LAUTERBACH A

OS Awareness Manual Sciopta

OS Awareness Manual Sciopta

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
OS AWareness MaANUAISccciicecrriiiissiriinissss s rssssss s s s ssss e s eassam s s e e s s amn e s enasame s e e ansammn e nnnsan r—~
OS Awareness Manual SCIopta ..o s 1
0 Y= = 3
Terminology 3
Brief Overview of Documents for New Users 4
Supported Versions 4

L0 o3} T 11T = Lo o 5
Quick Configuration Guide 5
Hooks & Internals in Sciopta 6
== LT == 7
Display of Kernel Resources 7
Task Stack Coverage 7
Task-Related Breakpoints 8
Dynamic Task Performance Measurement 9
Task Runtime Statistics 9
Function Runtime Statistics 10
Sciopta Specific Menu 11

KT T oY o = 00T 111 12T o T L= 12
TASK.ERRmsg Display last error 12
TASK.ModList Display module list 12
TASK.POOL Display pool contents 12
TASK.POolList Display pool list 13
TASK.POolStat Display pool statistics 13
TASK.Process Display process 14
TASK.ProcList Display process list 14
TASK.Queue Display queue contents 15
Sciopta PRACTICE FUNCHIONSccccciiccccccriirinnn s ssssscc s se s s s s se s s s sssmmmsm s s s s s s s e s ses s n s smmnnes 16
TASK.CONFIG() OS Awareness configuration information 16
TASK.CURRENTY() ID of process 16
TASK.ENTRY() Entry address of process 17
©1989-2024 Lauterbach OS Awareness Manual Sciopta 2

OS Awareness Manual Sciopta

Version 06-Jun-2024
Overview
=S
A MCE Hame Prio mProc nProc [mPool nPool Text Data 51ze Free l—
[Z7005704 [HeTTo5ciopta [0 16 | 412 1 21000000 (21005840 (00010000 [000080C0 [~
<] o
pch name pid moduTe ftype stafe pri_ ndwned nQueue nobsry
21005840 [init 00000000 [HeTToSciopta 1dT [running == 0. a. 0. [[a
21006340 [SCI_sysTick 00000001 |HelloSciopta int |----- == 0. 0. 0.
210062840 |hello 00000002 HelloSciopta pri [sleep 16. a. a. a.
21006040 |display 00000002 HelloSciopta pri |msgra 17. a. a. a.
< &% B::task.Pool 21005704 0 Lo @
F n | address 1d [owner sender |addressee size slack
Messages of " /HeTloSciopta/defauTt” ~
1|210050CC (00001000 |[FFFFFFFF [-- nfa - |[display 19 13
2 |21005E38 |00001002 |FFFFFFFF [-- nfa - hello 4 0
3 |21005E883 |00001000 [FFFFFFFF [-- nfa - |display 14 2
Total:
Used Hr
Slack @15 hd
< >

The OS Awareness for Sciopta contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.

Terminology

Sciopta uses the term “process”. If not otherwise specified, the TRACES32 term “task” corresponds to
Sciopta processes.

©1989-2024 Lauterbach OS Awareness Manual Sciopta | 3

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently Sciopta is supported for the following versions:

J Sciopta V2.x on PowerPC

©1989-2024 Lauterbach OS Awareness Manual Sciopta | 4

Configuration

The TASK.CONFIG command loads an extension definition file called “sciopta.t32” (directory
“~~/demo/<processor>/kernel/sciopta”). It contains all necessary extensions.

Automatic configuration tries to locate the Sciopta internals automatically. For this purpose all symbol tables
must be loaded and accessible at any time the OS Awareness is used.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration
omit all arguments:

Format: TASK.CONFIG sciopta

See also “Hooks & Internals” for details on the used symbols.

Quick Configuration Guide

To get a quick access to the features of the OS Awareness for Sciopta with your application, follow the
following roadmap:

1. Copy the files “sciopta.t32” and “sciopta.men” to your project directory
(from TRACES32 directory “~~/demo/<processor>/kernel/sciopta”).

2. Start the TRACE32 Debugger.
3. Load your application as normal.

4, Execute the command TASK.CONFIG sciopta
(See “Configuration”).

5. Execute the command MENU .ReProgram sciopta
(See “Sciopta Specific Menu”).

6. Start your application.
Now you can access the Sciopta extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapter.

©1989-2024 Lauterbach OS Awareness Manual Sciopta | 5

Hooks & Internals in Sciopta

No hooks are used in the kernel.

