
MANUAL

TPU Debugger

TPU Debugger

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 ICD In-Circuit Debugger .. 

 ICD Add-Ons ... 

 TPU Debugger ... 1

 TPU Basics .. 4

 Entering TEST-Mode 5

 TPU.BASE Base address 5

 TPU.SCAN Scannig TPU 5

 TPU.view View TPU channels 6

 TPU.Register.ALL Register operation mode 6

 TPU.Register.NEWSTEP New debugging mode 7

 TPU.Register.view Register display 8

 TPU.Register.Set Register modification 9

 TPU.Dump Memory display 9

 TPU.ListEntry Table display 10

 TPU.List View microcode 11

 TPU.Break Break TPU 11

 TPU.Go Start TPU 12

 TPU.SELect Select TPU for debugging 12

 TPU.Step Single step TPU 13

 TPU.RESet Disable TPU debugger 13
TPU Debugger | 2©1989-2024 Lauterbach

TPU Debugger

Version 06-Jun-2024
TPU Debugger | 3©1989-2024 Lauterbach

TPU Basics

The TPU module is a complex free programmable RISC processor. TRACE32 supports single stepping as
well as setting breakpoints in the RISC program. To start TPU debugging the emulation must be started in
TEST mode. The following setup program example makes all preparations to debug the TPU on a MC68332
(the example can be found in ~~/demo/m68k/etc/tpu):

After execution the screen shows the TPU registers, the RISC program and the TPU parameters. The
command TPU.Break will stop the TPU and show the current values of the TPU registers. Stopping the TPU
is only possible when the TPU is executing microcode, not when the TPU is in IDLE.

sys.res
sys.o test on
sys.m ai ; Important to enter TEST-MODE

d.s 0x0fffe12 %w 0x9999
d.s 0x0ffff00 %w 0x9d
d.s 0x0ffff04 %l 0x01000200
d.s 0x0ffff10 %w 0x9d
d.s 0x0ffff14 %l 0x00800100
d.s 0x0ffff20 %w 0x9d
d.s 0x0ffff24 %l 0x00200080
d.s 0x0ffff30 %w 0x9d
d.s 0x0ffff34 %l 0x00100030

d.s 0x0fffe1a %w 0x0aa
d.s 0x0fffe1e %w 0x0ea

tpu.b
w.tpu.r
w.tpu.view
w.tpu.l
enddo
TPU Debugger | 4©1989-2024 Lauterbach

Entering TEST-Mode

To work with the TPU-Debugger the device must enter TEST mode. After starting up the emulation system,
the ETM bit in the test submodule control register must be set (for CPU32 and CPU16 usually at $YffA38).
This register can only be written once. If the target program writes to this register, please change the
program to set this bit correctly. The ETM bit is also set by the TPU debugger commands, but only if the
target program has not already written to this register. If you want to debug your own microcode, you must
also ensure that the TPU emulation RAM is configured by your target program. The TPU microcode cannot
be modified by the debugger.

On the MPC555 (Rev. G and up) the test mode is enabled with the following command:

TPU.BASE Base address

Selects the base address of the internal peripherals for the TPU debugger. This command is normally nor
required, as the base address is adjusted automatically according to the system settings.

See also

■ TPU.view

TPU.SCAN Scannig TPU

This command reads all TPU-registers and the microcode. This command is not required for normal usage.
Entering this command should not change any TPU registers (except the timer registers will advance).

See also

■ TPU.view

d.s 2fc3fc %long 80000000

Format: TPU.BASE <address>

Format: TPU.SCAN
TPU Debugger | 5©1989-2024 Lauterbach

TPU.view View TPU channels

Display the TPU configuration for each channel. The command is a predefined PERipheral window. The
definition of this window can be changed either by entering another filename as an argument, or by
modifying the file 'pertpu.t32' in the system directory. By this modification you can change the display to your
special needs, e.g. add symbolic names for operation-modes and parameters. The TPU channels can also
be viewed with the standard PER command in a more functional oriented manner.

