LAUTERBACH A

OS Awareness Manual
MicroC/OS-ll|

OS Awareness Manual MicroC/OS-lli

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns r—
OS AWareness MaANUAISccciicecrriiiissiriinissss s rssssss s s s ssss e s eassam s s e e s s amn e s enasame s e e ansammn e nnnsan r—~
OS Awareness Manual MicroC/OS-IIIiieicerrrrsscerr e e e re s sme e e s smmereesssmmer e smmnneeas 1
0 Y= = 3
Brief Overview of Documents for New Users 3
Supported Versions 3
ConfiguIration ... 4
Quick Configuration Guide 5
Hooks & Internals in uC/OS-113 5
== T == 6
Display of Kernel Resources 6
Task Stack Coverage 6
Task-Related Breakpoints 7
Task Context Display 8
Dynamic Task Performance Measurement 8
Task Runtime Statistics 9
Task State Analysis 9
Function Runtime Statistics 10
pHC/OS-III specific Menu 11
[E1070 15T 111020 1 1 1 1T- Ty L L 12
TASK.eventFLAG Display event flags 12
TASK.MEMory Display memory partitions 12
TASK.MUTEX Display mutexes 13
TASK.Queue Display message queues 13
TASK.SEMaphore Display semaphores 14
TASK.Task Display tasks 14
TASK.TiMeR Display timers 15
HC/OS-lll PRACTICE FUNCHIONSceeecieeiiiiiiccccissssscccmsss s s s sssssssssssmsmmmssss s s s sessssssssssnnnmmnmsssnsenns 17
TASK.CONFIG() OS Awareness configuration information 17
TASK.STRUCTY() OS structure names 17
©1989-2024 Lauterbach OS Awareness Manual MicroC/OS-II 2

OS Awareness Manual MicroC/OS-lli

Version 06-Jun-2024

Overview

The OS Awareness for pC/OS-lIl contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.

Brief Overview of Documents for New Users

Architecture-independent information:

J “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

J “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

. “0OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently yC/OS-lll is supported for the following versions:

. pC/OS-IIl V3.0 on ARM.

©1989-2024 Lauterbach OS Awareness Manual MicroC/OS-Ill | 3

Configuration

The TASK.CONFIG command loads an extension definition file called “ucos3.t32” (directory
“~~/demo/<processor>/kernel/ucosd”). It contains all necessary extensions.

Automatic configuration tries to locate the uC/OS-Ill internals automatically. For this purpose all symbol
tables must be loaded and accessible at any time the OS Awareness is used.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration,
omit all arguments:

Format: TASK.CONFIG ucos3

See also “Hooks & Internals” for details on the used symbols.

©1989-2024 Lauterbach OS Awareness Manual MicroC/OS-lll | 4

Quick Configuration Guide

To access all features of the OS Awareness you should follow the following roadmap:

1. Run the PRACTICE demo script (~~/demo/<processor>/kernel/ucos3/ucos3.cmm). Start the
demo with *do ucos3” and “go”. The result should be a list of tasks, which continuously
change their state.

2. Make a copy of the PRACTICE script file “ucos3.cmm”. Modify the file according to your
application.

3. Run the modified version in your application. This should allow you to display the kernel
resources and use the trace functions (if available).

Hooks & Internals in uC/OS-II3

No hooks are used in the kernel.

To retrieve information on kernel objects, the OS Awareness uses the global pC/OS-Ill variables and
structures. Be sure that your application is compiled and linked with debugging symbols switched on.

pC/OS-IIl needs to be configured with OS_CFG_DBG_EN = 1.

©1989-2024 Lauterbach OS Awareness Manual MicroC/OS-llI

5

Features

The OS Awareness for yC/OS-IIl supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
pHC/OS-IIl components can be displayed:

TASK.Task Tasks
TASK.SEMaphore Semaphores
TASK.MUTEX Mutexes
TASK.eventFLAG Event Flags
TASK.Queue Message Queues
TASK.TiMeR Timers
TASK.MEMory Memory Partitions

For a description of the commands, refer to chapter “uC/0OS-lll Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of uC/OS-IIl Tasks, you can use the TASK.STacK command. Without any
parameter, this command will set up a window with all active tasks. If you specify only a magic number as
parameter, the stack area will be automatically calculated.

To use the calculation of the maximum stack usage, flag memory must be mapped to the task stack areas
when working with the emulation memory. When working with the target memory a stack pattern must be
defined with the command TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD rsp.
TASK.STacK.ReMove commands with the task magic number as parameter, or omit the parameter and
select from the task list window.

