
MANUAL

OS Awareness Manual PXROS

OS Awareness Manual PXROS

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 OS Awareness Manuals .. 

 OS Awareness Manual PXROS ... 1

 History .. 3

 Overview .. 3

 Brief Overview of Documents for New Users 4

 Supported Versions 4

 Configuration ... 5

 Quick Configuration Guide 5

 Hooks & Internals in PXROS 6

 Debug Features ... 7

 Display of Kernel Resources 7

 Task Stack Coverage 7

 Task-Related Breakpoints 8

 Task Context Display 9

 SMP Support 9

 Dynamic Task Performance Measurement 10

 PXROS Specific Menu 11

 Trace Features ... 12

 Task Runtime Statistics 12

 Function Runtime Statistics 13

 CPU Load Analysis 15

 PXROS Specific Menu for Tracing 16

 PXROS Commands ... 17

 TASK.ListmbX Display mailboxes 17

 TASK.ListObject List objects 17

 TASK.ListObj.DeLaY Display delay objects 18

 TASK.ListObj.MailBoX Display mailboxes 18

 TASK.ListObj.MemClass Display memory classes 19

 TASK.ListObj.MeSsaGe Display message objects 19

 TASK.ListObj.OPool Display object pools 20

 TASK.ListTask Display task table 20
OS Awareness Manual PXROS | 2©1989-2024 Lauterbach

OS Awareness Manual PXROS

Version 06-Jun-2024

History

08-Oct-19 Added support for PXROS v7.

Overview

The OS Awareness for PXROS contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.
OS Awareness Manual PXROS | 3©1989-2024 Lauterbach

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently PXROS is supported for the following versions:

• PXROS 4.x on C166/C167, PowerPC and TriCore

• PXROS 5.x, 6.x, 7.x and 8.x on TriCore
OS Awareness Manual PXROS | 4©1989-2024 Lauterbach

Configuration

The TASK.CONFIG command loads an extension definition file called “pxros.t32” (directory
“~~/demo/<arch>/kernel/pxros”). It contains all necessary extensions.

Without any parameters, the debugger tries to locate the internals of PXROS automatically. For this purpose,
the kernel symbols must be loaded and accessible at any time the OS Awareness is used (see also “Hooks
& Internals”).

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

Quick Configuration Guide

Example scripts are provided in ~~/demo/<arch>/kernel/pxros. It is recommended to take one of these as a
starting point and modify it to suit your target and setup.

If you already have a setup/configuration script which configures the target and loads the application code
and/or symbols, you can add the following lines to your script after the symbols have been loaded:

These lines will automatically configure the awareness and add a custom menu that provides access to
many of the features.

TASK.CONFIG ~~/demo/<arch>/kernel/pxros/pxros.t32 [<magic_address> [<args>]]

<magic_address> Specifies a memory location that contains the current running task. This
address can be found at “...”.

<args> The configuration requires additional arguments, that are:
• <sleep>: Currently not used, specify “0”
• <dpp>: (only on C166) The first argument configures the data

page settings of the application. Specify a long word which least
significant byte is the dpp0 content and which most significant byte
is the dpp3 content. E.g. '03060500' means dpp0=0, dpp1=5,
dpp2=6 and dpp3=3. If you don't know the dpp settings of your
application, just start it for a while and check in the 'register' com-
mand the dpp's. Note that the dpp settings must be adapted to every
single application.

• <internal>: The next three arguments are PXROS internal struc-
tures. Specify “__PxTasklist __PxTaskRdyFromRdy
__PxUsedObjs”.

TASK.CONFIG ~~/demo/<arch>/kernel/pxros/pxros.t32
MENU.ReProgram ~~/demo/<arch>/kernel/pxros/pxros.men
OS Awareness Manual PXROS | 5©1989-2024 Lauterbach

Hooks & Internals in PXROS

No hooks are used in the kernel.

To retrieve information on the kernel data and structures, the OS Awareness uses the global kernel symbols
and structure definitions. Ensure that access to those structures is possible every time when features of the
OS Awareness are used.

