LAUTERBACH A

OS Awareness Manual PXROS

OS Awareness Manual PXROS

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns r—
OS AWareness MaANUAISccciicecrriiiissiriinissss s rssssss s s s ssss e s eassam s s e e s s amn e s enasame s e e ansammn e nnnsan r—~
OS Awareness Manual PXROSiiiiicrirrscccerressssme s ssss e s s essssmme s sessssmms s essssmmsssesssammsseeas 1
L 1= (o 3
O oY = 3
Brief Overview of Documents for New Users 4
Supported Versions 4
L0704} T 11T = Lo o 5
Quick Configuration Guide 5
Hooks & Internals in PXROS 6
Debug FEAtUres ... s s 7
Display of Kernel Resources 7
Task Stack Coverage 7
Task-Related Breakpoints 8
Task Context Display 9
SMP Support 9
Dynamic Task Performance Measurement 10
PXROS Specific Menu 11
Trace FEAtUIeS ... s s e e e mmm s s s e e e n e e sn s nmnnnns 12
Task Runtime Statistics 12
Function Runtime Statistics 13
CPU Load Analysis 15
PXROS Specific Menu for Tracing 16
PXROS COMMANAS ...ccceciiiiiiianiniisssssssissssmssssnsssssss s ssssssms s sessssmmss sesssamms s snsssnnnnsessssnmnnsnssssnmnnnnas 17
TASK.ListmbX Display mailboxes 17
TASK . ListObject List objects 17
TASK.ListObj.DeLaY Display delay objects 18
TASK.ListObj.MailBoX Display mailboxes 18
TASK.ListObj.MemClass Display memory classes 19
TASK.ListObj.MeSsaGe Display message objects 19
TASK.ListObj.OPool Display object pools 20
TASK.ListTask Display task table 20

©1989-2024 Lauterbach OS Awareness Manual PXROS | 2

OS Awareness Manual PXROS

History

Version 06-Jun-2024

08-Oct-19

Overview

Added support for PXROS v7.

A TRACE32 for PXROS = =R
File Edit View Var Break Run CPU Misc Trace Perf Cov MPC3200 PXROS Window Help
[M A+ ||t 2w A=A - AR & @ i 2
o BuTASK ListTask = =R
magic name state prio [thlimit |modebits [abrt_evs zaved_evs
mElask run | 31. [A__T
001BFECO |TtyTask w 9. |no Timit |_ p _ t |00000096 (00000000
0018F568 |ClockTask w 8. |no 1 t A £ Sononion SODoRoD
0018E440 |LedServer w 12. |no 1 t
o - Lo : :
0018D308 (Taskl w | 10. |no Timit |o| o BTASK.ListObj.MeSsaGE =N =R)
DO018C1EQ (Task2 W 11. no Timit name 1d owner user z1ze |type reqguesting
Task3 W 11. |no it < fax 001902E4 [InitTask none 0. [Req [none ~
n A 00190344 |[ClockTask |TtyTask 0. [Env
< n A 00190404 |Taskl TtyTask 0. [Env
L OO ONASA T 1 = 0. |[Env
1 . 0. |E
& B:TASK ListmbX bedbE eS| o [rea
name id type mormsgs [priomsgs waiting [request//owner i 2
n,/a= 00190114 [private . 0. 0. (ker‘nelg J InitTask ~ >
<n/a= 0018FF9C |private [100. 0. 0. J TtyTask
<n/a= 0018F644 |private | O. 0. 0. J/ ClockTask
<n/a= 0018E51C |private | O. 0. 1. / LedServer
<n/a= 0018D3E4 |private [100. 0. 0. J Taskl
<n/a= 0018C2BC |private [100. 0. 0 ' Task?
<n,/a= 0018B194 |private| O. 0.
% B:TASK.ListObj.Dela¥ = =R
< 1d function |argument |ticks [rest [tas requesting |
00190284 |0010B730 |0018F393 1000 960 iC DckTask none A
00190344 |00000000 |00000000 Taskl none
v
£ >
B::|TASK.
ListTask ListObj ListmbX | TASKSTate pravions
ASP:001019F0 \\pxample\pxample\main+0x1C4 [InitTask stopped MIX |UP

The OS Awareness for PXROS contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.

