LAUTERBACH A

OS Awareness Manual Zephyr

OS Awareness Manual Zephyr

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
OS AWareness MaANUAISccciicecrriiiissiriinissss s rssssss s s s ssss e s eassam s s e e s s amn e s enasame s e e ansammn e nnnsan r—~
OS Awareness Manual ZEPRYT ... s s s e 1
L 1= (o 4

O oY = 4
Terminology 5
Brief Overview of Documents for New Users 5
Supported Versions 6
ConfiguIration ... e 6
Quick Configuration Guide 7
Hooks & Internals in Zephyr 7
== LT == 9
Display of Kernel Resources 9
Task Stack Coverage 10
Task-Related Breakpoints 11
Dynamic Task Performance Measurement 12
Task Runtime Statistics 12
Function Runtime Statistics 13
Zephyr specific Menu 14
Zephyr Commands fOr V1.0 ... s s s ssmms s s sams s s s ssmms s s s smmens 15
TASK.Context Display contexts 15
TASK.Event Display microkernel events 15
TASK.Fiber Display fibers 16
TASK.FIFO Display microkernel FIFOs 16
TASK.MailBoX Display microkernel mailboxes 17
TASK.Map Display microkernel maps 17
TASK.MuTeX Display microkernel mutexes 18
TASK.NanoFifo Display nanokernel FIFOs 18
TASK.NanoLifo Display nanokernel LIFOs 19
TASK.NanoSem Display nanokernel semaphores 19
TASK.NanoSTacK Display nanokernel stacks 20
TASK.PIPE Display microkernel pipes 21
TASK.Pool Display microkernel pools 21
©1989-2024 Lauterbach OS Awareness Manual Zephyr 2

TASK.Semaphore Display microkernel semaphores 22
TASK.Task Display tasks 22
TASK.TIMer Display microkernel timers 23
Zephyr Commands fOr V1.7 ... ss s s e s s nnmn e 24
TASK.ALERT Display alerts 24
TASK.MailBOX Display mailboxes 24
TASK.MEMSLAB Display memslabs 25
TASK.MSGQ Display msggs 25
TASK.MUTEX Display mutexes 25
TASK.SEMaphore Display semaphores 26
TASK.THREAD Display threads 26
TASK.TIMER Display timers 27
TASK.PIPE Display pipes 27
TASK.QUEUE Display queues 27
TASK.ZSTACK Display zstacks 28
Zephyr PRACTICE FUNCLIONScoiiiiiiiiiiiiemnsinseess s snsssss s sssss s s ssss s s snsmmss s s sssms s s snsssnmnns 29
TASK.CONFIG() OS Awareness configuration information 29
©1989-2024 Lauterbach OS Awareness Manual Zephyr | 3

OS Awareness Manual Zephyr

Version 06-Jun-2024

History

28-Aug-18 The title of the manual was changed from “RTOS Debugger for <x>" to “OS Awareness
Manual <x>”.

Overview

A TRACEZ2 e =]

