LAUTERBACH A

OS Awareness Manual PikeOS

OS Awareness Manual PikeOS

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
OS AWareness MaANUAISccciicecrriiiissiriinissss s rssssss s s s ssss e s eassam s s e e s s amn e s enasame s e e ansammn e nnnsan r—~
OS Awareness Manual PikeOS ... crrrrssssme s rsss e s e smme s e s s smme e s e s smme s eesssmmmnneeas 1
L 1= (o 5

O oY = 5
Terminology 6
Brief Overview of Documents for New Users 6
Supported Versions 6
ConfiguIration ... e 7
Quick Configuration Guide 7
Hooks and Internals in PikeOS 8
== LT == 9
Display of Kernel Resources 9
Task Stack Coverage 9
Task-Related Breakpoints 10
Task Context Display 12
MMU Support 14
Space IDs 14
MMU Declaration 14
Scanning System and Processes 17
Symbol Autoloader 17
SMP Support 19
POSIX Personality 19
APEX Personality 20
Linux Personality 20
Dynamic Task Performance Measurement 20
Task Runtime Statistics 21
Function Runtime Statistics 22
PikeOS specific Menu 23
Debugging PikeOS COMPONENLESccciriirmmminiissinrmssssssrnssssmss s sssms s ssssssmsssssssssmss s sssssmmsssnas 24
PikeOS Kernel 24
Downloading the PikeOS Image 24
Debugging the Kernel Startup 25
©1989-2024 Lauterbach OS Awareness Manual PikeOS | 2

Debugging the Kernel 25
System Extensions 25
System Extensions in V3.x 25
System Extensions in V4.x 26
User Tasks 26
Debugging the Task 27
Start Debugging a Task from main 27
Debugging PikeOS Threads 28
POSIX 28
Configuring POSIX Awareness 28
Multiple POSIX Personalities with multiple awareness 29
APEX 30
Configuring APEX Awareness 30
Multiple APEX Personalities with multiple awareness 31
Multiple APEX Personalities with combined awareness 31
ELinOS 33
Linux Kernel 34
Linux Kernel Modules 34
Linux Processes 35
Linux Libraries 35
PikeOS COmMMANAScooiiiiiiiiiiccmme s e e e s s s mm s e s s p e e e e s n s smmmmmm s e s e e e e s snnnnan 36
EXTension.AXInfo Display APEX information 36
EXTension.AXProcess Display APEX processes 36
EXTension.ELModule Display ELinOS modules 37
EXTension.ELProcess Display ELIinOS processes 37
EXTension.ELThread Display ELinOS threads 37
EXTension.PXThread Display POSIX threads 38
TASK.DrvList Display system information 39
TASK.INFO Display system information 40
TASK.Option Set awareness options 40
TASK.ResPart Display resource partitions 41
TASK.TaskAdspace Display task address space 41
TASK.TaskFile.ADD Map file name to task name 41
TASK.TaskFile.view Display file name to task name mapping 42
TASK.TaskList Display ‘PikeOS’ tasks 43
TASK.ThrliSt Display threads 44
PikeOS PRACTICE FUNCLIONSeeeciiieiccerrensccereessssccessssssmme s s essssmme s sessssmmeneenssmmmnneesssmmensneas 45
TASK.CONFIG() OS Awareness configuration information 45
TASK.TASK.MAGIC() magic number of task 45
TASK.TASK.ID() ID of task 45
TASK.TASK.NAME() Name of task 46
TASK.TASK.ID2NAME() Convert task ID to name 46
TASK.TASKNAME2ID() Convert task name to ID 46
©1989-2024 Lauterbach OS Awareness Manual PikeOS 3

TASK.TASKFILE()
EXT.AXPROCESS.THREAD()
EXT.AXPROCESS.THREAD2()
EXT.ELINOS.SPACEID()
EXT.ELPROCESS.NAME()
EXT.ELLIBRARY.ADDRESS()
EXT.ELLIBRARY.SPACEID()
EXT.ELLIBRARY.NAME()
EXT.ELMODULE.MAGIC()
EXT.ELMODULE.NAME()
EXT.ELMODULE.SECADDRY)

Symbol file name of task

PikeOS thread of APEX process
PikeOS thread of APEX process
Space ID of ELinOS personality
Name of ELinOS process

Load address of ELInOS library
Space ID of ELInOS library

Name of ELinOS library

Module magic number of ELInOS module
Name of ELinOS module

Section address of ELinOS module

46
47
47
47
47
48
48
48
48
49
49

©1989-2024 Lauterbach

OS Awareness Manual PikeOS

4

OS Awareness Manual PikeOS

History

Version 06-Jun-2024

Nov-2021

Overview

New command: TASK.TaskAdspace.

/A TRACE32 for PowerPC =n| Wl <
File Edit View Var Break Run CPU Misc Trace Pef Cov MPCEGXK PikeOS Window Help
MR e »n[E 2N D] s @megﬂl
-
[B::Data.List] S%B::TASK.TaskList (===
[Mstep || M Over |[& next |« Retum][¢ up | »Go |[IlBreak | Magic id__ |parent [respart mcp |threads [name |
= B02AB000 0. 0. 0. 2. Kernel ~
addr/1in code label mnemonic <d |so007000 1. 0. 0. 5. PSSW
Epurpose 31200000 2. 1. 1. 25. etho
Busy-wait helper function. 81203000 | 3. | 1. 1. 50, |muxa =
Pretends to do some serious call (51506000 | 40| 1. 1. 1. Monitor
i - - - 81209000 5. 1. 1. 1. Trace_Server
static void calculate(void) 30789000 | 22. | 1. 2. 1. |[controller
R BOTELO00™ | 23. 1. 3. 1. Calculat
UP:0017:08010518| [9421FFE0 caleulate:stwu r1,-0%20(r1) alculator i
UP:0017 :0801051C) |7CO8 mflr ro
UP:0017 : 08010520 stw r0,0x24(rl) . . . — = e
UP ;0017 : 08010524 stw r31,0x1C(r1) o B:TASK TaskList "PSSW ===
UP:0017 : 08010528 mr r3i,rl agic 1d parent respart mcp [threads [name |
P4_time_t now, timeout; 80007000 [1. 0. [O. 255. [5. PS5W ~
now = pd_get_ ‘t'l me();
UP: 0017 :0801052C 9 b1 0x8010074 thrcaclf of th'f task:
UP:0017 : 08010530 mr rlo,r4 magi uid rio ztate threadname
UP:0017 : 08010534 mr ra,r3 80009000 0/1.0 255. SLEEPING Sysgo
UP:0017 : 08010538 stw r9,0x10(r31) 80011000 0/1.3 62. WAIT_EVENT WLconsole
UP: 0017 : 0801053C '313bel4 stw r10 ,0x14(r31) BO7C8000 0/1.5 102, WAIT_RX_EV service
timeout = now + CALC_TIME; BO7CO000 0/1.6 62. WAIT_RX_EV Controller
i i w|817F0010 Iwz ril,0x10(r31) BO7CADOO0 0/1.7 B62. WAIT_RX_EV Calculatorl
UP:0017 : 08010544) |519F0014 1 r12,'3x14(r31)
UP:0017 :08010548) |35E00000 r7 f
UP:0017:0801054C| |3D000003 Tis r8, & B:TASK.ThrliSt = ===
J‘ ! agic uid prio [state taskname threadname
o (81255000 [1/3.45 99 WAIT_RX muxa MuxaRxCh:013 ~
o = |52 | 81256000 |1/3.46 99 WAIT_RX muxa MuxaFstatCh:013
o B:TASK ResPart = B == (51327000 1/3.47 99, | WAIT_RX muxa MuxaTxCh: 014
agic 1d num__ tree mm [task [thr [tem 81258000 |1/3.48 99. | WAIT_RX muxa MuxaRxCh:014
BOLAZF20 0. 18. 0. | 12. 1. 5. 0. ~ 81259000 |1/3.49 99 WAIT_RX muxa MuxaFstatCh:014
BOLAZFS0 1. | 128. | 38. 9. 4. | 77. 0. B120E000 |1/4.0 100 WAIT_RX Monitor
BO1AZFE0 2. 8. 3. 3. 1. 1. 0. B120F000 [1/5.0 100 WAIT_RX Trace_Server Trace_Server
BOLAZFED 3. 8. 3. 3. 1. 1. 0. BO7BCO00 |2/22.0 &0 READY Controller Controller
- BO7B4000% [3/23.0 60. |*READY Calculator Calculator -
4 I 3 4 I 2
B:: TASK.
[Taskiist | [Thrist |[mFo || Respart |[mmMu | [sTATICS | [symbol | pravious
UP:0017:08010540 \\Calculator\calculator\calculate+0x28 Calculator:Calculator 0 |system ready MI{ |UP

The OS Awareness for PikeOS contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.

©1989-2024 Lauterbach

OS Awareness Manual PikeOS |

5

Terminology

The PikeOS kernel uses the term “task” for a collection of threads in an address space, and “thread” for an
execution unit (a PikeOS “task” refers to a “process” in PSSW). If not otherwise specified, the TRACE32
term “task” corresponds to PikeOS “threads”, while a PikeOS “task” corresponds to a “space ID” in
TRACE32. Please consider carefully the different meanings of “task” in both environments.

