LAUTERBACH A

OS Awareness Manual SMX

OS Awareness Manual SMX

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
OS AWareness MaANUAISccciicecrriiiissiriinissss s rssssss s s s ssss e s eassam s s e e s s amn e s enasame s e e ansammn e nnnsan r—~
OS Awareness Manual SIMXooiiiieriirrrrcr e s e s s s e s res s s e s ressssmme s eesssmme s eesssmmnseeassmmnsneas 1
L 1= (o 4

O oY = 4
Brief Overview of Documents for New Users 5
Supported Versions 5
L0704} T 11T = Lo o 6
Quick Configuration Guide 7
Hooks & Internals in SMX 7
=Y 1 = 8
Display of Kernel Resources 8
Task Stack Coverage 8
Task-Related Breakpoints 9
Task Context Display 10
Dynamic Task Performance Measurement 11
Task Runtime Statistics 12
Task State Analysis 13
Function Runtime Statistics 14
SMX specific Menu 16

£ 11 Q0o 4T3 F= T T E= 17
TASK.BLOCK Display blocks 17
TASK.BUCKet Display buckets 17
TASK.ConFigtab Display configuration 18
TASK.EvtQueue Display event queues 18
TASK.EviTable Display event tables 19
TASK.eXCHanGe Display exchanges 20
TASK.LSR Display LSRs 20
TASK.MeSsaGe Display messages 21
TASK.PIPE Display pipes 21
TASK.POOL Display pools 22
TASK.SEMAphore Display semaphores 23
TASK.TASK Display tasks 24
©1989-2024 Lauterbach OS Awareness Manual SMX 2

TASK.TIMer Display timers 24

TASK.TRACE Display event buffer 25
TASK.TRACEVM Copy event buffer to LOGGER 25
SMX PRACTICE FUNCLIONSoooiiiiiiiiieiciicssmecmnsss s s snsssssssssssmsmms s s s s s nsssss s ssssmmmsns s s s s snssnssnsssnnnnns 27
TASK.CONFIG() OS Awareness configuration information 27

©1989-2024 Lauterbach OS Awareness Manual SMX | 3

OS Awareness Manual SMX

History

Version 06-Jun-2024

04-Feb-21

Overview

Removing legacy command TASK. TASKState.

/A TRACES2 for SMX
File Edit View Var Break Run CPU Misc Trace Pef Cov ATO1SAMIMIT SMX Window Help
[O VO S R I T I - B 3 &
8] S [==]
nam typ number size address |
Freeamsgupool message 10. 00000064 70035028 badar ®
pri address size resour owner
0. 70035D28 100. 700ICOE0 Tree msgs 70011CD4 msg_send_task
0. 70035D8C 100. 700LCOEC free msgs 7001C0E0 free_msgs
0. 70035DF0 100. 7001COEC free msgs 7001C0E0 free_msgs
0. 70035E54 100. 7001COEC free msgs 7001C0E0 free_msgs v
& [Il Il |
magic _ Tname == jlx
70011990 |Preempter++ 6. [70060804 smx_TaskMainwrapper magic name Owner TnEvl [diFF parameter |usertimer |
700119DC (STeeper++ 3. |70060804 smx_TaskMainrapper 7O0IFZ60 |smx_Profi TeTimer [smx_IdTeTask | 100. | 90. 00000000 | - &
70011A28 |smx_IdleTask 0. |7005E040 smx_Id]eTaskMain 7001F288 Sleepers+ 500. | 400. 700115F8 | -
7O011A74 |smx_TimeoutTask 6. |7006AC34 smx_TimeoutTaskMain 7001F2B0 [timer_task 10. | 10. [Isr_timerl |00000002 | -
7OO11ACO [smx_StackTask 0. |7005E114 smx_StackTaskMain v
70011BOC |smx_ExitTask 6. |7005E170 smx_ExitTaskMain
70011B58 [NetTask 4. |7004BC38 NetTask (o= & =R E
70011BA4 [LED_task 4. |7005F884 LED_task_main
70011BFO |opcan 6. [7005F674 opcon_main magic name count thres tasks tplim| fragic name sTots flags __ tasks
70011C3C |errgen 4. |7005F724 errgen_main 70018090 in_sa_print 1. 1. 0. 0. |[O0IEFAD event_TTags 16. 00000001 3. &
70011C88 |nsdemo_task 1. |70060E38 nsdemo_task_main | [7O00LBE40 smx_ts 0. 1. 0. 0.
70011CD4 |msg_send_task 4. |7005B580 msq_send_task_mai |7Q01BES0 con_out_sem i 1. 0o 0
An11n20 Tim + 2" lznnze; Tacl ma:d [7001BEE0 in_clib__ 1. 1. 0. oO. nask tasks waiting
o 7001BE70 in_timelib 1. 1. 0. 0. |[0. AND 00000003 7OOIIESC event_Tlags_wait
o 7001C0DO0 n?,an,gune 0. 1. 0. oO. 70011EE8 event_flags_wait
7001C130 0. 5. 0. O . ai
ame TTon g = % Tonest _spare slaves_done 1. AND DOOO0OC 70DLLF34 event_flags wait
Preempter++ [7002A528 7002A3D0 11% [7002A958 00000410
Sleeper-++ [7002CD00 7002D1A8 7002D110 00000410 || <
smx_IdleTask [7001CD88 7001D230 |7 7% |7001D0C8 00000340 :List sademo_init
smx_TimeoutTask [700297E0 70029C88 |7 9% |70029C18 00000438 9% [mmmmm w
smx_StackTask [70010448 7001D988 7001D9BE 00000570 0% M Step | M Over | sDiverge| « Rem | @ Up | P Go | I Break !
smx_ExitTask addr /1ine [code label mnemonic
NetTask [7001DC68 7001E048 |7 16% |70010FAS 00000340 16% | Vo1d sademo_init(vold) ~
LED_task [7002ABCC 70028070 |7 10% |7002AFF8 0000042C 10% (s 73 o
opcon |70029E84 70024328 |7 12% |7002A298 00000414 125 (e SR:7O0SAE38 [E9 sademo_i..:stmdb rl13!,{rl2,rl4}
errgen initialize the different demo
nsdemo_task [7001E298 7001EC50 [7001EBAQ 7% |7001EAFS 00000860 13% e s errgen(); ~
msg_send_task 70026270 70026718 |7 10% 70026698 00000428 10% (s SR:7005AE3C (EBO0OS b 0x7005C3F0
msg_receive task |7002D3A4 70020848 |7 9% |7002D708 00000434 9% (e init_message(); -
preempter_task |70026914 7002BDES |7 14% |7002ED08 000003F4 14% | v SR:7005AE4D |EBC b 0x7005B460 v
< > < >
:|TASK. SMX. |
STack | ConFigtab | | TASK POOL BLOCK | | MeSsaGe | eXCHanGe SEMAphore EvtQueue | EvtTable PIPE LSR TIMer MuTeX | TASKState | other pravious
SR:700674D0 \\AppDbg\Globalenet_init+0x104 nsdemo_task stopped MIX up

