rip+0xFFFFFFF
T3 subqg $_text - __START_KERNEL_map, %rbp
XP :0000000001000007 [4881EDO)001 sub rbp, 0x1000000

/* Is the address not 2M aligned? */

76 movq %rbp, %rax
XP :000000000100000E [4889E8 mov rax, rbp

b andl $~PMD_PAGE_MASK, %eax
XP:0000000001000011 |25FFFF1FOO and eax, 0x1FFFFF

78 test] %eax, %Meax
XP:0000000001000016 [35C0 test eax,eax

79 jnz bad_address
XP :0000000001000018 [0OF85A7010000 jne 0x10001c5

J 4 1 3

To be able to see the debug symbols for the kernel startup, the kernel should be loaded with an offset. The
offset is needed here since the kernel runs on physical addresses. The kernel symbols are however linked to
logical addresses.

I Data.LOAD.EIf vmlinux <physical_start_addr>-<logical_start_addr> /NoCODE

Please note that a single minus sign “” is used here which means that we subtract the logical start address
from the physical start address.

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64 | 31

Specifying an offset is only needed to debug the kernel startup in HLL. As soon as the kernel jumps to
logical addresses after enabling the target MMU, the kernel symbols should be loaded without any offset.

Loading the kernel symbols with an offset is only needed if you want to
debug the kernel startup code which runs with disabled MMU.

If the address extension with the memory space IDs is enabled, the kernel symbols will be mapped to the
space ID 0x0000. The current task is however at this time unknown, so the current space ID is 0xFFFF.
Consequently, the List window will not display the debug symbols. In order to see the debug symbols

corresponding to the kernel startup code, you have additionally to disable the address extension.

SYStem.Option.MMUSPACES OFF

As long as the debugger MMU has not been enabled, you have to use on-chip breakpoints on kernel
functions. Please note however, that the kernel may reset on-chip breakpoints when booting.

Alternatively, you can first set an on-chip breakpoint at 86_x64_start_kernel then you can use
software breakpoint on the rest of the kernel boot.

Go x86_x64_start_kernel /Onchip
WAIT !STATE.RUN ()
Break.Set usb_init /SOFT

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64 | 32

Kernel Boot

After enabling the target MMU, the kernel startup code will jump to logical addresses:

-

e [e==)
[M Step][W Over]@Diverge][+ Return][¢ up][b Go][11 Break]%Mode] Find: head_64.5
addr/1ine |source | | | =
185 addq phys_base (%rip), %rax -
186 movq %rax, %cr3
/* Ensure I am executing from virtual addresses */
189 movq $1f, %rax K
" -3 i
ooy o dme | Merax 9 B:Register /5L ool |
. ICF RAX IFFFFFFFFUlDDDlle RBX 01096000
/% Check if nx is imyf [’ P RCX RO RDX 01D96063 :
194 movi . $0x80000001, | (" - 5 0008000 1ot 0113000 H
195 cpuid . S _ RI10 0 Rl 022709F0
196 mov'1 %edx ,%edi ITF _ R12 0 R13 0 <
< I IF _ RI14 0 R15 0
- DF _ RBP 0 RSP 02296280 [
OF _ RFLAGS 6 RIP
PL O
NT _ CRO 80000011 DRO 0
RF _ CR2 0 DR1 0
VM _ CR3 01094000 DR2 0
lAC _ CRr4 A8 DR3 o -
4 [| +
= Bulist [E][=](=]
[Mistep |[M over]@Diverge][SRetun | @up | »Go | mEBreak]%Mode | Find:
addr/1ine |code | Imnemonic |comment =
XP :FFFFFFFF8100011F [4580305EA4ECT100 add rax,qword ptr [rip+OxCl4EEA] -
XP :FFFFFFFF81000126 |0F22D8 mov cr3, rax
XP :FFFFFFFF81000129 [48Cc7C032010081 mov rax,0x81000132
XP :FFFFFFFF81000130 [FFEOD jmp rax
a B801000080 mov eax,0x80000001 i
XP:FFFFFFFF81000137 [0FA2 cpuid L
XP :FFFFFFFF81000139 |39D7 mov edi,edx i
XP :FFFFFFFF81000138 |[B9800000C0 mov ecx, - 0xC0000080 -
XP :FFFFFFFF81000140 |0F32 rdmsr
XP :FFFFFFFF81000142 |OFBAEEOD bts eax, 0x0
XP :FFFFFFFF81000146 [OFBAE714 bt edi,0x14
XP :FFFFFFFF8100014A [730D jnb OxFFFFFFFF81000159 -
RN [| +

From now on, the Linux kernel runs completely in logical address space. The symbols are all bound to these
logical addresses, so simply load the Linux symbols without any offset:

Data.LOAD.El1f vmlinux /NoCODE /NOREG

= BaList ===
[Mistep |[M over]@Diverge][SRetun | @up | »Go | mEBreak]%Mode | Find: head_64.5
addr/1ine |code | Imnemonic |comment =
/¥ Check if nx is implemented */ -
194 mov 1 $0x80000001, %eax
| XP:FEEEEEEE31000132 5501000050 mov eax,0x80000001
195 cpuid
XP :FFFFFFFF81000137 (0FA2 cpuid r
196 mov1 S%edx ,%edi =
XP :FFFFFFFF81000139 |39D7 mov edi,edx
/* Setup EFER (Extended Feature Enable Register) */
199 mov1 $MSR_EFER, %ecx
XP :FFFFFFFF81000138 |[B9800000C0 mov ecx,0xc0000080
200 rdmsr -
RN [| +

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64 | 33

Now you need to set up the debugger address translation and load the Linux awareness as described in the

previous chapter.

