LAUTERBACH A

Simulator for Intel® x86/x64

Simulator for Intel® x86/x64

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
TRACE32 Instruction Set SIMulators ... e r—~
Simulator for INtel® X86/X64cccceeeeeccerrrrrrmerrrsssmerrrssssmerressssmmerresssammeseesssmneeeasssmmnnneasssnmnnnens 1
TRACE32 Simulator LICENSEcviiiiiiciciemeccmrenrsrnssssssssssssssssmssssssssssssssssssssmmsssssssssessnssssssnnsnns 4
Quick Start of the SIMUIAtOr ... 6
Peripheral SImulation ... s 8
x86 Specific Implementations ... ——————— 9
Access Classes 9
Overview 9
Memory Model 20
Segmentation 21
Lo 10 o =T £ Lo T {5 T 23
£ O 23
EmMulation MOAEScooiiiiiiiiiiiiisinecccmmrn s iessssssssssssms s e s s s s s s s s s s smssmmss s s s s n s s nsssssssssnsnmmnsnnsnnssnnsns 24
SYStem.CONFIG Configure debugger according to target topology 24
SYStem.CPU CPU type 24
SYStem.LOCK Lock and tristate the debug port 24
SYStem.MemAccess Select run-time memory access method 25
SYStem.Mode Establish the communication with the simulator 25
SYStem Settings and ResStriCtions ... 27
SYStem.Option.Address32 Use 32 bit address display only 27
SYStem.Option.IMASKASM Disable interrupts while single stepping 27
SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 27
SYStem.Option.MACHINESPACES Address extension for guest OSes 28
SYStem.Option.MEMoryMODEL Define memory model 28
SYStem.Option.MMUSPACES Separate address spaces by space IDs 31
SYStem.Option.REL Relocation register 32
SYStem.Option.ZoneSPACES Enable symbol management for zones 32
CPU specific MMU COMMANASccccccmmmmmiiiiiiiissssssssssmessnssnesssssssssssssssmmsssssssssssssssssssnnsmnssnssnns 35
MMU.DUMP Page wise display of MMU translation table 35
MMU.List Compact display of MMU translation table 38
MMU.SCAN Load MMU table from CPU 40
©1989-2024 Lauterbach Simulator for Intel® x86/x64 2

CPU specific TrOnchip COmMmMAaNdsccccieecmriiniimmrmnnisss s insssss s s s ssssssss s ssssssssens 42
TrOnchip Onchip triggers 42

©1989-2024 Lauterbach Simulator for Intel® x86/x64 | 3

Simulator for Intel® x86/x64

Version 06-Jun-2024
A TRACE32 PowerView for Intel x86/x64 = =R
File Edit View Var Break Run CPU Misc Trace Probe Perf Cov Window Help
MK A d | »n |2 O sniE s @ 22|
= [=|[= =]
M Step | M Over JAsDiverge « Return ¢ Up » Go 1l Break | % Mode |62 T Find: metacc.cc
addr/T1ine |code label mnemonic comment |
1513 anzahl++; ~
NP :080496F9 [47 inc edi
; 46 inc esi
NP :080496FB |EEDS Jmp 0x8049602
}
}
1517 return anzahl;
NP :080496FD |29F5 mov eax, edi
1518 |}
NP :080496FF |SE pop esi
5 pop edi
mov esp,ebp
pop ebp
ret
nop
nop b
{E} B:Register.view EI@ o (===
CF _ RA 0B REX 2 _S| _Stack a | Is1eve() ~
PF P i oD RO 1F . er int) 1 = 6
AF 6 RDI 5) primz = 13
’F 2 o RS9 o)k =31
SF _ 0 R11] int) anzahl =5
TF _ 0 R13 o
IF _ 0 R15 o
DF _ 3FEC RSP 3FE4
oF _ 46 RIP 080496FA
FL O
NT _ 7FFFFFE1 DRO o
RF _ 0 DRL o
WM _ 0 DRZ o b W
< >
B::|
components trace Data Var List PERF 5YStem Step Go Break other pravious
NP:080496FA \\metacc\metacc\sieve+0x42 stopped MIX up

All general commands are described in the “PowerView Command Reference” (ide_ref.pdf) and
“General Commands Reference”.

TRACE32 Simulator License

[build 68859 - DVD 02/2016]
The extensive use of the TRACES32 Instruction Set Simulator requires a TRACE32 Simulator License.

For more information, see www.lauterbach.com/sim_license.html.

©1989-2024 Lauterbach Simulator for Intel® x86/x64 | 4

www.lauterbach.com/sim_license.html

©1989-2024 Lauterbach Simulator for Intel® x86/x64 | 5

Quick Start of the Simulator

To start the simulator, proceed as follows:

1. Select the device prompt for the Simulator and reset the system.

183 3

RESet

The device prompt B: : is normally already selected in the TRACE32 command line. If this is not the
case, enter B: : to set the correct device prompt. The RESet command is only necessary if you do
not start directly after booting TRACE32.

2. Specify the CPU specific settings.

File Edit Wiew Var Break Run||CPU |[|Misc Trace Pedf Cov Window Help

i

Change Frame r éy Bo:S¥Stem
I CPU Registers ’MDdE
FPU Registers @ Down
«# Peripherals MoDebug
Prepare
429 System Settings... ae
Attach
StandBy
Up (StandBy]
©up
In Target Reset
Reset CPU Registers reset
CPU

Cpu_name

SYStem.CPU <cpu_name>

The default values of all other options are set in such a way that it should be possible to work without
modification. Please consider that this is probably not the best configuration for your target.

©1989-2024 Lauterbach Simulator for Intel® x86/x64 | 6

3. Enter debug mode.

SYStem.Up

This command resets the CPU and enters debug mode. After this command is executed it is possible
to access memory and registers.

4. Load the program.

Data.LOAD.<file_format> <file> ; load program and symbols

See the Data.LOAD command reference for a list of supported file formats. If uncertain about the
required format, try Data.LOAD.auto.

A detailed description of the Data.LOAD command and all available options is given in the reference
guide.

