
MANUAL

OS Awareness Manual OS21

OS Awareness Manual OS21

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 OS Awareness Manuals .. 

 OS Awareness Manual OS21 ... 1

 History .. 3

 Overview .. 3

 Brief Overview of Documents for New Users 4

 Supported Versions 4

 Configuration ... 5

 Quick Configuration Guide 6

 Hooks & Internals in OS21 6

 Features ... 7

 Display of Kernel Resources 7

 Task Stack Coverage 7

 Task-Related Breakpoints 8

 Task Context Display 9

 Dynamic Task Performance Measurement 10

 Task Runtime Statistics 10

 Task State Analysis 12

 Function Runtime Statistics 13

 OS21 specific Menu 14

 OS21 Commands ... 15

 TASK.EVenT Display event groups 15

 TASK.MeSsaGe Display message queue 16

 TASK.MuTeX Display mutexes 17

 TASK.PARTition Display partition 18

 TASK.SEMaphore Display semaphores 18

 TASK.Task Display tasks 19

 OS21 PRACTICE Functions .. 21

 TASK.CONFIG() OS Awareness configuration information 21
OS Awareness Manual OS21 | 2©1989-2024 Lauterbach

OS Awareness Manual OS21

Version 06-Jun-2024

History

04-Feb-21 Removing legacy command TASK.TASKState.

Overview

The OS Awareness for OS21 contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.
OS Awareness Manual OS21 | 3©1989-2024 Lauterbach

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently OS21 is supported for the following versions:

• OS21 V2.x and V3.x on ST40 and ARM
OS Awareness Manual OS21 | 4©1989-2024 Lauterbach

Configuration

The TASK.CONFIG command loads an extension definition file called “os21.t32” (directory
“~~/demo/<processor>/kernel/os21”). It contains all necessary extensions.

Automatic configuration tries to locate the OS21 internals automatically. For this purpose all symbol tables
must be loaded and accessible at any time the OS Awareness is used.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration
omit all arguments:

See Hooks & Internals for details on the used symbols.

See also the example “~~/demo/<processor>/kernel/os21/os21.cmm”.

Format: TASK.CONFIG os21
OS Awareness Manual OS21 | 5©1989-2024 Lauterbach

Quick Configuration Guide

To get a quick access to the features of the OS Awareness for OS21 with your application, follow the
following roadmap:

1. Copy the files “os21.t32” and “os21.men” to your project directory

(from TRACE32 directory “~~/demo/<processor>/kernel/os21”).

2. Start the TRACE32 Debugger.

3. Load your application as normal.

4. Execute the command “TASK.CONFIG os21”

(See “Configuration”).

5. Execute the command “MENU.ReProgram os21”

(See “OS21 Specific Menu”).

6. Start your application.

Now you can access the OS21 extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapters.

Hooks & Internals in OS21

No hooks are used in the kernel.

For detecting the current running task, the kernel symbol “_active_taskp” is used.

For retrieving the kernel data structures, the OS Awareness uses the global kernel symbols and structure
definitions. Ensure that the kernel is compiled with debug information and that access to the kernel
structures is possible every time when features of the OS Awareness are used.

The kernel (and thus the OS Awareness) provides a list semaphores, mutexes and Events ONLY, if the
debug checks for this objects are switched on. To include these debug checks, edit the
“src/os21/makest40.inc” file and define the constants”CONF_DEBUG_CHECK_SEM”,
“CONF_DEBUG_CHECK_MTX” and “CONF_DEBUG_CHECK_EVT”.
OS Awareness Manual OS21 | 6©1989-2024 Lauterbach

Features

The OS Awareness for OS21 supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
OS21 components can be displayed:

For a description of the commands, refer to chapter “OS21 Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of OS21 tasks, you can use the TASK.STacK command. Without any parameter,
this command will set up a window with all active OS21 tasks. If you specify only a magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, flag memory must be mapped to the task stack areas,
when working with the emulation memory. When working with the target memory, a stack pattern must be
defined with the command TASK.STacK.PATtern (default value is 0x12345678).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD rsp.
TASK.STacK.ReMove commands with the task magic number as parameter, or omit the parameter and
select from the task list window.

It is recommended to display only the tasks you are interested in, because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

TASK.Task Tasks

TASK.SEMaphore Semaphores

TASK.MuTeX Mutexes

TASK.EVenT Event groups

TASK.MeSsaGe Message queues

TASK.PARTition Partitions
OS Awareness Manual OS21 | 7©1989-2024 Lauterbach

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.
This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: If the RTOS serves the Context ID register at task switches, and if the
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.Set <address>|<range> [/<option>] /TASK <task> Set task-related breakpoint.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

Break.CONFIG.UseContextID ON Enables the comparison to the whole Context ID register.

Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.
OS Awareness Manual OS21 | 8©1989-2024 Lauterbach

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

If you’d like to see the application code where the task was preempted, then take these steps:

1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.

Frame.TASK [<task>] Display task context.

Frame /Task <task> Display call stack of a task.
OS Awareness Manual OS21 | 9©1989-2024 Lauterbach

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

Task Runtime Statistics

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in
a task and display it statistically and graphically.

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).
OS Awareness Manual OS21 | 10©1989-2024 Lauterbach

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

Trace.List List.TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as
colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records
OS Awareness Manual OS21 | 11©1989-2024 Lauterbach

Task State Analysis

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated
statistically or displayed graphically.

This feature requires that the following data accesses are recorded:

• All accesses to the status words of all tasks

• Accesses to the current task variable (= magic address)

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs
are located (plus the current task pointer).

Example: This script assumes that the TCBs are located in an array named TCB_array and consequently
limits the tracing to data write accesses on the TCBs and the task switch.

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

NOTE: This feature is only available, if your debug environment is able to trace task
switches and data accesses (program flow trace is not sufficient). It requires
either an on-chip trace logic that is able to generate a data trace, or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Break.Set Var.RANGE(TCB_array) /Write /TraceData
Break.Set TASK.CONFIG(magic) /Write /TraceData

Trace.STATistic.TASKState Display task state statistic

Trace.Chart.TASKState Display task state timechart
OS Awareness Manual OS21 | 12©1989-2024 Lauterbach

Function Runtime Statistics

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG(magic) /TraceData

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

Trace.ListNesting Display function nesting

Trace.STATistic.Func Display function runtime statistic

Trace.STATistic.TREE Display functions as call tree

Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis

Trace.Chart.Func Display function timechart

Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart
OS Awareness Manual OS21 | 13©1989-2024 Lauterbach

OS21 specific Menu

The menu file “os21.men” contains a menu with OS21 specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called OS21.

• The Display menu items launch the kernel resource display windows.

• The Stack Coverage submenu starts and resets the OS21 specific stack coverage and provides
an easy way to add or remove tasks from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

• The Trace menu is extended. In the List submenu, you can choose if you want a trace list
window to show only task switches (if any) or task switches together with the default display.

• The Perf menu contains additional submenus for task runtime statistics, task-related function
runtime statistics or statistics on task states.
OS Awareness Manual OS21 | 14©1989-2024 Lauterbach

OS21 Commands

TASK.EVenT Display event groups

Displays the event group table of OS21 or detailed information about one specific event group.

Without any arguments, a table with all created event groups will be shown.
Specify an event group magic number to display detailed information on that event group.

“magic” is the ID of the event group, used by OS21 and the OS Awareness to identify a specific event group
(address of the event group structure).

“waiting” specifies the number of tasks waiting for events of this event group.

The fields “magic” and “waiting tasks” are mouse sensitive. Double-clicking on them opens appropriate
windows. Right clicking on them will show a local menu.

NOTE: An event group table is only available, if the kernel is compiled with debug checks for event groups.
To switch these check on, define “CONF_DEBUG_CHECK_EVT” in the kernel make file “sh-superh-
elf/src/os21/makest40.inc”. If these checks are not included, you must give an event group ID as
argument.

Hint: When using variables that hold the event group ID (initialized with “event_group_create”), use the
function “v.value(myevtgrp)” to retrieve the event group ID. E.g.:
TASK.MuTeX v.value(sync_grp)

Format: TASK.EVenT [<event group>]
OS Awareness Manual OS21 | 15©1989-2024 Lauterbach

TASK.MeSsaGe Display message queue

Displays detailed information about one specific message queue.

Specify a message queue magic number to display detailed information on that message queue.

“magic” is the ID of the message queue, used by OS21 and the OS Awareness to identify a specific
message queue (address of the message queue structure).

“count” specifies the number of messages stored in the queue.

“max” specifies the maximum number of messages that can be stored in the queue.

“size” specifies the size of the messages in bytes.

“waiting” specifies the number of tasks waiting for getting a message from the queue and waiting to place a
message into the queue.

The fields “magic” and “address” are mouse sensitive. Double-clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

Hint: When using variables that hold the message queue ID (initialized with “message_create_queue”),
use the function “v.value(mymsgq)” to retrieve the message queue ID. E.g.:
TASK.MeSsaGe v.value(msgqueue)

Format: TASK.MeSsaGe <message_queue>
OS Awareness Manual OS21 | 16©1989-2024 Lauterbach

TASK.MuTeX Display mutexes

Displays the mutex table of OS21 or detailed information about one specific mutex.

