
MANUAL

TRACE32 Concepts

TRACE32 Concepts

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 TRACE32 Concepts ... 1

 History ... 5

 Access Classes .. 6

 Access Class Expansion ... 12

 Address Spaces ... 13

 Zones 13

 Zone Spaces 14

 MMU Space 15

 Machine Spaces 16

 Address Types .. 17

 Absolute Physical Address 18

 Guest Logical Address 18

 Host Logical Address 19

 Intermediate Address (synonym: guest physical address) 19

 Logical Address (synonyms: virtual address, effective address) 19

 Physical Address (synonym: real address) 20

 Awareness .. 21

 Hypervisor Awareness 21

 OS Awareness 21

 Build Path .. 22

 Chip Timestamp ... 23

 Common Address Range .. 23

 Cycle-accurate Tracing .. 23

 CombiProbe .. 24

 Extension .. 24

 Hypervisor ... 24

 Machine ID .. 25

 Machine ... 27

 Guest Machine (synonym: virtual machine, VM) 27
TRACE32 Concepts | 2©1989-2024 Lauterbach

 Host Machine 27

 Magic Number ... 28

 Machine Magic Number 28

 Space Magic Number 28

 Task Magic Number 29

 MCDS in Infineon TriCore AURIX MCUs .. 29

 Memory Management Unit (MMU) ... 30

 Multicore Debugging .. 30

 Multiprocessor Debugging .. 30

 Observabiltiy Gap ... 30

 Order of Source Code Lines .. 31

 OS-aware Debugging ... 33

 OS (No Dynamic Memory Management) 33

 AUTOSAR/OSEK Operating Systems 34

 OS+MMU (Dynamic Memory Management) 34

 OS-aware Tracing ... 35

 Task Switch by Tracing Special Write Accesses 36

 Task Switch by Tracing Task Switch Packets 39

 Process ... 43

 RTOS ... 43

 Run-time Memory Access ... 44

 Sample-based Profiling ... 52

 Space ID .. 53

 Spot Breakpoint .. 54

 StopAndGo Mode ... 56

 Symmetrical Multi-Processing (SMP) ... 57

 Task ... 57

 Thread ... 57

 TRACE32 Virtual Memory .. 58

 Trace Errors .. 61

 TARGET FIFO OVERFLOW 61

 FLOWERROR 62

 Trace Sources ... 65

 Tool Timestamp .. 66

 VCPU ... 66
TRACE32 Concepts | 3©1989-2024 Lauterbach

TRACE32 Concepts | 4©1989-2024 Lauterbach

TRACE32 Concepts

Version 06-Jun-2024

History

17-Oct-23 'Observability Gap', 'Spot Breakpoint' added.

17-Oct-23 Screenshot for 'StopAndGo Mode' was updated to show new display.

28-Aug-23 'MCDS in Infineon TriCore AURIX MCUs' added.
TRACE32 Concepts | 5©1989-2024 Lauterbach

Access Classes

Access classes are used to specify how TRACE32 PowerView accesses memory, registers of
peripheral modules, addressable core resources, coprocessor registers and the TRACE32 Virtual
Memory.

Addresses in TRACE32 PowerView consist of:

• An access class, which consists of one or more letters/numbers followed by a colon (:)

• A number that determines the actual address

Examples for access classes are:

• The program memory class

• The data memory class

Program Memory Classes

The most often used letter to identify the program memory class is P:.

There are other letters used by core architectures that provide more than one instruction set encoding. Here
a few examples:

The available program memory classes are dependent on the processor architecture in use. Therefore refer
to the Access Class/Memory Class section of your Processor Architecture Manual for more details.

List P:0x4568 ; display the source code starting
; at Program address 0x4568

List R:0x456378 ; R representing ARM instruction
; set encoding for the
; ARM architecture

List T:0x456378 ; T representing THUMB instruction
; set encoding for the
; ARM architecture

List V:0x456378 ; V representing VLE instruction
; set encoding for the
; Power Architecture
TRACE32 Concepts | 6©1989-2024 Lauterbach

Data Memory Classes

The letter D: is normally used to identify the data memory class.

Other letters are used only in some rare cases.

Access Classes and Commands

TRACE32 PowerView always displays the access class information in its display windows. SD stands for
“Supervisor Data” in the example below.

If access classes are omitted from the command input the default access class for the command is used.

Data.dump D:0x6770 ; display a hex dump starting at
; Data address 0x6770

Data.dump X:0x6770 ; use X-Bus to access data memory
; MMDSP architecture

List 0x456378 ; the default access class for a
; source code listing is the
; program memory class

Data.dump 0x6770 ; the default access class for a
; hex dump is the data memory
; class
TRACE32 Concepts | 7©1989-2024 Lauterbach

The addresses of debug symbols include the applicable access class.

Some commands apply only to a specific access class.

Data.dump background ; display a hex dump starting at
; program address 0x1BD0

; THUMB instruction set encoding
; for the ARM architecture used

Trace.STATistic.sYmbol ; analyze the execution time in
; different symbol regions
;
; this command uses only program
; memory class symbols for its
; analysis
TRACE32 Concepts | 8©1989-2024 Lauterbach

Access Classes for Core Resources

Frequently used access classes for core resources are the cache access classes:

The available access classes for core resources are highly dependent on the processor architecture in use.
Therefore refer to the Access Class/Memory Class section of your Processor Architecture Manual for
more details.

IC Instruction Cache

DC Data Cache

L2 Level 2 Cache

NC No Cache (access with caching inhibited)

…

Data.dump DC:0x6770 ; display a hex dump starting at
; address 0x6770, get the
; information from the Data Cache

Data.dump DC:flags ; display a hex dump starting at
; the address represented by the
; debug symbol flags, get the
; information from the Data Cache

Data.dump NC:0x6770 ; display a hex dump starting at
; address 0x6770, get the
; information from the physical
; memory (No Cache)
TRACE32 Concepts | 9©1989-2024 Lauterbach

Access Classes for Coprocessor Registers

Some processor architectures use access classes to access the coprocessor registers.

The available access classes for coprocessor registers are highly dependent on the processor architecture
in use. Therefore refer to the Access Class/Memory Class section of your Processor Architecture
Manual for more details.

PER.Set C15:0x1 %Long 0x2
; example for the ARM architecture
; write 0x00000002 to
; Coprocessor 15 register 1

Data.dump CP0:0x25
; example for the MIPS architecture
; display the contents of
; register 5 of register set 1
; of CoProcessor 0

; register set start address is
; n * 0x20
TRACE32 Concepts | 10©1989-2024 Lauterbach

Access Class Attributes

Access class attributes are used to supply TRACE32 PowerView with more details on the access. Access
class attributes have to be placed in front of the access class.

Examples:

The available access classes are highly dependent on the processor architecture in use. Therefore refer to
the Memory Class section of your Processor Architecture Manual for more details.

Access Classes in TRACE32

There are two access classes specific for TRACE32.

1. VM: TRACE32 Virtual Memory.

2. USR: User Access Class

The USR: access class can be used to read or write resources that require a complex access
mechanism (e.g. indirectly addressed registers). The access is performed by a target algorithm. For
details refer to the command Data.USRACCESS.

Please be aware that NAND FLASH devices, serial FLASH devices and EEPROMs can be
accessed by using the command FLASHFILE.

