LAUTERBACH A

OS Awareness Manual LynxOS

OS Awareness Manual LynxOS

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns

OS AWareness MaANUAISccciicecrriiiissiriinissss s rssssss s s s ssss e s eassam s s e e s s amn e s enasame s e e ansammn e nnnsan

OS Awareness Manual LYNXOScocciiiicmiimninnsnssns s s s ssssss s ssssss s sassssssss sassss snssmsnas
L 1= (o 4
O oY = 4
Terminology 4
Brief Overview of Documents for New Users 5
Supported Versions 5
ConfiguIration ... e 6
Quick Configuration Guide 7
Hooks & Internals in LynxOS 7
== LT == 8
Display of Kernel Resources 8
Task Stack Coverage 8
Task Context Display 9
MMU Support 9
Space IDs 9
Scanning System and Processes 10
Symbol Autoloader 10
Dynamic Task Performance Measurement 12
Task Runtime Statistics 12
Function Runtime Statistics 13
LynxOS specific Menu 13
Debugging LynxOS Kernel and USer ProCeSSesccccurremmriminsmmnmmssssssssssssssssssssssssssssssnss 15
LynxOS Kernel 15
Downloading The Kernel 15
Debugging The Kernel Startup 16
Debugging The Kernel 17
User Processes 17
Debugging User Processes 18
LYNXOS COMMANAS ...coiiiimiiiiimniiinsisasasesssssssssassssssss s sssssasass e sms asms s s s s seasmn s s s smn e s e smmn e samnannnmnnas 20
TASK.Driver Display drivers 20
TASK.MMU.SCAN Scan process MMU space 21
©1989-2024 Lauterbach OS Awareness Manual LynxOS 2

TASK.Process Display processes 22
TASK.sYmbol Process symbol management 23
TASK.sYmbol.DELete Unload process symbols and MMU 23
TASK.sYmbol.LOAD Load process symbols and MMU 24
TASK.sYmbol.Option Set symbol management options 25
TASK.Thread Display threads 27
TASK.Watch Watch processes 28
TASK.Watch.ADD Add process to watch list 28
TASK.Watch.DELete Remove process from watch list 28
TASK.Watch.DISable Disable watch system 29
TASK.Watch.DISableBP Disable process creation breakpoints 29
TASK.Watch.ENable Enable watch system 29
TASK.Watch.ENableBP Enable process creation breakpoints 30
TASK.Watch.View Show watched processes 30
LynxOS PRACTICE FUNCLIONSccccceeiiiriiiemnnrnismmsnmnssssss s sssms s e ssmss s s ssmss s ensssmmss e ssmmnnseas 33
TASK.CONFIG() OS Awareness configuration information 33
TASK.PROC.SPACE() Space ID of process 33
TASK.DRIVER.START() Start address of driver 33
TASK.DRIVER.TEXT() Address of .text section 34
TASK.DRIVER.DATA() Address of .data section 34
TASK.DRIVER.BSS() Address of .bss section 34
©1989-2024 Lauterbach OS Awareness Manual LynxOS 3

OS Awareness Manual LynxOS

History

Version 06-Jun-2024

04-Feb-21

Overview

Removing legacy command TASK. TASKState.

/A TRACE32 for Lymx0S [E=N EER
File Edit View Var Break Run CPU Misc Trace Perf Cov MPCEEXX LynxOS5 Window Help
[A d e pn |2 0 smiEdas @&
& ==
l@g'lc pid ppid [prio spaceid signals |mask sem state vm [name |
GO1EZ000 0. 0. 0. | 0000 00000000 [FFFFFFFF (00000000 |[ready 0. [nuTTpr A
GOLEZ2200 1. 1. | 16. | 0001 00000000 (00000000 (601E2214 |waiting 0. |/init
GO1E2400* 2. 1. | 17. | ooo2 00000000 |00000000 (00000000 |current 0. |/hello_world
. % B:TASK.Thread = =R
tid pid [prio stklen [signals |mask sem state vm [name |
0. 0. 0. [28672. [000D0D00 [FFFFFFFF (00000000 |ready 0. [nuTlpr:idle kt A
=t 1. 1. | 16. 0. |00000000 (00000000 (601E2214 |waiting 0. |/init
— 2. 0. | 17. |16384. |00000000 |00000000 (602A7F54 |waiting 0. |TX
M Ste| | 3.| 0. | 17. [16384. |000DDDDOO |00000000 [602A868C |waiting |0. |RX
addr] 1 4. 2. | 17. 0. |00000000 00000000 00000000 |current 0. |/hello_world hd
— >
main(){
or (G3) 1 A
printfi{"hello_world from C - reset machine or cycle the power to end t
sleep(5);
cout << ','he'l'lo_wor"ld from C++ - reset machine or cycle the power to en
"
11 ’ sleep(5);
v
1< >
BE:: TASK.|
Process Thread Driver | TASKState MMU sYmbol Watch pravions
LP00200010470 | pello_worid pello worldmein |[/hello_world 0 |system ready HLL |UP

The OS Awareness for LynxOS contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.

