
MANUAL

OS Awareness Manual RIOT

OS Awareness Manual RIOT

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 OS Awareness Manuals .. 

 OS Awareness Manual RIOT ... 1

 Overview .. 3

 Terminology 3

 Brief Overview of Documents for New Users 4

 Supported Versions 4

 Restrictions 4

 Configuration ... 6

 Quick Configuration Guide 6

 Hooks & Internals in RIOT 7

 Features ... 8

 Display of Kernel Resources 8

 Task Stack Coverage 8

 Task-Related Breakpoints 9

 Task Context Display 10

 Dynamic Task Performance Measurement 11

 Task Runtime Statistics 12

 Function Runtime Statistics 13

 RIOT Specific Menu 15

 RIOT Commands ... 16

 TASK.MailBoX Display mailboxes 16

 TASK.MuTeX Display mutexes 17

 TASK.RingBuffer Display ring buffers 18

 TASK.RMutex Display recursive mutexes 18

 TASK.SEMaphore Display semaphores 19

 TASK.TaskList Display threads 20

 TASK.TIMer Display timers 21

 RIOT PRACTICE Functions .. 22

 TASK.CONFIG() OS Awareness configuration information 22

 Frequently-Asked Questions ... 23
OS Awareness Manual RIOT | 2©1989-2024 Lauterbach

OS Awareness Manual RIOT

Version 06-Jun-2024

Overview

The OS Awareness for RIOT OS (RIOT) contains special extensions to the TRACE32 Debugger. This
manual describes the additional features, such as additional commands and statistical evaluations.

Terminology

The terms task and thread are used interchangeably throughout this manual. RIOT does not support a true
threaded concept such as POSIX threads, but each task is very lightweight and is often referred to as a
thread by the RIOT documentation.
OS Awareness Manual RIOT | 3©1989-2024 Lauterbach

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently RIOT is supported for the following versions:

• 32 bit ARM cores, including Cortex-M.

Restrictions

RIOT is supplied in full source code for users to modify to fit their requirements. The awareness has been
built and tested against an unmodified version of RIOT. Please see “Hooks & Internals in RIOT”, page 7
for more information.

Currently, the awareness supports a maximum of 32 mailboxes, 32 mutexes, 32 ring buffers, 32 recursive
mutexes, 32 semaphores, and 32 timers. If your system requires support for more than this, please contact
your local Lauterbach representative.
OS Awareness Manual RIOT | 4©1989-2024 Lauterbach

Some of the more complex analysis features require data trace.

• This is an option on ARM9 and ARM11 systems and will be listed as ETM (Embedded Trace
Macrocell) or off-chip trace. Some devices may only offer on-chip trace or ETB (Embedded Trace
Buffer) and this is seldom sufficient for these types of analysis. More information about this
subject can be found in “Arm ETM Trace” (trace_arm_etm.pdf).

• Many Cortex-M based systems have an option for off-chip trace, although not all provide enough
information to perform complex analyses. More information about this can be found in “Training
Cortex-M Tracing” (training_cortexm_etm.pdf).
OS Awareness Manual RIOT | 5©1989-2024 Lauterbach

Configuration

The TASK.CONFIG command loads an extension definition file called “riot.t32” (directory
“~~/demo/<arch>/kernel/riot”). It contains all necessary extensions.

The OS Awareness for RIOT will try to automatically locate all of the required internal information by itself
and, as such, no manual configuration is necessary or possible. In order to achieve this, all symbol tables
must be loaded and accessible at any time the OS Awareness is used.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. Enable SYStem.MemAccess or SYStem.CpuAccess (CPU
dependent).

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. To configure the awareness, use the command:

See also “Hooks & Internals” for details on the used symbols.

Quick Configuration Guide

Example scripts are provided in ~~/demo/<arch>/kernel/riot/boards/<board>. It is recommended to take one
of these as a starting point and modify it to suit your target and setup.

If you already have a setup/configuration script which configures the target and loads the application code
and/or symbols, you can add the following lines to your script after the symbols have been loaded:

These lines will automatically configure the awareness and add a custom menu that provides access to
many of the features.