E Run-time access (non-intrusive if possible, otherwise intrusive)

A Physical address (bypass MMU)

S Supervisor memory (privileged access)

U User memory (non-privileged access)

Z Secure access (e.g. for ARM TrustZone)

N Non-secure access (e.g. for ARM TrustZone)

Data.dump A:0x29876 ; display a hex dump starting at
; physical address 0x29876

Data.dump AD:0x29876 ; same as previous

Data.dump ADC:0x29876 ; display a hex dump starting at
; physical address 0x29876, get
; the data from the data cache
TRACE32 Concepts | 11©1989-2024 Lauterbach

Access Class Expansion

If you omit access class specifiers in an access class combination, then TRACE32 will make an educated
guess to fill in the blanks. The access class is expanded based on:

• The current CPU context (architecture specific)

• The used window type (e.g. Data.dump window for data or List.Mix window for code)

• Symbol information of the loaded application (e.g. combination of code and data)

• Segments that use different instruction sets

• Debugger specific settings (e.g. SYStem.Option.*)

Examples: Memory Access through CPU

Let’s assume the CPU is in non-secure supervisor mode, executing 32-bit code.

Your input, here List.Mix at the TRACE32 command line, remains unmodified. TRACE32 performs an
access class expansion and visualizes the result in the window you open, here in the List.Mix window.

User input at the
command line

Expansion
by TRACE32

These access classes are added because...

List.Mix

(see also illustration
below)

NSR: N: … the CPU is in non-secure mode.
S: … the CPU is in supervisor mode.
R: … code is viewed (not data) and the CPU uses 32-
bit instructions.

Data.dump A:0x0 ANSD:0x0 N: … the CPU is in non-secure mode.
S: … the CPU is in supervisor mode.
D: … data is viewed (not code).

Data.dump Z:0x0 ZSD:0x0 S: … the CPU is in supervisor mode.
D: … data is viewed (not code).

NOTE: ‘E’ and ‘A’ are not automatically added because the debugger cannot know if you intended a
run-time or physical access.

A TRACE32 makes an educated guess to expand your omitted access class to “NSR”.

B Indicates that the CPU is in non-secure supervisor mode.

A

B

TRACE32 Concepts | 12©1989-2024 Lauterbach

Address Spaces

TRACE32 assumes a single linear address space for all CPU modes of RISC processors by default. If this is
not the case, TRACE32 has to be configured to recognize multiple overlapping address spaces. This is
necessary to allow TRACE32 to load symbol and debug information per address space and to maintain
separate MMU translation tables for each address space.

TRACE32 supports three types of address spaces.

• Zone Spaces

• MMU Spaces

• Machine Spaces

Zones
Subject area: Address translation, Symbols

Zones are address spaces in TRACE32 which are used to keep symbols and MMU/TRANSlation setups
separate from each other. Zones are characterized by a dedicated MMU and register set.

We use the zone concept for two purposes:

• A CPU operation mode with dedicated MMU and register set is defined as a zone.

• In hypervisor-based environments, each machine (guest or host machines) is a zone because
each machine has its own address translation and register set.

By default, there is only one zone in TRACE32. Multiple zones are made available in TRACE32 by setting
SYStem.Option.ZoneSPACES or SYStem.Option.MACHINESPACES or both to ON:

Formats of addresses with zones:

In TRACE32, the zone of an address is fully defined through:

• The access class (only if SYStem.Option.ZoneSPACES is set to ON)

• Followed by the machine ID (only if SYStem.Option.MACHINESPACES is set to ON)

Thus, the format of a TRACE32 address with a <zone> looks like this:

• <access_class>:<machine_id>:::<address_offset>

• <access_class>:<machine_id>:::<space_id>::<address_offset>

Example: N:2:::0x123::0xC0000000

ZoneSPACES ON Defines each CPU operation mode with an individual address space as an
individual zone.

MACHINESPACES ON Defines the host machine and each guest machine as individual zones.
TRACE32 Concepts | 13©1989-2024 Lauterbach

Zone Spaces
Subject area: Address translation, Symbols

A zone space is the address space of a zone. Zones are identified within TRACE32 by preceding an
address with the appropriate access class.

Refer to the following manuals for details:

• “SYStem.Option ZoneSPACES Enable symbol management for ARM zones” in ARM
Debugger, page 149 (debugger_arm.pdf).

• “SYStem.Option ZoneSPACES Enable symbol management for zones” in Intel® x86/x64
Debugger, page 76 (debugger_x86.pdf).

SYSTem.Option.ZoneSPACES ON

; load the debug symbols for the hypervisor zone
; the hypervisor zone is represented by the access class H:
; preceding the actual address

Data.LOAD.Elf xen-syms H:0x0 /NoCODE
TRACE32 Concepts | 14©1989-2024 Lauterbach

MMU Space
Subject area: Address translation, OS Awareness, Symbols

MMU space is a TRACE32 term for an MMU-mapped memory space (aka “address space”). In
operating systems (OSs) usually called “process”.

TRACE32 uses the term MMU spaces if a target system with an MMU uses multiple equivalent page tables
within the same zone (= CPU mode) to run independent software parts (such as processes) on virtual
addresses. Each page table defines an individual address translation for the software part running on the
page table. The page tables are usually maintained by an owner system - usually an operating system.
TRACE32 labels the address space which is defined by the page table as one MMU space.

Standard use cases for MMU spaces are operating systems, such as Linux, where processes run on
identical virtual addresses and the kernel configures an individual page table for each process.
Often, the number of valid MMU spaces is dynamic: during runtime new MMU spaces may be created or
removed by the controlling software - for example if an OS creates or terminates processes.

In TRACE32, the MMU spaces and their identifiers, the space IDs, are enabled with the command
SYStem.Option.MMUSPACES.

For more information, see space ID.

Zone n
Hardware MMU

Active
Page Table

Zone 1
Hardware MMU

Active
Page Table

Zone 2
Hardware MMU

Active
Page Table

CPU

Process 1
Page table

MMU Space

Owner system exchanges active page table of one zone

Space ID 1

Process n
Page table

MMU Space

Space ID n

Process 2
Page table

MMU Space

Space ID 2
TRACE32 Concepts | 15©1989-2024 Lauterbach

Machine Spaces
Subject area: Address translation, Hypervisor Awareness, Symbols

TRACE32 uses the term machine spaces if a hypervisor is used to manage virtual machines. TRACE32
assigns the machine ID 0 to the hypervisor and machine IDs greater than 0 to the guest machines.

In TRACE32, machine spaces are enabled with the command SYStem.Option.MACHINESPACES.

Refer to the following manual for details:

• “SYStem.Option MACHINESPACES Address extension for guest OSes” in ARM Debugger,
page 141 (debugger_arm.pdf).

• “SYStem.Option MACHINESPACES Address extension for guest OSes” in Intel® x86/x64
Debugger, page 64 (debugger_x86.pdf).

NOTE: Machine spaces, MMU spaces and zone spaces are often used concurrently.

SYStem.Option.MACHINESPACES ON
; load the debug symbols for the FreeRTOS operating system
; the machine ID is a number preceding the actual address
; it is separated from the address by three colons

Data.LOAD.Elf ../FreeRTOS/FreeRTOS.elf N:3:::0x0 /NoClear /NoCODE
TRACE32 Concepts | 16©1989-2024 Lauterbach

Address Types

Memory-mapped address types in systems with MMU (non-virtualized systems)

In systems with an MMU, generally two types of memory mapped addresses exist:

• Logical addresses

• Physical addresses

When the MMU is enabled, all instruction and data accesses done by the CPU refer to logical addresses.
The MMU translates each logical address to a physical address. The resulting physical address becomes
visible on the system’s memory bus and is used to access memory contents or memory mapped peripheral
registers. Only such logical addresses which match a valid translation entry in the MMU can be translated to
physical addresses.

