
MANUAL

Peripheral Files Programming

Peripheral Files Programming

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 Peripheral Files .. 

 Peripheral Files Programming .. 1

 History .. 7

 Introduction ... 7

 Passing Arguments 8

 Memory Classes 11

 Comma-Separated-Values (CSV) File Format for *.per Files 12

 Editing a *.per File in CSV Format in a Spreadsheet Editor 13

 Mixing Regular and CSV Formats 16

 Manual Peripheral File Generation .. 17

 GROUP Commands 20

 GROUP Define read/write GROUP 21

 HGROUP Define read-once/write GROUP 22

 RGROUP Define read-only GROUP 23

 WSGROUP Define write-only and shadow GROUP 23

 WGROUP Define write-only GROUP 24

 SGROUP Commands 25

 SGROUP Define sequence GROUP 25

 SET Write constant value to memory 26

 SETX Write SGROUP buffer to memory 27

 GETX Read from memory to the SGROUP buffer 28

 CONSTX Write constant value to the SGROUP buffer 29

 VARX Write expression to SGROUP buffer 30

 WRITEBACK Separate write a part from a read part 31

 Other Top Level Commands 34

 ASSERT Abort if condition not met 34

 AUTOINDENT Indent content of peripheral file automatically 34

 BASE Define a base address for following group definitions 41

 BASEOUT Output a value before calculating a base address 42

 BASESAVEOUT Output a value before calculating a base address 43

 CONFIG Configure default access width and line break for BIT 43

 CSV Enables CSV capabilities 45

 ELSE Conditional GROUP display 46
Peripheral Files Programming | 2©1989-2024 Lauterbach

 ELIF Conditional GROUP display 46

 ENDIAN Define little or big endian 46

 ENDIF Conditional GROUP display 46

 ENTRY Assign parameters to macros 46

 HELP Reference online manual 47

 IF Conditional GROUP display 47

 INCLUDE Include another peripheral file 49

 MENCONFIG PERMENU configuration 49

 PERCMD Row definition in CSV-formatted *.per file 49

 REPEAT Repeat block of commands 52

 REPEAT.REPLAY Replay last complete REPEAT block 54

 SIF Conditional interpretation 54

 TREE Define hierarchic display 55

 WIDTH Width of register names and a BIT description 56

 WAIT Wait with PER windows until system is ready 56

 Commands within GROUPs 58

 ABITFLD Assign values to BITFLD choice items 58

 ASCII Display ASCII character 58

 BIT Define bits 59

 BITFLD Define bits individually 59

 BUTTON Define command button 62

 COPY Copy GROUP 63

 DECMASK Define bits for decimal display 64

 FLOATMASK Define bits for decimal floating point display 65

 EVENTFLD Define event flag bits individually 67

 HEXFLD Define hexword individually 68

 HEXMASK Define bits for a hexadecimal display 69

 HIDE Define write-only line 70

 IN Define input field 70

 INDEX Output a value 71

 LINE Define line 73

 MUNGING Translate to little endian mode (PowerPC only) 74

 NEWLINE Line break within detailed register description 74

 RBITFLD Define bits individually (read-only) 75

 RHEXMASK Define bits for a hexadecimal display (read-only) 75

 SAVEINDEX Save original and output a value 76

 SAVETINDEX Save original and output a value 76

 SDECMASK Signed DECMASK 77

 SFLOATMASK Signed FLOATMASK 77

 SETCLRFLD Define set/clear locations 77

 STRING Display a string saved in memory 78

 TEXTLINE Define text header with a new line 79

 TEXTFLD Define text header 79
Peripheral Files Programming | 3©1989-2024 Lauterbach

 TINDEX Output a value 80

 Automated Peripheral File Generation .. 81

 Graphical User Interface 81

 Rules file 81

 Rules file description 81

 Rule definition 81

 Selecting defined elements using <select> 82

 Elements 83

 Properties 84

 Commands 85

 <create_header> 86

 <derive_module> 86

 <destroy_module> 87

 <include> 87

 <include_module> 88

 <open_module> 88

 <modify> 89

 <replace> 89

 <protect> 95

 <remove> 95

 <create_module> 96

 <for> 96

 <create_view> 97

 <map_cpu> 98

 Variables 99

 Schema Document Properties 100

 Global Declarations 101

 Element: create_header 101

 Element: create_module 102

 Element: create_view 103

 Element: derive_module 104

 Element: destroy_module 105

 Element: field 105

 Element: fields 106

 Element: for 107

 Element: get 108

 Element: if 109

 Element: include 110

 Element: include_module 111

 Element: map_cpu 112

 Element: modify 113

 Element: module 114

 Element: modules 114
Peripheral Files Programming | 4©1989-2024 Lauterbach

 Element: open_module 115

 Element: protect 116

 Element: register 117

 Element: registers 118

 Element: remove 119

 Element: replace 119

 Element: rule 120

 Element: rules 122

 Element: select 123

 Element: state 124

 Element: states 125

 Element: variable 125

 Global Definitions 127

 Complex Type: protect_common_type 127

 Complex Type: protect_field_type 127

 Model Group: commands 128

 Model Group: replace_element_type 129

 Simple Type: access_type 130

 Simple Type: bool 131

 Simple Type: create_module_mode 132

 Simple Type: create_module_position 132

 Simple Type: derive_module_element 133

 Simple Type: element_type 134

 Simple Type: format_type 135

 Simple Type: if_type 135

 Simple Type: include_module_position 136

 Simple Type: include_type 137

 Simple Type: number 137

 Simple Type: on_error_type 138

 Simple Type: open_module_element 139

 Simple Type: property_type 140

 Simple Type: props_type 141

 Glossary 143

 Error Messages 145

 <location> Invalid attribute <attribute> in tag <name> 145

 <location> Invalid node <node> in tag <name> 145

 <location> Invalid value <value> in tag <name> 146

 <location> <name> from <name> must occur only once 146

 <location> Missing <name> in tag <name> 147

 Invalid value <value> for property “property” 147

 <location> Invalid property attribute for selected component 148

 <location> missing <select> for <name> tag 148

 <location> <select> can not be used after <command> 149
Peripheral Files Programming | 5©1989-2024 Lauterbach

 <location> <select> with ‘property=path’ can be used only once for single <rule> 149

 <location> <name> tag requires subtags 150

 None of component <name> elements match <value> 150

 <location> <name> can’t be used with <name> 151

 Invalid min_value 151

 Invalid iter_name 152

 The <value> register could not be found 152

 ELSE command can not be created for <value> without if command 153

 <location> Root tag <name> not found. 153

 <location> duplicated element. 154

 Wrong input file specified for <name> format. 154

 This inputs are not supported by our converter 154

 Functions ... 155
Peripheral Files Programming | 6©1989-2024 Lauterbach

Peripheral Files Programming

Version 06-Jun-2024

History

14-Sept-2022 New feature inherit for REPEAT command.

21-Jan-2022 Added %y... placeholder to BITLD and ABITFLD.

Introduction

This document describes the commands which are used to write peripheral files. This allows to
display/manipulate configuration registers and the on-chip peripheral registers at a logical level. Registers
and their contents are visible and accessible in the PER.view window.

Peripherals in MCU can be displayed and manipulated with the PER commands. TRACE32 offers
configurable window for displaying memory or I/O structures. Displaying the state of peripheral components
or memory based structures is very comfortable.

User can define 'chip macros' and put them together to generate 'project files'. These files describe the port
structure for a specific hardware system.

Examples for different microcontrollers reside in the directory ~~/demo/per/.
Peripheral Files Programming | 7©1989-2024 Lauterbach

Passing Arguments

You can pass arguments from a PRACTICE script to a PER file (peripheral file). These arguments can be
strings, hex and decimal values. See below for an example and an illustration and explanation of the
example.

Example

PRACTICE script (*.cmm) - Bold and red are used to highlight the information flow:

;Declare four PRACTICE macros and assign values to the PRACTICE macros
LOCAL &addr ®64bit &name &idx

&addr=0xE0000000 ;Base address of the PER file called with PER.view.
®64bit=1. ;Show the 64bit or the 32bit specific register group.
&name="My Module" ;Module description of the register group.
&idx=35. ;Show a specific register out of an array of
 ;memory-mapped registers.
;... your code
SYStem.Up

;View the peripheral file and pass the four arguments
PER.view "per_with_args.per" &addr ®64bit "&name" &idx "*"

;Open the peripheral file in the built-in TRACE32 editor PER.Program
PER.Program "per_with_args.per" ;Do not pass arguments here!
;Set a different peripheral file as temporary new default file
PER.ReProgram "per_with_args.per" ;Do not pass arguments here!
Peripheral Files Programming | 8©1989-2024 Lauterbach

The above PRACTICE script (*.cmm) calls this PER file (*.per):

CONFIG 16. 8.
WIDTH 10.

;The PER.view command arguments are passed to the ENTRY command arguments
ENTRY &baseaddr=0x0 ®64bit=0. &modulename="foo" &index=1.

BASE D:&baseaddr

SIF (®64bit==1.)
 TREE "64bit Register Group &modulename"
 GROUP.QUAD (0x8*&index)++0x07
 LINE.QUAD 0x00 "CTL&index,Control Register &index"
 TREE.END
ELSE
 TREE "32bit Register Group &modulename"
 GROUP.LONG (0x4*&index)++0x07
 LINE.LONG 0x00 "CTL&index,Control Register &index"
 TREE.END
ENDIF
Peripheral Files Programming | 9©1989-2024 Lauterbach

Illustration and Explanation of the Example

Our example produces this PER.view window:

As valid default values in a PER file, our example uses:

• 0x0 for hex values.

• 0. for decimal values.

• "foo" for strings.

When the PRACTICE macro values are passed to the same PER file, the passed values override the
default values in the ENTRY line of the PER file.

NOTE: Although the ENTRY command arguments may look like PRACTICE macros, they
are not PRACTICE macros and do not behave like PRACTICE marcos:
• When you try to create PRACTICE macros with the LOCAL command

inside a PER file and compile it, you receive the error message “unknown
command”.

• When you try to assign an ENTRY command argument to another
ENTRY command argument (&arg2=&arg1) inside a PER file and com-
pile it, you also receive the error message “unknown command”.

A The four values passed to the PER file are displayed in the window caption.

B "*"displays all branches. For more information, see PER.view.

C Result of the information flow highlighted in bold and red in the above example (see &name).

NOTE: In the PER file, valid default values must be assigned to each ENTRY command
argument. See highlighted values in the ENTRY line.

The default values in the ENTRY line ensure that no “syntax error” is reported when
a PER file is compiled in the built-in TRACE32 editor PER.Program.

;Define default values for the ENTRY command arguments
ENTRY &baseaddr=0x0 ®64bit=0. &modulename="foo" &index=0.

B

C
A

Peripheral Files Programming | 10©1989-2024 Lauterbach

Memory Classes

Format: <access_class>:<base_address>

<access_class> Appropriate access method to memory class (D, SD, A, AD, AP, ANC,DC, IC,
NC, ED, EAD, VM, P, etc.)

<base_address> Base address of the peripheral module.
Peripheral Files Programming | 11©1989-2024 Lauterbach

Comma-Separated-Values (CSV) File Format for *.per Files
[build 98464 - DVD 09/2018]

Peripheral files can be formatted as comma-separated values, i.e. the same format as in *.csv files.
However, the file extension for peripheral files remains *.per, as usual. The CSV format extends the regular
peripheral command set and offers you an alternative way to create and maintain peripheral files more easily
in a spreadsheet. Therefore it usually offers better readability. Peripheral files in CSV format can also be
generated more easily from binary files (such as netlists, etc.) by automated tools.

Example: Regular *.per file format (excerpt from ~~/demo/per/percsv_nocsv.per):

The same register definitions in CSV format and displayed in a spreadsheet editor (excerpt from
~~/demo/per/percsv_simple.per):

Whenever necessary, you can still mix the regular and CSV file format.

TREE "Common Registers"
GROUP 0xE80++0x01
LINE.WORD 0x0 "ADCR1,ADC Control Register 1"
BITFLD.WORD 0 14. "STOP,Stop", "Normal operation,Stop"
BITFLD.WORD 0 13. "START,Start Conversion", "No action,Start"
BITFLD.WORD 0 12. "SYNC,Sync Select","START bit,sync input or START bit"
GROUP 0xF80++0x01
LINE.WORD 0x0 "ADCR2,ADC Control Register 2"
HEXMASK.WORD.BYTE 0 0.--3. 1. "DIV,Clock Divisor Select"
TREE.END

NOTE: Microsoft Excel is not capable of exporting true comma-separated-values files
on machines based in Europe (instead semicolons will be used as separators
due to system-wide Region and Language settings).
Therefore it is recommended to use LibreOffice Calc or any other spreadsheet
editor.
Peripheral Files Programming | 12©1989-2024 Lauterbach

Editing a *.per File in CSV Format in a Spreadsheet Editor

1. Do one of the following:

- Create an empty file, or

- Open/Import an existing *.per file. Make sure comma is selected as separator and the single
quote as text delimiter:

2. The first command in the *.per file (except comments) must enable CSV capabilities:

3. Optional step: Use your preferred auto-indent style (see AUTOINDENT):

4. Optional step: Define the columns (see PERCMD).

- The column name arguments of the PERCMD command will serve as column headers in your
spreadsheet, see [X] below.

