LAUTERBACH A

OS Awareness Manual
Rubus OS

OS Awareness Manual Rubus OS

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACES2 DOCUMENTS .ccuuiiieeiireesiirensisssssssisnsssssessssssssssrsssssssnsssssssssssssssssessssssnsssssnsssssanssssnnsssssnssssnnnns r—
OS AWAreness MaANUAIScccceeceiiiiimemmeiiriieseesrrrrsnssssresnn—.sran——sssrrresnnsssrannsssrnn————. =
0OS Awareness Manual RUDUS OScccociiiiiiiiiiiiereeeeceecee e s sss e rssssssssrsereserssssssssnsmsmnnnmsnnnnns 1
L 1= (o 3
L0 1YY - 3
Brief Overview of Documents for New Users 3
Supported Versions 4
L0704} T 11T = Lo o 5
Manual Configuration 5
Automatic Configuration 6
Hooks in Rubus OS 6
L= 1 < - 7
Display of Kernel Resources 7
Task Stack Coverage 7
Task Runtime Statistics 8
Task State Analysis 9
Function Runtime Statistics 10
Rubus specific Menu 11
{217 o WL 05107 4 T 4 = s Lo [N 12
TASK.MonDev I/O device list 12
TASK.MonFile Open file list 12
TASK.MonLabel Rubus information 12
TASK.MonMsg Message queue information 13
TASK.MonMuteX Blue MUTEX table 13
TASK.MonRSched Red thread table 14
TASK.MonRSList Red schedule table 14
TASK.MonThread Blue thread table 14
Rubus PRACTICE FUNCLIONScciiieeciiiiiiismeiiirisssssssssrsssssssns s s smsssssssssnnsssssssssnnnssssssssnnnnssnnes 15
TASK.CONFIG() OS Awareness configuration information 15

©1989-2024 Lauterbach OS Awareness Manual Rubus OS | 2

OS Awareness Manual Rubus OS

Version 06-Jun-2024

History

04-Feb-21 Removing legacy command TASK.TASKState.

Overview

The OS Awareness for Rubus OS (Arcticus Systems AB) contains special extensions to the TRACE32
Debugger. This manual describes the additional features, such as additional commands and statistic
evaluations.

Brief Overview of Documents for New Users

Architecture-independent information:

J “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

J “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

. “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

©1989-2024 Lauterbach OS Awareness Manual Rubus OS | 3

Supported Versions

Currently the Rubus OS is supported for the C167 microcontroller on the following versions:
J V1.0 (V1.1.0 beta) with large memory model

J V1.1 with small memory model

©1989-2024 Lauterbach OS Awareness Manual Rubus OS | 4

Configuration

Manual Configuration

Format: TASK.CONFIG rubus <magic_address> <dpps> <args>

<magic_address>

<dpps>

<args>

The overall magic location (“<magic_address>") is currently not used. Spec-
ify “0”.

The <dpps> argument configures the data page settings of the application.
Specify a long word, which least significant byte is the dpp0 content and
which most significant byte is the dpp3 content. E.g. “03060500” means
dpp0=0, dpp1=5, dpp2=6 and dpp3=3. If you don't know the dpp settings of
your application, just start it for a while and check in the 'register' window the
dpp's. If the parameter is “0”, a linear DPP setup is assumed (i.e.
“03020100”).

The additional arguments specify the symbols of the object lists. Use them
as shown below:

bsVar redKernelVar redScheduleAttrList

blueKernelVar blueThreadAttrList blueMsgAttrList
blueMutexAttrList ioDevAttrList ioAttr

This command configures the OS Awareness for Rubus OS with manual setup.

The TASK.CONFIG command loads an extension definition file called “rubus.t32” (directory
“~~/demo/c166/kernel/rubus/”). It contains all necessary extensions.

The configuration requires additional arguments. Specify them as shown above. They are pointers to
internal tables of system variables.

’

manual configuration for Rubus OS support

TASK.CONFIG rubus 0 03020100 bsVar redKernelVar redScheduleAttrList
blueKernelVar blueThreadAttrList blueMsgAttrList blueMutexAttrList
ioDevAttrList i1o0Attr

If you want to have dual port access for the display functions (display “On The Fly”), you have to map emula-
tion memory to the address space of all used system tables.

