LAUTERBACH A

OS Awareness Manual AMX

OS Awareness Manual AMX

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
OS AWareness MaANUAISccciicecrriiiissiriinissss s rssssss s s s ssss e s eassam s s e e s s amn e s enasame s e e ansammn e nnnsan r—~
OS Awareness Manual AMX ... s s s s s s s ams e sams s m e nnnmnn s 1
L 1= (o 4

O oY = 4
Brief Overview of Documents for New Users 5
Supported Versions 5
L0704} T 11T = Lo o 6
Manual Configuration 6
Automatic Configuration 7
Quick Configuration Guide 7
Hooks & Internals of AMX 8
=Y 1 = 9
Display of Kernel Resources 9
Task Stack Coverage 9
Task-Related Breakpoints 10
Task Context Display 11
Dynamic Task Performance Measurement 12
Task Runtime Statistics 13
Task State Analysis 14
Function Runtime Statistics 15
AMX specific Menu 17

Y 1D 0o T3 1 1 F- 1 Lo = 18
TASK.DBPool Display buffer pools 18
TASK.DEVent Display event groups 18
TASK.DEXChange Display message exchanges 18
TASK.DMailBoX Display mailboxes 19
TASK.DMPool Display memory pools 20
TASK.DSEMaphore Display semaphores 21
TASK.DSYStem Display system state 21
TASK.DTask Display tasks 22
TASK.DTIMer Display timers 23
AMX PRACTICE FUNCHONS ...ooiiciiiiiiniiimsisien s isssssmssssss s sms s sss s s ssms s smss s sass nsmssassms nssmnsnnnn 24
©1989-2024 Lauterbach OS Awareness Manual AMX 2

TASK.CONFIG() OS Awareness configuration information 24

©1989-2024 Lauterbach OS Awareness Manual AMX | 3

OS Awareness Manual AMX

History

Version 06-Jun-2024

04-Feb-21

Overview

Removing legacy command TASK. TASKState.

/A TRACE32 for AMX =R HoR ==
File Edit View Var Break Run CPU Misc Trace Perf Cov AMX Window Help
ME A deern|E2 O sumedas @ : L2 suledas @2
-
b || ™ BiTrace.Chart.TASK = =R
330‘12494 Eﬁ;!(EnkaH p'"yo 5?3’%:5 AL tc”“”’_c meoy || Bacay..| jifbns. | 8 Geia./ | Goto.. |3 Goto..| FFnd.. O In| »0¢ DRI
00022194 |Msgl 40. | waiting 0. . 000ms -10.000ms -5.000ms 0.4
00022994 |Msg2 41. | waiting rangens) ., 1 1 1 I
00023194 |Msg3 42, | waiting known) GH S . o]
00023994 |DEMO 100. | waiting 0. ernel) &y | I IR (1] 111U Rl LU
DOODLEGED |smtl 60. | waiting 125 0. known) & L T ([TR I |
O001E2CC [smt2 61l. | waiting 0. AMX R . . |
0001DEBS |[smt3 62. | waiting 0. Msg2 @) . 1 M
0001DAA4 [MEMP 20. | waiting 1 0. Msg3 g . 1 RITTTEL
0001C27C |mxtl 70. | waiting 125 0. DEMO k5| . Al |
O001BEGSE |mxt2 71. | waiting 0. smtl Gy .
0001BASS |mxt3 72. | waiting 0. smt2 G| .
0001B640 |(BUFP 30. | waiting - 1 4] smt 3 .
00014118 |evtl 80. | waiting MEMP k| .
00019004 |evt2 81. | waiting mcEL Gk .
000198F0 |evt3 82. | waiting mxt2 Gy . 2
000194DC |evtd 83. | waiting e ate < >
000190C8 |evts 84. | waiting — r‘an Teve
00018CE4 EUES 1?3 ,_.:ﬁ;ﬁ::-:g task switch: enabled Next Significant Tick: 1.
= time slicing: disabled Date: 1:0:0 1995/12/1 5
o I
o'a == Interrupt Stack
1d tag max curr waiting running task: BKGR Top: OOD01ECS4
O001F770 MBEX1 0. 4. 0. priority: 110. Bottom: OO001ESS94
0001F7A4 MEX2Z 5. 0. 2. Size: 1024.
k
Ie] jects used max used max
o'a == tasks 20. of 24. zemaphores 3. of EN
1d tag owner value waitin timers 2. of 10. event groups 5. of 10.
0001FB0C SEM1 unowned . 0. mailboxes 2. of B. buffer pools 3. of 6.
0001F340 SEM 5. 0. message exchanges 6. of 13. memory pools 2. of 5.
0001F374 SEM3 -3. 3.
< < >
B::
components trace Data Var List PERF SYStem Step Go other pravious
SR:0000A080 \\armx_demo'\amx_demo\subfunc BKGR stopped at breakpoint MIX |UP