If a system does not have an MMU or the MMU is not enabled, the addresses used by the CPU for
instruction or data accesses go to the system’s memory bus without modification. In this case, all memory
accesses done by the CPU use physical addresses directly.

There are systems which are more complex. They have more than only one logical and one physical
address space:

In some systems the translation done by the MMU depends on the mode of the CPU. Such a CPU
uses an independent logical address space per CPU mode.

Examples of such systems would be:

• ARM CPUs with TrustZone extension, where code can be executed in secure mode or in
non-secure mode. The translation of logical addresses to physical addresses can be configured
individually for code execution from secure mode and non-secure mode.

• Intel® CPUs where the address translation for code execution in normal mode and code
execution in system management mode can be configured independently.

Note that there is usually only one physical address space, but there are systems where more than one
physical address space exists. An example would be ARM CPUs with TrustZone extension where the
system manufacturer may chose to implement independent physical addresses for secure mode and for
non-secure mode.

Systems with multi-step translation processes

There are systems where the translation from logical to physical addresses uses two or more steps. Thus,
we have to deal with different address types, depending on where in the translation process we look at.

An example would be Intel® CPUs where in protected mode protected mode addresses are translated to
linear addresses in the first translation step. The linear addresses are finally translated to physical addresses
in the second step.
TRACE32 Concepts | 17©1989-2024 Lauterbach

Memory-mapped address types in virtualized systems

In hardware-virtualized systems running under the control of a hypervisor, two translation steps are required
to translate guest logical addresses to absolute physical addresses.

1. In the first translation step, a translation table owned by the guest operating system is used to
translate a guest logical address to an intermediate address (access class I: for intermediate).

2. In the second translation step, a translation table owned by the hypervisor is used to translate the
intermediate address to an absolute physical address (access class A: for absolute).

A separate translation table is used to translate a host logical address to an absolute physical address. The
code and data sections of the hypervisor operate on host logical addresses.

Figure 1:

Absolute Physical Address
Subject area: Hypervisor Awareness

An absolute physical address is the technical counterpart to logical address. The term absolute physical
address is used in systems involving virtualization where it is necessary to make a distinction between
intermediate addresses and absolute physical addresses.

See also Figure 1.

Guest Logical Address
Subject area: Address translation, Hypervisor Awareness

Logical address of a guest machine within a virtualized system.

For details, see logical address.

Guest
Logical Address

Intermediate
Physical Address

MMU

Access class D:

Access class I:

Access class A:

First translation

Second translation

Intermediate
Physical Address

MMU

MMU

Host
Logical Address

MMU

MMU

Absolute Physical Address

Guest Machine 1 Guest Machine 2 Host Machine

Guest
Logical Address
TRACE32 Concepts | 18©1989-2024 Lauterbach

See also Figure 1.

Host Logical Address
Subject area: Address translation, Hypervisor Awareness

Logical address of a host machine within a virtualized system.

For details, see logical address.

See also Figure 1.

Intermediate Address (synonym: guest physical address)
Subject area: Address translation, Hypervisor Awareness

A synonym used by some chip manufacturers is: guest physical address

• The General Commands Reference Guides and the Function manuals of TRACE32 use the
term intermediate address.

• The Processor Architecture Manuals of TRACE32 use the chip manufacturer’s preferred
terminology.

A physical address of a guest machine within a virtualized system is referred to as intermediate
address. TRACE32 uses the access class I: for intermediate addresses.

Intermediate addresses usually differ from absolute physical addresses. A dedicated address translation
step is needed to translate an intermediate address to an absolute physical address.

See Figure 1.

Logical Address (synonyms: virtual address, effective address)
Subject area: Address translation

Synonyms used by some chip manufacturers are: virtual address, effective address

• The General Commands Reference Guides of TRACE32 use the term logical address.

• The Processor Architecture Manuals of TRACE32 use the chip manufacturer’s preferred
terminology.

In CPUs that have a memory management unit (MMU), a distinction is made between logical addresses and
physical addresses. Code execution and data fetching by the CPU core use a logical address to describe
the memory location which is accessed. The MMU translates the logical address of such a memory access
to a physical address before it is finally sent to the system memory bus.
TRACE32 Concepts | 19©1989-2024 Lauterbach

Physical Address (synonym: real address)
Subject area: Address translation

A synonym used by some chip manufacturers is: real address

A physical address is the technical counterpart to logical address.

For details, see logical address.
TRACE32 Concepts | 20©1989-2024 Lauterbach

Awareness

Subject area: Hypervisor Awareness, OS Awareness

An awareness for TRACE32 is an OS-specific or hypervisor-specific extension which can be loaded into
TRACE32 at run time. With the help of a loaded awareness, TRACE32 can determine the current state of an
OS or hypervisor and extract all necessary information about tasks or guest machines.

An awareness is an extra software module written in C and built to a loadable binary using the TRACE32
Extension Development Kit (EDK). LAUTERBACH provides awareness files for a large number of
hypervisors and operating systems. Users can also write their own awareness with the EDK, which is
provided to customers upon request.

Hypervisor Awareness
Subject area: Hypervisor Awareness

An extension loaded to TRACE32 that allows specific operations on the hypervisor, such as displaying
and working with guest machines.

Extensions in TRACE32 are controlled with the command group EXTension.

OS Awareness
Subject area: OS Awareness

An extension loaded to TRACE32 that allows specific operations on the RTOS, such as displaying and
measuring the tasks.

Extensions in TRACE32 are controlled with the command group EXTension.

Awareness

Hypervisor Awareness OS Awareness
TRACE32 Concepts | 21©1989-2024 Lauterbach

Build Path

If a files with debug information is loaded (Data.LOAD.<sub_cmd>), this file also provides the paths for
the high-level source files as they were on the build machine.

The source column in the sYmbol.List.SOURCE window shows the build paths.

If TRACE32 is not running on the build machine, the build paths may not be valid and have to be adjusted for
the debug host. The adjusted paths are called the debug paths.

TRACE32 includes some auto-adjustments, but also provides various commands for adjusting the paths.
Examples are:

After a file is loaded, the file column in the sYmbol.List.SOURCE window shows its debug path.

Data.LOAD.Elf <file> /CYGDRIVE Load *.elf file, convert cygdrive
paths to Window paths.

Data.LOAD.Elf <file> /RelPATH Load *.elf file with relative paths
only.

sYmbol.SourcePATH.SetDir <directory> Define directory as direct search
path for source files.

sYmbol.SourcePATH.SetBaseDir <directory> Provide start of source paths
directly.

sYmbol.SourcePATH.Translate <invalid_part> <correct_part> Translate <invalid_part> of source
file paths to <correct_part>.
TRACE32 Concepts | 22©1989-2024 Lauterbach

Chip Timestamp

The onchip trace infrastructure adds timestamp information to its generated trace information. Examples
are:

• Cycle-accurate tracing for the ARM/Cortex architectures. For details refer to “ARM-ETM Trace”
(trace_arm_etm.pdf).

• Global timestamps for ARM CoreSight. For details refer to “ARM-ETM Trace”
(trace_arm_etm.pdf).

• Ticks, relative and absolute timestamps for the TriCore architecture. For details refer to “MCDS
User’s Guide” (mcds_user.pdf).

