LAUTERBACH A

OS Awareness Manual
OSEK/ORTI

OS Awareness Manual OSEK/ORTI

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns r—
OS AWareness MaANUAISccciicecrriiiissiriinissss s rssssss s s s ssss e s eassam s s e e s s amn e s enasame s e e ansammn e nnnsan r—~
OS Awareness for OSEK/ORTIcccccoccmiresramerrrssscerrrsssssmesssssssmmessssssmmssessssnmesssssssnmsssesssammssnens r—~
OS Awareness Manual OSEK/ORTIcooiiiiiiiiiiiiinscesmerenn s sssssssssssssmssss s s ssssssssssssssmsmmsssssnssnns 1
LT3 o 4

L0 =T T 5
Brief Overview of Documents for New Users 6
Supported Versions 6

L0 1T 11 = 1o o N 7
Quick Configuration Guide 7
Hooks and Internals in ORTI 7
Requirements for Debugging 8
Requirements for Tracing 8

Debug Features ... s s 10
Display of Kernel Resources 10

Task Stack Coverage 10
Task-Related Breakpoints 11
Task Context Display 12
Dynamic Task Performance Measurement 12
OSEK/ORTI specific Menu 13
Trace FeatUres ... e s n e s m s e e n s e e e 14
Task Runtime Statistics 14
Task State Analysis 15
Service Runtime Statistics 16
ISR2 Runtime Statistics 17
Function Runtime Statistics 18

CPU Load Analysis 19
(013 1 I 311 1.4 =T T L= OSSR 21
TASK.D<object> Display OSEK objects 21
ORTI PRACTICE FUNCLIONS ccceeceiieicecerrrsssssserssssssssssessssms s s eessssmsssessssnsenensssnmsenessssnsensenssnn 22
TASK.CONFIG() OS Awareness configuration information 22
TASK.ORTI.ADDRESS() Address of ORTI attribute 23
©1989-2024 Lauterbach OS Awareness Manual OSEK/ORTI 2

TASK.ORTI.RANGE() Address range of ORTI attributes 23

©1989-2024 Lauterbach OS Awareness Manual OSEK/ORTI | 3

OS Awareness Manual OSEK/ORTI

Version 06-Jun-2024

History

17-May-22 New option /SMP for the command TASK.D<object>.

©1989-2024 Lauterbach OS Awareness Manual OSEK/ORTI | 4

Overview

A TRACE32 for AUTOSAR/OSEK/ORTI EI@

File Edit View Var Break Run CPU Misc Trace Perf Cov MPC3XKX EE_cpu 0 Window Help
Mk A dee/pn[E 2ROl anEaedas @ Q| anedas @28

S =rE =

os running task id [priority jos serwvices watch last error [current application mode [running 1sr2 [ee system ceilin
EE_arch [Taskl [0x40 |C0unter‘T1cT< exited) [E_OK [OSDEFAILTAPPMODE NO_ISR2 Ox00000040

o Pyl o || & || 2R
-0 % — =

[Fask actual prio task state jcurrent acH | & Setn... | iif Gous..| 38 Config... || Goto...|[1Y Goto...|| #3Find... || «Ov In |[+0¢ Out| |63 Full

Taskl |0x40 RUNNING 0x00000001 Oms -450.900ms -450.800ms -450.700ms -450.600ms -450.500ms -450.400ms|
Task2 Not Running [SUSPENDED |0x00000000 |
Task3 Not Running |READY 0x00000001

Task4 Not Running [SUSPENDED |0x00000000

Tasks Not Running [SUSPENDED |0x00000000

Taské |Not Running [WAITING 0x00000001

3
name |low high sp % [lowest spare max [0 10 20 30
StackD [#0D0ACEQ 4000DBCDF 4000BBC4 00000OEE4 B | m—
Stackl [40009CEQ 4000ACDF |4000ABFO 5% |4000ABG0 OQO000ESD G5 | —
Stack2? [40008CEQ 40009CDF 40009C40 00000FG0 3% |m v
el M M M -
o (== =]
B senp... || 38 @nfig... | Goto...| #3Find... |l Chart || 0 In || v0« Out | &3 Ful
-450.800ms -450.700ms -450.600ms -450.500ms -450.400ms
range Qs

