LAUTERBACH A

OS Awareness Manual OS21

OS Awareness Manual OS21

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns r—
OS AWareness MaANUAISccciicecrriiiissiriinissss s rssssss s s s ssss e s eassam s s e e s s amn e s enasame s e e ansammn e nnnsan r—~
OS Awareness Manual OS2ooooccccciirirrcrrrrrsscrrrrssssme s res s s e e e essssmme s eesssmme s eesssmmnsnessssmmnnnens 1

L 1= (o 3

O oY = 3
Brief Overview of Documents for New Users 4
Supported Versions 4
L0704} T 11T = Lo o 5
Quick Configuration Guide 6
Hooks & Internals in OS21 6
=Y 1 = 7
Display of Kernel Resources 7
Task Stack Coverage 7
Task-Related Breakpoints 8
Task Context Display 9
Dynamic Task Performance Measurement 10
Task Runtime Statistics 10
Task State Analysis 12
Function Runtime Statistics 13
0S21 specific Menu 14

[0 15778 I 0o 111 =T T = 15
TASK.EVenT Display event groups 15
TASK.MeSsaGe Display message queue 16
TASK.MuTeX Display mutexes 17
TASK.PARTiItion Display partition 18
TASK.SEMaphore Display semaphores 18
TASK.Task Display tasks 19
0S21 PRACTICE FUNCHONSceeciiiiiimnriimmsrisssmss s ssms s s s s ssmms s mms s s samms s s sammn s s 21
TASK.CONFIG() OS Awareness configuration information 21
©1989-2024 Lauterbach OS Awareness Manual 0S21 2

OS Awareness Manual 0OS21

History

Version 06-Jun-2024

04-Feb-21

Overview

Removing legacy command TASK. TASKState.

A TRACE32 for 0521 =N =
File Edit View Var Break Run CPU Misc Trace Pef Cov SH4 0521 Window Help
(R Y O R A TR | e & & g &
[= ==
" nr__name state £_prio [u_prio entr: 1
M step I # Over || ADiverge | ¢ Retum | & Up b Go 11 B i Feady e 354 00006000
addr /11ne |source 2. ready -1 0. [8BO04F3C _scheduler_idle
- 3. waiting 255. | 255. [880015CO bouncer
- R 4. waiting 255. | 255. [8BOOLCF4 orbiter
* Star field task entry 5. waiting 255 255. |8BOO1B6O swirler
/ . o 6. waiting 255. | 255. [8BOOLE34 Flutter
void star_field(void) 7. waiting 255. | 255. |8B0019CO bouncer
(SR - 8. waiting 255. | 255. [8BOOLCF4 orbiter
199 srand(1253342); 9. waiting 255 255. |8B001BGO swirler
. . 10. waiting 255. | 255. [8BOOLE34 Flutter
201| dnit_starsO); 11. |star field [running 255. | 255. |8BO02AOC star_field
203 | while (1) — =
€8 [=]=] =]
205 event_wait_all(sync_grp, MOVE_NOW_EVENT, NULL waiting [partition 1
8. 00000000 &
207 move_stars(); v
. aiting tasks
209 semaphore_signal (moved_sem); B37679E8 3. Bouncerol
| B326BAF0 4. orbiter.l
B326FBF8 5. swirle o == =
83273000 6. Flutte o (E=rEr =]
83277E08 7. bounce magic count [type |waiting partition
8327BF10 8. orbite 880D07C0 Tfo 00000000,
= 83280018 9. swirler. 88000790 00000000
o 83284120 10. flutter.2 58000700 . 00000000
[=r 3
nane Tow high sp % [Towest _spar el But.chart.task [E=5/Eo ==
Root Tas| EFFFEL s = =
Idle Task [830CEE80 S80CFG30 10% |880CFSA0 00000720 10% e | |2 S2000... | iif Gougs..| 38 Gorfip.| (A Goto.. | (3 Goto... | §3Find...| <D In e Out €8 Ful
bouncer 1 [88267AES 8826BAES 2% (88268710 00003C28 6% memm -10.000ms -5.000ms
orbiter 1 (8826BBF0 8826FBFO 2% [8826F518 00003C28 6% |mem range 1 |
swirler 1[8826FCFS 88273CF8 2% (88273920 00003C28 6% meem oUNCer 14/ I— . N -
flutter 188273E00 88277E00 2% |88277A28 00003C28 6% memm orbiter 18 — o o
bouncer 2 [88277F08 8827BF08 2% |8827BE30 00003C28 6% mem swirler 16 -_— S
orbiter 2 [8827C010 88280010 2% |8827FC38 00003C28 6% mem Flutter 14 — S
swirler 2 [88280118 88284118 2% (88283040 00003C28 6% meem bouncer 2§ | — o
Flutter 2 (88284220 88288220 4 2% |BB287E4S 00003C28 6% mem orbiter 25 — S
star field task |85288328 §B28C328 [8828C314 0% |8828BF50 00003C28 6% memm swirler 26 [___
Flutter 24 . —
< < > < >
B::[TASK.|
Task | |SEMaphore = MuTeX EVenT || MeSsaGe | PARTition TASKSTate pravioss
P:88002A0C \\0s21demo\stars\star_field star field task stopped at breakpoint HLL UP