Terminology

LynxOS uses the terms “processes” and “threads”. If not otherwise specified, the TRACES32 term “task”

corresponds to LynxOS threads.

©1989-2024 Lauterbach

OS Awareness Manual LynxOS |

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently LynxOS is supported for the following versions:

J LynxOS Release 3.1, 4.0 and 5.0 on PowerPC.

©1989-2024 Lauterbach OS Awareness Manual LynxOS |

Configuration

The TASK.CONFIG command loads an extension definition file called “lynx.t32” (directory
“~~/demo/<processor>/kernel/llynx”). It contains all necessary extensions.

Automatic configuration tries to locate the LynxOS internals automatically. For this purpose all symbol tables
must be loaded and accessible at any time the OS Awareness is used.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible.
Each of the TASK.CONFIG arguments can be substituted by '0', which means that this argument will be
searched and configured automatically. For a fully automatic configuration omit all other arguments:

Format: TASK.CONFIG lynx

See also the example “~~/demo/<processor>/kernel/lynx/lynx.cmm”.

©1989-2024 Lauterbach OS Awareness Manual LynxOS | 6

Quick Configuration Guide

To access all features of the OS Awareness you should follow the following roadmap:

1. Carefully read the PRACTICE demo start-up script
(~~/demo/<processor>/kernel/lynx/lynx.cmm).

2. Make a copy of the PRACTICE script file “lynx.cmm”. Modify the file according to your
application.

3. Run the modified version in your application. This should allow you to display the kernel
resources and use the trace functions (if available).

Hooks & Internals in LynxOS

No hooks are used in the kernel.
For detecting the current running thread, the kernel symbol “currtptr” is used.

For retrieving the kernel data structures, the OS Awareness uses the global kernel symbols. Ensure that
access to those symbols is possible every time when features of the OS Awareness are used. See chapter
“Debugging The Kernel” how to load the kernel symbols into the debugger.

©1989-2024 Lauterbach OS Awareness Manual LynxOS | 7

Features

The OS Awareness for LynxOS supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
LynxOS components can be displayed:

TASK.Process Processes
TASK.Thread Threads
TASK.Driver Drivers

For a description of the commands, refer to chapter “LynxOS Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

©1989-2024 Lauterbach OS Awareness Manual LynxOS | 8

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:
I Frame.TASK [<task>] Display task context.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

o To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

I Frame /Task <task> Display call stack of a task.

If you'd like to see the application code where the task was preempted, then take these steps:

1. Open the Frame /Caller /Task <task> window.
2. Double-click the line showing the OS service call.
MMU Support

To provide full debugging possibilities, the Debugger has to know, how virtual addresses are translated to
physical addresses and vice versa. Al MMU commands refer to this necessity.

Space IDs

Processes of LynxOS may reside virtually on the same address. To distinguish those addresses, the
Debugger uses an additional space ID that specifies to which virtual memory space the address refers. The
command SYStem.Option.MMUSPACES ON enables the additional space ID. For all processes using the
kernel address space, the space ID is zero. For processes using their own address space, the space ID
equaled the process ID.

You may scan the whole system for space IDs using the command TRANSIation.ScanlD. Use
TRANSIation.ListID to get a list of all recognized space IDs.

©1989-2024 Lauterbach OS Awareness Manual LynxOS | 9

The function task.proc.space(“<process>") returns the space ID for a given process. If the space ID is not
equal to zero, load the symbols of a process to this space ID:

LOCAL &spaceid
&spaceid=task.proc.space ("myProcess")
Data.LOAD myProcess &spaceid:0 /NoCODE /NoClear

See also chapter “Debugging User Processes”.

Scanning System and Processes

PowerPC 860 type MMU:

The command MMU.SCAN only scans the contents of the current processor MMU settings. Use the
command MMU.SCAN ALL to go through all space IDs and scan their MMU settings (LynxOS calls them
“job id”). Note that on some systems, this may take a long time. In this case you may scan single processes
(see below).

PowerPC 603e type MMU:

The 603e-type MMU has an address translation that cannot be scanned fully automatically. However, the
current used memory areas can be scanned with MMU.SCAN BAT and MMU.SCAN PTE (LynxOS uses
both, BATs and PTES).

The kernel code, which resides in the kernel space, can be accessed by any process, regardless of the
current space ID. The command TRANSIation.COMMON defines those commonly used areas.

To scan the address translation of a specific space ID, use the command TASK.MMU.SCAN “<process>".
This command scans the space ID of the specified process. To scan the kernel space, use:

TASK.MMU.SCAN O.

TRANSIation.List shows the address translation table for all scanned space IDs.