©1989-2024 Lauterbach

OS Awareness Manual PXROS | 3

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently PXROS is supported for the following versions:
. PXROS 4.x on C166/C167, PowerPC and TriCore
o PXROS 5.x, 6.x, 7.x and 8.x on TriCore

©1989-2024 Lauterbach OS Awareness Manual PXROS | 4

Configuration

The TASK.CONFIG command loads an extension definition file called “pxros.t32” (directory
“~~/demo/<arch>/kernel/pxros”). It contains all necessary extensions.

I TASK.CONFIG ~~/demo/<arch>/kernel/pxros/pxros.t32 [<magic_address> [<args>]]

<magic_address> Specifies a memory location that contains the current running task. This
address can be found at “. . .”.

<args> The configuration requires additional arguments, that are:

<sleep>: Currently not used, specify “0”

<dpp>: (only on C166) The first argument configures the data
page settings of the application. Specify a long word which least
significant byte is the dpp0 content and which most significant byte
is the dpp3 content. E.g. '03060500' means dpp0=0, dpp1=5,
dpp2=6 and dpp3=3. If you don't know the dpp settings of your
application, just start it for a while and check in the 'register' com-
mand the dpp's. Note that the dpp settings must be adapted to every
single application.

<internal>: The next three arguments are PXROS internal struc-
tures. Specify “__PxTasklist __PxTaskRdyFromRdy

_ PxUsedObjs”.

Without any parameters, the debugger tries to locate the internals of PXROS automatically. For this purpose,
the kernel symbols must be loaded and accessible at any time the OS Awareness is used (see also “Hooks

& Internals”).

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

Quick Configuration Guide

Example scripts are provided in ~~/demo/<arch>/kernel/pxros. It is recommended to take one of these as a
starting point and modify it to suit your target and setup.

If you already have a setup/configuration script which configures the target and loads the application code
and/or symbols, you can add the following lines to your script after the symbols have been loaded:

TASK.CONFIG ~~/demo/<arch>/kernel /pxros/pxros.t32
MENU.ReProgram ~~/demo/<arch>/kernel/pxros/pxros.men

These lines will automatically configure the awareness and add a custom menu that provides access to

many of the features.

©1989-2024 Lauterbach

OS Awareness Manual PXROS | 5

Hooks & Internals in PXROS

No hooks are used in the kernel.

To retrieve information on the kernel data and structures, the OS Awareness uses the global kernel symbols
and structure definitions. Ensure that access to those structures is possible every time when features of the

OS Awareness are used.

Be sure that your application is compiled and linked with debugging symbols switched on.

©1989-2024 Lauterbach OS Awareness Manual PXROS | 6

Debug Features

The OS Awareness for PXROS supports the following debug features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
PXROS components can be displayed:

TASK.ListObject.DeLaY Delay objects
TASK.ListObject.MailBoX or TASK.ListmbX Mailboxes
TASK.ListObject.MemClass Memory classes
TASK.ListObject.MeSsaGe Message objects
TASK.ListObject.OPool Object pools
TASK.ListTask Tasks

For a description of the commands, refer to chapter “PXROS Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

©1989-2024 Lauterbach OS Awareness Manual PXROS | 7

b BiTASK.STacK.view = =R
name | low high % [lowest spare max [0 10 20 30 |
Initlask o
TtyTask |0018F6E4 0018FEEOQ 20% |D018FCES 00000505 25%
ClockTask |0018E5BC 0018F558 14% |0018EB0S 00000540 66%
LedServer |0018D494 0018E430 9% |0018E221 Q0000DED 135 |se—
Taskl |0018C35C 0018D2F8 13% |00180059 00000CFD 16%
Task2 |0018B234 0018C1DO0 (00 0 12% |001BBF39 00000005 165 |e—
Task3 |0018410C 0018B0AS |00 0 12% |001BAE1S OQO000D0D 165 |e—
(other) W
£ >

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [[<option>] [TASK <task> Set task-related breakpoint.

o Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

. For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextID ON
Break.CONFIG.MatchASID ON
TASK.List.tasks

Enables the comparison to the whole Context ID register.
Enables the comparison to the ASID part only.

If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,

©1989-2024 Lauterbach

OS Awareness Manual PXROS | 8

you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

a B::Break.List EI@

K ekte Al O Dssbe Al @ Eabie Al @ it || L 1mpl... |52 Store...| o Load... | EdiSet...

address types impl taszk |
C:0010520C [Program SOFT "Task1™ PxM=gSend
C:OOlOSGSSEPr‘ogr‘a.m SOFT "TtyTask™ PxM=gRelease

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:
I Frame.TASK [<task>] Display task context.

o Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

. To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

I Frame /Task <task> Display call stack of a task.