The OS Awareness for SMX contains special extensions to the TRACE32 Debugger. This manual describes
the additional features, such as additional commands and statistic evaluations.

©1989-2024 Lauterbach

OS Awareness Manual SMX

4

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently the SMX awareness is tested on the following versions:

o SMX V3.4 to V4.0 on ARM, PowerPC and SH.

©1989-2024 Lauterbach OS Awareness Manual SMX | 5

Configuration

The TASK.CONFIG command loads an extension definition file called “smx.t32” (directory
“~~/demo/<processor>/kernel/smx”). It contains all necessary extensions.

Automatic configuration tries to locate the SMX internals automatically. For this purpose all symbol tables
must be loaded and accessible at any time the OS Awareness is used.

If you want to have dual port access for the display functions (display “On The Fly”), you have to map
emulation memory to the address space of all used system tables.

For system resource display and analyzer functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible.
Each of the TASK.CONFIG arguments can be substituted by '0', which means that this argument will be
searched and configured automatically. For a fully automatic configuration, omit all arguments:

Format: TASK.CONFIG smx

©1989-2024 Lauterbach OS Awareness Manual SMX | 6

Quick Configuration Guide

To access all features of the OS Awareness you should follow the following roadmap:

1. Run the PRACTICE demo script (~~/demo/<processor>/kernel/smx/smx.cmm). Start the demo
with “do smx” and “go”. The result should be a list of tasks, which continuously change their
state.

2. Make a copy of the PRACTICE script file “smx.cmm”. Modify the file according to your
application.

3. Run the modified version in your application. This should allow you to display the kernel
resources and use the analyzer functions.

Hooks & Internals in SMX

No hooks are used in the kernel.

To retrieve information on kernel objects, the OS Awareness uses the global SMX variables and structures
exported by the SMX library, and the structures defined in the smx.h file. Be sure that your application is
compiled and linked with debugging symbols switched on. The SMX library may be compiled without
debugging symbols.

SMX provides a mechanism for debugging called “Handle Table”. TRACES32 does not use this handle table
for SMX aware debugging. The handle table is only used for the resource names (exception: event table
overview). If you omit the handle table from your application, you will just loose the display of the resource
names.

©1989-2024 Lauterbach OS Awareness Manual SMX | 7

Features

The OS Awareness for SMX supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following SMX
components can be displayed:

TASK.BLOCK Block
TASK.BUCKet Buckets
TASK.ConFigtab Configuration
TASK.EvtQueue Event Queues
TASK.EviTable Event Tables
TASK.eXCHanGe Exchanges
TASK.LSR LSRs
TASK.MeSsaGe Messages
TASK.PIPE Pipes
TASK.POOL Pools
TASK.SEMAphore Semaphores
TASK.TASK Tasks
TASK.TIMer Timers

For a description of the commands, refer to chapter “SMX Commands”.