- To freeze the headers, choose View menu > Freeze Rows and Columns.

- If you omit the PERCMD command: The first column must always contain peripheral file
commands only and must be kept empty otherwise!

CSV.ON

AUTOINDENT.ON CENTER TREE

X

Peripheral Files Programming | 13©1989-2024 Lauterbach

5. Optional step: Use BASE and TREE commands in the subsequent rows to create an
environment.

6. Define the registers and bits:

7. When done, save/export the spreadsheet in CSV format as shown below:

A to C For a description, see Rules below.

A

B

C

Peripheral Files Programming | 14©1989-2024 Lauterbach

Output:

Rules:

• A new register [A] will be created if at least one of the following conditions applies:

- The Address value is the first non-empty entry in the spreadsheet.

- The Address value differs from the previous one.

- The AccessWidth value differs from the previous one.

- From and To values are empty.

• A new customized bit description [B] will be created if the following conditions are all true:

- The Address value does not change, or the entry is empty.

- The AccessWidth value does not change, or the entry is empty.

- The Choices value is not empty.

• A new bit or bit range [C] is displayed as hexadecimal if the following conditions are all true:

- The Address value does not change, or the entry is empty.

- The AccessWidth value does not change, or the entry is empty.

- The Choices value is empty.

A to C For a description, see Rules below.

C B

A

Peripheral Files Programming | 15©1989-2024 Lauterbach

Mixing Regular and CSV Formats

In order to simplify matters, peripheral files in CSV format do not offer the full functional range of regular *.per
files. However, you can easily include regular *per commands in the first column:

Excerpt from ~~/demo/per/percsv_mixed.per:

In above example we utilize the regular peripheral commands TREE, IF and NEWLINE. In all other cases,
the first column must remain empty!
Peripheral Files Programming | 16©1989-2024 Lauterbach

Manual Peripheral File Generation

To start writing the peripheral file, please create a file with extension *.per.
“.per” is the TRACE32 standard extension for peripheral files.

The syntax of a peripheral file is line oriented. Blanks and empty lines can be inserted to define the
structure of the program. Comment lines start with semicolon.

Examples of the peripheral file reside in the directory ~~/demo/per.

At the beginning of the file, the commands WIDTH and CONFIG should be placed. The next step is to define
the base address using BASE command. Each implemented module has to be started with TREE
command and ended with the TREE.END command.

A typical peripheral file implementation is showed below:

; "dots" mean decimal format
CONFIG 16. 8.

; 0x means hex format
WIDTH 0xb

; "Treeview" of the module
TREE "Module Registers"

; base address of the module
BASE ad:0xf0000000

; GROUP definition
GROUP.LONG 0x00++0x3
 ; register definition
 LINE.LONG 0x00 "REG0,Register 0"

 ; one bit filed definition
 BITFLD.LONG 0x00 26. " BIT26 ,Bit 26" "0,1"

 ; 2-bit field definition
 BITFLD.LONG 0x00 23.--24. " BIT24_23 ,Bits 24 to 23" "0,1,2,3"

; end of the tree
TREE.END
Peripheral Files Programming | 17©1989-2024 Lauterbach

Peripheral Files Programming | 18©1989-2024 Lauterbach

TREE "UART Registers"
BASE ad:0xfffe0000
GROUP.LONG 0x00++0x3

LINE.LONG 0x00 "REG0,Register 0"
BITFLD.LONG 0x00 26. " BIT26 ,Bit 26" "0,1"
BITFLD.LONG 0x00 23.--24. " BIT24_23 ,Bits 24 to 23" "0,1,2,3"
BITFLD.LONG 0x00 26. " BIT17 ,Bit 17" "0,1"

TREE.END

TREE.OPEN "PWM"
TREE "PWM1"

BASE ad:0xfffe1000
GROUP.LONG 0x00++0x3

LINE.LONG 0x00 "REG1,Register 1"
BITFLD.LONG 0x00 19. " BIT19 ,Bit 19" "0,1"
BITFLD.LONG 0x00 14.--15. " BIT15_14 ,Bits 15 to 14" "0,1,2,3"

TREE.END
TREE "PWM2"

BASE ad:0xfffe2000
GROUP.LONG 0x00++0x3

LINE.LONG 0x00 "REG2,Register 2"
BITFLD.LONG 0x00 8. " BIT8 ,Bit 8" "0,1"
BITFLD.LONG 0x00 5.--6. " BIT6_5 ,Bits 6 to 5" "0,1,2,3"

TREE.END
TREE.END
TREE "I2c Registers"

BASE ad:0xfffe3000
GROUP.LONG 0x00++0x3

LINE.LONG 0x00 "REG3,Register 3"
BITFLD.LONG 0x00 31. " BIT31 ,Bit 31" "0,1"
BITFLD.LONG 0x00 30. " BIT30 ,Bit 30" "0,1"
BITFLD.LONG 0x00 29. " BIT29 ,Bit 29" "0,1"
TEXTLINE " "
BITFLD.LONG 0x00 28. " BIT28 ,Bit 28" "0,1"
BITFLD.LONG 0x00 27. " BIT27 ,Bit 27" "0,1"
BITFLD.LONG 0x00 26. " BIT26 ,Bit 26" "0,1"
TEXTLINE " "
BITFLD.LONG 0x00 25. " BIT25 ,Bit 25" "0,1"
BITFLD.LONG 0x00 24. " BIT24 ,Bit 24" "0,1"
BITFLD.LONG 0x00 23. " BIT23 ,Bit 23" "0,1"

TREE "Transmit/Receive Registers"
GROUP.LONG 0x10++0x17

LINE.LONG 0x00 "REG4,Register 4"
LINE.LONG 0x04 "REG5,Register 5"
LINE.LONG 0x08 "REG6,Register 6"
LINE.LONG 0x0c "REG7,Register 7"
LINE.LONG 0x10 "REG8,Register 8"
LINE.LONG 0x14 "REG9,Register 9"

TREE.END
TREE.END
Peripheral Files Programming | 19©1989-2024 Lauterbach

Peripheral modules are organized in a tree structure.

Contents of peripheral modules is also organized in a tree structure.

GROUP Commands

The GROUP commands describe how data is basically read or written to/from memory.
Peripheral Files Programming | 20©1989-2024 Lauterbach

GROUP Define read/write GROUP

The GROUP commands control the debugger access to the target memory.

If a name is given, the GROUP is separated from the previous lines and the name is used as headline in the
per window. Using numerical values (without memory access class) in address parameter, the address is
calculated by the entered value plus the base address (defined by the last BASE command). The GROUP
can either use normal memory access or fifo access (reads all bytes from the same address). The
whole address range of the GROUP command is read at once. Reading from reserved address range
may cause a bus error.

Example 1:

Format: GROUP.<size> <datagrp>|<fifogroup> ["<name>"]

<datagrp>: <address>++<number_of_read_bytes-1> or <start_address>--<end_address>

<fifogroup>: <address> <address_range>

<size> Size of registers (Byte, Word, TByte, Long, Quad) or auto.

<datagrp> Maximum size 4 kB (4096 bytes).

<name> Optional text.

BASE ud:0x200
GROUP sd:0x100--0x101 "PortA"

;data bytes at address sd:0x100--0x101

GROUP 0x50--0x51 ;data bytes at address ud:0x250--0x251

GROUP.LONG sd:0x60--0x6f ;read memory with 32-bit access

GROUP sd:0x300 0x10 ;fifo at location sd:0x300, 16 bytes
;deep

GROUP 0x10 0x4 ;fifo at ud:0x210, 4 bytes deep

BASE ad:0x00000000
GROUP 0x00++0x03

LINE.LONG 0x00 "CR,Control Register"
BITFLD.LONG 0x00 24. " TR ,Transfer" "No effect,Transferred"
BITFLD.LONG 0x00 5. " RST ,Software Reset" "No reset,Reset"
TEXTLINE " "
BITFLD.LONG 0x00 1. " IDIS ,Interrupt Enable" "Disabled,Enabled"
Peripheral Files Programming | 21©1989-2024 Lauterbach

Example 2:

HGROUP Define read-once/write GROUP

Similar to GROUP, but this definition is useful for ports which are cleared by a read access. Refer to the
GROUP command description. HGROUP command prevents target memory from the periodic read access
and is useful for 'write-only' ports. In hidden GROUPs only hidden elements e.g. HIDE command should be
used.

BASE ad:0x00000000
GROUP.BYTE 0x100 0x8 "Receiver FIFO"

LINE.BYTE 0x0 "F0,FIFO position 0"
LINE.BYTE 0x1 "F1,FIFO position 1"
LINE.BYTE 0x2 "F2,FIFO position 2"
LINE.BYTE 0x3 "F3,FIFO position 3"
LINE.BYTE 0x4 "F4,FIFO position 4"
LINE.BYTE 0x5 "F5,FIFO position 5"
LINE.BYTE 0x6 "F6,FIFO position 6"
LINE.BYTE 0x7 "F7,FIFO position 7"

Format: HGROUP.<size> <datagrp>|<fifogroup>["<name>"]

<datagrp>: <address>++<number_of_read_bytes-1> or <start_address>--<end_address>

<fifogroup>: <address> <address_range>

<size> Size of registers (byte, word, tbyte, long, quad).

<datagrp> Maximum size 4 kB (4096 bytes).

<name> Optional text.
Peripheral Files Programming | 22©1989-2024 Lauterbach

RGROUP Define read-only GROUP

Similar to GROUP, but this definition is useful for ‘read-only’ ports. Refer to the GROUP command
description.

WSGROUP Define write-only and shadow GROUP

WSGROUP is a specific GROUP command, which forces the debugger to access different registers for read
and for write accesses. It is only useful, if the core has write-only registers and their contents are duplicated
in shadow registers, which are read- and writable.

Read-/write accesses have following effects:

• write access: Data is written to write-only registers (dataGROUP) as well as to the shadow
registers.

• read access: Data is read from the shadow registers.

Example:

Format: RGROUP.<size> <datagrp>|<fifogroup> ["<name>"]

<datagrp>: <address>++<number_of_read_bytes-1> or <start_address>--<end_address>

<fifogroup>: <address> <address_range>

<size> Size of registers (Byte, Word, TByte, Long, Quad).

<datagrp> Maximum size 4 kB (4096 bytes).

<name> Optional text.

Format: WSGROUP.<size> <wr_acc_addr> <rd_acc_addr>

<size> Size of registers (byte, word, tbyte, long, quad).

<wr_acc_addr> Address of the register where data is to be written into.

<rd_acc_addr> Address of the register where data is to be read from.

WSGROUP.LONG (ecbu:0x0CB2)++0 (ed:0x100034C8)
LINE.LONG 0x0 "INT,Self-interrupt register"
Peripheral Files Programming | 23©1989-2024 Lauterbach

WGROUP Define write-only GROUP

Similar to GROUP command. This definition is useful for 'write-only' ports. The current state of the port is
held in the emulation memory (must be mapped at this location). Refer to the GROUP command
description.

Example:

Format: WGROUP.<size> <datagrp>|<fifogroup> ["<name>"] [/SET|/CLEAR]

<datagrp>: <address>++<number_of_read_bytes-1> or <start_address>--<end_address>

<fifogroup>: <address> <address_range>

<size> Size of registers (byte, word, tbyte, long, quad).

<datagrp> Maximum size 4 kB (4096 bytes).

<name> Optional text.

/SET Only has an effect if WGROUP contains a BITFLD command. All bits
outside the BITFLD range will be set to ‘1’ on a write access.

/CLEAR Only has an effect if WGROUP contains a BITFLD command. All bits
outside the BITFLD range will be set to ‘0’ on a write access.

WGROUP sd:0x50--0x51 ;the port at address sd:0x50--0x51
;is a write-only port (e.g. 74xx374)
;but the state can be read via
;dual-port access
Peripheral Files Programming | 24©1989-2024 Lauterbach

SGROUP Commands

SGROUP Define sequence GROUP

Sequence of memory accesses done to get/set the data.

Usually GROUP commands specify the target memory accesses and the following commands e.g. BITFLD,
HEXMASK, etc. define how the data are displayed in the per window.
With SGROUP data is not accessed with SGROUP itself, but by a sequence of special commands, which
transfer data from memory to the “SGROUP data buffer” or from the “SGROUP data buffer” back to memory.
The size of the buffer is 256 bytes.
Afterwards this sequence of special commands the data in the buffer can be displayed by following
commands e.g. BITFLD, HEXMASK.

To read/write data from/to memory to/from SGROUP buffer you can use the following commands (which are
only allowed in SGROUPs):

Format: SGROUP ["<name>"]

<name> Optional text.