The OS Awareness for AMX contains special extensions to the TRACE32 Debugger. This manual describes
the additional features, such as additional commands and statistic evaluations.

©1989-2024 Lauterbach

OS Awareness Manual AMX

4

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently AMX is supported for:
o AMX Version 3.04a on the Freescale Semiconductor 68332
o AMX on the ARM 7

o AMX on Freescale Semiconductor PowerPC

©1989-2024 Lauterbach OS Awareness Manual AMX | 5

Configuration

The TASK.CONFIG command loads an extension definition file called “amx.t32” (directory
“~~/demo/<processor>/kernel/amx”). It contains all necessary extensions.

Automatic configuration tries to locate the AMX internals automatically. For this purpose all symbol tables
must be loaded and accessible at any time the OS Awareness is used.

If a system symbol is not available or if another address should be used for a specific system variable then
the corresponding argument must be set manually with the appropriate address. In this case, use the
manual configuration, which can require some additional arguments.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

Manual Configuration

Format: TASK.CONFIG amx.t32 <magic_address> <args>

<magic_address> Specifies a memory location that contains the current running task. This
address can be found at “cj_kdata+14".

<args> The configuration requires one additional argument that specifies an AMX
internal pointer. Give the label “cj_kdatp”.

Manual configuration for the OS Awareness for AMX can be used to explicitly define some memory
locations. It is recommended to use automatic configuration.

; manual configuration for AMX support
task.config amx.t32 cj_kdata+14 cj_kdatp

See Hooks & Internals for details on the used symbols.

©1989-2024 Lauterbach OS Awareness Manual AMX | 6

Automatic Configuration

Format: TASK.CONFIG amx.t32

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration
omit all arguments:

; fully automatic configuration for AMX support
task.config amx

If a system symbol is not available, or if another address should be used for a specific system variable, then
the corresponding argument must be set manually with the appropriate address (see Manual Configura-
tion).

See also “Hooks & Internals” for details on the used symbols.

Quick Configuration Guide

To get a quick access to the features of the OS Awareness for AMX with your application, follow the following
roadmap:

1. Copy the files “amx . £32” and “amx .men” to your project directory
(from TRACES32 directory “~~/demo/<processor>/kernel/amx”).

2. Start the TRACES32 Debugger.
3. Load your application as normal.

4. Execute the command “TASK.CONFIG ~~/demo/<cpu>/kernel/amx/amx.t32”
(See “Automatic Configuration”).

5. Execute the command “MENU.ReProgram ~~/demo/<cpu>/kernel/amx.men”
(See “AMX Specific Menu”).

6. Start your application.
Now you can access the AMX extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapters.

©1989-2024 Lauterbach OS Awareness Manual AMX | 7

Hooks & Internals of AMX

All kernel resources are accessed through the kernel data pointer “cj_kdatp”.
The magic location is calculated from “(*c_kdatp+0x14)”.
For detecting a message exchanger task, the entry point of that task is compared to the message exchanger

task entry point “cj_kpmxtask”). If this symbol is not available, the message exchanger tasks won't be
detected.

In the statistics evaluations, the kernel state is derived from the location at “(*cj_kdatp)”.