The OS Awareness for OS21 contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.

©1989-2024 Lauterbach

OS Awareness Manual OS21

3

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently OS21 is supported for the following versions:

o 0S21 V2.x and V3.x on ST40 and ARM

©1989-2024 Lauterbach OS Awareness Manual 0S21 | 4

Configuration

The TASK.CONFIG command loads an extension definition file called “0s21.t132” (directory
“~~/demo/<processor>/kernel/os21”). It contains all necessary extensions.

Automatic configuration tries to locate the OS21 internals automatically. For this purpose all symbol tables
must be loaded and accessible at any time the OS Awareness is used.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration
omit all arguments:

Format: TASK.CONFIG os21

See Hooks & Internals for details on the used symbols.

See also the example “~~/demo/<processor>/kernel/os21/0s21.cmm”.

©1989-2024 Lauterbach OS Awareness Manual 0S21 | 5

Quick Configuration Guide

To get a quick access to the features of the OS Awareness for OS21 with your application, follow the
following roadmap:

1. Copy the files “os21.t32” and “os21 .men” to your project directory
(from TRACES2 directory “~~/demo/<processor>/kernel/os21”).

2. Start the TRACE32 Debugger.

3. Load your application as normal.

4. Execute the command “TASK.CONFIG os21”
(See “Configuration”).

5. Execute the command “MENU . ReProgram os21”
(See “0S21 Specific Menu”).

6. Start your application.
Now you can access the OS21 extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapters.

Hooks & Internals in 0S21

No hooks are used in the kernel.
For detecting the current running task, the kernel symbol “_active_taskp”is used.

For retrieving the kernel data structures, the OS Awareness uses the global kernel symbols and structure
definitions. Ensure that the kernel is compiled with debug information and that access to the kernel
structures is possible every time when features of the OS Awareness are used.

The kernel (and thus the OS Awareness) provides a list semaphores, mutexes and Events ONLY, if the
debug checks for this objects are switched on. To include these debug checks, edit the
“src/os21/makest40.inc” file and define the constants”CONF_DEBUG_CHECK_SEM”,
“CONF_DEBUG_CHECK_MTX” and “CONF_DEBUG_CHECK_EVT".

©1989-2024 Lauterbach OS Awareness Manual 0S21 | 6

Features

The OS Awareness for OS21 supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
0S21 components can be displayed:

TASK.Task Tasks
TASK.SEMaphore Semaphores
TASK.MuTeX Mutexes
TASK.EVenT Event groups
TASK.MeSsaGe Message queues
TASK.PARTition Partitions

For a description of the commands, refer to chapter “0S21 Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of OS21 tasks, you can use the TASK.STacK command. Without any parameter,
this command will set up a window with all active OS21 tasks. If you specify only a magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, flag memory must be mapped to the task stack areas,
when working with the emulation memory. When working with the target memory, a stack pattern must be
defined with the command TASK.STacK.PATtern (default value is 0x12345678).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD rsp.
TASK.STacK.ReMove commands with the task magic number as parameter, or omit the parameter and
select from the task list window.