5. Start-up example

A typical start sequence is shown below. This sequence can be written to a PRACTICE script file
(*.cmm, ASCII format) and executed with the command DO <file>.

B:: ; Select the ICD device prompt
WinCLEAR ; Clear all windows
SYStem.CPU <cpu_name> ; Select CPU type
SYStem.Up ; Reset the target and enter

; debug mode
Data.LOAD.<file_ format> <file> ; Load the application
Register.Set pc main ; Set the PC to function main
PER.view ; Show clearly arranged

; peripherals in window *)
List.Mix ; Open source code window *)
Register.view /SpotLight ; Open register window *)
Frame.view /Locals /Caller ; Open the stack frame with

; local variables *)
Var.Watch %Spotlight flags ast ; Open watch window for

; variables *)

*) These commands open windows on the screen. The window position can be specified with the
WinPOS command.

©1989-2024 Lauterbach Simulator for Intel® x86/x64 | 7

Peripheral Simulation

For more information, see “API for TRACE32 Instruction Set Simulator” (simulator_api.pdf).

©1989-2024 Lauterbach Simulator for Intel® x86/x64 | 8

x86 Specific Implementations

Access Classes

Overview
Access Class Description
C Generic
D Data
P Program
A Absolute
AD Absolute Data
AP Absolute Program
| Intermediate
ID Intermediate Data
IP Intermediate Program
L Linear
LD Linear Data
LP Linear Program
R Real Mode
RD Real Mode Data
RP Real Mode Program
ARD Absolute Real Mode Data
ARP Absolute Real Mode Program
LRD Linear Real Mode Data
LRP Linear Real Mode Program
N Protected Mode (32-bit)

©1989-2024 Lauterbach

Simulator for Intel® x86/x64

9

Access Class Description

ND Protected Mode Data (32-bit)

NP Protected Mode Program (32-bit)

AND Absolute Protected Mode Data (32-bit)
ANP Absolute Protected Mode Program (32-bit)
LND Linear Protected Mode Data (32-bit)

LRP Linear Protected Mode Program (32-bit)

X 64-bit Mode

XD 64-bit Mode Data

XP 64-bit Mode Program

AXD Absolute 64-bit Mode Data

AXP Absolute 64-bit Mode Program

LXD Linear 64-bit Mode Data

LXP Linear 64-bit Mode Program

0] Protected Mode (16-bit)

oD Protected Mode Data (16-bit)

OP Protected Mode Program (16-bit)

AOD Absolute Protected Mode Data (16-bit)
AOP Absolute Protected Mode Program (16-bit)
LOD Linear Protected Mode Data (16-bit)

LOP Linear Protected Mode Program (16-bit)
10 10 Ports

MSR MSR Registers

CID CPUID Instruction

VMCS VMCS Registers

IOSF IOSF Sideband

Q Real Big Mode (Real Mode supporting 32-bit addresses)
QD Real Big Mode Data

©1989-2024 Lauterbach

Simulator for Intel® x86/x64

10

Access Class Description

QP Real Big Mode Program

AQD Absolute Real Big Mode Data

AQP Absolute Real Big Mode Program
LaQb Linear Real Big Mode Data

LQP Linear Real Big Mode Program

E Run-time Memory Access

S System Management Mode (SMM)
SD SMM Data

SP SMM Program

SN SMM Protected Mode (32-bit)

SND SMM Protected Mode Data (32-bit)
SNP SMM Protected Mode Program (32-bit)
SX SMM 64-bit Mode

SXD SMM 64-bit Mode Data

SXP SMM 64-bit Mode Program

SO SMM Protected Mode (16-bit)

SOD SMM Protected Mode Data (16-bit)
SOP SMM Protected Mode Program (16-bit)
sQ SMM Real Big Mode (Real Mode supporting 32-bit addresses)
sQbD SMM Real Big Mode Data

sQP SMM Real Big Mode Program

AS Absolute SMM

ASD Absolute SMM Data

ASP Absolute SMM Program

LS Linear SMM

LSD Linear SMM Data

LSP Linear SMM Program

G VMX Guest Mode

©1989-2024 Lauterbach

Simulator for Intel® x86/x64

11

Access Class Description

H VMX Host Mode
CSS Current value of CS
DSS Current value of DS
SSS Current value of SS
ESS Current value of ES
FSS Current value of FS
GSS Current value of GS

D:, P:

The D: prefix refers to the DS segment register and the P: prefix to the CS segment register. Both D: and P:
memory classes access the same memory. It is not possible to split program and data memory. Real Mode
or Protected Mode (16, 32 or 64-bit) addressing is chosen dependent on the current processor mode.

Data.Set P:0x0--0x0ffff 0x0

Data.Set 0x0--0xO0ffff 0x0

Data.Set 0x100 0x0

Data.Assemble 0x100 nop

Data.Assemble 0x0--0x0fff nop

A:, AD:, AP:

7

fill program memory with zero
fill data memory with zero
set location DS:0x100 to O
assemble to location CS:0x100

fill program memory with nop
instruction

Absolute addressing. The address parameter specifies the absolute address thus disregarding
segmentation and paging. It is possible to use “A” as a prefix to most other memory classes.

Data.Set A:0x12000 0x33

Data.dump AD:0x12000

7

7

7

; write to absolute address 0x12000 in

program/data memory

displays absolute address 0x12000
from data memory

©1989-2024 Lauterbach

Simulator for Intel® x86/x64 | 12

I;, ID:, IP:

Intermediate addressing. This memory class is used in connection with virtualization. It corresponds to the
guest physical address, i.e., disregards segmentation and paging of the guest, but does not disregard
possible second level paging done by the host (use A: for that).

Data.Set I:0x12000 0x33 ; write to guest absolute address

; 0x12000 in program/data memory

Data.dump ID:0x12000 ; displays guest absolute address

; 0x12000 from data memory

L:, LD:, LP:

Linear addressing. The address parameter specifies the linear address thus disregarding segmentation but
not paging. It is possible to use “L” as a prefix to most other memory classes.

Data.Set L:0x12000 0x33 ; write to linear address 0x12000 in

; program/data memory

Data.dump LD:0x12000 ; displays absolute address 0x12000
; from data memory

R:, RD:, RP:

Real Mode addressing.