• Timestamps for the Nexus Messages. For details refer to “Training Nexus Tracing”
(training_nexus.pdf).

Common Address Range

Subject area: Address translation, OS Awareness

Common address ranges are ranges of logical addresses belonging to the kernel. The common address
ranges contain code or data which is shared by various processes.

When the address of a memory access falls into a common address range, TRACE32 uses the kernel
address translation (and not the task page table of the current process). Internally, TRACE32 always uses
the kernel space ID 0x0000 to find the translation of a common address.

In Linux, shared kernel modules and libraries must be declared as common address range.

In TRACE32, common address ranges are defined with the command TRANSlation.COMMON.

Cycle-accurate Tracing

The trace generation logic does not only export which instructions were executed, it also exports the number
of clocks an instruction took to execute.
TRACE32 Concepts | 23©1989-2024 Lauterbach

CombiProbe

Subject area: TRACE32 hardware

The CombiProbe is mainly used on Cortex-M derivatives or in case a system trace port is available because
it includes besides the debug interface a 4-bit wide trace port which is sufficient for Cortex-M program trace
or for system trace.

Extension

Subject area: Extension

An extension is an external module provided by Lauterbach or written by users who want to add custom
features to the TRACE32 software. The custom features can be new commands, windows, PRACTICE
functions, TRACE32 OS Awarenesses, and TRACE32 Hypervisor Awarenesses.

Extensions in TRACE32 are controlled with the command group EXTension.

Hypervisor

Subject area: Hypervisor Awareness

A piece of software or hardware that is able to run virtual machines.
TRACE32 Concepts | 24©1989-2024 Lauterbach

Machine ID

Subject area: Hypervisor Awareness

A machine ID is a numeric identifier which extends a logical address and intermediate address in TRACE32
or can be used together with the option MACHINE in some TRACE32 commands. The purpose of a
machine ID is to identify guest machines within a system that is using a hypervisor to run multiple virtual
machines.

In TRACE32, the machine ID clearly specifies which virtual machine (a guest machine or the host machine)
an address belongs to:

• The machine ID 0 (zero) is always associated with the host machine running the hypervisor.

• All the other machine IDs >= 1 are associated with the guest machines.

Format of addresses with machine IDs:

In the TRACE32 address format, the machine ID is always in the leading position, directly after the access
class specifier. The machine ID is followed a triple colon (:::) to separate the machine ID from the
remaining parts of an address. The format of a TRACE32 address containing a machine ID looks like this:

• Without space ID:

<access_class>:<machine_id>:::<address_offset>

• With space ID:

<access_class>:<machine_id>:::<space_id>::<address_offset>

Examples:

• Without space ID:

- G:0x1:::0x80000000

- 0x2:::0xA0000000

• With space ID:

- G:0x3:::0x020A::0x80000000

- G:0x0:::0x0::0x4000C000

- 0x2:::0x170::0x1F000000

<machine_id> Parameter Type: Decimal or hex value.
Range: 0x0 <= machine ID < 0x1F

Machine IDs are displayed, for example, in the mid column of the
TASK.List.MACHINES window as decimal values (1., 2., etc.)
TRACE32 Concepts | 25©1989-2024 Lauterbach

Notes:

• Machine IDs can only be used if a TRACE32 Hypervisor Awareness is loaded with the command
EXTension.LOAD.

• Use command SYStem.Option.MACHINESPACES ON to enable machine IDs in TRACE32.
TRACE32 Concepts | 26©1989-2024 Lauterbach

Machine

Subject area: Hypervisor Awareness

A machine is a TRACE32 term for a physical or virtual environment for an operating system (OS).

Guest Machine (synonym: virtual machine, VM)
Subject area: Hypervisor Awareness

A guest machine is a runtime environment which is running under the control of a hypervisor. A guest
machine consists of one or more VCPUs and can run a complete operating system.

Term is used for systems which involve virtualization.

The counterpart to guest machine is host machine.

Host Machine
Subject area: Hypervisor Awareness

The host machine is the physical computer environment which runs the hypervisor software. A host machine
comprises the computer hardware and all software which is not running under control of the hypervisor.
Term is used for systems which involve virtualization.

The counterpart to host machine is guest machine.

NOTE: The synonym virtual machine is used in contexts where it is necessary to implicitly
or explicitly distinguish between virtual machines and physical machines.

For an example, see hypervisor.

Machine

Host MachineGuest Machine
TRACE32 Concepts | 27©1989-2024 Lauterbach

Magic Number

Subject area: Hypervisor Awareness, OS Awareness

Machine Magic Number
Subject area: Hypervisor Awareness

A machine magic number is an arbitrary hex value, used by TRACE32 to uniquely identify a machine
(host machine or guest machine). The meaning of the value depends on the Hypervisor Awareness;
often it refers to the guest control block of the hypervisor or to the machine ID.

Space Magic Number
Subject area: OS Awareness

A space magic number is an arbitrary hex value used by TRACE32 to uniquely identify an MMU space. The
meaning of the value depends on the OS Awareness; often it refers to the process control block of the target
OS or to the space ID.

<machine_magic> Parameter Type: Hex value.
Range: machine magic number > 0xFF

Machine magic numbers are displayed, for example, in the magic column
of the TASK.List.MACHINES window as hex values.

<space_magic> Parameter Type: Hex value.
Space magic numbers are displayed, for example in the magic column of the
TASK.List.SPACES window.

Magic Number

Space Magic Number Task Magic NumberMachine Magic Number
TRACE32 Concepts | 28©1989-2024 Lauterbach

Task Magic Number
Subject area: OS Awareness

The task magic number is an arbitrary hex value, used by TRACE32 to uniquely identify a task of an
operating system. The meaning of the value depends on the OS Awareness; often it refers to the task
control block of the target OS or to the task ID.

MCDS in Infineon TriCore AURIX MCUs
28-Aug-2023

MCDS (Multi Core Debug Solution) is a peripheral block of AURIX MCUs that implements trace and trigger
functions. This peripheral block can be used to debug, trace, profile and verify what is happening in the cores
and MCU internal buses. Processor Observation Blocks (POBs) and Bus Observation Blocks (BOBs) both
make this possible. Observation Blocks must be assigned to cores and bus slaves to generate trace
information:

• Program trace (executed instructions) and data trace (executed memory accesses) for the
observed cores.

• Data trace (performed bus transfers) for the observed bus slaves.

MCDS is available in different variants: MCDS, MCDSlight and miniMCDS. The TRACE32 function
MCDS.MODULE.NAME() can be used to find out which variant is deployed in the TriCore AURIX under
debug. The individual MCDS variants differ in the following:

• The number of Processor Observation Blocks

• The number of Bus Observation Blocks

The TRACE32 Command MCDS.INFO provides details about the MCDS variant deployed in the TriCore
AURIX under debug.

<task_magic> Parameter Type: Hex value.
Example: TASK.select 0xEFF7B040
TRACE32 Concepts | 29©1989-2024 Lauterbach

Memory Management Unit (MMU)

Subject area: Address translation

The MMU is a unit inside the CPU core that translates logical addresses to physical addresses. You can
access and view the MMU in TRACE32 with the commands of the MMU command group.

Multicore Debugging

Multiple cores are in one SoC (System-on-Chip), all cores share the same debug port.

Multiprocessor Debugging

Multiple processors/chips are concurrently debugged, each processor/chip has its own debug port.