WaitEvent)
CounterTickiy
DisableallInterrupts iy
EnableAllInterrupts [y
TerminateTask iy
Cunknown) &Y
GetEventiy
ClearEventiy
GetResourcely
ReleaseResourcefy
ActivateTaskiy

BE:: TASK.|
DOs DTASK DSTACK DALARM DRESOURCE pravious
SV:400002D4 \\ppc\code\FuncTaskl+0x1E4 Taskl stopped MIX |UP

The OSEK Run Time Interface (ORTI) is a specification, which enables debuggers to become OS-aware,
without knowing the OS itself. Most AUTOSAR/OSEK system builders are able to extract all necessary
information of the OS component into a text file, called “ORTI file”.

The TRACE32 Debugger can load such an ORTI file and adds some special extensions to itself. This
manual describes the additional features, such as additional commands and statistic evaluations.

Note that only those extensions are available, which are specified in the ORTI file. I.e. there may be only a
subset of the described features available, depending on your ORTI file.

©1989-2024 Lauterbach OS Awareness Manual OSEK/ORTI | 5

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently ORTI is supported for the following versions:

J ORTI V2.0 (no official version)

. ORTI V2.1, V2.2

U ORTI V2.3 (inofficial SMP and OTM extensions)

©1989-2024 Lauterbach OS Awareness Manual OSEK/ORTI | 6

Configuration

The following command is used to load the ORTI file and to extend the capabilities of the debugger
according to this file:

I TASK.ORTI <orti_file> Load ORTI file.

The AUTOSAR/OSEK system builder generates an ORTI file, when generating the OS (usually with the
extension “.ort” or “.orti"). Specify this file to the TASK.ORTI command.

The ORTI file refers to global symbols exported by the OS. Ensure that those symbols are loaded and
accessible while executing TASK.ORTI and while using the ORTI extensions. Usually the compiled
application contains these symbols.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. Use SYStem.MemAccess to configure and enable the access.

See also the example “~~/demo/kernel/orti/orti.cmm”.

Quick Configuration Guide

To get a quick access to the features of the ORTI debugger with your application, follow this
roadmap:

1. Start the TRACE32 Debugger.
2. Load your application as normal.

3. Execute the command:

TASK.ORTI <orti_file>

See “Configuration”.

4. Start your application.
Now you can access the ORTI extensions through the TRACE32 menu.

In case of any problems, please carefully read the previous configuration chapters and check the
requirements.

Hooks and Internals in ORTI

There are some requirements to do a successful debugging and tracing with ORTI files. In case of problems,
please check carefully these items.

©1989-2024 Lauterbach OS Awareness Manual OSEK/ORTI | 7

Requirements for Debugging

Please note these requirements for debugging:

. The module to be debugged must be compiled and linked with debug information.
If possible, compile the OS with debug information, too.

J It is recommended (but not mandatory) to switch off compiler optimization for easier debugging.
But be aware that this affects the run time behavior.

. The AUTOSAR/OSEK system builder must create an ORTI file.
This file is system specific - it must be rebuilt as soon as the application layout is changed.

J The “RUNNINGTASK” attribute of the “0S” object should evaluate to a single address location

OK: RUNNINGTASK = "OS_taskCurrent";
Not OK: RUNNINGTASK = "OS_taskCurrent->runPrio";

Single address is needed by the debugger to get the current running task by reading a single
memory location. E.g. used to display the current task in the status line, provide task-specific
breakpoints, calculate dynamic task performance, detect task switches in the real time trace, and
various other things.

Contact the OS vendor or Lauterbach if this requirement is not met.

J The “RUNNINGTASK” attribute of the “0S” object should be declared as “ENUM”

OK: ENUM ["NO_TASK" = Oxff, "InitTask" = 0, "Cyclic" = 1, "Loop" = 2]
RUNNINGTASK, "Running task";
Not OK: CTYPE RUNNINGTASK, "Running task";

ENUM is used by the debugger to know all the possible tasks in the system.

Contact the OS vendor or Lauterbach if this requirement is not met.

Requirements for Tracing

Tracing with ORTI requires that the on-chip trace generation logic can generate task information. For details
refer to “OS-aware Tracing” (glossary.pdf).