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACES32 debugger.
J “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

J “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently PikeOS is supported for the following versions:

. PikeOS 1.4, 2.2, 3.1 on PowerPC
These versions are supported with a previous PikeOS awareness not covered by this document.
Contact Lauterbach for more information.

o PikeOS 3.3, 3.4 and 3.5 on ARM, PowerPC and x86
. PikeOS 4.0, 4.1 and 4.2 on ARM, PowerPC and x86
o PikeOS 5.0 and 5.1 on ARM and PowerPC

©1989-2024 Lauterbach OS Awareness Manual PikeOS | 6

Configuration

The TASK.CONFIG command loads an extension definition file called “pikeos.t32” (directory
“~~/demo/<arch>/kernel/pikeos”). It contains all necessary extensions.

Automatic configuration tries to locate the PikeOS internals automatically. For this purpose, the kernel
symbols must be loaded and accessible at any time the OS Awareness is used (see also “Hooks &
Internals”).

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration
omit all arguments:

I TASK.CONFIG ~~/demo/<arch>/kernel/pikeos/<version>/pikeos.t32

(Note: “~~” refers to the TRACE32 installation directory)

Note that the symbols of the PikeOS kernel must be loaded into the debugger. See Hooks & Internals for
details on the used symbols. See also the examples in the demo directories
“~~/demo/<arch>/kernel/pikeos”.

Quick Configuration Guide

To fully configure the OS Awareness for PikeOS, please use one of the demo startup scripts as template.
Find the templates in the directory ~~/demo/<arch>/kernel/pikeos.

“pikeos.cmm” shows a small setup for a simple static PikeOS system, based on the “hello” demo project.
“pikeos-ipc.cmm” shows a setup for a dynamic PikeOS system, based on the “inter-partition-
communication” demo project.

“pikeos-linux.cmm” shows a setup for a PikeOS system with ELinOS partition.

Follow this roadmap:
1. Carefully read the demo start-up scripts (~~/demo/<arch>/kernel/pikeos).
2. Make a copy of the appropriate script. Modify the file according to your application.

3. Run the modified version in your application. This should allow you to display the kernel
resources and use the trace functions (if available).

Now you can access the PikeOS extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapters.

©1989-2024 Lauterbach OS Awareness Manual PikeOS | 7

Hooks and Internals in PikeOS

No hooks are used in the kernel.

For retrieving the kernel data structures, the OS Awareness uses the global kernel symbols of the PSP
kernel. This means that every time, when features of the OS Awareness are used, the symbols of the kernel
must be available and accessible.

PikeOS version 3:

You can find the kernel symbol files in the directory $(PIKEOS_PSP_DIR)/$(PIKEOS_PSP)/objects of your
PikeOS installation. Use the kernel file that your integration project refers to in “project.xml.conf”. If e.g.
“Ukernel” equaled “smp-tracesys”, then use the file “psp-kernel-smp-tracesys”. Load the symbols with the
command:

Data.LOAD.E1lf <path_to_psp>/objects/psp-kernel-smp-tracesys /NoCODE /NoClear

PikeOS version 4 and 5:

You can find the kernel symbol files in the PikeOS installation directory, subdirectory
target/<arch>/<proc>/object/bsp/<board>. Check the BSP directory in the “project.mk” file of your integration
project, settings “PIKEOS_TARGET_FILES” and “PIKEOS_DTS_DIR”. Use the kernel file that your
integration project refers to in “project.rbx”. See the “psp” attribute of the “romimage” element. If e.g. “psp”
refers to “kernel-nodebug-tracesys-smp.bin”, then load the according ELF file with the command:

Data.LOAD.E1f <path_to_board>/kernel-nodebug-tracesys-smp.elf /NoCODE /NoClear

Please also look at the demo startup script pikeos.cmm, how to load the kernel symbols and the symbols of
your application.

©1989-2024 Lauterbach OS Awareness Manual PikeOS | 8

Features

The OS Awareness for PikeOS supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
PikeOS components can be displayed:

TASK.INFO System information
TASK.ResPart Resource partitions
TASK.TaskList Tasks
TASK.ThrliSt Threads

For a description of the commands, refer to chapter “PikeOS Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

©1989-2024 Lauterbach OS Awareness Manual PikeOS | 9

b BuTASK.STack o -E =]

name | low high Towest spare max [0 10 20 30 40
Kernel:1dle |[B0ZAB1AD B02A8F10 |3 B0ZABE40 000009AD 25% |e— ~
Kernel:Idle [B02A71A0 802A7F10 BOZATE7D 00000900 26% |—
P5S5W:5ysgo (300091A0 B0009F10 |5 B00099F0 00000850 38%
P5SW:VMLconsole (30011140 80011F10 50011C50 00000ABD 20%
P5SW:service |807C81A0 B07CBF10 B07CBACO 00000920 32%
P5SW:Controller (807C9140 B07CIF10 B07COC10 00000ATD 22%
P5SW:Calculatorl |807CA1AD B07CAF10 BO7CACLO 00000ATD 22%
eth0:eth0 |8120C1A0 8120CF10 8120CACO 00000920 32%
81226C60 00000ACO 20%
81227C60 00000ACO 20%
81228C60 00000ACO 20%
51210C30 00000AS0 21%
51211C10 00000ATD 22%
§1212C30 00000AS0 21%
81213C10 00000ATD 22%
51214C10 00000A70D 22%
] B1216C30 00000AS0 21% |——
JSIZl?lAO 81217F10 |81217C30 B1217C30 00000ASD 215 |—— 52
4 m 3

ethO:tx-irq |812261A0 81226F10 |3
ethO:rx-irq [812271A0 81227F10
ethO:err-irg 81228140 81228F10
ethO:net-map:0 |812101A0 81210F10 |2
ethO:net-ioct]:0 |812111A0 81211F10 (3
ethO:net-fstat:0 |812121A0 81212F10
ethO:net-read:0 (81213140 81213F10 |5
ethO:net-write:0 |812141A0 81214F10
ethO:net-map:1 [812161A0 81216F10 |2
ethO:net-joctl:1

NOTE: PikeOS does not save the user space stack address and range.
The TASK.STacK.view command by default only shows the system stack range for
the PikeOS threads.

Usually the user stack range is specified with the P4_STACK macro to the
p4_thread_arg() call. If you want to cover this stack range, you have to initialize the
stack with a predefined pattern (usually zero) and add the stack range manually
using the TASK.STacK.Add command.

PikeOS does not initialize the system stack with a predefined pattern. It is up to the
system integrator or application programmer to ensure stack initialization for a
proper stack coverage analysis.

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [I<option>] [TASK <task> Set task-related breakpoint.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

. For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

©1989-2024 Lauterbach OS Awareness Manual PikeOS | 10

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextlD ON Enables the comparison to the whole Context ID register.
Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

©1989-2024 Lauterbach OS Awareness Manual PikeOS | 11

Example for a task-related breakpoint, equivalent to the Break.Set <function> /TASK <task> command:

a B::Break.Set EI@
address / expression .
= name of function
p4_main it = . .
— breakpoint is set on
type options method
@ Program [EXclude [] Temporary
*) ReadWrite [CINOMARK [[Ip1sable action
*) Read [T p1sableHIT stop -
- Write DATA click on “advanced”
- £~ .
LB l || (A sdancondl to get more options
ok] [Add | [Delete | [cancel |
memory / reqgister / var
*) ProgramPass P HLL
_ ProgramFail
| - TASK COUNT name of thread
“Catutor: DT] = related to this breakpoint
CONDition
[FIHLL
CMD
+ [VIRs=E

e B::Break.List EI@
(3% Delete All| (O Disable Al @ Enable Al @ Init |[& 1mpl.. ore...)[2 Load... [KilSet... v
k I

address types impl tas
"ControlTer:ControTTer™

"Calculator:Calculator”

LControlTer GlobaThwm_init

SOFT
YWwCalculatorcalculator'pd_main

SOFT

C:0017 : 030100EC !Pr‘ogr‘a.m
2

C:0016:080108E8 }Pr‘ogr‘am

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

I Frame.TASK [<task>] Display task context.

. Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

. To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

I Frame /Task <task> Display call stack of a task.

If you'd like to see the application code where the task was preempted, then take these steps:

©1989-2024 Lauterbach OS Awareness Manual PikeOS | 12

1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.
@ B::Frame /Task "ControllerController” EI@
“3 Down| [V|Args [VILocals [VIcaller | Task: “Controller:Controller” -

-000][[p4_Tpclasm) i
—001]||vm_call_svc(asm)
—002 | ||vr_cprintf (asm)

003]|[p4_main()

FHinport = ((id = 0), (id = 0), (id = 0))

#outport = ((id = 1), (id = 0), (id = 0))

portconfig = (max_nb_messages = 32, max_msg_size = 256, direction = W
1=

= msgsize
counter = 0x60000000

[task_configured = (1, 0, 0)

= rc = VM_E_OK

= sTeep_time = 3000000000

@mfd = (i = (size = 0, pos = 0, type = W_FILE_T_DIR, oflags = 0, vflags|E
@ taskid = (23, 0, O

[portname = "ContrIn2”

= my_uid = 2108416

=« my_taskid = 22

@ msgbuf = (23, 0, 0, 0, 0, 0, O, O, O, O, 0, 0, O, O, O, O, O, O, O, O,—

}

}
}

/* Show the number of calculations performed by each rem
wvm_cprintf("Calculations performed:");

-004] |p4_entry() Call stack frame of a thread,
| PAmainOs _ | showing the calling line and
e o 0 local variables.