See also chapter “Debugging LynxOS Kernel and User Processes”

Symbol Autoloader

The OS Awareness for LynxOS contains an autoloader, which automatically loads symbol files. The
autoloader maintains a list of address ranges, corresponding LynxOS components and the appropriate load
command. Whenever the user accesses an address within an address range specified in the autoloader, the
debugger invokes the appropriate command. The command is usually a call to a PRACTICE script that
loads the symbol file to the appropriate addresses.

The command sYmbol.AutoLOAD.List shows a list of all known address ranges/components and their
symbol load commands.

©1989-2024 Lauterbach OS Awareness Manual LynxOS | 10

The autoloader can be configured to react only on processes, drivers, (all) libraries, or libraries of the current
process (see also TASK.sYmbol.Option AutoLoad). It is recommended to set only those components you
are interested in, because this decreases the time of the autoloader checks highly.

The autoloader reads the target’s tables for the chosen components and fills the autoloader list with the
components found on the target. All necessary information, such as load addresses and space IDs, are
retrieved from kernel-internal information.

I sYmbol.AutoLOAD.CHECKLYNXOS "<action>"

<action> Action to take for symbol load, e.g. "DO autoload"

If an address is accessed that is covered by the autoloader list, the autoloader calls <action> and appends
the load addresses and the space ID of the component to the action. Usually, <action> is a call to a
PRACTICE script that handles the parameters and loads the symbols. Please see the example script
“autoload.cmm” in the ~~/demo directory.

The point in time when the component information is retrieved from the target can be set:

I sYmbol.AutoLOAD.CHECK [ON | OFF | ONGO]

(no argument) A single sYmbol.AutoLOAD.CHECK command refreshes the information
about the target.

ON The debugger automatically reads the information on every go/halt or
step cycle. This significantly slows down the debugger’s speed when
single stepping.

ONGO The debugger automatically reads the information on every go/halt cycle,
but not when single stepping.

OFF no automatic update of the autoloader table will be done, you have to
manually trigger the information read when necessary. To accomplish
that, execute the sYmbol.AutoLOAD.CHECK command without
arguments.

NOTE: The autoloader covers only components that are already started. Components that
are not in the current process, module or library table are not covered.

% BusYmbol Autoload.List EI@
2K Dekte Al @ Check || J2 Gorfig...
address name dyn [load [cmd |
nit 0 ../autoToad Tinit" Ox1 Ox100B4 Ox0 Ox1

W
C:0002:000100B4--4FFFEFFF |hello_world W y |do .. /autoload “"hello_world” Ox1 Ox100B4 Ox0 Ox2

C:0001:00010034——4FFFEFFfJ1

©1989-2024 Lauterbach OS Awareness Manual LynxOS | 11

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the

PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide

P” (general_ref_p.pdf).

Task Runtime Statistics

NOTE:

This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in

a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault
Trace.STATistic.TASK
Trace.Chart.TASK
Trace.PROfileSTATistic.TASK

Trace.PROfileChart.TASK

Trace.FindAll Address TASK.CONFIG(magic)

Trace.FindAll CYcle owner OR CYcle context

Display trace buffer and task switches
Display task runtime statistic evaluation
Display task runtime timechart

Display task runtime within fixed time intervals
statistically

Display task runtime within fixed time intervals as
colored graph

Display all data access records to the “magic”
location

Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as

“(unknown)”.

©1989-2024 Lauterbach

OS Awareness Manual LynxOS | 12

Function Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting Display function nesting
Trace.STATistic.Func Display function runtime statistic
Trace.STATistic.TREE Display functions as call tree
Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis
Trace.Chart.Func Display function timechart
Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

LynxOS specific Menu

The menu file “lynx.men” contains a menu with LynxOS specific menu items. Load this menu with the
MENU.ReProgram command.

©1989-2024 Lauterbach OS Awareness Manual LynxOS | 13

You will find a new menu called LynxOS.

J The Display menu items launch the kernel resource display windows.
. The Process Debugging > Symbols menu items load and delete symbols of processes.
. The Process Debugging > Watch Processes submenu opens a window to watch for process

starts and symbols.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

. The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only thread switches (if any) or thread switches together with the default display.

o The Perf menu contains additional submenus for thread runtime statistics, thread related function
runtime statistics or statistics on thread states.

©1989-2024 Lauterbach OS Awareness Manual LynxOS | 14

Debugging LynxOS Kernel and User Processes

LynxOS runs on virtual address spaces. The kernel uses a static address translation, usually starting from
virtual address 0xA0O000000 mapped to the physical start address of the RAM. Each user process gets its
own user address space when loaded, usually starting from virtual 0x0, mapped to any physical RAM area,
that is currently free. Due to this address translations, debugging the LynxOS kernel and the user processes
requires some settings to the Debugger.