File Edit View Var Break Run CPU Misc Trace Pef Cov MSRCPUID Viper Window Help

M |deeernFE e all2umscs @ 20

-
o BiTASK.Context [= (@][=] | o B:TAKTask =0 E=H
name prio [type |state fTags | ag1 name id prio | state |
philTasks | -1. [task preemptible n philTask a. 5. |deTayed -
philTask4 . [task preemptible philTasko 1. 6. |delayed
philTask3 . [task preemptible philTaskl 2. 6. |delayed
philTask2 . [task preemptible philTask2 3. 6. |delayed
philTaskl . [task preemptible philTask3 4. 6. |delayed
phiiTasko | -1. [task preemptible philTask4 5. 6. |delayed
HOSTIODRV | -1. [task preemptible philTasks 6. 6. |resource
philTask -1. |[task preemptible HOSTIODRV 7. 1. |receive
minik 0. [fiber essential . -
* |main -1. |task running preemptible essential i 3
mn] Q%B::TASK.Resource I=ERIENEE
= agic name [1d level [count [confl [owner waiting |
B B) —— | [FFFCAFa0 0. 1. i5. philTask0 |philTasks n
8 BuTASK Fiber | '= 0 errcarse 1. 1. |13. 8. |philTasko
agic name prio |state fTags FFFCAF73 2. 1. 13. 4. ph'[]TaskZ
FFFCEOOC |minik [0.] [essential FFFCAF94 3. 1. 20. 7. |philTask2
hano task: FFFCAFED 4. 1. 20. 11. ph'l_]Task4
FFFCA148* [main | -1. [running |preemptible essent| |[FFFCAFCC 5.0 1. | 23 4. |philTask4
FFFCAFES G. 0. 0. 0.
P — I - < m = 3
——
a BrTASK.STacK.view = = |l] &% B:TASK.TIMer [o =] =]
name | low high Towest spare max (0 10 20 30 1d expiration [action |
philTasks [FFFO1510 FFFD24FC FFFD2230 00000020 17% 2. 0. ~
philTask4 |FFFCD138 FFFCE124 FFFCDESS 0Q0000DZ0 17% |e— 3. | 10. WAKEUP
philTask3 |FFFCC108 FFFCDOF4 FFFCCEZS Q0000020 17% |e— 4. 4. WAKEUP
philTask2 |FFFD2518 FFFD3504 FFFD3238 00000020 17% |e— 5. 1. WAKEUP
philTaskl |FFFCE470 FFFCF45C FFFCF160 Q0000CFD 15% |— 6. 4. WAKEUP L
philTask0 |FFFCF470 FFFDO45C FFFDO190 Q0000020 17% |e— 7. | -1. LOCK_REQ |~
HOSTIODRV ([FFFD3518 FFFD3D04 FFFD3AA4 Q000058C 29% |e— 8. 3. WAKEUP
philTask [FFFDO4EQ FFFD149C FFFD1250 OQO0000DAD 14% |e— 9. |9694. WAKEUP
minik FFF_C_BOZO FFRCCOOC FFFCEDFC OOOOODD(_ 125 | m— -
] . b
E::TASK.|
[context | [Fber | [ManoSem || NanoFifo | [Nanolifo | [NanoSTack| [Task |[Ffo | [MaiBoX | [Semaphore| [other | [previous
NP:FFFC012A \\Nodel\Global\nanoCpuldle+0x2 main 0 isystem ready MIX |UP

The OS Awareness for Zephyr contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.

©1989-2024 Lauterbach OS Awareness Manual Zephyr | 4

Terminology

Zephyr v1.0 uses the terms “fibers” and “tasks”. If not otherwise specified, the TRACE32 term “task”
corresponds to Zephyr fibers and tasks.

Zephyr v1.7 onwards uses the term “threads”. If not otherwise specified, the TRACE32 term “task”
corresponds to Zephyr threads.

Brief Overview of Documents for New Users

Architecture-independent information:

J “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

J “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

J Linux Debugging Reference Card (support.lauterbach.com/downloads/reference-cards)

©1989-2024 Lauterbach OS Awareness Manual Zephyr |

5

https://www.lauterbach.com/referencecards.html

Supported Versions

Currently Zephyr is supported for the following versions:
. Zephyr 1.0 on ARM and x86.

. Zephyr 1.7 on ARM and x86.
Special configuration options must be set to the kernel - see Hooks & Internals.

J Zephyr 1.14 on ARM and x86
. Zephyr 2.1 to 2.5 on ARM, RISC-V and x86

. Zephyr 2.6 to 2.7 on ARM, RISC-V and x86.
Object tables other than threads are not supported, because the OS lacks the information for
this.

. Zephyr 2.8 onwards on ARM, RISC-V and x86.
Special configuration options must be set to the kernel - see Hooks & Internals.

. Zephyr 3.x on ARC, ARM, RISC-V and x86.
Special configuration options must be set to the kernel - see Hooks & Internals.

Configuration

The TASK.CONFIG command loads an extension definition file called “zephyr.t32” (directory
“~~/demo/<arch>/kernel/zephyr/<version>"). It contains all necessary extensions.

Automatic configuration tries to locate the Zephyr internals automatically. For this purpose all symbol tables
must be loaded and accessible at any time the OS Awareness is used. Some Zephyr versions need special
settings to allow automatic detection of object lists. Please see “Hooks & Internals”.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

For system resource display, you can do an automatic configuration of the OS Awareness. For this purpose
it is necessary that all system internal symbols are loaded and accessible at any time, the OS Awareness is
used. Each of the TASK.CONFIG arguments can be substituted by '0', which means that this argument will
be searched and configured automatically. For a fully automatic configuration omit all arguments:

Format: TASK.CONFIG zephyr

See also “Hooks & Internals” for details on the used symbols and how to load object names.

