
MANUAL

Training Linux Debugging

Training Linux Debugging

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Training .. 

 Training RTOS ... 

 Training Linux Debugging ... 1

 Introduction ... 5

 Documentation Updates 5

 Related Documents and Tutorials 5

 Basic Terms on Embedded Linux .. 6

 Linux Components 6

 The Kernel 6

 Kernel Modules 7

 Processes and Threads 7

 Libraries (Shared Objects) 7

 The Linux Awareness 7

 Virtual Memory Management in Linux 9

 Virtual Address Map of Linux 9

 Debugger Memory Access 10

 On Demand Paging 12

 Run-Mode vs. Stop-Mode Debugging 15

 Hardware Based Debuggers 15

 Software Based Debuggers 16

 Kernel Configuration 17

 Setting up a Script for Linux-Aware debugging ... 20

 Linux Setup-Steps and -Commands 20

 Debugger Reset for Linux Debugging 20

 Debugger Setup 21

 Open a Terminal Window 22

 Load Kernel Symbols 22

 Download the Kernel 24

 Download the File System 26

 Set up the Linux Awareness 28

 Setup for SMP Linux 31

 Example Linux Setup-Scripts 32

 Debugging Linux Components .. 34

 The Kernel 34
Training Linux Debugging | 2©1989-2024 Lauterbach

 Kernel Modules 37

 Processes 39

 Threads 41

 Libraries 41

 Task Related Breakpoints 42

 Task Related Single Stepping 42

 Task Context Display 43

 Linux Specific Windows ... 45

 Displaying the Task List 45

 Kernel Module List 46

 File System Information 47

 Kernel Log Buffer 48

 Device Tree 49

 RAM Dump Generation 49

 Linux Trace .. 50

 Overview 50

 Context ID Trace for Arm Cortex-A 51

 OTM Trace for PowerArchitecture based QorIQ Processors 51

 Using the LOGGER for Task Switch Trace 52

 Troubleshooting .. 55

 FAQ ... 56
Training Linux Debugging | 3©1989-2024 Lauterbach

Training Linux Debugging

Version 06-Jun-2024
Training Linux Debugging | 4©1989-2024 Lauterbach

Introduction

This training will have the main subjects:

• Basic terms on embedded Linux

• Kernel configuration

• Setting up a script for Linux-aware debugging

• Debugging Linux components by TRACE32 Linux menu

• Linux Trace

• Troubleshooting

Please note that Linux debugging for Intel x86/x64 is covered by a different training document, refer to
“Training Linux Debugging for Intel® x86/x64” (training_rtos_linux_x86.pdf).

Documentation Updates

The latest version of this document is available for download from:
www.lauterbach.com/pdf/training_rtos_linux.pdf

Related Documents and Tutorials

• For a complete description of the Linux awareness commands, refer to the “OS Awareness
Manual Linux” (rtos_linux_stop.pdf).

• For information about Linux run mode debugging, please refer to “Run Mode Debugging Manual
Linux” (rtos_linux_run.pdf) and “TRACE32 as GDB Front-End” (frontend_gdb.pdf).

• The Linux Debugging Reference Card includes an overview of frequently used TRACE32
commands for debugging targets running Linux.

• For a short video tutorial about Linux debugging, visit:
support.lauterbach.com/kb/articles/trace32-linux-debugging
Training Linux Debugging | 5©1989-2024 Lauterbach

http://www.lauterbach.com/pdf/training_rtos_linux.pdf
http://www.lauterbach.com/referencecards.html
https://support.lauterbach.com/kb/articles/trace32-linux-debugging

Basic Terms on Embedded Linux

This part describes essential basics and terms related to Linux and Linux-Debugging.

1. Linux Components

2. The Linux Awareness

3. Virtual Memory Management in Linux

4. Run-Mode vs. Stop-Mode Debugging

Linux Components

From the point of view of a debugger, a Linux system consists of the following components:

• The Linux kernel

• Kernel modules

• Processes and threads

• Libraries (shared objects)

Moreover, we can talk about two different spaces of executed code:

• Kernel space with privileged rights which includes the kernel

• User space with limited rights which includes processes, threads and libraries.

The kernel debug symbols (vmlinux) should be loaded in TRACE32 by the user. The debug symbols of
kernel modules, processes and libraries are automatically loaded on-demand by the TRACE32 Symbol
Autoloader. Please refer to the rest of this training, as well as to “OS Awareness Manual Linux”
(rtos_linux_stop.pdf) for more information.

The Kernel

The Linux kernel is the most important part in a Linux system. It runs in privileged kernel space and takes
care of hardware initialization, device drivers, process scheduling, interrupts, memory management... The
Linux kernel is generally contained in a statically linked executable in one of the object files supported by
Linux (e.g. “vmlinux”). You can also find the kernel in compressed binary format (zImage/uImage). You will
see later in this training how to configure the Linux kernel for Linux-aware debugging.

Kernel threads:

It is often useful for the kernel to perform operations in the background. The kernel accomplishes this via
kernel threads. Kernel threads exist solely in kernel space. The significant difference between kernel threads
and processes is that kernel threads operate in kernel space and do not have their own address space.
Training Linux Debugging | 6©1989-2024 Lauterbach

Kernel Modules

Kernel modules (*.ko) are software packages that are loaded and linked dynamically to the kernel at run
time. They can be loaded and unloaded from the kernel within a user shell by the commands
modeprobe/insmod and rmmod. Typically kernel modules contain code for device drivers, file systems, etc.
Kernel modules run at kernel level with kernel privileges (supervisor).

Processes and Threads

A process is an application in the midst of execution. It also includes, additionally to executed code, a set of
resources such as open files, pending signals, a memory address space with one or more memory
mappings...

Linux processes are encapsulated by memory protection. Each process has its own virtual memory which
can only be accessed by this process and the kernel. Processes run in user space with limited privileges.

A process could have one or more threads of execution. Each thread includes a unique program counter,
process stack and set of process registers. To the Linux kernel, there is no concept of a thread. Linux
implements all threads as standard processes. For Linux, a thread is a processes that shares certain
resources with other processes.

Libraries (Shared Objects)

Libraries (shared objects, *.so) are commonly used software packages loaded and used by processes and
linked to them at run-time. Libraries run in the memory space of the process that loaded them having the
same limited privilege as the owning process. Same as processes, also libraries are always loaded and
executed as a file through a file system.

The Linux Awareness

Debugging an operating system like Linux requires special support from the debugger. We say that the
debugger needs to be “aware” of the operating system. Since TRACE32 supports a wide range of target
operating systems, this special support is not statically linked in the debugger software but can be
dynamically loaded as an extension depending on which operating system is used. Additional commands,
options and displays will be then available and simplify the debugging of the operating system.The set of
files providing these operating system debugging capabilities is called here “awareness”.

To be able to read the task list or to allow process or module debugging, the Linux awareness accesses the
kernel’s internal structures using the kernel symbols. Thus the kernel symbols must always be available
otherwise Linux aware debugging will not be possible. The file vmlinux has to be compiled with
debugging information enabled as will be shown later.

The Linux awareness files can be found in the TRACE32 installation directory under
~~/demo/<arch>/kernel/linux/

The Linux awareness can be loaded using the command TASK.CONFIG or EXTension.LOAD.
Training Linux Debugging | 7©1989-2024 Lauterbach

You can check the version of the loaded Linux awareness in the VERSION.SOFTWARE window. This
information will only be shown if the Linux awareness is already loaded.
Training Linux Debugging | 8©1989-2024 Lauterbach

Virtual Memory Management in Linux

Before actually going into the details on how to debug a Linux system with TRACE32, we need to look at the
helping features of TRACE32 that make Linux debugging possible.

Virtual Address Map of Linux

We start by discussing the virtual address map used by a running Linux system. Basically the memory is
split into two sections: one section is reserved for the kernel and the second one for the user applications.
The kernel runs in supervisor/privileged mode and has full access to the whole system while user processes
run in user/non-privileged mode. The kernel has full visibility of the whole virtual address map, while the user
processes have only a partial visibility. It’s the task of the kernel to maintain the virtual address map and also
the virtual to physical address translations for each user process.

The kernel space is exclusively used by the kernel, this means that a kernel logical/virtual address can have,
at a given time, one single virtual-to-physical address mapping. On the other hand, the user space is shared
by all running processes. Thus a virtual address in the user space can have different mappings depending
on the process to which this address belongs.

The kernel space includes the kernel logical address range which is mapped to a continuous block in
the physical memory. The kernel logical addresses and their associated physical addresses differ only
by a constant offset. We denote this kernel logical to physical address translation as “kernel default
translation”. The rest of the kernel space includes the kernel virtual addresses which do not have
necessarily the same mapping as the kernel default translation. This includes for instance kernel
modules and memory allocated with vmalloc.

For a 32bit kernel, the split between kernel and user space is at a certain barrier which is configurable in the
kernel. Three options are available:

• 3G/1G user/kernel i.e. the kernel space starts at 0xC0000000 (CONFIG_VMSPLIT_3G)

• 2G/2G user/kernel i.e. the kernel space starts at 0x80000000 (CONFIG_VMSPLIT_2G)

• 1G/3G user/kernel i.e. the kernel space starts at 0x40000000 (CONFIG_VMSPLIT_1G)

For Arm 32 bit processors, the kernel additionally reserves the 16 MB below the start of the kernel for kernel
modules. The kernel space starts for instance from 0xBF000000 if a 3G/1G user/kernel split is used.