Data.Set R:0x1234:0x5678 ; write to Real Mode address 0x1234:0x5678

Data.Set R:0x100 ; write to Real Mode address DS:0x100

©1989-2024 Lauterbach Simulator for Intel® x86/x64 | 13

N:, ND:, NP:

Protected Mode (32-bit) addressing. (“N” is for Normal.)

Data.Set N:0x0£f0:0x5678 ; write to Protected Mode address 0x5678 of
; selector 0x0f0

Data.dump ND:0x12345678 ; display memory at Protected Mode address
; DS:0x12345678

Data.List NP:0x0C000000 ; disassemble memory in 32-bit mode at
; Protected Mode address CS:0x0C000000

X:, XD:, XP:

64-bit Mode addressing. (“X” is for eXtended.)

Data.dump XD:0x0000123456789ABC ;display memory at 64-bit Mode
;linear address 0x0000123456789ABC

0O:, OD:, OP:

Protected Mode (16-bit) addressing. (“O” is for Old.)

Data.List OP:0x4321 ; disassemble memory in 16-bit mode at
; Protected Mode address CS:0x4321

Q:, QD:, QP:

Big Real Mode addressing. Real Mode (16-bit opcodes), supporting 32-bit addresses.
See SYStem.Option.BIGREALmMode ON for details.

Data.Set ; write to 32-bit Big Real Mode address
Q:0x1234:0x5678ABCD 0x1234:0x5678ABCD
Data.Set Q:0x10008000 ; write to 32-bit Big Real Mode address

DS:0x10008000

©1989-2024 Lauterbach Simulator for Intel® x86/x64 | 14

10:

Access IO ports.

Data.Out I0:0xCF8 %$long OxF

MSR:

output 32-bit value 0xF at IO port
0xCF8

Accesses MSR registers. The address format is as follows:

Bits Meaning
23-0 MSR[23-0]
27-24 MSR[31-28]
31-28 Ignored

Data.dump msr:0x0

Data.dump msr:0x0C000080

display MSR registers starting with
MSR register 0

display MSR registers starting with
MSR register 0xC0000080

©1989-2024 Lauterbach

Simulator for Intel® x86/x64 |

15

CID:

Return CPUID values. The address format is as follows:

Bits Meaning
1-0 Return Register
(0=EAX, 1=EBX, 2=ECX, 3=EDX)
3-2 Ignored
14-4 EAX[10-0]
15 EAX[31]
29-16 ECX[13-0]
31-30 Ignored
Data .dump cid:0x0 ; display CPUID values starting with

; initial EAX value 0x0

Data .dump cid:0x8020 ; display CPUID values starting with
; initial EAX value 0x80000002

Data.In cid:0x20041 ; return EBX CPUID value with initial
; EAX value 0x4 and initial ECX wvalue
; 0x2
VMCS:

Access virtual-machine control data structures (VMCSs). The “address” to be used with this memory class
is the corresponding field encoding of an VMCS component.

Data.In VMCS: 0x6C00 ; display the host CR0O VMCS component

©1989-2024 Lauterbach Simulator for Intel® x86/x64 | 16

IOSF:

Access IOSF sideband.

The address format uses a “<segment>: <offset>" syntax, where the “segment” is 16 bits, and the “offset” 64

bits:

IOSF:<8-bit Opcode><8-bit PortiD>:<8-bit FID><4-bit BAR><4-bit Reserved><48-bit Address>

“Segment” part:

Bits Meaning
7-0 Port ID
15-8 Opcode
“Offset” part:

Bits Meaning
47-0 Address
51-48 Reserved
55-52 BAR
63-56 FID

Data.In IOSF:0x0608:3C /long

Data.Set IOSF:0x0608:3C %$long
Oxdeadbeef

Data.In
TIOSF:0x0608:0xFF701234567890A
B /long

Read IOSF sideband with opcode 0x06,
port ID 0x08 and address 0x3C.
(FID and BAR are both 0)

Write IOSF sideband with opcode 0x06
port ID 0x08 and address 0x3C.
(FID and BAR are both 0)

Read IOSF sideband with opcode 0x06,
port ID 0x08, FID OxFF, BAR 0x7 and
address 0x1234567890AB

I

©1989-2024 Lauterbach

Simulator for Intel® x86/x64 |

17

E:

Run-time memory access. This access class must be used for any kind of run-time memory access (be it
intrusive or non-intrusive). For that, “E” can be used as a prefix to every other access class.

Data.dump END:0x12345678 ; display memory at Protected Mode
; address DS:0x12345678 during run-time

S:, SD:, SP:, SN:, SND:, SNP:, SX:, SXD:, SXP:, SO:, SOD:, SOP:, SQ:, SQD:, SQP: SR:

The “S” prefix refers to System Management Mode. All these access classes behave like the corresponding
ones without the “S” only that they refer to SMM memory instead of normal memory.

Data.dump ASD:0x3£300000 ; display SMM memory at absolute
; address 0x3£300000

G:, GD:, GP:, GN:, GND:, GNP:, GX:, GXD:, GXP:, GO:, GOD:, GOP:, GQ:, GQD:, GQP:
GS:, GSD:, GSP:, GSN:, GSND:, GSNP:, GSX:, GSXD:, GSXP:, GSO:, GSOD:, GSOP:, GSQ:, GSQD:,
GSQP: GSR:

When the VMX mode of the target is enabled, TRACES32 indicates the affiliation of logical or linear
addresses with the VMX Guest mode by adding the prefix “G” to the access class.

Data .dump GD:0x2a000000 ; display data memory of address
; 0x2a000000 belonging to VMX Guest
; mode

H:, HD:, HP:, HN:, HND:, HNP:, HX:, HXD:, HXP:, HO:, HOD:, HOP:, HQ:, HQD:, HQP:
HS:, HSD:, HSP:, HSN:, HSND:, HSNP:, HSX:, HSXD:, HSXP:, HSO:, HSOD:, HSOP:, HSQ:, HSQD:,
HSQP: HSR:

When the VMX mode of the target is enabled, TRACES32 indicates the affiliation of logical or linear
addresses with the VMX Host mode by adding prefix “H” to the access class.

