
MANUAL

OS Awareness Manual
Atomthreads

OS Awareness Manual Atomthreads

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 OS Awareness Manuals .. 

 OS Awareness Manual Atomthreads .. 1

 Overview .. 3

 Terminology 3

 Brief Overview of Documents for New Users 3

 Supported Versions 4

 Restrictions 4

 Configuration ... 5

 Quick Configuration Guide 6

 Hooks & Internals in Atomthreads 6

 Features ... 7

 Display of Kernel Resources 7

 Task Stack Coverage 7

 Task-Related Breakpoints 8

 Task Context Display 9

 Dynamic Task Performance Measurement 10

 Task Runtime Statistics 11

 Function Runtime Statistics 11

 Atomthreads Specific Menu 13

 Atomthreads Commands .. 14

 TASK.MuTeX Display mutexes 14

 TASK.Queue Display message queues 15

 TASK.SEMaphore Display semaphores 16

 TASK.TaskList Display tasks 17

 TASK.TIMer Display timers 18

 Atomthreads PRACTICE Functions ... 19

 TASK.CONFIG() OS Awareness configuration information 19

 TASK.STRUCT() OS structure names 19

 Appendix A: Context ID on Cortex-A Systems 20
OS Awareness Manual Atomthreads | 2©1989-2024 Lauterbach

OS Awareness Manual Atomthreads

Version 06-Jun-2024

Overview

The OS Awareness for Atomthreads contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistical evaluations.

Terminology

The terms task and thread are used interchangeably throughout this manual. Atomthreads does not support
a true threaded concept such as POSIX threads, but each task is very lightweight and is often referred to as
a thread by Atomthreads documentation.

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.
OS Awareness Manual Atomthreads | 3©1989-2024 Lauterbach

Supported Versions

Currently Atomthreads is supported for the following versions:

• Atomthreads on 32 bit ARM, including Cortex-M.

Restrictions

Atomthreads is supplied in full source code for users to modify to fit their requirements. The awareness has
been built and tested against an unmodified version of Atomthreads. Please see “Hooks & Internals in
Atomthreads”, page 6 for more information.

Atomthreads, in its un-modified form, does not provide task IDs or task names. In these cases, always use
the task magic number for any task. In any listing where task names would be shown, the task entry function
is used instead.

Thread information may be held in a number of disparate locations throughout the system. Currently, the
awareness supports a maximum of 32 mutexes, 32 message queues and 32 semaphores. If your system
requires support for more than this, please contact your local Lauterbach representative.

Some of the more complex analysis features require data trace.

• This is an option on ARM9 and ARM11 systems and will be listed as ETM (Embedded Trace
Macrocell) or off-chip trace. Some devices may only offer on-chip trace or ETB (Embedded Trace
Buffer) and this is seldom sufficient for these types of analysis. More information about this
subject can be found in “Arm ETM Trace” (trace_arm_etm.pdf).

• Many Cortex-M based systems have an option for off-chip trace. More information about this can
be found in “Training Cortex-M Tracing” (training_cortexm_etm.pdf).

• Cortex-A based systems do not provide data trace but the context ID feature may be used. This
will require a modification to the Atomthreads kernel to cause a trace packet to be generated on
each task switch. More details can be found in “Appendix A: Context ID on Cortex-A Systems”,
page 20.
OS Awareness Manual Atomthreads | 4©1989-2024 Lauterbach

Configuration

The TASK.CONFIG command loads an extension definition file called “atomthreads.t32” (directory
“~~/demo/<arch>/kernel/atomthreads”). It contains all necessary extensions.

The OS Awareness for Atomthreads will try to automatically locate all of the required internal information by
itself and, as such, no manual configuration is necessary or possible. In order to achieve this, all symbol
tables must be loaded and accessible at any time the OS Awareness is used.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. To configure the OS Awareness, use the command:

See also “Hooks & Internals” for details on the used symbols.

Format: TASK.CONFIG atomthreads
OS Awareness Manual Atomthreads | 5©1989-2024 Lauterbach

Quick Configuration Guide

Example scripts are provided in ~~/demo/<arch>/kernel/atomthreads/boards. It is recommended to take one
of these as a starting point and modify it to suit your target and setup.

If you already have a setup/configuration script which configures the target and loads the application code
and/or symbols, you can add the following lines to your script after the symbols have been loaded:

These lines will automatically configure the awareness and add a custom menu that provides access to
many of the features.

Hooks & Internals in Atomthreads

No hooks are used in the kernel.

To retrieve information on kernel objects, the OS Awareness uses the global Atomthreads variables and
structures. Be sure that your application is compiled and linked with debugging symbols switched on.