©1989-2024 Lauterbach OS Awareness Manual Zephyr | 6

Quick Configuration Guide

To get a quick access to the features of the OS Awareness for Zephyr with your application, follow the
following roadmap:

1. Copy the files zephyr. t32 and zephyr .men to your project directory
(from TRACES32 directory “~~/demo/<arch>/kernel/zephyr/<version>")

2. Start the TRACES32 Debugger.
3. Load your application as normal.

4. Execute the command TASK.CONFIG zephyr.t32
(See “Configuration”).

5. Execute the command MENU . ReProgram zephyr .men
(See “Zephyr Specific Menu”).

6. Start your application.
Now you can access the Zephyr extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapter.

Hooks & Internals in Zephyr

No hooks are used in the kernel.

For retrieving the kernel data structures, the OS Awareness uses the global kernel symbols and structure
definitions. Ensure that access to those structures is possible every time when features of the OS
Awareness are used. The Zephyr kernel must be compiled with debug information.

Zephyr v1.7:
To be able to support all features mentioned herein, the kernel must be configured with the following options:

CONFIG_THREAD_MONITOR=y
CONFIG_THREAD_STACK_INFO=y
CONFIG_OBJECT_TRACING=y

Zephyr v2.8:
To be able to support all features mentioned herein, the kernel must be configured with the following options:

CONFIG_THREAD_MONITOR=y
CONFIG_THREAD_STACK_INFO=y
CONFIG_INIT_STACKS=y
CONFIG_OBJECT_TRACING=y
CONFIG_TRACING_OBJECT_TRACKING=y

©1989-2024 Lauterbach OS Awareness Manual Zephyr | 7

Zephyr v3.x:
To be able to support all features mentioned herein, the kernel must be configured with the following options:

CONFIG_THREAD_MONITOR=y
CONFIG_THREAD_STACK_INFO=y
CONFIG_INIT_STACKS=y
CONFIG_TRACING=y
CONFIG_TRACING_OBJECT_ TRACKING=y
CONFIG_TRACING_SYSCALL=y
CONFIG_TRACING_THREAD=y
CONFIG_TRACING_WORK=y
CONFIG_TRACING_ISR=y
CONFIG_TRACING_SEMAPHORE=y
CONFIG_TRACING_MUTEX=y
CONFIG_TRACING_CONDVAR=y
CONFIG_TRACING_QUEUE=y
CONFIG_TRACING_FIFO=y
CONFIG_TRACING_LIFO=y
CONFIG_TRACING_STACK=y
CONFIG_TRACING_MESSAGE_QUEUE=y
CONFIG_TRACING_MAILBOX=y
CONFIG_TRACING_PIPE=y
CONFIG_TRACING_HEAP=y
CONFIG_TRACING_MEMORY_SLAB=y
CONFIG_TRACING_TIMER=y
CONFIG_TRACING_EVENT=y

©1989-2024 Lauterbach OS Awareness Manual Zephyr | 8

Features

The OS Awareness for Zephyr supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources.

documented.

NOTE: The display command listed here apply only for Zephyr 1.0.
Zephyr 1.7 uses different objects and commands which are not yet

In Zephyr 1.0, information on the following components can be displayed:

TASK.Context
TASK.Event
TASK.Fiber
TASK.FIFO
TASK.MailBoX
TASK.Map
TASK.NanoFifo
TASK.NanoLifo
TASK.NanoSem
TASK.NanoSTacK
TASK.PIPE
TASK.Pool
TASK.Semaphore
TASK.Task
TASK.TIMer

Contexts

Microkernel Events
Nanokernel Fibers
Microkernel Fifos
Microkernel Mailboxes
Microkernel Memory Maps
Nanokernel Fifos
Nanokernel Lifos
Nanokernel Semaphores
Nanokernel Stacks
Microkernel Pipes
Microkernel Memory Pools
Microkernel Semaphores
Microkernel Tasks
Microkernel Timers

For a description of the commands, refer to chapter “Zephyr Commands v1.0".