©1989-2024 Lauterbach OS Awareness Manual PikeOS | 13

MMU Support

To provide full debugging possibilities, the Debugger has to know, how virtual addresses are translated to
physical addresses and vice versa. All MMU and TRANSIation commands refer to this necessity.

Space IDs

Different PikeOS Tasks may use identical virtual addresses. To distinguish those addresses, the debugger
uses an additional identifier, the so-called space ID (memory space ID) that specifies to which virtual
memory space the address refers. The command SYStem.Option.MMUSPACES ON enables the use of
the space ID. For all PikeOS Tasks using the kernel address space, the space ID is zero. For Tasks using
their own address space, the space ID corresponds to the task ID. Threads of a particular task use the
memory space of the invoking task. Consequently threads have the same space ID as the task they belong
to.

You may scan the whole system for space IDs using the command TRANSIation.ScanID. Use
TRANSIation.ListID to get a list of all recognized space IDs.

The function task.taskid(“<task>") returns the ID for a given PikeOS Task.

MMU Declaration

To access the virtual and physical addresses correctly, the debugger needs to know the format of the MMU
tables in the target.

The following command is used to declare the basic format of MMU tables:

MMU.FORMAT <format> [<base_address> [<logical_kernel_address_range> Define MMU
<physical_kernel_address>]) table structure

<format> Options for ARM:

<format> Description
STD Standard format defined by the CPU
TINY MMU format using a tiny page size of only 1024 bytes

©1989-2024 Lauterbach OS Awareness Manual PikeOS | 14

<format> Options for PowerPC:

<format> Description

PIKEOS.E500 PIKEOS specific format for PowerPC e500 core with 128-bit PTEs
(formerly named PIKEOSES).Works for PikeOS 4.1 and older. For e500
cores with PikeOS 4.2 and newer use E500MC format.*/

PIKEOS.E500MC PIKEOS specific format for PowerPC e500mc core (PPC64 only)with 32-
bit PTEs.Can also be used with PikeOS 4.2 and newer on PPC32 e500
cores.*/

PIKEOS.E500MC4G PIKEOS specific format for PowerPC e500mc core addressing 4GB of
memory.Has no common address range with 32-bit PTEs.*/

PIKEOS.E5500 PIKEOS specific format for PowerPC 5500 core with 64-bit PTEs

PIKEOS.OEA PIKEOS specific format for PowerPC core (formerly named PIKEOS)for
the OEA architecture */

STD Standard format defined by the CPU

<format> Options for RISC-V:

<format> Description

STD Automatic detection of the page table format from the SATP register.

Sv32 32-bit page table format (for SV32 targets only)

SV32X4 Stage 2 (G-stage) 32-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

SV39 39-bit page table format (for SV64 targets only)

SV39X4 Stage 2 (G-stage) 39-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

Sv4s 48-bit page table format (for SV64 targets only)

SV48X4 Stage 2 (G-stage) 48-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

SV57 57-bit page table format (for SV64 targets only)

SV57X4 Stage 2 (G-stage) 57-bit page table format for page tables translating

intermediate physical addresses. Not applicable to other page tables.

©1989-2024 Lauterbach OS Awareness Manual PikeOS | 15

<format> Options for x86:

<format> Description

EPT Extended page table format (type autodetected)

EPT4L Extended page table format (4-level page table)

EPT5L Extended page table format (5-level page table)

P32 32-bit format with 2 page table levels

PAE Format with 3 page table levels

PAE64 64-bit format with 4 page table levels

PAE64L5 64-bit format with 5 page table levels

STD Automatic detection of the page table format used by the CPU

<base_address>

<base_address> is currently unused. Specify zero.

<logical_kernel_address_range>

<logical_kernel_address_range> specifies the virtual to physical address translation of the kernel address

range.

<physical_kernel_address>

<physical_kernel_address> specifies the physical start address of the kernel.

The kernel code, which resides in the kernel space, can be accessed by any PikeOS Task, regardless of the
current space ID. Use the command TRANSIation.COMMON to define the complete address range that is
addressed by the kernel as commonly used area.

Enable the debugger’s table walk with TRANSIation.TableWalk ON, and switch on the debugger's MMU
translation with TRANSIation.ON.

Example: RAM at physical address 0x0, a typical MMU declaration looks like:

MMU .FORMAT PIKEOS 0 0x80000000--Oxbfffffff 0x0
TRANSlation.COMMON 0x80000000--Oxffffffff ; common area
TRANSlation.TableWalk ON

TRANSlation.ON

Please see also the sample scripts in the ~~/demo directory.

©1989-2024 Lauterbach

OS Awareness Manual PikeOS | 16

Scanning System and Processes

To access the different process spaces correctly, the debugger needs to know the address translation of
every virtual address it uses. You can either scan the MMU tables and place a copy of them into the
debugger’s address translation table, or you can use a table walk, where the debugger walks through the
MMU tables each time it accesses a virtual address.

The command MMU.SCAN only scans the contents of the current processor MMU settings. Use the
command MMU.SCAN ALL to go through all space IDs and scan their MMU settings. Note that on some
systems, this may take a long time. In this case you may scan a single PikeOS Task (see below).

To scan the address translation of a specific PikeOS Task, use the command MMU.SCAN TaskPageTable
<task_id>. . This command scans the space ID of the specified task. To scan the kernel space, use:

MMU.SCAN TaskPageTable 0.

TRANSIation.List shows the address translation table for all scanned space IDs.

If you set TRANSIation.TableWalk ON, the debugger tries first to look up the address translation in its own
table (TRANSIation.List). If this fails, it walks through the target MMU tables to find the translation for a
specific address. This feature eliminates the need of scanning the MMU each time it changes, but walking
through the tables for each address may result in a very slow reading of the target. The address translations
found with the table walk are only temporarily valid (i.e. not stored in TRANSIation.List), and are invalidated
at each Go or Step.

See also chapter “Debugging PikeOS Kernel and User Processes”.

Symbol Autoloader

The OS Awareness for PikeOS contains a “Symbol Autoloader’, which automatically loads symbol files
corresponding to executed tasks or libraries. The autoloader maintains a list of address ranges,
corresponding to PikeOS components and the appropriate load command. Whenever the user accesses an
address within an address range specified in the autoloader (e.g. via Data.List), the debugger invokes the
command necessary to load the corresponding symbols to the appropriate addresses (including relocation).
This is usually done via a PRACTICE script.

In order to load symbol files, the debugger needs to be aware of the currently loaded components. This
information is available in the kernel data structures and can be interpreted by the debugger. The command
sYmbol.AutoLOAD.CHECK defines, when these kernel data structures are read by the debugger (only on
demand or after each program execution).

I sYmbol.AutoLOAD.CHECK [ON | OFF | ONGO]

The loaded components can change over time, when processes are started and stopped and libraries are
loaded or unloaded. The command sYmbol.AutoLOAD.CHECK configures the strategy, when to “check”
the kernel data structures for changes in order to keep the debugger’s information regarding the
components up-to-date.

©1989-2024 Lauterbach OS Awareness Manual PikeOS | 17

Without parameters, the sYmbol.AutoLOAD.CHECK command immediately updates the component
information by reading the kernel data structures. This information includes the component name, the load
address and the space ID and is used to fill the autoloader list (shown via sYmbol.AutoLOAD.List).

With sYmbol.AutoLOAD.CHECK ON, the debugger automatically reads the component information each
time the target stops executing (even after assembly steps), having to assume that the component
information might have changed. This significantly slows down the debugger which is inconvenient and often
superfluous, e.g. when stepping through code that does not load or unload components.

With the parameter ONGO, the debugger checks for changed component info like with ON, but not when
performing single steps.

With sYmbol.AutoLOAD.CHECK OFF, no automatic read is performed. In this case, the update has to be
triggered manually when considered necessary by the user.

NOTE: The autoloader covers only components that are already started. Components that
are not in the current task or library table are not covered.

When configuring the OS Awareness for PikeOS, set up the symbol autoloader with the following command:

sYmbol.AutoLOAD.CHECKPIKEOS "<action>"

<action> to take for symbol load, e.g. "DO autoload.cmm

The command sYmbol.AutoLOAD.CHECKPIKEOS is used to define which action is to be taken, for
loading the symbols corresponding to a specific address. The action defined is invoked with specific
parameters (see below). With PikeOS, the pre-defined action is to call the script
~~/demo/<arch>/kernel/pikeos/<version>/autoload.cmm.

NOTE: The action parameter needs to be written with quotation marks (for the parser itis a
string).

Note that defining this action, does not cause its execution. The action is executed on demand, i.e. when the
address is actually accessed by the debugger e.g. in the Data.List or Trace.List window. In this case the
autoloader executes the <action> appending parameters indicating the name of the component, its type
(process, library), the load address and space ID.

For checking the currently active components use the command sYmbol.AutoLOAD.List. Together with the
component name, it shows details like the load address, the space ID, and the command that will be
executed to load the corresponding object files with symbol information. Only components shown in this list
are handled by the autoloader.