Command Function

SET <address> %<format> <value> Constant value --> memory(address)

SETX <address> %<format> <index> Buffer(index) --> memory(address)

GETX <address> %<format> <index> Memory(address) --> buffer(index)

CONSTX <index> %<format> <value> Constant value --> buffer(index)

VARX <index> %<format> <expression> Variable value --> buffer(index)

WRITEBACK Separate write part from a read part
Peripheral Files Programming | 25©1989-2024 Lauterbach

Example:

SET Write constant value to memory

SET command writes data to memory.

The given value is written to the target memory at the specified address or at the base address with added
offset. The specified value is written continuously.

Command is only allowed in SGROUP.

SGROUP "Transmit Register"
GETX d:0x80000000 %l 0

WRITEBACK
CONSTX 2 %w 0x2222

SETX d:0x80000000 %l 0

LINE.LONG 0x0
"AUTONTX1,Autonegotiation Next
Page Transmit Register 1"
BITFLD.LONG 0 31. "ENABLE" "No,Yes"

; define sequence GROUP
; read data at 0x80000000 and store
; them in buffer + offset 0
; next commands only done for
; per.set
; write 0x2222 to buffer + offset 2
; write data from buffer + offset 0
; to memory at 0x80000000
; display AUTONTX1 register with
; contents of buffer[0…3]

; define bit "Enable"

Format: SET <address> %<format> <value>

<address> Target address.

<format> Defines specific format (Byte, Word, TByte, Long, Quad, LE, BE).

<value> Constant value.
The value may be a hexadecimal o mask or binary mask. (E.g.:
0yxxxx10xx)
Peripheral Files Programming | 26©1989-2024 Lauterbach

Example:

SETX Write SGROUP buffer to memory

SETX command writes a buffered value to the memory.

A value stored in a buffer at the given buffer offset is written to the target memory at the specified address or
base address with added offset. The value is written only once.

Command is only allowed in SGROUP.

BASE d:0x80000000
SGROUP
SET d:0x80000000 %l 0x1111
SET 4 %l 0x3344

LINE.LONG 0x0 "Test,Test Register"

; set base address to d:0x80000000
; define sequence GROUP
; write 0x1111 to d:80000000
; write 0x3344 to base address
; (d:80000000) + offset 4

Format: SETX <address> %<format> <index>

<address> Target address.

<format> Defines specific format (Byte, Word, TByte, Long, Quad).

<index> Constant value.
Peripheral Files Programming | 27©1989-2024 Lauterbach

Example:.

GETX Read from memory to the SGROUP buffer

GETX command reads data from the memory and puts it to the buffer. The memory contents from the
given address is read using specified access width format. The read data is stored in a buffer at the
defined offset.

Command is only allowed in SGROUP.

CONFIG 16. 8.
WIDTH 10.
BASE 0x80000000
TREE "Test Registers"
;write into buffer : 0x1122 at offet [0], 0x3344 at [4], 0x5566 at [8]
SGROUP

CONSTX 0 %l 0x1122
CONSTX 4 %l 0x3344
CONSTX 8 %l 0x5566
 LINE.LONG 0x0 "TestR1,Test Register 1"
 LINE.LONG 0x4 "TestR2,Test Register 2"
 LINE.LONG 0x8 "TestR3,Test Register 3"

;write buffer contents into target memory : [0..3] at 0x80000004,...
SETX 4 %l 0
SETX 0x10 %l 4
TREE.END

Format: GETX <address> %<format> <index>

<address> Target address equals base address + offset.

<format> Defines specific format (Byte, Word, TByte, Long, Quad).

<index> Defines buffer number.
Peripheral Files Programming | 28©1989-2024 Lauterbach

Example:

CONSTX Write constant value to the SGROUP buffer

CONSTX command writes a constant value to the buffer. This data is not written to the target memory. The
data can be displayed with a following line command.

Command is only allowed in SGROUP.

BASE d:0x80000000
TREE "Test Registers"
SGROUP
SET d:0x80000004 %l 0x18

GETX 4 %l 0

LINE.LONG 0x0 "Test,Test Register"
TREE.END

; define sequence GROUP
; write value 0x18 to target memory
; at d:80000004
; read out target memory at base
; address d:80000000+offset 4 and
; store it at buffer+offset 0
; display data of buffer[0…3]

Format: CONSTX <index> %<format> <value>

<index> Defines indexed offset.

<format> Defines specific format (Byte, Word, TByte, Long, Quad, LE, BE).

 <value> Defines a constant value.
The value may be a hexadecimal or mask or binary mask. (E.g.:
0yxxxx10xx)
Peripheral Files Programming | 29©1989-2024 Lauterbach

Example:

VARX Write expression to SGROUP buffer

VARX command writes a variable value to the SGROUP buffer. This data is not written to the target
memory. The data can be displayed with a following line command.

The VARX command is very similar to the CONSTX command. However the value, which should be
assigned to the SGROUP buffer may be based on PRACTICE functions, whose values may change during
the display of the PER window.
With VARX you can modify the SGROUP buffer in any way you like by using the following PRACTICE
functions, which access the SGROUP buffer:

SGROUP "Transmit Register"
SET 0x80000000 %l 0x1400ffff

GETX d:0x80000000 %l 0x00

CONSTX 2 %w 0x1
LINE.LONG 0x0 "TXCTRL,Transmit
Control Register"

; define sequence GROUP
; write value 1400ffff to target
; memory at d:80000000
; read out target memory at 80000000
; and store it at buffer + offset 0
; write 0x0001 at buffer + offset 2
; display data of buffer[0…3]

Format: VARX <index> %<format> <expression>

<index> Defines indexed offset.

<format> Defines specific format (Byte, Word, TByte, Long, Quad, LE, BE).

<expression> Defines a PRACTICE expression.
The expression will be parsed whenever the PER window updates and its
result will be assigned to the SGROUP buffer

PER.Buffer.Byte(<index>)
PER.B.B(<index>)

Returns a byte at position <index> from the SGROUP buffer.

PER.Buffer.Word(<index>)
PER.B.W(<index>)

Returns a 16 bit word at position <index> from the SGROUP
buffer.
Peripheral Files Programming | 30©1989-2024 Lauterbach

Due to performance reasons you should use VARX only, if there is no other solution possible.

Command is only allowed in SGROUP.

Example:

WRITEBACK Separate write a part from a read part

Separates the write part of a sequence from the read part. Command is only allowed in SGROUP.

PER.Buffer.Long(<index>)
PER.B.L(<index>)

Returns a 32 bit word at position <index> from the SGROUP
buffer.

PER.Buffer.Quad(<index>)
PER.B.Q(<index>)

Returns a 64 bit at position <index> from the SGROUP buffer.

SGROUP "Dummy Counter"
varx 0 %quad os.timer()
varx 9 %q (PER.B.Q(0)/1000.)

textline ""
decmask.quad 0 0--63. 1 " milliseconds:"
textline ""
decmask.quad 9 0--63. 1 " seconds: "
textline ""

; begin Sequence-GROUP
; read timer from OS
; define quad data from

SGROUP buffer at index 0 by
1000 and store the result
at index 9 as quad

; display data at index 0 as
decimal

; display data at index 9 as
decimal

; Newline

Format: WRITEBACK
Peripheral Files Programming | 31©1989-2024 Lauterbach

Example 1:

The commands after write back are executed only if PER.Set command is used. For displaying the data in
the PER-window these commands are ignored.

Example 2:

SGROUP
SET 0 %l 0x1014
GETX 0 %l 0
WRITEBACK
CONSTX 2 %w 0x2014
SETX 0 %l 0
LINE.LONG 0x0 "LEDCONFIG,LED Configuration Register (20)"

BITFLD.LONG 0x0 31. "RES ,Reset" "No,Yes"
BITFLD.LONG 0x0 30. " LOOP ,Loopback" "No,Yes"
BITFLD.LONG 0x0 29. " SPEED ,Speed" "10,100"

SGROUP "Transmit Register"
GETX d:0x80000000 %l 0

WRITEBACK

CONSTX 2 %w 0x2222
SETX d:0x80000000 %l 0

LINE.LONG 0x0 "AUTX1,Transmit Reg."
BITFLD.LONG 0 31. "ENABLE " "No,Yes"

; define sequence GROUP
; read data at 0x80000000 and store
; them in buffer + offset 0
; next commands only executed, if a
; write access is done in per-window
; write 0x2222 to buffer + offset 2
; write data from buffer + offset 0
; to memory at 0x80000000
; display AUTX1 register with
; contents of buffer[0…3]
; if bit 31 is changed/written
; constx and setx are done
Peripheral Files Programming | 32©1989-2024 Lauterbach

Opening the per-window results in displaying data from memory.

Changing state of the ENABLE bit results also in writing constant value 0x2222 to the register.
Peripheral Files Programming | 33©1989-2024 Lauterbach

Other Top Level Commands

ASSERT Abort if condition not met

With ASSERT you can ensure that your environment meets a certain condition, before TRACE32
should go on with the parsing of the PER file.

If you omit the optional string with an error message, the following message will be shown instead:
 Assertion failed: <expression>

Example: This code line ensures that a PER file is only parsed by “TRACE32 for ARM”

AUTOINDENT Indent content of peripheral file automatically
[Examples]

Default: OFF

Switches automatic indentation ON or OFF. Only available for TRACE32 versions >= 97444.

AUTOINDENT ignores all leading and trailing space characters within subsequent definitions and
rearranges the contents according to the specified <alignment> and <type>. It affects all entries within a
TREE and should therefore only be activated or changed outside of a TREE. Otherwise the result may be
undefined.

Format: ASSERT <expression> [<string>]

<expression> Expression which must evaluate to a boolean.
If the result of the expression is FALSE, the parsing of the PER file will be
stopped and an error message will be shown.

<string> Optional string containing an error message, which will be shown if
<expression> evaluates to FALSE.

ASSERT CPUFAMILY()=="ARM" "Sorry, this PER file is only for ARM cores"

Format: AUTOINDENT.<command> <alignment> <type> [<number> | <columns>
 <width>]

<command> ON | OFF | PUSH | POP

<alignment>: LEFT | RIGHT | CENTER

<type>: TREE | LINE | GRID
Peripheral Files Programming | 34©1989-2024 Lauterbach

PUSH Pushes current AutoIndent configuration on the stack.

POP Recovers previously pushed AutoIndent configuration from the stack.

<alignment> Alignment of the values in relation to their description: LEFT, RIGHT,
CENTER.
Default: LEFT
For examples, see here.

<type> Indentation type of description-value pairs: TREE, LINE, GRID.
Default: TREE
For examples, see here.

<number> Proximity range. Only available if <type> = PROXIMITY.
Default: 5

<columns> Number of columns. Only available if <type> = GRID.
Default: 5

<width> Width of a column in characters. Only available if <type> = GRID.
Default: 16.

NOTE: AUTOINDENT affects only the following statements:
• ASCII
• BITFLD, EVENTFLD, RBITFLD, SETCLRFLD
• BUTTON
• DECMASK, FLOATMASK, HEXMASK
• HEXFLD
• HIDE
• IN
• LINE
• NEWLINE

It explicitly does not affect the following statements:
• BIT
• TEXTFLD, TEXTLINE

It makes the following statements obsolete:
• WIDTH
• CONFIG (If no BIT command is being used)
Peripheral Files Programming | 35©1989-2024 Lauterbach

Overriding AUTOINDENT for Binary Masks

Sometimes you may want to concatenate bits or include text fragments without switching auto-indentation
OFF. To override auto-indentation in this special case, omit the <name> entry of the HEXMASK or BITFLD.

Let’s illustrate the override effect by comparing two source code snippets, one with <name> and the other
one without <name>. The relevant part in each source code snippet is highlighted in red in the two
PER.Program windows. The results are displayed directly below in the two PER.view windows.

With <name>:

Without <name>:

A The bits are not concatenated if a <name> is specified in BITFLD.

B If <name> is omitted from BITFLD, then the bits are concatenated.

A

B

Peripheral Files Programming | 36©1989-2024 Lauterbach

Examples

Code Example

<alignment> Examples

Example 1: AUTOINDENT.ON RIGHT TREE aligns all values to the right.

ASSERT version.build()>=97444. "Please update TRACE32"

AUTOINDENT.ON left tree ; AUTOINDENT using
TREE "Tree 1" ; <alignment> = left and
 GROUP.LONG ... ; <type> = tree
 LINE.LONG 0, "Reg1,First register"
 BITFLD.LONG 0, 0.--1. "Fld1,First field" "1,2,3,4"
 ...
TREE.END
AUTOINDENT.ON right tree ; Second tree looks
TREE "Tree 2" ; better with
 GROUP.LONG ... ; <alignment> = right
 LINE.LONG 0, "Reg32,32nd register"
 BITFLD.LONG 0, 0.--1. "Fld1,First field" "1,2,3,4"
 ...
TREE.END
AUTOINDENT.OFF ; Sometimes you do
TREE "Tree 3" ; not want to use
 GROUP.LONG... ; AUTOINDENT
 LINE.LONG 0, " Reg99 ,99th register"
 BITFLD.LONG 0, 0.--1. " Fld1 ,First field" "1,2,3,4"
 ...
Peripheral Files Programming | 37©1989-2024 Lauterbach

Example 2: AUTOINDENT.ON LEFT TREE aligns all values to the left next to their descriptions.