In Zephyr 1.7 onwards, information on the following components can be displayed:

TASK.ALERT
TASK.MailBOX
TASK.MEMSLAB
TASK.MSGQ
TASK.MUTEX

Alerts

Mailboxes
Memory Slabs
Message Queues
Mutexes

©1989-2024 Lauterbach

OS Awareness Manual Zephyr

9

TASK.SEMaphore Semaphores
TASK.THREAD Threads
TASK.TIMER Timers
TASK.PIPE Pipes
TASK.QUEUE Queues
TASK.ZSTACK Zephyr Stacks

For a description of the commands, refer to chapter “Zephyr Commands v1.7”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

©1989-2024 Lauterbach OS Awareness Manual Zephyr | 10

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [I<option>] [TASK <task> Set task-related breakpoint.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

J For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextiD ON Enables the comparison to the whole Context ID register.
Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK . List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

©1989-2024 Lauterbach OS Awareness Manual Zephyr | 11

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the

PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide

P” (general_ref_p.pdf).

Task Runtime Statistics

NOTE:

This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in

a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault
Trace.STATistic.TASK
Trace.Chart.TASK
Trace.PROfileSTATistic.TASK

Trace.PROfileChart.TASK

Trace.FindAll Address TASK.CONFIG(magic)

Trace.FindAll CYcle owner OR CYcle context

Display trace buffer and task switches
Display task runtime statistic evaluation
Display task runtime timechart

Display task runtime within fixed time intervals
statistically

Display task runtime within fixed time intervals as
colored graph

Display all data access records to the “magic”
location

Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as

“(unknown)”.

©1989-2024 Lauterbach

OS Awareness Manual Zephyr | 12

Function Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting Display function nesting
Trace.STATistic.Func Display function runtime statistic
Trace.STATistic.TREE Display functions as call tree
Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis
Trace.Chart.Func Display function timechart
Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

©1989-2024 Lauterbach OS Awareness Manual Zephyr | 13

Zephyr specific Menu

The menu file “zephyr.men” contains a menu with Zephyr specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called Zephyr.
. The Display menu items launch the kernel resource display windows.

J The Stack Coverage submenu starts and resets the Zephyr specific stack coverage and provides
an easy way to add or remove tasks from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

J The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only task switches (if any) or task switches together with the default display.

o The Perf menu contains additional submenus for task runtime statistics.

©1989-2024 Lauterbach OS Awareness Manual Zephyr | 14

Zephyr Commands for v1.0

TASK.Context Display contexts

Format: TASK.Context

Displays the context table of Zephyr.

o B:TASK.Context =n| Wl <
mag1 name prio [type |[state Tlags |
philTasks | -1. [task preemptible n
philTask4 -1. [task preemptible
philTask3 -1. [task preemptible
philTask2 -1. [task preemptible
philTaskl -1. [task preemptible
philTasko | -1. [task preemptible
HOSTIODRV | -1. [task preemptible
philTask -1. [task preemptible
minik 0. [fiber essential
* |main -1. |task running preemptible essential
1 3

“magic” is a unique ID, used by the OS Awareness to identify a specific context (address of the context
control structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

TASK.Event Display microkernel events

Format: TASK.Event

Displays the event table of Zephyr Microkernel.

o B:TASK.Event =n| Wl <
magic name 1d control [state handler count waiting |
FFFC9674 46. [On Low n/a 0. ~
FFFC9688 47. [On Low n/a 0.

FFFC969C 48. |On High |FFFC89D6 K_ticker 343,

FFFC9G6E0 49, [On Low n/a 0.

FFFC96C4 50. |On Low n/a 0.

FFFC96D3 51. [On Low n/a 0.

FFFC96EC 52. [On Low n/a 0.

FFFCa700 53. [On Low n/a 0.

FFFC9714 54. [On Low n/a 0.

FFFC9728 55. [On Low n/a 0.

FFFC973C 56. [On Low n/a 0. =
FFFC3750 57. |On High |FFFC04F4 myEventHandler 5.

4 m 3

“magic” is a unique ID, used by the OS Awareness to identify a specific event (address of the event control
structure). The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right
clicking on it will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual Zephyr | 15

TASK.Fiber Display fibers

Format: TASK.Fiber

Displays the fiber table of Zephyr.

o B:TASK Fiber =n| Wl <

m; name prio [state Tlags |
6. -
6.
6.
6. [running
6.