©1989-2024 Lauterbach OS Awareness Manual AMX | 8

Features

The OS Awareness for AMX supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following AMX
components can be displayed:

TASK.DSYStem system state
TASK.DTask Tasks
TASK.DTIMer Timer
TASK.DMailBoX Mailboxes
TASK.DESChange Message exchanges
TASK.DSEMaphor Semaphores
TASK.DEVent Event groups
TASK.DBPool Buffer pools
TASK.DMPool Memory pools

For a description of the commands, refer to chapter “AMX Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

©1989-2024 Lauterbach OS Awareness Manual AMX | 9

&% BuTASK.STacKview =N =R)

name | low high % [lowest spare max [0 10 20 30 |
AMX [0001ECSS 0001F48C | 0% |Q00LF36C Q0000604 14% |e—
M=sgl [00021A38 0002218C | 12% (00022090 Q0000658 135 |——
M=sg2 (00022238 0002298C | 10% |00022864 Q000067C 115 |ee—m
M=sg3 [00022A38 0002318C | 11% |00023064 Q000067C 115 |ee—

DEMO (00023238 0002398C |(6% (000238A4 0000066C 12%
smtl [0001E384 OO0L1EGDS |I 20% |0001EBZC Q0000ZAB 20%
smt2 (0001DF70 OO0L1EZC4H |0 19% |000L1EZ1C Q0000ZAC 19%
smt3 (0001DESC O001DEED |(
MEMP (0001D348 0001DASC (I
mxtl [O001EF20 Q001C274 |0
mxt2 (0001EBEOC OO01BEGD |I
mxt3 (0001E6FS O001BA4C |I
BEUFP (0001AGE4 O001BB3S |
evtl (00019DEC O001A110 |0
evt2 (00019948 00019CFC (I
evt3 (00019594 (

19% |OO01DEOS Q0000ZAC 19%
11% |0001DSES 00000670 12%
23% |000LC1AC 000002BC 23%
23% |0001EDSC 00000250 23%
23% |DO0L1ES88 00000250 23%
7% (0001B6500 00000ELC 7%
21% |0001AD58 0000025C 21%
21% |00019C44 0000025C 21%
21% 00019830 0000025C 21%
evtd 00019180 21% |0001941C 0000025C 21%
evts [00018D6C 21% 00019008 0000025C 21%
evt6 (00018958 (F4 21% |00D018EF4 0000029C 21%
BEKGR |00018544 00018898 |00018894 0% [000188590 0000034C 0%

= >

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [I<option>] [TASK <task> Set task-related breakpoint.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

J For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

©1989-2024 Lauterbach OS Awareness Manual AMX | 10

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextiD ON Enables the comparison to the whole Context ID register.
Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

a B::Break.List EI@
Deledl| O Distledl| @ Ertedl | @ Init (P 1mpl...| B2 sore.. | T2 Load.. || B Set...
address types impl task |
R:0000A080 [Program [SOFT "mxt2” =ubfunc
R:0000AOF45Pr‘ogr‘a.m SOFT "BKGR™ stbkgr
< >
Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:
I Frame.TASK [<fask>] Display task context.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

U To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

I Frame /Task <task> Display call stack of a task.

If you'd like to see the application code where the task was preempted, then take these steps:

©1989-2024 Lauterbach OS Awareness Manual AMX | 11

1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.
#&f BuFrame /TASK "Msg1" fArgs /Caller EI@
1. Up Down MArgs [iocals [caller Task: | "Msgl" ~|

—000[[ci_kpwait(asm)
—001||cjmxsend(asm)

returnicjmxsend(cjtkmxid(taskid), parm, CI_YES, priority));
-003||stmsgl()

/= M=g Task 1 sends message to Msg Task
uusendw(msgtask2id, 1, Ox00A30001, Ox1002, msgtasklid);
-004|[cj_kptkenter (asm)

— |end of frame

=

-002||uusendw(taskid = 128620, priority = 1, pl = 10682369, p2 = 4098, p3 = 128568)

k2 at priority 1 and waits*/

Ll

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in

changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the

PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide

P” (general_ref_p.pdf).