& Bus¥mbol AutoLoad.List Elg
2% Delete All|| € Check

address to name dyn [load [cmd

10001 :00000100--7FFFFFFF [PS5W W do ~~/demo/powerpc/kernel /pikeos/v3.3/autoToad T"PS5W" Ox1 Ox100 Ox0 Ox1

: 0002 : 00000100--7FFFFFFF |ethD do ~/demo/powerpc/kernel /pikeos,/v3.3/autoload "eth0" Ox1 Ox100 Ox0 Ox2

10003 : 00000100--7FFFFFFF |muxa do ~/demo/powerpc/kernel /pikeos,/v3.3/autoToad "muxa” Ox1 Ox100 Ox0 Ox3

: 0004 : 00000100--7FFFFFFF Monitor do ~~/demo/powerpc/kernel /pikeos/v3.3/autoload "Monitor” Ox1 Ox100 Ox0 Ox4

: 0005 : 00000100--7FFFFFFF |Trace_Server do ~/demo/powerpc/kernel /pikeos,/v3.3/autoload "Trace_Server” Ox1l Ox100 0x0 Ox5
: 0016 : 00000100--7FFFFFFF |Controller y |[do ~/demo/powerpc/kernel /pikeos/v3.3/autoload “"Controller” Ox1 O0x100 Ox0 Ox16
y |do ~/demo/powerpc/kernel /pikeos/v3.3/autoload “"Calculator™ Ox1 Ox100 Ox0 Ox17

(alalalalalalal
L L L L L

10017 : 00000100--7FFFFFFF Calculator

©1989-2024 Lauterbach OS Awareness Manual PikeOS | 18

NOTE: The GNU compiler generates different code if an application is built with debug info
(option “-@”), even if the optimization level is the same. Ensure that you always use
the debug version on both sides, the target where you start the application, and the
debugger where you load the symbol file.

In PikeOS, task names are often different from their (symbol) file names. For the symbol autoloader to
automatically find the appropriate symbol file for a task, you can map task names to file names with the
command TASK.TaskFile.ADD.

SMP Support

The OS Awareness supports symmetric multiprocessing (SMP).

An SMP system consists of multiple similar CPU cores. The operating system schedules the threads that
are ready to execute on any of the available cores, so that several threads may execute in parallel.
Consequently an application may run on any available core. Moreover, the core at which the application runs
may change over time.

To support such SMP systems, the debugger allows a “system view”, where one TRACE32 PowerView GUI
is used for the whole system, i.e. for all cores that are used by the SMP OS. For information about how to set
up the debugger with SMP support, please refer to the Processor Architecture Manuals.

All core relevant windows (e.g. Register.view) show the information of the current core. The state line of the
debugger indicates the current core. You can switch the core view with the CORE.select command.

Target breaks, be they manual breaks or halting at a breakpoint, halt all cores synchronously. Similarly, a Go
command starts all cores synchronously. When halting at a breakpoint, the debugger automatically switches
the view to the core that hit the breakpoint.

Because it is undetermined, at which core an application runs, breakpoints are set on all cores
simultaneously. This means, the breakpoint will always hit independently on which core the application
actually runs.

Cores

J var st [Y S Ste
Calculator:Calculator 0 |system ready
POSIX Personality

The OS Awareness for PikeOS contains an additional awareness for a POSIX Personality. For a detailed
description see the chapter “Debugging PikeOS Components”, “POSIX".

©1989-2024 Lauterbach OS Awareness Manual PikeOS | 19

APEX Personality

The OS Awareness for PikeOS contains an additional awareness for an APEX Personality. For a detailed
description see the chapter “Debugging PikeOS Components”, “APEX”.

Linux Personality

The OS Awareness for PikeOS has a built-in detection and an additional awareness for a Linux Personality
based on ELinOS. For a detailed description see the chapter “Debugging PikeOS Components”, “ELinOS”.

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

£ B:PERF.ListTASK /mergecore =n| Wl <
(& setup... [28 Confi... [Goto...|[B Detailed | [€3, View |Ll[|ml|Pr0FIe| anrt QO DISable]| @ Arm
core: merged runtime:

na.me ratio 1% 2% 5% 20% 50% |
alculator:Calculator 49, 766% L

ethO.t'l mer 0.234% |+

PS5W:Sysgo 0. 000%

PSSW:VMLconsole 0.000%

Kernel:Idle 0.000%

Controller:Controller 0.000%

PSSWiservice 0.000%

PSSW:Controller 0.000% v

J 4 m 3

©1989-2024 Lauterbach

OS Awareness Manual PikeOS | 20

Task Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spentin
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as

colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

On ARM architectures, PikeOS serves the ContextlD register. In PikeOS version up to 3.4, only the address
space ID (ASID) of the process is written. This allows tracking the program flow of the processes and
evaluation of the process switches. But it does not provide performance information of threads. In PikeOS
versions since 3.5, the kernel writes the ASID and the thread ID into the ContextID register. This is sufficient
for thread runtime analysis as well as function runtime analysis.

If your PikeOS version does not write the thread ID into the ContextID register, inform the PikeOS
awareness about this by switching off the THRCTX option:

TASK.Option THRCTX OFF ; for PikeOS versions up to 3.4

All kernel activities up to the thread switch are added to the calling thread.

©1989-2024 Lauterbach OS Awareness Manual PikeOS | 21

Function Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting Display function nesting
Trace.STATistic.Func Display function runtime statistic
Trace.STATistic.TREE Display functions as call tree
Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis
Trace.Chart.Func Display function timechart
Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

©1989-2024 Lauterbach OS Awareness Manual PikeOS | 22

PikeOS specific Menu

The menu file “pikeos.men” contains a menu with PikeOS specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called PikeOS.

w PPC40x | PikeOS | Window Help

| 64 &l &5 Display Tasks
Display Threads

Display Rescurce Partitions
Display System Information

Stack Coverage L4

Symbol Autoloader L4

J The Display menu items launch the kernel resource display windows. See chapter “Display of
Kernel Resources”.

J The Stack Coverage submenu starts and resets the PikeOS specific stack coverage and
provides an easy way to add or remove tasks from the TASK.STacK.view window.

. Use the Symbol Autoloader submenu to configure the symbol autoloader.
See also chapter “Symbol Autoloader”.

- List Components opens a sYmbol.AutoLOAD.List window showing all components
currently active in the autoloader.

- Check Now! performs a sYmbol.AutoLOAD.CHECK and reloads the autoloader list.

- Set Loader Script allows you to specify the script that is called when a symbol file load is
required. You may also set the automatic autoloader check.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

J The Trace menu is extended. In the List submenu, you can choose if you want a trace list
window to show only thread switches (if any) or thread switches together with default display.

o The Perf menu contains additional submenus for task runtime statistics, task-related function
runtime statistics or statistics on task states, if a trace is available. See also chapter “Task
Runtime Statistics”.

©1989-2024 Lauterbach OS Awareness Manual PikeOS | 23

Debugging PikeOS Components

PikeOS runs on virtual address spaces. The kernel uses a static address translation. Each user task gets its
own user address space when loaded, mapped to any physical RAM area that is currently free. Due to this
address translations, debugging the PikeOS kernel and the user tasks requires some settings to the
debugger.

To distinguish those different memory mappings, TRACE32 uses space IDs, defining individual address
translations for each ID. The kernel itself is attached to the space ID zero. Each PikeOS Task that has its own
memory space gets a space ID that corresponds to its task ID. Threads get the space ID of the task they
belong to.

See also chapter “MMU Support”.

PikeOS Kernel

The PikeOS system builder generates an image that contains the startup code, the kernel and any given
application. The file format depends on the system settings, usually it is in ELF or binary format.

Additionally, the PikeOS Awareness needs the symbols of the kernel. Please see section “Hooks &
Internals” how to find the symbol files of the kernel.

Downloading the PikeOS Image

If you start the PikeOS image from Flash, or if you download the image using a bootloader, do this as you
are doing it without debugging.

If you want to download the PikeOS image using the debugger, you have to watch about the file format. If the
generated image is in ELF format, simply download this to the target. If the image is in binary format, you
have to tell the debugger at which address to download it. Please also see the example scripts.

Examples:
Data.Load.Elf ipc-mpc8641lhpcn-elf ; downloading ELF image
Data.Load.Binary ipc-mpc8641lhpcn 0x00100000 ; downloading binary

To create the image in ELF format, configure the “PikeOS boot strategy” in the integration project to “ELF”.

When downloading the kernel via the debugger, remember to set startup parameters that the kernel
requires, before booting the kernel. Usually the bootloader passes these parameters to the image.

©1989-2024 Lauterbach OS Awareness Manual PikeOS | 24

Debugging the Kernel Startup

The kernel image starts with MMU switched off, i.e. the processor operates on physical addresses. However,
all symbols of the kernel file are virtual addresses. If you want to debug this (tiny) startup sequence, you
have to load the kernel symbols and relocate them to physical address.

As soon as the processor MMU is switched on, you have to reload the symbol to its virtual addresses. See
the next chapter on how to debug the kernel in the virtual address space.

Debugging the Kernel

For debugging the kernel itself, and for using the PikeOS awareness, you have to load the virtual addressed
symbols of the kernel into the debugger. The kernel symbol file contains all addresses in virtual format, so

it's enough to simply load the file, e.qg.:

Data.Load.Elf psp-kernel-smp-tracesys /NoCODE

See also “Hooks & Internals” how to find the correct kernel symbol file for your image.

System Extensions

“System Extensions” are functional extensions linked to the PikeOS base software (PSSW), which runs as a
separate task with ID 1. Debugging system extensions depends on the used PikeOS version.

System Extensions in V3.x

In PikeOS V3.x, system extensions are dynamically loaded and linked to the PSSW when booting.
Unfortunately, there is no way to determine the load address from the started PikeOS image. To get the start
address, you have to examine the startup log.