You can use now software breakpoints in the kernel range since all the kernel code is accessible.

Verifying Image and Symbols

=Bl (= =@ =]

[M Step][W Over]@Diverge][+ Return][¢ up][][1] Break] ¥ Mode] Find:

r/line |source

* Init
static int __init usb_init(void)
10471¢
1047 |1
1 int retval;
1049 ik \nousb; L
1049 1t (nousb) {)]
1050 pr_info("%s: USB support disabled\n", ushcore_name);
1051 _ return 0;
retval = ush_debugfs_init(
if retva]
goto out;
1058 usb_acpi_register();
1059 retval = bus_registeri&usb_bus_typeh
1060 if (retval)
goto bus_register_failed;
1062 retval = bus_register_notifier(&usb bus_type, &usb_bus_nb);
1063 if (retval)
goto bus_notifier_failed; -
Jf I 2

8 B::Break List [= @ |[=] | &fB:Frame EEE

(x| O] ont 2| 2| = €= 3 0own| [largs [llocals [Caller

types imp]l note i usb_Amit()

Program |SOFT valid usb_init ° do_one_initcall(fn = OXFFFFFFFFS1DS186A)
do_initcall_level(inline)
do_initcalls(inline) =
do_basic_setup(inline)
kernel_init_freeable()

J i kernel_init(?) -

4 I3 " b

It is very important that the kernel running on the target is from the very same build as the symbol file
loaded into the debugger. A typical error is that the loaded vm1 inux file doesn’t match the executed kernel

on the target. This can lead to different errors.

You can check if the kernel code matches the loaded symbols using the TASK.CHECK command. First let
the kernel boot, stop the target and then execute TASK.CHECK. When the symbols does not match the

kernel code, you will get an error message in this window:

b BuTASK.CHECK

(=[O el

checking Linux awareness integrity..

Linux-3.x Awareness for 1x86-64 Version Mar 19 2015, TRACE3Z Software version:
Linux banner: $U%%x%E%

Wrong Linux banner. Do symbols match to image?
lhwareness integrity check passed with 1 error!

4 I

62056

-

Please note that TASK.CHECK command only does a basic check based on the 1inux_banner string. In

some cases, this basic check cannot detect that there is a mismatch between the kernel code and the
loaded kernel debug symbols. Please refer to “Troubleshooting”, page 48 for more details.

©1989-2024 Lauterbach

Training Linux Debugging for Intel® x86/x64 | 34

Kernel Modules

Kernel modules are loaded and linked into the kernel at run-time. To ease the debugging of kernel modules,
the enhanced Linux menu offers the item “Debug Module on init...”. After selecting this menu point, a small
dialog will pop-up where you can specify the name of the kernel module to be debugger (without extension).
Optionally, you can instruct the dialog to send a specific command to the TRACE32 terminal window in order
to load the kernel module.

Linux Window Help
Debug Me... : -IEI :
4% Display Processes /A Debug Mo

a5 Display ps-like module name (without .ko)

a4 Display Tasks || |

a4 Display Modules

a5 Display File System L4 ;:‘serd command to TERM vindow |
Process Debugging L4
Medule Debugging 3 I Load Symbols... Ok Cancel
Library Debugging »| & Delete Symbols.. Please enter module name
Debug Medul init...
3 Symbol Autoloader .
& TrEarss &4 Display Kernel MMU Tables
a4 Display Kernel Log
a5 Device Tree L4
other L4

&) Linux Terminal
& Configure Terminal...

{11! Generate RAM Dump
(¥} Integrity Check

The “Debug Module on init...” menu point is based on the script mod_debug . cmm available in the path of
the Linux awareness. The script sets a breakpoint at a kernel function that is executed when a new kernel
module is loaded. As soon as the breakpoint is hit, the TRACE32 Symbol Autoloader will load the kernel
module symbols and relocate each section based on the information delivered by the Linux awareness.
Finally, an on-chip breakpoint is set on the module init function and the execution is resumed.

[E'_l Bu:List.auto |E”E”E|
[Mistep |[M over]@Diverge][SRetun | @up | »Go | mEBreak]%Mode | Find: cre3.c

addr/1ine |source

-
1

static int _init crc3Z2_mod_init{void)

44 |4
] 145 return crypto_register_shash(&alg);
146 |}
static void __exit crc32_mod_fini(void)
] 149 |{
=] 150 crypto_unregister_shash(&alg);
151 |}
module_init(crc32_mod_init);
module_exit(crc32_mod_fini); =
MODULE_AUTHOR("Alexander Boyko <alexander_boyko@xyratex.com="); -
4 L 3
& B:TASKMODule [= ==
Imagic name state size address refcount depends' |
FFFFFFFFA0233180 |crc32 Loading 18399. [FFFFFFFFA0231000 -
FFFFFFFFA0229540 |bnep Live 19624. |FFFFFFFFAQ0226000
FFFFFFFFAD3A8780 |rfcomm Live 69078. FFFFFFFFA039C000
FFFFFFFFAQO30BEOO |bTluetooth Live 387189. [FFFFFFFFA02C3000
FFFFFFFFAD2A6140 |snd_hda_codec_ |Live 61234. FFFFFFFFA0298000
FFFFFFFFAD2B7A80 |snd_hda_intel |Live 52355. |[FFFFFFFFAQ2AEQ00 2
4 L 3

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64 | 35

If the Symbol Autoloader cannot find the module’s ko file, a file browser will pop-up. If you want the debugger
to automatically find your kernel module, you need to add its path to the TRACES32 search paths using the
command sYmbol.SourcePATH.SetDir. Alternatively, you can define a ROOTPATH using the command
TASK.sYmbol.Option ROOTPATH. Please refer to “OS Awareness Manual Linux” (rtos_linux_stop.pdf)
for more information about this command.