Observabiltiy Gap

This is a term from trace-based code coverage. It is used in conjunction with the code coverage metrics
condition, decision and MC/DC, in very rare cases also in conjunction with statement coverage. It means
that the result of a decision/condition cannot be monitored. This results is a gap in the code coverage that
must be closed to achieve completeness.
TRACE32 Concepts | 30©1989-2024 Lauterbach

Order of Source Code Lines

TRACE32 distinguishes between Target Order and Source Order. The two orders differ, when the compiler
changes the execution order of the source code, or when it creates two or more disjointed assembly blocks
for one line of source code. This happens especially with inline functions, with for-loops, and when compiler
optimizations are enabled.

The example below shows code in Target Order. The representation is determined by the memory
addresses. The memory addresses are strictly increasing. As you can see, the source code line 672 is
implemented in two disjointed assembly blocks. This is because of the special nature of the "for" statement
in C, which actually describes three actions (entry action, loop condition, loop action).
TRACE32 Concepts | 31©1989-2024 Lauterbach

The example below shows code in Source Order (due to the used option /SOrder). The representation is
determined by the line numbers of the source code. The line numbers of the source code are monotonically
increasing.

As soon as you switch the display to Source Order, the display is no longer determined by the memory
addresses of the assembly instructions, but by the line numbers of the source code lines.
TRACE32 Concepts | 32©1989-2024 Lauterbach

OS-aware Debugging

TRACE32 includes a configurable target-OS debugger that allows to include the task/process context
information into the debug process. The main features are:

• The name of the currently running task/process is displayed in the TRACE32 PowerView state
line.

• The task/process list can be displayed.

• The context of all tasks can be inspected (register set, stack frame etc.).

For detailed information on all TRACE32 PowerView features provided for your OS, refer to “OS Awareness
Manuals” (rtos_<os>.pdf).

What has to be configured for an OS Awareness debugging depends on the type of the target-OS in use.
TRACE32 distinguishes:

• OS (no dynamic memory management).

• AUTOSAR/OSEK operating systems.

• OS+MMU (dynamic memory management).

OS (No Dynamic Memory Management)

Ready-to-use configuration files are provided for most common available OS of this type.

If your kernel is compiled with symbol and debug information, the configuration for your target-OS can be
activated as follows:

All necessary files can be found in ~~/demo/<architecture>/kernel where ~~ is expanded to the
<trace32_installation_directory>, which is c:/T32 by default.

TASK.CONFIG <file> Configures the target OS debugger using a configuration file provided
by Lauterbach
TRACE32 Concepts | 33©1989-2024 Lauterbach

Example:

AUTOSAR/OSEK Operating Systems

The OSEK System Builder can be configured to create an ORTI file. This ORTI file can be loaded to
TRACE32 to activate OSEK-aware debugging.

Example:

For details refer to “OS Awareness Manual OSEK/ORTI” (rtos_orti.pdf).

OS+MMU (Dynamic Memory Management)

OS that use dynamic memory management require a more complex configuration.

Since Linux is the most popular OS here “Training Linux Debugging” (training_rtos_linux.pdf) is provided
to show how to activate the Linux awareness. For details on the other operating systems, refer to “OS
Awareness Manuals” (rtos_<os>.pdf).

; load ready-to-use file to configure eCos aware debugging
TASK.CONFIG ~~/demo/arm/kernel/ecos/ecos.t32

TASK.ORTI <orti_file> Load the ORTI file

; load ORTI file to configure OSEK aware debugging
TASK.ORTI im02_bf1x.ort
TRACE32 Concepts | 34©1989-2024 Lauterbach

OS-aware Tracing

If an OS is running on your target, OS-aware debugging has to be configured in order to use OS-aware
tracing.

OS-aware tracing allows e.g. to analyze task/process run-times as well as task/process specific call trees.

OS-aware tracing requires that the on-chip trace generation logic can generated task information.

There a two methods how task switch information can be generated:

• By generating a trace packet when the OS writes the ID of the current task to variable that
contains the information which task is currently running.

This method requires that the on-chip trace generation logic can generate Data Address
information and Data Value information for write accesses. This method has the advantage that it
does not require any support from the operating system.

• By generating task switch packets.

This method requires that the processor/core provides a register especially for this purpose. The
OS has to write an identifier for the current task to this register on every task switch and the on-
chip trace generation logic has to generate a trace packet, whenever a write access to this register
occurs. This method needs support from the OS. If the OS does not operate this special purpose
register it has to be patched in order to do so.
TRACE32 Concepts | 35©1989-2024 Lauterbach

Task Switch by Tracing Special Write Accesses

Every OS has a variable that contains the information which task/process is currently running. TRACE32
PowerView uses a generic function to identify this variable.

If an OS not supported by Lauterbach is used, the so-called “simple” awareness can be used to prepare OS-
aware tracing. Details on the “simple” awareness can be found in ~~/demo/kernel/simple/readme.txt.

Depending on the trace analysis to be performed one of the following trace filters has to be set.

TASK.CONFIG(magic) Returns the address of the variable that contains the
information which task/process is running.

TASK.CONFIG(magic[<core>]) Returns the address of the variable that contains the
information which task/process is running on the specified
core (SMP systems).

Break.Set TASK.CONFIG(magic) /Write /TraceEnable Advise the on-chip trace generation
logic to generate a trace packet
whenever a write access to the variable
identified by TASK.CONFIG(magic)
occurs.

Break.Set TASK.CONFIG(magic) /Write /TraceData Advise the on-chip trace generation
logic to generate trace packets for the
instruction execution sequence and for
the write accesses to the variable
identified by TASK.CONFIG(magic).
TRACE32 Concepts | 36©1989-2024 Lauterbach

Example 1: A time chart of the tasks/processes running is required. A MPC5646C with a Nexus trace port is
used for this example.

Break.Set TASK.CONFIG(magic) /Write /TraceEnable

…

Trace.List List.TASK DEFault

Trace.Chart.TASK
TRACE32 Concepts | 37©1989-2024 Lauterbach

Example 2: A detailed function nesting is required for each task/process. A MPC5646C with a Nexus trace
port is used for this example.

Break.Set TASK.CONFIG(magic) /Write /TraceData

…

Trace.List List.TASK DEFault

Trace.STATistic.TREE /TASK "TASK0"
TRACE32 Concepts | 38©1989-2024 Lauterbach

This generic description does not cover all details for specific trace protocols. For details refer to:

• “ARM-ETM Training” (training_arm_etm.pdf).

• “Training Nexus Tracing” (training_nexus.pdf).

• “AURIX Trace Training” (training_aurix_trace.pdf).

or to the “OS Awareness Manuals” (rtos_<os>.pdf).

Task Switch by Tracing Task Switch Packets

An alternative way to generate task switch information is required, if the on-chip trace generation logic
can not generate Data Address information and Data Value information for write accesses. The
common solution here is that the processor/core provides a special register. The OS has to write a
task-identification for the current task to this register on every task switch and the on-chip trace
generation logic has to generate a trace packet, whenever a write access to this register occurs. Examples
for such registers are:

• the Context ID register for ARM/Cortex processors/cores.

• the Nexus PID Register for Freescale Qorivva processors/cores.

If the OS in use operates this special purpose register, it can be used for OS-aware tracing even if the
on-chip trace generation logic can generate Data Address information and Data Value information for
write accesses.

The task-identification used by the OS (called traceid in TRACE32) does not have to be identical to the
task ID. The command TASK.List.tasks lists the trace IDs assigned to the individual tasks.
TRACE32 Concepts | 39©1989-2024 Lauterbach

Example 1: A time chart of the tasks/processes running is required. A MPC5646C with a Nexus trace port is
used for this example.