To get a quick access to the features of the OS Awareness for RIOT with your application, follow this
roadmap:

Format: TASK.CONFIG riot

TASK.CONFIG ~~/demo/<arch>/kernel/riot/riot.t32
MENU.ReProgram ~~/demo/<arch>/kernel/riot/riot.men
OS Awareness Manual RIOT | 6©1989-2024 Lauterbach

1. Start the TRACE32 Debugger.

2. Load your application as normal.

3. Execute the command TASK.CONFIG ~~/demo/<arch>/kernel/riot/riot.t32
(See “Configuration”).

4. Execute the command MENU.ReProgram ~~/demo/<arch>/kernel/riot/riot.men
(See “RIOT Specific Menu”).

5. Start your application.

Now you can access the RIOT extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapter.

Hooks & Internals in RIOT

No hooks are used in the kernel.

To retrieve information on kernel objects, the OS Awareness uses the global RIOT variables and structures.
Be sure that your application is compiled and linked with debugging symbols switched on.

Many of the features of RIOT are defined at build time. If these features were not included in the build,
TRACE32 will not display them.
OS Awareness Manual RIOT | 7©1989-2024 Lauterbach

Features

The OS Awareness for RIOT supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
RIOT components can be displayed:

For a description of the commands, refer to “RIOT Commands”, page 16.

If your hardware allows accessing the memory while the target is running, these resources can be displayed
“On The Fly”, i.e. while the application is running, without any intrusion to the application. Be aware that a
screen update may occur midway through a scheduling operation which may cause display inconsistencies.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

TASK.MailBoX Mailboxes

TASK.MuTeX Mutexes

TASK.RingBuffer Ring buffers

TASK.RMutex Recursive mutexes

TASK.SEMaphore Semaphores

TASK.TaskList Tasks

TASK.TIMer Timers
OS Awareness Manual RIOT | 8©1989-2024 Lauterbach

RIOT pre-fills each address in a thread’s stack with a value that is equal to the address the value is being
written to. To get a correct indication of the amount of stack used, the command TASK.STacK.RESet must
be used. Failure to do this will show all stacks at 100% usage.

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.
This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: If the RTOS serves the Context ID register at task switches, and if the
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.Set <address>|<range> [/<option>] /TASK <task> Set task-related breakpoint.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

Break.CONFIG.UseContextID ON Enables the comparison to the whole Context ID register.

Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.
OS Awareness Manual RIOT | 9©1989-2024 Lauterbach

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

The Break.Set window adds a drop-down list of tasks to aid setting task-aware breakpoints from the user
interface. An example can be seen below.

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.
OS Awareness Manual RIOT | 10©1989-2024 Lauterbach

To display a specific task context, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

If you’d like to see the application code where the task was preempted, then take these steps:

1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.

The TASK.TaskList <thread_magic> window contains a button (“context”) to execute this command with
the displayed task, and to switch back to the current context (“current”).

The current task is also shown on the TRACE32 state line. Right-clicking this will open a pop-up menu listing
all tasks. Selecting one from here will also change the context to the selected task.

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

Frame.TASK [<task>] Display task context.

Frame /Task <task> Display call stack of a task.
OS Awareness Manual RIOT | 11©1989-2024 Lauterbach

Task Runtime Statistics

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

All kernel activities are added to the calling task.

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Trace.List List.TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as
colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records
OS Awareness Manual RIOT | 12©1989-2024 Lauterbach

Function Runtime Statistics

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG(magic) /TraceData

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

Trace.ListNesting Display function nesting

Trace.STATistic.Func Display function runtime statistic

Trace.STATistic.TREE Display functions as call tree

Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis

Trace.Chart.Func Display function timechart

Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart
OS Awareness Manual RIOT | 13©1989-2024 Lauterbach

OS Awareness Manual RIOT | 14©1989-2024 Lauterbach

RIOT Specific Menu

The menu file “riot.men” contains a set of additional menus with RIOT specific menu items. Load this menu
with the MENU.ReProgram command.

You will find a new menu called RIOT OS, which looks like the image below.

• The Display menu items launch the kernel resource display windows.

• The Stack Coverage submenu starts and resets the RIOT specific stack coverage and provides
an easy way to add or remove tasks from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

• The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only task switches (if any) or task switches together with the default display.

• The Perf menu contains additional submenus for task runtime statistics and statistics on task
states.
OS Awareness Manual RIOT | 15©1989-2024 Lauterbach

RIOT Commands

TASK.MailBoX Display mailboxes

Displays a list of all system mailboxes or detailed information about one specific mailbox.

Without any arguments, a table with all created mailboxes will be shown.

The field “magic” is mouse sensitive, double-clicking it opens an appropriate window showing more detail.

Right-clicking it will show a local menu.