The script mod_debug . cmm can also be called from the TRACE32 command line or from a different script.
By using the /dialog argument, the script will open the same dialog displayed after selecting the menu
point “Debug Module on init...”:

DO ~~/demo/x86/kernel/linux/awareness/mod_debug.cmm /dialog

You can also specify instead the name of the module to be debugged (without extension) as first argument:

DO ~~/demo/x86/kernel/linux/awareness/mod_debug.cmm crc32

The script additionally accepts the following arguments:

o /term “<cmd>":send the command <cmd> to the TRACE32 terminal window in order to load
the module e.g. /term “insmod crc32.ko”

i /timeout <timeout>: exitthe script with an error message in case any of the breakpoints set
by the script is not reached within the given timeout e.g. /timeout 5.s

i /stopat <label>: setthe on-chip breakpoint at <I1abel> instead of the module’s init
function.

You can also load the debug symbols of already loaded modules by selecting the TRACE32 menu Linux >
Module Debugging > Load Symbols... or using the command TASK.sYmbol.LOADMod

TASK.sYmbol . LOADMod "crc32" ; load module symbols

If you remove a kernel module from the kernel, you should also remove its debug symbols in TRACE32
PowerView using the menu Linux > Module Debugging > Delete Symbols... or the command
TASK.sYmbol.DELeteMod:

TASK.sYmbol .DELeteMod "crc32" ; erase obsolete module symbols

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64 | 36

Processes

The Linux menu provides a comfortable way to debug processes from its start. You just need to select the
menu Linux > Process Debugging > Debug New Process... then enter the name of the process. The
process will per default be stopped at its main function. You can also specify a different process function
under “stop at’. Optionally, you can instruct the dialog to send a specific command to the TRACE32 terminal
window in order to start the process.

Linux Window Help A
DebugNe... [= |[& [[u5n]

ﬁ?. Display Rz process name
a5 Display ps-like | helo] |
a4 Display Tasks Tmn T
a4 Display Modules | i |
a5 Display File System L4

Process Debugging 3 I Load Symbols... [Jsend command to TERM vindow

Meodule Debugging »| 3 Delete Symbols...

Library Debugging L4 Debug New Process... T

nce
- Watch Processes L4
1 Symbeol Autcloader ol
lease enter process name
& Opti 4 Display Process MMU Tables = fLEetin fem
ions...
& &4 Display Kernel MMU Tables

a4 Display Kernel Log
a5 Device Tree L4

other 4
&) Linue Terminal Enter the name of the process to be
& Configure Terminal... debugged (without parameters).
8 Generate RAM Dump By checking the “send command to TERM
(2 Integrity Check window”, the process will be started from

the TERM window.

The menu point Debug New Process... is based on the script app_debug . cmm available in the path of the
Linux awareness. The script sets a breakpoint at a kernel function that is executed when a new process is
started. As soon as the breakpoint is hit, the TRACE32 Symbol Autoloader will load the process symbols
and set a task specific on-chip breakpoint at the main function of the given process function. Then the
execution is resumed.

If the Symbol Autoloader cannot find the process’ Elf file, a file browser will pop-up. If you want the debugger
to automatically find your process’ Elf file, you need to add its path to the TRACES32 search paths using the
command sYmbol.SourcePATH.SetDir. Alternatively, you can define a ROOTPATH using the command
TASK.sYmbol.Option ROOTPATH. Please refer to “OS Awareness Manual Linux” (rtos_linux_stop.pdf)
for more information about this command.

The script app_debug . cmm can also be called from the TRACE32 command line or from a different script.
By using the /dialog argument, the script will open the same dialog displayed after selecting the menu
point “Debug New Process...”:

DO ~~/demo/x64/kernel/linux/awareness/app_debug.cmm /dialog

You can also specify instead the name of the process to be debugged as first argument:

DO ~~/demo/x64/kernel/linux/awareness/app_debug.cmm sieve

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64 | 37

] [eaList] [=][=] =]
[Mistep |[M over]@Diverge][SRetun | @up | »Go | mEBreak]%Mode | Find:
addr/1ine |source i
int index; -
542 index = 0;
543 |+
int main()
546 |{
int j;
char * p;
550 vtripplearray[0][0][0] = 1;
551 vtripplearray[1][0][0] = 2;
552 vtripplearray[0][1][0] = 3;
553 vtripplearray[0][0]1[1] = 4; -
555 func2();
J 1| 1 3
ﬁ% B::TASK.Process |E||E”E|
Imagic command #thr state spaceid pids |
FFFF88007887DFCO cat - sleeping 079F 1951. -
FFFF88005950AFED |® update-notifier 4. |sleeping 07BB 1979.
FFFF&8005F4D0000 |® deja-dup-monito 3. |sleeping 07D2 2002.
FFFF880065B6DFCO dbus - sleeping 07D9 2009.
FFFF88005F468000 sshd - sleeping 07FD 2045.
FFFF8800794A8000 sshd - sleeping 0839 2105.
FFFF88007AF917F0 sftp-server - sleeping 083A 2106.
FFFF880079E297F0 |® gnome-terminal 4. |running 083E 2110.
FFFF&8007B06C7D0 gnome-pty-helpe - sleeping 0847 2119.
FFFF8800780917F0 bash - sleeping 0848 2120.
FFFF880078302FEQ sieve - current(1l) | 088E 2190. -~
] | 1 3
The script additionally accepts the following arguments:
i /term “<cmd>":send the command <cmd> to the TRACES32 terminal window in order to start
the process e.g. /term “/home/user/t32/sieve”
i /timeout <timeout>: exitthe script with an error message in case any of the breakpoints set
by the script is not reached within the given timeout e.g. /timeout 5.s
d /stopat <Iabel>: setthe on-chip breakpoint at <1abel> instead of the process’ main
function.

You can also load the debug symbols of an already running process using the menu Linux > Process

Debugging > Load Symbols... or the command TASK.sYmbol.LOAD

TASK.sYmbol .LOAD

"sieve"

7

load process symbols

After the process exists, its debug symbols have to be deleted using the menu Linux > Process Debugging

> Delete Symbols... or the command TASK.sYmbol.Delete

TASK.sYmbol .Delete

"sieve"

7

delete process symbols

©1989-2024 Lauterbach

Training Linux Debugging for Intel® x86/x64

38

Threads

Threads are Linux tasks that share the same virtual memory space. The Linux awareness assignes the
space ID of the creating process to all threads of this process. Because symbols are bound to a specific
space ID, they are automatically valid for all threads of the same process. There is no special handling for
threads. See chapter “Processes” how to load and handle these symbols.

o B:TASK.Process =n| Wl <
Imagic command #thr state spaceid pids |
FFFF880079948000 cat - sleeping 079F 1951. -
FFFF8800789E5FCO |® update-notifier 4. |sleeping 07BB 1979. 1982. 1983.
FFFF88005C4D47D0 (@ deja-dup-monito 3. |sleeping 07D2 2002. 2005. 2006.
FFFF880062E28000 sshd - sleeping 0816 2070.
FFFF88005C4B0000 sshd - sleeping 083A 2106.
FFFF&8007B3D97F0 sftp-server - sleeping 0838 2107.
FFFF8800783047D0 |® gnome-terminal 4. |sleeping 084cC 2124, 2127. 2128.
FFFF&8007A0017F0 gnome-pty-helpe - sleeping 0878 2168.
FFFF8800781DC7D0O bash - sleeping 0879 2169.
FFFF88005C4217F0 |2 threads 6. |current(l) | 08AD 2221.
FFFF&8005Cc420000 threads running 2222.
FFFF88005C4247D0 threads running 2223.
FFFF88007A285FC0 threads current(0) 2224,
FFFF&8005C4D17F0 threads running 2225.
FFFF880063F85FCO threads running 2226. -
4 I 2
Libraries

Libraries are loaded and linked dynamically to processes. Thus, they run in the virtual address space of the
process and have dynamic addresses. To debug libraries, you can use the menu “Library Debugging”:

Window Help
4% Display Processes
a5 Display ps-like

a5 Display Tasks

a4 Display Modules

a5 Display File System

Process Debugging
Meodule Debugging

Library Debugging 4

Z Symbol Autoloader

& Options...

a4 Display Kernel Log
&) Linux Terminal
& Configure Terminal...

{11! Generate RAM Dump

%) Integrity Check
@ Linux Awareness Manual

3

3
3

Load Symbols...

a

7 Delete Symbols...

3

& Scan Process MMU Pages...

&3 Scan All MMU Tables

& Display Process MMU Tables
& Display Kernel MMU Tables

/A TASKs¥mbol.LOADL...| = || & |[x=534]

Process name
helloloop

Library name

This menu point is based on the TRACE32 command TASK.sYmbol.LOADL.ib.

TASK.sYmbol.LOADLib

"helloloop"

"1d-2.2.5.s0" 5

load

library symbols

©1989-2024 Lauterbach

Training Linux Debugging for Intel® x86/x64 |

39

You can also display first the task list using the command TASK.DTask and then continue with double or

right-clicks:

5?. B::TASK.DTask "sieve”

(=[O el

Imagic

state uid spaceid tty' |

gid vm size

FFFF8800783797F0 [sieve

command pid
i | 1000. | 2155.

s Teeping | 0868 [008{-

tth tty name path

1000. 00000419
flags
relationship
arguments
environment
open files
addresses

code file

IEEHEEEE

FFFF88005FB98000 ptsl ./sieve

flaas

start address

sieve 0000000000400000 EX RD
sieve 0000000000601000 RD
sieve 0000000000602000 WR RD

n0007FE1FAB70000 EX RD

1ibc-2.19.50 Display Library struct 007FE1FAD2C000
Tibc-2.19.s0 _ 007FE1FAF2B000 RD
1ibc-2.19.s0 007FE1FAF2F000 WR RD
1d-2.19.s0 Delete Library Symbols 007FE1FAF36000 EX RD
1d-2.19.s0 _ 007FE1FB158000 RD
1d-2.19.s Dump Library ENTRY 007FE1FB159000 WR RD

times

The debug symbols of the library will be automatically loaded by the TRACE32 Symbol Autoloader and
relocated according to the information delivered by the Linux awareness. If the Symbol Autoloader cannot
find the library’s Elf file, a file browser will pop-up. If you want the debugger to automatically find your library’s
Elf file, you need to add its path to the TRACES32 search paths using the command
sYmbol.SourcePATH.SetDir. Alternatively, you can define a ROOTPATH using the command
TASK.sYmbol.Option ROOTPATH. Please refer to “OS Awareness Manual Linux” (rtos_linux_stop.pdf)
for more information about this command.