In case of tracing write accesses, the debugger uses the address of the variable given as “RUNNINGTASK”
in the ORTI file. No hooks are necessary.

In case of tracing task switch packets, either the OS writes the current task ID into the ownership trace
register, or a PreTaskHook must be created and registered to write the task ID.

©1989-2024 Lauterbach OS Awareness Manual OSEK/ORTI | 8

Example for a PreTaskHook for PowerPCs with diab compiler:

asm volatile void send_OTM (TaskType value)
{
$reg value
|
mtpid0 value
isync

3

void PreTaskHook (void)
{
TaskType taskid;
GetTaskID(&taskid) ;
send_OTM (taskid) ;

For recording various objects (tasks, ISRs, services) and/or ids that do not fit in a single ownership trace
message, use a complex OTM protocol. Ask Lauterbach for the specification of the “ORTI OTM Proposal”.

AUTOSAR also provides an advanced hook based tracing scenario, called ARTI (AUTOSAR Run-Time
Interface). Using this instrumented trace, various OS and RTE events can be traced and evaluated. In case
you want to use ARTI instead of the above mentioned tracing methods, contact Lauterbach for support.

©1989-2024 Lauterbach OS Awareness Manual OSEK/ORTI | 9

Debug Features

The OS Awareness for OSEK/ORTI supports the following debug features.

Display of Kernel Resources

The ORTI awareness defines new PRACTICE commands to display various kernel resources. The
Information available depends on the objects defined in the ORTI file. The commands for displaying those
information has the form “TASK.D<object>". For a detailed description please refer to the chapter “ORTI
Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of OSEK stacks, you can use the TASK.STacK command. This command will set
up a window with all defined OSEK stacks.

This feature is only available, if the ORTI file presents the stack characteristics of each task as defined in the
ORTI specification.

The debugger uses the stack pattern given in the ORTI file to calculate the maximum stack usage of each
task. If the ORTI file does not provide a stack pattern, it must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one stack to/from the stack coverage, you can call the TASK.STacK.ADD rsp.
TASK.STacK.ReMove commands and select from the list window.

It is recommended to display only the stacks you are interested in, because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

b BiTASK.STacK.view = =R
name [Tow high sp % [lowest spare max 0 10 20 30

StackO [4000ACEC 4000BCDF 4000BEC4 00000EE4 B [m—

Stackl [40009CE0 4000ACDF |4000ABFO 5% [4000AEB0 0O0000ESD | m—

Stack2 [40008CE0 40009CDF 40009C40 00000F60 3% |m

Stack3 [40007CE0 40008CDF 40008EF0 00000FLO S5 [m—

Stack4 [40006CE0 40007CDF 40007C00 00000FZ0 S5 [m—

Stack5 [40005CE0 40006CDF 40006C00 00000FZ0 S5 [m—

Stacké [40004CE0 40005CDF 40005BA4 00000ECH T [m—

Stack? [40003CE0 40004CDF 00001000 0%

Stacks [40002CE0 40003CDF 40003C30 O0000F50 4% |me

< >

©1989-2024 Lauterbach OS Awareness Manual OSEK/ORTI | 10

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [I<option>] [TASK <task> Set task-related breakpoint.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

J For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextiD ON Enables the comparison to the whole Context ID register.
Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK . List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

a B::Break.List EI@
3K Delete Al | O Disable Al @ Enabie Al @ it || & 1mpl... |52 Store...| 52 Load... | Ed Set...
address types impl action task |
V:40001080 [Program |[SOFT "Taskz" EE_oo_TerminateTask A
V:40002020 |Program |SOFT "Tasks™ EE_oo_WaitEvent w

©1989-2024 Lauterbach OS Awareness Manual OSEK/ORTI | 11

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:
I Frame.TASK [<task>] Display task context.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

o To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

I Frame /Task <task> Display call stack of a task.

If you'd like to see the application code where the task was preempted, then take these steps:

1. Open the Frame /Caller /Task <task> window.
2. Double-click the line showing the OS service call.
NOTE: The evaluation of the task context is only available, if the loaded ORTI file

provides information about the contexts.