In the integrator project, open the <project.rbx> file and add
<tag key="UK_LOG_LEVEL" value="5"/>

to enable debug logging of the PSSW. Please note that this file is generated each time you modify your
integrator project, so check this setting after each project modification.

When PSSW starts, it prints out a lot of debug info. Watch for the loading of the system extension.
For example:

<SSW DEBUG INFO> System Extension "simple-pp" resides at virtual base 0x46A260

©1989-2024 Lauterbach OS Awareness Manual PikeOS | 25

Use this address to load the symbols of the system extension. The demo directory contains a script
“loadse.cmm” that helps loading the symbol file of a system extension. Call this script with the load address

mentioned in the debug log.

DO ~~/demo/<arch>/kernel/pikeos/<version>/loadse.cmm \
<system extension> <load_address>

E.g.

DO ~~/demo/powerpc/kernel/pikeos/v3.x/loadse.cmm \
myworkspace/simple-pp.unstripped 0x46A260

System Extensions in V4.x

In PikeOS V4.x, system extensions are statically linked to the PSSW when building a fusion project. To
debug system extensions, simply load the symbols of the newly built PSSW.

If you want to debug startup routines of the system extensions (e.g. the install routine), load the symbols of
the PSSW before it starts (to space ID 1) and set an onchip breakpoint onto the routine. E.g.:

Data.LOAD.El1f myworkspace/myfusionproject/mypsswl-normal.unstripped \
1:0 /NoCODE /NoClear /name PSSW
Go simple_pp_install /Onchip

After PikeOS booted, the symbol autoloader may be used to load the PSSW symbols and to debug the
system extension routines:

sYmbol .SourcePATH myworkspace/myfusionproject
TASK.TaskFile.ADD "PSSW" "mypsswl-normal"
sYmbol .AutoLOAD.CHECK

sYmbol .AutoLOAD.TOUCH "PSSW"

User Tasks

Each user task in PikeOS gets its own virtual memory space. To distinguish the different memory spaces,
the debugger assigns a “space ID”, which correlates to the task ID. Using this space ID, it is possible to
address a unique memory location, even if several PikeOS use the same virtual address.

Note that at every time the PikeOS awareness is used, it needs the kernel symbols. Please see the chapters
above on how to load them. Hence, load all task symbols with the option /NoClear to preserve the kernel
symbols.

Ensure that you load the symbol file containing debug information, i.e. the “unstripped” version.

©1989-2024 Lauterbach OS Awareness Manual PikeOS | 26

Debugging the Task

To correlate the symbols of a user task with the virtual addresses of this task, it is necessary to load the
symbols into this space ID.

Manually Load Task Symbols:
For example, if you've got a a task called “hello” with the task ID 12 (the dot specifies a decimal number!):

Data.LOAD.El1f hello.unstripped 12.:0 /NoCODE /NoClear

The task ID of a task may also be calculated by using the PRACTICE function TASK.TASKID() (see chapter
“PikeOS PRACTICE Functions”).

Using the Symbol Autoloader:
If the symbol autoloader is configured (see chapter “Symbol Autoloader”), the symbols will be

automatically loaded when accessing an address inside the process. You can also force the loading of the
symbols of a process with

sYmbol . AutoLOAD.CHECK
sYmbol .AutoLOAD.TOUCH "hello"

In PikeOS, task names are often different from their (symbol) file names. For the symbol autoloader to
automatically find the appropriate symbol file for a task, you can map task names to file names with the
command TASK.TaskFile.ADD.

Using the Menus:

Select “Display Tasks”, right click on the “magic” of a process, and select “Load task symbols”.

Start Debugging a Task from main

If you want to debug your task right from the beginning at “p4_main(), you have to load the symbols before
starting the process. This is a tricky thing because you have to know the space ID, which is assigned first at
the task startup.

The script “app_debug.cmm” in the ~~/demo directory automates this step. Call the script with the task
name first, then start the Task within PikeOS. The scripts waits for the task to be started, loads the symbols
and halts the task at p4_main(). If the symbol file name is different to the task name, you can add the symbol
file name as a second parameter. Examples:

; wait for "hello" to be started and load symbol file:
DO ~~/demo/<arch>/kernel/pikeos/<version>/app_debug hello

; wait for "hello" and load "filehello" as symbol file:
DO ~~/demo/<arch>/kernel/pikeos/<version>/app_debug hello filehello

©1989-2024 Lauterbach OS Awareness Manual PikeOS | 27

Debugging PikeOS Threads

PikeOS threads share the same virtual memory of the parent task. The OS Awareness for PikeOS assigns
one space ID for all threads that belong to a specific task. It is sufficient, to load the debug information of this
task only once (onto its space ID) to debug all threads of this task. See chapter “Debugging the Task” for

loading the tasks symbols.

The TASK.ThrliSt window shows which thread is currently running (marked with a star).

POSIX

The OS Awareness for PikeOS contains an additional awareness for a POSIX Personality. It allows to view
POSIX threads and their states.

Configuring POSIX Awareness

To configure the POSIX awareness:

. Load the symbols of the PikeOS task that contains the POSIX personality.

J Load the POSIX awareness specifying the task ID.

Example:
; Load the symbols of the PikeOS task with the POSIX personality,
; e.g. "scheduling"

sYmbol .AutoLOAD.TOUCH "scheduling"

; read the task ID of the POSIX personality
&posixid=task.taskid ("scheduling")

; load the POSIX awareness, e.g. for ARM architecture

EXTension.LOAD ~~/demo/arm/kernel/pikeos/posix/posix.t32 &posixid
Menu.ReProgram ~~/demo/arm/kernel /pikeos/posix/posix.men

The above sequence is put into a helper script ~~ /demo/<arch>/kernel/pikeos/<version>/load_posix.cmm.
Specify the PikeOS task name as parameter to the script.

Example: Load POSIX awareness for PikeOS task named “scheduling”

DO ~~/demo/arm/kernel/pikeos/v5.x/load_posix.cmm scheduling

©1989-2024 Lauterbach OS Awareness Manual PikeOS | 28

It is necessary to compile the POSIX application with debug information enabled for the POSIX code.

In your application’s Makefile, add “POSIX_CFLAGS += -g -00".

“-g” is required for the debug information, “-O0” is recommended to disable optimization and easier
debugging.

If the “POSIX_DEBUG” option is set to “true” in your project configuration, the “debug” libraries of POSIX are
used which usually also contain a GDB agent. This agent may set a “breakpoint interrupt” at startup of a

POSIX personality that can cause a shutdown of the personality. As TRACE32 doesn’t need this GDB
breakpoint, patch it to do nothing, right at the entry point. E.g. in ARM environments, you can use:

Data.Assemble gdb_breakpoint bx rl4

After loading the POSIX awareness, you’ve got additional features for the POSIX personality:

I EXTension.PXThread Show all POSIX threads of the POSIX personality

An additional “POSIX” menu provides easy access to the features.

Debugging POSIX threads works the same way as debugging standard PikeOS applications.

Multiple POSIX Personalities with multiple awareness

If you have multiple POSIX Personalities simply use the loading script for several personalties.
Example: Load POSIX awareness for PikeOS tasks named “posix” and “scheduling”:

DO ~~/demo/arm/kernel /pikeos/v5.x/load_posix.cmm posix
DO ~~/demo/arm/kernel /pikeos/v5.x/load_posix.cmm scheduling

You will get an own menu for each of the personalities, named like the task name. These menus provide
easy access to the individual personalities.

Access the individual commands with an infix to the EXTension command:

EXTen- Show all POSIX thread of the POSIX personality <name>
sion.<name>.PXThread

©1989-2024 Lauterbach OS Awareness Manual PikeOS | 29

APEX

The OS Awareness for PikeOS contains an additional awareness for an APEX Personality. It allows to view

APEX processes and their states.

Configuring APEX Awareness

To configure the APEX awareness:

. Load the symbols of the PikeOS task that contains the APEX personality.

J Load the symbol file of the used APEX OS library to the space ID of the PikeOS task containing
the APEX personality (same as task ID). The used APEX OS can be read out of your project4.rbx

file, e.g. “apex_os_devel”. The symbols must be renamed to “apex_os”.

. Load the APEX awareness specifying the task ID.
Example:

; Load the symbols of the PikeOS task with the APEX personality,
; e.g. "apex"
sYmbol .AutoLOAD.TOUCH "apex"

; read the task ID of the APEX personality
&apexid=task.taskid("apex")

; load the symbols of the used APEX 0OS library
Data.LOAD.El1f apex_os_devel .unstripped &apexid:0 /name apex_os \
/NoCODE /NoClear

; load the APEX awareness, e.g. with PikeOS v5 on ARM architecture
EXTension.LOAD ~~/demo/arm/kernel/pikeos/v5.x/apex/apex.t32 &apexid
Menu.ReProgram ~~/demo/arm/kernel/pikeos/v5.x/apex/apex.men

The above sequence is put into a helper script ~~/demo/<arch>/kernel/pikeos/<version>/load_apex.cmm.

Specify the PikeOS task name and kernel type as parameter to the script.
Example: Load APEX awareness for PikeOS task named “apex” with kernel type “devel”:

DO ~~/demo/arm/kernel/pikeos/v5.x/load_apex.cmm apex devel

After loading the APEX awareness, you've got additional features for the APEX personality:

I EXTension.AXProcess Show all APEX processes of the APEX personality

An additional “APEX” menu provides easy access to the features.

Debugging APEX processes works the same way as debugging standard PikeOS applications.