The library’s debug symbols can be deleted using the menu point Library Debugging > Delete Symbols...
or the command TASK.sYmbol.DELeteLib.

TASK.sYmbol .DELeteLib "helloloop" "1ld-2.2.5.s0" ; delete library symbols

You can also set up the Linux awareness in order to load all shared libraries of the current process or a given
process. Examples:

Load all shared libraries for the current process:

TASK.sYmbol .Option AutoLOAD CURRLIB
sYmbol . AutoLOAD.CHECK
sYmbol .AutoLOAD.TOUCH

Add the libraries of process “hello” to the Symbol Autoloader, the debug symbols for each library will be
loaded when the library’s address range is accessed by any TRACE32 window:

TASK.sYmbol .Option AutoLOAD ProcLib
sYmbol .AutoLOAD.CHECK

"hello"

©1989-2024 Lauterbach

Training Linux Debugging for Intel® x86/x64 | 40

Task Related Breakpoints

You can set conditional breakpoints on shared code halting only if hit by a specified task

Break.Set myfunction /TASK "mytask"

When the breakpoint is hit, the debugger will check if the current task is the specified one. If it is not the case,
the execution will be resumed.

[l B::Break.Set (== =]
address [expression
400845 - (&) FHu
type options implementation
@ Program [T Exclude [l Temporary
* ReadWrite [T nOoMARK [CIp1sable action
* Read [C] p1SableHIT stop -
) Write DATA
_) default [v] [A advanced |
Ok] [Add] [Delete] [Cancel]
memory [register [var
*) ProgramPass F-3 HLL
_) ProgramFail
MemonReadWrite TASK COUNT
MemoryRead "threads:2097" - 1.
MemoryWrite
RegisterReadWiite CONDition
RegisterRead [WIHLL [kt
RegisterWrite CMD
+ [VRESUME
e B::Break.List EI@
[Delete All (O Disable All [@ Enable All|[@ Init | & 1mpl... || S store... || Sload... || Bilset... |
address types imp]l task note i
¥:082F : 000000000040084 5] {Program SOFT "threads :2097" valid .
4 I 2

Task Related Single Stepping

If you debug shared code with HLL single step, which is based on breakpoints, a different task could hit the
step-breakpoint. You can avoid this by using the following command:

SETUP. StepWithinTask ON

Conditional breakpoints on the current task will be then used for step into / step over and you will not “leave”
the task that you want to debug.

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64 | 41

Task Context Display

You can display the memory or the registers of a task which is not currently executing. Moreover, you can
display the stack frame of any running task on the system.

List /TASK "mytask"
Register /TASK "mytask"
Frame /TASK "mytask"

@ B::Frame /TASK "sieve" EI@
t.Up | |3 Down [Vlargs [[Locals [C]caller Task: | [EECH l:]
-000][[context_switch{inTine) "deonf worker:1932" ~AYR

-000 __acge$U}§() "gdbus:1933"
-001f|[schedule "mission- "
-002)|[freezer_count(inline) ..mC:ESIU.n conEroI
o gdbus:1939
-002) |[freezable_schedule(inline) "dconf worker: "
-002| ||[do_nanos Teep(t = OxFFFF8800533F9ECO, 7) deonf worker:1341
-003f||hrtimer_nanosleep(rqtp = OxFFFF8800533F9F60, rmt) Zeitgeist-datah E
-004 | |sys_nanosleep(?, rmtp = 140736907366784) "gdbus:1955"
-005 tra-:es;:s(asmg "pool:1968" i
—* |exception "pool:1969"
-006 |XP:0x828:0x7F63624F9D60 (asm) "gmain:1972"
-007 [XP:0x828:0x7F63624F9C14 (asm) "zaitqeist-daemo”
— |end of frame " g ; X -
J‘ | ™ gd.bus..1958
"zeitgeist-fts"
"gdbus:1973" —
. B::Register /TASK "sieve" "gmain:2024" IZ_|
CF _ RAX FAGD7C8652309CF9 RBX FFFFBB007EE03DDO | ¢ 'cat" -
PF _ RCX 55534091 RDX 17EED2BS SF"update-notifier" 3
AF _ RSI 00A0647F RDI FFFFFFFFFFFFFFFF +("dconf worker:1992" ‘E‘
7F RS O00001F3F8DA9280 R9 3132303231363335 +1ngdpus:1993" I
SF _ RLO 3335385B203A2273 RI1 7D5D313230323136 +luwpyiviggar
TF _ RL2 FFFFFFFF8ICIB500 R13 000153A8 +2,0000 7
IF _ R14 FFFF88007A616970 R15 FFFF88007BA28000 <+ €l dup-montto’
DF _ REP FFFF8800533F9E60 RSP FFFF8800533F9E00 - dconfworker:2015
OF _ RFLAGS 2 RIP FFFFFFFF8170858C +: "gdbus:2016"
FL 0 +4"gnome-terminal"
kt T CRe 00007F6362460230 DR 0 rcconfworker:2025
4 _ R, +En . "
- 79687000 DR2 0 +2,J0bus20%6, §
ac _ 07ES DR3 0 ¢, Jmam helne” 1
CR8 0 DRG FEFF4FFQ +¢ 010me-pty-helpe =l -
< "hash" L
sieve |\

You can additionally “virtually” switch the context also from the TASK.DTask window by popup menu-item
“Switch Context”.