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

©1989-2024 Lauterbach OS Awareness Manual OSEK/ORTI | 12

= B:PERF.ListTASK = =R
& setp..|| 38 o || (A Goto... | B0 Detailed | Q) View ||y Profile]| @ Init || O Dissbe| @ Arm
runtime: 100%

name ratio 1% 2% 5% 10% 20% 50% 100 |
Taskl 52.342%

NO_TASK 47.199%

Task2 0.367% |+

Task3 0.092% |+

Task4 0. 000%

Tasks 0. 000%

Taské 0. 000%

Task? 0. 000%

OSEK/ORTI specific Menu

When loading the ORTI file with the command TASK.ORTI, the debugger automatically extends the menus,
depending on the contents of the ORTI file.

You will find a new menu, named to the OSEK OS name.
. The Display menu items launch the kernel resource display windows.

. The Stack Coverage submenu (if available) starts and resets the OSEK stack coverage and
provides an easy way to add or remove stacks from the stack coverage window.

In addition, these menus on the TRACES32 main menu bar are modified:
. The Trace, List menu is extended.
- “Task Switches” shows a trace list window with only task switches (if any)
“Default and Tasks” shows switches together with the default display.
. The Perf menu contains additional submenus
- “Task Runtime” enables and shows the task runtime analysis
- “Task Function Runtime” enables and shows the function runtime statistics based on tasks
- “Task State” enables shows the task state analysis

- “CPU Load” enables and shows the CPU load analysis

©1989-2024 Lauterbach OS Awareness Manual OSEK/ORTI | 13

Trace Features

All features in this chapter are based on the ORTI-file related tracing methods. See the tracing requirements
in the chapter “Hooks & Internals”. This method uses program flow trace and data trace, with possibly a
small instrumentation for tracing task switches. For details refer to “OS-aware Tracing” (glossary.pdf).

If you're using the AUTOSAR ARTI module and hooks, the setup and configuration for tracing differs. ARTI
uses a trace that is completely built upon hook instrumentation. The actual used tracing mechanism
depends on the instrumentation and the used CPU. The features are basically the same, but there are some

subtle differences. Contact Lauterbach for support.

The OS Awareness for OSEK/ORTI supports the following trace features.

Task Runtime Statistics

NOTE:

This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in

a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault
Trace.STATistic.TASK
Trace.Chart.TASK
Trace.PROfileSTATistic.TASK

Trace.PROfileChart.TASK

Trace.FindAll Address TASK.CONFIG(magic)

Trace.FindAll CYcle owner OR CYcle context

Display trace buffer and task switches
Display task runtime statistic evaluation
Display task runtime timechart

Display task runtime within fixed time intervals
statistically

Display task runtime within fixed time intervals as
colored graph

Display all data access records to the “magic”
location

Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as

“(unknown)”.

For further requirements for tracing, see also “Hooks & Internals”.

Hints on evaluating the function run times:

©1989-2024 Lauterbach

OS Awareness Manual OSEK/ORTI | 14

To display the time periods of calling timed tasks or timed runnables, use the body function of the tasks or
runnables with Trace.STATistic.AddressDIStance. E.g:

Trace.STATistic.AddressDistance Func_TasklOms

To display the gross runtimes of a function, use Trace.STATistic.AddressDURation with the start and exit
address of the function. Please note that sYmbol.EXIT() won't work for task body functions that end with
TerminateTask(), as this function may be called by other tasks in between. Instead, set the second argument
to the calling line of TerminateTask(). Also, the evaluation of recursive functions are not possible with this
command. Examples:

Trace.STATistic.AddressDURation myRunnable sYmbol.EXIT (myRunnable)
Trace.STATistic.AddressDURation myTaskFunc myTaskFunc\15

| B:Trace STATistic. TASK = =R
2 ... || 1if Goups... || 58 Gonfig... | | Detailed || {7 Nesting|| il Chart || B Profile
tasks: 6. total: 1.678s
range total min max avr count ratio% 1% 2% 5% 10% |