©1989-2024 Lauterbach

OS Awareness Manual AMX

12

= B:PERF.LTASK = =R

& ... || 18 anfig... | Goto...|| B Detaiked | O view || iy Profie| @ init | O Disable| @ Arm
ratio 1% 2% 5% 10% 20% 50% 100 |
87.061% o
4.991%
4.621%
3.327%
0. 000%
0. 000%
0. 000% hd

Task Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as

colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

©1989-2024 Lauterbach OS Awareness Manual AMX | 13

= | B::Trace.STATistic. TASK count total ratio bar EI@
Z2sep... || 1if Goups... || 38 Gonfig.. | = |Detailed || i Nesting| Al Chart || B Profile
tasks: 23. total: 14.580ms
range |count total ratio® [|1% 2% 5% 10% 20% |
(kernel) 53. 906.100us 6.214% ~
(unknown) 2. 3.856ms | 26.449%
AMX 1. 1.524ms | 10.453%
Msg2 2. 156. 800us 1.075% |m
Msg3 2. 261. 000us 1. 790% |—
DEMO 31. 2.328ms | 15.966%
smtl 1. 108.500us 0. 744% |+
smt2 1. 49, 200us 0.337% |+
smt3 1. 49, 200us 0.337% |+
MEMP 1. 169.700us 1 1635 .
mxtl 1. 366.700us 2
mxt2 1. 307.400us | 2| & BuTrace.Chart. TASK (-80000.)--(0.) EI@
mxt3 1. 307.400us 2 o o
BUEP 1. 2.286ms | 15| | J2Setup... | iif Goups.. | 2% Gofi... || (3 Goto...|| 1Y Goto...| #3Find... || O In || 00 0ut|| B3 Full
evtl 1. 50.400us | O -8.000ms -6.000ms -4.000ms -2.000ms 0.
evt2 1. 51.000us | O rangefy L L L
evt3 1. 50.400us 0 (kernel) & muorngnegrn o ogormo|m TN NN WA W
evtd 1. 51.100us | Of | Cunknown)R¥
evts 1. 50.900us | 0O AMX S —] I | | | |
evt6 1. 51.000us | O Msg2i 1] I | ' '] | |]
Msgl 1. 375.300us | 2 Msa3Rd| I -
BKGR 1. 14.500us | 0O DEMORH ‘W mmE @ W m E _ C mEIEIEIE R 1
< smtls| N . . . : . . .
SMEZE LIS] . . . | |
SME3G I] . . . | |
MEMPRE .u]] . . . | |
mELE -] . . . | |
mREZE L] . . . | |
mRE3E L)) . | |
BUFP {4 . k| . | |
eviliy . . . LI | |
evt2 [. I | |
evi3 [y . N | |
evtd iy . . | | |
evt5 [. | I |
evioqy . I |
M=gl 4H . . . |
BKGR M X . v
< > < >
.
Task State Analysis
NOTE: This feature is only available, if your debug environment is able to trace task

switches and data accesses (program flow trace is not sufficient). It requires

either an on-chip trace logic that is able to generate a data trace, or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated
statistically or displayed graphically.

This feature requires that the following data accesses are recorded:

o All accesses to the status words of all tasks

J Accesses to the current task variable (= magic address)

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs
are located (plus the current task pointer).

©1989-2024 Lauterbach

OS Awareness Manual AMX

14

Example: This script assumes that the TCBs are located in an array named TCB_array and consequently
limits the tracing to data write accesses on the TCBs and the task switch.

Break.Set Var.RANGE (TCB_array) /Write /TraceData
Break.Set TASK.CONFIG (magic) /Write /TraceData

To evaluate the contents of the trace buffer, use these commands:

Trace.STATistic. TASKState Display task state statistic
Trace.Chart. TASKState Display task state timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

Function Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

©1989-2024 Lauterbach OS Awareness Manual AMX | 15

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting
Trace.STATistic.Func
Trace.STATistic.TREE
Trace.STATistic.sYmbol /SplitTASK
Trace.Chart.Func
Trace.Chart.sYmbol /SplitTASK

Display function nesting

Display function runtime statistic
Display functions as call tree
Display flat runtime analysis
Display function timechart

Display flat runtime timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as

“(unknown)”.