Data .dump HD:0x2a000000 ; display data memory of address
; 0x2a000000 belonging to VMX Host
; mode

©1989-2024 Lauterbach Simulator for Intel® x86/x64 | 18

Segment register aliases CSS:, DSS:, SSS:, ESS:, FSS:, GSS:

These are not real access classes but aliases which allow to modify the segment descriptor of an address. If
one of these six identifiers precedes an address, the value of segment register CS, DS, SS, ES, FS or GS

will be used as descriptor in the address.

These aliases are of use only if you want to work directly with segment based addressing in real or protected
mode. Note that SYStem.Option.MEMoryMODEL must be set to LARGE to support segmentation to its
fullest extent in protected mode.

Example: Let’s assume the processor is in protected mode and the segment register FS contains the value
0x18 which is a 32-bit data segment. We want to write to an address with offset 0x12000, using FS as

segment register.

Data.Set

Data.dump

FSR:0x12000 0x33

SSR:0x12000

; write 0x33 to address FSR:0x12000.

Effectively, this will use 0x18 as
segment descriptor.
(If we are in protected mode and FS
is a 32-bit data segment) you could
alternatively use
Data.Set ND:0x18:0x12000 0x33

~ FS contains 0x18

display memory at SSR:0x12000

NOTE:

To avoid confusion with the access classes ES: and GS:, all six segment
selector identifiers have been renamed from CS:, DS:, ES;, FS:, GS:, SS: to
CSS:, DSS:, ESS:, FSS:, GSS:, SSS: as of TRACE32 build 75425 - DVD

09/2016.

. Prefix ES: indicates an unspecific (hon-program and non-data) dual-port

memory accesses in System Management Mode.

. Prefix GS: indicates an unspecific system management memory access
in VMX Guest Mode.

©1989-2024 Lauterbach

Simulator for Intel® x86/x64 |

19

Memory Model

The Intel® x86 memory model describes the way the debugger considers the six segments CS (code
segment), DS (data segment), SS (stack segment), ES, FS and GS and the usage of the LDT (local
descriptor table) for the current debug session.

A further introduction into the concept of x86 memory models can be found in the Intel® software
developer’s manual (please refer to the chapter describing segments in protected mode memory
management).

TRACES2 supports a number of memory models when working with addresses and segments: LARGE,
FLAT, ProtectedFLAT, LDT and SingleLDT. Activating the space IDs with SYStem.Option.MMUSPACES
ON will override any other selected memory model. TRACE32 now behaves as if the memory model FLAT
is selected and additionally uses space IDs in the address to identify process-specific address spaces (see
SYStem.Option.MMUSPACES for more details).

Effect of the Memory Model on the Debugger Operation

In protected mode, the address translation of x86 processors support segment translation and paging (if
enabled). Segment translation cannot be disabled in hardware. If the TRACE32 address translation is
enabled (TRANSIation.ON, TRANSIation.TableWalk ON), the same translation steps are executed when
the debugger performs a memory access to protected mode addresses.

The values loaded into base, limit and attribute of the segment registers CS, DS, ES, FS, GS and SS
depend on the code being executed and how it makes use of the segments. Setup of the segment registers
is an essential step in loading executable code into memory. Choosing the appropriate TRACE32 memory
model adjusts the segment register handling on the debugger side to the segment register handling on the
software side.

For this purpose, TRACES2 offers six memory models. The memory model affects:
. The TRACE32 address format
. Whether or not segment information is used when the debugger accesses memory

. Whether a LDT descriptor is used to dynamically fetch code and data segments from the local
descriptor table LDT when the debugger accesses memory

. The way how the segment base and limit values are evaluated when an address is translated
from a protected mode address into a linear and/or physical address

J The way the segment attribute information such as code or data width (16/32/64 bit) is evaluated
when code or data memory is accessed

For a more detailed description of the memory models supported by TRACES32, see
SYStem.Option.MEMoryMODEL.

©1989-2024 Lauterbach Simulator for Intel® x86/x64 | 20

Selecting the Memory Model

After reset, the TRACE32 memory model LARGE is enabled by default. Use one of the following commands
to select a different TRACE32 memory model for the current debug session:

1. SYStem.Option.MEMoryMODEL
2. SYStem.Option.MMUSPACES

3. Data.LOAD - When loading an executable file, specify one of these command options FLAT,
ProtectedFLAT, SingleLDT, LDT, or LARGE to select the TRACE32 memory model you want to
apply to the executable.

The PRACTICE function SYStem.Option.MEMoryMODEL() returns the name of the currently enabled
memory model.

PRINT SYStem.Option.MEMoryMODEL () ;print the name of the memory model
;to the TRACE32 message line

Segmentation

TRACE32 allows to work with segments, both in real and in protected mode. If the debugger address
translation is enabled with TRANSIation.ON, real mode or protected mode addresses will be translated to
linear addresses. If paging is enabled on the target and the TRACES32 table walk mechanism is enabled with
TRANSIation.TableWalk ON, the linear addresses will finally be translated to physical addresses.

Segment translation by TRACE32 is only supported if SYStem.Option.MEMoryMODEL is set to one of
these settings: LARGE, ProtectedFLAT, LDT, SingleLDT. For a description of these option, see
SYStem.Option.MEMoryMODEL. The default option LARGE, selected after SYStem.Up, is suitable for
most debug scenarios where segment translation is used.

Protected mode addresses can be recognized by one of these access classes:
J X:, XD:, XP: (64-bit protected mode)
. N:, ND:, NP: (32-bit protected mode)
J O:, OD:, OP: (16-bit protected mode)

If no segment descriptor is given for such an address, the descriptor from the code segment register (CS)
will be augmented to program addresses, and the segment descriptor from the data segment register (DS)
will be augmented to data addresses. The command MMU.view can be used to view the current settings of
the six segment registers CS, DS, ES, FS, GS, and SS. The augmented segment descriptor is shown as
part of the address.