NO_TASK | 907.878ms 5.200us | 203.91l6ms &4, 848ms 14. | 54.113%
Taskl | 768.450ms 13.549ms | 308.986ms | 256.150ms 3. | 45.803%
Task3 | 524.400us | 174.800us | 174.800us | 174, 800us 3. 0.031% +
Task4 | 403.600us | 132.600us | 135.500us | 134.533us 3. 0.024% +
Task5 | 274.500u
Taské | 190.800u = | B;Trace.STATistic.AddressDURation FuncTask1 FuncTask1+0xd2c EI@
£
G2 snp... || iyl Chart | & Zoom | © Zoom || [l Full
samples: 2. avr: 308.924ms min: 308.91lms max: 308.936ms
total: 1.678s in: 617.847ms out: 1.060s ratio: 36.826%
up to |count ratio 1% 2% 5% 10% 20% 50% 100 |
< 308.910ms 0. 0. 000%
308.920ms 1. | 50.000%
308.930ms 0. 0. 000%
308. 940ms 1. | 50.000%
308.950ms 0. 0. 000%
Z 0. [0-000% | ny B Trace Chart. TASK =N ==
2 senp... || §if Goups... | 38 Gonfig... | A Goto...|| A Goto...|| #3Find... | 0 In |[»0¢ Out| &3 Ful
-440.000ms -439.800ms -439.600ms
ranEE<» | | 1 I
Taskly/ I
NO_TASK&S| | 1 1 i EE——
Task4 & i —) j j
Task3 i j . ———
Tasks &Y))
Task&Ry I
> £ >
Task State Analysis

NOTE: This feature is only available, if your debugger equipment is able to trace memory data accesses
(flow trace is not sufficient).

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated statis-
tically or displayed graphically. This feature is implemented by evaluating all accesses to the status words of
all tasks. Additionally the accesses to the current task pointer (=magic) are evaluated.

A complete recording of all data accesses is necessary for this feature.

©1989-2024 Lauterbach OS Awareness Manual OSEK/ORTI | 15

To evaluate the contents of the trace buffer, use these commands:

Trace.STATistic. TASKState Display task state statistic
Trace.Chart. TASKState Display task state time chart

All kernel activities up to the task switch are added to the calling task. The start of the recording time, when

the calculation doesn’t know, which task is running, is calculated as “(root)”.
" BuTrace.Chart. TASKState EI@

B senp.. || 38 @nfig... | 1 Goto... | #3Find... | i Chart || @ In || »0¢ Out||EH Ful
-1.600s -1.400s -1.200s -1.000s -800.000ms -600.000ms -400.000ms -200.000ms 0.0

range{§
NO_TASK kY
Task1 gy
Task3 Y
Task4 iy
Tasks &Y
Task&RY

Service Runtime Statistics

The time spent in an OSEK service routine can be evaluated statistically and displayed graphically. To do
this, a memory location, that marks service routine entries and exits, must be recorded (that means,

recording all services).

To do a selective recording on OSEK service routines with flow traces based on the data accesses, use the

following PRACTICE command:

; Enable tracing only on the magic location
Break.Set TASK.CONFIG (magic_service) /TraceEnable

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK Display service nesting

Trace.STATistic. TASKSRV Display service runtime statistic

Trace.Chart. TASKSRV Display service time chart

Trace.PROfileSTATistic. TASKSRV Display service runtime within fixed time intervals
statistically

Trace.PROfileChart. TASKSRV Display service runtime within fixed time intervals
as colored graph

The start of the recording time, when the calculation doesn’t know, which task/service is running, is
calculated as “(root)”.

©1989-2024 Lauterbach OS Awareness Manual OSEK/ORTI |

16

For further requirements for tracing, see also “Hooks & Internals”.