When working with emulation memory or shadow memory, these resources can be displayed “On The Fly”,
i.e. while the target application is running, without any intrusion to the application. If using this dual port
memory feature, be sure that emulation memory is mapped to all places, where SMX holds its tables.

When working only with target memory, the information will only be displayed if the target application is
stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

©1989-2024 Lauterbach OS Awareness Manual SMX | 8

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

&% BTASK STacK =N =R)

name |low hig sp % [lowest spare max
Preempter++ |7002A528 70O02A9D0 (70024245 11% [7002A938 00000410 1
Sleeper++ |7002CD00 7002D1A8 70020110 00000410 12%

=]
=
=1
[
(=1
i
=1
I
=1

smx_IdleTask |7001CD88 7001D230
smx_TimeoutTask |700297E0 70029C88 |7C
smx_StackTask (70010448 7001D9ES
smx_ExitTask
NetTask |7001DC68 700L1E048 |70

LED_task [FO0ZABCC 7002BO70

opcon [70029E84 7O02A328 |70

errgen
nsdemo_task |7001E298 7001ECS0
msg_send_task |7002B270 7002B718
msg_receive_task |7002D3A4 7002D848
preempter_task (70028914 7002BDES
master_task |7002DA48 7002DEFOQ
start_hi_lo_task |7002E0EC 7002E590
sleeper_task [FO0ZEFBE 7002C460
event_flags_waitl [FOO2EE34 7002F2D8 10% |7002F260 0000042C 10%
event_flags_wait2 |7002F4D8 7002F980 10% |7002F908 00000430 10%
event_flags_wait3 |7002FE7C 70030020 5 10% [FO0ZFFAS 0000042C 10%
£ >

7% (7001DOCE 00000340 30%
9% [70029C18 00000438 9%
7001D9BE 00000570 O%

16% |700LDFAS 00000340 16%
10% |700ZAFF8 0000042C 10%
12% |7002AZ98 00000414 12%

7% |FOOLEAFS 00000860 13%
10% |7002B698 00000428 10%
9% (7002D7D8 00000434 9%
14% |7002ZEDO8 000003F4 14%
10% |700ZDE70 00000428 10%
9% [FO0ZE518 0000042C 10%
10% |7002C3EQ 00000428 10%

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [[<option>] [TASK <task> Set task-related breakpoint.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

J For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

©1989-2024 Lauterbach OS Awareness Manual SMX | 9

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextiD ON Enables the comparison to the whole Context ID register.
Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

a B::Break.List EI@

B senp... || 3% Delete All|| O Disable Al @ Enable All| @ Init | 52 store...| 52 Load... || B set...

type method |[task |
C:70002B3C [Readwrite ONCHIP "LED_task™ ‘ [| smx_cT
W [

C:7001183C |Readwrite ONCHIP ["NetTask” smx_ebi

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

I Frame.TASK [<task>] Display task context.

o Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

. To switch back to the current context, omit all parameters.

©1989-2024 Lauterbach OS Awareness Manual SMX | 10

To display the call stack of a specific task, use the following command:

I Frame /Task <task> Display call stack of a task.

If you'd like to see the application code where the task was preempted, then take these steps:

1. Open the Frame /Caller /Task <task> window.
2. Double-click the line showing the OS service call.
& B:Var.Frame /Locals /Caller /Task "LED_task" EI@
1. Up Down MArgs [Mlocals [caller Task: | "LED_task" v

—000|[smx_SSRExT t(asm)

-001||smx_EventQueueCount (asm)

Ll

-002||LED_task_main()
= ctr =0

#elif LED_7SEG_CIRCLE
Write7Seg(LED_CircleSegs[ctr % 6]);
smx_EventQueueCount (smx_TicksEQ, smx_cf.sec/10, SMX_TMO_INF);

gendif
telse
#if (defined(SMXNS_DEMO) && SNS_PROTO_WEBS)
590 smx_EventQueueCount (smx_TicksEQ, smx_cf.sec * nsdemo_count / 1000,

-003|(smx_SchedRunTasks (asm)
v
£ >

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=

current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

©1989-2024 Lauterbach OS Awareness Manual SMX | 11

= B:PERF.LTASK = =R

& setp.. || 38 anfig... | (A Goto... | B Detsled | O, View || i/ Profile || @ mit || Disable| @ Amm
runtime: 100%
name ratio 1% 2% 5% 10% 205 50% 100
smx_StackTask 30.245% ~
pipe_get_task 17.657%
pipe_put_task 13.636%