If you'd like to see the application code where the task was preempted, then take these steps:

1. Open the Frame /Caller /Task <task> window.
2. Double-click the line showing the OS service call.
SMP Support

The OS Awareness supports symmetric multiprocessing (SMP).

©1989-2024 Lauterbach OS Awareness Manual PXROS | 9

An SMP system consists of multiple similar CPU cores. The operating system schedules the threads that
are ready to execute on any of the available cores, so that several threads may execute in parallel.
Consequently an application may run on any available core. Moreover, the core at which the application runs
may change over time.

To support such SMP systems, the debugger allows a “system view”, where one TRACE32 PowerView GUI
is used for the whole system, i.e. for all cores that are used by the SMP OS. For information about how to set
up the debugger with SMP support, please refer to the Processor Architecture Manuals.

All core relevant windows (e.g. Register.view) show the information of the current core. The state line of the
debugger indicates the current core. You can switch the core view with the CORE.select command.

Target breaks, be they manual breaks or halting at a breakpoint, halt all cores synchronously. Similarly, a Go
command starts all cores synchronously. When halting at a breakpoint, the debugger automatically switches
the view to the core that hit the breakpoint.

Because it is undetermined, at which core an application runs, breakpoints are set on all cores
simultaneously. This means, the breakpoint will always hit independently on which core the application
actually runs.

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

= B:PERF.LTASK = =R
& senp... || 28 config...| (Y Goto... || B Detaied | O, View || Profie| @ Init || O Dissble || @ Arm
runtime: 100%
name ratio 1% 2% 5% 10% 20% 50% 100 |
Tasks 0. 000%
Task2 0. 000%
Taskl 0. 000%
LedServer 0.000%
ClockTask 0.000%
TtyTask 0. 000%
InitTask 100. 000%

©1989-2024 Lauterbach OS Awareness Manual PXROS | 10

PXROS Specific Menu

The menu file “pxros.men” contains a menu with PXROS specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called PXROS.

Cov MPC5200 PXROS Window Help

B 6 e d DbployToss L XY
D K

List Mailboxes
List Object L4 Messages
Delays

Stack Coverage L4 .
Object Pools

Mailboxes
. The Display menu items launch the kernel resource display windows.
. The Stack Coverage submenu starts and resets the PXROS specific stack coverage and

provides an easy way to add or remove tasks from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:
. The Trace, List menu is extended.
- “Task Switches” shows a trace list window with only task switches (if any)
“Default and Tasks” shows switches together with the default display.
. The Perf menu contains additional submenus
“Task Runtime” enables and shows the task runtime analysis
- “Task Function Runtime” enables and shows the function runtime statistics based on tasks

- “CPU Load” enables and shows the CPU load analysis

©1989-2024 Lauterbach OS Awareness Manual PXROS | 11

Trace Features

The OS Awareness for PXROS supports the following trace features.

Task Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spentin
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as

colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

©1989-2024 Lauterbach OS Awareness Manual PXROS | 12

= BuTrace STATistic. TASK

ratio | |

100.0

Function Runtime Statistics

Z2sep... || 1if Goups... || 38 Gonfig.. | = |Detailed || i Nesting| Al Chart || B Profile
tasks: 8. total: 4.713ms
range: 28493..75623
range total min max avr count ratio® [|1% 2% 5% 10% 20% 50% 100
Cunknown) [579.100us | 579.100us [579.100us | 579.100us 1] 12.287%
ClockTask | 761.900us 70.300us | 691.600us | 380.950us 2 16.165%
TtyTask | 316.500us 95.700us | 110. 800us | 105.500us 3 6. 7155 [—
LedServer | 291.000us 70.300us | 220.700us | 145.500us 2 6.174%
InitTask 1.879ms 65.300us | 462.700us | 208. 800us 9 39.872%
Taskl | 392.600us 70.200us | 252.100us | 130.867us 3 8.330%
Task2 | 245.900us 70.300us | 175.600us | 122.950us 2 5.217%
Task3 | 246.800us 70. 320 1 £ O 1 A0 £ &
(il B Trace. Chart. TASK = =R =
J2sep... || iifGous... | 38 Gnfig... | Goto... | A Goto... | #3Find... | «In | »0+0ut| ©Ful
. 000ms 4.000ms 5.000ms &.000ms 7.000ms 8.
rangefqy
InitTaskhy
ClockTaskgy
TtyTaskiy
LedServer ik
Task1 gy
Task2 &y
Task3 &y
B B:Trace PROfileChart. TASK
B senp.., | 1if Goups... | 28 @nfig... || 1Y Goto...|| #3Fnd... | @ In | vOvost|[EEFul| S1n || Sout| B Full] Fine |/Coarse
100.000us [l Cunknown) [l InitTask ClockTask [l TtyTask M LedServer Taskl
3.000ms 4.000ms 5.000ms &.000ms 7.000ms