il BTrace. Chart. TASKSRV = =R
&Seiup... == (onfig... || I} Goto...|| #3Find... || el Chart || «Ov In || »0¢ Out | ©3 Full
-1.105400000s -1.105200000s -1.105000
rangeqy
WaltEvent { mu—- - _
CounterTickiy) i)
ActivateTaskiy) i)
GetResourceky | | | | B |
ReleaseResourcefy . | . ma | - L -
TerminateTask§y | . | . [|
DisableAllInterrupts iy 1 .
EnableAllInterrupts iy 1)
Cunknown) &Y HE—u—=
_IGetEvento |
ClearEve
= | BTrace STATistic. TASKSRYV = =R
2 ... || 1if Goups... || 58 Gonfig... | | Detailed || {7 Nesting|| il Chart || B Profile
srvs: 11. total: 1.678s
range [total min max avr count ratio¥ [1% 2% 5%
ActivateTask | 111.400us 10. 000us 10.700us 10.127us 11. 0.006% |+ A
ClearEvent 3.600us 3.600us 3.600us 3.600us 1. <0.001% |+
CounterTick 13. 960ms 16.900us 42.500us 16.962us B23. 0.832% |+
DisableAllInterrupts 22.300us 0.700us 0.900us 0.71%us 31. 0.001% |+
EnableAllInterrupts 63. 800us 2.000us 2.300us 2.058us 31. 0.003% |+
GetEvent 4. 800us 4. 800us 4. 800us 4. 800us 1. <0.001% |+
GetResource | 187.800us 13.200us 13.500us 13.414us 14. 0.011% |+
ReleaseResource | 194.500us 13.500us 14.600us 13.893us 14. 0.011% |+
TerminateTask 31.500us 3.500us 3.500us 3.500us 9. 0.001% |+
WaitEvent 1.668s - 1.096s - 1.01/0) | 99.129% |———
£ >

ISR2 Runtime Statistics

The time spent in an OSEK interrupt service ro

utine (ISR2) can be evaluated statistically and displayed

graphically. To do this, a memory location, that marks ISR2 routine entries and exits, must be recorded (that

means, recording all interrupt service routines).

To do a selective recording on OSEK interrupt service routines with flow traces based on the data accesses,

use the following PRACTICE command:

; Enable tracing only on the magic location
Break.Set TASK.CONFIG (magic_isr2) /TraceEnable

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK
Trace.STATistic. TASKINTR
Trace.Chart.TASKINTR
Trace.PROfileSTATistic. TASKINTR

Trace.PROfileChart. TASKINTR

Trace.STATistic. TASKVSINTR

Display ISR2 entries and exits
Display ISR2 runtime statistic
Display ISR2 time chart

Display ISR2 runtime within fixed time intervals
statistically

Display ISR2 runtime within fixed time intervals
as colored graph

Display ISR2 runtime statistics against task runtimes

©1989-2024 Lauterbach

OS Awareness Manual OSEK/ORTI | 17

The start of the recording time, when the calculation doesn’t know, which task/service is running, is
calculated as “(root)”.

For further requirements for tracing, see also “Hooks & Internals”.

Function Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting Display function nesting
Trace.STATistic.Func Display function runtime statistic
Trace.STATistic.TREE Display functions as call tree
Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis
Trace.Chart.Func Display function timechart
Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

©1989-2024 Lauterbach OS Awareness Manual OSEK/ORTI | 18

For further requirements for tracing, see also “Hooks & Internals”.