L 741%
L371%
671%
497%
147%
97 2%
098%

smx_TimeoutTask
event_flags_set_flag_task
smx_ProfileTask
smx_IdleTask

opcon

preempter_task
msg_send_task

[l el el S N UT TR Y

start_hi_lo_task T45Y | e—

event_flags_wait3 S73% |—

event_flags_waitl 224% |-

LED_task 049% |s

master_task 049% |s

event_flags_wait2 049%

msg_receive_task 0.874% |+

timer_task 0.524% |+ v

Task Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as

colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

©1989-2024 Lauterbach OS Awareness Manual SMX | 12

Task State Analysis

<m » <

= | BiTrace STATistic. TASK = =R
2 ... || 1if Goups... || 58 Gonfig... | | Detailed || {7 Nesting|| il Chart || B Profile
tasks: 26. total: 13.107ms
range [total min max avr count ratio¥ [1% 2% 5% 10% |
Preempter++ | 974.600us | 974.600us | 974.600us | 974.600us 1 7.435% A
NetTask | 156.000us | 156.000us | 156.000us | 156.000us 1 1.190% |w=
LED_task 90. 900us 90. 900us 90. 900us 90. 900us 1 0.693% |+
msg_send_task | 153.700us | 153.700us | 153.700us | 153.700us 1 1.172% |mm
preempter_task 90. 700us 90. 700us 90. 700us 90. 700us 1 0.691% |+
sleeper_task 80.500us 80.500us 80.500us 80.500us 1 0.614% |+
event_flags_set_flag_task | 141.600us | 141.&800u 141 . 600U 141 . 600U 1 1. OR0% lw
Sleeper++ | 399.500us
msg_receive_task | 82.400us | |) B:Trace. CHART.TASK EI@
master_task | 892.800us — =
start_hi_lo_task | 363.600us & setw... | ii Gous...| 88 Qnfig... | A Goto...| (Y Goto...|| #3Find... || « In |[»0¢ Out| &2 Ful
hi_task | 110.200us 000ms 5.000ms 6.000ms 7.000ms
< range{§]]
- msg_send_taskuy =m0
preempter_taskd =@
sleeper_taskgy =
event_flags_set flag taskgy =~ == =m0
Sleeper++@ = ———
msg_receive_task@l 0 om0
master_task@l 0 SSSSS——
start_hi_lo_taskgy - aaa
hitaskqy 0000 =
event_flags waitlgy . =
event_flags wait2@ .. =&
event_flags_wait3gy . =
timer_task@y . =
pipe_put_task@y 0 =
L
slavel@) 0 0000000000000 A
slaveZ iy m

NOTE:

This feature is only available, if your debug environment is able to trace task

switches and data accesses (program flow trace is not sufficient). It requires

either an on-chip trace logic that is able to generate a data trace, or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated
statistically or displayed graphically.

This feature requires that the following data accesses are recorded:

o All accesses to the status words of all tasks

J Accesses to the current task variable (= magic address)

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs
are located (plus the current task pointer).

©1989-2024 Lauterbach

OS Awareness Manual SMX

13

Example: This script assumes that the TCBs are located in an array named TCB_array and consequently
limits the tracing to data write accesses on the TCBs and the task switch.

Break.Set Var.RANGE (TCB_array) /Write /TraceData
Break.Set TASK.CONFIG (magic) /Write /TraceData

To evaluate the contents of the trace buffer, use these commands:

Trace.STATistic. TASKState Display task state statistic
Trace.Chart. TASKState Display task state timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

Function Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

©1989-2024 Lauterbach OS Awareness Manual SMX | 14

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting
Trace.STATistic.Func
Trace.STATistic.TREE
Trace.STATistic.sYmbol /SplitTASK
Trace.Chart.Func
Trace.Chart.sYmbol /SplitTASK

Display function nesting

Display function runtime statistic
Display functions as call tree
Display flat runtime analysis
Display function timechart

Display flat runtime timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as

“(unknown)”.

= | BiiTrace, STATistic. TREE task def = =R
2 ... || §if Goups... || 58 Gonfig... | A Goto...|| = Detaikd || i Nesting|| % Chart
funcs: 189. total: 13.107ms
task tree total min max avr count intern% 1% |
Preempter++ |_ L — UartDbgPutChar 14.400us 1.200us 1.200us 1.200us 1zZ. 0.109% [+ ~
Preempter++ = ps 63.600us 10.600us 10.600us 10. 600us 6. 0.320% |+
Preempter++ L— UartDbgPutChar 21.600us 1.200us 1.200us 1.200us 18. 0.164% |+
Preempter++ = ps 122.300us 30.600us 52.900us 40.767us 3. 0.438% |+
Preempter++ L— UartDbgPutChar 4. 800us 1.200us 1.200us 1.200us 54, 0.494% |+
Preempter++ =l ANSI_CTrEndOfLine 33.600us 11. 200us 11. 200us 11.200us 3. 0.020% |+
Preempter++ I—E! ANSI_CmdSeq 27.300us 9.100us 9.100us 9.100us 3. 0.018% |+
Preempter++ = A _nnn, o znn, o znn, o znn, 2 N 12ce s
breenpter s & B:iTrace. CHARTFUNC =R o
R cempter+s = rd [2 sw... | ik Gouws..]| 58 @nfy... | R Goto...[A Goto...| #3Find... || T In || vl Out|[& Ful
NetTask — 4 . 200ms 3.400ms 3.600ms 3.800ms 4.000ms 4.200m
LED_task = (r rangeqy L L |
LED_task = sb_EVETimestampGet AH T]] A
LED_task sb_ConWriteString _ _ _
LED_task sb_ConWriteStringUnp) _ _
| < ANSI_GotoXY. i i i
ANSI_CmdSeq)))
ps : : .
UartDbgPutChar)))
ANSI_GModeSet)))
ANSI_ClrEndOfLine)))
Preempter: :HookExit 1 . . .
(root) S
sh_EVETimestampGet bl .
(root) N e
LED_task_main . -
WriteLEDs N I
sh_EVETimestampGet S
(root) —
msg_send_task_main Immn
sb_EVETimestampGet)))))) BN
£ 0 >» € >
©1989-2024 Lauterbach OS Awareness Manual SMX | 15