To distinguish those different memory mappings, TRACE32 uses “space IDs”, defining individual address
translations for each ID. The kernel itself is attached to the space ID zero. Each process that has its own
memory space gets a space ID that is equal to its process ID.

See also chapter “MMU Support”.

LynxOS Kernel

When building a LynxOS KDI, the LynxOS make process links the kernel and BSP to a file called “a.out” and
then generates the KDI. Preserve both files for using the LynxOS awareness.

Downloading The Kernel

If you start the LynxOS kernel from Flash, or if you download the kernel via Ethernet, do this as you are
doing it without debugging.

If you want to download the kernel image using the debugger, you have to specify, to which address to
download it. The LynxOS kernel image is usually located at the physical start address of the RAM, after the
vector table.

When downloading a KDI image, specify the start address, where to load. E.g., if the physical address starts
at 0x0, download it to 0x4000, skipping the vector table:

Data.LOAD.Binary hello.kdi 0x4000 /NosYmbol

After downloading with the debugger, set the program counter to the physical start address. If the download
address is 0x4000, the start address is usually 0x4020.

When downloading the kernel via the debugger, remember to set startup options, that the kernel may
require, before booting the kernel.

©1989-2024 Lauterbach OS Awareness Manual LynxOS | 15

Debugging The Kernel Startup

The kernel image starts with MMU switched off, i.e. the processor operates on physical addresses. However,
all symbols of the kernel are virtual addresses. If you want to debug this (tiny) startup sequence, you have to
load and relocate the symbols.

. Downloading the kernel via debugger:
Download the KDI as mentioned above, then load and relocate the symbols as mentioned below.
U Downloading the kernel via boot loader:

Just load the symbols into the debugger before it is downloaded by the boot loader as mentioned
below.

Then, set an on-chip(!) breakpoint to the physical start address of the kernel (software
breakpoints won’t work, as they would be overwritten by the kernel download):

Break.Set 0x4020 /Onchip

Now let the boot loader download and start the LynxOS KDI. It will halt on the start address,
ready to debug. Delete the breakpoint when hit.

While the MMU is switched off, you have to load and relocate the symbols to the physical addresses. E.g., if
physical address is 0x00000000 and virtual address is 0xA0000000:

Data.LOAD.XCOFF a.out /NoCODE ; load the symbols

sYmbol .RELOC C:0x00000000-0xa0000000 ; relocate them

As soon as the processor MMU is switched on, you have to reload the symbol to it's virtual addresses. See
the next chapter on how to debug the kernel in the virtual address space.

©1989-2024 Lauterbach OS Awareness Manual LynxOS | 16

Debugging The Kernel

For debugging the kernel itself, and for using the LynxOS awareness, you have to load the virtual addressed
symbols of the kernel into the debugger. The kernel symbols reside in the kernel image, which is later linked
into a KDI. The kernel image is usually called “a.out” and can be found in the BSP directory. The a.out

XCOFF image contains all addresses in virtual format, so it's enough to simply load the file:

Data.LOAD.XCOFF a.out /NoCODE

Next, scan the processor MMU right after it is switched on:

MMU . SCAN ; or MMU.BATSCAN/PTESCAN if 603
; type MMU

The kernel address space is visible to all processes, so specify the address range to be common to all
space IDs:

TRANSlation.COMMON 0xA0000000--0xFFFFFFFF

And switch on the debugger MMU translation:

TRANSlation.ON

User Processes

Each user process in LynxOS gets its own virtual memory space, each usually starting at address zero. To

distinguish the different memory spaces, the debugger assigns a “space ID”, which is equal to the process

ID. Using this space ID, it is possible to address a unique memory location, even if several processes use the
same virtual address.

Note that at every time the LynxOS awareness is used, it needs the kernel symbols. Please see the
chapters above on how to load them. Hence, load all process symbols with the option /NoClear to
preserve the kernel symbols.

©1989-2024 Lauterbach OS Awareness Manual LynxOS | 17

Debugging User Processes

To correlate the symbols of a user process with the virtual addresses of this process, it is necessary to load
the symbols into this space ID and to scan the process’ MMU settings.

Manually Load Process Symbols:

For example, if you've got a a process called “hello” with the process ID 12. (the dot specifies a decimal
number!):

Data.LOAD.E1f hello 12.:0 /CPP /NoCODE /NoClear

The space ID of a process may also be calculated by using the PRACTICE function task.proc.space ()
(see chapter “LynxOS PRACTICE Functions”).

Additionally, you have to scan the MMU translation table of this process:

TASK.MMU.SCAN 12. ; scan MMU of process ID 12.

It is possible to scan the translation tables of all processes at once. On some processors, and depending on
your number of active processes, this may take a very long time. In this case use the scanning of single
processes, mentioned above. Scanning all processes:

TASK.MMU . SCAN ; scan MMU entries of all processes
7 ©FS
MMU.SCAN ALL ; this one’s faster

Automatically Load Process Symbols:

If a process name is unique, and if the symbol files are accessible at the standard search paths, you can use
an automatic load command

TASK.sYmbol .LOAD "hello" ; load symbols and scan MMU

This command loads the symbols of “hello” and scans the MMU of the process “hello”. See
TASK.sYmbol.LOAD for more information.