1 |phil 6.

nano task:

FFFC2BB0 |main | -1.]| |preemptible essential

4 n 3

“magic” is a unique ID, used by the OS Awareness to identify a specific fiber (address of the fiber control
structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

TASK.FIFO Display microkernel FIFOs

Format: TASK.FIFO

Displays the FIFO table of Zephyr Microkernel.

o B:TASK Fifo =n| Wl <
magic name 1d ta'l 'Ieve'l nmax S'IZE count waiting |
FFFCSD4C 0 0. -
FFFCSD74 12 4 4 10.

4 m 3

“magic” is a unique ID, used by the OS Awareness to identify a specific FIFO (address of the FIFO control
structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual Zephyr | 16

TASK.MailBoX Display microkernel mailboxes

Format: TASK.MailBoX

Displays the mailbox table of Zephyr Microkernel.
& BETASK.MailBoX == =]

name 1d count writing |reading |

o000

“magic” is a unique ID, used by the OS Awareness to identify a specific mailbox (address of the mailbox
control structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

TASK.Map Display microkernel maps

Format: TASK.Map

Displays the memory map table of Zephyr Microkernel.

o B:TASKMap f=e ==
magic name 1d NCUrr nmax si1ze count waitl ng]
FFFC98FC 0. 5. 5. [128. 5. -
FFFC991C 1. 0. 0. | 84, 0.

4 10 3

“magic” is a unique ID, used by the OS Awareness to identify a specific memory map (address of the map
control structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual Zephyr | 17

TASK.MuTeX Display microkernel mutexes

Format: TASK.MuTeX

Displays the mutex table of Zephyr Microkernel.

“magic” is a unique ID, used by the OS Awareness to identify a specific mutex (address of the mutex control
structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

TASK.NanoFifo Display nanokernel FIFOs

Format: TASK.NanoFifo <symbol> [/Struct | /Ptr | /Array <size>]

Displays FIFOs of Zephyr Nanokernel. Specify the symbol name of a FIFO to display its contents.

Optional Parameters:

Struct <symbol> refers to a variable holding a NANO_FIFO structure (default)
Ptr <symbol> is a pointer to a NANO_FIFO structure
Array <size> <symbol> is an array with <size> NANO_FIFO entries

&% B:TASK.NanoFifo nanofifos /Array 5 EI@

name dataptr waiting |
nanofifos - -
nanofifos[1] |FFFC2ZFF8
nanofifos[2] | -
nanofifos[3] | -
nanofifos[4] | -

-

FFFCE380

4 1 2

“magic” is a unique ID, used by the OS Awareness to identify a specific FIFO (address of the FIFO control
structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual Zephyr | 18

TASK.NanoLifo Display nanokernel LIFOs

Format: TASK.NanoLifo <symbol> [/Struct | /Ptr | /Array <size>]

Displays LIFOs of Zephyr Nanokernel. Specify the symbol name of a LIFO to display its contents.

Optional Parameters:

Struct <symbol> refers to a variable holding a NANO_LIFO structure (default)
Ptr <symbol> is a pointer to a NANO_LIFO structure
Array <size> <symbol> is an array with <size> NANO_LIFO entries

&% B:TASK.Nanolifo nanolifos fArray 5 EI@

name dataptr waiting |
nanolitos - - L
nanolifos[1] |[FFFC3058

nanolifos[2] | -
nanolifos[3] | -
nanolifos[4] | -

M 3

“magic” is a unique ID, used by the OS Awareness to identify a specific LIFO (address of the LIFO control
structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

TASK.NanoSem Display nanokernel semaphores

Format: TASK.NanoSem <symbol> [/Struct | /Ptr | /Array <size>]

Displays semaphores of Zephyr Nanokernel. Specify the symbol name of a semaphore to display its
contents.

©1989-2024 Lauterbach OS Awareness Manual Zephyr | 19

Optional Parameters:

Struct <symbol> refers to a variable holding a NANO_SEM structure (default)
Ptr <symbol> is a pointer to a NANO_SEM structure
Array <size> <symbol> is an array with <size> NANO_SEM entries

&b B:TASK.NanoSem nanosems /Array 6 EI@
magi

name nsig waiting i
nanosems 0. FFFC3330 phiT .
nanosems [1]
nanosems [2]
nanosems [3]
nanosems [4]
nanosems [5]

FFFC4100

j=f=R= ==

FFFC5870

1 }

“magic” is a unique ID, used by the OS Awareness to identify a specific semaphore (address of the
semaphore control structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

TASK.NanoSTacK Display nanokernel stacks

Format: TASK.NanoSTacK <symbol> [/Struct | /Ptr | /Array <size>]

Displays stacks of Zephyr Nanokernel. Specify the symbol name of a stack to display its contents.