It is recommended to display only the tasks you are interested in, because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

©1989-2024 Lauterbach OS Awareness Manual 0S21 | 7

&% BuTASK.STacKview =N =R)

name |low high sp % [lowest spare max [0 10 20 |
Root Task BE C -
Idle Task |880CEES0 BB0CFGB0
bouncer 1 |BB267AES BB2GBAES
orbiter 1 |8826BBF0 882G6FEFO0
swirler 1 |8826FCF8 88273CF8
flutter 1 (88273E00 88277E00
bouncer 2 |B8277F08 8827BF08

2

2

2

10% |BBOCFSAD 00000720 105 |me——
2% (88266710 00003CZ8 G5 [m—
2% |BB26F818 00003CZ8 G5 [m—
2% |BB273920 00003CZ8 G5 [m—
2% |BB2Z77AZ8 00003CZ8 G5 [m—
2% |BB2ZVBE30 00003CZ8 G5 [m—
2% |BB2Z7FC38 00003CZ8 G5 [m—
2% (BB283D40 00003CZ8 G5 [m—
2% |BB287E48 00003CZ8 G5 [m—
0% |8B828BF50 00003CZ8 G5 [m—

orbiter 8827C010 88280010

swirler 88280118 B8284118
flutter 88284220 BBZBB220

star field task |88288328 8828C328 |88

< >

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [I<option>] [TASK <task> Set task-related breakpoint.

. Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

o For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextiD ON Enables the comparison to the whole Context ID register.
Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

©1989-2024 Lauterbach OS Awareness Manual 0S21 | 8

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

I Frame.TASK [<task>] Display task context.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

. To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

I Frame /Task <task> Display call stack of a task.

If you'd like to see the application code where the task was preempted, then take these steps:
1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.

©1989-2024 Lauterbach OS Awareness Manual 0S21 | 9

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

= B:PERF.ListTASK = =R

& .. || 28 Gonfig... | (A Goto...|| B Detsied | Q) view || iy Profile || @ Init || O Dissble | @ Arm
runtime: 100%

name ratio 1% 2% 5% 10% 20% 50% 100 |

Root Task 95.160%

star field task 3.653%

swirler 1 0.274% |+

swirler 2 0.274% |+

orbiter 1 0.183% |+

Flutter 1 0.183% |+

orbiter 2 0.183% |+

bouncer 2 0.091% |+

Idle Task 0.000%

bouncer 1 0.000%

flutter 2 0.000%

Task Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spentin
a task and display it statistically and graphically.

©1989-2024 Lauterbach OS Awareness Manual 0S21 | 10

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault
Trace.STATistic.TASK
Trace.Chart.TASK
Trace.PROfileSTATistic.TASK

Trace.PROfileChart.TASK

Trace.FindAll Address TASK.CONFIG(magic)

Trace.FindAll CYcle owner OR CYcle context

Display trace buffer and task switches
Display task runtime statistic evaluation
Display task runtime timechart