During segment translation of a protected mode address, TRACE32 will extract the segment descriptor from
the address and search for it in the six segment registers CS, DS, ES, FS, and GS. If found, the stored

values of the segment shadow register (base, limit and attribute) will be used for the linear translation of the
protected mode address. Else, a descriptor table walk will be performed through the global descriptor table

©1989-2024 Lauterbach Simulator for Intel® x86/x64 | 21

GDT, provided the register GDTB (global descriptor table base) points to a valid GDT in memory. If found,
the base, limit, and attribute from the GDT entry will be used for the translation. If the address’ segment
descriptor is not found in the GDT, or the GDT entry is not suitable for the translation of the given address
type, the protected mode address cannot be translated to a linear address by TRACES32.

It is possible to explicitly enforce one of the six segment registers CS, DS, ES, FS, GS or SS to be used for
the segment translation of an address. This can be accomplished by specifying the segment register instead
of a protected mode access class. Use one of the segment register identifiers CSS:, DSS:, ESS:, FSS;,
GSS: or SSS: therefore.

Example: The address in this Data.dump command will use the segment descriptor of segment register FS
instead of the default segment descriptor from segment register DS.

Data.dump FSS:0xa7000

NOTE: TRACES2 will not perform segment translation at if the processor is in 64-bit
mode (IA-32e mode). Further, no segment translation is performed for 64-bit
protected mode addresses (addresses with access class X:, XD:, XP:). If no
segment translation is performed, protected mode addresses are translated directly
to linear addresses, disregarding the segment descriptor of the address.

This mimics the behavior of the processor, which treats the segment base
registers as zero and performs no segment limit checks if the 1A-32e mode
(64-bit mode) is enabled.

©1989-2024 Lauterbach Simulator for Intel® x86/x64 | 22

Troubleshooting

FAQ

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach Simulator for Intel® x86/x64 | 23

https://support.lauterbach.com/kb

Emulation Modes

SYStem.CONFIG Configure debugger according to target topology

The SYStem.CONFIG commands have no effect on the simulator. They are only provided to allow the user
to run PRACTICE scripts written for the debugger within the simulator without modifications.

SYStem.CPU CPU type
Format: SYStem.CPU <mode>
<mode>: 18086 | 180186 | IB0186EA | 180186EB | 1I80186EC | AM186EM | AM186ES |
AM186ER | AM186ED | AM186CC

Selects the processor type.

SYStem.LOCK Lock and tristate the debug port

Format: SYStem.LOCK [ON | OFF]

The command has no effect for the simulator.

©1989-2024 Lauterbach Simulator for Intel® x86/x64 | 24

SYStem.MemAccess Select run-time memory access method

Format: SYStem.MemAccess Enable | StopAndGo | Denied
SYStem.ACCESS (deprecated)
Enable Memory access during program execution to target is enabled.

CPU (deprecated)

Denied Memory access during program execution to target is disabled.
StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.
For more information, see below.
SYStem.Mode Establish the communication with the simulator
Format: SYStem.Mode <mode>
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)
<mode>: Down
NoDebug
Go
Up

Default: Down.

Selects the target operating mode.

Down

NoDebug

Go

Up

The CPU is in reset. Debug mode is not active. Default state and state after fatal
errors.

The CPU is running. Debug mode is not active. Debug port is tristate. In this
mode the target should behave as if the debugger is not connected.

The CPU is running. Debug mode is active. After this command the CPU can be
stopped with the break command or if any break condition occurs.

The CPU is not in reset but halted. Debug mode is active. In this mode the CPU
can be started and stopped. This is the most typical way to activate debugging.

©1989-2024 Lauterbach

Simulator for Intel® x86/x64 | 25

If the mode Go is selected, this mode will be entered, but the control button in the SYStem.state window
jumps to the mode Up.

©1989-2024 Lauterbach Simulator for Intel® x86/x64 | 26

SYStem Settings and Restrictions

SYStem.Option.Address32 Use 32 bit address display only
Format: SYStem.Option.Address32 [ON | OFF]
Default: OFF.

This option only has an effect when in 64-bit mode. When the option is ON, all addresses are truncated to 32
bit. The high 32 bits of a 64-bit address are not shown when the address is displayed, and when an address

is entered the high 32 bits are ignored (thereby effectively being set to zero).

NOTE: The actual memory access mode is NOT affected by this option.
SYStem.Option.IMASKASM Disable interrupts while single stepping
Format: SYStem.Option.IMASKASM [ON | OFF]
Default: OFF.

If enabled, the interrupt enable flag of the EFLAGS register will be cleared during assembler single-step
operations. After the single step, the interrupt enable flag is restored to the value it had before the step.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
Format: SYStem.Option.IMASKHLL [ON | OFF]
Default: OFF.

If enabled, the interrupt enable flag of the EFLAGS register will be cleared during HLL single-step
operations. After the single step, the interrupt enable flag is restored to the value it had before the step.

©1989-2024 Lauterbach Simulator for Intel® x86/x64 | 27

SYStem.Option.MACHINESPACES Address extension for guest OSes

Format: SYStem.Option.MACHINESPACES [ON | OFF]

Default: OFF

Enables the TRACES32 support for debugging virtualized systems. Virtualized systems are systems running
under the control of a hypervisor.

After loading a Hypervisor Awareness, TRACE32 is able to access the context of each guest machine. Both
currently active and currently inactive guest machines can be debugged.

If SYStem.Option.MACHINESPACES is set to ON:

. Addresses are extended with an identifier called machine ID. The machine ID clearly specifies to
which host or guest machine the address belongs.

The host machine always uses machine ID 0. Guests have a machine ID larger than 0.
TRACES2 currently supports machine IDs up to 30.

J The debugger address translation (MMU and TRANSIation command groups) can be individually
configured for each virtual machine.

J Individual symbol sets can be loaded for each virtual machine.
SYStem.Option.MEMoryMODEL Define memory model
Format: SYStem.Option.MEMoryMODEL <model>
<model>: LARGE | FLAT | LDT | SingleLDT | ProtectedFLAT

Default: LARGE (Multi-Segment Model).