Without any arguments, a table with all created mutexes will be shown.
Specify a mutex magic number to display detailed information on that mutex.

“magic” is the ID of the mutex, used by OS21 and the OS Awareness to identify a specific mutex (address of
the mutex structure).
“waiting” specifies the number of tasks waiting for this mutex.
“owner” specifies the mutex owning task.

The fields “magic”, “owner” and “waiting tasks” are mouse sensitive. Double-clicking on them opens
appropriate windows. Right clicking on them will show a local menu.

NOTE: A mutex table is only available, if the kernel is compiled with debug checks for mutexes. To switch
these check on, define “CONF_DEBUG_CHECK_MTX” in the kernel make file “sh-superh-
elf/src/os21/makest40.inc”. If these checks are not included, you must give a mutex ID as
argument.

Hint: When using variables that hold the mutex ID (set with “mutex_create_xxx”), use the function
“v.value(mymutex)” to retrieve the mutex ID. E.g.:
TASK.MuTeX v.value(_mem_mutex)

Format: TASK.MuTeX [<mutex>]
OS Awareness Manual OS21 | 17©1989-2024 Lauterbach

TASK.PARTition Display partition

Displays detailed information about one specific partition.

Specify a partition magic number to display detailed information on that partition.

“magic” is the ID of the partition, used by OS21 and the OS Awareness to identify a specific partition
(address of the partition structure).

The fields “magic” and “functions” are mouse sensitive. Double-clicking on them opens appropriate
windows. Right clicking on them will show a local menu.

Hint: When using variables that hold the partition ID (initialized with “partition_create_xxx”), use the
function “v.value(mypart)” to retrieve the partition ID. E.g.:
TASK.PARTition v.value(mypartition)

TASK.SEMaphore Display semaphores

Displays the semaphore table of OS21 or detailed information about one specific semaphore.

Without any arguments, a table with all created threads will be shown.
Specify a semaphore magic number to display detailed information on that semaphore.

“magic” is the ID of the semaphore, used by OS21 and the OS Awareness to identify a specific semaphore
(address of the semaphore structure).

Format: TASK.PARTition <partition>

Format: TASK.SEMaphore [<semaphore>]
OS Awareness Manual OS21 | 18©1989-2024 Lauterbach

“waiting” specifies the number of tasks waiting for this semaphore.

The fields “magic” and “waiting tasks” are mouse sensitive. Double-clicking on them opens appropriate
windows. Right clicking on them will show a local menu.

NOTE: A semaphore table is only available, if the kernel is compiled with debug checks for semaphores. To
switch these check on, define “CONF_DEBUG_CHECK_SEM” in the kernel make file “sh-superh-
elf/src/os21/makest40.inc”. If these checks are not included, you must give a semaphore ID as
argument.

Hint: When using variables that hold the semaphore ID (initialized with “semaphore_create_xxx”), use
the function “v.value(mysema)” to retrieve the semaphore ID. E.g.:
TASK.SEMaphore v.value(moved_sem)

TASK.Task Display tasks

Displays the task table of OS21 or detailed information about one specific task.

Without any arguments, a table with all created tasks will be shown.
Specify a task name or magic number to display detailed information on that task.

“magic” is the ID of the task, used by OS21 and the OS Awareness to identify a specific task (address of the
task structure).
“nr” specifies a task number.
“e_prio” and “u_prio” specify the effective priority and user priority (given at task creation).

Format: TASK.Task [<task>]
OS Awareness Manual OS21 | 19©1989-2024 Lauterbach

The fields “magic”, “entry” and various others are mouse sensitive, double clicking on them opens
appropriate windows. Right clicking on them will show a local menu.

Pressing the “context” button (if available) changes the register context to this task. “current” resets it to the
current context. See “Task Context Display”.
OS Awareness Manual OS21 | 20©1989-2024 Lauterbach

OS21 PRACTICE Functions

There are special definitions for OS21 specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Parameter and Description:

Return Value Type: Hex value.

Syntax: TASK.CONFIG(magic | magicsize)

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).
OS Awareness Manual OS21 | 21©1989-2024 Lauterbach

	OS Awareness Manual OS21
	History
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in OS21

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	OS21 specific Menu

	OS21 Commands
	TASK.EVenT Display event groups
	TASK.MeSsaGe Display message queue
	TASK.MuTeX Display mutexes
	TASK.PARTition Display partition
	TASK.SEMaphore Display semaphores
	TASK.Task Display tasks

	OS21 PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information