= B:Trace.STATistic. TREE

rstup.. || 1ifGoups... || B8 Gorfig... | (A Goto...|| = |Detsiked || Y Nesting|| % Chart
funcs: 25. total: 16.322ms
range [tree total min max awvr count intern® [1% 2% 5% 10%
(root) — (root) 94, 600us - 94, 600us 94, 600us - 0.579% |+
(root) — (root) 6. 758ms - 6.758ms 6.758ms - 41.403%
(root) = (root) 580.400us - 580.400us | 580.400us - 0.798% [+
uurwait = uurwait 427.900us 85.500us 85.600us 71.317us 6.(1/1) 2.484% | e————
uurandom L— uurandom 22.400us 4. 400us 4.500us 4.480us 5. 0.137% |+
uurandom uurandom 22.200us 4. 400us 4.500us 4.440us 5. 0.136% |+
(root) — (root) 110. 000us - 110.000us | 110.000us - 0.673% [+
(root) — (root) 112. 800us - 112.800us | 112.800us - 0.691% |+
(root) = (root) 7.463ms - 7.463ms 7.463ms - 0.181% |+
subfunc L= subfunc 7.433ms 75.700us 75.700us 74.334us 100. (1,/1) 0.667% [+
subfunc = subfunc 7.325ms 74.600us 74.600us 73.245us 100.(1/1) 0.667% [+
subfunc L= subfunc 7.216ms 73.500us 73.500us 72.156us 100.(1/1) 0.667% [+
subfunc L= subfunc 7.107ms 72.400us 72.400us 71.067us 100.(1/1) 0.667% [+
subfunc = subfunc 6. 998ms 71.300us 71.300us 69.978us 100.(1/1) 0.665% [+
subfunc = subfunc 6. 889ms 70.200us 70.200us 69.587us 99. (1,/0) 0.662% [+
subfunc = subfu.. 6. 781ms 69.100us 69.100us 65.495us 99. (1,/0) 0.662% [+
subfunc = sub.. 6.673ms | 68.000us | 68.000us| 67.403us 99, (1,/0) 0.662% |+
suﬁiunc L3s. 6.565ms | 66.900us | 66.900us | 66.311lus 99. (1,/0) 0.662% |+
subfunc
5“?::_52%) =% BuTrace.Chart.Func EI@ [rm—
ylroot) B Brsetup.. || §if Goups... | 58 Gonfig... || (A Goto...|) Goto...|| #3Find... || «OrIn | v0¢Out|| 0 Ful
uurandom [-8.000ms -7.500ms -7.000ms -&.500ms
uurandom rangenn | 1 1 1 |
(root) i
J((root)e(k >
uurwait
(root)
uurandom
(root)
(root)
subfunc i
(root) bl — : : : - - - - -
(root)Ea fhl——— -—— - - — - — — -
uurwait 4 1 {—— =
(root) q . N . -]
uurandom W I . n
Jelii> < >
©1989-2024 Lauterbach OS Awareness Manual AMX | 16

AMX specific Menu

The menu file “amx.men” contains a menu with AMX specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called AMX.

/A TRACE32 for AMX - O X
File Edit View Var Break Run CPU Misc Trace Perf Cov AMX Window Help
| [ﬂ| + ¢ e | [1] | {'_0_.| ? \°| | St Display System
Display Tasks —

% B:TASK.DTASK [s Display Timers

tag/entry pry status time |[tcount | T -

Y T dTe 0. x Display Mailboxes

Msgl 40. | waiting 0. Display Exchanges

M=sg2 41, | waiting .