SMX specific Menu

The menu file “smx.men” contains a menu with SMX specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called SMX.

. The Display menu items launch the appropriate kernel resource display windows.

J The Stack Coverage submenu starts and resets the SMX specific stack coverage, and provide
an easy way to add or remove tasks from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

. The Trace -> List submenu is extended. You can additionally choose if you want a trace list
window to show only task switches (if any) or task switches and defaults.

J The Perf menu contains the additional submenus for task runtime statistics amd task-related
function runtime statistics. For the function runtime statistics, a PRACTICE script file called
“men_ptfp.cmm” is used. This script file must be adapted to your application.

/A TRACE32 for SMX

File Edit View Var Break Run

CPU Misc
[|4 || 2w

Trace

Perf Cov AT91SAMSM11

= g

0

5| e & & | 1

SMX | Window Help
Display Configuration

O X

Display Tasks
o3 BiTASK.TASK =N =R Display Pools
magic name status [prio [entry i
70011990 |Preempter++ WAIT 5. 70060804 smx_TaskMainwrapper Display Blocks
700119DC |Sleeper++ WAIT 3. [F0060804 smx_TaskMainwrapper .
70011428 |[smx_IdleTask READY 0. |7005E040 smx_IdleTaskMain Display Messages
70011A74 |smx_TimeoutTask [WAIT 6. [700BAC34 smx_TimeoutTaskMain Display Exch
70011ACO smx_StqckTaik WAIT 0. [7005E114 smx_StqckTaikI'-'lq'l' n 1splay Bxchanges
70011B0C |smx_ExitTas WAIT 6. [FOOSEL70 smx_ExitTaskMain r
70011B58 |NetTask WAIT | 4. |7004BC38 NetTask Display Semaphores
70011BA4 |LED_task WALT 4. |7005F884 LED_task_main Display Mutexes
70011BF0O |opcon WAIT 6. |[7005F674 opcon_main
70011C3C |errgen WAIT 4, |7005F724 errgen_main Display Events
70011C88 |nsdemo_task RUN 1. [FOOBODE38 nsdemo_task_main X
70011CD4 |msg_send_task WAIT 4. |7005B580 msg_send_task_main Display Event Tables
70011020 |msg_receive_task |WAIT 3. |[FOOSBGAC msg_rec_task_main . .
70011D6C |preempter_task [WAIT 4. |7005B268 preempter_task_main Display Pipes
70011DB8 |master_task WAIT 3. [FOO5B72C master_task_main Display Buckets
7O011E04 |start_hi_lo_task WAIT 3. [7005B908 start_hi_lo_task_mai 1splay Buckets
7O011E50 |sleeper_task WAIT 4. |FO05B018 sleeper_task_main Display LSRs
7O011E9C |event_flags_wait |WAIT 3. [FO0O5BAB0 event_flags_waitl_ta
7O0L11EES |event_flags_wait |WAIT 3. [FOOSBADC event_flags_wait2_ta Display Tirmers
7O011F34 |event_flags_wait |WAIT 3. [FOO5BB40 event_flags_wait3_ta
70011F80 |event_flags_set_ |WAIT 4. |[FOOSBBEE event_flags_set_flag
7O0LLFCC [timer_task WAIT 3. [7005C150 timer_task_main Stack Coverage b
70012018 |pipe_put_task WAIT 3. [FO0O5C288 pipe_put_task_main
70012064 |pipe_get_task WAIT 1. [FOOSC2F0 pipe_get_task_main
70012080 |smx_ProfileTask [WAIT 4. |7005E5A4 smx_ProfileTaskMain v

B: :|TASK. SMX.
STack ConFigtab TASK POOL BLOCK MeSsaGe | | eXCHanGe SEMAphore other pravious
SET006740C || ApoDbg|Globa|enat_int+000 nsdemo_task stopped MIX up