Example 3: AUTOINDENT.ON CENTER TREE moves the values somewhere to the middle so they are
aligned.

Peripheral Files Programming | 38©1989-2024 Lauterbach

<type> Examples

Example 1: AUTOINDENT.ON LEFT TREE aligns all description-value pairs within a TREE.

Example 2: AUTOINDENT.ON LEFT LINE aligns all description-value pairs within a LINE.

Peripheral Files Programming | 39©1989-2024 Lauterbach

Example 4: AUTOINDENT.ON RIGHT GRID 5 16. divides the window into the given number of <columns>
which are <width> characters wide each.

This command is useful for peripheral files which have been generated automatically and do not contain any
NEWLINE statements. These will be added automatically if a LINE contains more than <columns>
subentries. NEWLINE statements, however, can still be added manually.

A In case a description-value pair does not fit within a column, two (or more) columns will be merged ->
see red box above.

B When defining the <width> of the columns, please take the first 3 separation characters into account.

16

A

B

Peripheral Files Programming | 40©1989-2024 Lauterbach

BASE Define a base address for following group definitions

This command sets the start address for the peripheral module and refers to simple offset ranges. This
expression is permanently recalculated. If the parameters contain functions or symbols, it reflects later
changes in the parameters. The BASE command specifies memory class which is responsible for setting
appropriate addressing mode. Memory classes are described in Memory Classes section.

Example:

Format: BASE <address>|<offset>

<address> Fixed address or expression which evaluates to the start address of the
peripheral groups following the BASE command.

<offset> Fixed offset or expression which evaluates to the start address of the
peripheral groups following the BASE command. The access class will be
taken from the <address> of a preceding BASE command.

// use fixed base
BASE d:0xffff0000

GROUP.LONG 0x00++0x3
LINE.LONG 0x00 "Reg_0,Register 0"

// use offset base
BASE 0x100

// use variable base
BASE (SYStem.BASE()&0x0f)*0x1000

// use variable base
BASE Data.Long(base_pointer)
Peripheral Files Programming | 41©1989-2024 Lauterbach

BASEOUT Output a value before calculating a base address

Like the BASE command BASEOUT defines a start address for the peripheral group definitions following
the BASEOUT command. This address is usually frequently calculated by the given address
expression.

Unlike the BASE command BASEOUT writes a certain value (<data>) to a specified address (<address>)
before evaluating the expression which sets the start address for the following group definitions. If a bit-
mask is used the specified address will be read and modified before it will be written.

Please consider: As the display is refreshed permanently the memory at <address> is modified
permanently as well.

Example 1: Write 0x01 to address 0x100 before reading the base address from address 0x104.
The GROUP command will then read the first three lines at that base address.

Example 2: Set the LSB in address 0x200 before reading the base address from 0x202.

Format: BASEOUT <addr_expr> <address> [%<format>] <data>

<format>: Byte | Word | Long | Quad | TByte | HByte
Float. [Ieee | IeeeDbl | IeeeeXt | <others>]
BE | LE

NOTE: If <addr_expr> is a constant address, no data will be written to <address>.

<addr_expr> Expression which evaluates to the start address of the peripheral groups
following the BASEOUT command.

<address> Address which should be written before evaluating the address
expression.

<data> Data which should be send to the specified address before evaluating the
address expression. This could also be a bit-mask.

BASEOUT Data.Long(D:0x104) D:0x100 %Long 0x01
GROUP 0x00++0x3

LINE.LONG 0x00 "Reg_0,Register 0"

BASEOUT Data.Word(D:0x202) D:0x200 %Word 0yXXXXXXXXXXXXXXX1
GROUP 0x00++0x3

LINE.WORD 0x00 "TIMER_CTRL_0,Timer 0 Control register"
Peripheral Files Programming | 42©1989-2024 Lauterbach

BASESAVEOUT Output a value before calculating a base address

Outputs a value before calculating a base address with restore. This command is almost the same like
BASEOUT. However, unlike BASEOUT the data on the specified address gets restored after evaluating
the address expression.

CONFIG Configure default access width and line break for BIT
[Example]

Configures the default access width used with GROUP.auto, aligns the field description after a LINE
statement, and configures the bits-per-line emitted by the BIT statement.

Format: BASESAVEOUT <addr_expr> <address> [%<format>] <data>

<format>: Byte | Word | Long | Quad | TByte | HByte
Float. [Ieee | IeeeDbl | IeeeeXt | <others>]
BE | LE

<addr_expr> Expression which evaluates to the start address of the peripheral groups
following the BASESAVEOUT command.

<address> Address which should be written before evaluating the address
expression.
The original content gets saved before evaluating the expression and es
restored afterwards.

<data> Data which should be send to the specified address before evaluating the
address expression. This could also be a bit-mask.

Format: CONFIG <access_width> [<bits_per_line>]

<access_width> By default the <access_width> is set to 8, which means (a) byte accesses to
the memory by GROUP.auto and (b) no extra white space after any LINE
statement. The access width in bits configures two things:

1. The default data access width in bytes of a GROUP, which does
not specify its access width (GROUP.auto).
The access width in bytes is calculated as follows:
(access width + 7) / 8 = result (max. result: 8)

2. The minimum display width of the hex nibbles of a LINE statement.
The minimum width is calculated as follows:
(access width + 3) / 4 + 1 = result (max. result: 17)
Peripheral Files Programming | 43©1989-2024 Lauterbach

<bits_per_line> By default <bits_per_line> is set to <access_width>. The bits per line set
the number of bits shown in one line with the BIT statement before an
automatic line break.
This setting affects only the BIT statement, but not the BITFLD statement
(or others).
Peripheral Files Programming | 44©1989-2024 Lauterbach

Example:

CSV Enables CSV capabilities

Enables or disables the new CSV file format for *.per files. For more information, see “Comma-Separated-
Values (CSV) File Format for *.per Files”, page 12.

WIDTH 9. 10.
CONFIG 16. 4.
GROUP.auto D:0x000++1
LINE.BYTE 0x00 "myLine"
 BIT 7. "flag7" "-,on"
 BIT 6. "flag6" "-,on"
 BIT 5. "flag5" "-,on"
 BIT 4. "flag4" "-,on"
 BIT 3. "flag3" "-,on"
 BIT 2. "flag2" "-,on"
 BIT 1. "flag1" "-,on"
 BIT 0. "flag0" "-,on"
 NEWLINE
 BITFLD.BYTE 0x00 0--1 "myBitFieldName " "john,paul,george,ringo"

A Display width of the hex value emitted by the LINE statement. This width is the first parameter of
the CONFIG statement.
In this example, <access_width> is 16 bits, i.e. (<access_width> + 3) / 4 + 1 = 5 characters.

B Number of BIT items in one single line before an automatic line break. This is configured with the
second parameter of the CONFIG statement. (here: 4 BIT in one line).

C Width of the register name emitted by the LINE statement. This width is configured with the first
parameter of the WIDTH statement. (here: 9 characters)

D Width of a bit displayed by the BIT statement. This width is configured with second parameter of the
WIDTH statement. (here: 10 characters)

Format: CSV.[ON | OFF]

A D

C B
Peripheral Files Programming | 45©1989-2024 Lauterbach

ELSE Conditional GROUP display

Refer to the IF command.

ELIF Conditional GROUP display

Refer to the IF command.

ENDIAN Define little or big endian

With DEF parameter the endianness is set due to the configuration of the debugger. With this command the
debugger accesses the target data with the specified endianness. This is done independent of the target
and the system endianness settings.

Default: ENDIAN DEF

Example:

ENDIF Conditional GROUP display

Refer to the IF command.

ENTRY Assign parameters to macros

Assign parameters used to open the peripheral file to macros, to parametrize the peripheral view (similar to
the PRACTICE ENTRY command).

Refer to “Passing Arguments”, page 8.

Format: ENDIAN [BE | LE | DEF]

ENDIAN.LE ; little endian

ENDIAN.BE ; big endian

ENDIAN.DEF ; target default endian
Peripheral Files Programming | 46©1989-2024 Lauterbach

HELP Reference online manual

Defines a button in the last GROUP header or tree control. HELP.Online calls the TRACE32 online manual.
HELP.Winhelp calls a windows help file (available on Windows only).

IF Conditional GROUP display

GROUPs can be displayed conditionally using IF...ENDIF commands.

GROUPs defined in different IF and ELIF statements are overlaid at the same place in the window.

Only GROUPs which reside within the fulfilled condition are displayed. The ELSE part is displayed only
when no other condition is true. All conditions are dynamically recalculated to reflect the current state of the
peripheral.

Format: HELP.Winhelp "<file>,<item>"
HELP.Online "<item>"

Format: IF <condition>
ELIF <condition>
ELSE
ENDIF

<condition>: Condition examples:
- eval()==<condition_val>
- %<parameter>==<condition_val>
- (((data.<size>(<address>))&<bit_mask>)==<condition_val>)

NOTE: The IF command cannot be used inside a GROUP. (Please use IF always
before a new GROUP.).

NOTE: Unlike in the C programming language, the IF statement always evaluates all
expressions also for logical operators && and ||.
Peripheral Files Programming | 47©1989-2024 Lauterbach

Example:

Register REG_A is selected if the value of the REGSEL bit field equals 0.

Register REG_B is selected if the value of the REGSEL bit field equals 1.

Register REG_C is selected if the value of the REGSEL bit field equals 2.

Register REG_D is selected if the value of the REGSEL bit field equals 3.

IF (((Data.Long(d:0x00))&0xf)==0x0)
 GROUP.LONG d:0x0++0x7
 LINE.LONG 0x0 "CR,Control register"
 BITFLD.LONG 0x0 0.--1. " REGSEL ,Register select" "RegA,RegB,RegC,RegD"
 LINE.LONG 0x4 "REG_A,Register A"
ELIF (((Data.Long(d:0x00))&0xf)==0x1)
 GROUP.LONG d:0x0++0x7
 LINE.LONG 0x0 "CR,Control register"
 BITFLD.LONG 0x0 0.--1. " REGSEL ,Register select" "RegA,RegB,RegC,RegD"
 LINE.LONG 0x4 "REG_B,Register B"
ELIF (((Data.Long(d:0x00))&0xf)==0x2)
 GROUP.LONG d:0x0++0x7
 LINE.LONG 0x0 "CR,Control register"
 BITFLD.LONG 0x0 0.--1. " REGSEL ,Register select" "RegA,RegB,RegC,RegD"
 LINE.LONG 0x4 "REG_C,Register C"
ELSE
 GROUP.LONG d:0x0++0x7
 LINE.LONG 0x0 "CR,Control register"
 BITFLD.LONG 0x0 0.--1. " REGSEL ,Register select" "RegA,RegB,RegC,RegD"
 LINE.LONG 0x4 "REG_D,Register D"
ENDIF
Peripheral Files Programming | 48©1989-2024 Lauterbach

INCLUDE Include another peripheral file

Includes another peripheral file.

MENCONFIG PERMENU configuration
[build 158791 - DVD 09/2023]

Configures the number of submenu levels for the PERMENU command. Has no effect for normal peripheral
file processing. Overwrites the third optional parameter of PERMENU.

PERCMD Row definition in CSV-formatted *.per file

Optional definition of the columns of a peripheral file in CSV format.

• Default: If the PERCMD command is omitted in the CSV-formatted *.per file, then the sequence
of columns must be: Address,AccessWidth,Name,Tooltip,From,To,Choices

• If the PERCMD command is included in a CSV-formatted *.per file, then <column_list> must
contain all column names that are flagged as mandatory in the table below. Column names are
case sensitive!

Format INCLUDE <file>

<file> Path to another peripheral file

Format: MENCONFIG <level>

Format: PERCMD,<column_list>

<column_
list>:

Address,AccessWidth,Name,Tooltip,From,To,Choices[,RW][,Ignore]

NOTE: With the PERCMD command included in the CSV-formatted *.per file, you are free
to arrange the mandatory and optional columns in any order.
Peripheral Files Programming | 49©1989-2024 Lauterbach

Please also refer to “Comma-Separated-Values (CSV) File Format for *.per Files”, page 12.

Column Names Meaning in the spreadsheet

Address
(mandatory)

Absolute address of a register consisting of access class and value, or the
offset from a previously defined BASE command.
If empty, the value is assumed to be the same as the last known one.
An address different from the previous one corresponds to the LINE
command.

AccessWidth
(mandatory)

Access width of the register. Valid values are: 8. 16. 32. and 64.
If empty, the value is assumed to be the same as the last known one.
An access width different from the previous one corresponds to the LINE
command.