Be sure that your application is compiled and linked with debugging symbols switched on.
OS Awareness Manual PXROS | 6©1989-2024 Lauterbach

Debug Features

The OS Awareness for PXROS supports the following debug features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
PXROS components can be displayed:

For a description of the commands, refer to chapter “PXROS Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

TASK.ListObject.DeLaY Delay objects

TASK.ListObject.MailBoX or TASK.ListmbX Mailboxes

TASK.ListObject.MemClass Memory classes

TASK.ListObject.MeSsaGe Message objects

TASK.ListObject.OPool Object pools

TASK.ListTask Tasks
OS Awareness Manual PXROS | 7©1989-2024 Lauterbach

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.
This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: If the RTOS serves the Context ID register at task switches, and if the
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,

Break.Set <address>|<range> [/<option>] /TASK <task> Set task-related breakpoint.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

Break.CONFIG.UseContextID ON Enables the comparison to the whole Context ID register.

Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.
OS Awareness Manual PXROS | 8©1989-2024 Lauterbach

you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

If you’d like to see the application code where the task was preempted, then take these steps:

1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.

SMP Support

The OS Awareness supports symmetric multiprocessing (SMP).

Frame.TASK [<task>] Display task context.

Frame /Task <task> Display call stack of a task.
OS Awareness Manual PXROS | 9©1989-2024 Lauterbach

An SMP system consists of multiple similar CPU cores. The operating system schedules the threads that
are ready to execute on any of the available cores, so that several threads may execute in parallel.
Consequently an application may run on any available core. Moreover, the core at which the application runs
may change over time.

To support such SMP systems, the debugger allows a “system view”, where one TRACE32 PowerView GUI
is used for the whole system, i.e. for all cores that are used by the SMP OS. For information about how to set
up the debugger with SMP support, please refer to the Processor Architecture Manuals.

All core relevant windows (e.g. Register.view) show the information of the current core. The state line of the
debugger indicates the current core. You can switch the core view with the CORE.select command.

Target breaks, be they manual breaks or halting at a breakpoint, halt all cores synchronously. Similarly, a Go
command starts all cores synchronously. When halting at a breakpoint, the debugger automatically switches
the view to the core that hit the breakpoint.

Because it is undetermined, at which core an application runs, breakpoints are set on all cores
simultaneously. This means, the breakpoint will always hit independently on which core the application
actually runs.

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

OS Awareness Manual PXROS | 10©1989-2024 Lauterbach

PXROS Specific Menu

The menu file “pxros.men” contains a menu with PXROS specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called PXROS.

• The Display menu items launch the kernel resource display windows.

• The Stack Coverage submenu starts and resets the PXROS specific stack coverage and
provides an easy way to add or remove tasks from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

• The Trace, List menu is extended.

- “Task Switches” shows a trace list window with only task switches (if any)

- “Default and Tasks” shows switches together with the default display.

• The Perf menu contains additional submenus

- “Task Runtime” enables and shows the task runtime analysis

- “Task Function Runtime” enables and shows the function runtime statistics based on tasks

- “CPU Load” enables and shows the CPU load analysis
OS Awareness Manual PXROS | 11©1989-2024 Lauterbach

Trace Features

The OS Awareness for PXROS supports the following trace features.

Task Runtime Statistics

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Trace.List List.TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as
colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records
OS Awareness Manual PXROS | 12©1989-2024 Lauterbach

Function Runtime Statistics

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG(magic) /TraceData
OS Awareness Manual PXROS | 13©1989-2024 Lauterbach

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

Trace.ListNesting Display function nesting

Trace.STATistic.Func Display function runtime statistic

Trace.STATistic.TREE Display functions as call tree

Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis

Trace.Chart.Func Display function timechart

Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart
OS Awareness Manual PXROS | 14©1989-2024 Lauterbach

CPU Load Analysis

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the CPU load.
The CPU load is calculated by comparing the time spent in all tasks against the time spent in the idle task.
The measurement is done by using the GROUP command to group all idle tasks and calculating the time
spent in all other tasks.