©1989-2024 Lauterbach

OS Awareness Manual SMX |

16

SMX Commands

TASK.BLOCK Display blocks

Format: TASK.BLOCK <block>

Displays the block table of SMX.
Without any arguments, a table with all created blocks will be shown. Specify a block magic number to

display only one specific block.

o8 B:TASK.BLOCK =N SR

mag c type address size ool owner

7O0LBACD oc 7001BC50 00000010 7OOLEESOD O0COO0OCOD A
7001BAOC block 7001BC60 00000010 7OO1BBS0 00000000
7001BA18 block 7001BC70 00000010 7OO01BBS0 00000000
7001BAZ4 block 7001BCS0 00000010 7OO1BBS0 00000000

v
< >

“magic” is a unique ID, used by the OS Awareness to identify a specific block (address of the BCB).

The fields “address”, “pool” and “owner” are mouse sensitive, double clicking on them opens appropriate
windows.

TASK.BUCKet Display buckets

Format: TASK.BUCKet <bucket>

Displays the bucket table of SMX or detailed information about one specific bucket.

Without any arguments, a table with all created buckets will be shown.
Specify a bucket magic number to display detailed information on that bucket.

“magic” is a unique ID, used by the OS Awareness to identify a specific bucket (address of the BXCB).

» ” G L

The fields “magic”, “hame”, “start”,
opens appropriate windows.

pointer” and “tasks waiting” are mouse sensitive, double clicking on them

©1989-2024 Lauterbach OS Awareness Manual SMX | 17

TASK.ConFigtab Display configuration

Format: TASK.ConFigtab

Displays the configuration table of SMX.

&% B:TASK ConFigtab [E=N =R
configuration |
tabTe address 7000ZE3C
highest priority 7.
ticks per second 100.
timeout task freqg 10.
naximum number of
tasks blocks mutexes messages pools pipes quelvls timers stacks
40. 30. 4. 25. 6. 8. 94, 5. 30.

stack

S1zZe start end
000004B0 70O0295EE 70035D20

1eap dar
start end start end
70011970 700295D0 70035D28 7OO370BO

lsr queue entries 255.
no of error records 50.
no of ht handlers 150.
TASK.EvtQueue Display event queues
Format: TASK.EvtQueue <eventqueue>

Displays the event queue table of SMX or detailed information about one specific event.

Without any arguments, a table with all created event queues will be shown. Specify an event magic number
to display detailed information on that event.

A% BuTASK.EvtQueue EI@

magic name tasks |
PRGN smx_T1cksEQ 0. A
v
£ >

“magic” is a unique ID, used by the OS Awareness to identify a specific event (address of the ECB).

The fields “magic” and “name” are mouse sensitive, double clicking on them opens appropriate windows.

©1989-2024 Lauterbach OS Awareness Manual SMX | 18

TASK.EvtTable

Display event tables

Format: TASK.EvtTable <eventtable>

Displays the event tables of SMX or detailed information about one specific event table.

Without any arguments, a table with all created event tables will be shown. Specify an event table magic

number to display detailed information on that event table.

% B:TASK.smx.ET Ox7001EFAD = =R
mag c name slots flags tasks |
7OO1EFAD event_fTags 16. 00000001 3. A
no. _mask tasks waiting

0. AND 00000003 7OO11ESC event_

ags_walt
FOO11EEE event_flags_wait
1. AND 0OO0000C 7OO11F34 = =

2. OR 00000000

. &% BuTASK EvtTable [rolE-]

mag c name slots flags tasks |
7001BD20 dummyEventFlags 4. 00000000 O. ~
7OO1EFAD event_flags 16. 00000001 3.

£

v

>

“magic” is a unique ID, used by the OS Awareness to identify a specific event table (address of the ETCB).

The fields “magic”, “
appropriate windows.

, “name” and “tasks waiting” are mouse sensitive, double clicking on them opens

©1989-2024 Lauterbach OS Awareness Manual SMX

19

TASK.eXCHanGe Display exchanges

Format: TASK.eXCHanGe <exchange>

Displays the exchange table of SMX or detailed information about one specific exchange.

Without any arguments, a table with all created exchanges will be shown. Specify an exchange magic
number to display detailed information on that exchange.

o B:TASK.eXCHanGe = =R
magic name type msgs mplim tasks tplim |
7OO1COED free_msags rsrc 0. 0. 0. [1] ~
7001COF0 mailXchga norm 0. 6. 0. 0.
7001C110 mailXchgB norm 0. 6. 0. 0.

v
£ >

“magic” is a unique ID, used by the OS Awareness to identify a specific exchange (address of the XCB).

The fields “magic”, “hame”, “address”, “resource” and “owner” are mouse sensitive, double clicking on them
opens appropriate windows.

TASK.LSR Display LSRs

Format: TASK.LSR

Displays the LSR table of SMX.
“magic” is a unique ID, used by the OS Awareness to identify a specific LSR (address of the LQ_CELL).