Name
(mandatory/optional)

Name of the register. Mandatory for registers, optional for register fields
(see AutoIndent -> binary mask).

Tooltip
(mandatory)

Tooltip or more meaningful name of the register, e.g. the long form of the
register name.

From
(mandatory)

Lower boundary of a bit field of a register.

To
(mandatory)

Upper boundary of a bit field of a register.

Choices
(mandatory)

• Not empty:
Comma-separated list of choices which will appear in the PER.view
window in drop-down lists. Corresponds to the BITFLD command. A
spreadsheet editor automatically adds the surrounding single
quotes when the *.per file is exported in CSV file format. Otherwise
the single quotes must be added manually.

•
• Empty:

Corresponds to the HEXMASK command.

RW
(optional)

Access rights to the register or register field. Valid values are:
• RD (read)
• WR (write)
• RW (read/write)
If empty, WR (write) will be taken as default.

ClearAddress
(optional)

• Not empty:
Defines a SETCLRFLD command, see ClearFrom.

• Empty:
Defines a HEXMASK, BITFLD or EVENTFLD command, see
ClearFrom.
Peripheral Files Programming | 50©1989-2024 Lauterbach

Example: The two last columns Ignore and myCol1 will not have any effect.

ClearFrom
(optional)

• Not empty and column ClearAddress empty:
Bit(s) of a register which can only be cleared by writing a ‘1’. Corre-
sponds to the EVENTFLD command. This value must be the same
as in the From column while the range is defined as To - From.

• Not empty and columns ClearAddress, SetAddress and SetFrom
not empty: Defines a register status bit with associated set and
clear bits. See SETCLRFLD command.

• Empty:
Corresponds to HEXMASK or BITFLD command.

SetAddress
(optional)

• Not empty:
Defines a SETCLRFLD command, see ClearFrom.

• Empty:
Corresponds to HEXMASK or BITFLD command.

SetFrom
(optional)

• Not empty:
Defines a SETCLRFLD command, see ClearFrom.

• Empty:
Corresponds to HEXMASK or BITFLD command.

Ignore
(optional)

• Ignores a column that is irrelevant for a *.per file, e.g. redundant
columns extracted from binaries.

• User-defined column names will also be ignored in the *.per files.

PERCMD,Address,AccessWidth,Name,Tooltip,From,To,Choices,Ignore,myCol1

Column Names Meaning in the spreadsheet
Peripheral Files Programming | 51©1989-2024 Lauterbach

REPEAT Repeat block of commands
[build 139117 - DVD 09/2021]

Repeat the enclosed <block> of peripheral commands <count> times. Within the <block>, placeholders can
be used in order to take into account iteration-specific register names and addresses. These placeholders
are denoted as $1, $2, etc. and refer to <argument1>, <argument2> and so on.

Example 1: A GROUP and a LINE command get repeated 4 times:

Which is equivalent to:

Format: REPEAT <count> (<argument1>) (<argument2>) ...
<block>
REPEAT.end

<argument>: increment <start> <step>
list <item1> <item2> ...
strings <item1> <item2> ...
function “<PRACTICE_function>”

increment Placeholders within <block> have an initial value of <start> and get
incremented by <step> on each iteration.

list Placeholders within <block> will be assigned the <items>, which must be
addresses or numeric values.
There is a maximum of 16 list items.

strings Same as list, but <items> must be text strings instead of numbers.

function PRACTICE function which may contain placeholders. Quotes within the
PRACTICE function must be escaped by a second quote.

REPEAT 4. (increment 0x0 0x1) (list 0x0 0x8 0xC 0x14)
 GROUP.LONG $2++0x3
 LINE.LONG 0x00 “MyRegister_$1,My test register $1”
REPEAT.end

 GROUP.LONG 0x0++0x3
 LINE.LONG 0x00 “MyRegister_0,My test register 0”
 GROUP.LONG 0x8++0x3
 LINE.LONG 0x00 “MyRegister_1,My test register 1”
 GROUP.LONG 0xC++0x3
 LINE.LONG 0x00 “MyRegister_2,My test register 2”
 GROUP.LONG 0x14++0x3
 LINE.LONG 0x00 “MyRegister_3,My test register 3”
Peripheral Files Programming | 52©1989-2024 Lauterbach

Example 2: PRACTICE function

The following restrictions apply to placeholders:

SIF COMPonentNUMBER(“ETM”)>0
 REPEAT COMPonentNUMBER(“ETM”) (increment 0 1)
 (function “COMPonentNAME(“”ETM””, $1)”)
 (function “COMPonent.BASE(“”$2””,0)”)
 BASE $3
 TREE $2
 ...
 TREE.END
 REPEAT.END
ENDIF

NOTE: When using placeholders as addresses or offsets within the <block>, the
following restrictions apply:
• Placeholders cannot be used in expressions except for the ‘add’ opera-

tion (‘+’ sign). In that case the placeholder must be written first. E.g.
‘LINE.LONG $1+0x100’.

• GROUP commands must use the ‘<placeholder>++<size>’ format.
• Expressions in GROUP definitions must be enclosed by parenthesis, e.g.

‘GROUP.LONG ($1+0x100)++0x3’.

Decimal /
Hexadecimal
numbers

Addresses Strings

increment x only <start>

list x x

strings x
Peripheral Files Programming | 53©1989-2024 Lauterbach

REPEAT.REPLAY Replay last complete REPEAT block
[build 140299 - DVD 02/2022]

Replays the last complete REPEAT block. A block is considered as completed after the final REPEAT.END.
The REPLAY command is typically used whenever more than 16 list items are required:

SIF Conditional interpretation

According to the condition a block between SIF and ENDIF (or SIF and ELSE) will be interpreted when the
peripheral file is opened or reparsed. The SIF command can be used also inside the GROUPs.

Format: REPEAT.REPLAY

;The following example assumes 32 identical peripheral modules named
;‘MyPeripheral_0’ to ‘MyPeripheral_31’. Their base addresses are
;distributed randomly and will thus not fit into the list argument.

TREE “MyPeripherals”
 BASE D:0x1720900
 TREE “MyPeripheral_0”
 REPEAT 1.
 <block>
 REPEAT.END
 TREE.END
 BASE D:0x1310900
 TREE “MyPeripheral_1”
 REPEAT.REPLAY
 TREE.END
 ...
 BASE D:0x1687000
 TREE “MyPeripheral_31”
 REPEAT.REPLAY
 TREE.END
TREE.END

Format: SIF (CPU()=="<cpu_name>")
SIF (CPUIS("<cpu_name>*"))
SIF (<logical_comparison>)
Peripheral Files Programming | 54©1989-2024 Lauterbach

Example:

Conventions :

SIF is only to be used to distinguish between CPUs, memory accesses should be avoided (not possible in
system.mode down).

Using once a GROUP command inside a SIF block, all trees of the SIF block must contain GROUP
commands. Also the next command after a finished SIF block must be a GROUP command then.

Using the command PER.TestProgram the error will be detected.

TREE Define hierarchic display

Defines a “Treeview” of peripheral modules. The tree can be displayed/hidden by a tree control (+/-). It is
possible to nest trees.

Example:

SIF (cpu()=="MIPS4KC")
GROUP.LONG CP0:16.++0.
 LINE.LONG 0x0 "Config,Configuration Register"
 BITFLD.LONG 0x00 31. " M ,Config1 register is implemented" "no,yes"
 ...
ELIF (cpu()=="MIPS4KEC")
GROUP.LONG 0x0 "Config,Configuration Register"
 BITFLD.LONG 0x00 31. " M ,Config1 register is implemented" "no,yes"
 ...
ELSE
GROUP.LONG 0x0 "Config,Configuration Register"
 BITFLD.LONG 0x00 31. " M ,Config1 register is implemented" "no,yes"
 ...
ELSE
ENDIF

Format: TREE "<name>"
TREE.OPEN "<name>"
TREE.END

TREE "Audio Serial Port"
;
TREE.END
TREE.OPEN "General Timers"

TREE "TIMERS1"
;
TREE.END

TREE.END

; tree GROUP displayed closed by
default
; definition of the GROUP members

; tree GROUP displayed opened in the
; peripheral window
Peripheral Files Programming | 55©1989-2024 Lauterbach

WIDTH Width of register names and a BIT description

Configures width of LINE register names and a BIT description.

Example: For an example, see the CONFIG statement.

WAIT Wait with PER windows until system is ready

The WAIT command is available for all architectures and PER files, but it should only be used when required
(i.e. SIF with target-dependent values). Most architectures will probably not require WAIT. But if there is a
need to use WAIT, then the recommendation is to use WAIT at the beginning of a PER file.

There are four ways to use the WAIT command, see examples 1 to 4.

Example 1: Wait with compilation until the target is up and regular memory can be accessed (this usually
means that the target is stopped).

Format WIDTH [<register_name>] [<bit_width>]

<register_name>
(default: 6.)

Sets the width of the register name emitted by the LINE statement.

<bit_width>
(default: 9.)

Sets the width reserved for the output of a BIT statement. This setting
affects only the BIT statement, but not the BITFLD statement (or others).

Format WAIT [<address> | <expression> | <boolean_expression>]

<address> Target address which has to be accessible; see example 2.

<expression> TRACE32 expression which can be evaluated; see example 3.

<boolean_
expression>

Boolean expression which has to be true; see example 4.

WAIT
Peripheral Files Programming | 56©1989-2024 Lauterbach

Example 2: Wait with compilation until the target is up and the given memory address can be accessed (it is
never really accessed).

Example 3: Wait with compilation until the target is up and the expression can be evaluated (the result does
not matter).

Example 4: Wait with compilation until the target is up and the boolean expression evaluates to true.

WAIT ETM:0

WAIT Data.Long(D:0)

WAIT Data.Long(D:0)!=0
Peripheral Files Programming | 57©1989-2024 Lauterbach

Commands within GROUPs

These commands are only useful inside a GROUP (GROUP, RGROUP, WGROUP, HGROUP, SGROUP).

Beside the commands INDEX, SAVEINDEX and BUTTON, which extend the memory access by a GROUP,
the commands define how the data fetched by a GROUP command should be displayed and/or modified.

ABITFLD Assign values to BITFLD choice items
[build 134843 - DVD 09/2021]

Same as BITFLD, but allows to assign values to the choice items:

The value and choice text must be separated by the equal sign and without blanks in between! Value/text
pairs not listed will be output as hexadecimal value.

ASCII Display ASCII character

The previously defined byte is displayed as an ASCII character.

Example:

Format: ABITFLD.<size> <offset> <bit_range1> [<bit_range2>]
 "<display_name>,<tooltip>"

["<choices>[,%d...|%x...|<string>...]"] …

ABITFLD.BYTE 0x00 0.--7. "Lock" "0xA5=Yes,0x5A=No"

Format: ASCII

GROUP.BYTE sd:0x100--0x101 "Centronics"
LINE.BYTE 0x0 "DATA,Centronics Data Register"

ASCII
LINE.BYTE 0x1 "CNTL,Centronics Control Register"
Peripheral Files Programming | 58©1989-2024 Lauterbach

BIT Define bits

These fields are in fixed positions in the per window. The bit numbers must be entered from MSB to LSB.
The size of a field depends on the number of bits and the size of the name header.

Example:

BITFLD Define bits individually

BITFLD is used to display the bit field name and its contents in a free format. The fields are chained together
in a line. A new line can be created by a TEXTLINE command.

Format: BIT <bit>|<bitrange> "<display_name>,<tooltip>" "<choices>"

<bit> |
<bitrange>

Defines bit’s number and range. LSB is defined as the first, MSB as the
second character.

<display_name> Short name (abbreviation) of corresponding bit.

<tooltip> The sentence accurately describing a bits functionality.

<choices> Indicates states with bit field may take. LSB is defined as the first, MSB as
the last one. Each state is separated by a comma.

GROUP sd:0x100--0x101 "Centronics"
LINE.BYTE 0x00 "CNTL,Centronics Control Register"

BIT 7 "BSY,Centronics Busy" "No,Yes"
BIT 6 "EN,Centronics Enable" "Off,On"
BIT 2--4 "IPL,Centronics Interrupt Level" "Off,1,2,3,4,5,6,NMI"

Format: BITFLD.<size> <offset> <bit_range1> [<bit_range2>]
 "<display_name>,<tooltip>"

["<choices>[,%d...|%x...|%y...|<string>...]"] …

<size> Size of register (Byte, Word, TByte, Long, Quad).

<offset> The bit field offset refers to the start address of the GROUP command.

<bit_range1> Defines a range of bits (or a single bit) that belong to a bit field. The lower
bit number has to come before the higher bit number, e.g. 3.--7.
Peripheral Files Programming | 59©1989-2024 Lauterbach

<bit_range2> For disjunct bit fields (= where not all bits are in one block), you can define
a second range of bits (or a single bit). Please see examples.

<short_name> Short name (abbreviation) of corresponding bit field.

