LAUTERBACH A

OS Awareness Manual XOS

OS Awareness Manual XOS

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns r—
OS AWareness MaANUAISccciicecrriiiissiriinissss s rssssss s s s ssss e s eassam s s e e s s amn e s enasame s e e ansammn e nnnsan r—~
OS Awareness Manual XOSooiiiioccrririrsccrrrrssscerres s sme s rssssmesressssmme s eesssmmssessssmmessesssanmnsnens 1

L 1= (o 3

O oY = 4
Terminology 4

Brief Overview of Documents for New Users 4
Supported Versions 4
ConfiguIration ... e 5
Automatic Configuration 5
Quick Configuration Guide 6
Hooks & Internals in XOS 6
L= 1 (] =N 7
Display of Kernel Resources 7
Task Stack Coverage 7
Task-Related Breakpoints 8
Dynamic Task Performance Measurement 9

Task Runtime Statistics 9
Function Runtime Statistics 10

XOS specific Menu 12

D0 13 021 T3] .1 T T3 T - 13
TASK.Thread Display threads 13
TASK.TIMER Display timers 13

XOS PRACTICE FUNCLIONScceciiiiiiemnininssmsssssssssss s sssssms s s s ssmss s sssssmss s s snsssmss s s snssnmss s enssssnnens 14
TASK.CONFIG() OS Awareness configuration information 14
©1989-2024 Lauterbach OS Awareness Manual XOS | 2

OS Awareness Manual XOS

Version 06-Jun-2024

History

28-Aug-18 The title of the manual was changed from “RTOS Debugger for <x>" to “OS Awareness
Manual <x>”.

©1989-2024 Lauterbach OS Awareness Manual XOS | 3

Overview

The OS Awareness for XOS contains special extensions to the TRACE32 Debugger. This manual describes
the additional features, such as additional commands and statistic evaluations.

Terminology

Note the terminology: while XOS talks about “threads”, the OS Awareness uses the term “task”. They are
used interchangeably in this context.

Brief Overview of Documents for New Users

Architecture-independent information:

J “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

J “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently XOS is supported for the following versions:

o Version 1.10 on XTENSA.

©1989-2024 Lauterbach OS Awareness Manual XOS | 4

Configuration

The TASK.CONFIG command loads an extension definition file called “x0s.t32” (directory
“~~/demo/<arch>/kernel/xos”). It contains all necessary extensions.

Automatic configuration tries to locate the XOS internals automatically. For this purpose all symbol tables
must be loaded and accessible at any time the OS Awareness is used.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

Automatic Configuration

For system resource display and analyzer functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration,
omit all arguments:

I TASK.CONFIG xos.t32 Automatic configuration

See also the example “~~/demo/<arch>/kernel /xos/x0s . cmm’.

©1989-2024 Lauterbach OS Awareness Manual XOS | 5

Quick Configuration Guide

To get a quick access to the features of the OS Awareness for XOS with your application, follow the following
roadmap:

1. Start the TRACE32 Debugger.
2. Load your application as normal.

3. Execute the command
TASK.CONFIG ~~/demo/<arch>/kernel/xos/xo0s.t32
(See “Configuration”).

4. Execute the command
MENU.ReProgram ~~/demo/<arch>/kernel/xos/x0s.men
(See “XOS Specific Menu”).

5. Start your application.
Now you can access the XOS extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapter.

Hooks & Internals in XOS

No hooks are used in the kernel.

For retrieving the kernel data and structures, the OS Awareness uses the global kernel symbols and
structure definitions. Ensure that access to those structures is possible every time when features of the OS
Awareness are used.

Be sure that your application is compiled and linked with debugging symbols switched on.

©1989-2024 Lauterbach OS Awareness Manual XOS | 6

Features

The OS Awareness for XOS supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following XOS
components can be displayed:

TASK.Thread Threads
TASK.TIMER Timers

For a description of the commands, refer to chapter “XOS Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

©1989-2024 Lauterbach OS Awareness Manual XOS | 7

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [I<option>] [TASK <task> Set task-related breakpoint.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

J For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextiD ON Enables the comparison to the whole Context ID register.
Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK . List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

©1989-2024 Lauterbach OS Awareness Manual XOS | 8

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the

PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide

P” (general_ref_p.pdf).