For 64 bit kernels, user and kernel space are separated by a reserved virtual address range.
Training Linux Debugging | 9©1989-2024 Lauterbach

Debugger Memory Access

Per default (i.e. with disabled debugger address translation) the debugger accesses the memory virtually
(through the core). This way, it is only possible to access memory pages which are currently mapped in the
translation look-aside buffers (TLB).

Alternatively, you can set up the debugger to access the memory physically. This way, the debugger will have
access to all the existing physical memory. However, Linux operates completely in virtual memory space: all
functions, variables, pointers etc. work with virtual addresses. Also, the symbols are bound to virtual
addresses. Hence, if the user tries to read the value of a variable for instance, the debugger has to find the
virtual to physical address translation for this variable and access it using its physical address.

The debugger can hold a local translation list. Translations can be added to this list manually using the
TRANSlation.Create command. This local translation list can be viewed using the TRANSlation.List
command. If the accessed virtual address has a translation in the local translation list then this translation is
used, otherwise if the translation “table walk” is enabled (TRANSlation.TableWalk ON) then the debugger
will read the target MMU page table(s) to find the virtual to physical address translation. We call this process
“debugger table walk”.

In contrast to the CPU address translation, if the virtual to physical address mapping is not found in the page
table when performing a debugger table walk, no page fault is generated. It is then not possible for the
debugger to access this address. A debugger memory access doesn’t modify the MMU page tables.

Without further settings, the debugger can only access the current page table generally pointed by a special
register (e.g. TTBR0/TTBR1 for Arm). However, each process as well as the kernel, has its own page table.
Hence, by walking only through the current page table, it is not possible to find the virtual to physical address
mapping of a process which is not the current executing one and as follows it is not possible to access the
memory of such a process.

But since the Linux kernel manages the switching of the MMU for all processes, kernel structures hold the
pointers for the translation pages tables for every process. The debugger just needs to get this information
from the kernel data structures to be able to access the memory for any running task in the system. It is the
task of the Linux awareness to get the page table descriptors for all running tasks on the system. You can
display these descriptors by execution the TRACE32 command TASK.List.SPACES. In order to access this
information, the debugger needs to have access to the kernel data at any time. The Linux debugging script
has thus to inform the debugger about the logical to physical address translation used by the kernel.

NOTE: The debugger local translation list has the highest priority in the debugger
translation process.

To be able to access the kernel logical range at any time, the debugger needs
to know the kernel logical to physical address translation.
Training Linux Debugging | 10©1989-2024 Lauterbach

Space IDs

Under Linux, different processes may use identical virtual address. To distinguish between those addresses,
the debugger uses an additional identifier, called space ID (memory space identifier). It specifies which
virtual memory space an address refers to. The space ID is zero for all tasks using the kernel address space
(kernel threads). For processes using their own address space, the space ID equals the lower 16bits of the
process ID. Threads of a particular process use the memory space of the invoking parent process.
Consequently threads have the same space ID as the parent process (main thread).

The following command enables the use of space IDs in TRACE32:

After enabling the address extension with the memory space IDs, a virtual address looks like
“001E:10001244”, which means virtual address 0x10001244 with space ID 0x1E (pid = 30.).

You can now access the complete memory:

Symbols are always bound to a specific space ID. When loading the symbols, you need to specify, to which
space ID they should belong. If you load the symbols without specifying the space ID, they will be bound to
space ID zero (i.e. the kernel’s space ID). See chapter “Debugging the Linux Components by TRACE32
Linux Menu”, page 36 for details.

If you enter commands with a virtual address without the TRACE32 space ID,
the debugger will access the virtual address space of the current running
task.

SYStem.Option.MMUSPACES ON

SYStem.Option.MMUSPACES ON doesn’t switch on the processor MMU. It just
extends the addresses with space IDs.

Data.dump 0x10002480 ; Will show the memory at virtual address
; 0x10002480 of the current running task

List 0x2F:0x10003000 ; Will show a code window at the address
; 0x10003000 of the process having the space
; id 0x2F

Data.dump A:0x10002000 ; Will show the memory at physical address
; 0x10002000
Training Linux Debugging | 11©1989-2024 Lauterbach

Because the symbols already contain the information of the space ID, you don’t have to specify it manually.

If the Linux awareness is enabled, the debugger tries to get the space ID of the current process by accessing
the kernel’s internal data structures. If this fails e.g. because of wrong symbol information, an access error,
or simply because the kernel’s data structures have not been yet initialized (in case you stop the target early
in the kernel boot process), the debugger sets the current space ID to 0xFFFF and shows the message
“task error” in the status line.

You can ignore the “task error” message as long as the kernel has not yet booted. In case you still get this
error after the kernel boot, then you probably have a wrong configuration or a problem with the kernel debug
symbols.

On Demand Paging

Linux is designed for heavy MMU usage with on-demand paging. On-demand paging means that code and
data pages are loaded when they are first accessed. If the processor tries to access a memory page that is
not yet loaded, it creates a page fault. The page fault handler then loads the appropriate page and creates a
translation in the current page table.

Data.dump myVariable ; Will show the memory at the virtual
; address of “myVariable” with the space ID
; of the process holding this variable

NOTE: Address extension with the memory space IDs is per default disabled in
TRACE32. The command SYStem.Option.MMUSPACES ON has thus to be
included at the start of the Linux debugging script.

virtual address of current process 0x141 virtual address of specified process 0xBB9

Symbol “flags” with process 0xBB9access to physical address A:0x8048FDD
Training Linux Debugging | 12©1989-2024 Lauterbach

The following screen shots show an example of on-demand paging on an Arm Cortex-A processor: the code
of the process consists of multiple memory pages. The program counter is at the end of the page (address
0x18FF8). The next page (at address 0x19000) is not yet loaded into physical memory. Therefore the
debugger cannot read the memory at these addresses and shows question marks.

After a single step, a PABORT exception takes place (address 0xFFFF000C).

The kernel handler for pre-fetch abort is called then, which loads and maps the page.

Finally the execution returns to the address which caused the exception (0x19000).

Please also refer to “OS Awareness Manual Linux” (rtos_linux_stop.pdf) for more information about on-
demand paging.
Training Linux Debugging | 13©1989-2024 Lauterbach

Training Linux Debugging | 14©1989-2024 Lauterbach

Run-Mode vs. Stop-Mode Debugging

There are two main alternatives for debugging a Linux target: hardware based (stop mode) and software
based (run mode). This chapter gives a small introduction regarding the differences between stop and run
mode debugging which are both supported by TRACE32.

Hardware Based Debuggers

A hardware-based debugger uses special hardware to access target, processor and memory (e.g. by using
the JTAG interface). No software components are required on the target for debugging. This allows
debugging of bootstraps (right from the reset vector), interrupts, and any other software. Even if the target
application runs into a complete system crash, you are still able to access the memory contents (post
mortem debugging).

A breakpoint is handled by hardware, too. If it is reached, the whole target system (i.e. the processor) is
stopped. Neither the kernel, nor other processes will continue. When resuming the target, it continues at the
exact state, as it was halted at the breakpoint. This is very handy to debug interrupts or communications.
However, keep in mind that also “keep alive” routines may be stopped (e.g. watchdog handlers).

The debugger is able to access the memory physically over the complete address range, without any
restrictions. All software parts residing in physical memory are visible, even if they are not currently mapped
by the TLBs. If the debugger knows the address translation of all processes, you gain access to any process
data at any time.

The “on demand paging” mechanism used by Linux implies that pages of the application may be physically
not present in the memory. The debugger cannot access such pages (including software breakpoints), as
long as they are not loaded.

Advantages:

• bootstrap, interrupt or post mortem debugging is possible

• no software restrictions (like memory protection, ...) apply to the debugger

• the full MMU table and code of all processes alive can be made visible

• only JTAG is required, no special communication interface as RS232 or Ethernet is
needed

Disadvantages:

• halts the complete CPU, not only the desired process

• synchronization and communications to peripherals usually get lost

• debug hardware and a debug interface on the target are needed
Training Linux Debugging | 15©1989-2024 Lauterbach

Software Based Debuggers

Software based debuggers, e.g. GDB, usually use a standard interface to the target, e.g. serial line or
Ethernet. There is a small program code on the target (called “stub” or “agent”) that waits for debugging
requests on the desired interface line and executes the appropriate actions. Of course, this part of the
software must run, in order for the debugger to work correctly. This implies that the target must be up and
running, and the driver for the interface line must be working. Hence, no bootstrap, interrupt or post mortem
debugging is possible.

When using such a debugger to debug a process, a breakpoint halts only the desired process. The kernel
and all other processes in the target continue to run. This may be helpful, if e.g. protocol stacks need to
continue while debugging, but hinders the debugging of inter-process communication.

Because the debugging execution engine is part of the target program, all software restrictions apply to the
debugger, too. In the case of a gdbserver for example, which is a user application, the debugger can only
access the resources of the currently debugged processes. In this case, it is not possible to access the
kernel or other processes.

Advantages:

• halts only the desired process

• synchronization and communications to peripherals usually continue

• no debugger hardware and no JTAG interface are needed

Disadvantages:

• no bootstrap, interrupt or post mortem debugging is possible

• all software restrictions apply to the debugger too (memory protection, ...)