Selects the memory model TRACE32 uses for code and data accesses. The memory model describes how
the CS (code segment), DS (data segment), SS (stack segment), ES, FS and GS segment registers are
currently used by the processor.

The command SYStem.Option.MMUSPACES ON will override the setting of
SYStem.Option.MEMoryMODEL with the memory model MMUSPACES.

©1989-2024 Lauterbach Simulator for Intel® x86/x64 | 28

The selection of the memory model affects the following areas:

J The way TRACE32 augments program or data addresses with information from the segment
descriptors. Information augmented is the segment selector, offset, limit and access width.

o The TRACE32 address format

. The way TRACE32 handles segments when the debugger address translation is enabled
(TRANSIation.ON).
LARGE

This is the default memory model. It is enabled after reset. This memory model is used if the application
makes use of the six segment registers (CS, DS, ES, FS, GS, SS) and the global descriptor table (GDT)
and/or the local descriptor table (LDT).

TRACE32 supports GDT and LDT descriptor table walks in this memory model. If a TRACE32 address
contains a segment descriptor and the specified segment descriptor is not present in any of the six
segments CS, DS, ES, FS, GS or SS, TRACE32 will perform a descriptor table walk through the GDT or the
LDT to extract the descriptor information and apply it to the address.

Access classes of program and data addresses will be augmented with information from the CS and DS
segments.

Segment translation is used in TRACES32 address translation. See also Segmentation.

TRACE32 addresses display the segment selector to the left of the address offset. The segment selector
indicates the GDT or LDT segment descriptor which is used for the address.

Example address: NP:0x0018:0x0003F000

LDT

This memory model should be selected if a LDT is present and the debugger uses multiple entries from it.
TRACE32 addresses contain a LDTR segment selector specifying the LDT entry which applies to an
address.

Access classes of program and data addresses will be augmented with the information specified by the
LDTR segment selector.

Segment translation is used in TRACES32 address translation.

TRACE32 addresses display three numeric elements:
. The 16-bit LDTR segment selector used pointing to the LDT for the address

J The 16-bit CS (for program addresses) or DS (for data addresses) segment selector, extracted
from the LDT

o The 16-bit address offset

Example address: NP:0x0004:0x0018:0x8000

©1989-2024 Lauterbach Simulator for Intel® x86/x64 | 29

SingleLDT

This memory model should be selected if a LDT is present but the debugger works with only one single LDT
entry. The LDT is not used to differentiate addresses.

Access classes of program and data addresses will be augmented with information from the CS (for
program addresses) or DS (for data addresses) segment.

Segment translation is used in TRACE32 address translation.
TRACES32 addresses display the segment selector to the left of the address offset.
Example address: NP:0x001C:0x0003F000

ProtectedFLAT

Use this memory model to only apply segment translation and limit checks for the segments CS and DS.
The segment register contents are kept constant. Consequently, TRACES32 addresses contain no segment
descriptor because no descriptor table walk is used to reload the segment registers.

Access classes of addresses are not augmented with segment information.
TRACE32 addresses display only the access class and the address offset.
Example address: NP:0x0003F000

Segment translation is used in TRACE32 address translation for limit checking. Accesses to program
addresses use the CS segment, accesses to data addresses use the DS segment.

FLAT

This memory model is used if segmentation plays no role for an application and memory management
makes use of paging only.

Segments are ignored, no segment translation is performed. Accesses to program and data addresses are
treated the same.

Example address: NP:0x0003F000

MMUSPACES

This memory model can only be enabled with the command SYStem.Option.MMUSPACES ON.

The memory model MMUSPACES is used if TRACES32 works with an OS Awareness and memory space
identifiers (space IDs). Space IDs are used in addresses to identify process-specific address spaces.

Segments are ignored, no segment translation is performed.
TRACER32 addresses display a 16-bit memory space identifier to the left of the address offset.

Example address: NP:0x29A:0x0003F000

©1989-2024 Lauterbach Simulator for Intel® x86/x64 | 30

SYStem.Option.MMUSPACES Separate address spaces by space IDs

Format: SYStem.Option.MMUSPACES [ON | OFF]
SYStem.Option.MMUspaces [ON | OFF] (deprecated)
SYStem.Option.MMU [ON | OFF] (deprecated)

Default: OFF.
Enables the use of space IDs for logical addresses to support multiple address spaces.

For an explanation of the TRACES32 concept of address spaces (zone spaces, MMU spaces, and machine
spaces), see “TRACE32 Concepts” (trace32_concepts.pdf).

NOTE: SYStem.Option.MMUSPACES should not be set to ON if only one translation
table is used on the target.

If a debug session requires space IDs, you must observe the following
sequence of steps:

1. Activate SYStem.Option.MMUSPACES.
2. Load the symbols with Data.LOAD.

Otherwise, the internal symbol database of TRACE32 may become
inconsistent.

Examples:

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x012A:
Data.dump D:0x012A:0xC00208A

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x0203:
Data.dump D:0x0203:0xC00208A

NOTE: The command SYStem.Option.MMUSPACES ON overrides the command
SYStem.Option.MEMoryMODEL.

©1989-2024 Lauterbach Simulator for Intel® x86/x64 | 31

SYStem.Option.REL Relocation register

[build 130480 - DVD 09/2021]

Format: SYStem.Option.REL <value>

REL option must be set to the same value the user program write to the REL register.

The adjusted I/O base address can be read back with the functions IOBASE() and IOBASE.ADDRESS).
They return the offset or the complete address (offset and access mode) for the I/O area.

SYStem.Option.ZoneSPACES Enable symbol management for zones
[Examples]
Format: SYStem.Option.ZoneSPACES [ON | OFF]
Default: OFF.

The SYStem.Option.ZoneSPACES command must be set to ON if separate symbol sets are used for the
following CPU operation modes:

J VMX host mode (access class H: and related access classes)

. VMX guest mode (access class G: and related access classes)

J System management mode (access class S: and related access classes)
J Normal (non-system management mode)

Within TRACE32, these CPU operation modes are referred to as zones.

NOTE: For an explanation of the TRACES32 concept of address spaces (zone spaces,
MMU spaces, and machine spaces), see “TRACE32 Concepts”
(trace32_concepts.pdf).