©1989-2024 Lauterbach OS Awareness Manual PikeOS |

30

Multiple APEX Personalities with multiple awareness

If you have multiple APEX Personalities simply use the loading script for several personalties.
Example: Load APEX awareness for PikeOS tasks named “apex” and “suspend” with kernel type “devel”:

DO ~~/demo/arm/kernel/pikeos/v5.x/load_apex.cmm apex devel
DO ~~/demo/arm/kernel/pikeos/v5.x/load_apex.cmm suspend devel

You will get an own menu for each of the personalities, named like the task name. These menus provide
easy access to the individual personalities.

Access the individual commands with an infix to the EXTension command:

EXTension.<name>.AXPro- Show all APEX processes of the APEX personality <name>
cess

Multiple APEX Personalities with combined awareness

If several APEX personalities use the same APEX OS library, one awareness can serve for multiple APEX
personalities. To configure the APEX awareness for multiple personalities:

. Load the symbols of the PikeOS tasks that contain the APEX personalities

J Load the symbol file of the used APEX OS library to all space IDs of the PikeOS tasks containing
the APEX personalities (same as task IDs). The used APEX OS can be read out of your
project4.rbx file, e.g. “apex_os_devel”. The symbols must be renamed to “apex_os”.

. Load the APEX awareness specifying the task IDs of the APEX personalities.

©1989-2024 Lauterbach OS Awareness Manual PikeOS | 31

Example:

; Load the symbols of the PikeOS task with the APEX personality,
; e.g. "apex" and "suspend"

sYmbol .AutoLOAD.TOUCH "apex"

sYmbol .AutoLOAD.TOUCH "suspend"

; read the task IDs of the APEX personality
S&apexidl=task.taskid("apex")
S&apexid2=task.taskid("suspend")

; load the symbols of the used APEX OS library to all used IDs
Data.LOAD.E1f apex_os_devel .unstripped &apexidl:0 /name apex_os \

/NoCODE /NoClear
Data.LOAD.E1f apex_os_devel .unstripped &apexid2:0 /name apex_os \

/NoCODE /NoClear

; load the APEX awareness, e.g. with PikeOS v5 on ARM architecture

EXTension.LOAD ~~/demo/arm/kernel/pikeos/v5.x/apex/apex.t32 \
S&apexidl &apexid?2

Menu.ReProgram ~~/demo/arm/kernel/pikeos/v5.x/apex/apex.men

An additional “APEX” menu provides easy access to the features.

©1989-2024 Lauterbach OS Awareness Manual PikeOS | 32

ELinOS

The OS Awareness for PikeOS contains an automatic detection and an additional awareness for an ELinOS

Linux Personality. It enables debugging the Linux kernel, kernel modules, user processes and libraries.

To configure the ELInOS awareness, load the symbols of the PikeOS task that contains the ELINOS
personality. After this, load the ELinOS awareness files:

; Load the symbols of the PikeOS task with the ELinOS personality
; named "P4Linux"

sYmbol.AutoLOAD.TOUCH "P4Linux"

; read the task ID of the ELinOS personality
&elinosid=task.taskid ("P4Linux")

; and load the ELinOS awareness, e.g. for ARM architecture

EXTension.LOAD ~~/demo/arm/kernel/pikeos/elinos/elinos.t32 &elinosid
Menu.ReProgram ~~/demo/arm/kernel/pikeos/elinos/elinos.men

; re-check the symbol autoloader to recognize Linux processes

sYmbol . AutoLOAD.CHECK

The ELInOS awareness can only work on one ELInOS personality at a time. If you have several ELinOS

personalities and want to work on a different personality, reload the ELinOS awareness with the appropriate

task ID.

After loading the ELinOS awareness, you've got additional features for the ELinOS personality:

Debugging the Linux kernel
Debugging Linux kernel modules
Debugging Linux processes

Debugging Linux libraries

EXTension.ELProcess Show processes of the ELinOS personality
EXTension.ELThread Show threads of the ELinOS personality
EXTension.ELModule Show kernel modules of the ELinOS personality

©1989-2024 Lauterbach OS Awareness Manual PikeOS |

33

Linux Kernel

The Linux kernel itself runs as a PikeOS task named “P4Linux”. In order to debug the kernel (or contents of
it like built-in drivers), you need to load the symbols of the Linux kernel. Ensure that you built the kernel with
full debug info enabled (CONFIG_DEBUG_INFO=y). The symbol file then is named “vmlinux” and resides in
the linux directory of your ELinOS project. Use the symbol autoloader to load this file as symbol file for the
P4Linux task.

After loading the symbols of the “P4Linux” task, you can debug the Linux kernel as any other PikeOS task.

Linux Kernel Modules

To debug already loaded kernel modules, open an EXTension.ELModule window and right-click on the
“magic” of the module. Select “Load module symbols” from the local menu to load the symbol file of the
selected module. After this, you can debug and access the functions and variables of the modules with the
symbol browser.

Alternatively to the local menu, you can load the symbols of a kernel module by running the
“el_autoload.cmm” script with the module name and parameter “3".
E.g. for a module named “mymodule” on ARM architecture:

DO ~~/demo/arm/kernel /pikeos/elinos/el_autoload.cmm "mymodule" 3

If you want to debug the initialization routine of a kernel module, select the menu item “ELinOS” -> “Debug
Module on init...” before you load the kernel module in Linux. Specify the module name in the upcoming
dialog, then load the kernel module in Linux. The debugger then automatically halts at the module init
routine.

Alternatively to the menu, you can initiate the catching of the module’s init routine by running the
“el_mod_debug.cmm” script with the module name as parameter.

©1989-2024 Lauterbach OS Awareness Manual PikeOS | 34

E.g. for a module named “mymodule” on ARM architecture:

DO ~~/demo/arm/kernel /pikeos/elinos/el_mod_debug.cmm mymodule

Linux Processes

Linux processes run as a PikeOS task. PikeOS reserves several tasks for Linux processes (“linux
userspace”). As soon as a process runs, it gets one of these task slots. The TASK.TaskList window then
shows the Linux processes as PikeOS task named “P4LinuxUser:<name>".

o B:TASK TaskList =n| Wl <
magic 1d parent respart mcp [threads [name

B12E000D 0. 0. 0. 255. 4, Kernel L
B0000000 1. 0. 0. 255. 4. PS5W

B4440000 2. 1. 1. &0. 1. Proc_hello

BE3440000+ 3. 1. 2. 24, | 11. P4Linux

E3511000 4. 3. 2. 0. 0. Tinux userspace

E3513000 5. 3. 2. 0. 0. Tinux userspace

E3515000 6. 3. 2. 0. 0. Tinux userspace

E3517000 7. 3. 2. 0. 0. Tinux userspace

E3519000 B. 3. 2. 0. 0. Tinux userspace

E351B000 9. 3. 2. 0. 0. Tinux userspace

B351D000 | 10. 3. 2. 0. 0. Tinux userspace =
E351F000 | 11. 3. 2. 0. 0. Tinux userspace I3
E3521000 | 12. 3. 2. 0. 0. Tinux userspace

E3523000 | 13. 3. 2. 0. 0. Tinux userspace

E3525000 | 14. 3. 2. 0. 0. Tinux userspace

E3527000 | 15. 3. 2. 0. 0. Tinux userspace

E3529000 | 16. 3. 2. 0. 0. Tinux userspace

E352B000 | 17. 3. 2. 0. 0. Tinux userspace

E352D000 | 18. 3. 2. 0. 0. Tinux userspace

E352F000 | 19. 3. 2. 0. 0. Tinux userspace

E3531000 | 20. 3. 2. 0. 0. Tinux userspace

E3533000= | 21. 3. 2. 0. 0. P4LinuxUser:gzip

B3535000 | 22. 3. 2. 0. 0. P4Linuxlser:sh

B3537000 | 23. 3. 2. 0. 0. P4LinuxUser:init

4 M 3

Debugging a Linux process then works as simple as debugging a PikeOS task. Just load the symbols of the
process (using the symbol autoloader) and start debugging. You can also use the local menus of
EXTension.ELProcess or EXTension.ELThread (right click on the “magic”) to load the symbols of an
ELinOS process.

If you want to debug the Linux process right from the beginning at “main()”, select the menu item “ELinOS” -
> “Debug Process on enit...” before you start the process within Linux. Specify the process name in the
upcoming dialog, then start the process in Linux. The debugger then automatically halts at the process at
main().

Alternatively to the menu, you can initiate the catching of the process’ main routine by running the
“el_app_debug.cmm” script with the process name as parameter.
E.g. for a process named “myprocess” on ARM architecture:

DO ~~/demo/arm/kernel/pikeos/elinos/el_app_debug.cmm myprocess

Linux Libraries

To debug user libraries, open an EXTension.ELProcess window and double-click on the “magic” of the
process that contains the library to debug. Expand the “code files” tree. Right-click on the library to debug
and select “Load library symbols” from the local menu to load the symbol file of the selected library. After
this, you can debug and access the functions and variables of the library with the symbol browser.

©1989-2024 Lauterbach OS Awareness Manual PikeOS | 35

PikeOS Commands

EXTension.AXlInfo Display APEX information

Format: EXTension.AXInfo

Displays information about the APEX awareness and the used APEX personality.