Please be aware that the Nexus PID Register is used here to generate information on task switches
(owner) and other OS specific information (services, isr2s).

; disable the generation of trace packets for the instruction execution
; sequence
NEXUS.BTM OFF

; enable the generation of so-called Ownership Trace Messages
; the Nexus module generates an Ownership Trace Message on every write
; access to the Nexus PID Register
NEXUS.OTM ON

…

Trace.List NEXUS List.TASK DEFault

Trace.Chart.TASK
TRACE32 Concepts | 40©1989-2024 Lauterbach

Example 2: A detailed function nesting is required for each task/process. A MPC5646C with a Nexus trace
port is used for this example.

; enable the generation of trace packets for the instruction execution
; sequence (default setting)
NEXUS.BTM ON

; enable the generation of so-called Ownership Trace Messages
; the Nexus module generates an Ownership Trace Message on every write
; access to the Nexus PID Register
NEXUS.OTM ON

…

Trace.List List.TASK DEFault

Trace.STATistic.TREE /TASK "TASK0"
TRACE32 Concepts | 41©1989-2024 Lauterbach

This generic description does not cover all details for specific trace protocols. For details refer to:

• “ARM-ETM Training” (training_arm_etm.pdf).

• “Training Nexus Tracing” (training_nexus.pdf).

or to the “OS Awareness Manuals” (rtos_<os>.pdf).
TRACE32 Concepts | 42©1989-2024 Lauterbach

Process

Subject area: OS Awareness

In OSes usually a collection of threads that share the same virtualized memory space. In this sense,
the TRACE32 term “MMU space” maps to a process.

Note: In some RTOS (esp. ARINC based OSs) a “process” is defined as an execution context. In this sense,
it maps to the TRACE32 term “task”.

RTOS

Subject area: OS Awareness

Real Time Operating System - equivalent to kernel.
TRACE32 Concepts | 43©1989-2024 Lauterbach

Run-time Memory Access

Technology

Various cores/processors allow a debugger to read/write memory and memory-mapped registers while the
core is executing the program. The debugger has in most cases direct access to the system memory bus, so
no extra load for the core is generated by this feature.

Open the SYStem window in order to check if your processor architecture allows a debugger to read/write
memory while the core is executing the program:

Please be aware that caches, MMUs, tightly-coupled memories and suchlike add conditions to the run-time
memory access or at worst make its use impossible.

MemAccess CPU/NEXUS/DAP
indicates, that the core allows
the debugger to read/write memory
while the core is executing the program
TRACE32 Concepts | 44©1989-2024 Lauterbach

Restrictions

The following description is only a rough overview on the restrictions. Details about your core can be found in
the Processor Architecture Manual.

Cache

If run-time memory access for a cached memory location is enabled the debugger acts as follows:

• Program execution is stopped

The data is read via the cache respectively written via the cache.

• Program execution is running

Since the debugger has no access to the caches while the program execution is running, the
data is read from physical memory. The physical memory contains the current data only if the
cache is configured as write-through for the accessed memory location, otherwise out-dated data
is read.

Since the debugger has no access to the cache while the program execution is running, the data
is written to the physical memory. The new data has only an effect on the current program
execution if the debugger can invalidate the cache entry for the accessed memory location. This
useful feature is not available for most cores.

MMU

Debuggers have no access to the TLBs while the program execution is running. As a consequence run-time
memory access cannot be used, especially if the TLBs are dynamically changed by the program.

In the exceptional case of static TLBs, the TLBs can be scanned into the debugger. This scanned copy of
the TLBs can be used for the address translation while the program execution is running.

Tightly-Coupled Memory

Tightly-coupled might not be accessible via the system memory bus.
TRACE32 Concepts | 45©1989-2024 Lauterbach

AHB Bus (ARM/Cortex)

The command SYStem.MemAccess DAP enables the run-time memory access for the ARM/Cortex
architecture. The run-time memory access is done via the bus that is configured with the command
SYStem.CONFIG.MEMORYACCESSPORT <port>. In most cases the AHB bus is used.

The memory mapping of the cores might be different from the memory mapping of the AHB bus e.g. in an
AMP system.

The command SYStem.Option.DAPREMAP <address_range> <address> allows to inform the debugger
about the AHB memory mapping.

Memory mapping
core 0

FLASH

Memory mapping
core 1

Memory mapping
AHB-AP

core 0
FLASH

RAM
core 1

RAM

RAM
core 1 RAM

RAM
core 0

RAM
TRACE32 Concepts | 46©1989-2024 Lauterbach

Features

Run-time Access to Memory

Configure the run-time memory access for a specific memory area.

If the E checkbox is enabled, the attribute E is added to the access class:

Write accesses to the memory work correspondingly:

EP:1000 Program address 0x1000 with run-time memory access

ED:6814 Data address 0x6814 with run-time memory access

Enable the E checkbox to switch
the run-time memory access to ON

A plain window frame
indicates that the
information is updated
while the core is
executing the program

Data.Set via run-time

(attribute E)
memory access
TRACE32 Concepts | 47©1989-2024 Lauterbach

Command line examples:

Run-time Access to Memory-mapped Registers

Use the option /DualPort when you use the PER command to display the SFRs.

SYStem.MemAccess Enable ; Enable the non-intrusive
; run-time memory access

…

Go ; Start program execution

Data.dump E:0x6814 /DIALOG ; Display a hex dump starting at
; address 0x6814 via run-time
; memory access

Data.Set E:0x6814 0xAA ; Write 0xAA to the address
; 0x6814 via run-time memory
; access

List E: ; Display a source listing via
; run-time memory access
TRACE32 Concepts | 48©1989-2024 Lauterbach

Run-time Access to Variables

Configure the run-time access for the selected variable by enabling the E checkbox in the Change Variable
Format dialog.
TRACE32 Concepts | 49©1989-2024 Lauterbach

If you want to change the contents of a variable while the program execution is running, double click to the
variable.

The following command is displayed in the TRACE32 PowerView command line:

The format parameter %E advises the debugger to write the new variable value via the run-time memory
access.

Command line examples:

Var.set %E flags[4] =

Var.View %E flags ; display variable flags via
; run-time memory access

Var.set %E flags[3]=22 ; write 22 to variable flags[3]
; via run-time memory access
TRACE32 Concepts | 50©1989-2024 Lauterbach

Option DUALPORT

Most cores/processors that allow a run-time memory access provide the checkbox DUALPORT in the
SYStem window. When DUALPORT is enabled run-time, access is automatically enabled for all windows
that display memory (e.g. source listing, memory dumps, variable displays, displays of SFR).

Command line example:

SYStem.Option.DUALPORT ON
TRACE32 Concepts | 51©1989-2024 Lauterbach

Sample-based Profiling

Sample-based profiling collects periodically the actual program counter or the actual contents of a memory
location in order to calculate:

• The percentage of run-time used by a high-level language function

• The percentage of run-time a variable had a certain contents.

• The percentage of run-time used by a task.

For details refer to the PERF command group.
TRACE32 Concepts | 52©1989-2024 Lauterbach

Space ID

Subject area: Address translation, OS Awareness

A space ID is a 16-bit memory space identifier which extends a logical TRACE32 address. With space IDs,
TRACE32 can handle multiple address spaces (= MMU spaces) in the debugger address translation.

