
MANUAL

OS Awareness Manual OS-9

OS Awareness Manual OS-9

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 OS Awareness Manuals .. 

 OS Awareness Manual OS-9 ... 1

 Overview .. 4

 Brief Overview of Documents for New Users 5

 Supported Versions 5

 Configuration ... 6

 Hooks in OS-9 7

 Features ... 8

 Display of Kernel Resources 8

 Symbol Relocation 8

 Task Runtime Analysis 9

 Task State Analysis 9

 Function Runtime Statistics 10

 Task Selective Debugging 10

 System Calls 10

 OS-9 Commands ... 11

 sYmbol.RELOCate.Auto Control automatic relocation 11

 sYmbol.RELOCate.Base Define base address 11

 sYmbol.RELOCate.List List relocation info 12

 sYmbol.RELOCate.Magic Define program magic number 12

 sYmbol.RELOCate.Passive Define passive base address 12

 TASK.SYSGLOB Display time 13

 TASK.PROCS Process table 13

 TASK.PROCSL Extended process table 13

 TASK.QUEUES Process queues 14

 TASK.EVENTS Event table 14

 TASK.ALARMS Alarm table 14

 TASK.MDIR Module table 15

 TASK.MFREE Free memory 15

 TASK.DEVS Device table 15

 TASK.IRQS Interrupt polling table 15

 TASK.CCTL Cache control 16

 TASK.EXIT Exit system call 16
OS Awareness Manual OS-9 | 2©1989-2024 Lauterbach

 TASK.SEND Send signal 16

 TASK.SysCall Generic system call 16

 OS9 specific Functions ... 18

 TASK.MDIR.ADDRESS() Program base address from module directory 18
OS Awareness Manual OS-9 | 3©1989-2024 Lauterbach

OS Awareness Manual OS-9

Version 06-Jun-2024

Overview
OS Awareness Manual OS-9 | 4©1989-2024 Lauterbach

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently OS-9 is supported for the following versions:

• OS-9 for ARM version 4.1

• OS-9 for PowerPC version 1.4

• OS-9 for 68K version 1.2
OS Awareness Manual OS-9 | 5©1989-2024 Lauterbach

Configuration

The PRACTICE script '~~/demo/m68k/kernel/os9/pos9.cmm' patches the kernel and configures the OS
Awareness. The macros defined at the beginning of the file define the address of the kernel, the address of
the global system variables and the vectors which are used to enter the kernel (e.g. clock interrupt). These
values have to been checked and modified if necessary. The emulation memory has to mapped into the
address space used by OS-9 to access the information by dual-port memory.

If the task selective debugging features are not used, the patching of the kernel is not required. The first two
arguments are then not required. The following PRACTICE script will configure the command for data table
display:

TIP: The command SETUP.DIS can be used to display the OS-9 traps correctly in the disassembler
windows.

The PRACTICE script '~~/demo/m68k/kernel/os9/pos9.cmm' can make the required patches to OS/9 and
configure the display command:

Format: TASK.CONFIG os9 <magic_address> <sleep> <globals> <system_call_gate>

<magic_address> Specifies a memory location that contains the current running task.

<sleep> The argument for <sleep> is currently not used. Specify “0”.

<globals> This argument must be the address of the system-global variables, which is
used to display the tables.

<system_call_gate> This argument is the address of the system call entry point, which is used by
the command when executing system calls.

&globals=0cxxxx

TASK.CONFIG os9 0x0 0x0 &globals 0x0

DO pos9 nopatch ; configures only display functions
; no patches are made (TASK.OFF)

DO pos9 notask ; enables display and analyzer
; functions task selective debugging
; is off

DO pos9 ; patches VRTX32 for task selective
; debugging
OS Awareness Manual OS-9 | 6©1989-2024 Lauterbach

The PRACTICE file must be modified according the software running on the target. The address of the
system globals the memory for patching must be defined.

Hooks in OS-9

When the task selective debugging is used the entry and exit of the kernel must lead to a multitask
breakpoint. To determine the entry of a task, patching the OS-9 kernel is required. All returns to the task
context (usually RTE instructions) are patched to pass control to the multitask monitor. The patch writes the
current executing process table address to the magic word of the OS Awareness and runs to a breakpoint.

The entries to OS-9 are patched directly in the vector table. The patches write the value 1 to the magic word
and run to a breakpoint.

The correct setting of the breakpoints can be checked as follows:

1. Boot OS-9

2. Break program with 'break'

3. Execute 'patchos9.cmm'

4. Continue with 'go'

5. Disable debugging for the kernel

6. Set 'write'-breakpoints to the os-9 global-variables

7. The program should continue without breaking or spotting
OS Awareness Manual OS-9 | 7©1989-2024 Lauterbach

Features

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following OS9
components can be displayed:

Symbol Relocation

The processes of OS9 use position independent code and data. The symbols need to be relocated, when
they get a new address from OS9. The OS9 awareness provides a method to relocate the symbols
automatically when necessary. This method extracts a table from the target memory which defines the
locatio nof the position independent code and data sections. It will be called automatically after any program
break, or by manually execute the command sYmbol.RELOCate.Auto.