See also

■ TPU.BASE ■ TPU.Break ■ TPU.Dump ■ TPU.Go
■ TPU.List ■ TPU.ListEntry ■ TPU.RESet ■ TPU.SCAN
■ TPU.SELect ■ TPU.Step ❏ TPUBASE.ADDRESS()

TPU.Register.ALL Register operation mode

In ON mode all registers of the TPU and the microcode are accessible. In TPU1 debugging mode you
cannot step through a state-transition. This is the default mode. In OFF mode the debugger is limited to
registers accessible direct by Scan-Path. This allows stepping through state-transitions.

See also

■ TPU.Register.view

Format: TPU.view [<file>]

Format: TPU.Register.ALL [ON | OFF]

CH FUNC PRIO HSF HSR IEF ISF LNK SGL CHS PRM0 PRM1 PRM2 PRM3 PRM4 PRM5 PRM6
0 $9 mid $0 $0 no yes no no no 009D 9710 0100 0200 9910 1414
1 $9 mid $0 $0 no yes no no no 009D 9812 0080 0100 9912 0208
2 $9 mid $0 $0 no yes no no no 009D 9813 0020 0080 9893 00C9
3 $9 high $0 $0 no yes no no yes 009D 984F 0010 0030 984F 0002
4 $0 off $0 $0 no no no no no C345 E007 D90F 3421 8111 8080
5 $0 off $0 $0 no no no no no 2200 3511 4320 629B 0951 2812
6 $0 off $0 $0 no no no no no 8904 0348 D090 E20A 1542 2201
7 $0 off $0 $0 no no no no no 320D 6000 021C 0F00 0101 8010
8 $0 off $0 $0 no no no no no 2919 7634 4204 2810 3791 2C13
9 $0 off $0 $0 no no no no no 3000 6001 1001 04A0 A112 0191
10 $0 off $0 $0 no no no no no 6011 4361 0020 0240 3C01 2492
11 $0 off $0 $0 no no no no no 0000 24C0 FFFF FFC4 0000 0000
12 $0 off $0 $0 no no no no no 0000 2540 0000 002F FFFF FFE4
13 $0 off $0 $0 no no no no no 0000 0000 0000 2978 FFFF FFC4
14 $0 off $0 $0 no no no no no 0000 24AE 0000 0000 0000 1AEC 0000
15 $0 off $0 $0 no no no no no 0000 24DC 0000 0000 0000 24C0 0000
TPU Debugger | 6©1989-2024 Lauterbach

TPU.Register.NEWSTEP New debugging mode

In ON mode the debugger is switched to TPU2 compatible mode (this is the default for the TPU2). Usually
this command is not required.

See also

■ TPU.Register.view

Format: TPU.Register.NEWSTEP [ON | OFF]
TPU Debugger | 7©1989-2024 Lauterbach

TPU.Register.view Register display

The TPU-registers have two operation modes. The modes are selected with the command
TPU.Register.ALL. In the limited mode only the registers available by Scan-Path are accessible. The full
mode allows to access all registers of the TPU. The window contains also some registers not mentioned in
the TPU-manual.

Format: TPU.Register.view

BCR' This register contains the flags after executing one microinstruction. The
information is used for conditional branches. This register is also used to display
the flag-bits V, N, C, Z.

CHANNEL The register is derived from the 'Decoded Channel Number Register' of the
TPU ($Yffe26). LINK is the 'Link Register' at $Yffe22.

SGLR 'Service Grant Latch Register' ($Yffe24).

DECOP This register is a pseudo register, indicating the state of the decrement
operation. The value 0 means no decrement active. Value 1 means that a
repeat operation is running. A value of 2 means, that the decrementor is
running and will execute a 'return' if it reaches zero. This register is only
available (and required) when the TPU1 compatible debugging is used.