See also the example “~~/demo/c166/kernel/rubus/rubus.cmm”

©1989-2024 Lauterbach

OS Awareness Manual Rubus OS |

5

Automatic Configuration

Format: TASK.CONFIG rubus 0 <dpps>

<dpps>: <dpp_settings>

This command configures the OS Awareness for Rubus OS with automatic setup.

The TASK.CONFIG command loads an extension definition file called “rubus.t32” (directory
“~~/demo/cl166/kernel/rubus”). It contains all necessary extensions.

This configuration tries to locate the Rubus internals automatically. For this purpose the symbols mentioned
in “Manual Configuration” must be loaded and accessible at any time, the OS Awareness is used.

Each TASK.CONFIG argument can be substituted by ’'0’, which means that this argument will be searched
and configured automatically.

If the application uses a linear DPP setting, you can omit all parameters for a fully automatic configuration:

; fully automatic configuration for Rubus support, linear DPPs
task.config rubus

If the application uses non-linear DPP settings, they must be specified by hand. See “Manual Configura-
tion” for details on how to specify the DPPs.

; fully automatic configuration for Rubus support, non-linear DPPs
task.config rubus 0 03050600

If a system symbol is not available, or if another address should be used for a specific system variable, then
the corresponding argument must be set manually with the appropriate address.

If you want to have dual port access for the display functions (display “On The Fly”), you have to map emula-
tion memory to the address space of all used system tables.

See also the example “~~/demo/c166/kernel/rubus/rubus . cmm’

Hooks in Rubus OS

The variable “bsvar” is used to detect, whether blue or red kernel is running.
For detecting the running blue thread, the variable “bluekernelvar”is used.
For detecting the running red thread, either “redKernelVar” or “redStackFrame” is used.

©1989-2024 Lauterbach OS Awareness Manual RubusOS | 6

Features

The OS Awareness for Rubus OS supports the following features:

Display of Kernel Resources

The extension defines new commands to display various kernel resources. The following information can be
displayed:

TASK.MonDev I/O devices
TASK.MonFile Open files
TASK.MonLabel Rubus Label
TASK.MonMsg Blue message queues
TASK.MonMuteX Blue mutexes
TASK.MonRSList Red schedules
TASK.MonRSched Red schedule threads
TASK.MonThread Blue threads

For a description of the commands, refer to chapter “Rubus PRACTICE Commands”.

When working with emulation memory or shadow memory, these resources can be displayed “On The Fly”,
i.e. while the target application is running, without any intrusion to the application. If using this dual port
memory feature, be sure that emulation memory is mapped to all places, where Rubus holds its tables.

When working only with target memory, the information will only be displayed if the target application is
stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

©1989-2024 Lauterbach OS Awareness Manual Rubus OS | 7

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

Task Runtime Statistics

NOTE:

This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in

a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault
Trace.STATistic.TASK
Trace.Chart.TASK
Trace.PROfileSTATistic.TASK

Trace.PROfileChart.TASK

Trace.FindAll Address TASK.CONFIG(magic)

Trace.FindAll CYcle owner OR CYcle context

Display trace buffer and task switches
Display task runtime statistic evaluation
Display task runtime timechart

Display task runtime within fixed time intervals
statistically

Display task runtime within fixed time intervals as
colored graph

Display all data access records to the “magic”
location

Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as

“(unknown)”.

©1989-2024 Lauterbach

OS Awareness Manual Rubus OS | 8

Task State Analysis

NOTE: This feature is only available, if your debug environment is able to trace task
switches and data accesses (program flow trace is not sufficient). It requires
either an on-chip trace logic that is able to generate a data trace, or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated
statistically or displayed graphically.

This feature requires that the following data accesses are recorded:
. All accesses to the status words of all tasks

J Accesses to the current task variable (= magic address)

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs
are located (plus the current task pointer).

Example: This script assumes that the TCBs are located in an array named TCB_array and consequently
limits the tracing to data write accesses on the TCBs and the task switch.