Msg3 42. | waiting Display Semaphores

DEMO 100. | waiti . i
smtl 0. ‘QZIEES 125 o pEplavivents
smt2 61. | waiting 0. Display Buffer Pools
smt3 62. | waiting 0. .
MEMP 20. | waiting 1 0. Display Memory Pools
mxtl 70. | waiting 125 0.
mxt2 71. | waiting 0. | v Stack Coverage L4
>
B::|TASK.
DSYStem DTask DTIMer DMaiBoX = |DEXChange DSEMaphor othar pravions
SR0000A050 \|am_demolame ok BKGR. stopped at breakpoint MD{ |UP
. The Display menu items launch the kernel resource display windows.
J The Stack Coverage submenu starts and resets the AMX specific stack coverage and provides

an easy way to add or remove tasks from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

. The Trace -> List submenu is changed. You can additionally choose if you want a trace list
window to show only task switches (if any) or task switches and defaults.

o The Perf menu contains the additional submenus for task runtime statistics, task-related function
runtime statistics and statistics on task states. For the function runtime statistics, a PRACTICE
script file called “men_ptfp.cmm” is used. This script file must be adapted to your application.

©1989-2024 Lauterbach OS Awareness Manual AMX | 17

AMX Commands

TASK.DBPool Display buffer pools

Format: TASK.DBPool

Displays a table with all created AMX buffer pools.
&% B:TASK.DBPool =N SR

1d tag used max si1ze pool ram waiting |
0001FA14 UBuT 24, 24, 32. 00023434 0. A
0001FA48 FBuf 0. 20. 43. 00023DF4 o
0001FES8 BufP 0. 32. 32. 0001A1CC o

v
£ >

TASK.DEVent Display event groups

Format: TASK.DEVent

Displays a table with all created AMX event groups.

&% BuTASK.DEVent =N SR
I

1d tag waiting current

O001FBDC EVGL 0. o000 0000 0000 0000 0000 0000 0000 1111
0001F910 EVGZ
0001F944 EVG3
O001FS78 EVGE
O001FSAC EVGS

-
0000 0000 0000 0000 0000 0000 1111 0000

0000 0000 0000 0000 0000 1111 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 1100 0000 1101 1110

(=R=R= =]

<

TASK.DEXChange Display message exchanges

Format: TASK.DEXChange

Displays a table with all created AMX message exchanges.

o B:TASK.DMailBoX = =R

1d tag max curr __waiting |
O001F770 MBEX1 10. 4. 0. A
0001F7A4 MEX2Z 5. 0. 2.

v
£ >

©1989-2024 Lauterbach OS Awareness Manual AMX | 18

TASK.DMailBoX Display mailboxes

Format: TASK.DMailBoX

Displays a table with all created AMX mailboxes.

o B:TASK.DMailBoX = =R
1d tag max curr __waiting |
O001F770 MBXL 10. 4. 0. A
O001F7A4 MBXZ 5. 0. 2.

v

< >

©1989-2024 Lauterbach OS Awareness Manual AMX | 19

TASK.DMPool

Display memory pools

Format: TASK.DMPool

o B:TASK.DMPool = =R
1d tag total used blocks s1ze
O001FABED MEMY A
0001FD54 MemP

v

< >

Displays a table with all created AMX memory pools.

©1989-2024 Lauterbach

OS Awareness Manual AMX | 20

TASK.DSEMaphore

Display semaphores

Format:

TASK.DSEMaphore

&% B:TASK.DSEMaphor

(o8)

Displays a table with all created AMX semaphores.

1d tag owner value waiting |
0001F30C SEML unowned 1. 0. A
0001F340 SEMZ 5. 0.
0001F374 SEM3 -3. 3. v
TASK.DSYStem Display system state
Format: TASK.DSYStem

Displays a system state summary for the current AMX system state.

&% BTASK.DSYStem

system summary

Kernel state System Clock

run Tevel: task
task switch: enabled
time slicing: disabled Date:

Interrupt Stack

Current Tick: 0.
Next Significant Tick: 1.
1:0:0 1995,/12/1 5

running task: BKGR
priority: 110.

Top: 0001EC94
Bottom: OO001ESS94
Size: 1024.