• only the current MMU and code of this scheduled process is visible

• actions from GDB change the state of the target (e.g page faults are triggered)

• one RS232 or Ethernet interface of the target is blocked

The GDB Remote Serial Protocol (RSP) is used by some emulators/simulators (e.g. QEMU) as a debug
protocol. In this case, the debug stub is part of the emulator itself. We talk this in this case about stop mode
debugging.

Run mode debugging is not covered by this training, for more information please refer to “Run Mode
Debugging Manual Linux” (rtos_linux_run.pdf) and “TRACE32 as GDB Front-End” (frontend_gdb.pdf).

Software based debugging is less robust and has many limitations in
comparison to hardware based debugging. Thus, it is recommended to use
JTAG based debugging if possible.
Training Linux Debugging | 16©1989-2024 Lauterbach

Kernel Configuration

Before going forward with writing Linux TRACE32 scripts and debugging the different Linux components, we
will show the important kernel configurations that have influence on Linux debugging.

Compile The Kernel With Debug Info

To be able to do Linux aware debugging, the vmlinux file must be compiled with debug info enabled. Thus,
you need to ensure that CONFIG_DEBUG_INFO is enabled in the kernel configuration. Please also make
sure that CONFIG_DEBUG_INFO_REDUCED is not set (Reduce debugging information).

Moreover the option “Produce split debug info in .dwo files” (CONFIG_DEBUG_INFO_SPLIT) has to be
disabled.

Disable Randomization

For some processor architectures, the Linux kernel offers a security feature which allows to randomize the
virtual address at which the kernel image is loaded (CONFIG_RANDOMIZE_BASE). This option has to be
disabled in the kernel configuration, otherwise the debug symbol addresses loaded from the vmlinux file
do not match anymore the kernel code/data. As an alternative to disabling this option, you can add
“nokaslr” to the kernel boot parameters.

CONFIG_DEBUG_INFO=y
CONFIG_DEBUG_INFO_REDUCED is not set
CONFIG_DEBUG_INFO_SPLIT is not set
Training Linux Debugging | 17©1989-2024 Lauterbach

Disable Lockup and Hang Detection

The Linux kernel provides the possibility to detect soft lockups and hung tasks by acting as a watchdog. This
can be enabled under Kernel hacking > Debug Lockups and Hangs. The corresponding kernel
configuration options are CONFIG_SOFTLOCKUP_DETECTOR and CONFIG_DETECT_HUNG_TASK.

If the program execution is stopped for a certain period of time, the soft lockup and hang detection could
trigger a kernel panic. It is thus recommended to disable this detection in the kernel configuration.

CPU Power Management

The Linux kernel CPU power management could cause for some processor architectures that single cores
are not accessible by the debugger when in power saving state. CPU power management can be disabled
in the Linux kernel configuration by disabling the options CONFIG_CPU_IDLE and CONFIG_CPU_FREQ.

Idle states can also be disabled for single cores from the shell by writing to the file
/sys/devices/system/cpu/cpu<x>/cpuidle/state<x>/disable. Alternatively, you may remove
the idle-states property from the device tree if available.

On some Linux distributions, power management can be disabled using specific kernel command line
parameters (e.g. “jtag=on” or “nohlt”). Please refer to the documentation of the kernel command line
parameters of your Linux distribution for more information.

Disable KPTI a.k.a. KAISER (Arm 64 bit only)

If the option CONFIG_UNMAP_KERNEL_AT_EL0 is enabled, the kernel is unmapped when running in user
space and mapped back in on exception entry via a trampoline page in the vector table. Thus, when the
execution is stopped in user space, the debugger won’t have access to the kernel data. Please disable this
option in the kernel configuration if possible. Otherwise, you can add “pti=0” to the kernel boot
parameters or set the variable __kpti_forced to a negative value e.g.

Kernel Modules Related Configurations

The kernel contains all section information if it has been configured with CONFIG_KALLSYMS=y. When
configuring the kernel, set the option “General Setup”-> “Configure standard kernel features” -> “Load
all symbols” to yes. Without KALLSYMS, no section information is available and debugging kernel modules
is not possible.

IF sYmbol.EXIST(__kpti_forced)
 Var.set __kpti_forced = -1
Training Linux Debugging | 18©1989-2024 Lauterbach

Extracting the Kernel Configuration

The Linux awareness includes a script (getconfig.cmm) that can be used in order to extract the kernel
configuration file from a running Linux kernel. You just need to stop the program execution and call the script
e.g.:

The script will extract a config.gz file from the kernel. Please note that this script only works if
IKCONFIG_PROC (enable access to .config through /proc/config.gz) is enabled in the kernel configuration.

Break
DO ~~/demo/arm/kernel/linux/getconfig.cmm
Training Linux Debugging | 19©1989-2024 Lauterbach

Setting up a Script for Linux-Aware debugging

This chapter will introduce the typical steps to prepare the TRACE32 debugger for convenient Linux-
Debugging. Sample Linux debugging setup script files are presented at the end of this chapter.

Linux Setup-Steps and -Commands

To be able to do Linux aware debugging, some configuration needs to be done in TRACE32. The minimal
setup includes the following steps:

• Connect to the target platform

• Load the Linux kernel symbols

• Set up the debugger address translation

• Load the Linux awareness and the Linux menu

These are the only needed configuration steps if you want to attach to a running Linux kernel. In case you
want to debug the kernel boot, then you additionally need to make sure to stop the execution before the
kernel start.

Moreover, it is possible to download the kernel image to the RAM using the debugger. We will discuss in this
chapter which setup is needed in this case.

You can find Linux demo scripts in the TRACE32 installation directory under
~~/demo/<arch>/kernel/linux/board

Debugger Reset for Linux Debugging

Especially if you restart debugging during a debug session you are not sure about the state the debugger
was in. It is thus recommended to use the command RESet in order to reset the debugger settings.

Moreover, it is also good to clear all debugger windows before connecting to the target using the WinCLEAR
command.

RESet ; reset debugger completely

The RESet command doesn’t reset the target but only the debugger
environment.

WinCLEAR ; clear all debugger windows
Training Linux Debugging | 20©1989-2024 Lauterbach

Debugger Setup

You need to set up the debugger to be able to connect to the target platform. The needed setup highly
depends on the used target platform. Start-up scripts for different target platforms are available in the
TRACE32 demo directory. You can use the TRACE32 menu “File” -> “Search for Scripts..” to find suitable
demo scripts for your target board. Please also refer to your Processor Architecture Manual.

Additional settings related to OS-aware debugging are needed. These settings are presented below.

Address Extension

Switch on the debugger’s virtual address extension to use space IDs. The addresses in the List and
Data.dump windows will be extended with a space ID (e.g. 0000:800080000).

It is recommended to add the command at the start of the Linux debugging script after resetting the
debugger environment and before establishing the debug connection.

Set Single Step Behavior

While single stepping, external interrupts may occur. On some architectures, this leads with the next single
step into the interrupt handler. This effect normally disturbs during debugging. The following sequence
masks external interrupts while executing assembler single steps. Keep interrupts enabled during HLL single
steps to allow paging while stepping through source code.

Architecture Specific Options

Additional settings are needed depending on the used target processor. Please refer to your Processor
Architecture Manual and to the Linux debugging demo scripts for more information.

SYStem.Option.MMUSPACES ON ; enable space IDs

NOTE: Older documentation and TRACE32 software uses SYStem.Option MMU ON
instead of SYStem.Option MMUSPACES ON. Please use only the new naming.

SETUP.IMASKASM ON
SETUP.IMASKHLL OFF

; suppress interrupts during assembler stepping
; allow interrupts while HLL single stepping

If an assembler single step causes a page fault, the single step will jump into
the page fault handler, regardless of the above setting. The debugger will restore
the interrupt mask to the value before the single step. So it might be wrong at this
state and cause an unpredictable behavior of the target.
Training Linux Debugging | 21©1989-2024 Lauterbach

The following settings are e.g. needed for Armv7 Cortex-A processors:

Open a Terminal Window

You can open a serial terminal window in TRACE32 using the TERM command:

You can also use the term.cmm script available in the TRACE32 installation under
~~/demo/etc/terminal/serial which takes two arguments: the COM port and the baud rate e.g.

TRACE32 allows to send data to the terminal window from a script file using the command TERM.OUT:

Moreover, TRACE32 allows to set a trigger for the occurrence of a specific string in the terminal window
using the command TERM.TRIGGER. The PRACTICE function TERM.TRIGGERED(<channel>) returns
then if the trigger has occurred.

Load Kernel Symbols

Kernel symbols are very important when debugging a Linux system. Without kernel symbols, no Linux
aware debugging is possible. You need to load the kernel symbols even if you only debug user applications
and do not debug the kernel code.

SYStem.Option.DACR ON
TrOnchip.Set DABORT OFF
TrOnchip.Set PABORT OFF
TrOnchip.Set UNDEF OFF

; give debugger global write permissions
; used by Linux for data page misses!
; used by Linux for program page misses!
; might be used by Linux for FPU detection

TERM.RESet ; reset old TERM settings
TERM.METHOD COM com1 115200. 8 NONE 1STOP NONE
 ; for com10 use \\.\com10
TERM.SIZE 80. 1000. ; define size of the TERM window
TERM.SCROLL ON ; enable scrolling
TERM.Mode VT100
TERM.view ; open the TERM window
SCREEN.ALways ; TERM window always updated

DO ~~/demo/etc/terminal/serial/term.cmm COM1 115200.