FLUSH The pseudo-register is set to one, if the current instruction is not executed due
to a 'flush' bit in the previous command.

TRANS This register is a read-only register, that is set to one, if the TPU debugger has
finished a state-transition. It is not possible to step through a state-transition in
the full-debug mode. If the debugger detects that the next steps are doing such
a transition, it executes enough steps to perform this transition and sets the
pseudoregister TRANS to one.

Format: TPU.Register.Set <regname> [<value>]

UINST 0D452FFFF call 52; flsh.

V _ FL1 _ UPC 51 A 10 TCR1 18FE
N _ FL0 _ BCR 111 SR 981F TCR2 0
C _ TDL _ BCR' 110 P 981F MER 984F
Z _ MRL M HSCR 3ED0 DIOB 984F ERT 984F

LSL _ RAR 51 CHAN 3
SEQ 0 DEC 0F CHANNEL 3 TRANS 1
PIN H DECOP 0 LINK
HSR 0 FLUSH 0 SGLR
TPU Debugger | 8©1989-2024 Lauterbach

See also

■ TPU.Register.ALL ■ TPU.Register.NEWSTEP ■ TPU.Register.Set

TPU.Register.Set Register modification

The registers BCR', MER, CHANNEL, LINK and SGLR cannot be modified.

See also

■ TPU.Register.view

▲ ’Release Information’ in ’Legacy Release History’

TPU.Dump Memory display

Displays a hex-dump of the microcode.

See also

■ TPU.view

Format: TPU.Register.Set <regname> [<value>]

Format: TPU.Dump

0000 3FFFFFFE BFFFFFF8 7FF9FEFA 11FDF80B
0004 8E12FEFF 1FFFFA03 3EFFF007 11FCF80F
0008 B20EFFFF 7FF9FEFF 8E0DFEFF 1FFFF203
000C 30FFD202 30FFE202 8E11FFFF 1FFFF203
0010 30FFD202 30FFE202 7FF9FEFE 11FDF80B
0014 8E12FFFF 1FFFFA03 D207FFFF 3EFFC007
0018 E1E401C7 8E1CFED0 7859FFFF 3A5FFFFF
001C B22EFEFF 1FFFF00F CFFF3013 3C7FF803
TPU Debugger | 9©1989-2024 Lauterbach

TPU.ListEntry Table display

Displays the entry-table of the microcode in symbolic format.

See also

■ TPU.view

Format: TPU.ListEntry

0180 161D F00 1 X X 0 X 001D p := prm0; me
0180 E013 F00 1 X X 1 X 0013 p := prm7
0181 8183 F00 2 X X X X 0183 p := prm4
0181 F6FF F00 3 X X X X 00FF p := prm7; me
0182 C166 F00 0 0 1 0 0 0166 p := prm6
0182 F003 F00 0 0 1 0 1 0003 p := prm7; me
0183 30FE F00 0 0 1 1 0 00FE p := prm1; me
0183 F013 F00 0 0 1 1 1 0013 p := prm7; me
0184 505D F00 0 1 0 0 0 005D p := prm2; me
0184 FFD2 F00 0 1 0 0 1 01D2 diob := prm7; me
0185 60F9 F00 0 1 0 1 0 00F9 p := prm3
0185 FED7 F00 0 1 0 1 1 00D7 diob := prm7; me
0186 BFFF F00 0 1 1 0 0 01FF diob := prm5; me
0186 FFC8 F00 0 1 1 0 1 01C8 diob := prm7; me
0187 3E7F F00 0 1 1 1 0 007F diob := prm1; me
0187 F80E F00 0 1 1 1 1 000E diob := prm7; me
0188 D38D F01 1 X X 0 X 018D p := prm6; me
0188 FFFF F01 1 X X 1 X 01FF diob := prm7; me
0189 3C7F F01 2 X X X X 007F diob := prm1; me
0189 F80B F01 3 X X X X 000B diob := prm7; me
TPU Debugger | 10©1989-2024 Lauterbach

TPU.List View microcode

Displays the microcode. You can display either the microcode in ROM or the code in RAM. The microcode in
RAM cannot be modified. The bar indicating the microprogram-counter is only displayed correctly, if a TPU-
register window is on the screen too. The bar is displayed at the uPC position, i.e. at the address for the next
instruction-fetch.