= | BiTrace STATistic. TREE =l
2 ... || §if Goups... || 58 Gonfig... | A Goto...|| = Detaikd || i Nesting|| % Chart
funcs: 225. total: 1.678s 30 problems 12 workarounds
range |tree total min max avr interr
(root) = (root) 274.500us - 274.500us - - <0. 0(
EE_IRQ_end_instance =) EE_IRQ_end_instance 3.100us - 3.100us - 1.(1/0) | <0.0C
EE_rg2stk_exchange L— EE_rqg2stk_exchange 0. 800us - 0. 800us - 1.(1/0) | <0.0C
EE_std_change_context = EE_std_change_context 270.000us - 270.000us - 1.(0/1) | <0.0C
EE_std_run_task_code = EE_std_run_task_code 254, 200us - 254, 200us - 1.(0/1) | <0.0C
EE_oo_thread_stub = EE_po_thread_stub 253.200us - 253.200us - 1.(0/1) | <0.0C
EE_hal_terminate_savestk & EE_hal_terminate_sav.. | 252.700us - 252.700us - 1.(0/1) | <0.0C
(root) = (root) 808. 264ms - 808. 264ms - - 45, 3¢
EE_IRQ_end_instance =) EE_IRQ_end_instance 3.100us - 3.100us - 1.(1/0) | <0.0C
EE_rg2stk_exchange L— EE_rqg2stk_exchange 0. 800us - 0. 800us - 1.(1/0) | <0.0C
EE_std_change_context EE_std_change_context 24.531ms 8.177ms 8.177ms B8.177ms 3.(31) 0.3%
EE_e200zx_decrementer_handler EE_e200zx_decrementer_hand.. | 22.107ms | 57.500us | 83.100us| 57.720us 383. 0.0
EE_oo_TerminateTask = EE_oo_TerminateTask 45, 800us 22.900us 22.900us 22.900us 2.(41) <0.0(
EE_hal_terminate_task EE_hal_terminate_task 13.000us 6.500us 6.500us 6.500us 2. <0. 00
EE_thread_end_instance EE_thread_end_instance 17.200us 8.600us 8.600us 8.600us 2. 0.0(
=% BuTrace.Chart.Func EI@
2 senp... || §if Gous... | 38 Gonfig... | (A Goto...|| A Goto...|| F4Find... | O In |[»0¢ Out||EH Full
-1.006400000s -1.006300000s
range | I I P |
EE_std_change_context """ =
EE_std_run_task_code G ————————— 1.
save_registers | T T I
EE_e200z7_irq o e
EE_e200zx_call_ISR B
Counter_Interrupt ——H
EE_oo_IncrementCounter —a . X
IncrementCounterImplementation Mo . .
EE_e200z7_setup_decrementer HH . . o .) .
EE_IRQ end_post_stub T O
EE_IRQ_end_instance gt o Y |
restore_all_return | O S |
EE_oo_ActivateTask L .
EE_rg_insert L
EE_rq2stk_exchange [S -
EE_rqg2stk_exchange o
EE_IRQ_end_instance o
(root) ———
EE_std_change_context e
EE_std_run_task_code ——
EE_oo_thread_stub ——
EE_hal_terminate_savestk H - oo = @@
FuncTasks H ——————FV———
EE_oo_GetResource . R W
£ b 4 >

CPU Load Analysis

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or

Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the CPU load.

The CPU load is calculated by comparing the time spent in all tasks against the time spent in the idle task.
The measurement is done by using the GROUP command to group all idle tasks and calculating the time

spent in all other tasks.

©1989-2024 Lauterbach OS Awareness Manual OSEK/ORTI | 19

Example: Two idle tasks named “IdleTask1” and “IdleTask2”:

; Create a group called "idle" with
GROUP.CreateTASK "idle" "IdleTaskl"
GROUP.CreateTASK "idle" "IdleTask2"

; Unmark “idle” and mark all others
GROUP.COLOR "idle" NONE
GROUP.COLOR "other" RED

Merge idle tasks and other tasks
n idleu
"other"

GROUP .MERGE
GROUP .MERGE

the idle tasks

in red

To evaluate the contents of the trace buffer, use these commands:

Trace.STATistic.TASK
Trace.PROfileChart.TASK

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as

“(unknown)”.

Display CPU load statistic evaluation

Display CPU load as colored graph

When CPU load analysis is no longer needed, or if a detailed Task Runtime Statistic is needed, disable the

grouping of the tasks with:

; comments
GROUP.SEParate "idle"
GROUP.SEParate "other"

©1989-2024 Lauterbach

OS Awareness Manual OSEK/ORTI

20

ORTI Commands

TASK.D<object> Display OSEK objects
Format: TASK.D<object> [/<option>]
<option>: SMP

Each object type, defined in the ORTI file, gets its own command to display those objects.

<object> Extend the command with the object type name.
SMP If the ORTI file defines an SMP OS, and if the object contains core specific

attributes, the object will be displayed separately for each core. Without this
option, the object will be displayed only for the current core.

Usually ORTI defines, among others, an “OS” object type and a “TASK” object type. Display the OS
information and the task table, using the commands:

TASK.DOS
TASK.DTASK

Some of the table entries may contain links. Double click on them to follow them.