NOTE:

This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The

function timings will be calculated dependent on the task that called this function. To do this, in addition to the

function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following

command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic)

/TraceData

©1989-2024 Lauterbach

OS Awareness Manual PXROS

13

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID
ETM.

ContextID 32

(e.qg.

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting
Trace.STATistic.Func
Trace.STATistic.TREE
Trace.STATistic.sYmbol /SplitTASK
Trace.Chart.Func

Trace.Chart.sYmbol /SplitTASK

32bit)

Display function nesting

Display function timechart

Display function runtime statistic
Display functions as call tree

Display flat runtime analysis

Display flat runtime timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

% B:Trace. CHART.FUNC = =R
J2sep... || iifGous... | 38 Gnfig... | Goto... | A Goto... | #3Find... | «In | »0+0ut| ©Ful
550ms &.600ms 6.650ms &.700ms 6.750ms 6.800ms 6.850
Fange 4k 1 1 1 1 1 1 |
PxAwaitEvents) O S S . LA
—PxEnter W o o Hd S . . L
Px_checkusermode 12| A | S . . L
Px_checktaskstack L] A | S . . L
_PxTasklUnready Bef. . .| . e . . o
_PxD1E]emDequeus A I))]
PxDispatch L A —————— - - —
perform_svc - T - - —]
Pr_sv_exit t —-—
Px_checktask R T o))
SVSERVICE+0XBC BE o))
(root) i —————— - -
_ PxTaskActivate 4 — - -
PxAwaitEvents 4 ——a . .
_PxEnter HH T - H
Px_check =
PX_EE:-T—I;E = B:Trace.STATistic. TREE task tree total min max avr count internalratio internalbar EI@
—PxDIETe] [ey, || ik Goups... | 22 Qonfiy... || (3 Goto...|| = |Detaied | | 5] Nesting|| ' Chart
funcs: 596. total: 4.713ms 6 problems 40 workarounds
range: 28493..75623
taszk tree total min max avr count intern% 1% 2% |
Tunknown) (root) 579.100us - 579.100us | 579.100us 0.057% |+ o
ClockTask |= (root) 761.900us - 761.900us | 761.900us - 0. 000%
ClockTask SVSERVICE+0xBC 20.700us - 20.700us 20.700us 1.(1/0) 0.133% |+
ClockTask = __PxTaskactivate 741.200us - 741.200us | 741.200us 1.(0/1) 0.059% |+
ClockTask PxAwaitEvents 88.200us | B88.200us | B88.200us | B8.200us 1. 0.239% |+
ClockTask = ClockTask 650.200us - 650.200us | 650.200us 1.(0/1) 0.103% |+
ClockTask PxPeInit 135.600us | 135.600us | 135.600us | 135.600us 1. 0.167% |+
ClockTask PxPeStart 25.200us | 25.200us | 25.200us | 25.200us 1. 0.106% |+
ClockTask PxTickGetCount 0.400us 0.400us 0.400us 0.400us 1. 0.008% |+
ClockTask & LedServerSendMsg 139.000us | 139.000us | 139.000us | 139.000us 1. 0.082% |+
ClockTask —E gmtime_r 15.100us 15.100us 15.100us 15.100us 1.(17) 0.014% |+
ClockTask & sprintf 330.000us - 330.000us | 330.000us 1.(0/1) 0.142% |+
TtyTask = (root) 316.500us - 316.500us | 316.500us - 0. 000%
TtyTask I: SVSERVICE+0xBC 20.700us - 20.700us 20.700us 1.(1/0) 0.133% |+
TtyTask = __PxTaskactivate 295.800us - 295.800us | 295.3800us 1.(0/1) 0.055% |+
TtyTask = TtyTask 293.200us - 293.200us | 293.200us 1.(0/1, 0.428% |+
TtyTask —E _init_uart 23.900us 23.900us 23.900us 23.900us 1. 0.331% |+
TtyTask install_uart 0.700us 0.700us 0.700us 0.700us 1. 0.014% |+
TtyTask x*MsgReceive_EviWait 155.800us 92. 800us 93. 000us 92. 900us 2. 0.581% |+
TtyTask —— PxMsgGetData 11. 600us 5.800us 5.800us 5.800us 2. 0.246% |+
TtyTask — ttyoutput 2.100us 2.100us 2.100us 2.100us 1. 0.044% |+
TtyTask — _out_uart 1. 800us 0. 700us 1.100us 0. 900us 2. 0.038% |+
]tyTask '—F PxAwaitEvents 47.100us - 47.100us | 47.100us 1.(0/1) 0.137% |+ W
£ >