©1989-2024 Lauterbach OS Awareness Manual LynxOS | 18

Debugging a Process From Scratch, Using a Script:

If you want to debug your process right from the beginning (at “main()”), you have to load the symbols before
starting the process. This is a tricky thing because you have to know the process ID, which is assigned first
at the process start-up. Set a breakpoint into the process start handler of LynxOS, when the process is
already loaded but not yet started. The functions .execuser() (if available) may serve as a good point. When
the breakpoint is hit, check if the process is already loaded. If so, extract the process ID, and load the
symbols. Scan the process’ MMU and set a breakpoint to the main() routine of the process. As soon as the
process is started, the breakpoint will be hit. The following script shows an example of how to do this:

LOCAL &spaceid ; variable holding the space ID of the process

IF RUN()
Break

Break.Set ' .execuser /CONDition task.proc.space("hello") !=0xffffffff
Go

WAIT !RUN/()

Break.Delete ' .execuser

&spaceid=task.proc.space("hello")
TASK.MMU.SCAN &spaceid
Data.LOAD.E1f hello &spaceid:0 /cpp /NoCODE /NoClear

Break.Set main

Go ; let LynxOS start the process
WAIT !RUN() ; will halt at main()
Break.Delete main

Debugging a Process From Scratch, with Automatic Detection:

The TASK.Watch command group implements the above script as an automatic handler and keeps track of
a process launch and the availability of the process symbols. See TASK.Watch.View for details.

©1989-2024 Lauterbach OS Awareness Manual LynxOS | 19

LynxOS Commands

TASK.Driver

Display drivers

Format:

TASK.Driver [<driver>]

Displays the driver table of LynxOS or detailed information about one specific driver.

The display is similar to the LynxOS call “drivers”.

Without any arguments, a table with all created drivers will be shown.
Specify a driver name, ID or magic number to display information on only that driver.

“magic” is a unique ID, used by the OS Awareness to identify a specific driver (address of the driver

structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it

will show a local menu.

% B:TASK Driver = =R
magic 1d [type |use |[start s1ze name |
G00C40BC | 0. |char 1. (00000000 |00000000 |null o
GO0C40FC 1. |char 1. |00000000 00000000 |zero
G00C416C 2. |char 1. |00000000 |D0000000 |ctrl drvr
G00C41DC 3. |char 1. |00000QO00 00000000 |mem
G00C424C 4. |char 2. |00000000 00000000 (serial
G00C42BC 5. |char &. |00000000 00000000 |pty
G00C432C 6. [char 2. (00000000 (00000000 (RAM disk driver (raw)
G00C439C 7. |block 2. |00000000 (00000000 |RAM disk driver (block)
G00C440C 8. |char 1. |00000000 (00000000 |nullnux
G00C447C 9. |char 1. (0DOQDO0OO (0DOQD000 |Lynx Filesystem
GO0C44EC | 10. cnar 1. |00000000 00006 . =
600C455C | 11. |char 1. |00000000 (00004 @ g, =
600C45CC | 12. |block | 1. 00000000 |0000(5% BiTaskDriver BODCSDAD (o8)
< magic id [t use |start s1ze name
BOOC3DAD | 16. [char 1. |000OCO000 |0OOCO000 |RAW IDE
function address label
open EODGADED .ride_open
close BOOGAODC .ride_close
read BOOGAL0S .ride_read
rite BOOGAL3D .ride_write
select BO035368 Lionull
ioct] BOOGAL160 .ride_ioctl
install BOOGICOD .ride_install
uninstall BO0035368 Lionull
v
£ >

©1989-2024 Lauterbach

OS Awareness Manual LynxOS

20

TASK.MMU.SCAN Scan process MMU space

Format: TASK.MMU.SCAN [<process> [<start_address> <size>]]

Scans the target MMU of the space ID, specified by the given process, and sets the Debugger MMU
appropriately, to cover the physical to logical address translation of this specific process.

The command walks through all page tables which are defined for the memory spaces of the process and
prepares the Debugger MMU to hold the physical to logical address translation of this process. This is
needed to provide full HLL support. If a process was loaded dynamically, you must set the Debugger MMU
to this process, otherwise the Debugger won’t know, where the physical image of the process is placed.

To successfully execute this command, space IDs must be enabled (SYStem.Option.MMUSPACES ON).

<process> If a process magic, ID or name is specified
If no argument is specified, the command scans all current processes.

<start_address> The optional start address and size parameter limit the scanning of the MMU
<size> tables to the specified area to increase performance.
Example:

; scan the memory space of the process "hello"
TASK.MMU.SCAN "hello"

See also MMU Support.