©1989-2024 Lauterbach Simulator for Intel® x86/x64 | 32

In each CPU operation mode (zone), the CPU uses separate MMU translation tables for memory accesses
and separate register sets. Consequently, in each zone, different code and data can be visible on the same
logical address.

OFF TRACE32 does not separate symbols by access class. Loading two or more
symbol sets with overlapping address ranges will result in unpredictable
behavior. Loaded symbols are independent of the CPU mode.

ON Separate symbol sets can be loaded for each zone, even with
overlapping address ranges. Loaded symbols are specific to one of the
CPU zones.

SYStem.Option.ZoneSPACES ON

SYStem.Option.ZoneSPACES is set to ON for two typical use cases:

J Debugging of virtualized systems. Typically separate symbol sets are used for the VMX host
mode and the VMX guest mode. The symbol sets are loaded to the access classes H: (host
mode) and G: (guest mode).

J Debugging of system management mode (SMM). The CPU typically enters and leaves the SMM,
so loading separate symbol sets for the SMM and the normal mode are helpful. Symbols valid for
the SMM zone use SMM access classes. SMM access classes are preceded by the letter S
(such as SND:, SNP:, SXD:, SXP:). Symbols valid for the normal mode zone use access classes
which are not preceded by the letter S (such as ND:, NP:, XD:, XP:).

If SYStem.Option.ZoneSPACES is ON, TRACES32 enforces any memory address specified in a TRACE32
command to have an access class which clearly indicates to which zone the memory address belongs.

If an address specified in a command uses an anonymous access class such as D:, P: or C:, the access
class of the current PC context is used to complete the addresses’ access class.

If a symbol is referenced by name, the associated access class of its zone will be used automatically, so that
the memory access is done within the correct CPU mode context. As a result, the symbol’s logical address
will be translated to the physical address with the correct MMU translation table.

©1989-2024 Lauterbach Simulator for Intel® x86/x64 | 33

Examples

Example 1: Use SYStem.Option.ZoneSPACES for VMX host and guest debugging.

SYStem.Option.ZoneSPACES ON

; 1. Load the Xen hypervisor symbols for the VMX host mode
; (access classes H:, HP:and HD: are used for the symbols):
Data.LOAD.ELF xen-syms H:0x0 /NoCODE

; 2. Load the vmlinux symbols for the VMX guest mode
; (access classes G:, GP: and GD: are used for the symbols):
Data.LOAD.ELF vmlinux G:0x0 /NoCODE

; 3. Load the sieve symbols without specification of a target access

; class:

Data.LOAD.ELF sieve /NoCODE

; Assuming that the current CPU mode is VMX host mode in this example,
; the symbols of sieve will be assigned the access classes H:, HP:

; and HD: during loading.

Example 2: Use SYStem.Option.ZoneSPACES for system management mode (SMM) debugging.

SYStem.Option.ZoneSPACES ON

; 1. Load the symbols for non-SMM (normal) mode
; (32 bit protected mode access classes N:, NP: and ND:) :
Data.LOAD.ELF bootloader N:0x0 /NoCODE

; 2. Load the symbols for the SMM mode
; (32 bit protected mode access classes SN:, SNP: and SND:) :
Data.LOAD.ELF smmdriver SN:0x0 /NoCODE

©1989-2024 Lauterbach Simulator for Intel® x86/x64 | 34

CPU specific MMU Commands

MMU.DUMP Page wise display of MMU translation table
Format: MMU.DUMP <table> [<range> | <address> | <range> <root> |
<address> <root>] [/<option>]

MMU.<table>.dump (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

<option>: MACHINE <machine_magic> | <machine_id>| <machine_name>
Fulltranslation

Displays the contents of the CPU specific MMU translation table.

o If called without parameters, the complete table will be displayed.

. If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root>

The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display
a page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process or a specific
machine if a space ID and/or a machine ID is given.

PageTable

Displays the entries of an MMU translation table.

. if <range> or <address> have a space ID and/or machine ID: dis-
plays the translation table of the specified process and/or machine
. else, this command displays the table the CPU currently uses for

MMU translation.

KernelPageTable

Displays the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and displays its table entries.

©1989-2024 Lauterbach

Simulator for Intel® x86/x64 | 35

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Displays the MMU translation table entries of the given process. Specify
one of the TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and displays its table entries.

o For information about the first three parameters, see “What to
know about the Task Parameters™ (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.

MACHINE
<machine_magic> |
<machine_id> |
<machine_name>

The following options are only available if
SYStem.Option.MACHINESPACES is set to ON.

Dumps a page table of a virtual machine. The MACHINE option applies
to PageTable and KernelPageTable and some <cpu_specific_tables>.

The parameters <machine_magic>, <machine_id> and
<machine_name> are displayed in the TASK.List. MACHINES window.

Fulltranslation

For page tables of guest machines both the intermediate address and the
physical address is displayed in the MMU.DUMP window.

The physical address is derived from a table walk using the guest’s
intermediate page table.

©1989-2024 Lauterbach

Simulator for Intel® x86/x64 | 36

CPU specific Tables in MMU.DUMP <table>

EPT Displays the contents of the Extended Page Table (EPT).
The EPT is used for VMX guest mode translations.

GDT Displays the contents of the Global Descriptor Table.
MMU.GDT (deprecated)

IDT Displays the contents of the Interrupt Descriptor Table.
MMU.IDT (deprecated)

LDT Displays the contents of the Local Descriptor Table.
MMU.LDT (deprecated)

IntermedPageTable Displays the Intermediate Page Table (IPT). The IPT is the translation
table used by the TRACES32 debugger address translation to translate
intermediate addresses to physical addresses when
SYStem.Option.MACHINESPACES ON is set.