©1989-2024 Lauterbach

OS Awareness Manual PXROS |

14

CPU Load Analysis

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the CPU load.
The CPU load is calculated by comparing the time spent in all tasks against the time spent in the idle task.
The measurement is done by using the GROUP command to group all idle tasks and calculating the time

spent in all other tasks.

Example: Two idle tasks named “IdleTask1” and “IdleTask2”:

; Create a group called "idle" with the idle tasks
GROUP.CreateTASK "idle" "IdleTaskl"
GROUP.CreateTASK "idle" "IdleTask2"

; Unmark “idle” and mark all others in red
GROUP.COLOR "idle" NONE
GROUP.COLOR "other" RED

; Merge idle tasks and other tasks
GROUP.MERGE "idle"
GROUP.MERGE "other"

To evaluate the contents of the trace buffer, use these commands:

Trace.STATistic.TASK Display CPU load statistic evaluation
Trace.PROfileChart.TASK Display CPU load as colored graph

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

When CPU load analysis is no longer needed, or if a detailed Task Runtime Statistic is needed, disable the
grouping of the tasks with:

;comments
GROUP.SEParate "idle"
GROUP.SEParate "other"

©1989-2024 Lauterbach OS Awareness Manual PXROS | 15

PXROS Specific Menu for Tracing

The menu entries specific to tracing are already described in the menu for debug features.

©1989-2024 Lauterbach OS Awareness Manual PXROS | 16

PXROS Commands

TASK.ListmbX Display mailboxes

Format: TASK.ListmbX <mbx_id>

This command is just an alias for Task.ListObj.MailBoX. See there for a description.

% BiTASK ListmbX = =R
name id type mormsgs [priomsgs waiting [request//owner
<n fa= 00190114 |[private| O. 0. 0. kernel; J InitTask ~
<n/ a 0018FF9C |private [100. 0. 0 J TtyTask
<n/ a 0018F644 |private | O. 0. 0 J/ ClockTask
<n/ a 0018E51C |private | O. 0. 1 / LedServer
<n/ a 0018D3E4 |private [100. 0. 0. J Taskl
an/ a= 0018C7?EC|nrivate 100 0. 0. J Task?
<n/a= 00186
% B:TASK ListmbX (x18E51C = =R
< name id type mormsgs [priomsgs waiting [request//owner i
[0018E51C |private| 0. [0, [1. [LedServer ~
: none
=5 @ none
: LedServer
v
£ >

TASK.ListObject List objects

Format: TASK.ListObject.[<object>]

<object>: MeSsaGe | DeLaY | OPool | MemClass | MailBoX

List PXROS objects. See detailed descriptions below.

©1989-2024 Lauterbach OS Awareness Manual PXROS | 17

TASK.ListObj.DeLaY Display delay objects

Format: TASK.ListObj.DeLaY

Displays a table of the delay objects in the system.