TERM.OUT "bootm 0x20000000" 10. ; 10. is the ascii code of LF

; wait until the string "login" appears in the terminal window
TERM.TRIGGER "login:"
WAIT TERM.TRIGGERED(D:0)
Training Linux Debugging | 22©1989-2024 Lauterbach

The kernel debug information is included in the file vmlinux. This file has to be compiled with debugging
information enabled as already explained. You can load the kernel debug symbols using the following
command:

The option /NOCODE should be used to only load the symbols without kernel code.

The symbols of the vmlinux file contain empty structure definitions (forward declarations in the source
files). These may confuse the Linux awareness. To remove those structure definitions, execute a
sYmbol.CLEANUP right after loading the symbols into the debugger.

Displaying the Source Code

If you are not running TRACE32 on the host where you compiled your kernel, the debugger, which uses per
default the compile path to find the source files, will not find these files. The List window will display in this
case hatches instead of the source code:

The easiest way to inform the debugger about the path of the source file is to do a right mouse click in the
hatched area then select Resolve Path. A file search dialog will appear.

You just need then to browse to the source code file. The result of Resolve Path is a source path translation
which will be used to locate all kernel source code files. This means that you have to resolve the path of a
single source code file and all other kernel sources will be automatically found by TRACE32.

Data.LOAD.Elf vmlinux /NoCODE ; load only kernel debug symbols
Training Linux Debugging | 23©1989-2024 Lauterbach

You can see the result of Resolve Path using the command sYmbol.SourcePATH.List.

Using the button Store..., the resulting sYmbol.SourcePATH.Translate command can be saved in a
PRACTICE script.

Download the Kernel

It is normally the task of the boot-loader to load the kernel e.g. from the an SD card to the RAM. However,
you can also use the debugger to download the kernel to the target memory over JTAG. In this case you
need to omit the /NOCODE option in the Data.LOAD.Elf command. We use here the memory class A:
(absolute addressing) to download the code on the physical memory:

Since the vmlinux file is mapped to logical addresses, it has to be loaded with an offset which is equal the
kernel physical start minus the kernel logical start. If we have for instance a 32 bit kernel starting at the
logical address 0xC0000000 and that should be downloaded to the memory at 0x10000000, we should
the use the following command:

Some architectures (e.g. SH and MIPS) use the same virtual and physical start address for the kernel. In
this case you can simply download the kernel code and load the symbols using:

sYmbol.SourcePATH.Translate "\home\kjmal\kernel\" "C:\Training\Linux\"

Data.LOAD.Elf vmlinux A:<physical_start>-<logical_start> /NosYmbol

Data.LOAD.Elf vmlinux A:0x10000000-0xC0000000 /NosYmbol

Data.LOAD.Elf vmlinux

When shifting the kernel image from virtual to physical start address (e.g
0x10000000-0xC0000000) you have to only load the kernel code without
debug symbols using the option /NoSymbol. Otherwise, the kernel debug
symbols will be loaded on shifted addresses. The debug symbols should be
then loaded separately.
Training Linux Debugging | 24©1989-2024 Lauterbach

Sometime, it is also necessary to restrict the download to a RAM area range due to wrong information by
some gcc versions in the Elf file:

Downloading the Kernel Code at the Kernel Entry

You can set an on-chip breakpoint at the kernel entry point and let the system run. When you stop at the
breakpoint, you can then download the kernel to the target memory. In this case, no further settings are
needed since everything has already been prepared by the boot-loader. For example:

If the kernel image is compressed, the breakpoint at the kernel entry is hit twice: the first time to execute the
decompression routine and the second the start the kernel. You need to take this in consideration in your
script e.g. using the /COUNT option:

Then you can simply continue the execution:

Downloading the Kernel after the Boot-loader Target Initialization

You can stop the boot-loader just after the target initialization and download the kernel. This way, you need to
set the values of several registers and to set up the kernel boot parameters manually. The program counter
should be set to kernel entry point. Other registers should be set depending on the target architecture. For
the Arm 32 bit Cortex-A architecture, the register R2 should point to a device tree blob.

Data.LOAD.Elf vmlinux 0x10000000-0xC0000000 0x10000000--0x1FFFFFFF
 /NosYmbol

Go 0x10008000 /Onchip
WAIT !STATE.RUN()

Data.LOAD.Elf vmlinux A:0x10000000-0xC0000000 /NosYmbol

Go 0x10008000 /Onchip /COUNT 2
WAIT !STATE.RUN()

Data.LOAD.Elf vmlinux A:0x10000000-0xC0000000 /NosYmbol

Go ; let the kernel boot

; Reset all registers:
Register.RESet
; set PC on start address of image:
Register.Set PC 0x80008000
; Set R2 to the start of the device tree blob
Register.Set R2 0x82000000
; Download the device tree blob
Data.LOAD.Binary omap4-panda.dtb 0x82000000 /NoClear
Training Linux Debugging | 25©1989-2024 Lauterbach

Download the File System

In case you are using a ramdisk image as file system, you can download this image to the target memory
using the Data.LOAD.Binary command:

Please note that the /NoClear option should be used here, otherwise already loaded debug symbols would
be cleared.

Set up the Debugger Address Translation

The following settings have to be done by the Linux-aware debugging script in order to give the debugger
access to the whole system including kernel, kernel modules and user space applications.

Kernel Page Table and Default Translation

The debugger needs to have access, at any time, to the kernel page table which contains translations for
mapped address ranges owned by the kernel. Moreover, the kernel may use one of different formats to store
translations in the kernel page table. The Linux-aware debugging script has thus to inform the debugger
about the format and the logical address of the kernel page table as well as the logical to physical address
translation for kernel addresses.

All these settings can be done using the command MMU.FORMAT e.g

The first argument of this command is the format of the kernel page table. Please check “OS Awareness
Manual Linux” (rtos_linux_stop.pdf) for actual format specifier.

The second argument is a kernel symbol pointing to the start of the kernel page table and is usually called
swapper_pg_dir.

The third argument is the kernel logical to physical address translation called kernel translation or default
translation. This range should at least include the whole kernel page table. You can generally use the kernel
_text label as start of this range and the label _end minus 1 as its end.

The last argument is the physical address that corresponds to the used logical range start. You can get this
address using the command MMU.List PageTable with the logical address as argument e.g.

Data.LOAD.Binary ramdisk.image.gz 0x81600000 /NoClear /NosYmbol

MMU.FORMAT LINUX swapper_pg_dir 0xc0000000--0xc1ffffff 0x80000000

MMU.FORMAT LINUX swapper_pg_dir _text--(_end-1) 0x80000000

MMU.List PageTable _text
Training Linux Debugging | 26©1989-2024 Lauterbach

COMMON Range

With enabled space IDs, debug symbols as well as address translation are specific to one space ID. In user
space, the List window displays for instance only the debug symbols of the current process. Moreover, in
order to do the virtual to physical translation for an address with a given space ID, the debugger accesses
the page tables corresponding to that space ID. User space application may be however executing in kernel
space on behalf of the kernel. This means that it is usual to have the program counter pointing to a kernel
address, e.g. a kernel function, with a user process space ID. The debugger has to display in kernel space
the kernel symbols and use the kernel page tables independently of the space ID. The command
TRANSlation.COMMON informs the debugger about common address range for all processes, i.e.
everything above the process address range including kernel and kernel modules.

For a 32 bit Arm Cortex-A kernel, the common range starts at 0xbf000000, 0x7f000000 or
0x3f000000 respectively for 3G/1G, 2G/2G, 1G/3G user/kernel split and ends at 0xffffffff (since
kernel modules are mapped in the 16 MB below the start of the kernel).

The common range for a 32 bit kernel starts otherwise at 0xc0000000, 0x80000000 or 0x40000000
respectively for 3G/1G, 2G/2G, 1G/3G user/kernel split and ends at 0xffffffff.

The following common range can always be used for 64 bit kernels as user space is always below the
address 0xf000000000000000.

Enable The Address Translation

The debugger address translation and MMU table walk have to be enabled respectively using the
commands TRANSlation.ON and TRANSlation.TableWalk ON.

If the table walk is enabled, when accessing a virtual address which has no mapping in the debugger local
address translation list (TRANSlation.List), the debugger tries to access the MMU page tables to get the
corresponding physical address and then accesses the memory physically.

; possible common ranges for Arm 32 bit kernels:
TRANSlation.COMMON 0xbf000000--0xffffffff ;3G/1G user/kernel split
TRANSlation.COMMON 0x7f000000--0xffffffff ;2G/2G user/kernel split
TRANSlation.COMMON 0x3f000000--0xffffffff ;1G/3G user/kernel split

; possible common ranges for non Arm 32 bit kernels:
TRANSlation.COMMON 0xc0000000--0xffffffff ;3G/1G user/kernel split
TRANSlation.COMMON 0x80000000--0xffffffff ;2G/2G user/kernel split
TRANSlation.COMMON 0x40000000--0xffffffff ;1G/3G user/kernel split

; common range for 64 bit kernels:
TRANSlation.COMMON 0xf000000000000000--0xffffffffffffffff

TRANSlation.TableWalk ON
TRANSlation.ON
Training Linux Debugging | 27©1989-2024 Lauterbach

detect_translation.cmm

Lauterbach provides two scripts (for Arm 32 and 64 bit Cortex-A processors) that try to detect the debugger
address translation relevant settings and print them to the AREA window. These scripts can be found in
~~/demo/arm/kernel/linux/board/generic-template

You need then to copy the detected setting from the AREA window into your Linux debugging script.