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64 | 42

Linux specific Windows

The Linux awareness offers different commands to display kernel resources as the task list or the kernel
module list. Most of these views can be opened from the Linux menu.

Display of System Resources

The Linux awareness offers three different views for displaying tasks using the commands TASK.Process,
TASK.PS and TASK.DTask. Please refer to the documentation of these commands in “OS Awareness

Manual Linux” (rtos_linux_stop.pdf) for more information. These views can be opened from the Linux menu
by selecting respectively Display Processes, Display ps-like and Display Tasks.

i) Dump task ENTRY
Kill task

Trace this task

& o | = | = &% B:TASK.DTask El@
CONFIG magic command state uid pid spaceid | | [cpu |
- _ _ _ FFFFFFB008F21500 |swapper‘;’0 running | 0.| 0. [000D 0. [A

magic pid |[time(ticks) [command FEFFFFCO6D462(goRrreEs =lannina . 1. | oool 2.
FFFFFF8008F21500 0. 0. [[swapper /0] ~ FFFFFFC0OGD4620] 2 Dis il 2. | 0000 1.
FFFFFFCO60462C00 1. |1524000000. 1nit FFFFFFCOGD4 7AC o'a Display detailed 3. | 0000 0.
FFFFFFCO6D462040 2. 4000000. |[kthreadd] FFFFFFCO6D47A0| b Display task struct 4. | 0000 0.
FFFFFFCOGD47AC40 3. 0. |[reu_gpl FEFFFFCOGD47EC| @& picn 5. | 0000 0.
FFFFFFCO6D47A080 | 4. 0. |[reu_par_gp] FEFEFFCOGD47ED B ©ISPIaY Maps 6. | DOOD 0.
FFFFFFCOGD47ECE0 5. 0. ;kwor‘ker‘,.n"O:O:l FEFFFFCO6D4 800 7. | 0000 0.
FFFFFFCOGD47EOCO 6. 0. |[kworker/0:0H] FFEFFFCOGD4801 & Display Stack Frame 8. | 0000 0.
FFFFFFCOGD480CC0 7. 20000000. |[kworker/ug:0] FEFFFFCOGD4CAD . = 9. | 0000 0.
FFFFFFCO6D480100 | 8. 0. |[mm_percpu_wg] FFFEFFCOBD4ca1l Ik Display Registers 10. | 0000 0.
FFFFFFCOGD4C4D00 9. 0. |[ksoftirgd/0] ¥ FFFFFFCOBD4CED| 2 Switch Context 11. | 0000 0. | ¥
< > < >

% Load Process Symbols
@?b 3 Delete Process Symbols
magic command Zthr [state spaceid [pids | | 3 Add Libraries to Symbol Autoloader
FFFFFFB008F21500 swapper /0 67. |[running oooo 0. 2. 3
FFFFFFCOGD462C00 init - |sleeping 0001 1. Add to Watched Processes
FFFFFFCOGCDB4E40 sh - |sTleeping 0690 1680.
EFFEFFCOBCCRCA0 v 2 lcurrent(0) | 06A3 1639, Delete from Watched Processes

&2 Display Task MMU Table

By doing a right mouse click on the task magic in these three views, you get a pull-down menu with the
following options for the selected task:

J Display detailed: display additional information about the selected task (as the process
arguments, environment variables or open files) by calling the command TASK.DTask with
process magic as argument.

. Display task struct: display the kernel task structure for the selected task.

U Display maps: display the mapped memory regions for the selected task using the command
TASK.MAPS similar to the Linux command cat /proc/<pid>/maps.

J Display Stack Frame: display the stack frame for the selected task. If the task is not currently
executing, the Linux awareness retrieves the context information from the kernel structures.

J Display Registers: display the registers of the selected task. If the task is not currently
executing, the Linux awareness retrieves the context information from the kernel structures.

J Switch Context: virtually switch the context to the selected task.

©1989-2024 Lauterbach

Training Linux Debugging for Intel® x86/x64 |

43

o Load Process Symbols: load the debug symbols of the selected process by calling the
TASK.sYmbol.LOAD command.

. Delete Process Symbols: delete the debug symbols of the selected process by calling the
TASK.sYmbol.Delete command.

. Add Libraries to Symbol Autoloader: update the autoloader table with the libraries of the
current process. The debug symbols of these libraries will be automatically loaded as soon as
their addresses are accessed by the debugger.

J Add to Watched Processes: add process to the process watch list. Refer to TASK.Watch for
more information.

. Delete from Watched Processes: remove process from the process watch list. Refer to
TASK.Watch for more information.

. Display Task MMU Table: display the task page table by calling the command MMU.List
TaskPageTable with the process magic as argument.

J Dump task ENTRY: open a Data.dump window on the task entry point.