Kernel Objects used max

tasks 20. of 24.

timers 2. of 10.

mailboxes 2. of 8.

message exchanges 6. of 13.

zemaphores
event groups
buffer pools
memory pools

<

== s
AI
used max
3. 0f 9
5. of 10.
3. 0f 6
2. of 5
v
>

©1989-2024 Lauterbach

OS Awareness Manual AMX | 21

TASK.DTask Display tasks

Format: TASK.DispTask [<task>]

<task>: <task_magic> | <task_id> | <task_name>

Displays a table with all AMX tasks or one task in detail.

Without any parameters, a summary table of all created tasks is shown.

o B:TASK.DTask = =R
magic tag/entry pry status time [tcount mcount [stack [|
O001F494 [AMX 0. [1dTe 0. A
00022194 (Msgl 40. | waiting 0.
00022994 [(Msg2 41, | waiting
00023194 [Msg3 42, | waiting
00023994 |DEMO 100. | waiting 0.
O001EGED [smtl 60. | waiting 125 o
O001E2CC [smt2 61l. | waiting 0.
0001DEES [smt3 62. | waiting 0.
0001DAA4 (MEMP 20. | waiting 1 0.
0001C27C |mxtl 70. | waiting 125 o
O001BEGSE |mxt2 71. | waiting 0.
0001BASS |mxt3 72. | waiting 0.
0001B640 |(BUFP 30. | waiting 1 0.
00014118 |evtl 80. | waiting 0.
00019004 |evt2 81. | waiting 0.
000198F0 |evt3 82. | waiting 0.
000194DC |evtd 83. | waiting 0.
000190C8 |evts 84, | waiting 0.
00018CE4 |evid 85. | waiting 0.
000188A0 |BKGR 110. |*running 0.
v
£ >

The magic number is a unique ID to the OS Awareness to specify a specific task. It is not equal to the AMX
task ID. A double click on the magic number or on the tag opens the detailed task window.

If you specify a task magic number, a task ID or a task tag as parameter, this task is shown in detailed.
Enclose a task tag in quotation marks. If a numerical parameter is detected to be a AMX task ID, this one will
be used. All other numerical parameters are supposed to be a task magic number and are not checked for

validation.
% B:TASK.DTask "smt1" = =R
magic tag/entry pry status time |[tcount mcount
0001EGED [smtl [60, [waiting | 125 0.] ~
id slice start
0001FCE4 A:0000954C stsema

status
y:aiting Tor semaphore 1FB74 SEM3

TCE user area
00000000 00000000 00000000 00000000

=tack
0001EGZC

< >

©1989-2024 Lauterbach OS Awareness Manual AMX | 22

TASK.DTIMer Display timers

Format: TASK.DTIMer

Displays a table showing all defined AMX timers.

Double click on the parameter to see a dump window on this address. Double click on the procedure to see
a list window on this address.

5 B:TASKDTIMer =R o
1d tag period time parameter procedure |
0001F708 SCLK 100. 1. 00000000 0000941C tmrdemo

- -
OO01FCS50 AMXT 250. 250. 00021A238 O0000A7D4 cj_tdtmproc

< >

©1989-2024 Lauterbach OS Awareness Manual AMX | 23

AMX PRACTICE Functions

There are special definitions for AMX specific PRACTICE functions.

See also general TASK functions.

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magicsize | kdata)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

kdata Parameter Type: String (without quotation marks).
Returns the address of the kernel data area.

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual AMX | 24

	OS Awareness Manual AMX
	History
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Manual Configuration
	Automatic Configuration
	Quick Configuration Guide
	Hooks & Internals of AMX

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	AMX specific Menu

	AMX Commands
	TASK.DBPool Display buffer pools
	TASK.DEVent Display event groups
	TASK.DEXChange Display message exchanges
	TASK.DMailBoX Display mailboxes
	TASK.DMPool Display memory pools
	TASK.DSEMaphore Display semaphores
	TASK.DSYStem Display system state
	TASK.DTask Display tasks
	TASK.DTIMer Display timers

	AMX PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information