& B:TASK.DOS =R o
0s running task [priority os services watch [last error [current application [running 1sr2 |
EE_arch |Tas|-<1 |0x40 |C0ur1ter‘T'| ck (exit |E_OS_STATE |OSDEFAULTAF‘F‘I'-'IODE NO_ISR2 |
b B:TASKDTASK =R o
ask actual prio task state [task stack [current activations
askl Ox40 RUNNING Stackl 0x00000001
ask2 Not Running |SUSPENDED |[Stack2 0x00000000
ask3 Not Running |READY Stack3 0x00000001
askd Not Running |SUSPENDED |Stack4 0x00000000
asks Not Running |SUSPENDED |Stacks 0x00000000
aske Not Running |READY Stacké 0x00000001
ask? Not Running |SUSPENDED |Stack? 0x00000000

©1989-2024 Lauterbach OS Awareness Manual OSEK/ORTI | 21

ORTI PRACTICE Functions

There are special definitions for OSEK/ORTI specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information
Syntax 1: TASK.CONFIG(<keyword>)
(Single core instance)
Syntax 2: TASK.CONFIG(<keyword>[<logical_core>])
Syntax 3: TASK.CONFIG(<keyword>:<logical_core>)
<keyword>: magic | magicsize | magic_service | magic_isr2
<logical 0...n
core>:

Returns information about the OS Awareness configuration depending on the <keywords> described below.

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

magic_service Parameter Type: String (without quotation marks).
Returns the address of the service trace variable.

magic_isr2 Parameter Type: String (without quotation marks).
Returns the address of the isr2 trace variable.

<logical_core> Parameter Type:
. Decimal (without the trailing dot in this particular case) or
J Hex value (the preceding 0x is mandatory in this particular case)

In SMP systems, each of these keywords can have an optional core number
(starting with zero) in square brackets ([1), or separated by a colon (:).
See examples below.

Return Value Type: Hex value.

Example 1: This script returns the address of the variable that holds the current task in a single core
instance.

PRINT TASK.CONFIG (magic)

©1989-2024 Lauterbach OS Awareness Manual OSEK/ORTI | 22

Example 2: These script lines show how to return the address of the variable that holds the current task of
the 2nd, 13th, and 19th core.

;parameter type decimal:
;omit the trailing dot in this particular case

PRINT TASK.CONFIG (magic[1]) ;2nd logical core
PRINT TASK.CONFIG (magic[12] ;13th logical core
// or

PRINT TASK.CONFIG (magic:1) ;2nd logical core
PRINT TASK.CONFIG (magic:12) ;13th logical core

;parameter type hex:
;you must prefix the value with 0x in this particular case

PRINT TASK.CONFIG (magic[0x1]) ;2nd logical core

PRINT TASK.CONFIG (magic[0x12] ;19th logical core

// or

PRINT TASK.CONFIG (magic:0x1) ;2nd logical core

PRINT TASK.CONFIG (magic:0x12) ;19th logical core
TASK.ORTI.ADDRESS() Address of ORTI attribute

Syntax: TASK.ORTI.ADDRESS (<object>.<attribute>)

Returns the address of the specified ORTI attribute.
Parameter Type: String.

Return Value Type: Address.

Example:

PRINT TASK.ORTI.ADDRESS (OS.RUNNINGTASK)

TASK.ORTI.RANGE() Address range of ORTI attributes

Syntax: TASK.ORTI.RANGE(<object>. <attribute>[{|<object>.<attribute>}])

Returns the address range occupied by the ORTI attributes. You can specify more than one attribute by
concatenating them with a pipe “I” character (see example 2 below).

©1989-2024 Lauterbach OS Awareness Manual OSEK/ORTI | 23

Parameter Type: String.
Return Value Type: Address range.
Example 1:

PRINT TASK.ORTI.RANGE (TASK.STATE)

Example 2:

PRINT TASK.ORTI.RANGE(TASK.STATE|OS.RUNNINGTASK)

©1989-2024 Lauterbach OS Awareness Manual OSEK/ORTI | 24

	OS Awareness Manual OSEK/ORTI
	History
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks and Internals in ORTI
	Requirements for Debugging
	Requirements for Tracing

	Debug Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	Dynamic Task Performance Measurement
	OSEK/ORTI specific Menu

	Trace Features
	Task Runtime Statistics
	Task State Analysis
	Service Runtime Statistics
	ISR2 Runtime Statistics
	Function Runtime Statistics
	CPU Load Analysis

	ORTI Commands
	TASK.D<object> Display OSEK objects

	ORTI PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information
	TASK.ORTI.ADDRESS() Address of ORTI attribute
	TASK.ORTI.RANGE() Address range of ORTI attributes