The field “entry” is mouse sensitive, double clicking on it opens the appropriate window.

©1989-2024 Lauterbach OS Awareness Manual SMX | 20

TASK.MeSsaGe Display messages

Format: TASK.MeSsaGe

Displays the message table of SMX.

o BiTASK.MeSsaGe = =R
prio address size resource owner |
0. 70035D28 100. 7OO1COEQD Tree_msgs 70011CD4 msg_send_task
0. 70035DBC 100. 7OOLCOEQ free_msgs 7O01COED free_msgs
0. 70035DFO 100. 7OOLCOEQ free_msgs 7OOLCOED free_msgs
0. 70O035E54 100. 7OOLCOEQ free_msgs 7OOLCOED free_msgs
0. 7OO35EES 100. 7OOLCOEQ free_msgs 7O01COED free_msgs b

“magic” is a unique ID, used by the OS Awareness to identify a specific message (address of the MCB).

The fields “address”, “resource” and “owner” are mouse sensitive, double clicking on them opens
appropriate windows.

TASK.PIPE Display pipes

Format: TASK.PIPE <pipe>

Displays the pipe table of SMX or detailed information about one specific pipe.

Without any arguments, a table with all created pipes will be shown. Specify a pipe magic number to display
detailed information on that pipe.

o5 B:TASK.PIPE =N =R)

magic name start end read write tasks |
i apipe 7001FODD 7OO01F133 7OO1FODO 7O01FODO 0. ~
v

£ >

“magic” is a unique ID, used by the OS Awareness to identify a specific pipe (address of the PXCB).

The fields “magic”, “name”, “start”, “read” and “tasks waiting” are mouse sensitive, double clicking on them
opens appropriate windows.

©1989-2024 Lauterbach OS Awareness Manual SMX | 21

TASK.POOL Display pools

Format: TASK.POOL <pool>

Displays the pool table of SMX or detailed information about one specific pool.

Without any arguments, a table with all created pools will be shown. Specify a pool magic number to display
detailed information on that pool.

% B TASK.smx.POOL 0x7001BBAD EI@
|

magic name type number size address
7O01BBAD Treeumsgupool message 10. 00000064 70D35D28 badar ~

address size resource owner

7O0LECTD 0. 70035D28 100. 7OO1COEQD Tree_msgs 70011CD4 msg_send_task
7O0LECS0 0. 70035D8C 100. 7001COED free_msgs 7001COEQ free_msgs
7O01ECED 0. 70035DF0 100. 7001COED free_msgs 7001COEQ free_msgs
7O01ECDOD 0. 7O0O035E54 100. 700LCOED free_msgs 7001COEQ free_msgs
7O0LECFO 0. 7OO35EEBS 3
o B:TASK.POOL = =R

magic name type number size address |
7O01EEB0 dummyPooT bTock h) 4. 00000010 7OOL1BCSO
7001BBAD freeumsgupool message 10. 00000064 70035D28 badar

< >

“magic” is a unique ID, used by the OS Awareness to identify a specific pool (address of the PCB).

The fields “magic”, “name”, “address” and several fields in the pool list are mouse sensitive, double clicking
on them opens appropriate windows.

©1989-2024 Lauterbach OS Awareness Manual SMX | 22

TASK.SEMAphore Display semaphores

Format: TASK.SEMAphore <semaphore>

Displays the semaphore table of SMX or detailed information about one specific semaphore.

Without any arguments, a table with all created semaphores will be shown. Specify a semaphore magic
number to display detailed information on that semaphore.

o5 B:TASK.SEMAphore [rolE-]

magic name count thres tasks tplim |
7001BD90 1n_sa_print i 1. . . A
7O0LBE40 smx_ts

7O0LBES0 con_out_sem
7001BEGD in_clib

7001BE70 in_timelib
7001C0D0 ns_all_done
7001C130 slaves_done

gerPber
W R
cooooo
cooooo

“magic” is a unique ID, used by the OS Awareness to identify a specific semaphore (address of the SCB).

The fields “magic” and “name” are mouse sensitive, double clicking on them opens appropriate windows.

©1989-2024 Lauterbach OS Awareness Manual SMX | 23

TASK.TASK

Display tasks

Format:

TASK.TASK <task>

Displays the task table of SMX or detailed information about one specific task.