% B:TASK AXInfo = =R
system information value |
extension version: Apr 9 2020 A
supported kernel version: PikeQS APEX w5
supported architectures: ARM&4
PEX 05 version: 5.0-905
Pike0s task ids/spaceids: 22./0x16
Pike0S task names: apex
Pike0S partition ids: 2.

v
£ >

The APEX awareness must be loaded and configured for this command. See APEX.

EXTension.AXProcess Display APEX processes

Format: EXTension.AXProcess <process> <space_id>

Displays a table of all processes created in the APEX personality.

Without any arguments, a table with all created processes will be shown.

Specify a process magic number, ID or name to display detailed information on that process.

When multiple personalities are configured, the <space_id> may specify the space ID (= PikeOS task ID) of
the requested process.

5?. B::EXTension. AXProcess EI@
magic name 1d [state prio [entry |
0AD10550 |_IDLE__ 0. [ready 0. 08015014 proc_idle ~
0ADLD938 |_MAIN__ 1. |dormant ti |63. |08014FED proc_main
0A012420% |Proc-1 2. |running 10. |08010360 proc_1

4 1 2

The APEX awareness must be loaded and configured for this command. See APEX.

©1989-2024 Lauterbach OS Awareness Manual PikeOS | 36

EXTension.ELModule Display ELIinOS modules

Format: EXTension.ELModule

Displays a table of all kernel modules created in the ELinOS personality.

o B:EXTension.ELModule El-@
ma state

01828080 sma 'Idr"l ver Live 539 01828000 L
0182827C |bigdriver Loading 11268. |01829000

4 1 3

The field “magic” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

The ELInOS awareness must be loaded and configured for this command. See ELinOS.

EXTension.ELProcess Display ELinOS processes

Format: EXTension.ELProcess

Displays a table of all processes created in the ELinOS personality.

5?. B::EXTension.ELProcess EI@
magic command #thr |state zpaceid pids |
00136200 [swapper 11. |current 0014 0. 2. 3. 4. L
00C 24000 init - =leeping 002E 1.
00C27020 =h - =leeping 002D 14.

4 1 2

The field “magic” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

The ELInOS awareness must be loaded and configured for this command. See ELinOS.

EXTension.ELThread Display ELinOS threads

Format: EXTension.ELThread [<thread>]

Displays a table of all processes and threads created in the ELInOS personality, or detailed information
about one specific process or thread.

Without any arguments, a table with all created threads will be shown.

©1989-2024 Lauterbach OS Awareness Manual PikeOS | 37

Specify a thread magic number, ID or name to display detailed information on that thread.

o B:EXTension ELThread El-@

Imagic command state uid pid spaceid [tty [flags

00136200 [swapper current 0. 0. | 001A 1] 00200000 ~

00C24000 [init =leeping 0. 1. | 00ZE o 00400100

00C 24460 |kthreadd =leeping 0. 2. | oo1A 0 |80208040

00C248C0 |ksoftirgd/0 =leeping 0. 3. | oo1A 0 |84208040

00C24D20 |kworker/0:0 =leeping 0. 4. | 001A 0 |84208060

00C25180 |kworker /u:0 sleeping 0. 5. | 0O1A 0 |84208060

00C255E0 |rou_kthread running 0. 6. | 001A 0 80208040 =

00C25440 |khelper =leeping 0. 7. O

DOC2Z5EAD |sync_supers =leeping 0. 8. | O 5?. B:EXTension.ELThread 0xC27020 EI@
8%%2;28 Eglagggau“ :}::gl:g 8 13' 8 agic command state uid pid spaceid [tty [flags |
00C268C0 |kmorker /0:1 Sieening o 11 | ol [eocz70z0 sk [sTeeping | 0. 14&. | 0020 [FPO 00400000 ..
00C27020 |sh =leeping 0. 14. | 0Of gid tty name path

. o 0. ttyFPD Jbin/=h

o)==

m

OHHEH

start address F agf

0Q008000 X RD

00065000 nR RD

40000000 EX RD

40023000 RD

40024000 WR RD

40025000 EX RD

40144000

4014B000 RD

4014D000 WR RD
2 <
4 i b

The field “magic” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

The ELInOS awareness must be loaded and configured for this command. See ELinOS.

EXTension.PXThread Display POSIX threads

Format: EXTension.PXThread

Displays a table of all threads created in the POSIX personality.
5?. B::EXTension.PXThread EI@

prio [start |
0810F000 I'-'Ia'l nthr‘ead C\c' nAIT 10 [080Z06AC _main
0810F800* |Idlethread RUNNING 08028EES idle_main

I 2

The POSIX awareness must be loaded and configured for this command. See POSIX.

©1989-2024 Lauterbach OS Awareness Manual PikeOS | 38

TASK.DrvList

Display system information

Format:

TASK.DrvList

Displays a table of kernel drivers loaded in PikeOS.

&% B:TASK Drvlist

(o8)

agic
FFFFFF80000CEF40
FFFFFF80000CEFE0
FFFFFF80000CEFCO
FFFFFF80000C3000
FFFFFF80000C3040
FFFFFF80000CS080
FFFFFF80000CS0C0
FFFFFF80000C9100
FFFFFF80000C9140
FFFFFF80000C9180
FFFFFF80000CS1C0
FFFFFF80000C9200
FFFFFF80000C9240

name gate/prov |
hwvirt_pikeos_wdt

mon_apex ctrl1/a653bsp_imon
mon_kern

mon_master ctrl/mon_master
mMon_ssw ctrl/mon_ssw

psp_pci

std_con . fcon

stdhmev xmsg/hmev
sys_kextfp_client

sys_kextfp_server

sys_mem_gport

sys_mem_sport

wmt pdrv . Sumfp W

©1989-2024 Lauterbach

OS Awareness Manual PikeOS

39

TASK.INFO

Display system information

Format:

TASK.INFO

Displays information about the awareness and the used PikeOS kernel.

o B:TASKINFO =n| Wl <
system information value |
extension version: 2.0 (Apr 29 2013) L
zupported kernel version: 3.3 only

zupported architectures: PPC oea

kernel statics: 0x380006A44

kernel wirtual offset: 0x30000000

kernel info pages: 0x8017F000
IAPT wversion: 0x00030005
ASP qd: ppc_oeachwpte

PSP +id: mpc8641

MU pagetable mode: virt
Configured Timits:

time partitions: 32

priority levels: 256

resource partitions: 63

tasks: 2047

threads per task: 511

Free memory: 257461 pages

4 M 3

TASK.Option Set awareness options

Format: TASK.Option <option>

<options: THRCTX [ON | OFF]

Sets various options to the awareness.

THRCTX Set the context ID type that is recorded with the real-time trace (e.g. ETM).
If set to on, the context ID in the trace contains thread ID. If set to off, the
context ID only contains the ASID.

See Task Runtime Statistics.

©1989-2024 Lauterbach OS Awareness Manual PikeOS | 40

TASK.ResPart Display resource partitions

Format: TASK.ResPart

Displays a table of resource partitions defined in PikeOS.

o B:TASK.ResPart =n| Wl <
magic 1d num__[free mm__ [task [thr [tem
BOLAZF20 0. 18. 0. | 12. 1. 5. ~
BOLAZFS0 1. | 128. | 38. 9. 4. | 77. o
BOLAZFE0 2 8. 3. 3 1. 1. o
BOLAZFED 3 3 3. 3 1. 1. o il
TASK.TaskAdspace Display task address space
Format: TASK.TaskAdspace <task>

Only available on PikeOS for MPU.

Displays the address table of one task.

@?. Bu:TASK. TaskAdspace "hello” EI@
Base Limit Permissions Cache In use |
Task Ptr: 00493340 task id: 4. 7 Ox04 ~
0x0C7800 O0x0C7FFF R Cached Yes
0x 8000000 Ox8006FFF RX Cached Yes
0x 8007000 Ox8008FFF R Cached Yes
0x 8010400 Ox8013FFF RwX Cached Yes
0x 8009000 0x80103FF RW Cached Yes
0x 8014000 0x83FFFFF RW Cached Yes
0x0 0x0 Uncached No
0x0 0x0 Uncached No
0x800C000 |OxBOOC3FF Uncached Yes v
TASK.TaskFile.ADD Map file name to task name
Format: TASK.TaskFile.ADD "<task_name>" "<file>"

Maps a file name to a task name.

In PikeOS, task names are often different from their (symbol) file names. For the symbol autoloader to
automatically find the appropriate symbol file for a task, use this command to map task names to file names.

©1989-2024 Lauterbach OS Awareness Manual PikeOS | 41

TASK.TaskFile.view Display file name to task name mapping

Format: TASK.TaskFile.view

Show task name to file name mappings. See TASK.TaskFile.ADD.

©1989-2024 Lauterbach OS Awareness Manual PikeOS | 42

TASK.TaskList

Display ‘PikeOS’ tasks

Format:

TASK.TaskList [<task>]

Displays the task table of PikeOS or detailed information about one specific task.

Without any arguments, a table with all created tasks will be shown.
Specify a task magic number, ID or name to display detailed information on that task.

=@ g

o B:TASK TaskList =n| Wl <
1d parent respart mcp [threads [name |
0. 0. 0. 255 2. Kernel L
1. 0. 0. 255. 5. PS5W
2. 1. 1. 100. | 25. etho
3. 1. 1. 100. | 50. muxa =
4. 1. 1. 100. 1. Monitor
5. 1. 1. 100. 1. Trace_Server
22. 1. 2. 60. 1. Controller
23. 1. 3. 60. 1. Calculator
o B:TASK TaskList "PSSW" =n| Wl <
arent respart mcp [threads [name |
0. 0. |255.] 5. |P55W P
of this task:
i prio state threadname

755. SLEEPING Sysgo
62. WAIT_EVENT VMLconsole
102. WAIT_RX_EV service
62. WAIT_RX_EV Controller
62. WAIT_RX_EV Calculatorl

I 2

“magic” is a unique ID used by the OS Awareness to identify a specific task (address of the task struct).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it

will show a local menu.