Set up the Linux Awareness

We need to load now the Linux awareness and Linux menu in TRACE32.

• For kernel versions 2.x, the Linux awareness is based on the file linux2.t32 located under
~~/demo/<arch>/kernel/linux/linux-2.x/

• The Linux awareness for kernel versions 3.x and newer is based on the file linux.t32 located under
~~/demo/<arch>/kernel/linux/awareness/

; load the awareness on Arm
TASK.CONFIG ~~/demo/arm/kernel/linux/awareness/linux.t32
; load Linux menu:
MENU.ReProgram ~~/demo/arm/kernel/linux/awareness/linux.men
Training Linux Debugging | 28©1989-2024 Lauterbach

The Linux menu file includes many useful menu items developed for the TRACE32 PowerView user
interface to ease Linux debugging.

The Linux awareness and Linux menu are based on scripts available under:
~~/demo/<arch>/kernel/linux/awareness.

These scripts are called by the Linux awareness and the Linux menu. You should thus always load the
awareness from the TRACE32 installation directory to avoid compatibility problems between the Linux
awareness and the mentioned scripts. If you load the Linux awareness outside the TRACE32 installation,
you will get the warning “please use awareness files from TRACE32 installation directory”

Mark the Kernel Address Space

For better visibility, you can mark the kernel address space to be displayed with a red bar.

GROUP.Create "kernel" 0x0000:0xC0000000--0xFFFFFFFF /RED
Training Linux Debugging | 29©1989-2024 Lauterbach

Disable Watchdogs and Lockup Detection

The Linux kernel includes mechanisms to detect lockups and hangs. These mechanisms could interfere with
the debug functionality. Lauterbach provides within the Linux awareness a script to disable watchdogs and
lockup detection by writing to specific kernel variables. This script can be found in the TRACE32 demo
directory under <arch>/kernel/linux. Since the script accesses kernel variables, you should call it
after the MMU has been enabled e.g. after stopping at start_kernel:

Please contact the Lauterbach support in case you don’t find this script in your TRACE32 installation.

Go start_kernel /Onchip
WAIT !STATE.RUN()
DO ~~/demo/arm/kernel/linux/disable_watchdogs.cmm
Training Linux Debugging | 30©1989-2024 Lauterbach

Setup for SMP Linux

At kernel start, only the first core of an SMP system is generally accessible. If the debugger tries to access
the other cores, there is often a fatal error. When debugging an SMP Linux from the start, the user has thus
to connect only to the first core, wait until all core are activated by the kernel then re-connect to the whole
SMP system. The CORE.ASSIGN command can be used here to assign a set of cores to the SMP system.
This command can only be used in "system down" mode. Example:

You may use, instead of a wait time (10 seconds in the example above), a breakpoint on a kernel function
that is executed just after all cores have been enabled by the kernel. The kernel function smp_cpus_done
can be used here for instance:

SYStem.CPU IMX6QUAD ; quad core CPU
CORE.ASSIGN 1. ; only assign the first core
<...> ; further CPU specific settings
SYStem.Up ; reset the target and connect to first core

<...> ; load kernel symbols, set up the address
 ; translation and load the Linux awareness

Go ; resume the execution, the kernel will boot
WAIT 10.s ; wait until other cores are activated by the
 ; kernel e.g. 10.s

SYStem.Down ; detach from the target (core assignment
 ; can only be changed in "down" mode)
CORE.ASSIGN 1. 2. 3. 4. ; assign all four core
SYStem.Mode Attach ; re-attach to the target
; the OS awareness needs to be re-loaded since it is disabled by the
; the SYStem.Down command
TASK.CONFIG ~~/demo/arm/kernel/linux/awareness/linux.t32

; the script smp.cmm will be executed when the breakpoint is hit and the
; breakpoint will be disabled
Break.Set smp_cpus_done /CMD "DO smp.cmm" /DISableHIT
Go

; script smp.cmm
SYStem.Down
CORE.ASSIGN 1. 2. 3. 4.
SYStem.Mode Attach
TASK.CONFIG ~~/demo/arm/kernel/linux/awareness/linux.t32

NOTE: Special care needs to be taken when debugging the boot of an SMP kernel. If
you change the core assignment too early, thus before the cores are enabled by
the kernel, you will most probably get a debug access error. If you however stop
the program execution with only one core assigned after the kernel has enabled
other cores, the kernel will panic.
Training Linux Debugging | 31©1989-2024 Lauterbach

Example Linux Setup-Scripts

You can find demo startup scripts for different target boards in the TRACE32 installation directory under
~~/demo/<arch>/kernel/linux/board. You can also search for the newest scripts in the Lauterbach
home page under the following link:

https://www.lauterbach.com/frames.html?scripts.html

The first example script sets up Linux aware debugging for a kernel running on an OMAP4430 processor
with two Cortex-A9 cores. In this example the kernel is already running on both Cortex-A9 cores. The RAM
is located at 0x80000000.

REset
WinCLEAR

SYStem.CPU OMAP4430
SYStem.Option.DACR ON ; give Debugger global write permissions
TrOnchip.Set DABORT OFF ; used by Linux for page miss!
TrOnchip.Set PABORT OFF ; used by Linux for page miss!
TrOnchip.Set UNDEF OFF ; may be used by Linux for FPU detection
SYStem.Option.MMUSPACES ON ; enable space IDs to virtual addresses

SYStem.Mode Attach
SETUP.IMASKASM ON ; lock interrupts while single stepping

; Open a serial terminal window
DO ~~/demo/etc/terminal/serial/term.cmm COM1 115200.

; Open a Code Window -- we like to see something
WinPOS 0. 0. 75. 20.
List

; Load the Linux kernel symbols
Data.LOAD.Elf vmlinux /NOCODE

; Set up the debugger address translation
MMU.FORMAT LINUXSWAP3 swapper_pg_dir 0xC0000000--0xDFFFFFFF 0x80000000
TRANSLATION.COMMON 0xBF000000--0xFFFFFFFF
TRANSLATION.TableWalk ON
TRANSlation.ON

; Load Linux awareness and Linux menu
PRINT "initializing multi task support..."
TASK.CONFIG ~~/demo/arm/kernel/linux/awareness/linux.t32
MENU.ReProgram ~~/demo/arm/kernel/linux/awareness/linux.men

; Group kernel area to be displayed with red bar
GROUP.Create "kernel" 0xC0000000--0xFFFFFFFF /RED

ENDDO
Training Linux Debugging | 32©1989-2024 Lauterbach

https://www.lauterbach.com/frames.html?scripts.html

The second example shows a Linux script for the Zynq UltraScale+ APU which has four Cortex-A53 cores.
We reset here the target and connect to the first core using the SYStem.Up command. We resume then the
program execution till the entry point of the kernel and download the kernel binary to the memory.

 REset
 WinCLEAR

 SYStem.CPU ZYNQ-ULTRASCALE+-APU
 SYStem.Option.MMUSPACES ON
 CORE.ASSIGN 1.
 SYStem.Up

 ; Open a serial terminal window
 DO ~~/demo/etc/terminal/serial/term.cmm COM1 115200.

 SETUP.IMASKASM ON ; lock interrupts while single stepping

 Break.Set 0x80000 /Onchip ; set a breakpoint at the kernel entry
 Go
 TERM.TRIGGER "ZynqMP>"
 WAIT TERM.TRIGGERED(D:0)
 TERM.OUT "bootm 0x20000000" 10.
 WAIT !STATE.RUN()
 Break.Delete

; Load the Linux kernel
 Data.LOAD.Elf vmlinux A:0x80000-0xFFFFFF8008080000 /NoSymbol

; Load the kernel symbols
 Data.LOAD.Elf vmlinux /NoCODE

; set up the source path translation
 sYmbol.SourcePATH.Translate "\home\kjmal\kernel\" "C:\Training\Linux\"

; set up the debugger address translation
 MMU.FORMAT LINUXSWAP3 swapper_pg_dir _text--(_end-1) 0x80000
 TRANSLATION.COMMON 0xf000000000000000--0xffffffffffffffff
 TRANSLATION.TableWalk ON
 TRANSlation.ON

 Break.Set smp_cpus_done /CMD "DO smp.cmm" /DISableHIT
 Go

; Initialize Linux awareness
 TASK.CONFIG ~~/demo/arm/kernel/linux/awareness/linux.t32
; loads Linux menu:
 MENU.ReProgram ~~/demo/arm/kernel/linux/awareness/linux.men

ENDDO
Training Linux Debugging | 33©1989-2024 Lauterbach

Debugging Linux Components

Each of the components used to build a Linux system needs a different handling for debugging. This chapter
describes in detail, how to set up the debugger for the individual components.

“OS Awareness Manual Linux” (rtos_linux_stop.pdf) gives additional detailed instructions.

The Kernel

We differentiate here between the part of the kernel boot running with disabled MMU, that we call kernel
startup, and the rest of the kernel.

Kernel Startup

The Linux kernel starts executing with disabled MMU, i.e. at physical address space. The debug symbols of
the kernel startup are however mapped to virtual addresses. In the following screen shot, the program
counter points to the kernel entry point on a Armv8 Cortex-A processor where the RAM starts at address
0x0.