Display task runtime within fixed time intervals
statistically

Display task runtime within fixed time intervals as
colored graph

Display all data access records to the “magic”
location

Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

| B:Trace STATistic. TASK = =R
2 ... || 1if Goups... || 58 Gonfig... | | Detailed || {7 Nesting|| il Chart || B Profile
tasks: 10. total: 14.765ms
range [total min max avr count ratio¥ [1% 2% 5% 10% |
bouncer 1 1.511ms 1.511ms 1.511ms 1.511ms 1. 10.236% A
orbiter 1 1.139ms 1.139ms 1.139ms 1.139ms 1. 7.712%
swirler 1 1.142ms 1.142ms 1.142ms 1.142ms 1. 7.735%
flutter 1 1.261ms 1.261ms 1.261ms 1.261ms 1. 8.537%
bouncer 2 1.512ms 1.512ms 1.512ms 1.512ms 1. 10.236%
orbiter 2 1.139ms 1.139ms 1.139ms 1.139ms 1. 7.712%
swirler 2 1.142ms 1.142ms 1.142ms 1.142ms 1. 7.735%
flutter 2 1.261ms 1.261ms 1.261ms 1.261ms 1. 8.537%
star field task| 657.300us v
< il BiiTrace. CHART.TASK = E == >
2 senp... || §if Gous... | 38 Gonfig... | (A Goto...|| A Goto...|| F4Find... | O In |[»0¢ Out||EH Full
-10.000ms -5.000ms 0.
range{§ 1 =i
ouncer 14| SE— |~
orbiter 14 . I |
swirler 1 . | |
flutter 1) 1)))) |
bouncer 24k . n____ B . . . |
orbiter 24k) [])) |
swirler 2 . — . |
flutter 244) ‘|
star field task@y . L
£ b 4 >
©1989-2024 Lauterbach OS Awareness Manual 0S21 | 11

Task State Analysis

NOTE: This feature is only available, if your debug environment is able to trace task
switches and data accesses (program flow trace is not sufficient). It requires
either an on-chip trace logic that is able to generate a data trace, or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated
statistically or displayed graphically.

This feature requires that the following data accesses are recorded:
. All accesses to the status words of all tasks

J Accesses to the current task variable (= magic address)

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs
are located (plus the current task pointer).

Example: This script assumes that the TCBs are located in an array named TCB_array and consequently
limits the tracing to data write accesses on the TCBs and the task switch.

Break.Set Var.RANGE (TCB_array) /Write /TraceData
Break.Set TASK.CONFIG (magic) /Write /TraceData

To evaluate the contents of the trace buffer, use these commands:

Trace.STATistic. TASKState Display task state statistic
Trace.Chart.TASKState Display task state timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

©1989-2024 Lauterbach OS Awareness Manual 0S21 | 12

Function Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting Display function nesting
Trace.STATistic.Func Display function runtime statistic
Trace.STATistic.TREE Display functions as call tree
Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis
Trace.Chart.Func Display function timechart
Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

©1989-2024 Lauterbach OS Awareness Manual 0S21 | 13

0S21 specific Menu

The menu file “0s21.men” contains a menu with OS21 specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called 0S21.
. The Display menu items launch the kernel resource display windows.

J The Stack Coverage submenu starts and resets the OS21 specific stack coverage and provides
an easy way to add or remove tasks from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

J The Trace menu is extended. In the List submenu, you can choose if you want a trace list
window to show only task switches (if any) or task switches together with the default display.

o The Perf menu contains additional submenus for task runtime statistics, task-related function
runtime statistics or statistics on task states.

©1989-2024 Lauterbach OS Awareness Manual 0S21 | 14

0S21 Commands

TASK.EVenT Display event groups

Format: TASK.EVenT [<event group>]

Displays the event group table of OS21 or detailed information about one specific event group.

Without any arguments, a table with all created event groups will be shown.
Specify an event group magic number to display detailed information on that event group.

b BATASK EVenT (o8)
mag c tlags options |waiting partition
B80D0GD0 [0D0000D00 [clear 9. 00000000 A
B80CEDS0 |00000000 |clear 0. 00000000

“magic” is the ID of the event group, used by OS21 and the OS Awareness to identify a specific event group
(address of the event group structure).

“waiting” specifies the number of tasks waiting for events of this event group.

The fields “magic” and “waiting tasks” are mouse sensitive. Double-clicking on them opens appropriate
windows. Right clicking on them will show a local menu.

NOTE: An event group table is only available, if the kernel is compiled with debug checks for event groups.
To switch these check on, define “CONF_DEBUG_CHECK_EVT” in the kernel make file “sh-superh-
elf/src/os21/makest40.inc”. If these checks are not included, you must give an event group ID as
argument.

Hint: When using variables that hold the event group ID (initialized with “event_group_create”), use the
function “v.value (myevtgrp)” to retrieve the event group ID. E.g.:
TASK.MuTeX v.value(sync_grp)

©1989-2024 Lauterbach OS Awareness Manual 0S21 | 15

TASK.MeSsaGe Display message queue

Format: TASK.MeSsaGe <message queue>

Displays detailed information about one specific message queue.

