LAUTERBACH A

OS Awareness Manual VDK

OS Awareness Manual VDK

TRACE32 Online Help
TRACE32 Directory

TRACE32 Index
TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns r—
OS AWareness MaANUAISccciicecrriiiissiriinissss s rssssss s s s ssss e s eassam s s e e s s amn e s enasame s e e ansammn e nnnsan r—~
OS Awareness Manual VDKoooiiiiirirccrresssscesresssmss s ssssssme s sesssmme s eessssmmssessssmmsssesssmmnsnens 1
L 1= (o 3
O oY = 3
Terminology 3
Brief Overview of Documents for New Users 3
Supported Versions 4
ConfiguIration ... e 5
Quick Configuration Guide 5
Hooks & Internals in VDK 6
== LT == 7
Display of Kernel Resources 7
Task Stack Coverage 7
Task-Related Breakpoints 8
Dynamic Task Performance Measurement 9
VDK Specific Menu 9
VDK COMMANAS ...eeciiiiiiemmrsisssssmsssissssssssssssssss s sassams s s sssssmms s sasssnmss s easssnmss sesssnnnsssasssnnnsssnsssnnens 10
TASK.DevFlag Display device flags 10
TASK.MemPool Display memory pools 10
TASK.Semaphore Display semaphores 11
TASK.Thread Display threads 11
VDK PRACTICE FUNCLIONS cceeeciiiiiceccerrssssemsessssssmme s s essssmse s ssssssmse s sssssmmessesssnmsessnsssnmssssnsssnmnns 12
TASK.CONFIG() OS Awareness configuration information 12
©1989-2024 Lauterbach OS Awareness Manual VDK 2

OS Awareness Manual VDK

Version 06-Jun-2024

History

28-Aug-18 The title of the manual was changed from “RTOS Debugger for <x>” to “OS Awareness
Manual <x>”.

Overview

The OS Awareness for VDK contains special extensions to the TRACE32 Debugger. This manual describes
the additional features, such as additional commands and statistic evaluations.

Terminology

VDK uses the term “threads”. If not otherwise specified, the TRACES32 term “task” corresponds to VDK
threads.

Brief Overview of Documents for New Users

Architecture-independent information:

J “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
J “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

J “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

©1989-2024 Lauterbach OS Awareness Manual VDK | 3

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently VDK is supported for the following versions:

. VDK from VisualDSP 4.5 for Blackfin

©1989-2024 Lauterbach OS Awareness Manual VDK |

4

Configuration

The TASK.CONFIG command loads an extension definition file called “vdk.t32” (directory
“~~/demo/<processor>/kernel/vdk”). It contains all necessary extensions.

Automatic configuration tries to locate the VDK internals automatically. For this purpose all symbol tables
must be loaded and accessible at any time the OS Awareness is used.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration
omit all arguments:

Format: TASK.CONFIG vdk

See also “Hooks & Internals” for details on the used symbols.

Quick Configuration Guide

To get a quick access to the features of the OS Awareness for VDK with your application, follow the following
roadmap:

1. Copy the files “vdk . t32” and “vdk .men” to your project directory
(from TRACES32 directory “~~/demo/<processor>/kernel/vdk”).

2. Start the TRACE32 Debugger.
3. Load your application as normal.

4, Execute the command “TASK.CONFIG wvdk”
(See “Configuration”).

5. Execute the command “MENU . ReProgram vdk”
(See “VDK Specific Menu”).

6. Start your application.
Now you can access the VDK extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapter.

©1989-2024 Lauterbach OS Awareness Manual VDK | 5

Hooks & Internals in VDK

No hooks are used in the kernel.

For retrieving the kernel data and structures, the OS Awareness uses the global kernel symbols and
structure definitions. Ensure that access to those structures is possible every time when features of the OS

Awareness are used.

Be sure that your application is compiled and linked with debugging symbols switched on.

©1989-2024 Lauterbach OS Awareness Manual VDK | 6

Features

The OS Awareness for VDK supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following VDK
components can be displayed:

TASK.Thread Threads
TASK.Semaphore Semaphores
TASK.DevFlag Device flags
TASK.MemPool Memory pools

For a description of the commands, refer to chapter “VDK Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of VDK tasks, you can use the TASK.STacK command. Without any parameter,
this command will set up a window with all active VDK tasks. If you specify only a magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, flag memory must be mapped to the task stack areas,
when working with the emulation memory. When working with the target memory, a stack pattern must be
defined with the command TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD rsp.
TASK.STacK.ReMove commands with the task magic number as parameter, or omit the parameter and
select from the task list window.

It is recommended to display only the tasks you are interested in, because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

©1989-2024 Lauterbach OS Awareness Manual VDK | 7

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [I<option>] [TASK <task> Set task-related breakpoint.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

J For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextiD ON Enables the comparison to the whole Context ID register.
Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK . List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

©1989-2024 Lauterbach OS Awareness Manual VDK | 8

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=

current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

All kernel activities up to the task switch are added to the calling task.

VDK Specific Menu

The menu file “vdk.men” contains a menu with VDK specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called VDK.
. The Display menu items launch the kernel resource display windows.

. The Stack Coverage submenu starts and resets the VDK specific stack coverage and provides
an easy way to add or remove tasks from the stack coverage window.

©1989-2024 Lauterbach OS Awareness Manual VDK | 9

VDK Commands

TASK.DevFlag Display device flags

Format: TASK.DevFlag

Displays the device flag table of VDK.

&% B:TASK DevFlag =R =
magic id [count pending I
FFo00640 0. 1. kWriter A
FFI00698 1. |4, kRead

v

“magic” is a unique ID, used by the OS Awareness to identify a specific device flag (address of the
DeviceFlag object).

TASK.MemPool Display memory pools

Format: TASK.MemPool

Displays the memory pool table of VDK.

% B:TASK.MemPool = =R
magic 1d num blocks |[free blocks blksize |
FFa02660 [0. |32. [Z1. [40. ™~

v

“magic” is a unique ID, used by the OS Awareness to identify a specific memory pool (address of the
MemoryPool object).

©1989-2024 Lauterbach OS Awareness Manual VDK | 10

TASK.Semaphore Display semaphores

Format: TASK.Semaphore

Displays the semaphore table of VDK.

@?. B:TASK.5emaphore EI@
magic 1d name value |max |period [pending |
FFa02890 |0. [kVolButtonPoll 0. [I. [100. [kRamp ~

v
£ >

“magic” is a unique ID, used by the OS Awareness to identify a specific semaphore (address of the
Semaphore object).

TASK.Thread Display threads

Format: TASK.Thread

Displays the thread table of VDK.

% B:TASK Thread = =R
1d name state prioriy |
0. |kIdTeThread [Running 0. o
1. kRead DeviceFlagBlocked kPrioritys
2. kwriter DeviceFlagBlocked kPrioritys
3. kMonitor MessageBlocked kPrioritys
4. kvolControl MessageBlocked kPrioritys
5. kRamp SemaphoreBlocked kPrioritys

“magic” is a unique ID, used by the OS Awareness to identify a specific thread (address of the TMK_Thread
object).

©1989-2024 Lauterbach OS Awareness Manual VDK | 11

VDK PRACTICE Functions

There are special definitions for VDK specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magicsize)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual VDK | 12

	OS Awareness Manual VDK
	History
	Overview
	Terminology
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in VDK

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Dynamic Task Performance Measurement
	VDK Specific Menu

	VDK Commands
	TASK.DevFlag Display device flags
	TASK.MemPool Display memory pools
	TASK.Semaphore Display semaphores
	TASK.Thread Display threads

	VDK PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information