The corresponding debug symbol is the label _text which is mapped in this example by the vmlinux file
to the virtual address 0xFFFFFF8008080000.

To debug the kernel startup code, we have thus to load the vmlinux file with an offset which is equal to the
physical kernel start address minus the kernel virtual address.

This corresponds in our example to 0x80000-0xFFFFFF8008080000:

Data.LOAD.Elf vmlinux <physical_start_addr>-<virtual_start_addr> /NoCODE

Data.LOAD.Elf vmlinux 0x80000-0xFFFFFF8008080000 /NoCODE
Training Linux Debugging | 34©1989-2024 Lauterbach

If the address extension with the memory space IDs is enabled, the kernel symbols will be mapped to the
space ID 0x0000. The current task is however at this time unknown, so the current space ID is 0xFFFF.
Consequently, the List window will not display the debug symbols.

In order to see the debug symbols corresponding to the kernel startup code, you have additionally to disable
the address extension.

As an alternative, you may extend the common range and keep the address extension enabled. You have
however to undo this change when the kernel switches to virtual address space.

As long as the debugger MMU has not been enabled, you have to use on-chip breakpoints on kernel
functions. Please note however, that the kernel may reset on-chip breakpoints when booting. In order to use
on-chip breakpoints during kernel boot, it may be necessary to edit the kernel configuration and re-compile
the kernel. For the Arm architecture, you have to disable the following kernel configuration:

Alternatively, you can first set an on-chip breakpoint at start_kernel then you can use software
breakpoint on the rest of the kernel boot.

SYStem.Option.MMUSPACES OFF

TRANSlation.COMMON 0x0--0xffffffffffffffff

CONFIG_HAVE_HW_BREAKPOINT is not set

Go start_kernel /Onchip
WAIT !STATE.RUN()
Break.Set usb_init /SOFT
Training Linux Debugging | 35©1989-2024 Lauterbach

Kernel Boot

After enabling the MMU, the kernel switches to virtual address space. The kernel symbols have to be loaded
without any offset.

As explained previously, you need to set up the debugger address translation and load the Linux awareness.
As the whole kernel code is already loaded into the memory, you can use software breakpoints on kernel
functions which are safer in this case since on-chip breakpoints may be deleted by the kernel during boot.

Verifying Image and Symbols

It is very important that the kernel running on the target is from the very same build as the symbol file
loaded into the debugger. A typical error is to have a uImage loaded by the boot-loader (e.g. from a memory
card) and a vmlinux file on the host which is not from the same build as the uImage file. You can check if
the kernel code matches the loaded symbols using the TASK.CHECK command. First let the kernel boot,
stop the target and then execute TASK.CHECK. When the symbols does not match the kernel code, you
will get an error message in this window:

Please note that TASK.CHECK command only does a basic check based on the linux_banner string. In
some cases, this basic check cannot detect that there is a mismatch between the kernel code and the
loaded kernel debug symbols. Please refer to “Troubleshooting”, page 55 for more details.

SMP Debugging

An SMP kernel starts booting only using the first core. During boot, the kernel enables the other cores.
When the debugger tries to access cores that have not yet been enabled by the kernel, a fatal errors could
occur. You need in this case to assign only the first core for debugging. As soon as the other cores have
been enabled by the kernel, the core assignment has to be changed. If you stop the program execution while
the debugger is attached to only a part of the running cores, the kernel will most probably panic.

Data.LOAD.Elf vmlinux /NoCODE ; load the kernel symbols
Training Linux Debugging | 36©1989-2024 Lauterbach

Kernel Modules

Kernel modules are loaded and linked into the kernel at run-time. To ease the debugging of kernel modules,
the enhanced Linux menu offers the item “Debug Module on init...”. After selecting this menu point, a small
dialog will pop-up where you can specify the name of the kernel module to be debugger (without extension).
Optionally, you can instruct the dialog to send a specific command to the TRACE32 terminal window in order
to load the kernel module.

The “Debug Module on init...” menu point is based on the script mod_debug.cmm available in the path of
the Linux awareness. The script sets a breakpoint at a kernel function that is executed when a new kernel
module is loaded. As soon as the breakpoint is hit, the TRACE32 Symbol Autoloader will load the kernel
module symbols and relocate each section based on the information delivered by the Linux awareness.
Finally, an on-chip breakpoint is set on the module init function and the execution is resumed.

If the Symbol Autoloader cannot find the module’s ko file, a file browser will pop-up. If you want the debugger
to automatically find your kernel module, you need to add its path to the TRACE32 search paths using the
command sYmbol.SourcePATH.SetDir. Alternatively, you can define a ROOTPATH using the command
TASK.sYmbol.Option ROOTPATH. Please refer to “OS Awareness Manual Linux” (rtos_linux_stop.pdf)
for more information about this command.

The script mod_debug.cmm can also be called from the TRACE32 command line or from a different script.
By using the /dialog argument, the script will open the same dialog displayed after selecting the menu
point “Debug Module on init...”:

You can also specify instead the name of the module to be debugged (without extension) as first argument:

DO ~~/demo/arm/kernel/linux/awareness/mod_debug.cmm /dialog

DO ~~/demo/arm/kernel/linux/awareness/mod_debug.cmm mymod
Training Linux Debugging | 37©1989-2024 Lauterbach

The script additionally accepts the following arguments:

• /term “<command>”: send the command <command> to the TRACE32 terminal window in
order to load the module e.g. /term “insmod mymod.ko”

• /timeout <timeout>: exit the script with an error message in case any of the breakpoints set
by the script is not reached within the given timeout e.g. /timeout 5.s

• /stopat <label>: set the on-chip breakpoint at <label> instead of the module’s init
function.

You can also load the debug symbols of already loaded modules by selecting the TRACE32 menu Linux >
Module Debugging > Load Symbols... or using the command TASK.sYmbol.LOADMod

If you remove a kernel module from the kernel, you should also remove its debug symbols in TRACE32
PowerView using the menu Linux > Module Debugging > Delete Symbols... or the command
TASK.sYmbol.DELeteMod:

NOTE: Remember that the kernel modules are part of the kernel address range and
should be covered by TRANSlation.COMMON.

TASK.sYmbol.LOADMod "demomod" ; load module symbols

TASK.sYmbol.DELeteMod "demomod" ; erase obsolete module symbols
Training Linux Debugging | 38©1989-2024 Lauterbach

Processes

The Linux menu provides a comfortable way to debug processes from its start. You just need to select the
menu Linux > Process Debugging > Debug New Process... then enter the name of the process. The
process will per default be stopped at its main function. You can also specify a different process function
under “stop at”. Optionally, you can instruct the dialog to send a specific command to the TRACE32 terminal
window in order to start the process.

The menu point Debug New Process... is based on the script app_debug.cmm available in the path of the
Linux awareness. The script sets a breakpoint at a kernel function that is executed when a new process is
started. As soon as the breakpoint is hit, the TRACE32 Symbol Autoloader will load the process symbols
and set a task specific on-chip breakpoint at the main function of the given process function. Then the
execution is resumed.

If the Symbol Autoloader cannot find the process’ Elf file, a file browser will pop-up. If you want the debugger
to automatically find your process’ Elf file, you need to add its path to the TRACE32 search paths using the
command sYmbol.SourcePATH.SetDir. Alternatively, you can define a ROOTPATH using the command
TASK.sYmbol.Option ROOTPATH. Please refer to “OS Awareness Manual Linux” (rtos_linux_stop.pdf)
for more information about this command.

The script app_debug.cmm can also be called from the TRACE32 command line or from a different script.
By using the /dialog argument, the script will open the same dialog displayed after selecting the menu
point “Debug New Process...”:

You can also specify instead the name of the process to be debugged as first argument:

DO ~~/demo/arm/kernel/linux/awareness/app_debug.cmm /dialog

DO ~~/demo/arm/kernel/linux/awareness/app_debug.cmm hello

Enter the name of the process to be
debugged (without parameters).
By checking the “send command to TERM
window”, the process will be started from
the TERM window.
Training Linux Debugging | 39©1989-2024 Lauterbach

The script additionally accepts the following arguments:

• /term “<command>”: send the command <command> to the TRACE32 terminal window in
order to start the process e.g. /term “/home/user/t32/hello”

• /timeout <timeout>: exit the script with an error message in case any of the breakpoints set
by the script is not reached within the given timeout e.g. /timeout 5.s

• /stopat <label>: set the on-chip breakpoint at <label> instead of the process’ main
function.

You can also load the debug symbols of an already running process using the menu Linux > Process
Debugging > Load Symbols... or the command TASK.sYmbol.LOAD

After the process exists, its debug symbols have to be deleted using the menu Linux > Process Debugging
> Delete Symbols... or the command TASK.sYmbol.Delete

Further features of the TRACE32 Linux awareness are shown in chapter “Linux Specific Windows”,
page 45.

TASK.sYmbol.LOAD "sieve" ; load process symbols

TASK.sYmbol.Delete "sieve" ; delete process symbols
Training Linux Debugging | 40©1989-2024 Lauterbach

Threads

Threads are Linux tasks that share the same virtual memory space. The Linux awareness assignes the
space ID of the creating process to all threads of this process. Because symbols are bound to a specific
space ID, they are automatically valid for all threads of the same process. There is no special handling for
threads they are loaded when loading the process symbols.