Optional Parameters:

Struct <symbol> refers to a variable holding a NANO_STACK structure (default)
Ptr <symbol> is a pointer to a NANO_STACK structure
Array <size> <symbol> is an array with <size> NANO_STACK entries

&% B:TASK.NanoSTacK nanostacks /Array 5 EI@
magi

name base num_waiting |

nanostacks

FFFC&310 |0, - ~
nanostacks[1]

FFFC&850
FFFC&890
FFFC&8D0
FFFCE910

nanostacks[2]
nanostacks[3]
nanostacks[4]

(=R=R=10

1 }

“magic” is a unique ID, used by the OS Awareness to identify a specific stack (address of the stack control
structure).

©1989-2024 Lauterbach OS Awareness Manual Zephyr | 20

The fields “magic’and “base” are mouse sensitive. Double-clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

TASK.PIPE Display microkernel pipes

Format: TASK.PIPE

Displays the pipe table of Zephyr Microkernel.

“magic” is a unique ID, used by the OS Awareness to identify a specific pipe (address of the pipe control
structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

TASK.Pool Display microkernel pools

Format: TASK.Pool

Displays the memory pool table of Zephyr Microkernel.

&% B:TASK.Pool o -E =]

magic name 1d min size max size [total waiting |
FFFC93E4 0. 4. 16. [N -
FFFCS8D3 1. 8. 32. 96.

4 1 2

“magic” is a unique ID, used by the OS Awareness to identify a specific pool (address of the pool control
structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual Zephyr | 21

TASK.Semaphore Display microkernel semaphores

Format: TASK.Semaphore

Displays the semaphore table of Zephyr Microkernel.

&b B:TASK.Semaphore EI@
m; name 1d level count waiting |
0. 0. 0. -
1. 4. 10.
2 2. 5.
3 0. o

“magic” is a unique ID, used by the OS Awareness to identify a specific semaphore (address of the
semaphore control structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

TASK.Task Display tasks

Format: TASK.Task

Displays the task table of Zephyr.

o B:TASK Task =n| Wl <
name 1d prio [state |
philTask 0. 5. |deTayed
philTask0o 1. 6. [delayed
philTaskl 2. 6. [delayed
philTask2 3. 6. [delayed
philTask3 4. 6. [delayed
philTask4 5. 6. [delayed
philTasks 6. 6. [resource
HOSTIODRV 7. 1. [receive

1 3

“magic” is a unique ID, used by the OS Awareness to identify a specific task (address of the task control
structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual Zephyr | 22

TASK.TIMer Display microkernel timers

Format: TASK.TIMer

Displays the timer table of Zephyr Microkernel.
o BzTASK.TIMer == 5

name 1d expiration |reapeat |action |
. 0.

WAKEUP
WAKEUP
WAKEUP
WAKEUP
LOCK_REQ
WAKEUP
WAKEUP

[Vl N W R R ST N
W o
coocoooo

“magic” is a unique ID, used by the OS Awareness to identify a specific timer (address of the timer control
structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual Zephyr | 23

Zephyr Commands for v1.7

TASK.ALERT

Display alerts

Format: TASK.ALERT

Displays the alert table of Zephyr.
% BuTASK.ALERT El@

mag c count Timit handler

200005CC 0. | 20. [DB000373 alert_handler A
0.

£

20000200 10. |08000373 alert_handler

TASK.MailBOX

Display mailboxes

Format: TASK.MailBOX

Displays the mailbox table of Zephyr.
b BTASKMailBOX [= || & |23

magic waiting |
20003DA0 A
200002C4

v
< >

©1989-2024 Lauterbach

OS Awareness Manual Zephyr

24

TASK.MEMSLAB Display memslabs

Format: TASK.MEMSLAB

Displays the memory slab table of Zephyr.

o B:TASK.MEMSLAB = =R
mag c buffer blksize [#blks [#used waiting [|
20003ECC (20000704 [300. 5. 0. A

2000019C |20003FED |400 [o

TASK.MSGQ Display msgqgs

Format: TASK.MSGQ

Displays the message queue table of Zephyr.