. Kill Task: write a pending kill signal to the task control structure which will cause the task to be
killed after resuming the program execution.

o Trace This Task: do a selective trace on the code of the selected task.

Kernel Module List

You can display the list of loaded kernel modules by selecting the menu Linux > Display Modules which will
call the TASK.MODule command.

% B:TASK.MODule [=][&S]
mag c name state size address refcount [depends | "
FFFFFFFFADO960C0 |demomod Gve [~ 690729. |FFFFFFFFAGO00000 1. -

By doing a right mouse click on the module’s magic, you get a pull down menu with the following options:

J Display module struct: display the module’s kernel structure.

J Load Module Symbols: load the debug symbols of the selected kernel module

. Delete Module Symbols: delete the debug symbols of the selected kernel module
. Dump module ENTRY: dump the memory at the module entry.

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64 | 44

File System Information

The Linux awareness offers different view for displaying file system information. You can open these views
from the menu Linux > Display File System:

. Display FS Types: display all file system types that are currently registered in the Linux kernel.
b BTASKFSTypes |- || B)
name Zdevs |
systs Z. o
rootfs 1.
bdev 1.
proc 1.
tmpfs 3
debugfs 1
rpc_pipef 1 W
. Display Mount Points: display the current mount points.
% B:TASK.FS.Mount = =R
device mountpoint [type mode |
rootfs 7 rootfs [rw ~
Jdev/root ! ext2 rw
proc /proc proc rw
none /sys sysfs |rw
none Jkernel /debu |debugfs [rw W
. Display Mounted Devices: display all currently mounted devices (i.e.super blocks).
% B:TASK.FS.MountDevs = =R
magic dev# fsmagic [type root |
92004400 0. [beer sysTs 7 ~
92004600 1. |B58458F6 |rootfs !
92004800 2. |bdev bdev bdev:
92004400 3. |0D009FAD |proc !
92005800 4. (01021994 |[tmpfs !
S2005A00 5. 64626720 |debugfs |/
92124000 6. [SOCK sockfs |socket:
92440400 7. |PIPE pipefs pipe:
92440600 8. (09041934 |anon_ino (anon_inode:
92156000 9. |00001CDL |devpts ! hd
. Display /proc: display the content of the /proc file system.
o B:TASK.FS.PROC = =R
name address mode Tinks [uid gid size |
BOAAAZES [dr-xr-xr-x 1z. 0. 0. 0. A
92464180 |-r--r--r-- 1. 0. o o
92464000 |-r--r--r-- 1. 0. o o
sysrg-trigger |92812F00 1. 0. o o
partitions 92812400 1. 0. 0 0
diskstats 92812980 1. 0. o o
crypto 92812900 |-r--r--r-- 1. 0. o o A
. Display /sys: display the content of the /sys file system.
o BuTASK.FS.SYS = =R
name address mode count |
= /sys BOAAASAB [drwxr-xr-x 14, ~
fs 92029000 |drwxr-xr-x 2.
= devices 92029030 |drwxr-xr-x 9.
platform 92029180 |[drwxr-xr-x 95,
= system 92029420 |[drwxr-xr-x 3.
= cpu 92029450 |[drwxr-xr-x 11.
= online 92029480 |-r--r--r-- 1.
possible |920294B0 |-r--r--r-- 1.
= present 920294E0 |-r--r--r-- 1.
kernel_max (92029510 |-r--r--r-- 1 v
. Display Partitions: display the partition table.
o B:TASK.FS.PART = =R
mag c name major | minor | #blocks |
9ZB0OD000 |mmchb1kD 179. 0. 7761920, ~
9283A3C0 |mmchlkol 179. 1. 3862016. W

Please refer to the documentation of the TASK.FS command for more information.

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64 | 45

Kernel Log Buffer

By selecting the menu Linux > Display Kernel Log you can display the content of the kernel log buffer. The

corresponding Linux awareness command is TASK.DMESG.

% B:TASK.DMESG = =R
& More | X Lless | % Detsled | Export

kernel ring buffer - Log level (0-7) |

| 0.0000007 Initializing cgroup subsys cpuset A

<G 0.000000] Initializing cgroup subsys cpu

<G 0.000000] Initializing cgroup subsys cpuacct

<5 0.000000] Linux version 4.4.49 (yda@lauterbach) (gcc version 4.8.4 (Ubuntu 4.8.4-2ubuntul~14.04.3)) #1 SMP Tue
May 9 09:43:50 CET 2017

<G 0.000000] Command Tine: console=ttyS0,115200 console=ttyUSEO 1nitrd=0x04000000,0x800000 root=/dev/ram mem=240M
s1ram=appdisk, 0x0F000000 ,+0x1000000

<G 0.000000] x86/fpu: Legacy x87 FPU detected.

<G 0.000000] x86/fpu: Using "lazy' FPU context switches.

<G 0.000000] e820: BIOS-provided physical RAM map:

<6 0.000000] BIOS-e801: [mem 0x0000000000000000-0x000000000009efff] usable

<6 0.000000] BIOS-e801: [mem Ox0000000000100000-0x000000000FFFFFf] usable

<7=[0.000000] e820: remove [mem OxO0f000000-Oxffffffffffffffe] usable

<G 0.000000] NX (Execute Disable) protection: active

<G 0.000000] e820: user-defined physical RAM map:

<G [0.000000] user: [mem Ox0000000000000000-0x000000000009efTf] usable W

The TASK.DMESG window includes the following buttons:
. More: show more log levels.