Specify a message queue magic number to display detailed information on that message queue.

@?. B:TASK.MeSsaGe vvalue(msgqueue) EI@
magic count |max s1ze |waitin artition msg partition |
B80D0730 | 4. | 10. | 12. | 0./ 0. |000D0000 00000000 =

content

6D 73 &7 30 00 00 0O OO OO OO OO0 0O

BBODOYFC

1.

2. BBODOBL14
3. BBODOBZC
4. BBODOB44

6D 73 67 31 00 00 00 QO OO OO OO0 00
6D 73 67 32 00 00 00 OO OO OO OO0 00
6D 73 &7 33 00 0O 00 OO OO OO OO0 00

waiting for message

waiting for free

“magic” is the ID of the message queue, used by OS21 and the OS Awareness to identify a specific
message queue (address of the message queue structure).

“count” specifies the number of messages stored in the queue.
“max” specifies the maximum number of messages that can be stored in the queue.
“size” specifies the size of the messages in bytes.

“waiting” specifies the number of tasks waiting for getting a message from the queue and waiting to place a
message into the queue.

The fields “magic” and “address” are mouse sensitive. Double-clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

Hint: When using variables that hold the message queue ID (initialized with “message_create_gueue’),
use the function “v.value (mymsgq)” to retrieve the message queue ID. E.g.:
TASK.MeSsaGe v.value (msggueue)

©1989-2024 Lauterbach OS Awareness Manual 0S21 | 16

TASK.MuTeX Display mutexes

Format: TASK.MuTeX [<mutex>]

Displays the mutex table of OS21 or detailed information about one specific mutex.

Without any arguments, a table with all created mutexes will be shown.
Specify a mutex magic number to display detailed information on that mutex.

o BTASKMuTeX =R =R
magic count [type [prio |waiting |owner partition |
88000630 0. [fifo 0. 0. 00000000 00000000
BE0OCEDLD 0. [fifo 0. 0. 00000000 00000000

“magic” is the ID of the mutex, used by OS21 and the OS Awareness to identify a specific mutex (address of
the mutex structure).

“waiting” specifies the number of tasks waiting for this mutex.

“owner” specifies the mutex owning task.

”

The fields “magic”, “owner” and “waiting tasks” are mouse sensitive. Double-clicking on them opens
appropriate windows. Right clicking on them will show a local menu.

NOTE: A mutex table is only available, if the kernel is compiled with debug checks for mutexes. To switch
these check on, define “CONF_DEBUG_CHECK_MTX” in the kernel make file “sh-superh-
elf/src/os21/makest40.inc”. If these checks are not included, you must give a mutex ID as
argument.

Hint: When using variables that hold the mutex ID (set with “‘mutex_create_xxx"), use the function
“v.value (mymutex)” to retrieve the mutex ID. E.g.:
TASK.MuTeX v.value (_mem_mutex)

©1989-2024 Lauterbach OS Awareness Manual 0S21 | 17

TASK.PARTition Display partition

Format: TASK.PARTition <patrtition>

Displays detailed information about one specific partition.

Specify a partition magic number to display detailed information on that partition.

o% B:TASK.PARTition _system_partition = =R
magic type |[state size free largest used |
88085984 [user | | | | | [_system_partition ~

(LN 0L

00000000
te 00000000
e 00000000
00000000

“magic” is the ID of the partition, used by OS21 and the OS Awareness to identify a specific partition
(address of the partition structure).

The fields “magic” and “functions” are mouse sensitive. Double-clicking on them opens appropriate
windows. Right clicking on them will show a local menu.

Hint: When using variables that hold the partition ID (initialized with “partition_create_xxx”), use the
function “v.value (mypart)” to retrieve the partition ID. E.g.:
TASK.PARTition v.value (mypartition)

TASK.SEMaphore Display semaphores

Format: TASK.SEMaphore [<semaphore>]

Displays the semaphore table of 0S21 or detailed information about one specific semaphore.