See also

■ TPU.view

▲ ’Release Information’ in ’Legacy Release History’

TPU.Break Break TPU

There are three types of breakpoints: uPC breakpoints, channel breakpoints and state breakpoints. uPC and
channel breakpoints can only be set when the TPU is stopped. The other breakpoints can also be set, when
the TPU is running. The breakpoint-flags are described in detail in the TPU-Manual from Freescale
Semiconductor. All breakpoint-types can be set in combination within one command. The command can
also be used, when the TPU is already in IDLE-mode, to wait for execution.

See also

■ TPU.view

Format: TPU.List

Format: TPU.Break [<address>] [<channel>] [<flags>]

<channel>: 0..15.

<flags>: BH | BL | BM | BT

tpu.b , , BT ; Break of TDL is asserted at beginning of state.

004D 7859FEFF ert := tcr1; neg_tdl;neg_mrl; neg_lsl.
004E 7A59FEFF ert := tcr2; neg_tdl;neg_mrl; neg_lsl.
004F 3C7FF807 diob := ert; ram diob -> prm1.
0050 D452FFFF call 52; flsh.
0051 525CB5FA ert := a + sr; pac := low; neg_mrl; write_mer; pir; end.
0052 163FF00B sr := diob; ram p <- prm2.
0053 101DF80F a := p, cc; ram diob <- prm3.
0054 8659FFFF if LOW_SAMEthen goto 59.
0055 36FEB013 p := diob + sr; ram p -> prm4.
TPU Debugger | 11©1989-2024 Lauterbach

TPU.Go Start TPU

Start TPU processor in real time. Additional breakpoint conditions may be set. The TPU may be stopped by
TPU.Break.

See also

■ TPU.Step ■ TPU.view

TPU.SELect Select TPU for debugging

Selects the TPU unit in controllers with more than one TPU. The command must als be used when the base
address of the peripherals was changed..

See also

■ TPU.view

Format: TPU.Go [<address>] [<channel>] [<flags>]

<channel>: 0..15.

<flags>: BH | BL | BM | BT

tpu.g 0x100 ; Run, till uPC 100 is reached.

tpu.g , 0x4 ; Run, till channel 4 is served.

Format: TPU.SELect [A | B]

tpu.sel A ; debug TPU unit A
TPU Debugger | 12©1989-2024 Lauterbach

TPU.Step Single step TPU

Single step through microcode. Single-stepping is only possible, if the TPU is stopped and not in IDLE state.

See also

■ TPU.Go ■ TPU.view

▲ ’Release Information’ in ’Legacy Release History’

TPU.RESet Disable TPU debugger

Disables the TPU debugger.

See also

■ TPU.view

Format: TPU.Step

tpu.s ; single step

Format: TPU.RESet
TPU Debugger | 13©1989-2024 Lauterbach

	TPU Debugger
	TPU Basics
	Entering TEST-Mode
	TPU.BASE Base address
	TPU.SCAN Scannig TPU
	TPU.view View TPU channels
	TPU.Register.ALL Register operation mode
	TPU.Register.NEWSTEP New debugging mode
	TPU.Register.view Register display
	TPU.Register.Set Register modification
	TPU.Dump Memory display
	TPU.ListEntry Table display
	TPU.List View microcode
	TPU.Break Break TPU
	TPU.Go Start TPU
	TPU.SELect Select TPU for debugging
	TPU.Step Single step TPU
	TPU.RESet Disable TPU debugger

