LAUTERBACH A

OS Awareness Manual
RealTimeCraft

OS Awareness Manual RealTimeCraft

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 DOCUMENTS ciceeiiiiiiiemns s inisess s snnsss s s rassss e e s s e s ee e m s e e ea s m s e b e a s mn e e R e a s annn e nnnnnn

AN

OS AWAreness MaANUAIScccceeceiiiiimemmeiiriieseesrrrrsnssssresnn—.sran——sssrrresnnsssrannsssrnn————.

OS Awareness Manual RealTimeCraftccccciiiiiimmmsciiiiiieseir e ssss s s nnssss e s asnnses
Brief Overview of Documents for New Users

L0041 1T 11T - 11)
Quick Configuration
Hooks in XEC 68

=T 11 =
Display of Kernel Resources
Function Runtime Statistics
Task Runtime Analysis
Task State Analysis
System Call Trace

XEC 68 COMMANAS ueieceemmiiriiiriinissssssmsmmmsss s s s s s s sss s smmmmms s s s s e e e e e s s a s mmmmmnene s e e s eensnnnn s nnnnns
TASK.DeLaY Delay table
TASK.MailBoX Mailbox table
TASK.SEMaphore Semaphore table
TASK.SysCall Execute XEC 68 system call
TASK.TASK Task table

© © © 0 W 0 N NO”COL”LOLEOO”E O b~ b W=

©1989-2024 Lauterbach OS Awareness Manual RealTimeCraft | 2

OS Awareness Manual RealTimeCraft

Version 06-Jun-2024

Brief Overview of Documents for New Users

Architecture-independent information:

“Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.

“T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

“General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

“Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

“OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

The OS Awareness for RealTime Craft supports the following features:

©1989-2024 Lauterbach OS Awareness Manual RealTimeCraft |

3

Configuration

The PRACTICE file 'prtc.cmm’ patches XEC 68 and configures the OS Awareness. The macros, defined at
the beginning of the file, specify the address of XEC 68, the address of the current-tcb pointer, and the
vectors which are used to enter the kernel. Be sure tat emulation memory has been mapped to the address
space of the system tables. Otherwise the display functions will not work with dual-port access.

Format: TASK.CONFIG rtc <magic_address> <sleep> <data_area> <config_table>
<system_call_gate>

<magic_address> Specifies a memory location that contains the current running task.
<sleep> The argument for <sleep> is currently not used. Specify '0".
<data_area> Address of the XEC data area (label “XecDataad”)
<config_table> Kernel configuration table address (label “ConfigTable”)
<system_call_gate> Address of the system call patch routine

If the task selective debugging features are not used, the patching of the kernel is not required. The
PRACTICE script 'prtc.cmm’ can make the required patches to XEC 68 and configure the display command:

DO prtc nopatch ; configures only display functions
; no patches are made

DO prtc ; patched XEC 68 for task selective debugging

When patching is required the patch area in the PRACTICE script file must be modified to point to an
unused memory area.

The demo script 'rtc.cmm’ in the '~~/demo/m68k/kernel/ric' directory can be started with the same
parameters.

Quick Configuration

To access all features of the OS Awareness you should follow the following roadmap:

©1989-2024 Lauterbach OS Awareness Manual RealTimeCraft | 4

1. Run the demo script (~~/demo/m68k/kernel/rtc/rtc.cmm) without any patching. Start the demo
with 'do rtc nopatch'. The result should be a list of tasks, which change continuously their state.

2. Run the demo script with patching.
3. Try the analyzer demo programs (tasksc, taskstat and taskfunc).

4. Make a copy of the 'prtc.cmm' PRACTICE file. Modify the file according to your application. This
can be changing XEC Entry Trap or choosing a different memory area for the patches.

5. Run the modified version in your application without patching (with 'nopatch' argument). This
should allow you to display the kernel resources and use most of the analyzer features (except
the system call display).

6. Run your application with patching.

Hooks in XEC 68

To determine the entry of a task, the patching of XEC 68 is required. All returns to the task context (usually
RTE instructions) are patched to pass control to the multitask monitor. The patch writes the current
executing tcb address to the magic-word of the OS Awareness.

The entries to XEC 68 are patched directly in the vector table. The patches write the value 1 to the magic-
word and run to a breakpoint.