©1989-2024 Lauterbach OS Awareness Manual LynxOS | 21

TASK.Process Display processes

Format: TASK.Process [<process>]

Displays the process table of LynxOS or detailed information about one specific process.
The display is similar to the SKDB kernel debugger’s “p” dump of processes.

Without any arguments, a table with all created processes will be shown.
Specify a process name, process ID, or process magic number to display information on only that process.

@?. B::TASK.Process EI@
pid ppid [prio spaceid signals |mask sem state vm [name |
0. 0. oooo 00000000 [FFFFFFFF (00000000 |[ready 0. [nuTTpr A
1. 1. | 16. | 0001 00000000 (00000000 (601E2214 |waiting 0. |/init
2. 1. | 17. | ooo2 00000000 |00000000 (00000000 |current 0. |/hello_world
v

>

“magic” is a unique ID, used by the OS Awareness to identify a specific process (address of the process
structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual LynxOS | 22

TASK.sYmbol Process symbol management

The TASK.sYmbol command group helps to load and unload symbols and MMU settings of a given process.
In particular the commands are:

TASK.sYmbol.LOAD Load process symbols and MMU
TASK.sYmbol.DELete Unload process symbols and MMU
TASK.sYmbol.Option Set symbol management options
TASK.sYmbol.DELete Unload process symbols and MMU
Format: TASK.sYmbol.DELete <process>

When debugging of a process is finished, or if the process exited, you should remove loaded process
symbols and MMU entries. Otherwise the remaining entries may interfere with further debugging.
This command deletes the symbols of the specified process and deletes its MMU entries.

<process> Specify the process name (in quotes) or magic to unload the symbols of this
process.

Example: When deleting the above loaded symbols with the command:

TASK.sYmbol .DELete "hello"

the debugger will internally execute the commands:

TRANSlation.Delete 6.:0--0xffffffff
sYmbol .Delete \\hello

©1989-2024 Lauterbach OS Awareness Manual LynxOS | 23

TASK.sYmbol.LOAD Load process symbols and MMU

Format: TASK.sYmbol.LOAD <process>

Specify the process name (in quotes) or magic to load the symbols of this process.

In order to debug a user process, the debugger needs the symbols of this process, and the process specific
MMU settings (see chapter “Debugging User Processes”).

This command retrieves the appropriate space ID, loads the symbol file of an existing process and reads its
MMU entries. Note that this command works only with processes that are already loaded in LynxOS (i.e.
processes that show up in the TASK.Process window).

Example:
If the TASK.Process window shows a “/hello” process with process ID 6, the command:

TASK.sYmbol .LOAD "hello"

will internally execute the commands:

TASK.MMU.SCAN 6.
Data.LOAD.E1f hello 6.:0 /cpp /NoCODE /NoClear

The actual load command can be adjusted with TASK.sYmbol.Option LOADCMD

©1989-2024 Lauterbach OS Awareness Manual LynxOS | 24

TASK.sYmbol.Option Set symbol management options

Format: TASK.sYmbol.Option <option>

<option>: LOADCMD <command>
MMUSCAN ON | OFF
Autoload <option>

Set a specific option to the symbol management.
LOADCMD:
TASK.sYmbol.LOAD uses a default load command to load the symbol file of the process. This loading

command can be customized using this option with the command enclosed in quotes. Two parameters are
passed to the command in a fixed order:

%S name of the process
YoX space ID of the process
Examples:

TASK.sYmbol .Option LOADCMD “data.load.elf %s 0x%x:0 /NoCODE /NoClear”

TASK.sYmbol.Option LOADCMD “do myloadscript %s 0x%$x”

MMUSCAN:

This option controls, if the symbol loading mechanisms of TASK.sYmbol scan the MMU page tables of the
loaded components, too. When using TRANSIation.TableWalk, then switch this off.

AutolLoad:

This option controls, which components are checked and managed by the AutoLoader:

Process check processes

Library check all libraries of all processes
CurrLib check only libraries of current process
DRiVer check dynamically loaded drivers
ALL check processes, and all libraries
NoProcess don’t check processes

©1989-2024 Lauterbach OS Awareness Manual LynxOS | 25

NoLibrary don’t check libraries
NoDRiVer don’t check drivers

NONE check nothing.

The options are set *additionally*, not removing previous settings.

©1989-2024 Lauterbach OS Awareness Manual LynxOS | 26

TASK.Thread Display threads

Format: TASK.Thread [<thread>]

Displays the thread table of LynxOS or information about one specific thread.
The display is similar to the SKDB kernel debugger’s “p” dump of threads.

Without any arguments, a table with all created threads will be shown.
Specify a thread name, ID or magic number to display information on only that thread.