For retrieving the kernel data and structures, the OS Awareness uses the global kernel symbols and
structure definitions. Ensure that access to those structures is possible every time when features of the OS

Awareness are used.

Be sure that your application is compiled and linked with debugging symbols switched on.

©1989-2024 Lauterbach OS Awareness Manual Sciopta | 6

Features

The OS Awareness for Sciopta supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following Sci-
opta components can be displayed:

TASK.ModList Modules
TASK.ProcList, TASK.Process Processes
TASK.POolList, TASK.POolStat, TASK.POOL Pools
TASK.Queue Queues

For a description of the commands, refer to chapter “Sciopta Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

©1989-2024 Lauterbach OS Awareness Manual Sciopta | 7

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [I<option>] [TASK <task> Set task-related breakpoint.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

J For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextiD ON Enables the comparison to the whole Context ID register.
Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK . List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

©1989-2024 Lauterbach OS Awareness Manual Sciopta | 8

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the

PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide

P” (general_ref_p.pdf).

Task Runtime Statistics

NOTE:

This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in

a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault
Trace.STATistic.TASK
Trace.Chart.TASK
Trace.PROfileSTATistic.TASK

Trace.PROfileChart.TASK

Trace.FindAll Address TASK.CONFIG(magic)

Trace.FindAll CYcle owner OR CYcle context

Display trace buffer and task switches
Display task runtime statistic evaluation
Display task runtime timechart

Display task runtime within fixed time intervals
statistically

Display task runtime within fixed time intervals as
colored graph

Display all data access records to the “magic”
location

Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as

“(unknown)”.

©1989-2024 Lauterbach

OS Awareness Manual Sciopta | 9

Function Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting Display function nesting
Trace.STATistic.Func Display function runtime statistic
Trace.STATistic.TREE Display functions as call tree
Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis
Trace.Chart.Func Display function timechart
Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

©1989-2024 Lauterbach OS Awareness Manual Sciopta | 10

Sciopta Specific Menu

The menu file “sciopta.men” contains a menu with Sciopta specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called Sciopta.
. The Display menu items launch the kernel resource display windows.

J The Stack Coverage submenu starts and resets the Sciopta specific stack coverage and
provides an easy way to add or remove tasks from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

. The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only task switches (if any) or task switches together with the default display.

o The Perf menu contains additional submenus for task runtime statistics.

©1989-2024 Lauterbach OS Awareness Manual Sciopta | 11

Sciopta Commands

TASK.ERRmsg

Display last error

Format: TASK.ERRmsg

Displays the last error reported in a user friendly form.

TASK.ModList

Display module list

Format: TASK.ModList

Displays the module table of all Sciopta modules.

o B::TASK. ModList =Jo&d
A MCB Hame Prio mProc nProc [mPool nPool Text Data 51ze Free |

[21005704 [HeTTosciopta o[18] 4] 2 1 21000000 21005840 [00010000 [000080C0 [|
< .> |

Double click on a “name” of a module to open a process list of this module. Right click on a “name” to open a

local menu.

TASK.POOL

Display pool contents

Format: TASK.POOL <module> <pool>

Displays the contents of a pool.

Specify a module ID or mcb and the pool ID or poolcb to display the messages within this pool.

o B::TASK.Pool 00 (==
F n | address 1d [owner sender |addressee size slack
Messages of " /HeTloSciopta/defauTt” ~

1|210050CC (00001000 |[FFFFFFFF [-- nfa - |[display 19 13

2 |21005E38 |00001002 |FFFFFFFF [-- nfa - hello 4 0

3 |21005E883 |00001000 [FFFFFFFF [-- nfa - |display 14 2
Total:
Used Hr
Slack 115
Overhead: 228

b

Double click on an address to dump the message.

©1989-2024 Lauterbach

OS Awareness Manual Sciopta | 12

TASK.POolList

Display pool list

Format: TASK.PoolList <module>

Displays the pool table of a specific module.

Specify a module ID or meb to display the pool list of this module.

o B::task.POolList 0 (=)<
PoolCE Mame 1d [Start Size Unused
21005640 |default 0 [21003D80 [000005C0 (00000444 [« |

<]

B

*

Double click on a “name” to display the pool contents. Right click on a “name” to open a local menu.
Double click on a “start” address to dump the pool.