Libraries

Libraries are loaded and linked dynamically to processes. Thus, they run in the virtual address space of the
process and have dynamic addresses. To debug libraries, you can use the Linux menu Library Debugging
> Load Symbols...

This menu point is based on the TRACE32 command TASK.sYmbol.LOADLib.

The debug symbols of the library will be automatically loaded by the TRACE32 Symbol Autoloader and
relocated according to the information delivered by the Linux awareness. If the Symbol Autoloader cannot
find the library’s Elf file, a file browser will pop-up. If you want the debugger to automatically find your library’s
Elf file, you need to add its path to the TRACE32 search paths using the command
sYmbol.SourcePATH.SetDir. Alternatively, you can define a ROOTPATH using the command
TASK.sYmbol.Option ROOTPATH. Please refer to “OS Awareness Manual Linux” (rtos_linux_stop.pdf)
for more information about this command.

TASK.sYmbol.LOADLib "helloloop" "ld-2.2.5.so" ; load library symbols
Training Linux Debugging | 41©1989-2024 Lauterbach

The library’s debug symbols can be deleted using the menu point Library Debugging > Delete Symbols...
or the command TASK.sYmbol.DELeteLib.

You can also set up the Linux awareness in order to load all shared libraries of the current process or a given
process. Examples:

Load all shared libraries for the current process:

Add the libraries of process “hello” to the Symbol Autoloader, the debug symbols for each library will be
loaded when the library’s address range is accessed by any TRACE32 window:

Task Related Breakpoints

You can set conditional breakpoints on shared code halting only if hit by a specified task

If task related breakpoints are not supported by the core, the debugger will always stop on the breakpoint
address and resume executing if the current task is not the specified one.

Task Related Single Stepping

If you debug shared code with HLL single step, which is based on breakpoints, a different task could hit the
step-breakpoint. You can avoid this by using the following command:

Conditional breakpoints on the current task will be then used for single stepping and you will not “leave” the
task that you want to debug.

TASK.sYmbol.DELeteLib "helloloop" "ld-2.2.5.so" ; delete library symbols

TASK.sYmbol.Option AutoLOAD CURRLIB
sYmbol.AutoLOAD.CHECK
sYmbol.AutoLOAD.TOUCH

TASK.sYmbol.Option AutoLOAD ProcLib "hello"
sYmbol.AutoLOAD.CHECK

Break.Set myfunction /TASK "mytask"

SETUP.StepWithinTask ON
Training Linux Debugging | 42©1989-2024 Lauterbach

Task Context Display

You can display the memory or the registers of a task which is not currently executing. Moreover, you can
display the stack frame of any running task on the system. Internally, the Linux awareness will retrieve the
register values of the selected tasks from the kernel data structures.

List /TASK "mytask"
Register /TASK "mytask"
Frame /TASK "mytask"
Training Linux Debugging | 43©1989-2024 Lauterbach

You can additionally “virtually” switch the context also from the TASK.DTask window by popup menu-item
“Switch Context”:

Switch to the helloloop task.

It’s not the current PC from the
target (“main”, process “helloloop”)
but the PC where the task
“helloloop” will be continued!

Care for the grey buttons.
After the context switch you get the
full wanted info. But it’s not the
current processor state.

There is a pseudo PC bar (light red)
showing the PC where process
“helloloop” will be continued.
Training Linux Debugging | 44©1989-2024 Lauterbach

Linux Specific Windows

The Linux awareness offers different commands to display kernel resources as the task list or the kernel
module list. Most of these views can be opened from the Linux menu.

Displaying the Task List

The Linux awareness offers three different views for displaying tasks using the commands TASK.Process,
TASK.PS and TASK.DTask. Please refer to the documentation of these commands in “OS Awareness
Manual Linux” (rtos_linux_stop.pdf) for more information. These views can be opened from the Linux menu
by selecting respectively Display Processes, Display ps-like and Display Tasks.

By doing a right mouse click on the task magic in these three views, you get a pull-down menu with the
following options for the selected task:

• Display detailed: display additional information about the selected task (as the process
arguments, environment variables or open files) by calling the command TASK.DTask with
process magic as argument.

• Display task struct: display the kernel task structure for the selected task.

• Display maps: display the mapped memory regions for the selected task using the command
TASK.MAPS similar to the Linux command cat /proc/<pid>/maps.

• Display Stack Frame: display the stack frame for the selected task. If the task is not currently
executing, the Linux awareness retrieves the context information from the kernel structures.

• Display Registers: display the registers of the selected task. If the task is not currently
executing, the Linux awareness retrieves the context information from the kernel structures.

• Switch Context: virtually switch the context to the selected task.
Training Linux Debugging | 45©1989-2024 Lauterbach

• Load Process Symbols: load the debug symbols of the selected process by calling the
TASK.sYmbol.LOAD command.

• Delete Process Symbols: delete the debug symbols of the selected process by calling the
TASK.sYmbol.Delete command.

• Add Libraries to Symbol Autoloader: update the autoloader table with the libraries of the
current process. The debug symbols of these libraries will be automatically loaded as soon as
their addresses are accessed by the debugger.

• Add to Watched Processes: add process to the process watch list. Refer to TASK.Watch for
more information.

• Delete from Watched Processes: remove process from the process watch list. Refer to
TASK.Watch for more information.

• Display Task MMU Table: display the task page table by calling the command MMU.List
TaskPageTable with the process magic as argument.

• Dump task ENTRY: open a Data.dump window on the task entry point.

• Kill Task: write a pending kill signal to the task control structure which will cause the task to be
killed after resuming the program execution.

• Trace This Task: do a selective trace on the code of the selected task.

Kernel Module List

You can display the list of loaded kernel modules by selecting the menu Linux > Display Modules which will
call the TASK.MODule command.

By doing a right mouse click on the module’s magic, you get a pull down menu with the following options:

• Display module struct: display the module’s kernel structure.

• Load Module Symbols: load the debug symbols of the selected kernel module

• Delete Module Symbols: delete the debug symbols of the selected kernel module

• Dump module ENTRY: dump the memory at the module entry.
Training Linux Debugging | 46©1989-2024 Lauterbach

File System Information

The Linux awareness offers different view for displaying file system information. You can open these views
from the menu Linux > Display File System:

• Display FS Types: display all file system types that are currently registered in the Linux kernel.

• Display Mount Points: display the current mount points.

• Display Mounted Devices: display all currently mounted devices (i.e.super blocks).

• Display /proc: display the content of the /proc file system.

• Display /sys: display the content of the /sys file system.

• Display Partitions: display the partition table.

Please refer to the documentation of the TASK.FS command for more information.
Training Linux Debugging | 47©1989-2024 Lauterbach

Kernel Log Buffer

By selecting the menu Linux > Display Kernel Log you can display the content of the kernel log buffer. The
corresponding Linux awareness command is TASK.DMESG.

The TASK.DMESG window includes the following buttons:

• More: show more log levels.

• Less: show less log levels.

• Detailed: open the TASK.DMESG /COLOR /DETAILED window which will display the log level
and the facility in a human readable format and use a different color for each log level.

• Export: open a dialog for exporting the kernel log to an external file. The dialog allows to select
the file format (ASCII or XHTML) and the log levels and facilities that should be included in the
exported file. The dialog is based on the script dmesg.cmm available in the path of the Linux
awareness.
Training Linux Debugging | 48©1989-2024 Lauterbach

Device Tree

You can display the device tree as blob (tree view) or source by selecting the menu Linux > Device Tree
then Display Device Tree or Display Source. The corresponding Linux awareness commands are
TASK.DTB and TASK.DTS. The menu additionally offers the possibility to extract the device tree as blob or
source file.

RAM Dump Generation

The Linux awareness offers a dialog to generate a snap shot of the current system state for a later analysis
using the TRACE32 instruction set simulator. This dialog can be opened from the menu Linux > Generate
RAM Dump and is based on the script ramdump.cmm available in the TRACE32 demo directory under
~~/demo/<arch>/kernel/linux.

After pushing the STORE button, the dialog will save the RAM contents as well as important register values
and will generate a restore_<...>.cmm script that can be used to restore the system state on the
TRACE32 instruction set simulator.
Training Linux Debugging | 49©1989-2024 Lauterbach

Linux Trace

Please note that this chapter does not contain information about general trace configuration and usage. It
only points to the needed settings and conditions to achieve task aware trace for a target Linux system.

Overview

When tracing a system with virtual memory management where a single virtual address can correspond to
different physical addresses, the trace tool (which gets from the on-chip trace module only the virtual
address of the executed code) needs to know the current memory space for every trace time. The trace tools
needs thus to get the task switching information in the trace. This information is only necessary for task run-
time analysis.

If a data trace is available, the debugger can trace the write accesses to the memory location which contains
information about the current Linux task for each core using TraceData or TraceEnable breakpoints. This
addresses is delivered for the current core by the TASK.CONFIG(magic) Linux Awareness function.

If however no data trace is available, the debugger needs then a different trace mechanism to be aware of
the context switches in the kernel. This is e.g. possible with the ETM Context ID trace for the Arm
architecture or the Ownership Trace Messages for the Nexus trace.

; Example: exporting task switches via data trace and all instruction
Break.Set TASK.CONFIG(magic) /Write /TraceData
Training Linux Debugging | 50©1989-2024 Lauterbach

Context ID Trace for Arm Cortex-A

Most Arm Cortex-A processors do not have a data trace support. For such processors, the debugger uses
the Context ID trace messages for task aware trace. The CONTEXTIDR register have to be written by the
kernel on every task switch.