Break.Set Var.RANGE (TCB_array) /Write /TraceData
Break.Set TASK.CONFIG (magic) /Write /TraceData

To evaluate the contents of the trace buffer, use these commands:

Trace.STATistic. TASKState Display task state statistic
Trace.Chart.TASKState Display task state timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

©1989-2024 Lauterbach OS Awareness Manual Rubus OS | 9

Function Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting Display function nesting
Trace.STATistic.Func Display function runtime statistic
Trace.STATistic.TREE Display functions as call tree
Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis
Trace.Chart.Func Display function timechart
Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

©1989-2024 Lauterbach OS Awareness Manual Rubus OS | 10

Rubus specific Menu

The menu file “rubus.men” contains a menu with Rubus specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called Rubus.
J The List menu items launch the kernel resource display windows.

J The Stack Coverage submenu starts and resets the Rubus specific stack coverage and provides
an easy way to add or remove threads from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:
J The Trace menu contains two new submenus:

- Rubus Selective allows to program the analyzer to record only blue thread switches, red
thread calls or both.

- Rubus List displays the analyzer content with Rubus specific information.

o The Perf menu contains the additional submenus for thread runtime statistics, thread related
function runtime statistics and statistics on thread states. For the function runtime statistics,

prepare command files called “men_ptfp.cmm”, “men_pb.cmm” and “men_pr.cmm” are used.
These command files must be adapted to your application.

©1989-2024 Lauterbach OS Awareness Manual Rubus OS | 11

Rubus Commands

TASK.MonDev I/O device list

Format: TASK.MonDev

Displays a table with all configured 1/O devices.

'devInit' shows the address of the initialization routine and is mouse sensitive. |.e. the status line will show the
symbolic information.

TASK.MonFile Open file list

Format: TASK.MonFile

Displays a table with all open I/O files.

TASK.MonLabel Rubus information

Format: TASK.MonLabel

Displays Rubus compilation information.

©1989-2024 Lauterbach OS Awareness Manual Rubus OS | 12

TASK.MonMsg Message queue information

Format: TASK.MonMsg <message>

Displays information about message queues.

Without any parameter you get a table with all configured message queues.

Double clicking on a message queue name or ID gives you detailed information about a specific queue.
You can specify a specific queue as argument. The command accepts IDs (task.mm 41004) or names
(task.mm "shellReply"). When specifying a name, be sure to use straight quotation marks, otherwise you will

get wrong results.

Double clicking on the 'ptr' address opens a dump window with the buffer contents.

TASK.MonMuteX Blue MUTEX table

Format: TASK.MonMuteX

Displays a table with all configured mutexes.

©1989-2024 Lauterbach OS Awareness Manual Rubus OS | 13

TASK.MonRSched Red thread table

Format: TASK.MonRSched <schedule>

Displays all configured red threads in a given red schedule.

You can specify a specific schedule by its name. When omitting the parameter, the current active schedule is
displayed.

TASK.MonRSList Red schedule table

Format: TASK.MonRSList

Displays a table with all configured red schedules.

TASK.MonThread Blue thread table

Format: TASK.MonThread

Displays a table with all configured blue threads in Rubus.
The display is similar to the monitor service 'monThreadList'.

The states of the threads are displayed grey, if the application is running in real time, or if the application is
halted, while the red kernel is running.

©1989-2024 Lauterbach OS Awareness Manual Rubus OS | 14

Rubus PRACTICE Functions

There are special definitions for Rubus specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information
Syntax: TASK.CONFIG(<keyword>)
<keyword>: bluemagic | bsmagic | magic | magicsize | redmagic

Parameter and Description:

bluemagic Parameter Type: String (without quotation marks).
Returns the address of the blue magic number.

bsmagic Parameter Type: String (without quotation marks).
Returns the address of the basic magic number.

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

redmagic Parameter Type: String (without quotation marks).
Returns the address of the red magic number.

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual Rubus OS | 15

	OS Awareness Manual Rubus OS
	History
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Manual Configuration
	Automatic Configuration
	Hooks in Rubus OS

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	Rubus specific Menu

	Rubus Commands
	TASK.MonDev I/O device list
	TASK.MonFile Open file list
	TASK.MonLabel Rubus information
	TASK.MonMsg Message queue information
	TASK.MonMuteX Blue MUTEX table
	TASK.MonRSched Red thread table
	TASK.MonRSList Red schedule table
	TASK.MonThread Blue thread table

	Rubus PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information