Example: Two idle tasks named “IdleTask1” and “IdleTask2”:

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

When CPU load analysis is no longer needed, or if a detailed Task Runtime Statistic is needed, disable the
grouping of the tasks with:

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

; Create a group called "idle" with the idle tasks
GROUP.CreateTASK "idle" "IdleTask1"
GROUP.CreateTASK "idle" "IdleTask2"

; Unmark “idle” and mark all others in red
GROUP.COLOR "idle" NONE
GROUP.COLOR "other" RED

; Merge idle tasks and other tasks
GROUP.MERGE "idle"
GROUP.MERGE "other"

Trace.STATistic.TASK Display CPU load statistic evaluation

Trace.PROfileChart.TASK Display CPU load as colored graph

;comments
GROUP.SEParate "idle"
GROUP.SEParate "other"
OS Awareness Manual PXROS | 15©1989-2024 Lauterbach

PXROS Specific Menu for Tracing

The menu entries specific to tracing are already described in the menu for debug features.
OS Awareness Manual PXROS | 16©1989-2024 Lauterbach

PXROS Commands

TASK.ListmbX Display mailboxes

This command is just an alias for Task.ListObj.MailBoX. See there for a description.

TASK.ListObject List objects

List PXROS objects. See detailed descriptions below.

Format: TASK.ListmbX <mbx_id>

Format: TASK.ListObject.[<object>]

<object>: MeSsaGe | DeLaY | OPool | MemClass | MailBoX
OS Awareness Manual PXROS | 17©1989-2024 Lauterbach

TASK.ListObj.DeLaY Display delay objects

Displays a table of the delay objects in the system.

TASK.ListObj.MailBoX Display mailboxes

Without any argument, this command displays all system and private mailboxes.With a mailbox a mailbox id
as an argument, it shows the specified mailbox with it's pending messages and waiting tasks.

Format: TASK.ListObj.DeLaY

Format: TASK.ListObj.MailBoX <mbx_id>
OS Awareness Manual PXROS | 18©1989-2024 Lauterbach

TASK.ListObj.MemClass Display memory classes

Displays a table of the memory classes.

The 'type' field contains the memory class type. If this is fixed, the 'blksize' field contains the block size.

'fbytes' and 'fblks' contain the free bytes and free blocks in that mc.

TASK.ListObj.MeSsaGe Display message objects

Displays a table of the message objects in the system.

The 'data' field shows the pointer to the message data.

The 'size' field specifies the message size, while 'buff' is the siye of the entire data area.

The 'type' is either 'Req' for 'PxMsgRequest' or Env for 'PxMsgEnvelop'.

Format: TASK.ListObj.MemClass

Format: TASK.ListObj.MeSsaGe
OS Awareness Manual PXROS | 19©1989-2024 Lauterbach

TASK.ListObj.OPool Display object pools

Displays a table of the object pools.

The 'wait' column contains the number of waiting tasks.

TASK.ListTask Display task table

Without any argument this command displays a list of tasks. For an explanation of the mode bits check the
PXmon manual.

With an ID or a task name as an argument, you get a detailed description of that task.

Format: TASK.ListObj.Opool

Format: TASK.ListTask <task>
OS Awareness Manual PXROS | 20©1989-2024 Lauterbach

	OS Awareness Manual PXROS
	History
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in PXROS

	Debug Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	SMP Support
	Dynamic Task Performance Measurement
	PXROS Specific Menu

	Trace Features
	Task Runtime Statistics
	Function Runtime Statistics
	CPU Load Analysis
	PXROS Specific Menu for Tracing

	PXROS Commands
	TASK.ListmbX Display mailboxes
	TASK.ListObject List objects
	TASK.ListObj.DeLaY Display delay objects
	TASK.ListObj.MailBoX Display mailboxes
	TASK.ListObj.MemClass Display memory classes
	TASK.ListObj.MeSsaGe Display message objects
	TASK.ListObj.OPool Display object pools
	TASK.ListTask Display task table