&% BuTASK.MSGO El@

mag c buffer max |used msgsize waiting
20000CED [20003DDC 20. 0. | 12. A
2000029C |20004968 10. 0. 8.

£

TASK.MUTEX Display mutexes

Format: TASK.MUTEX

Displays the mutex table of Zephyr.

& B:TASKMUTEX =R o
magic count owner waiting
200007FC 1. [200002A0 [20000310 A
200007E4 1. |200002A0 |20000230
200007CC 1. |20000230 |200001C0 hd
£ >

©1989-2024 Lauterbach OS Awareness Manual Zephyr | 25

TASK.SEMaphore

Display semaphores

Format:

TASK.SEMaphore

Displays the semaphore table of Zephyr.

b B:TASKSEMaphore | = |[& |23

magic count [Timit waiting
1]

200005E0
20000670
20000104

0.
1.
0.

2.
1.

<

Ll

TASK.THREAD

Display threads

Format:

TASK.THREAD

Displays the thread table of Zephyr.

&% B:TASK.THREAD

(o8)

state entry

. |pending
. |ready

. |pending
. |pending
. |pending
pending

. |running |08001DCO idle

Ll

©1989-2024 Lauterbach

OS Awareness Manual Zephyr | 26

TASK.TIMER Display timers

Format: TASK.TIMER

Displays the timer table of Zephyr.

&% BuTASK.TIMER =N SR

magic period [expiry fn |
20000638 0. 08000377 timer_expiry_tunction
£

! ! ! ~
20000164 0. 08000377 timer_expiry_function
v
>

TASK.PIPE Display pipes

Format: TASK.PIPE

Displays the pipe table of Zephyr.

b B:TASKPIPE Lo 8)
mag c buffer size [used waiting |
20003DB4 [20003EEC 50. 0. A
Z00002D8 |200049B8 [100. 0.

v
£ >

TASK.QUEUE Display queues

Format: TASK.QUEUE

Displays the queue table of Zephyr.
o B:TASK.QUEUE = =R

first data item waiting |

-
20003F6C

©1989-2024 Lauterbach OS Awareness Manual Zephyr | 27

TASK.ZSTACK Display zstacks

Format: TASK.ZSTACK

Displays the Zephyr stack table.

b B:TASKZSTACK (o8)
base max |used waiting |
200006B4 20. 0. A

10. 0.
10. | 10.
10. | 10.

20004940
20005D0C
20005464

©1989-2024 Lauterbach OS Awareness Manual Zephyr | 28

Zephyr PRACTICE Functions

There are special definitions for Zephyr specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magicsize)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual Zephyr | 29

	OS Awareness Manual Zephyr
	History
	Overview
	Terminology
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in Zephyr

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Function Runtime Statistics
	Zephyr specific Menu

	Zephyr Commands for v1.0
	TASK.Context Display contexts
	TASK.Event Display microkernel events
	TASK.Fiber Display fibers
	TASK.FIFO Display microkernel FIFOs
	TASK.MailBoX Display microkernel mailboxes
	TASK.Map Display microkernel maps
	TASK.MuTeX Display microkernel mutexes
	TASK.NanoFifo Display nanokernel FIFOs
	TASK.NanoLifo Display nanokernel LIFOs
	TASK.NanoSem Display nanokernel semaphores
	TASK.NanoSTacK Display nanokernel stacks
	TASK.PIPE Display microkernel pipes
	TASK.Pool Display microkernel pools
	TASK.Semaphore Display microkernel semaphores
	TASK.Task Display tasks
	TASK.TIMer Display microkernel timers

	Zephyr Commands for v1.7
	TASK.ALERT Display alerts
	TASK.MailBOX Display mailboxes
	TASK.MEMSLAB Display memslabs
	TASK.MSGQ Display msgqs
	TASK.MUTEX Display mutexes
	TASK.SEMaphore Display semaphores
	TASK.THREAD Display threads
	TASK.TIMER Display timers
	TASK.PIPE Display pipes
	TASK.QUEUE Display queues
	TASK.ZSTACK Display zstacks

	Zephyr PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information