Without any arguments, a table with all created tasks will be shown. Specify a task magic number to display
detailed information on that task.

o8 BTASK.TASK

magiC name

70011990
700119DC
7O011AZE
70011A74
70011ACO
70011E0C
70011E58
70011BA4
70011EFO
70011C3C
70011CE8
70011CD4
70011020
70011D6C
70011DES
70011ED4
7O0L1ESD
70011ESC
7O0L1EES
70011F34

Preempter++
Sleeper++
smx_IdleTask
smx_TimeoutTask
smx_StackTask
smx_ExitTask
NetTask

LED_task

opcon

errgen
nsdemo_task
msg_send_task
msg_receive_task
preempter_task
master_task
start_hi_lo_task
sleeper_task
event_flags_wait
event_flags_wait
event_flags_wait

=R o
status [prio [entry
WAIT 6. [70060804 smx_TaskMainwWrapper A
WAIT 3. [F0060804 smx_TaskMainwrapper
READY 0. [F7OOSEQ040 smx_IdleTaskMain
WAIT 6. [700BAC34 smx_TimeoutTaskMain
WAIT 0. [7O05E114 smx_StackTaskMain
WAIT 6. [FOOSEL70 smx_ExitTaskMain
WAIT 4, |7004BC38 NetTask
WAIT 4, |7005F884 LED_task_main
WAIT 6. [FOO5F674 opcon_main
WAIT 4. |[FO05F724 errgen_main
RUN 1. [7O0GDE38 nsdemo_task_main
WAIT 4. |[FO05B580 msg_send_task_main
WAIT 3. |[FOOSBGAC msg_rec_task_main
WAIT 4. |FO05B268 preempter_task_main
WAIT 3. [FOO5B72C master_task_main
WAIT 3. [7005B908 start_hi_lo_task_main
WAIT 4. |FO05B018 sleeper_task_main
WAIT 3. |7005B~A= ' ——
WALT | 3- [20035 3 BuTASK.smx TASK 0x70011BA4 =N ==

status [prio [entr

magic name v
7O0011BAF |LED_task WAIT | 4. |7005FB84

flags

LED_task_main

in event queue

context

stack ptr check
7ODZAECS 7OOZAFFE enabTed

last smx call return value: 00000000

r.task current

“magic” is a unique ID, used by the OS Awareness to identify a specific task (address of the TCB).
“entry” shows either the task entry function, or the hook routine (if it is hooked).
“stack” points to the block holding the stack; “ptr” is the stack pointer last saved by SMX.

U

The fields “magic”,
appropriate windows.

name-,

entry” and “stack” are mouse sensitive, double clicking on them opens

Pressing the “r.task” button changes the register context to this task. “current” resets it to the current context.
See “Task Context Display”.

TASK.TIMer

Display timers

Format:

TASK.TIMer <timer>

Displays the timer table of SMX.

©1989-2024 Lauterbach

OS Awareness Manual SMX | 24

Without any arguments, a table with all created timers will be shown.
Specify a timer magic number to display only one specific timer.

“magic” is a unique ID, used by the OS Awareness to identify a specific timer (address of the TMCB).

The fields “magic”, “name”,
opens appropriate windows.

owner”, “Isr” and “usertimer” are mouse sensitive, double clicking on them

&b BTASCTIMER (o8)
mag c name owner antvl [dift [Isr parameter usertimer [
7O01F260 [smx_ProfileTimer [smx_IdleTask [100. 90. [smx_ProfiTel 00000000 | - ~
7001F288 Sleeper++ 500. | 400. |smx_LSR::She |700115F8 -
7001F2B0 timer_task 10. 10. |Isr_timerl (00000002 | -

v
< >

TASK.TRACE Display event buffer

Format: TASK.TRACE

TASK.TRACE displays the kernel internal records of the event buffer feature.

SMX must be built with SMX_CFG_EVB. See SMX documentation more information on this SMX feature.

TASK.TRACEVM Copy event buffer to LOGGER

Format: TASK.TRACEVM

TASK.TRACEVM copies the entries of the kernel internal event buffer to a debugger-internal buffer in virtual
memory (VM:), using the LOGGER structure layout and initializes the Logger. The Logger.TimeStamp is
automatically set up by TASK.TRACEVM if possible, otherwise it must be set up explicitly.

SMX must be built with SMX_CFG_EVB. See SMX documentation more information on this SMX feature.
Activate the LOGGER and copy the buffers with:

Trace.METHOD Logger
Logger.RESet
TASK.TRACEVM

©1989-2024 Lauterbach OS Awareness Manual SMX | 25

After this, you can use the Logger contents for Task Runtime Statistics and Task State Analysis.

©1989-2024 Lauterbach OS Awareness Manual SMX | 26

SMX PRACTICE Functions

There are special definitions for SMX specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magicsize)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual SMX | 27

	OS Awareness Manual SMX
	History
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in SMX

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	SMX specific Menu

	SMX Commands
	TASK.BLOCK Display blocks
	TASK.BUCKet Display buckets
	TASK.ConFigtab Display configuration
	TASK.EvtQueue Display event queues
	TASK.EvtTable Display event tables
	TASK.eXCHanGe Display exchanges
	TASK.LSR Display LSRs
	TASK.MeSsaGe Display messages
	TASK.PIPE Display pipes
	TASK.POOL Display pools
	TASK.SEMAphore Display semaphores
	TASK.TASK Display tasks
	TASK.TIMer Display timers
	TASK.TRACE Display event buffer
	TASK.TRACEVM Copy event buffer to LOGGER

	SMX PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information