©1989-2024 Lauterbach OS Awareness Manual RealTimeCraft | 5

Features

Display of Kernel Resources

The resources are usually read by dual port memory. For correct operation memory must be mapped at all
places where XEC 68 holds its tables. The following information can be displayed:

. Tasks (TASK)

J Mailboxes (MAILBOX)

. Semaphores (SEMAPHORE)
. Delays (DELAY)

Function Runtime Statistics

All function related statistic and time chart functions can be used with or without patching the kernel. The
difference is whether the kernel will be seen like another task or as part of the task who called the kernel.
Task selective debugging should not be used when statistics are made, as this would cause an error in the
measurements. The task switch can be displayed in the analyzer list with the List. TASK keyword. The
example script 'taskfunc.cmm' makes a task-selective performance analysis for the demo application.

Analyzer.STATistic. TASKFunc Display function runtime statistic
Analyzer.STATistic. TASKTREE Display functions as tree

Analyzer.Chart. TASKFunc Display function time chart

Analyzer.List List. TASK FUNC Display function nesting in analyzer

Task Runtime Analysis

The time spend in a task can be analyzed by marking the access to a word holding a pointer to the current
tasks tcb. This can either be in the kernel or in the patch programs. In the first case the runtime in the kernel
will be added to the last task which called the kernel. If the 'magic’ word in the patch program is marked, the
kernel is treated like another task. Task selective debugging should not be used when statistics are made, as
this would cause an error in the measurements. The example script 'taskfunc.cmm' can be used to make the
measurement for this analysis.

Analyzer.STATistic.TASK Display task runtime statistic
Analyzer.Chart.TASK Display task runtime time chart

©1989-2024 Lauterbach OS Awareness Manual RealTimeCraft | 6

Task State Analysis

The time different tasks are is a certain state (running, ready, suspended or waiting) can be displayed as a
statistic or in graphical form. This feature is implemented by recording all accesses to the status words of all
tasks. Additionally the accesses to the current tcb pointer or the magic word are traced. This is required as
the status of a task makes no difference between 'running' and 'ready'. The example script ‘taskstat.cmm'’
makes a task state analysis with the demo application.

Analyzer.STATistic. TASKState Display task state statistic
Analyzer.Chart. TASKState Display task state time chart

System Call Trace

System calls with parameters can be traced and used as trigger criteria by the state analyzer. This feature

requires patching the kernel. The example script 'tasksc.cmm' makes a trace of system calls and task
switches in the demo application.

I Analyzer.List List. TASK Display system calls

©1989-2024 Lauterbach OS Awareness Manual RealTimeCraft | 7

XEC 68 Commands

TASK.DeLaY Delay table

Format: TASK.DelLaY

Displays the delay table of XEC 68.

TASK.MailBoX Mailbox table

Format: TASK.MailBoX [<mailbox_id>]

Displays the mailbox table of XEC 68. With a mailbox id as an argument it displays one mailbox in detall, i.e.
with it's associated message queue.

©1989-2024 Lauterbach OS Awareness Manual RealTimeCraft | 8

TASK.SEMaphore Semaphore table

Format: TASK.SEMaphore

Displays the semaphore table of XEC 68.

TASK.SysCall Execute XEC 68 system call
Format: TASK.SysCall <function> <d1.w> <d2./> <d3.I>
<function>: StopTask | CurrTask | TaskState | TaskPrio | ChgPrio
SigEvent | WaitEvent | EventsOcc | CirEvents | V
TESTP | SEND | TestRec | ClearSem | ClearMBx

Executes a system call. The function can only be executed, when the emulation is stopped in a regular task.
The function runs under the current task ID. Take care that a preempted task switch (e.g. in waiting
conditions) can hang the emulation. So no task switch condition should be given in a system call.

TASK.SysCall stoptask 3

TASK.SysCall send 1 0 12345678

TASK.TASK Task table

Format: TASK.TASK [<task_id>]

Displays the task-table of XEC 68. With a task ID as an argument it displays one task in detail.

©1989-2024 Lauterbach OS Awareness Manual RealTimeCraft | 9

	OS Awareness Manual RealTimeCraft
	Brief Overview of Documents for New Users
	Configuration
	Quick Configuration
	Hooks in XEC 68

	Features
	Display of Kernel Resources
	Function Runtime Statistics
	Task Runtime Analysis
	Task State Analysis
	System Call Trace

	XEC 68 Commands
	TASK.DeLaY Delay table
	TASK.MailBoX Mailbox table
	TASK.SEMaphore Semaphore table
	TASK.SysCall Execute XEC 68 system call
	TASK.TASK Task table