It is recommended to display only the tasks you are interested in, because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

©1989-2024 Lauterbach OS Awareness Manual MicroC/OS-lll | 6

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [I<option>] [TASK <task> Set task-related breakpoint.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

J For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextiD ON Enables the comparison to the whole Context ID register.
Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK . List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

©1989-2024 Lauterbach OS Awareness Manual MicroC/OS-lll | 7

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

I Frame.TASK [<task>] Display task context.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

o To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

I Frame /Task <task> Display call stack of a task.

If you'd like to see the application code where the task was preempted, then take these steps:
1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.

The TASK.TASK <task> window contains a button (“context”) to execute this command with the displayed
task, and to switch back to the current context (“current”).

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

©1989-2024 Lauterbach OS Awareness Manual MicroC/OS-Ill | 8

Task Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spentin
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as

colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as

“(unknown)”.
Task State Analysis
NOTE: This feature is only available, if your debug environment is able to trace task

switches and data accesses (program flow trace is not sufficient). It requires
either an on-chip trace logic that is able to generate a data trace, or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated
statistically or displayed graphically.

©1989-2024 Lauterbach OS Awareness Manual MicroC/OS-Ill | 9

This feature requires that the following data accesses are recorded:
J All accesses to the status words of all tasks

J Accesses to the current task variable (= magic address)

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs
are located (plus the current task pointer).

Example: This script assumes that the TCBs are located in an array named TCB_array and consequently
limits the tracing to data write accesses on the TCBs and the task switch.

Break.Set Var.RANGE (TCB_array) /Write /TraceData
Break.Set TASK.CONFIG(magic) /Write /TraceData

To evaluate the contents of the trace buffer, use these commands:

Trace.STATistic. TASKState Display task state statistic
Trace.Chart. TASKState Display task state timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

All kernel activities added to the calling task.

Function Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

©1989-2024 Lauterbach OS Awareness Manual MicroC/OS-Ill | 10

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting Display function nesting
Trace.STATistic.Func Display function runtime statistic
Trace.STATistic.TREE Display functions as call tree
Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis
Trace.Chart.Func Display function timechart
Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

pC/OS-lll specific Menu

The menu file “ucos3.men” contains a menu with uyC/OS-l1I specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called pC/OS-IIl.
J The Display menu items launch the appropriate kernel resource display windows.

J The Stack Coverage submenu starts and resets the pC/OS-1ll specific stack coverage and
provides an easy way to add or remove tasks from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

J The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only task switches (if any) or task switches together with the default display.

. The Perf menu contains additional submenus for task runtime statistics and statistics on task
states.

©1989-2024 Lauterbach OS Awareness Manual MicroC/OS-lll | 11

HC/OS-IIl Commands

TASK.eventFLAG Display event flags

Format: TASK.eventFLAG [<flag>]

Displays the event flag table of yC/OS-Ill or detailed information about one specific event flag.

Without any arguments, a table with all created event flags will be shown. Specify an event flag magic
number to display detailed information on that event flag.

&% Butask.eventFLAG EI@
mag c name tlags pending |
200021E4 [AppoFTlaguGro | 0. | -

v

“magic” is a unique ID, used by the OS Awareness to identify a specific event flag (address of the
OS_FLAG_GRP structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

TASK.MEMory Display memory partitions

Format: TASK.MEMory [<memory>]

Displays the memory partition table of uC/OS-lIl or detailed information about one specific memory partition.

Without any arguments, a table with all created memory partitions will be shown. Specify a memory partition
magic number to display detailed information on that memory partition.

&% B:TASK MEMory [E=5 =R
magic name | address blks1ze |#blocks [#used |
20106000 [MemPa [21000000 00008000 |64. 4. T .

v

“magic” is a unique ID, used by the OS Awareness to identify a specific memory partition (address of the
OS_MEM structure).

The fields “magic”, and “address” are mouse sensitive, double clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual MicroC/OS-lll | 12

TASK.MUTEX Display mutexes

Format: TASK.MUTEX [<mutex>]

Displays the mutex table of uC/OS-lll or detailed information about one specific mutex

Without any arguments, a table with all created mutexes will be shown. Specify a mutex magic number to
display detailed information on that mutex.

b BitaskMoutex (o8)
magic name owner counter [pending i
20002190 [AppoMutex - | 0. | ~

v

“magic” is a unique ID, used by the OS Awareness to identify a specific semaphore (address of the
OS_SEM structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

TASK.Queue Display message queues

Format: TASK.Queue [<queue>]

Displays the message queue table of pC/OS-Ill or detailed information about one specific message queue.