TASK.POolStat

Display pool statistics

Format: TASK.PoolStat <module>

Displays the pool statistics of a specific module.

Specify a module ID or mcb to display the pool statistics of this module.

o B:: TASK.POolStat 0

M=%

F1xed size | # reqed| # alloced
F

freed

walt max wanted

g 1}

16 14

32 14

B4 0

128 0

256 0

512 0
Total: 56

oolstatistics of "/HeTToScioptasdefauTt”
4 2 28

0
14
14

1]

1]

1]

1]
56

28
0
14
14
1]
1]
1]
1]
56

0

cooooooo

©1989-2024 Lauterbach

OS Awareness Manual Sciopta

13

TASK.Process Display process

Format: TASK.Process <pid>| <pcb>

Displays detailed information about one specific process.
Specify a process ID or pcb address to display information on that process.

o B::TASK.Process 0x21... E]@
I I
pch 21006340
hae SCI_sysTick
pid nooooood
harent --static—-
entry 00o10F40
type int

vector 310

state nfa
errorcode 0

trigger value 1

default pool default
msg s in queue |0

msg’s owhed 1]

ohservers 0

Stack bottom 21006440
Stack current 21006810
Stack top 21006840

il noo10F40

=p 21006810

The fields “entry”, “msg’s”, “observers”, “stack”, “pc” and “sp” are mouse sensitive, double clicking on them
opens appropriate windows.

TASK.ProcList Display process list

Format: TASK.ProcList [<xmodule>]

Displays the process table of all modules or of a specific module.

Without any arguments, a list with all created processes will be shown.
Specify a module ID or mcb to display the process list of this module.

[50. B::TASK.ProcList =Jo&d
ch name pid moduTe ftype stafe pri_ ndwned nQueue nobsry
21005840 [init 00000000 [HeTToSciopta 1dT [running == 0. a. 0. [[a
21006340 [SCI_sysTick 00000001 |HelloSciopta int |----- o a. a. 0. |
210062840 |hello 00000002 HelloSciopta pri [sleep 16. a. a. a.
21006040 |display 00000002 HelloSciopta pri |msgra 17. a. a. a.
v

Double click on a “pcb” to open a detailed view on this process. Right click on a “pcb” to open a local menu.
Double click on a “name” to open a Data.List window on the process’ entry point.
Double click on a number in “nOwned”, “nQueue” or “nObsrv” to show the messages in this queue.

©1989-2024 Lauterbach OS Awareness Manual Sciopta | 14

TASK.Queue Display queue contents

Format: TASK.Queue <pid>| <pcb>Owned | Queued | OBserver

Displays the contents of a message queue.

Specify a process ID or pcb to display the messages within this process.
Specify the queue to display (Owned, Queued or OBserver).

o B::TASK.Queue 0x21006840 Owned (==
n | address 1d owner | sender [addressee size data (w/o message 1d) |
messages owned by Jhellon ~
1 |2100SDEE (00001000 |hello |-- nfa - |-- nfa ——| 17|00 00 00 05 48 65 6C 6C 6F 00 61 00 CC H44EHeTToYals
Total size: 17 |
.v.

<] 2]

Double click on an address to dump the message.

©1989-2024 Lauterbach OS Awareness Manual Sciopta | 15

Sciopta PRACTICE Functions

There are special definitions for Sciopta specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magicsize | sciopta)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

sciopta Parameter Type: String (without quotation marks).
Returns the address of the Sciopta base structure.

Return Value Type: Hex value.

TASK.CURRENT() ID of process

Syntax: TASK.CURRENT()

Returns the ID of the current process.

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual Sciopta | 16

TASK.ENTRY() Entry address of process

Syntax: TASK.ENTRY (<pid> | <pcb>)

Returns the entry address of the specified process.

Parameter and Description:

<pid> Parameter Type: Decimal or hex or binary value.

<pcb> Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual Sciopta | 17

	OS Awareness Manual Sciopta
	Overview
	Terminology
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in Sciopta

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Function Runtime Statistics
	Sciopta Specific Menu

	Sciopta Commands
	TASK.ERRmsg Display last error
	TASK.ModList Display module list
	TASK.POOL Display pool contents
	TASK.POolList Display pool list
	TASK.POolStat Display pool statistics
	TASK.Process Display process
	TASK.ProcList Display process list
	TASK.Queue Display queue contents

	Sciopta PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information
	TASK.CURRENT() ID of process
	TASK.ENTRY() Entry address of process