Kernel versions older than 3.6 need to be patched to support tracing all Linux tasks.

For kernels 3.6 and newer, you just need to enable Kernel hacking > Write the current PID to the
CONTEXTIDR register (CONFIG_PID_IN_CONTEXTIDR) in the kernel configuration:

To enable Context ID trace ETM.ContextID 32 has additionally to be set in TRACE32.

OTM Trace for PowerArchitecture based QorIQ Processors

PowerArchitecture based QorIQ processors have limited data trace capabilities that cannot be used to trace
multiple addresses at the same time. Data trace can thus only be used for single processor systems to trace
task switches as write accesses to a single address have to be traced in this case.

For SMP systems, Ownership Trace Messages have to be used instead. In fact, the Linux kernel of the NXP
SDK writes on a task switch an identifier of the new task in the PID register (SPR48):

Depending in the processor, the transmitted PID value is in this case up to 14 bit. As an alternative, the
kernel can be patched to use the NPIDR register (SPR517) that provides a 32bit value.

The command NEXUS.OTM PID0 (or NEXUS.OTM NPIDR in case NPIDR is used) has then to be used to
enable the generation of Ownership Trace Messages on write accesses to this register. Please refer for
more information to “QorIQ Debugger and NEXUS Trace” (debugger_ppcqoriq.pdf).

mtspr SPRN_PID,r3
Training Linux Debugging | 51©1989-2024 Lauterbach

Using the LOGGER for Task Switch Trace

Some processors do not have any on-chip trace support like the PowerPC P2020. We will write in this
example for an SMP Linux running on the P2020 a kernel module that uses the kernel tracepoints and
registers a probe function “logger_sched_switch” on the kernel scheduler tracer. This probe function is
called on every task switch and writes the trace data in special TRACE32 format to a buffer. After stopping
the debugger reads the buffer and displays the task switches with timing information

Kernel module logger.ko.

#include <linux/module.h>
#include <linux/sched.h>
#include <linux/tracepoint.h>
#include <trace/events/sched.h>
#include <linux/smp.h>

#define T32_LOGGER_SIZE 1024

volatile int T32_TraceEnable = 0; // will be set by the debugger
volatile int T32_Magic[2] = {0, 0}; // will be set by the debugger

typedef struct {
 unsigned long tshigh;/* high part of timestamp and cycle info */
 unsigned long tslow; /* low part of timestamp */
 unsigned long address;
 unsigned long data;
} T32_loggerData;

struct {
 T32_loggerData * ptr; /* pointer to trace data */
 long size; /* size of trace buffer */
 volatile long index; /* current write pointer */
 long tindex; /* index of trigger record */
 long iflags; /* incoming flags, Bit 0: ARM, Bit 8: Stack Mode */
 long oflags; /* out. flags, Bit 0: Overflow, Bit 8: Trigger, Bit 9: Break */
 long reserved1;
 long reserved2;
 T32_loggerData buffer[T32_LOGGER_SIZE];
} T32_LoggerStruct;

static void T32_LoggerInit(void)
{
 T32_LoggerStruct.ptr = T32_LoggerStruct.buffer;
 T32_LoggerStruct.size = T32_LOGGER_SIZE;
}

unsigned long GetTBL(void)
{
 unsigned long tb;
 asm volatile ("mftb %0": "=r" (tb));
 return tb;
}

Training Linux Debugging | 52©1989-2024 Lauterbach

void T32_LoggerDataFunc(int cycle, void* addr, unsigned long data, int core)
{
 int index;
 if (!(T32_LoggerStruct.iflags & 0x01))
 return;

 if (T32_LoggerStruct.index >= T32_LoggerStruct.size) {
 if (T32_LoggerStruct.iflags & 0x100)
 return;
 T32_LoggerStruct.oflags |= 0x01;
 T32_LoggerStruct.index = 0;
 }

 index = T32_LoggerStruct.index++;
 T32_LoggerStruct.ptr[index].tslow = GetTBL();
 T32_LoggerStruct.ptr[index].tshigh = (cycle << 24) | (core << 16);
 T32_LoggerStruct.ptr[index].address = (unsigned long) addr;
 T32_LoggerStruct.ptr[index].data = data;
 T32_LoggerStruct.index = index + 1;
}

void T32_LoggerTrigger(void)
{
 if (T32_LoggerStruct.oflags & 0x100)
 return;
 T32_LoggerStruct.tindex = T32_LoggerStruct.index;
 T32_LoggerStruct.oflags |= 0x100;
}

static void logger_sched_switch(void *ignore, struct task_struct *prev,
 struct task_struct *next)
{
 int cpu = smp_processor_id();
 if (!T32_TraceEnable)
 return;

 T32_LoggerDataFunc(0x34, (void *)T32_Magic[cpu], (unsigned long)next, cpu);
}

static int __init logger_init(void)
{
 T32_LoggerInit();
 return register_trace_sched_switch(logger_sched_switch, NULL);
}
static void __exit logger_exit(void)
{
 unregister_trace_sched_switch(logger_sched_switch, NULL);
}

module_init(logger_init)
module_exit(logger_exit)

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Khaled Jmal");
MODULE_DESCRIPTION("Logger trace module");
Training Linux Debugging | 53©1989-2024 Lauterbach

The following scripts then insert the module, enable and configure the trace:

We can then display the exact task switches on both cores using the Trace.Chart.TASK command:

 IF !STATE.RUN()
 Go
 TERM.OUT "insmod logger.ko" 10. ; insert the logger module
 WAIT 1.s
 Break
 TASK.SYMBOL.LOADMod "logger" ; load the module symbols
 MMU.SCAN ALL
 LOGGER.ADDRESS T32_LoggerStruct
 LOGGER.Mode E ON
 Trace.METHOD LOGGER ; select logger as default trace method
 LOGGER.TimeStamp UP
 LOGGER.Init
 CORE.SELECT 1
 &magic=task.config(magic)
 Var T32_Magic[1]=&magic
 CORE.SELECT 0
 &magic=task.config(magic)
 Var T32_Magic[0]=&magic
 LOGGER
 Var T32_TraceEnable=1 ; enable the trace
Training Linux Debugging | 54©1989-2024 Lauterbach

Troubleshooting

Most of the errors in Linux aware debugging are due to a wrong symbol information or to an incorrect setup
of the debugger address translation.

The loaded vmlinux file must match the kernel binary executed on the target. To verify if this is the case,
you can perform the following steps:

• Load the vmlinux file to the debugger virtual memory (VM:) using the following command.

• Display the Linux banner string from the debugger VM or print it to the area window:

• Compare the Linux banner string with the output of the Linux command cat /proc/version.
Both strings must be identical including the timestamps.

Moreover, you need to make sure that the kernel was configured with CONFIG_DEBUG_INFO enabled and
with CONFIG_DEBUG_INFO_REDUCED not set.

The next point to check in case you are having trouble is if the debugger address translation is correctly set.
Problems due to an incorrect setup of the debugger address translation especially show up when debugging
kernel modules or debugging in the user-space. You need to check the following:

• Is the MMU Format set with the MMU.FORMAT command correct?

• Is the kernel logical address translation correct? To check this translation, you can use the
command MMU.List.PageTable address with the kernel logical start address as parameter when
the kernel has already booted e.g.

If you are still having trouble, please select the TRAC32 menu Help > Support > Systeminfo..., store your
system information to a file and send this file together with your setup scripts as well as the content of the
TASK.TEST window to support@lauterbach.com.

Data.LOAD.Elf vmlinux AVM:0

Data AVM:linux_banner
PRINT Data.STRING(AVM:linux_banner)

MMU.List PageTable 0xC0000000
Training Linux Debugging | 55©1989-2024 Lauterbach

FAQ

Please refer to https://support.lauterbach.com/kb.
Training Linux Debugging | 56©1989-2024 Lauterbach

https://support.lauterbach.com/kb

	Training Linux Debugging
	Introduction
	Documentation Updates
	Related Documents and Tutorials

	Basic Terms on Embedded Linux
	Linux Components
	The Kernel
	Kernel Modules
	Processes and Threads
	Libraries (Shared Objects)

	The Linux Awareness
	Virtual Memory Management in Linux
	Virtual Address Map of Linux
	Debugger Memory Access
	On Demand Paging

	Run-Mode vs. Stop-Mode Debugging
	Hardware Based Debuggers
	Software Based Debuggers

	Kernel Configuration

	Setting up a Script for Linux-Aware debugging
	Linux Setup-Steps and -Commands
	Debugger Reset for Linux Debugging
	Debugger Setup
	Open a Terminal Window
	Load Kernel Symbols
	Download the Kernel
	Download the File System
	Set up the Linux Awareness
	Setup for SMP Linux

	Example Linux Setup-Scripts

	Debugging Linux Components
	The Kernel
	Kernel Modules
	Processes
	Threads
	Libraries
	Task Related Breakpoints
	Task Related Single Stepping
	Task Context Display

	Linux Specific Windows
	Displaying the Task List
	Kernel Module List
	File System Information
	Kernel Log Buffer
	Device Tree
	RAM Dump Generation

	Linux Trace
	Overview
	Context ID Trace for Arm Cortex-A
	OTM Trace for PowerArchitecture based QorIQ Processors
	Using the LOGGER for Task Switch Trace

	Troubleshooting
	FAQ