Format: TASK.MailBoX [<mailbox_magic>]

<mailbox_magic> Specify a mailbox magic number to display detailed information on that
mailbox.
“magic” is a unique ID, used by the OS Awareness to identify a specific
mailbox (address of the mbox_t structure).
OS Awareness Manual RIOT | 16©1989-2024 Lauterbach

TASK.MuTeX Display mutexes

Displays a list of all mutexes or detailed information about one specific mutex.

Without any arguments, a table with all mutexes will be shown.

The field “magic” is mouse sensitive, double-clicking it opens an appropriate window.

Right-clicking it will show a local menu.

Format: TASK.MuTeX [<mutex_magic>]

<mutex_magic> Specify a mutex magic number to display detailed information on that
mutex.
“magic” is a unique ID, used by the OS Awareness to identify a specific
mutex (address of the mutex_t structure).
OS Awareness Manual RIOT | 17©1989-2024 Lauterbach

TASK.RingBuffer Display ring buffers

Shows a list of all ring buffers in the system.

Right-clicking it will show a local menu.

TASK.RMutex Display recursive mutexes

Displays a list of all recursive mutexes.

Right-clicking the magic of a recursive mutex will open a context specific menu.

Format: TASK.RingBuffer

Format: TASK.RMutex
OS Awareness Manual RIOT | 18©1989-2024 Lauterbach

TASK.SEMaphore Display semaphores

Displays a list of all semaphores or detailed information about one specific semaphore.

Without any arguments, a table with all semaphores will be shown.

The field “magic” is mouse sensitive, double-clicking it opens an appropriate window showing more
information about a single semaphore.

Right-clicking it will show a local menu.

Format: TASK.SEMaphore [<semaphore_magic>]

<semaphore_magic> Specify a semaphore magic number to display detailed information on
that semaphore.
“magic” is a unique ID, used by the OS Awareness to identify a specific
task (address of a sema_t structure).
OS Awareness Manual RIOT | 19©1989-2024 Lauterbach

TASK.TaskList Display threads

Displays a list of threads or detailed information about one specific thread.

The “magic” field is mouse sensitive, double-clicking it opens an appropriate window.

 Right-clicking it will show a local menu.

Format: TASK.TaskList [<thread_magic>]

<thread_magic> Specify a thread magic number to display detailed information on that
thread.
“magic” is a unique ID, used by the OS Awareness to identify a specific
timer (address of the thread_t structure).
OS Awareness Manual RIOT | 20©1989-2024 Lauterbach

TASK.TIMer Display timers

Displays a list of all unexpired timers.

Right-clicking the magic of a timer will open a context specific menu.

Format: TASK.TIMer
OS Awareness Manual RIOT | 21©1989-2024 Lauterbach

RIOT PRACTICE Functions

There are special definitions for RIOT specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Parameter and Description:

Return Value Type: Hex value.

Syntax: TASK.CONFIG(magic | magicsize | tcb)

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

tcb Parameter Type: String (without quotation marks).
Returns the name of the TCB structure.
OS Awareness Manual RIOT | 22©1989-2024 Lauterbach

Frequently-Asked Questions

Why does a thread not show as semaphore blocked?

RIOT implements semaphores as a layer on top of a mutex. When a thread is blocked on a semaphore, in
reality it is blocked on the underlying mutex. The status bit in the TCB shows mutex blocked. This is the
correct behavior of RIOT OS.

Why is a thread listed as mutex blocked when it isn’t?

When a thread acquires a mutex, RIOT sets the status bit in the TCB as mutex blocked, even though the
thread is not blocked.

If a thread makes a non-blocking attempt to lock a mutex (for example: mutex_trylock()), it is
temporarily marked as mutex blocked by RIOT until the next kernel call from that thread.

Both of these are normal behavior.
OS Awareness Manual RIOT | 23©1989-2024 Lauterbach

	OS Awareness Manual RIOT
	Overview
	Terminology
	Brief Overview of Documents for New Users
	Supported Versions
	Restrictions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in RIOT

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Function Runtime Statistics
	RIOT Specific Menu

	RIOT Commands
	TASK.MailBoX Display mailboxes
	TASK.MuTeX Display mutexes
	TASK.RingBuffer Display ring buffers
	TASK.RMutex Display recursive mutexes
	TASK.SEMaphore Display semaphores
	TASK.TaskList Display threads
	TASK.TIMer Display timers

	RIOT PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information

	Frequently-Asked Questions