Programs that are not active can be relocated to an unused address, when the command
sYmbol.RELOCate.Passive is active. Without this command symbols of currently not used programs will
stay at the last known location. Correct relocation requires knowledge about the base address for position
independent data used by the linker. This address must be defined by the sYmbol.RELOCate.Base
command. The identification of programs can either be done by a unique number, defined by the
sYmbol.RELOCate.Magic command or based on an address in the code area of a program.

See the sYmbol.RELOCate commands in the OS-9 Command section

TASK.SYSGLOB Globals and time

TASK.PROCS Processes

TASK.PROCSL Processes (extended)

TASK.QUEUES Event table

TASK.EVENTS Porcess queues

TASK.ALARMS Alarm table

TASK.MDIR Module directory

TASK.MFREE Free memory

TASK.DEVS Devices

TASK.IRQS IRQ table
OS Awareness Manual OS-9 | 8©1989-2024 Lauterbach

Example for automatic relocation of symbols for OS/9 (partial program):

Task Runtime Analysis

The time spend in a task can be analyzed by marking the access to a word holding a pointer to the current
tasks tcb. This can either be in the kernel or in the patch programs. In the first case the runtime in the kernel
will be added to the last task which called the kernel. If the 'magic' word in the patch program is marked, the
kernel is treated like another task. Task selective debugging should not be used when statistics are made, as
this would cause an error in the measurements. The example script 'taskfunc.cmm' can be used to make the
measurement for this analysis.

Task State Analysis

The time different tasks are is a certain state (running, ready, suspended or waiting) can be displayed as a
statistic or in graphical form. This feature is implemented by recording all accesses to the status byte of all
tasks. The example script 'taskstat.cmm' makes a task state analysis with the demo application. NOTE: The
analysis will only show task which were existent when the file is executed and after the measurement has
completed.

TASK.CONFIG os9 0x0 0x0 0x1000

sYmbol.RELOCate.Passive 0x0ffff0000
sYmbol.RELOCate.Base 0x0ffff0000
sYmbol.RELOCate.Auto ON

Data.LOAD.ROF modul1 0x18000 0x0ffff8000

Analyzer.STATistic.TASK Display task runtime statistic

Analyzer.Chart.TASK Display task runtime time chart

Analyzer.STATistic.TASKState Display task state statistic

Analyzer.Chart.TASKState Display task state time chart
OS Awareness Manual OS-9 | 9©1989-2024 Lauterbach

Function Runtime Statistics

All function related statistic and time chart functions can be used with or without patching the kernel. The
difference is whether the kernel will be seen like another task or as part of the task who called the kernel.
Task selective debugging should not be used when statistics are made, as this would cause an error in the
measurements. The task switch can be displayed in the analyzer list with the List.TASK keyword. The
example script 'taskfunc.cmm' makes a task-selective performance analysis for the demo application.

Task Selective Debugging

Task selective debugging allows to disable or enable the analyzer and the trigger system for specific tasks
and to stop one task while others continue to operate. This function has an impact on the response time of
the multitask kernel. The feature should not be used when making performance or time measurements or
with extremely time critical applications. Task selective debugging is currently not available on CPU32 and
CPU32+ processors.

System Calls

Manually executing system calls requires a small program on the target, which makes the system call and
stops execution after the call. Such a program is part of the standard patch procedure (pos9.cmm). The
memory at the system parameter buffer (a part of the patch area) must be mapped internal.

Analyzer.STATistic.TASKFunc Display function runtime statistic

Analyzer.STATistic.TASKTREE Display functions as tree

Analyzer.Chart.TASKFunc Display function time chart

Analyzer.List List.TASK FUNC Display function nesting in analyzer
OS Awareness Manual OS-9 | 10©1989-2024 Lauterbach

OS-9 Commands

sYmbol.RELOCate.Auto Control automatic relocation

Enables or disables the automatic relocation process. Without argument the command forces an immediate
relocation base on the current values of the target. This manual triggered relocation is useful when the target
can not be stopped, but analyzer or breakpoint features will be used. It can also be useful when the read of
the relocation information structure of the target is time consuming and should not be performed after each
breakpoint or step.

See chapter Symbol Relocation.

sYmbol.RELOCate.Base Define base address

Defines the current base address for one or more programs. The symbol path limits the definition to special
symbols of a module or a program. If an address range is given, only the symbols in this range will be set.
The memory class P: or D: defines which base address (program or data) is set. This program doesn't
relocate symbols. The command is used after loading the symbols, when the default base address in the
table doesn't match. The default program base is the first location of the program, the database is zero.

See chapter Symbol Relocation.

Format: sYmbol.RELOCate.Auto [ON | OFF]

sYmbol.RELOCate.Auto ; perform one single relocation

sYmbol.RELOCate.Auto ON ; turn automatic relocation on

Format: sYmbol.RELOCate.Base <class>:<base>] [<symbol_path>|<range>]

sYmbol.RELOCate.Base d:0x400000 ; assume all position independent
; data was linked to address 400000
OS Awareness Manual OS-9 | 11©1989-2024 Lauterbach

sYmbol.RELOCate.List List relocation info

Displays information about the automatic relocation of symbols.