<long_name> The sentence accurately describing a bit field functionality.

<choices> Defines the possible values (in words) which the bit field may take. LSB is
defined as the first, MSB as the last one. Each state is separated by a
comma.
If you define fewer <choices> than required for the <bit_range>, then
append %x...

%d... Placeholder for reserved/unused values at the end of <choices>. The val-
ues will be formatted as decimal numbers when displayed in the PER.view
window.
The field width is defined by the <choices>. If the decimal value is too
large to fit into the field, a question mark is displayed.
Please see examples.

%x... Placeholder for reserved/unused values at the end of <choices>. The val-
ues will be formatted as hexadecimal numbers when displayed in the
PER.view window.
The field width is defined by the <choices>. If the hex value is too large to
fit into the field, a question mark is displayed.

%y... Placeholder for reserved/unused values at the end of <choices>. The val-
ues will be formatted as binary numbers when displayed in the PER.view
window.
The field width is defined by the <choices>. If the hex value is too large to
fit into the field, a question mark is displayed.

<string>... Placeholder for reserved/unused values at the end of <choices>. The val-
ues will be displayed as strings in the PER.view window.

BASE d:0x00000000
GROUP 0x00++0x03

LINE.LONG 0x00 "CR,Control Register"
BITFLD.LONG 0x00 31. " CONV ,Conversion Bit" "No effect,Conv"
BITFLD.LONG 0x00 24. " TR ,Transfer" "No effect,Transferred"
BITFLD.LONG 0x00 16.--19. " CS ,Chip Select"

 "CS0,CS1,CS2,CS3,CS4,CS5,CS6,CS7,CS8,CS9,CS10,CS11,CS12,CS13,CS14,CS15"
BITFLD.LONG 0x00 5. " ONCHIP ,On chip trace implemented" "Not

implemented,Implemented"
TEXTLINE " "

BITFLD.LONG 0x00 1. 3. " DETM ,Detection mode"
"Rising,Falling,High level,Low level"

BITFLD.LONG 0x00 0. " RST ,Reset mode" "No reset,Reset"
Peripheral Files Programming | 60©1989-2024 Lauterbach

Examples

Example for bitranges:

;Example 1 <bit_range1>
BITFLD.<size> 0x00 2.

;Example 2 <bit_range1>
BITFLD.<size> 0x00 2.--8.

;Example 3 <bit_range1> <bit_range2>
BITFLD.<size> 0x00 2.--8. 14.

;Example 4 <bit_range1> <bit_range2>
BITFLD.<size> 0x00 2.--8. 14.--15.

;Example 5 <bit_range1> <bit_range2>
BITFLD.<size> 0x00 2. 14.

;Example 6 <bit_range1> <bit_range2>
BITFLD.<size> 0x00 2. 14.--15.

31 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0...Example 1:

31 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0...Example 2:

31 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0...Example 4:

31 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0...Example 3:

31 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0...Example 5:

31 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0...Example 6:
Peripheral Files Programming | 61©1989-2024 Lauterbach

Example for handling unused/reserved values:

BUTTON Define command button

Clicking an input field (button) executes the defined command line. This field can be used to execute
input/output commands or open different views (e.g. memory dumps).

Example 1: Button with single command.

Format: BUTTON "<text>" "<cmdline>"

<text> Name of the button.

<cmdline> Contains command, address area and an access size.

GROUP.LONG 0x00++0x3
LINE.LONG 0x00 "MEM,Memory Array"
BUTTON "MEM " "Data.dump ad:0x5C000000--ad:0x5C01FFFF /Long"
Peripheral Files Programming | 62©1989-2024 Lauterbach

Example 2: Button with multiple commands.

COPY Copy GROUP

Copies the last defined GROUP to the current GROUP. The optional argument defines which GROUP
should be copied. Number of the GROUP is calculated backward form the current one. The command is
used to duplicate the definition of GROUPs, e.g. for devices with many equal channels.

Example 1:

GROUP.LONG D:0x00++0xFF
LINE.LONG 0x00 "RST_VEC,Reset Vector"
BUTTON "Clear Vector Table"

 (
 Data.dump 0x00++0xFF /Long
 Data.set %Long ad:0x5C000000++01FFFF 0
)

Format: COPY [<number>]

<number> Optional GROUP number.

GROUP.WORD sd:0x80008038--0x8000803f "MMU Descriptor 0"
LINE.WORD 0x0 "SL,Segment Length"
LINE.WORD 0x2 "SNR,Segment Number"

bit 5 " FN, Flush" "Inv.,Valid"
LINE.WORD 0x4 "SB,Segment Base Address"

GROUP.WORD sd:0x80008048--0x8000804f "MMU Descriptor 1"
copy

GROUP.WORD sd:0x80008050--0x80008057 "MMU Descriptor 2"
COPY
Peripheral Files Programming | 63©1989-2024 Lauterbach

Example 2:

DECMASK Define bits for decimal display

While the similar command HEXMASK displays bits as a hexadecimal value, DECMASK displays bits as
decimal value.

GROUP.WORD sd:0x80008034--0x80008035
LINE.WORD 0x0 "SWI,Segment Width"

GROUP.WORD sd:0x80008036--0x80008037
LINE.WORD 0x0 "SPR,Segment Priority"

GROUP.WORD sd:0x80008038--0x8000803f "MMU Descriptor 0"
LINE.WORD 0x0 "SL,Segment Length"
LINE.WORD 0x2 "SNR,Segment Number"

bit 5 " FN, Flush" "Inv.,Valid"
LINE.WORD 0x4 "SB,Segment Base Address"

GROUP.WORD sd:0x80008048--0x8000804f "MMU Descriptor 1"
COPY 2

GROUP.WORD sd:0x80008050--0x80008057 "MMU Descriptor 2"
COPY 4

Format: DECMASK.<access_size>[.<display_length>] <offset> <bit_range> <scale>
 [<add>] "<display_name>,<tooltip>"
Peripheral Files Programming | 64©1989-2024 Lauterbach

DECMASK defines a set of bits, which should be displayed as decimal value. The bits are extracted from
the current buffer at location defined in the bitrange. The result of this extract is multiplied by <scale> and
increased by the optional <add> value.

FLOATMASK Define bits for decimal floating point display

While the similar command DECMASK displays bits only as a decimal value without positions after decimal
point, FLOATMASK displays bits as decimal value with positions after decimal point.

FLOATMASK defines a set of bits, which should be displayed as decimal value. The bits are extracted from
the current buffer at location defined in the bitrange. The result of this extract is multiplied by <scale> and
increased by the optional <add> value.

<access_size> Size of register access (Byte, Word, TByte, Long, Quad).

<display_length> Length of displayed field (Byte, Word, TByte, Long, PByte, HByte,
SByte, Quad).

<offset> The DECMASK field offset refers to the start address of the GROUP
command.

<bit_range> Defines range of the DECMASK field. LSB is defined as the first, MSB as
the second character.

<scale> Multiplier value.
May be a floating point value since build. 46110

<add> Optional addend - increases value.

<display_name> Short name (abbreviation) of corresponding DECMASK field.

<tooltip> The sentence accurately describing a DECMASK field functionality.

Format: FLOATMASK.<access_size>[.SIGNED][.<display_length>] <offset>
 <bit_range> <scale> [<add>] "<display_name>,<tooltip>"

<access_size> Size of register access (Byte, Word, TByte, Long, Quad).

<display_length> Length of displayed field (Byte, Word, TByte, Long, PByte, HByte,
SByte, Quad).

<offset> The DECMASK field offset refers to the start address of the GROUP
command.

<bit_range> Defines range of the DECMASK field. LSB is defined as the first, MSB as
the second character.
Peripheral Files Programming | 65©1989-2024 Lauterbach

Example:

<scale> Multiplier value.
May be a floating point value since build. 46110

<add> Optional addend - increases value.

<display_name> Short name (abbreviation) of corresponding DECMASK field.

<tooltip> The sentence accurately describing a DECMASK field functionality.

<access_size> Size of register access (byte, word, tbyte, long, quad).

<display_length> Length of displayed field (byte, word, tbyte, long, quad).

<offset> The FLOATMASK field offset refers to the start address of the GROUP
command.

<bit_range> Defines range of the FLOATMASK field. LSB is defined as the first, MSB
as the second character.

<scale> Multiplier value. Usually a floating point value.

<add> Optional addend - increases value.

<display_name> Short name (abbreviation) of corresponding FLOATMASK field.

<tooltip> The sentence accurately describing a FLOATMASK field functionality.

GROUP D:0x80001204++3 "Timer"
TEXTLINE ""
DECMASK.LONG 0 0--31. 1 " milliseconds: "
TEXTLINE ""
FLOATMASK.LONG 0 0--31. 0.001 " seconds: "
TEXTLINE ""
Peripheral Files Programming | 66©1989-2024 Lauterbach

EVENTFLD Define event flag bits individually

Defines an event bit display in a free format. An event bit can be cleared by writing a ’1’. Writing '0' does not
affect event bit. The fields are chained together in a line. A new line can be created by a TEXTLINE
command. The implementation format is the same as a BITFLD format.

Example:

Format: EVENTFLD.<size> <offset> <bit_range> "<display_name>,<tooltip>"
 "<choices>"

<size> Size of register (byte, word, tbyte, long, quad).

<offset> The event bit offset refers to the start address of the GROUP command.

<bit_range> Defines range of the bit field. LSB is defined as the first, MSB as the sec-
ond character. Optionally the third character is bit (or bit range), used if
two bit fields are conjuncted.

<display_name> Short name (abbreviation) of corresponding event bit field.

<tooltip> The sentence accurately describing a event bit field functionality.

<choices> Indicates states with bit field may take. LSB is defined as the first, MSB
as the last one. Each state is separated by a comma.

GROUP.WORD d:0x100--0x11f "TPU Channels"
TEXTLINE ""
TEXTLINE "CH FUNC PRIO HSF HSR IEF ISF LNK SGL CHS PRM0 PRM1"
TEXTLINE " 0,Channel 0"
BITFLD.WORD 0x1e 0.--1. " " " Off, Low, Mid,High"
BITFLD.WORD 0x16 0.--1. " " " $0, $1, $2, $3"
EVENTFLD.WORD 0x1a 0. " " "No,Yes"
Peripheral Files Programming | 67©1989-2024 Lauterbach

HEXFLD Define hexword individually

Defines HEX value in a free format. The fields are chained together in a line. A new line can be created
using TEXTLINE command. If not the whole value should be displayed. The output size can be limited by
the “length” parameter.

Example:

Format: HEXFLD.<length> <offset> "<display_name>,<tooltip>"

<length> Length of HEX field (Byte, Word, TByte, Long, Quad).

<offset> The HEX field offset refers to the start address of the GROUP command.

<display_name> Short name (abbreviation) of corresponding HEX field.

<tooltip> The sentence accurately describing a HEX field functionality.

GROUP 0x100++0x03 "Counters"
LINE.LONG 0x00 "CNTR,Channel Counter Register"

HEXFLD.BYTE 0x00 " CCNT0 ,Channel Counter 0"
HEXFLD.BYTE 0x01 " CCNT1 ,Channel Counter 1"
HEXFLD.BYTE 0x02 " CCNT2 ,Channel Counter 2"
Peripheral Files Programming | 68©1989-2024 Lauterbach

HEXMASK Define bits for a hexadecimal display

Defines set of bits using HEX value. The bits are extracted from the current buffer at location defined in the
bitrange. The result of this extract is multiplied by scale. The <add> value is optional.

Example:

Format: HEXMASK.<access_size>[.<display_length>] <offset> <bit_range> <scale>
[<add>] "<display_name>,<tooltip>"

<access_size> Size of register access (Byte, Word, TByte, Long, Quad).

<display_length> Length of displayed field (Byte, Word, TByte, Long, PByte, HByte,
SByte, Quad).

<offset> The HEX mask field offset refers to the start address of the GROUP
command.

<bit_range> Defines range of the HEX mask field. LSB is defined as the first, MSB as
the second character.

<scale> Multiplier value.
May be a floating point value since build. 46110.

<add> Optional addend - increases Hex mask value.

<display_name> Short name (abbreviation) of corresponding HEX mask field.

<tooltip> The sentence accurately describing a HEX mask field functionality.

CONFIG 16. 8.

BASE 0x0
WIDTH 6.
GROUP.LONG 0x00++0xb
LINE.LONG 0x00 " REG0,register 0"

HEXMASK.LONG 0x00 0.--29. 1. 1. " EX_HEX1 ,Example Hex mask 1"
LINE.LONG 0x04 " REG1,Register 1"

HEXMASK.LONG.BYTE 0x04 23.--30. 1. 2. " EX_HEX2 ,Example Hex mask 2"
TEXTLINE " "
HEXMASK.LONG.WORD 0x04 4.--15. 8. " EX_HEX3 ,Example Hex mask 3"

LINE.LONG 0x8 " REG2,Register 2"
HEXMASK.LONG.TBYTE 0x08 0.--23. 1. 6. " EX_HEX4 ,Example Hex mask 4"
Peripheral Files Programming | 69©1989-2024 Lauterbach

HIDE Define write-only line

This field is used for write-only ports like USART transmitters data registers. HIDE command should be
used together with HGROUP command.