©1989-2024 Lauterbach

OS Awareness Manual PikeOS

43

TASK.ThrliSt

Display threads

Format:

TASK.ThrliSt [<thread>]

Displays the thread table of PikeOS or detailed information about one specific thread.

Without any arguments, a table with all created threads will be shown.

Specify a thread magic number, ID or name to display detailed information on that thread.

4

I

o B:TASK.Thrlist =n| Wl <
F_g1c uid prio [state taskname |[threadname
B0OZAB000 [(niTthread) 0. | READY Kernel IdTe L
B02A7000 |0/0.1 0. | READY Kernel Idle
80009000 |0/1.0 255. | SLEEPING PS5W Sysgo -
80011000 |0/1.3 62. | WAIT_EVENT PS5W WLconsole 3
B0O7C8000 |0/1.5 102. | WAIT_RX_EV PS5W service
B07C9000 |0/1.6 62. | WAIT_RX_EV PS5W Controller
BO7CADO0 |0/1.7 62. | WAIT_RX_EV PS5W Calculatorl
8120C000 |1/2.0 100. | WAIT_RX etho etho
81226000 |1/2.1 100. | WAIT_INT etho tx-irqg
81227000 |1/2.2 100. | WAIT_INT etho rx-irg
81228000 [1/2.3 100. | WAIT_INT etho err-irg
81210000 |1/2.4 98. | WAIT_RX etho net-map:0
81211000 |1/2.5 98. | WAIT_RX etho net-ioct1:0
81212000 |1/2.6 98. | WAIT_RX e‘tHO n Lotan.n
81213000 |1/2.7 98. | WAIT_EVENT ethl ne| .
51214000 (1/2.8 98. | WAIT_RX etho ne| o BTASKThriiSt 061259000 | = |[= [[5]
81216000 |1/2.9 98. | WAIT_RX etho ne| [attribute value |
81217000 |[1/2.10 98. | WAIT_RX etho nel [oid: Ox00100631 o
81218000 |1/2.11 98. | WAIT_RX etho ne| ftask descriptor: 0%x81203000
4 m tch (magic): 0x81259000
task name: muxa
thread name: MuxaFstatCh:014
=hort exhandler: Cinvalid)
full exhandler: Cinvalid)
time domain: 1]
resource partition: 1
=tate: WAIT_RX
priority: 99
Tlags:

“magic” is a unique ID used by the OS Awareness to identify a specific thread (address of the thread struct).

The field “magic” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it

will show a local menu.

©1989-2024 Lauterbach

OS Awareness Manual PikeOS

44

PikeOS PRACTICE Functions

There are special definitions for PikeOS specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magicsize)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Return Value Type: Hex value.

TASK.TASK.MAGIC() magic number of task

Syntax: TASK.TASK.MAGIC(" <task_name>")

Returns the magic number of the given task.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.TASK.ID() ID of task

Syntax: TASK.TASK.ID(<task_magic>)

Returns the ID of the given task.
Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual PikeOS | 45

TASK.TASK.NAME() Name of task

Syntax: TASK.TASK.NAME(<task_magic>)

Returns the name of the given task.
Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

TASK.TASK.ID2NAME() Convert task ID to name

Syntax: TASK.TASK.ID2NAME(<task_ID>)

Returns the name of the given task ID.
Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

TASK.TASKNAME2ID() Convert task name to ID

Syntax: TASK.TASKNAME2ID(" <task_name>")

Returns the ID of the given task.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.TASKFILE() Symbol file name of task

Syntax: TASK.TASKFILE(" <task_name>")

Returns the symbol file name of the given task, defined with TASK.TaskFile.ADD.
Parameter Type: String (with quotation marks).

Return Value Type: String.

©1989-2024 Lauterbach OS Awareness Manual PikeOS | 46

EXT.AXPROCESS.THREAD() PikeOS thread of APEX process

Syntax: EXT.AXPROCESS.THREAD(<process_magic>)

Returns the magic of the PikeOS thread of the APEX process based on the specified process magic
number.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value..

EXT.AXPROCESS.THREAD2() PikeOS thread of APEX process

Syntax: EXT.AXPROCESS.THREAD2(<process_magic>,<space_id>)

Returns the magic of the PikeOS thread of the APEX process based on the specified process magic
number and space ID of APEX personality.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value..

EXT.ELINOS.SPACEID() Space ID of ELInOS personality

Syntax: EXT.ELINOS.SPACEID()

Returns the space ID of the ELIinOS personality.

Return Value Type: Hex value.

EXT.ELPROCESS.NAME() Name of ELinOS process

Syntax: EXT.ELPROCESS.NAME(<process_magic>)

Returns the name of the ELInOS process based on the specified process magic number.
Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

©1989-2024 Lauterbach OS Awareness Manual PikeOS | 47

EXT.ELLIBRARY.ADDRESS() Load address of ELinOS library

Syntax: EXT.ELLIBRARY.ADDRESS(<library_magic>)

Returns the load address of the ELinOS library based on the specified library magic number.
Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

EXT.ELLIBRARY.SPACEID() Space ID of ELInOS library

Syntax: EXT.ELLIBRARY.SPACEID(<library_magic>)

Returns the space ID for the specified ELIinOS library magic number.
Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

EXT.ELLIBRARY.NAME() Name of ELIinOS library

Syntax: EXT.ELLIBRARY.NAME(<library_magic>)

Returns the library name for the specified ELinOS library magic number.
Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

EXT.ELMODULE.MAGIC() Module magic number of ELinOS module

Syntax: EXT.ELMODULE.MAGIC(" <module_name>")

Returns the module magic number for the specified ELIinOS module name.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual PikeOS | 48

EXT.ELMODULE.NAME() Name of ELIinOS module

Syntax: EXT.ELMODULE.NAME(<module_magic>)

Returns the name of the ELinOS module based on the specified module magic number.
Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

EXT.ELMODULE.SECADDR() Section address of ELINOS module

Syntax: EXT.ELMODULE.SECADDR(<module_magic>,<index>)

Returns the section address of the ELInOS module based on the specified module magic number and
the indexed section number.

Parameter and Description:

<module_magic> Parameter Type: Decimal or hex or binary value.

<index> Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual PikeOS | 49

	OS Awareness Manual PikeOS
	History
	Overview
	Terminology
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks and Internals in PikeOS

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	MMU Support
	Space IDs
	MMU Declaration
	Scanning System and Processes

	Symbol Autoloader
	SMP Support
	POSIX Personality
	APEX Personality
	Linux Personality
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Function Runtime Statistics
	PikeOS specific Menu

	Debugging PikeOS Components
	PikeOS Kernel
	Downloading the PikeOS Image
	Debugging the Kernel Startup
	Debugging the Kernel

	System Extensions
	System Extensions in V3.x
	System Extensions in V4.x

	User Tasks
	Debugging the Task
	Start Debugging a Task from main
	Debugging PikeOS Threads

	POSIX
	Configuring POSIX Awareness
	Multiple POSIX Personalities with multiple awareness

	APEX
	Configuring APEX Awareness
	Multiple APEX Personalities with multiple awareness
	Multiple APEX Personalities with combined awareness

	ELinOS
	Linux Kernel
	Linux Kernel Modules
	Linux Processes
	Linux Libraries

	PikeOS Commands
	EXTension.AXInfo Display APEX information
	EXTension.AXProcess Display APEX processes
	EXTension.ELModule Display ELinOS modules
	EXTension.ELProcess Display ELinOS processes
	EXTension.ELThread Display ELinOS threads
	EXTension.PXThread Display POSIX threads
	TASK.DrvList Display system information
	TASK.INFO Display system information
	TASK.Option Set awareness options
	TASK.ResPart Display resource partitions
	TASK.TaskAdspace Display task address space
	TASK.TaskFile.ADD Map file name to task name
	TASK.TaskFile.view Display file name to task name mapping
	TASK.TaskList Display ‘PikeOS’ tasks
	TASK.ThrliSt Display threads

	PikeOS PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information
	TASK.TASK.MAGIC() magic number of task
	TASK.TASK.ID() ID of task
	TASK.TASK.NAME() Name of task
	TASK.TASK.ID2NAME() Convert task ID to name
	TASK.TASKNAME2ID() Convert task name to ID
	TASK.TASKFILE() Symbol file name of task
	EXT.AXPROCESS.THREAD() PikeOS thread of APEX process
	EXT.AXPROCESS.THREAD2() PikeOS thread of APEX process
	EXT.ELINOS.SPACEID() Space ID of ELinOS personality
	EXT.ELPROCESS.NAME() Name of ELinOS process
	EXT.ELLIBRARY.ADDRESS() Load address of ELinOS library
	EXT.ELLIBRARY.SPACEID() Space ID of ELinOS library
	EXT.ELLIBRARY.NAME() Name of ELinOS library
	EXT.ELMODULE.MAGIC() Module magic number of ELinOS module
	EXT.ELMODULE.NAME() Name of ELinOS module
	EXT.ELMODULE.SECADDR() Section address of ELinOS module