&% B:TASK ListObj.Dela¥ =N =R)

1d function |argument |ticks [rest [task requesting |
00190284 |0010B730 |0018F393 1000 960 CTockTask none A
00190344 |00000000 |00000000 Taskl none

v
£ >

TASK.ListObj.MailBoX Display mailboxes

Format: TASK.ListObj.MailBoX <mbx_id>

Without any argument, this command displays all system and private mailboxes.With a mailbox a mailbox id
as an argument, it shows the specified mailbox with it's pending messages and waiting tasks.

b B TASK ListObj.MailBoX EI@

1d type mormsgs |priomsgs |waiting |request/owner |
00190114 |[private| O. 0. 0. (ker‘nelg J InitTask ~
0018FF9C |private [100. 0 0. J/ TtyTask
0018F644 |private | O. 0 0. / ClockTask
0018E51C |private | O. 0 1. / LedServer
0018D3E4 |private [100. 0 0. J Taskl

0018C2BC |private [100. 0 0. ,f: Tas!-<2

0018

R B::TASK.ListObj MailBoX 0x18C2BC = =R

< name mormsgs priomsgs waiting request/owner i
|0018CZBC |pr‘1va‘te [100. [0, [0, [Taskz ~

: 00150524 00190568 001505C8 00190628 00190688 001
= ¢ none
: none

©1989-2024 Lauterbach OS Awareness Manual PXROS | 18

TASK.ListObj.MemClass Display memory classes

Format: TASK.ListObj.MemClass

Displays a table of the memory classes.
The 'type' field contains the memory class type. If this is fixed, the 'blksize' field contains the block size.

'foytes' and 'fblks' contain the free bytes and free blocks in that mc.

% B:TASK ListObj.MemClass = =R

name 1d type Thytes [thlks [used [requesting
<n/ax- [001901Ca [Fix | 0. 0. [0.7

v
£ >

TASK.ListObj.MeSsaGe Display message objects

Format: TASK.ListObj.MeSsaGe

Displays a table of the message objects in the system.
The 'data’ field shows the pointer to the message data.
The 'size' field specifies the message size, while 'buff' is the siye of the entire data area.

The 'type' is either 'Req' for 'PxMsgRequest' or Env for 'PxMsgEnvelop'.
% B:TASK.ListObj.MeSsaGE = =R

name id owner user size |type [requesting
<n/a= 0013902E4 [InitTask Req ‘131& ~

00190344
00190404
00190464
001904C4
00190524

ClockTask
Taskl
Task2
Task3
InitTask

<n/ax- Env
<n/ax- Env
<n/ax- Env
<n/ax-
<n/ax»

TtyTask
none

- |Env
. |Reqg

none
none

none
TtyTask

ocoooo0

< >

©1989-2024 Lauterbach OS Awareness Manual PXROS | 19

TASK.ListObj.OPool

Display object pools

Format:

TASK.ListObj.Opool

Displays a table of the object pools.

The 'wait' column contains the number of waiting tasks.

o8 B TASK ListObj.OPool

(o8)

name e

requesting |

1d tvp capac |wait |[superior
<n/ax- 00190224 |real | 0. 0.

<

Ll
v
>

TASK.ListTask

Display task table

Format:

TASK.ListTask <task>

Without any argument this command displays a list of tasks. For an explanation of the mode bits check the

PXmon manual.

With an ID or a task name as an argument,

you get a detailed description of that task.

o BuTASK ListTask = =R
magic name state prio [thlimit |modebits [abrt_evs zaved_evs
mtlask run | 31. L) T (00000000 00000000 .
TtyTask w 9. Timi 00000096 |00000000
ClockTask w 8. 0000000 |00000000
LedServer w 1z. 0000000 |00000000
Taskl w 10. 0000000 |00000000
Task2 w 11. 0000000 |00000000
Task3
o BuTASK ListTask (x18FECO = =R
magic name ztate prio thlimit |modebits [abrt_evs zaved_evs
D018FECO [TtyTask T w 3, [no it p _ t |00000096 |00000000
pc mailbox default mc default opool last error
0010977C 0018FFSC 001901C4 «<n/a= 00190224 «<n/a- NOERROR
stack: pointer used length abortptr
0018FD13 408. 2000. --
£ >

©1989-2024 Lauterbach

OS Awareness Manual PXROS | 20

	OS Awareness Manual PXROS
	History
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in PXROS

	Debug Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	SMP Support
	Dynamic Task Performance Measurement
	PXROS Specific Menu

	Trace Features
	Task Runtime Statistics
	Function Runtime Statistics
	CPU Load Analysis
	PXROS Specific Menu for Tracing

	PXROS Commands
	TASK.ListmbX Display mailboxes
	TASK.ListObject List objects
	TASK.ListObj.DeLaY Display delay objects
	TASK.ListObj.MailBoX Display mailboxes
	TASK.ListObj.MemClass Display memory classes
	TASK.ListObj.MeSsaGe Display message objects
	TASK.ListObj.OPool Display object pools
	TASK.ListTask Display task table