Example:

IN Define input field

An input-field (key) is displayed for the previously defined byte. Clicking that field results in reading data from
previously defined location. To execute a read cycle IN command must be used along with a HIDE definition.
It is used for destructive-read ports (i.e. data port of serial interface).

Format: HIDE.<size> <offset> "<display_name>,<tooltip>"

<size> Size of register (byte, word, tbyte, long, quad).

<offset> The register offset refers to the start address of the HGROUP command.

<display_name> Short name (abbreviation) of corresponding register.

<tooltip> The sentence accurately describing a register functionality.

HGROUP.LONG 0x00++0x3
HIDE.LONG 0x00 "WR,Write only Register"

Format: IN
Peripheral Files Programming | 70©1989-2024 Lauterbach

Example:

INDEX Output a value

Sends specified data to the port. INDEX command must be placed after a GROUP definition. The data is
sent to the port prior to the port access or modification. If two bytes are defined, the second byte is used for
writing to the specified port (different indices for reading and writing). It is useful for ports which must be
selected first.

Please consider: As the display is refreshed permanently the index register is modified as well.

BASE d:0xA00F0000
HGROUP.LONG 0x00++0x3

HIDE.LONG 0x00 "RFR,Receive FIFO Register"
IN

Format: INDEX <address> [%<format>] <dataread> <datawrite>
OUT (deprecated)

<format>: Byte | Word | Long | Quad | TByte | HByte
Float. [Ieee | IeeeDbl | IeeeeXt | <others>]
BE | LE

NOTE: The INDEX command has no effect inside an SGROUP command.

<address> Destination address.

<dataread> Data send to the specified address before fetching the data shown by the group
definition.

<datawrite> Data send to the specified address before executing a write to a member of the
group definition.
Peripheral Files Programming | 71©1989-2024 Lauterbach

Example 1:

Example 2:

GROUP sd:0x100--0x100
INDEX sd:0x100 0x01
LINE.BYTE 0x0 "REG1,Register index 1"

GROUP sd:0x101--0x101
INDEX sd:0x101 0x02
LINE.BYTE 0x0 "REG2,Register index 2"

; select register 1

; select register 2

GROUP sd:0x101 0x10 "Receiver FIFO"
INDEX sd:0x100 0 0x80 0

LINE.BYTE 0x0 "F0,FIFO position 0"
LINE.BYTE 0x1 "F1,FIFO position 1"
LINE.BYTE 0x2 "F2,FIFO position 2"
LINE.BYTE 0x3 "F3,FIFO position 3"
LINE.BYTE 0x4 "F4,FIFO position 4"
LINE.BYTE 0x5 "F5,FIFO position 5"
LINE.BYTE 0x6 "F6,FIFO position 6"
LINE.BYTE 0x7 "F7,FIFO position 7"
LINE.BYTE 0x8 "F8,FIFO position 8"
Peripheral Files Programming | 72©1989-2024 Lauterbach

LINE Define line

The LINE command defines registers short name and its long name. The value of the offset is added to the
address defined in the previous GROUP command. The CONFIG command affects the displayed format
of the LINE command.

Example:

Format: LINE.[<size> | FLOAT.<format>] <offset> "<display_name>,<tooltip>"

<size> Size of register (Byte, Word, TByte, Long, Quad).

<format> Display register content as floating point number. Currently the following
formats are supported:

• IEEE: 32 bit IEEE-754 single

• IEEEDBL: 64 bit IEEE-754 double

<offset> The register offset refers to the start address of the GROUP command.

<display_name> Short name (abbreviation) of corresponding register.

<tooltip> Register long name (a sentence accurately describing the register
functionality).

BASE 0x0
WIDTH 6.
GROUP.QUAD 0x00++0x7

LINE.QUAD 0x00 " REG0,Register 0"
GROUP.LONG 0x08++0x3

LINE.LONG 0x00 " REG1,Register 1"
GROUP.TBYTE 0x0c++0x2

LINE.TBYTE 0x00 " REG2,Register 2"
GROUP.WORD 0x10++0x1

LINE.WORD 0x00 " REG3,Register 3"
GROUP.BYTE 0x14++0x0

LINE.BYTE 0x00 " REG4,Register 4"
Peripheral Files Programming | 73©1989-2024 Lauterbach

MUNGING Translate to little endian mode (PowerPC only)
Only available on TRACE32 for PowerPC

Usually byte ordering is either little endian or big endian mode. For PPC additional munging little endian and
munging big endian modes are provided. For a detailed description refer to PPC documentation.

Special address translation for PowerPC little endian mode.

NEWLINE Line break within detailed register description

Creates a line break for the detailed description of the fields of a peripheral register. The indentation of the
new line can be configured with the first parameter of WIDTH and CONFIG.

Format: MUNGING <be|le>

MUNGING.LE

Format: NEWLINE

CONFIG 32.
WIDTH 10.
GROUP.LONG D:0x100++3
LINE.LONG 0x00 "STATUS,Status Register"
 BITFLD.LONG 0x00 31. " Z ,Zero Flag" "off,on"
 BITFLD.LONG 0x00 30. " N ,Negative Flag" "off,on"
 NEWLINE
 BITFLD.LONG 0x00 29. " C ,Carry Flag" "off,on"
 BITFLD.LONG 0x00 28. " V ,Overflow Flag" "off,on"
 NEWLINE
 BITFLD.LONG 0x00 27. " E ,Interrupt Mask" "off,on"
 HEXMASK.LONG.TBYTE 0x00 0.--23. 4 " PC ,Program Counter"
Peripheral Files Programming | 74©1989-2024 Lauterbach

RBITFLD Define bits individually (read-only)

RBITFLD is identical to BITFLD with the difference that the defined bits are read-only. It can be used to
visualize that certain settings within a read-write register are read-only.

RHEXMASK Define bits for a hexadecimal display (read-only)

Same as HEXMASK but bits are read-only.

Format: RBITFLD.<size> <offset> <bit_range> "<display_name>,<tooltip>"
 "<choices>"

<size> Size of register (Byte, Word, TByte, Long, Quad).

<offset> The bit field offset refers to the start address of the GROUP command.

<bit_range> Defines range of the bit field. LSB is defined as the first, MSB as the sec-
ond character. Optionally the third character is bit (or bit range), used if
two bit fields are conjuncted.

<short_name> Short name (abbreviation) of corresponding bit field.

<long_name> The sentence accurately describing a bit field functionality.

<choices> Defines the possible values (in words) which the bit field may take. LSB is
defined as the first, MSB as the last one. Each state is separated by a
comma.

BASE D:0xF0001234
GROUP 0x00++0x03

LINE.LONG 0x00 "CSR,Control and Status Register"
RBITFLD.LONG 0x00 1. " RSTST ,Reset status" "Reset inactive, Reset

active"
BITFLD.LONG 0x00 0. " RST ,Reset" "No reset,Reset"

Format: RHEXMASK.<access_size>[.<display_length>] <offset> <bit_range> <scale>
[<add>] “<display_name>,<tooltip>”
Peripheral Files Programming | 75©1989-2024 Lauterbach

SAVEINDEX Save original and output a value

Sends the specified data to the port. The current values at the port are read before the access is made and
are restored after the access. The byte is sent to the port prior to the port access or modification.
SAVEINDEX command must be placed after a GROUP definition. If two bytes are defined, the second byte
will be used for writing to the specified port (different indices for reading and writing). This is useful for ports
which are selected by another port when the index register can be read back.

SAVETINDEX Save original and output a value

Similar to SAVEINDEX, uses however a different sequence for write accesses: the data value is first written
to the address and the index is written to trigger/transfer the write operation.

Format: SAVEINDEX <address> [%<format>] <dataread> <datawrite>
SAVEOUT (deprecated)

<format>: Byte | Word | Long | Quad | TByte | HByte
Float. [Ieee | IeeeDbl | IeeeeXt | <others>]
BE | LE

<address> Destination address.

<dataread> Data send to the specified address before fetching the data shown by the
group definition.

<datawrite> Data send to the specified address before executing a write to a member of
the group definition.

NOTE: SAVEINDEX command has no effect inside an SGROUP command.

GROUP d:0x11--0x11 "SERIAL CONTROL 80196"
SAVEINDEX d:0x14 %byte 0x00 0x0f

LINE.BYTE 0 "SCN,Serial Control Register"

;index 0 for read,
;15 for write

Format: SAVETINDEX <address> [%<format>] <dataread> <datawrite>

<format>: Byte | Word | Long | Quad | TByte | HByte
Float. [Ieee | IeeeDbl | IeeeeXt | <others>]
BE | LE
Peripheral Files Programming | 76©1989-2024 Lauterbach

SDECMASK Signed DECMASK

Same as DECMASK, but values are interpreted as signed numbers.

SFLOATMASK Signed FLOATMASK

Same as FLOATMASK, but values are interpreted as signed numbers.

SETCLRFLD Define set/clear locations

Defines a bit display in a free format. The fields are chained together in a line. A new line can be created by
a TEXTLINE command.

The command is an extension of the BITFLD command. Additionally to the BITFLD command two further
locations must be entered. The first parameter pair offset1 - bit1 is the location where the data is read from.
The second parameter pair offset2 - bit2 is the set location. The third parameter pair offset3 - bit3 is the clear
location.

Format: SETCLRFLD.<size> <offset1> <bit1> <offset2> <bit2> <offset3> <bit3>
"<display_name>,<tooltip>" "<choices>"

<size> Size of register (Byte, Word, TByte, Long, Quad).

<offset1><bit1> Status register offset and corresponding bit number.

<offset2> <bit2> Set register offset and corresponding bit number.

<offset3> <bit3> Clear register offset and corresponding bit number.

<display_name> Short name (abbreviation) of corresponding set/clear bits.

<tooltip> The sentence accurately describing a set/clear bits functionality.

<choices> Indicates states with bit field may take. The first state is responsible for
clearing, the second one for setting corresponding set/clear bits. Each
state is separated by a comma.
Peripheral Files Programming | 77©1989-2024 Lauterbach

Usually the SETCLRFLD-command is used if the read location is a status register, which shows the status
of I/O ports and other (not static) registers exist to enable and disable ports. If the port is enabled, the value
of '1' is set to the corresponding bit in the register addressed by location 2 (other bits are cleared). If the port
is disabled, the value of '1' is set at the corresponding bit position in the register addressed by location 3 (the
other bits are cleared).

STRING Display a string saved in memory

Defines a field to display an ASCII encoded string, which is saved in target memory.

Example:

BASE sd:0xffec0000
GROUP.LONG 0x00++0x3

LINE.LONG 0x00 "Int_0,Interrupt Register 0"
SETCLRFLD.LONG 0x0 0. 0x4 0. 0x8 0. " B_0 ,Bit 0"

"No Interrupt,Interrupt"

;writing 1 sets the bit in the Set Register
;writing 0 sets the bit in the Clear Register
;the result is read from the Status register

Format: STRING <display_width> <offset> <string>

<width> Number of bytes/characters.

<offset> Offset to group start address.

<string> Field name. Will prepend the ASCII string.

BASE sd:0xff000000
WIDTH 8.
GROUP.LONG 0x00++0x03
lINE.LONG 0x00 "KEYREG,"
STRING 4. 0. "KEY "
STRING 3. 0. " KEY "
STRING 3. 1. " KEY "
Peripheral Files Programming | 78©1989-2024 Lauterbach

TEXTLINE Define text header with a new line

The text can either be used as general comment or as a header to BITFLD or HEXFLD fields. TEXTLINE
creates a new line.

TEXTFLD Define text header

Defines text without creating a new line.

Format: TEXTLINE "<text>"

<text> Optional text.

GROUP d:0x0e00--0x0fff "TPU Channels"
TEXTLINE ""
TEXTLINE "--"
TEXTLINE "CH FUNC PRIO HSF HSR IEF ISF LNK SGL CHS PRM0"
TEXTLINE " 0,Channel 0"
BITFLD.WORD 0x1e 0.--1. " " "Off,Low,Mid,High"

Format: TEXTFLD "<text>"

<text> Optional text.

GROUP d:0x80000000--0x80000fff "TPU Channels"
TEXTLINE ""
TEXTLINE "CHANNEL "
TEXTFLD " 0,Channel 0"
TEXTFLD " 1,Channel 1"
TEXTFLD " 2,Channel 2"
TEXTLINE "--------------------------------------"
TEXTLINE "STATUS ,Status"
BITFLD.WORD 0x0 0.--1. " " "Off,Low,Mid,High"
BITFLD.WORD 0x0 2.--3. " " "Off,Low,Mid,High"
BITFLD.WORD 0x0 4.--5. " " "Off,Low,Mid,High"
Peripheral Files Programming | 79©1989-2024 Lauterbach

TINDEX Output a value

Similar to INDEX, uses however a different sequence for write accesses: the data value is first written to the
address and the index is written to trigger/transfer the write operation.