If the CPU’s VMX mode is enabled, the IPT is identical to the EPT.
When the VMX mode is not enabled or not available on a CPU, an

IPT can be specified using the command
MMU.FORMAT <format> <ipt_base_address> [Intermediate

©1989-2024 Lauterbach Simulator for Intel® x86/x64 | 37

MMU.List Compact display of MMU translation table
Format: MMU.List <table> [<range> | <address> | <range> <root> | <address> <root>]
[/<option>]

MMU.<table>.List (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

<option>: MACHINE <machine_magic> | <machine_id>| <machine_name>
Fulltranslation

Lists the address translation of the CPU-specific MMU table.
In contrast to MMU.DUMP, multiple consecutive page table entries with identical page attributes are listed as
a single line, showing the total mapped address range.

J If called without address or range parameters, the complete table will be displayed.

. If called without a table specifier, this command shows the debugger-internal translation table.
See TRANSIation.List.

. If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root>

The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display
a page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process or a specific
machine if a space ID and/or a machine ID is given.

PageTable

Lists the entries of an MMU translation table.

. if <range> or <address> have a space ID and/or machine ID: list
the translation table of the specified process and/or machine

. else, this command lists the table the CPU currently uses for MMU
translation.

KernelPageTable

Lists the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and lists its address translation.

©1989-2024 Lauterbach

Simulator for Intel® x86/x64 | 38

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Lists the MMU translation of the given process. Specify one of the
TaskPageTable arguments to choose the process you want.

In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and lists its address translation.

o For information about the first three parameters, see “What to
know about the Task Parameters™ (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.

<option>

For description of the options, see MMU.DUMP.

CPU specific Tables in MMU.List <table>

EPT

Displays the contents of the Extended Page Table (EPT).
The EPT is used for VMX guest mode translations.

IntermedPageTable

Displays the Intermediate Page Table (IPT). The IPT is the translation table
used by the TRACES32 debugger address translation to translate
intermediate addresses to physical addresses when
SYStem.Option.MACHINESPACES is set to ON.

If the CPU’s VMX mode is enabled, the IPT is identical to the EPT.
When the VMX mode is not enabled or not available on a CPU, an IPT

can be specified using the command
MMU.FORMAT <ipt_base_address> /Intermediate

©1989-2024 Lauterbach

Simulator for Intel® x86/x64 |

39

MMU.SCAN Load MMU table from CPU

Format: MMU.SCAN <table> [<range> <address>] [[<option>]
MMU.<table>.SCAN (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

<option>: MACHINE <machine_magic> | <machine_id>| <machine_name>
Fulltranslation

Loads the CPU-specific MMU translation table from the CPU to the debugger-internal static translation table.

. If called without parameters, the complete page table will be loaded. The list of static address
translations can be viewed with TRANSIation.List.

. If the command is called with either an address range or an explicit address, page table entries
will only be loaded if their logical address matches with the given parameter.

Use this command to make the translation information available for the debugger even when the program
execution is running and the debugger has no access to the page tables and TLBs. This is required for the
real-time memory access. Use the command TRANSIation.ON to enable the debugger-internal MMU table.

PageTable

Loads the entries of an MMU translation table and copies the address
translation into the debugger-internal static translation table.

. if <range> or <address> have a space ID and/or machine ID: loads
the translation table of the specified process and/or machine
o else, this command loads the table the CPU currently uses for

MMU translation.

KernelPageTable

Loads the MMU translation table of the kernel.

If specified with the MMU.FORMAT command, this command reads the
table of the kernel and copies its address translation into the debugger-
internal static translation table.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Loads the MMU address translation of the given process. Specify one of
the TaskPageTable arguments to choose the process you want.

In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and copies its address translation into the debugger-internal static
translation table.

. For information about the first three parameters, see “What to
know about the Task Parameters” (general_ref_t.pdf).
. See also the appropriate OS Awareness Manual.
©1989-2024 Lauterbach Simulator for Intel® x86/x64 | 40

ALL

Loads all known MMU address translations.

This command reads the OS kernel MMU table and the MMU tables of all
processes and copies the complete address translation into the
debugger-internal static translation table.

See also the appropriate OS Awareness Manual.

<option>

For description of the options, see MMU.DUMP.

CPU specific Tables in MMU.SCAN <table>

EPT Loads the translation entries of the Extended Page Table to the
debugger-internal static translation table.

GDT Loads the Global Descriptor Table from the CPU to the debugger-internal
static translation table.

GDTLDT Loads the Global and Local Descriptor Table from the CPU to the
debugger-internal static translation table.

LDT Loads the Local Descriptor Table from the CPU to the debugger-internal

static translation table.

IntermedPageTable

Loads the Intermediate Page Table (IPT) into the debugger-internal static
translation table. The IPT is the translation table used by the TRACE32
debugger address translation to translate intermediate addresses to
physical addresses when SYStem.Option.MACHINESPACES ON is set.

If the CPU’s VMX mode is enabled, the IPT is identical to the EPT.
When the VMX mode is not enabled or not available on a CPU, an IPT

can be specified using command
MMU.FORMAT <ipt_base_address> [Intermediate

©1989-2024 Lauterbach

Simulator for Intel® x86/x64 |

41

CPU specific TrOnchip Commands

TrOnchip Onchip triggers

This command group has no effect on the TRACES32 Instruction Set Simulator.

©1989-2024 Lauterbach Simulator for Intel® x86/x64 | 42

	Simulator for Intel® x86/x64
	TRACE32 Simulator License
	Quick Start of the Simulator
	Peripheral Simulation
	x86 Specific Implementations
	Access Classes
	Overview

	Memory Model
	Segmentation

	Troubleshooting
	FAQ
	Emulation Modes
	SYStem.CONFIG Configure debugger according to target topology
	SYStem.CPU CPU type
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the simulator

	SYStem Settings and Restrictions
	SYStem.Option.Address32 Use 32 bit address display only
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.MACHINESPACES Address extension for guest OSes
	SYStem.Option.MEMoryMODEL Define memory model
	SYStem.Option.MMUSPACES Separate address spaces by space IDs
	SYStem.Option.REL Relocation register
	SYStem.Option.ZoneSPACES Enable symbol management for zones

	CPU specific MMU Commands
	MMU.DUMP Page wise display of MMU translation table
	MMU.List Compact display of MMU translation table
	MMU.SCAN Load MMU table from CPU

	CPU specific TrOnchip Commands
	TrOnchip Onchip triggers