Space IDs are defined within a loaded TRACE32 OS Awareness. Often, space IDs are directly derived from
the OS process ID. Be aware that this depends on the OS and the loaded OS Awareness.

• The space ID 0xFFFF indicates an error. The OS Awareness loaded into TRACE32 is not able to
determine the process to which the address belongs.

• A space ID 0x0000 refers to addresses belonging to the kernel address range, such as the kernel
itself or common libraries or common modules.

In TRACE32, MMU spaces and their identifiers, the space IDs, are enabled with the command
SYStem.Option.MMUSPACES.

If enabled, the TRACE32 address format is extended by the space ID in the leading position, directly before
the address offset. The space ID is followed by a single or double colon to separate the space ID from the
address offset. The format of a TRACE32 address containing a space ID looks like this:

<access_class>:<space_id>:<address_offset>

NOTE: With SYStem.Option.ZoneSPACES enabled and TASK.ACCESS set to a
specific zone, addresses belonging to another zone also show 0x0000 as space
ID.

Zone n
Hardware MMU

Active
Page Table

Zone 1
Hardware MMU

Active
Page Table

Zone 2
Hardware MMU

Active
Page Table

CPU

Process 1
Page table

MMU Space

Owner system exchanges active page table of one zone

Space ID 1

Process n
Page table

MMU Space

Space ID n

Process 2
Page table

MMU Space

Space ID 2
TRACE32 Concepts | 53©1989-2024 Lauterbach

Examples:

• G:0x020A:0x80000000

• G:0x0:0x4000C000

• 0x170:0x1F000000

Refer to the manual for your target operating system for details, e.g. “OS Awareness Manual Linux”
(rtos_linux_stop.pdf).

Spot Breakpoint

In case of a breakpoint hit, the program execution is stopped briefly:

• to refresh the screen.

• to perform actions that are configured in advance.

The stop usually takes about 100 ms, depending on the speed of the debug interface, the information
displayed in TRACE32 PowerView and the actions to be performed.

The debug field in the TRACE32 state line shows spotted, the olive color indicates that the program
execution is mostly stopped and runs only very short. The Debug Activity field shows SPOT in red.

SYStem.Option.MMUSPACES ON
; load the debug symbols for the process hello
; the space ID is a 16-bit number preceding the virtual address

Data.LOAD.Elf hello N:0x0229:0x0 /NoCODE /NoClear

Var.Break.Set myspot /Write /Spot

Debug Debugger
Activity
TRACE32 Concepts | 54©1989-2024 Lauterbach

The following actions can be performed at a Spot breakpoint:

• Logging variables into an AREA window (Var.LOG command).

• Logging the current program runtime to the RunTime log (RunTime.List command).

• Exchange data between the target application and the debugger using a terminal window
(TERM.METHOD command).

• Exchange data between the target application and an application running on the host computer
(FDX.METHOD command).
TRACE32 Concepts | 55©1989-2024 Lauterbach

StopAndGo Mode

If a TRACE32 Debugger is used the program execution on the processor/core is real-time by default. If your
program does not run under hard real-time condition you can trade in real-time for more debug features.

Example 1: The user wants to monitor a global variable while the program execution is running, but the
debugger can not read physical memory while the program execution is running. TRACE32 can now be
configured (SYS.MemAccess StopAndGo) to stop the program execution 10 times per second shortly in
order to read the variable of interest and restart it as quickly as possible. The debugger is now working in
StopAndGo mode.

Example 2: The user want to find out which function of his program is the most time-consuming
(performance analysis), but the debugger can not read the current program counter while the program
execution is running. The debugger automatically uses StopAndGo mode here. In this operation mode the
debugger stops the program execution periodically to read the program counter and restarts it as quickly as
possible.

Whenever the debugger uses StopAndGo mode to provide helpful debug features this is indicated by a red
S&G in the Debugger Activity field of the TRACE32 PowerView state line.

The time taken by a short stop depends on various factors:

• The time required by the debugger to start and stop the program execution on a processor/core
(main factor).

• The number of cores that need to be stopped and restarted.

• Cache and MMU assesses that need to be performed to read the information of interest.

• The type of information that is read during the short stop.

Reading the program counter is optimized and can usually be done quickly.
TRACE32 Concepts | 56©1989-2024 Lauterbach

Symmetrical Multi-Processing (SMP)

SMP = Symmetrical MultiProcessing

A multicore-chip that contains only cores of the same type can be configured as an SMP system. In an SMP
system the task are assigned by an SMP operating system dynamically to the cores.

For debugging SMP systems, only one TRACE32 instance is opened and all cores are controlled from this
one point.

Task

Subject area: OS Awareness

TRACE32 term for an execution unit with its own register context. In OSes usually called “thread” or
“task”. Some RTOS (esp. ARINC based OSs) also call this “process”.

Thread

Subject area: OS Awareness

In OSes usually an execution unit. If it has its own register context, it maps to the TRACE32 term “task”.
TRACE32 Concepts | 57©1989-2024 Lauterbach

TRACE32 Virtual Memory

The TRACE32 Virtual Memory is memory on the host computer which can be displayed and modified with
the same commands as a real target memory (Data command group). The memory class VM: provides
access to this memory.

The following examples show some use cases for the TRACE32 Virtual Memory:

Example 1

A part of the target memory contents is copied to the virtual memory to allow you to check all changes
performed by the program execution.

An advanced example can be found in:
~~/demo/powerpc/hardware/qoriq_p1_p2/all_boards/program_bootsequencer.cmm

Example 2

Loading the code to the target memory is not working, you can inspect the code by loading it to the virtual
memory.

; copy contents of specified address range to TRACE32 Virtual Memory
Data.Copy 0x3fa000++0xfff VM:

; display contents of TRACE32 Virtual Memory at specified address
Data.dump VM:0x3fa000

Go

Break

; compare contents of target memory with contents of TRACE32 Virtual
; Memory for specified address range
Data.Compare 0x3fa000++0xfff VM:0x3fa000

; search for next difference
Data.Compare

…

Data.LOAD.Elf demo.elf /VM ; load program code to TRACE32
; Virtual Memory

Data.List VM: ; display a source listing based on
; the code in the TRACE32 Virtual
; Memory

sYmbol.List.MAP ; display the addresses to which
; the code/data was written
TRACE32 Concepts | 58©1989-2024 Lauterbach

Example 3

TRACE32 does not support the ELF file format for NAND FLASH programming.

Example 4

TRACE32 needs to read the source code from the target memory in order to decompress the exported trace
information. If target memory can not be read while the program execution is running the object code can be
provided via the TRACE32 Virtual Memory.

The object code is still read from the target memory when the program execution is stopped.

Please keep the object code in the TRACE32 Virtual Memory up-to-date, out-of-date source code versions
will cause errors.

… ; configure TRACE32 NAND FLASH
; programming

Data.LOAD.Elf demo.elf /VM ; load program to TRACE32
; Virtual Memory

sYmbol.List.MAP ; check the addresses to
; which the code/data was
; written

FLASHFILE.COPY VM:0x180000++0x3ffff 0x0 ; copy the program from
; TRACE32 Virtual Memory to
; NAND FLASH

Data.LOAD.Elf demo.elf /PlusVM ; load program code to target and
; to TRACE32 Virtual Memory

…

Trace.Mode Stack ; advise TRACE32 to stop trace
; recording as soon a trace memory
; is filled

; program execution continues

Go

Trace.List ; since program execution is still
; running the source code
; information required for the
; trace decompression can not be
; read from the target memory

; source code is read from the
; TRACE32 Virtual Memory instead
TRACE32 Concepts | 59©1989-2024 Lauterbach

Example 5

TRACE32 needs to read the source code from the target memory in order to decompress the exported trace
information. If the JTAG interface is very slow, reading target memory is slow. As a result the trace evaluation
is slow.