To use the awareness’s stack checking features, please ensure that you define STACK_CHECK=TRUE
when building your Atomthreads application.

TASK.CONFIG ~~/demo/<arch>/kernel/atomthreads/atomthreads.t32
MENU.ReProgram ~~/demo/<arch>/kernel/atomthreads/atomthreads.men
OS Awareness Manual Atomthreads | 6©1989-2024 Lauterbach

Features

The OS Awareness for Atomthreads supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
Atomthreads components can be displayed:

For a description of the commands, refer to chapter “Atomthreads PRACTICE Functions”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application. Be aware that a screen
update may occur midway through a scheduling operation which may cause display inconsistencies.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of Atomthreads Tasks, you can use the TASK.STacK command. Without any
parameter, this command will set up a window with all active tasks. If you specify only a task magic number
as parameter, the stack area will be automatically calculated.

To use the calculation of the maximum stack usage, flag memory must be mapped to the task stack areas
when working with the emulation memory. When working with the target memory a stack pattern must be
defined with the command TASK.STacK.PATtern (default value is 0x5A). The stack display will look like the
image below.

TASK.TaskList Tasks

TASK.SEMaphore Semaphores

TASK.MuTeX Mutexes

TASK.Queue Message Queues

TASK.TIMer Timers
OS Awareness Manual Atomthreads | 7©1989-2024 Lauterbach

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as parameter, or omit the parameter and
select from the task list window.

It is recommended to display only the tasks you are interested in, because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.
This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: If the RTOS serves the Context ID register at task switches, and if the
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

Break.Set <address>|<range> [/<option>] /TASK <task> Set task-related breakpoint.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

Break.CONFIG.UseContextID ON Enables the comparison to the whole Context ID register.

Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.
OS Awareness Manual Atomthreads | 8©1989-2024 Lauterbach

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

The Break.Set window adds a drop-down list of tasks to aid setting task-aware breakpoints from the user
interface. An example can be seen below.

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

Frame.TASK [<task>] Display task context.

Frame /Task <task> Display call stack of a task.
OS Awareness Manual Atomthreads | 9©1989-2024 Lauterbach

If you’d like to see the application code where the task was preempted, then take these steps:

1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.

The current task is also shown on the TRACE32 state line. Right-clicking this will open a pop-up menu listing
all tasks. Selecting one from here will also change the context to the selected task.

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).
OS Awareness Manual Atomthreads | 10©1989-2024 Lauterbach

Task Runtime Statistics

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

All kernel activities are added to the calling task.

Function Runtime Statistics

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Trace.List List.TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as
colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).
OS Awareness Manual Atomthreads | 11©1989-2024 Lauterbach

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG(magic) /TraceData

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

Trace.ListNesting Display function nesting

Trace.STATistic.Func Display function runtime statistic

Trace.STATistic.TREE Display functions as call tree

Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis

Trace.Chart.Func Display function timechart

Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart
OS Awareness Manual Atomthreads | 12©1989-2024 Lauterbach

Atomthreads Specific Menu

The menu file “atomthreads.men” contains a set of additional menus with Atomthreads specific menu items.
Load this menu with the MENU.ReProgram command.

You will find a new menu called Atomthreads which looks like the image below.

• The Display menu items launch the appropriate kernel resource display windows.

• The Stack Coverage submenu starts and resets the Atomthreads specific stack coverage and
provides an easy way to add or remove tasks from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

• The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only task switches (if any) or task switches together with the default display.

• The Perf menu contains additional submenus for task runtime statistics and statistics on task
states.
OS Awareness Manual Atomthreads | 13©1989-2024 Lauterbach

Atomthreads Commands

TASK.MuTeX Display mutexes

Displays the mutex table of Atomthreads or detailed information about one specific mutex.

Without any arguments, a table with all created mutexes will be shown.

The field “magic” is mouse sensitive, double-clicking it opens an appropriate window.

Right-clicking it will show a local menu.

Format: TASK.MuTeX [<mutex_magic>]

<mutex_magic> Specify a mutex magic number of a mutex to display detailed information
on that mutex.
“magic” is a unique ID, used by the OS Awareness to identify a specific
semaphore (address of the ATOM_MUTEX structure).
OS Awareness Manual Atomthreads | 14©1989-2024 Lauterbach

TASK.Queue Display message queues

Displays the message queue table of Atomthreads or detailed information about one specific message
queue.

Without any arguments, a table with all created message queue will be shown.

The field “magic” is mouse sensitive, double-clicking it opens an appropriate window.

Right-clicking it will show a local menu.