Task Runtime Statistics

NOTE:

This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in

a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault
Trace.STATistic.TASK
Trace.Chart.TASK
Trace.PROfileSTATistic.TASK

Trace.PROfileChart.TASK

Trace.FindAll Address TASK.CONFIG(magic)

Trace.FindAll CYcle owner OR CYcle context

Display trace buffer and task switches
Display task runtime statistic evaluation
Display task runtime timechart

Display task runtime within fixed time intervals
statistically

Display task runtime within fixed time intervals as
colored graph

Display all data access records to the “magic”
location

Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as

“(unknown)”.

©1989-2024 Lauterbach

OS Awareness Manual XOS | 9

= B:Trace STATistic. TASK o -E =]

[& setup... || 71 Groups... || 22 Gonfig... |[= | Detaiied | [Nesting][v{Chart || BProfie |
tasks: 8. total: 19.997ms

range total min max avr count ratio® [|1% 2% |
Cunknown) 3.212ms 3.212ms 3.212ms 3.212ms 16.062%
test4 32.500us 32.500us 32.500us 32.500us 0.162%
test3 32.500us 32.500us 32.500us 32.500us .162%
test2 32.500us 32.500us 32.500us 32.500us
testl 32.500us 32.500us 32.500us 32.500us
test 44, 300us 44, 300us 44, 300us 44, 300us

main 1.196ms 1.158ms 1.158ms | 597.850us

idle| 15.415ms | 15.415ms | 15.415ms | 15.415ms

]

0.162%
0.162%
0.221%
5.979%
7.086%

Fora e e Ol

‘ +++++‘

7

4 T

#i] B:Trace. CHART.TASK == 5

[& stup.. || i Gougs... || B8 @nfig... (% Goto... | #3Find... |[4» In | p40ut|[MMFull

-17.000ms -16.500ms -16.000ms -15.500ms
rangeix
unknown) «x

1 1 1 I
testd iy N

test3hy
test2iy
testlhy
testh)
main &y
idlegy

4 (o4 1 2

Function Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

©1989-2024 Lauterbach OS Awareness Manual XOS | 10

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting
Trace.STATistic.Func
Trace.STATistic.TREE
Trace.STATistic.sYmbol /SplitTASK
Trace.Chart.Func
Trace.Chart.sYmbol /SplitTASK

Display function nesting

Display function runtime statistic
Display functions as call tree
Display flat runtime analysis
Display function timechart

Display flat runtime timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as

“(unknown)”.

©1989-2024 Lauterbach

OS Awareness Manual XOS |

11

XOS specific Menu

The menu file “xos.men” contains a menu with XOS specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called XOS.
. The Display menu items launch the appropriate kernel resource display windows.

J The Stack Coverage submenu starts and resets the XOS specific stack coverage, and provide
an easy way to add or remove threads from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

. The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only thread switches (if any) or thread switches together with the default display.

o The Perf menu contains additional submenus for thread runtime statistics, thread related function
runtime statistics or statistics on task states.

©1989-2024 Lauterbach OS Awareness Manual XOS | 12

XOS Commands

TASK.Thread Display threads

Format: TASK.Thread [<thread>]

Displays the thread table of XOS or detailed information about one specific thread.

Without any arguments, a table with all created threads will be shown.
Specify a thread name or magic number to display detailed information on that thread.

o B:TASK. Thread =n| Wl < o B:TASK Thread 0:20020FAD =n| Wl <
g name state prio | magic name state prio |
test2 ready 61. ~ 2Z0020FAD [testl [wtsem [65. ~
test3 ready 62.
* |testd current 63. waiting for:
test ready 59. sem 20000830 seml
testl ready 60.
idle ready 1. owned mutexes:
1 |main whex1t 64, none
n 3

4 1 b

“magic” is a unique ID, used by the OS Awareness to identify a specific threads (address of the thread
structure).

The field “magic” and other fields are mouse sensitive, double clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

TASK.TIMER Display timers

Format: TASK.TIMER

Displays a list of all created virtual timers.

o B:TASKVTimer =n| Wl <
magic time function

2002147C |202. 08003011 tmr (00000000)
4 10 3

The field “magic” and other fields are mouse sensitive, double clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual XOS | 13

XOS PRACTICE Functions

There are special definitions for XOS specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magicsize)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual XOS | 14

	OS Awareness Manual XOS
	History
	Overview
	Terminology
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Automatic Configuration
	Quick Configuration Guide
	Hooks & Internals in XOS

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Function Runtime Statistics
	XOS specific Menu

	XOS Commands
	TASK.Thread Display threads
	TASK.TIMER Display timers

	XOS PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information