Without any arguments, a table with all created threads will be shown.
Specify a semaphore magic number to display detailed information on that semaphore.

% B:TASK.SEMaphore = =R
count type waiting |partition
4, [fifo 0. 00000000 ~
6. |[fifo 0. 00000000
0. [fifo 0. 00000000
1. [fifo 0. 00000000

“magic” is the ID of the semaphore, used by OS21 and the OS Awareness to identify a specific semaphore
(address of the semaphore structure).

©1989-2024 Lauterbach OS Awareness Manual 0S21 | 18

“waiting” specifies the number of tasks waiting for this semaphore.

The fields “magic” and “waiting tasks” are mouse sensitive. Double-clicking on them opens appropriate
windows. Right clicking on them will show a local menu.

NOTE: A semaphore table is only available, if the kernel is compiled with debug checks for semaphores. To
switch these check on, define “CONF_DEBUG_CHECK_SEM” in the kernel make file “sh-superh-
elf/src/os21/makest40.inc”. If these checks are not included, you must give a semaphore ID as
argument.

Hint: When using variables that hold the semaphore ID (initialized with “semaphore_create_xxx”), use
the function “v.value (mysema)” to retrieve the semaphore ID. E.qg.:
TASK.SEMaphore v.value (moved_sem)

TASK.Task Display tasks

Format: TASK.Task [<fask>]

Displays the task table of OS21 or detailed information about one specific task.

Without any arguments, a table with all created tasks will be shown.
Specify a task name or magic number to display detailed information on that task.

o B:TASK Task = =R

magic nr state e_prio [u_prio [entry

88085908 1. ready 254, 254, (00000000 A

BBOCEDBD 2. ready -1. 0. |B8BO04F3C _scheduler_idle

BB2679ESB 3. waiting 255. 255. |88B0019C0 bouncer

BB2EBAFD 4. waiting 255. 255. |8BO0LCF4 orbiter

B826FBFSB 5. waiting 255. 255. |BBOOLEGO swirler

88273000 6. waiting 255. 255. |BBOOLE34 flutter

BB277EDSB 7. waiting 255. 255. |88B0019C0 bouncer

BB27BF10 8. waiting 255. 255. |8BO0LCF4 orbiter

88280018 9. waiting 255. 255. |BBOOLEGO swirler

88284120 10. waiting 255. 255. |BBOOLE34 flutter

BB28B8228 11. |star field [running 255. 255. |BBO0DZA0C star_field
% B:TASK Task "star field task” = =R
L_g state e_prio [u_prio [entry |

BB258228 | ll |star TieTd [running | 255 ["255. [88002A0C star_field ~

partition
00000000

timeout to-status event-mask event-all
0. 1nact1ve 0Qoooo00 0Qoooo00

= data: cc data
00000000

8B00D4CO BB2BDBTO

pe er _ base i led partition
BB28C248 BBZ8B3Z8 00004000 123456?8 ves 0Qoooo00
= mutexes

none

“magic” is the ID of the task, used by OS21 and the OS Awareness to identify a specific task (address of the
task structure).

“nr’ specifies a task number.

“e_prio” and “u_prio” specify the effective priority and user priority (given at task creation).

©1989-2024 Lauterbach OS Awareness Manual 0S21 | 19

The fields “magic”, “entry” and various others are mouse sensitive, double clicking on them opens
appropriate windows. Right clicking on them will show a local menu.

Pressing the “context” button (if available) changes the register context to this task. “current” resets it to the
current context. See “Task Context Display”.

©1989-2024 Lauterbach OS Awareness Manual 0S21 | 20

0S21 PRACTICE Functions

There are special definitions for 0S21 specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magicsize)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual 0S21 | 21

	OS Awareness Manual OS21
	History
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in OS21

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	OS21 specific Menu

	OS21 Commands
	TASK.EVenT Display event groups
	TASK.MeSsaGe Display message queue
	TASK.MuTeX Display mutexes
	TASK.PARTition Display partition
	TASK.SEMaphore Display semaphores
	TASK.Task Display tasks

	OS21 PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information