Format: TASK.Queue [<message_queue_magic>]

<message_queue_
magic>

Specify a message queue magic number to display detailed information
on that message queue.
“magic” is a unique ID, used by the OS Awareness to identify a specific
message queue (address of the ATOM_QUEUE structure).
OS Awareness Manual Atomthreads | 15©1989-2024 Lauterbach

TASK.SEMaphore Display semaphores

Displays the semaphore table of Atomthreads or detailed information about one specific semaphore

Without any arguments, a table with all created semaphores will be shown.

The field “magic” is mouse sensitive, double-clicking it opens an appropriate window.

 Right-clicking it will show a local menu.

Format: TASK.SEMaphore [<semaphore_magic>]

<semaphore_magic> Specify a semaphore magic number to display detailed information on
that semaphore.
“magic” is a unique ID, used by the OS Awareness to identify a specific
semaphore (address of the ATOM_SEM structure).
OS Awareness Manual Atomthreads | 16©1989-2024 Lauterbach

TASK.TaskList Display tasks

Displays the task table of Atomthreads or detailed information about one specific task.

Without any arguments, a table with all created tasks will be shown.

The field “magic” is mouse sensitive, double-clicking it opens an appropriate window. Right-clicking it will
show a local menu.

Format: TASK.TaskList [<task_magic>]

<task_magic> Specify a task magic number to display detailed information on that task.
“magic” is a unique ID, used by the OS Awareness to identify a specific
task (address of the TCB).
OS Awareness Manual Atomthreads | 17©1989-2024 Lauterbach

TASK.TIMer Display timers

Displays a list of system timers or detailed information about one specific timer.

The “magic” field is mouse sensitive, double-clicking it opens an appropriate window.

 Right-clicking it will show a local menu.

Format: TASK.TIMer [<timer_magic>]

<timer_magic> Specify a timer magic number to display detailed information on that
timer.
“magic” is a unique ID, used by the OS Awareness to identify a specific
timer (address of the ATOM_TIMER structure).
OS Awareness Manual Atomthreads | 18©1989-2024 Lauterbach

Atomthreads PRACTICE Functions

There are special definitions for Atomthreads specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Parameter and Description:

Return Value Type: Hex value.

TASK.STRUCT() OS structure names

Reports OS structure names.

Parameter Type: String (without quotation marks).

Return Value Type: String.

Syntax: TASK.CONFIG(magic | magicsize | tcb)

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

tcb Parameter Type: String (without quotation marks).
Returns the name of the TCB structure.

Syntax: TASK.STRUCT(<item>)
OS Awareness Manual Atomthreads | 19©1989-2024 Lauterbach

Appendix A: Context ID on Cortex-A Systems

For any kind of task analysis, TRACE32 needs to be able to trace task switches. This requires data trace,
which is not available on Cortex-A based systems. They do provide a context ID register which can be
updated by the RTOS when it makes a task switch. TRACE32 can use these generated packets to perform
task switch based analyses. To take advantage of this, the RTOS must be modified to generate these
packets on each task switch. A possible modification for Atomthreads is shown below. Modify the file
ports/armv7a/atomport.c.

void archContextSwitch(ATOM_TCB *old_tcb, ATOM_TCB *new_tcb)
{
uint32_t tmp = 0x0, lr = 0x0;
pt_regs_t *old_regs = (pt_regs_t *)((uint32_t)old_tcb->sp_save_ptr
- sizeof(pt_regs_t));
pt_regs_t *new_regs = (pt_regs_t *)((uint32_t)new_tcb->sp_save_ptr
- sizeof(pt_regs_t));
asm volatile (" mov %0, lr\n\t" :"=r"(lr):);

/* TRACE32:
 * Added to provide context switches for trace based debugging
 */
asm volatile(" mcr p15, 0, %0, c13, c0, 1" :: "r" (new_tcb));

if (archSetJump(old_regs, &tmp)) {
old_regs->lr = lr;
archLongJump(new_regs);
}
}m
OS Awareness Manual Atomthreads | 20©1989-2024 Lauterbach

	OS Awareness Manual Atomthreads
	Overview
	Terminology
	Brief Overview of Documents for New Users
	Supported Versions
	Restrictions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in Atomthreads

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Function Runtime Statistics
	Atomthreads Specific Menu

	Atomthreads Commands
	TASK.MuTeX Display mutexes
	TASK.Queue Display message queues
	TASK.SEMaphore Display semaphores
	TASK.TaskList Display tasks
	TASK.TIMer Display timers

	Atomthreads PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information
	TASK.STRUCT() OS structure names
	Appendix A: Context ID on Cortex-A Systems