The magic column displays is the identifier of a program, zero means that the program is identified by an
address inside the code area. The 'prog' and 'data' columns show the current base address for code and
data. The 'active' field is set when the program is currently alive.

See chapter Symbol Relocation.

sYmbol.RELOCate.Magic Define program magic number

Defines the program magic number for one or more programs. The symbol path limits the definition to
special symbols of a module or a program. If an address range is given, only the symbols in this range will be
set. The magic number can be used to identify a program and get a relation between task numbers in the
target and program names. A magic number of zero (default) will use the program address as an identifier.

See chapter Symbol Relocation.

sYmbol.RELOCate.Passive Define passive base address

Format: sYmbol.RELOCate.List

Format: sYmbol.RELOCate.Magic <program_magic> [<symbol_path>|<range>]

sYmbol.RELOCate.Magic 0x665f0 \\MODUL1 ; assignes the magic number
; 665f0 to the program MODUL1

Format: sYmbol.RELOCate.Passive <class>:<base>
OS Awareness Manual OS-9 | 12©1989-2024 Lauterbach

When a program is currently not used in the target, the code or data symbols are relocate to the address
defined by this command. The memory class P: or D: defines which base address (program or data) is set.
A base address of zero (default) turns the relocation off. In this case the symbols of not used (passive)
programs stay where they are.

See chapter Symbol Relocation.

TASK.SYSGLOB Display time

Displays the current time and tick.

TASK.PROCS Process table

Displays the process table.

TASK.PROCSL Extended process table

Displays the process table in an extended format.

sYmbol.RELOCate.Passive d:0x0ffff0000 ; unused data symbols will be
; relocated to address
; 0ffff0000

Format: TASK.SYSGLOB

Format: TASK.PROCS

Format: TASK.PROCSL
OS Awareness Manual OS-9 | 13©1989-2024 Lauterbach

TASK.QUEUES Process queues

TASK.EVENTS Event table

TASK.ALARMS Alarm table

Format: TASK.QUEUES

Format: TASK.EVENTS

Format: TASK.ALARMS
OS Awareness Manual OS-9 | 14©1989-2024 Lauterbach

TASK.MDIR Module table

TASK.MFREE Free memory

TASK.DEVS Device table

TASK.IRQS Interrupt polling table

Format: TASK.MDIR

Format: TASK.MFREE

Format: TASK.DEVS

Format: TASK.IRQS
OS Awareness Manual OS-9 | 15©1989-2024 Lauterbach

TASK.CCTL Cache control

Calls the F$Cttl function. The meaning of the bits induced the option-word is described in the OS-9 manual.

TASK.EXIT Exit system call

The current process is terminated by an OS-9 F$Exit call.

TASK.SEND Send signal

Sends a signal to one specific or all processes (F$Send).

TASK.SysCall Generic system call

Executes any OS-9 system call. If the system call hangs the kernel, you can try to break manually and use
the command Register.SWAP to restore the CPU registers in front of the system call. After the system call
has been executed the system register set contains the values returned by the system call. The values of

Format: TASK.CCTL <option_word>

Format: TASK.EXIT

Format: TASK.SEND [<id>] [<signal>]

task.send 5. 0. ; kill task 5.

Format: TASK.SysCall <code> [<d0> … <d4> <a0> <a1> <a2>]
OS Awareness Manual OS-9 | 16©1989-2024 Lauterbach

D0..D4 and A0..A2 are displayed in the message line. This command if the most dangerous of the OS
Awareness, as wrong arguments may cause the kernel to crash down. Use this command if it's really
necessary only.
OS Awareness Manual OS-9 | 17©1989-2024 Lauterbach

OS9 specific Functions

TASK.MDIR.ADDRESS() Program base address from module directory

Extracts the base address of a process from the module directory.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

Syntax: TASK.MDIR.ADDRESS(<module_name>)
OS Awareness Manual OS-9 | 18©1989-2024 Lauterbach

	OS Awareness Manual OS-9
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Hooks in OS-9

	Features
	Display of Kernel Resources
	Symbol Relocation
	Task Runtime Analysis
	Task State Analysis
	Function Runtime Statistics
	Task Selective Debugging
	System Calls

	OS-9 Commands
	sYmbol.RELOCate.Auto Control automatic relocation
	sYmbol.RELOCate.Base Define base address
	sYmbol.RELOCate.List List relocation info
	sYmbol.RELOCate.Magic Define program magic number
	sYmbol.RELOCate.Passive Define passive base address
	TASK.SYSGLOB Display time
	TASK.PROCS Process table
	TASK.PROCSL Extended process table
	TASK.QUEUES Process queues
	TASK.EVENTS Event table
	TASK.ALARMS Alarm table
	TASK.MDIR Module table
	TASK.MFREE Free memory
	TASK.DEVS Device table
	TASK.IRQS Interrupt polling table
	TASK.CCTL Cache control
	TASK.EXIT Exit system call
	TASK.SEND Send signal
	TASK.SysCall Generic system call

	OS9 specific Functions
	TASK.MDIR.ADDRESS() Program base address from module directory