. Less: show less log levels.

. Detailed: open the TASK.DMESG /COLOR /DETAILED window which will display the log level
and the facility in a human readable format and use a different color for each log level.

o B:TASK.DMESG /DETAILED /COLOR = =R
& More | X Lless | % Detsled | Export

kernel ring buffer - Log level (0-7) |
kern :info : [0.000000] Initializing cgroup cpuset A
kern :info 0.000000] Initializi cpu
kern :info [0.000000] Initializi cpuacct
kern :notice: [0.000000] Linux version 4.4 @lLauterbach) (gcc versi

ntul~14.04.3)) k :43:50 CET
kern :info 0.000000] Command Tine: cc 0 console=tty

Tram=appdisk, 0x0FO(
kern :info 0.000000] x fpu: Legacy x87 FPU detected.
kern :info 0.000000] x86,/fpu: Using 'lazy' FPU context switches. W
. Export: open a dialog for exporting the kernel log to an external file. The dialog allows to select

the file format (ASCIl or XHTML) and the log levels and facilities that should be included in the
exported file. The dialog is based on the script dmesg . cmm available in the path of the Linux

awareness.
A Export kernel log EI@
File name
| C:\test\dmesg.tt |
ASCIT ~
Log levels Log facilities
[0-emerg [0-kern
[1-alert [1-user
[2-cric [2-mail
M 3-emr [413-daemon
[4-wamn M 4-auth
5-notice 5-syslog
6-info 6-pr
[7-debug [7-news
decode faciity and level to readable string
Save Cancel

©1989-2024 Lauterbach

Training Linux Debugging for Intel® x86/x64 | 46

RAM Dump Generation

The Linux awareness offers a dialog to generate a snap shot of the current system state for a later analysis
using the TRACES32 instruction set simulator. This dialog can be opened from the menu Linux > Generate
RAM Dump and is based on the script ramdump . cmm available in the TRACE32 demo directory under
~~/demo/<arch>/kernel /linux.

/A RAM Dump =N =R)

TRACE File Mame:

Memory Range(s): |l'\D:DxD--DXBDFFFFFF | guess
Kernel Symbol File: | C:\kernel\linux_demo\vmiinux |

Scan Translations to |tmn5_20191031_15?2525839.cmm | O
CMM File: [restore_20191031_1572525839.cmm |

STORE

After pushing the STORE button, the dialog will save the RAM contents as well as important register values
and will generate a restore_<. . .>. cmm script that can be used to restore the system state on the
TRACE32 instruction set simulator.

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64 | 47

Troubleshooting

Most of the errors in Linux aware debugging are due to a wrong symbol information or to an incorrect setup
of the debugger address translation.

The loaded vm1 inux file must match the kernel binary executed on the target. To verify if this is the case,
you can perform the following steps:

J Load the vmmlinux file to the debugger virtual memory (VM:) using the following command.

Data.LOAD.El1f vmlinux AVM:O0

. Display the Linux banner string from the debugger VM or print it to the area window:

Data AVM:linux_banner
PRINT Data.STRING (AVM:linux banner)

. Compare the Linux banner string with the output of the Linux command cat /proc/version.
Both strings must be identical including the timestamps.

Moreover, you need to make sure that the kernel was configured with CONFIG_DEBUG_INFO enabled and
with CONFIG_DEBUG_INFO_REDUCED hot set.

The next point to check in case you are having trouble is if the debugger address translation is correctly set.
Problems due to an incorrect setup of the debugger address translation especially show up when debugging
kernel modules or debugging in the user-space. You need to check the following:

o Is the MMU Format set with the MMU.FORMAT command correct?

. Is the kernel logical address translation correct? To check this translation, you can use the
command MMU.List.PageTable address with the kernel logical start address as parameter when

the kernel has already booted e.g.

MMU.List PageTable 0xC0000000

If you are still having trouble, please select the TRAC32 menu Help > Support > Systeminfo..., store your
system information to a file and send this file together with your setup scripts as well as the content of the
TASK.TEST window to support@lauterbach.com.

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64 | 48

FAQ

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach Training Linux Debugging for Intel® x86/x64 | 49

https://support.lauterbach.com/kb

	Training Linux Debugging for Intel® x86/x64
	Introduction
	Documentation Updates
	Related Documents and Tutorials

	Basic Terms on Embedded Linux
	Linux Components
	The Kernel
	Kernel Modules
	Processes and Threads
	Libraries (Shared Objects)

	The Linux Awareness
	Virtual Memory Management in Linux
	Virtual Address Map of Linux
	Debugger Memory Access
	On Demand Paging

	Run-Mode vs. Stop-Mode Debugging
	Hardware Based Debuggers
	Software Based Debuggers

	Kernel Configuration

	Setting up a Script for Linux-Aware Debugging
	Linux Setup-Steps and -Commands
	Set up the Debugger Address Translation
	Mark the Kernel Address Space

	Example Linux Setup-Scripts

	Debugging the Linux Components
	The Kernel
	Kernel Startup
	Kernel Boot
	Verifying Image and Symbols

	Kernel Modules
	Processes
	Threads
	Libraries
	Task Related Breakpoints
	Task Related Single Stepping
	Task Context Display

	Linux specific Windows
	Display of System Resources
	Kernel Module List
	File System Information
	Kernel Log Buffer
	RAM Dump Generation

	Troubleshooting
	FAQ