The trace evaluation can be speeded-up by providing the source code via the TRACE32 Virtual Memory.
Please keep the source code in the TRACE32 Virtual Memory up-to-date, out-of-date source code versions
will cause errors.

Data.LOAD.Elf demo.elf /PlusVM ; load program code to target and
; to TRACE32 Virtual Memory

Trace.ACCESS VM: ; advise TRACE32 to read source
; code required for the trace
; decompression always from TRACE32
; Virtual Memory because reading
; the code from the target memory
; is very slow

…

Trace.List
TRACE32 Concepts | 60©1989-2024 Lauterbach

Trace Errors

TARGET FIFO OVERFLOW

The trace information generated by trace sources has to be conveyed to the trace sink. Typical examples for
a trace source are core traces, System Trace Macrocells and bus traces. Typical examples for a trace sink
are off-chip trace ports and on-chip trace RAMs.

In the case of a single trace source, a trace export logic is responsible to convey the trace information to the
trace sink. If two or more trace sources generate trace information, this information is usually first merged to
a single trace data stream.

FIFOs are used to pass trace information between the individual components of the trace infrastructure. If
the generating components queue more trace data into the FIFO then the receiving component can
process, a TARGET FIFO OVERFLOW is indicated.

Trace export

Trace source

FIFO

Trace source 0 Trace source 1 Trace source n …

FIFO FIFO FIFO

Merger

Trace export

FIFO

Single trace source Two or more trace sources

Trace sink Trace sink
TRACE32 Concepts | 61©1989-2024 Lauterbach

A TARGET FIFO OVERFLOW always results in the loss of trace data. A synchronization packet (including
the full program counter and if required the task/process information) will signal that FIFOs are emptied and
a lossless transport for sources to sink is guaranteed.

A TARGET FIFO OVERFLOW is strictly spoken not an error, but normal behavior. TRACE32 indicates
TARGET FIFO OVERFLOWS/FIFOFULL for two reasons:

• to tag trace data losses in the trace recording.

• to make the user aware of TARGET FIFO OVERFLOWs because a number of trace analyzes
only make sense if the trace recording is lossless.

FLOWERROR

The core trace generation logic on the processor/chip generates trace packets to indicate the instruction
execution sequence (program flow).
TRACE32 Concepts | 62©1989-2024 Lauterbach

TRACE32 merges the following sources of information in order to provide an intuitive trace display.

• The trace packets recorded.

• The program code from the target memory (read via the JTAG interface).

• The symbol and debug information already loaded to TRACE32.

Symbol and debug
information loaded

to TRACE32

Recorded trace
packets

Uploaded from
the source of

trace information

Program code from
target memory

Read via
JTAG

interface

Trace packets generated by core trace logic
TRACE32 Concepts | 63©1989-2024 Lauterbach

A FLOW ERROR is indicated (list not complete):

• if TRACE32 detects an invalid trace packet.

• if TRACE32 can not decode a trace packet.

• if the content of a trace packet is not consistent with the program code read from the target
memory.

If the trace contains FLOW ERRORs, please try to set up a proper trace recording before you start to
evaluate or analyze the trace contents.
TRACE32 Concepts | 64©1989-2024 Lauterbach

Trace Sources

Trace information can be generated by different trace sources:

• Core trace

A core trace provides detailed visibility of the program execution on a core. Trace data are
generated for the instruction execution sequence and the task/process switches. Some core
traces generate also trace data for the load/store operations. Classic core traces are ARM
ETM/PTM or Intel® PT.

• Function trace

In contrast to a core trace, a function trace provides only information on the function entries/exits
and if necessary on the task switches. Examples for a function trace are the MCDS Compact
Function Trace mode (call/return detection) from Infineon or the SFT Trace (instrumentation
based) for the RH850 family.

• System trace

A system trace provides visibility of various events/states inside an SoC. Trace data can be
generated by instrumented application code and/or by hardware modules within the SoC.

• Bus trace

Bus traces provide disability on bus transfers. SoC internal busses require a special trace logic
on the SoC, while external busses can be traced with a TRACE32 logic analyzer.

A classical SoC internal bus traces are ARM HTM or Infineon MCDS SPB trace.
TRACE32 Concepts | 65©1989-2024 Lauterbach

Tool Timestamp

All TRACE32 tools that record trace information have a timestamp counter.

Recorded trace information is timestamped with this tool timestamp when it is entered into the trace buffer.

The resolution of the timestamp counter is tool dependent. Here examples for the most popular trace tools:

• POWER TRACE II / POWER TRACE III: 5 ns

• POWER TRACE SERIAL: 5 ns

• POWER TRACE / ETHERNET: 20 ns

• CombiProbe: 20ns

• POWER PROBE / LOGIC ANALYZER: 10ns

• POWER INTEGRATOR: at least 4ns, mode dependent higher

Several TRACE32 tools can be chained via the PODBUS/PODBUS EXPRESS connector. The timestamps
of chained TRACE32 tools are started synchronously and then run synchronously. The synchronization is
established when the first debugger in the chain establishes its communication with its processor/chip via
SYStem.Up or SYStem.Attach.

The synchronized timestamps allow to establish a time reference between trace information recorded by
different tools.

VCPU

Subject area: Hypervisor Awareness

A virtual core used by a virtual machine. If the virtual machine is currently running, it maps to a physical
core.
TRACE32 Concepts | 66©1989-2024 Lauterbach

	TRACE32 Concepts
	History
	Access Classes
	Access Class Expansion
	Address Spaces
	Zones
	Zone Spaces
	MMU Space
	Machine Spaces

	Address Types
	Absolute Physical Address
	Guest Logical Address
	Host Logical Address
	Intermediate Address (synonym: guest physical address)
	Logical Address (synonyms: virtual address, effective address)
	Physical Address (synonym: real address)

	Awareness
	Hypervisor Awareness
	OS Awareness

	Build Path
	Chip Timestamp
	Common Address Range
	Cycle-accurate Tracing
	CombiProbe
	Extension
	Hypervisor
	Machine ID
	Machine
	Guest Machine (synonym: virtual machine, VM)
	Host Machine

	Magic Number
	Machine Magic Number
	Space Magic Number
	Task Magic Number

	MCDS in Infineon TriCore AURIX MCUs
	Memory Management Unit (MMU)
	Multicore Debugging
	Multiprocessor Debugging
	Observabiltiy Gap
	Order of Source Code Lines
	OS-aware Debugging
	OS (No Dynamic Memory Management)
	AUTOSAR/OSEK Operating Systems
	OS+MMU (Dynamic Memory Management)

	OS-aware Tracing
	Task Switch by Tracing Special Write Accesses
	Task Switch by Tracing Task Switch Packets

	Process
	RTOS
	Run-time Memory Access
	Sample-based Profiling
	Space ID
	Spot Breakpoint
	StopAndGo Mode
	Symmetrical Multi-Processing (SMP)
	Task
	Thread
	TRACE32 Virtual Memory
	Trace Errors
	TARGET FIFO OVERFLOW
	FLOWERROR

	Trace Sources
	Tool Timestamp
	VCPU