% B:TASK.Thread = =R
1= tid pid [prio stklen [signals |mask sem state vm [name |
1F2080 0. 0. 0. [28672. [000D0D00 [FFFFFFFF (00000000 |ready 0. [nuTlpr:idle kt A
1F2558 1. 1. | 16. 0. |00000000 (00000000 (601E2214 |waiting 0. |/init
1FZA30 2. 0. | 17. |16384. |00000000 |00000000 (602A7F54 |waiting 0. |TX
1F2FO08 3. 0. | 17. |16384. |00000000 |00000000 (602A868C |waiting 0. |RX
1F33EQ 4. 2. | 17. 0. |00000000 00000000 00000000 |current 0. |/hello_world
v
£ >

“magic” is a unique ID, used by the OS Awareness to identify a specific thread (address of the thread
structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual LynxOS | 27

TASK.Watch Watch processes

The TASK.Watch command group builds a watch system that watches your LynxOS target for specified
processes. It loads and unloads process symbols automatically. Additionally it covers process creation and
may stop watched processes at their entry points.

In particular the watch commands are:

TASK.Watch.View Activate watch system and show watched processes
TASK.Watch.ADD Add process to watch list
TASK.Watch.DELete Remove process from watch list
TASK.Watch.DISable Disable watch system
TASK.Watch.ENable Enable watch system
TASK.Watch.DISableBP Disable process creation breakpoints
TASK.Watch.ENableBP Enable process creation breakpoints
TASK.Watch.ADD Add process to watch list
Format: TASK.Watch.ADD <process>

Adds a process to the watch list.

<process> Specify the process name (in quotes) or magic.

Please see TASK.Watch.View for details.

TASK.Watch.DELete Remove process from watch list

Format: TASK.Watch.DELete <process>

Removes a process from the watch list.

<process> Specify the process name (in quotes) or magic.

Please see TASK.Watch.View for details.

©1989-2024 Lauterbach OS Awareness Manual LynxOS | 28

TASK.Watch.DISable Disable watch system

Format: TASK.Watch.DISable

Disables the complete watch system. The watched processes list is no longer checked against the target
and is not updated. You'll see the TASK.Watch.View window grayed out.

This feature is useful if you want to keep process symbols in the debugger, even if the process terminated.

TASK.Watch.DISableBP Disable process creation breakpoints

Format: TASK.Watch.DISableBP

Prevents the debugger from setting breakpoints for the detection of process creation. After executing this
command, the target will run in real-time. However, the watch system can no longer detect process creation.
Automatic loading of process symbols will still work.

This feature is useful if you'd like to use the breakpoints for other purposes.

Please see TASK.Watch.View for details.

TASK.Watch.ENable Enable watch system

Format: TASK.Watch.ENable

Enables the previously disabled watch system. It enables the automatic loading of process symbols as well
as the detection of process creation.

Please see TASK.Watch.View for details.

©1989-2024 Lauterbach OS Awareness Manual LynxOS | 29

TASK.Watch.ENableBP Enable process creation breakpoints

Format: TASK.Watch.ENable

Enables the previously disabled breakpoints for detection of process creation.

Please see TASK.Watch.View for details.

TASK.Watch.View Show watched processes

Format: TASK.Watch.View [<process>]

Activates the watch system for processes and shows a table of the watched processes.

NOTE: This feature may affect the real-time behavior of the target application!
Please see below for details.

o B:TASK.Watch.View = =R

ENable DISable || ENableBP | DISableBP
spaceid [state entry |
0002 ([Toaded main ~

-- no process | --
no symbols

0001

<process> Specify a process name for the initial process to be watched.

Description of Columns in the TASK.Watch.View Window

process The name of the process to be watched.

spaceid The current space ID (= process ID) of the watched process.
If grayed, the debugger is currently not able to determine the space ID of the
process (e.g. the target is running).

©1989-2024 Lauterbach OS Awareness Manual LynxOS | 30

state The current watch state of the process.

If grayed, the debugger is currently not able to determine the watch state.

no process: The debugger couldn’t find the process in the current LynxOS
process list.

no symbols: The debugger found the process and loaded the MMU settings of
the process but couldn’t load the symbols of the process (most likely because
the corresponding symbol files were missing).

loaded: The debugger found the process and loaded the process’s MMU
settings and symbols.

entry The process entry point, which is main ().

If grayed, the debugger is currently not able to detect the entry point or is unable
to set the process entry breakpoint (e.g. because it is disabled with
TASK.Watch.DISableBP).

The watch system for processes is able to automatically load and unload the symbols of a process and its
MMU settings, depending on their state in the target. Additionally, the watch system can detect the creation
of a process and halts the process at its entry point.

TASK.Watch.ADD Add processes to the watch list.

TASK.Watch.DELete Remove processes from the watch list.

The watch system for processes is active as long as the TASK.Watch.View window is open or iconized. As
soon as this window is closed, the watch system will be deactivated.