Without any arguments, a table with all created message queue will be shown. Specify a message queue
magic number to display detailed information on that message queue.

A% Butask.Queue EI@
magic name entries size |pending |
20002160 [AppoQueus | 0. [20.] ~
v

o Bitask.Queue 0x20002160 = =R

entries [size |pending |
0. | 20.]

magic name
20002160 [AppoQueus | ~

address size content ascii

“magic” is a unique ID, used by the OS Awareness to identify a specific message queue (address of the
OS_Q structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual MicroC/OS-Ill | 13

TASK.SEMaphore Display semaphores

Format: TASK.SEMaphore [<semaphore>]

Displays the semaphore table of uC/OS-Ill or detailed information about one specific semaphore

Without any arguments, a table with all created semaphores will be shown. Specify a semaphore magic
number to display detailed information on that semaphore.

&b Btask SEMaphore (o8)
magic name counter [pending i
200021BC [AppoSem | 0. ~

v

“magic” is a unique ID, used by the OS Awareness to identify a specific semaphore (address of the
OS_SEM structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

TASK.Task Display tasks

Format: TASK.Task [<task>]

Displays the task table of pC/OS-Ill or detailed information about one specific task.

©1989-2024 Lauterbach OS Awareness Manual MicroC/OS-lll | 14

Without any arguments, a table with all created tasks will be shown.
Specify a task magic number to display detailed information on that task.

o BTASKTASK =R o
name prio [state pending on timeout |
TxuTask 2. [running ~
RxuTask 1. |[delayed 50.
AppuTaskoStart 3. |[ready
uC/05-III.Timer.Task 6. [pending task_sem
uC/05-III.5tatuTask 6. [delayed 20.
uC/05-III.TickuTask 4. |ready
uC/05-III.Idle.Task 7. |ready
v
>
o B:TASK.TASK (x20001990 = =R
magic name prio [state pending on timeout |
20001990 [AppoTaskuStart [3. [ready |
Task entry argument
08001FF4 AppTaskStart 00000000
Performance:
Cpulsage CtxSwltr IntDisTimeMax SchedLockTimeMax
0% 3. Os Os
Stack:
Free Used Size
0. 0. 125.
Task Queue:
Size Entries EntriesMax MsgSentTime MsgSentTimeMax
0. 0. [{] 0.
Task Semaphore:
SemCtr SignalTime SignalTimeMax
0. 0.
Context:
context current
£ >

“magic” is a unique ID, used by the OS Awareness to identify a specific task (address of the TCB).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

Pressing the “context” button changes the register context to this task. “current” resets it to the current
context. See “Task Context Display”.

TASK.TiMeR Display timers

Format: TASK.TiMeR [<timer>]

Displays the timer table of yC/OS-lll or detailed information about one specific timer.

Without any arguments, a table with all created timers will be shown. Specify a timer magic number to
display detailed information on that timer.

&b B:TASK TiMer =8 Eo
magic name |state type |delay |period remain cal lback |
20104000 [AppTi [stopped [one-sh 5. 0. 0. [0000Z004 TimerCallBack ~
£ >

“magic” is a unique ID, used by the OS Awareness to identify a specific timer (address of the OS_TMR
structure).

©1989-2024 Lauterbach OS Awareness Manual MicroC/OS-lll | 15

The fields “magic”, and “callback” are mouse sensitive, double clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual MicroC/OS-Ill | 16

HC/OS-IIl PRACTICE Functions

There are special definitions for uC/OS-Ill specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magicsize | tcb)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

tcb Parameter Type: String (without quotation marks).
Returns the name of the TCB structure.

Return Value Type: Hex value.

TASK.STRUCT() OS structure names

Syntax: TASK.STRUCT(<item>)

Reports OS structure names.
Parameter Type: String (without quotation marks).

Return Value Type: String.

©1989-2024 Lauterbach OS Awareness Manual MicroC/OS-lll | 17

	OS Awareness Manual MicroC/OS-III
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in µC/OS-II3

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	µC/OS-III specific Menu

	µC/OS-III Commands
	TASK.eventFLAG Display event flags
	TASK.MEMory Display memory partitions
	TASK.MUTEX Display mutexes
	TASK.Queue Display message queues
	TASK.SEMaphore Display semaphores
	TASK.Task Display tasks
	TASK.TiMeR Display timers

	µC/OS-III PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information
	TASK.STRUCT() OS structure names