Automatic Loading and Unloading of Process Symbols

In order to detect the current processes, the debugger must have full access to the target, i.e. the target
application must be stopped (with one exception, see below for creation of processes). As long as the target
runs in real time, the watch system is not able to get the current process list, and the display will be grayed
out (inactive).

If the target is halted (either by hitting a breakpoint, or by halting it manually), the watch system starts its
work. For each of the processes in the watch list, it determines the state of this process in the target.

If a process is active on the target, which was previously not found there, the watch system scans its MMU
entries and loads the appropriate symbol files. In fact, it executes TASK.sYmbol.LOAD for the new process.

If a watched process was previously loaded but is no longer found on the LynxOS process list, the watch
system unloads the symbols and removes the MMU settings from the debugger MMU table. The watch
system executes TASK.sYmbol.DELete for this process.

If the process was previously loaded and is now found with another space ID (e.g. if the process terminated
and started again), the watch system first removes the process symbols and reloads them to the appropriate
space ID.

You can disable the loading / unloading of process symbols with the command TASK.Watch.DISable.

©1989-2024 Lauterbach OS Awareness Manual LynxOS | 31

Detection of Process Creation

To halt a process at its main entry point, the watch system can detect the process creation and set the
appropriate breakpoints.

To detect the process creation, the watch system sets a breakpoint on a kernel function that is called upon
creation of processes. Every time the breakpoint is hit, the debugger checks if a watched process is started.
If not, it simply resumes the target application. If the debugger detects the start of a newly created (and
watched) process, it sets a breakpoint onto the main entry point of the process (main ()) and resumes the
target application. A short while after this, the main breakpoint will hit and halt the target at the entry point of
the process. The process is now ready to be debugged.

NOTE: This feature uses one permanent on-chip breakpoint and one temporary on-chip
breakpoint when a process is created. Please ensure that at least those two
on-chip breakpoints are available when using this feature.

Upon every process creation, the target application is halted for a short time and
resumed after searching for the watched processes. This impacts the real-time
behavior of your target.

If you don’t want the watch system to set breakpoints, you can disable them with the command
TASK.Watch.DISableBP. Of course, detection of process creation won’t work then.

©1989-2024 Lauterbach OS Awareness Manual LynxOS | 32

LynxOS PRACTICE Functions

There are special definitions for LynxOS specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magicsize)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Return Value Type: Hex value.

TASK.PROC.SPACE() Space ID of process

Syntax: TASK.PROC.SPACE(<process_name>)

Returns the debugger MMU space ID of the specified process.
Parameter Type: String (without quotation marks).

Return Value Type: Hex value.

TASK.DRIVER.START() Start address of driver

Syntax: TASK.DRIVER.START(" <driver_name>")

Returns the start address of the specified driver.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual LynxOS | 33

TASK.DRIVER.TEXT() Address of .text section

Syntax: TASK.DRIVER.TEXT(" <driver_name>")

Returns the address of the .text section.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.DRIVER.DATA() Address of .data section

Syntax: TASK.DRIVER.DATA(" <driver_name>")

Returns the address of the .data section.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.DRIVER.BSS() Address of .bss section

Syntax: TASK.DRIVER.BSS(" <driver_name>")

Returns the address of the .bss section.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual LynxOS | 34

	OS Awareness Manual LynxOS
	History
	Overview
	Terminology
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in LynxOS

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task Context Display
	MMU Support
	Space IDs
	Scanning System and Processes

	Symbol Autoloader
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Function Runtime Statistics
	LynxOS specific Menu

	Debugging LynxOS Kernel and User Processes
	LynxOS Kernel
	Downloading The Kernel
	Debugging The Kernel Startup
	Debugging The Kernel

	User Processes
	Debugging User Processes

	LynxOS Commands
	TASK.Driver Display drivers
	TASK.MMU.SCAN Scan process MMU space
	TASK.Process Display processes
	TASK.sYmbol Process symbol management
	TASK.sYmbol.DELete Unload process symbols and MMU
	TASK.sYmbol.LOAD Load process symbols and MMU
	TASK.sYmbol.Option Set symbol management options
	TASK.Thread Display threads
	TASK.Watch Watch processes
	TASK.Watch.ADD Add process to watch list
	TASK.Watch.DELete Remove process from watch list
	TASK.Watch.DISable Disable watch system
	TASK.Watch.DISableBP Disable process creation breakpoints
	TASK.Watch.ENable Enable watch system
	TASK.Watch.ENableBP Enable process creation breakpoints
	TASK.Watch.View Show watched processes

	LynxOS PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information
	TASK.PROC.SPACE() Space ID of process
	TASK.DRIVER.START() Start address of driver
	TASK.DRIVER.TEXT() Address of .text section
	TASK.DRIVER.DATA() Address of .data section
	TASK.DRIVER.BSS() Address of .bss section