Format: TINDEX <address> [%<format>] <dataread> <datawrite>

<format>: Byte | Word | Long | Quad | TByte | HByte
Float. [Ieee | IeeeDbl | IeeeeXt | <others>]
BE | LE
Peripheral Files Programming | 80©1989-2024 Lauterbach

Automated Peripheral File Generation

Graphical User Interface

TRACE32 is able to generate peripheral files out of certain other file formats. A unified GUI is available
through the PER.IMPORT.view command. But of course TRACE32 lets you convert all input files via
command line or cmm script as well.

For a complete list of input formats see PER.IMPORT.ForMaT.

Rules file

Rules file description

The rule file consists of root tag <rules> and list of <rule> tags inside of them. Nesting of <rule> tags is not
allowed.

Structure of <rules> tag:

Rule definition

A rule definition contains one or more select tags <select> followed by one or more <command> tags
<command_name>:

• The <select> tag defines on which elements the <command> tags will be applied. The first
<select> tag will search in all elements of the XML file. The next <select> tag will search on the
results of the previous select tag. That way, selecting the desired elements can be achieved by
reducing the search base step by step.

• The <command> tag defines a modification that will be executed on the selected elements.
Several <command> tags can be specified to apply independent modifications on the same
search results.

NOTE: A rules file is a XML based recipe which allows you to modify the appearance of
a converted input file retrospectively. The according schema file can be found at
/demo/tools/per_import/rules.xsd.

<rules>
 <rule><!-- rule definition --></rule>
 <!-- other rules... -->
</rules>
Peripheral Files Programming | 81©1989-2024 Lauterbach

Structure of <rule> tag:

Available verbose values:

For example to change the name of the module MODULE_EXAMLE to a new one, you can write follow rule:

The above rule is a one-step search with a single command for modification. It can be explained as follows:

Selecting defined elements using <select>

Selects targets elements to be processed by the commands. The selection is determined by the element
type and its properties.

<select> tags usage:

<rule verbose="yes|no">
 <select ... />
 <!-- other selects... -->
 <command_name ... ><!-- command definition --></command_name>
 <!-- other commands -->
</rule>

verbose description

no Default. Do not write debug messages into rules-logs.log file.

yes Write debug messages into rules-log.log file.

<rules>
 <rule>
 <select element="module" property="name" regex="MODULE_EXAMPLE"
/>
 <modify property="name" value="BETTER_MODULE_NAME" />
 </rule>
</rules>

1. <search>: Search all elements of type module, where element.name is "MODULE_EXAMPLE".

2. <command>: Change name of element.name to "BETTER_MODULE_NAME" for all found ele-
ments.

<select element="element_name"
 property="property_name"
 regex="regular_expression"
 all_occurrences="no|yes"
 invert_regex="no|yes" />
Peripheral Files Programming | 82©1989-2024 Lauterbach

Elements

element Specifies the type of element to be searched for. See list of all elements.

property Specifies the type of property to be matched.See list of all properties.
Not all properties are allowed for a given element. See this table.

regex Regular expression for matching the property's value.

all_occurrences • no: Default. Search first occurrence only.

• yes: Search all occurrences (can reduce performance).

invert_regex • no: Default. regular expression is not inverted.

• yes: Invert regular expression.

element

sif(cpuis(“CORTE?R4*”)) sif

 repeat 2. (increment 0 1) (list ad:0x0 ad:0x10) repeat

 tree.open “DAM$1”
 base $2

module

 group.long 0x4++0x03
 line.long 0x0 “ACCEN,Access Enable”

register

 bitfld.long 0x00 0. “EN0,Master0 Enable” field

 “Enabled,Disabled” state
Peripheral Files Programming | 83©1989-2024 Lauterbach

Properties

module register field state

name x x x x

description x x x x

value x

access_type • RW (read write)

• RO (read only)

• WO (write only)

• W1C (write one to clear)

• WS (write secured)

• H (hidden)

x

access_class x

offset x

size x

lower_range x

upper_range x

intrusive_read • no: Reading of register is
not intrusive.

• yes: Reading of register is
intrusive

x

is_open • no: Default. Tree is
hidden.

• yes: Tree is shown.

x

sif x x x

view_name x

path x x x x

button_name x

button_command For multiple button
commands use
 as
line break.

x

Peripheral Files Programming | 84©1989-2024 Lauterbach

Commands

Commands are element modificators that process data sets extracted from data model by the <select> tag.
One data set can be used by multiple commands. Command tags must follow the <select> tags.

Structure of command tag:

Each command has its own set of attributes. The following are common to all commands:

Above attributes allow to extend the search operation of <select> tags in the commands. This way the

number of used <select> tags can be reduced. For example below rule:

is the long version of:

Selecting all subelements is possible, too. To do this, omit the regex attribute:

<command_name command_atributes... > <!-- definition --> </command_name>
<!-- or -->
<command_name command_atributes... />

element Specifies target elements for command. Valid are elements chosen by
preceeding <select> operations.

property Property for filtering selected elements.

regex Regular expression for filtering selected elements.

<select element="module" property="name" regex="MODULE_NAME" />
<select element="register" property="name" regex="REG_NAME" />
<modify property="name" value="NEW_NAME" />

<select element="module" property="name" regex="MODULE_NAME" />
<modify element="register" property="name" regex="REG_NAME"
value="NEW_NAME" />

<select element="module" property="name" regex="MODULE_NAME" />
<modify element="register" property="name" value="NEW_NAME" />
Peripheral Files Programming | 85©1989-2024 Lauterbach

<create_header>

Used to overwrite the default header at the beginning of each peripheral file.Only has an effect if
PER.<format>.Save is used with the /Header option.

Supported elements: permodel

Structure of <create_header> tag:

<derive_module>

Derives new trees by means of module or register names. A typical use case is an input file with no explicit
hierarchy information. This command helps in creating trees instead of using lots of <create_module> and
<modify> commands.

Supported elements: module , register

Structure of <derive_module> tag:

<create_header title="title" props=”props” author=”author”
changelog=”changelog” manufacturer=”manufacturer” doc=”doc” core=“core”
chip=”chip” copyright=”copyright” include=”include”/>

title (optional) Overwrites default @Title text.

props (mandatory) Must be “Confidential” or “Released”.

author (mandatory Set author.

changelog (optional) Overwrites default @Changelog text.

manufacturer (optional) Overwrites default @Manufacturer text.

doc (optional) Overwrites default @Doc text.

core (optional) Overwrites default @Core text.

chip (optional) Overwrites default @Chip text.

copyright (optional) Overwrites default @Copyright text.

include (optional) Adds an %include after the copyright.

<derive_module separator="character" depth=”max_level” element="element"
preserve=”yes|no”/>
Peripheral Files Programming | 86©1989-2024 Lauterbach

Example:

<destroy_module>

Removes a tree but not its content. This is different from <remove>, which deletes the tree and all its
subtrees and subcomponents.

Supported elements: module

Structure of <destroy_module> tag:

<include>

Include another rules files at the current postion.

Structure of <include> tag:

character Any character that separates module levels in the name.

depth Maximum number of tree levels to derive. Default=none.

element register | module | all. Default = all.

preserve Preserves original register name. Default=no.

<!-- Register name is MEM_FLASH_STATUS -->

<derive_module separator=”_">

<!-- Tree “MEM” -->
<!-- Tree “FLASH” -->
<!-- Register “STATUS” -->

<select element="module" property="name" regex="MODULE_NAME" />
<destroy_module/>

<include path="file_path"/>
Peripheral Files Programming | 87©1989-2024 Lauterbach

<include_module>

Adds an %include command to the generated .p/.ph/.per file.

Supported elements: module

Structure of <include_module> tag:

Typically %include commands are used to include CPU-specific module files. The example below
demonstrates how to surround the included module by a conditional SIF:

<open_module>

By default all converters will create closed trees (TREE.close). Using this command you can create opened
trees (TREE.OPEN).

Supported elements: module

<include_module name="name_of_tree" view_name=”view name of tree”
description="description_of_tree" path=”file path” offset=”address”
args=”arguments” is_open="yes|no" position="pos_mode"/>

name Name of the module. Used to be referenced by the <select> command.

view name Surround %include command by a TREE.

description Tooltip of new tree.

path Filename and path of the file to include.

is_open • no: Default. Created module will be expanded.

• yes: Created module will be collapsed.

position • sorted: If sorting of top/subtrees is enabled, the new module
will be positioned accordingly.

• top: Default. Place module at the top of the file.

• bottom: Place module at the bottom of the file.

offset Add a BASE command in front of the module.

args Arguments to pass to %include file..

<select element=”include_module” property=”name” regex=”MyModule”/>
<modify element=”module” property=”condition” value=”SIF CPUIS(MyCPU)”/>
Peripheral Files Programming | 88©1989-2024 Lauterbach

Structure of <open_module> tag:

<modify>

Changes chosen property of an element.

Supported elements: all

Structure of <modify> tag:

<replace>

Replaces all found elements to new ones defined in <replace>.

Supported elements: all, register

Structure of <replace> tag:

<open_module depth=<depth> element=<module|mixed|all>/>

depth(optional) Start with selected module and iterate over all submodules until depth
levels.
Default: Unlimited

module Apply rule only if (sub)module has no other submembers than modules.

mixed Apply rule only if (sub)module has no other submembers than modules
and registers.

all Apply rule always ((Sub)modules can have registers as only
submembers.)

<modify element="element_type" property="property_name" regex="reg_expr"
value="NEW_VALUE" />

<replace>
 <!-- <state> or <field> or <register> or <module> or -->
 <!-- <states> or <fields> or <registers> or <modules> -->
</replace>
Peripheral Files Programming | 89©1989-2024 Lauterbach

state <replace>
 <state>
 <name>state_name</name>
 <value>number</value>
 </state>
</replace>

states <replace>
 <states>
 <state><!-- ... --></state>
 <!-- other states... -->
 </states>
</replace>

field <replace>
 <field>
 <name>field_name</name>
 <description>field_description</description>
 <access>access_type_value</access>
 <lower_range>number</lower_range>
 <upper_range>number</upper_range>
 <states><!-- ... --></states>
 </field>
</replace>

fields <replace>
 <fields>
 <field><!-- ... --></field>
 <!-- other fields... -->
 </fields>
</replace>

register <replace>
 <register>
 <name>register_name</name>
 <description>register_description</description>
 <access>access_type_value</access>
 <offset>hex_number</offset>
 <size>number</size>
 <intrusive_read>yes|no</intrusive_read>
 <fields><!-- ... --></fields>
 </register>
</replace>

registers <replace>
 <registers>
 <register><!-- ... --></register>
 <!-- other registers... -->
 </registers>
</replace>
Peripheral Files Programming | 90©1989-2024 Lauterbach

Above listing show several ways of using <replace>. Choice between element and subelement depends on
how <select> had been used. Let's see what will happen with following register:

module <replace>
 <module>
 <name>module_name</name>
 <description>module_description</description>
 <is_open>yes|no</is_open>
 <registers><!-- ... --></registers>
 </module>
</replace>

modules <replace>
 <modules>
 <module><!-- ... --></module>
 <!-- other modules... -->
 </modules>
</replace>

if (register only) <replace>
 <if>
 <condition value="condition_of_practices_if_statement">
 <register><!-- ... --></register>
 </condition>
 <!-- other conditions... -->
 <default>
 <register><!-- ... --></register>
 </default>
 </if>
</replace>

group.long 0x00++0x03
 line.long 0x00 "REG,Test Register"
 bitfld.long 0x00 1. "FLD1,Field 1" "0,1"
 bitfld.long 0x00 0. "FLD0,Field 0" "0,1"
Peripheral Files Programming | 91©1989-2024 Lauterbach

If selected element/elements comes directly from <select>, then there must be a definition of a single
element (the type must be the same with selected elements) in <replace>. Following listing shows this case:

The register after applying first rule:

<rule>
 <select element="register" property="name" regex="REG" />
 <select element="field" property="name" regex="FLD1" />
 <replace>
 <field>
 <name>FEATURE_EN</name>
 <description>Featue Enable</description>
 <access>RW</access>
 <lower_range>1</lower_range><upper_range>1</upper_range>
 <states>
 <state><name>Disabled</name><value>0</value></state>
 <state><name>Enabled</name><value>1</value></state>
 </states>
 </field>
 </replace>
</rule>

group.long 0x00++0x03
 line.long 0x00 "REG,Test Register"
 bitfld.long 0x00 1. "FEATURE_EN,Feature Enable" "Disabled,Enabled"
 bitfld.long 0x00 0. "FLD0,Field 0" "0,1"
Peripheral Files Programming | 92©1989-2024 Lauterbach

However if subelements had been extruded from selected elements, then <replace> must contain the
definition of the element's group (type must match). Look below for this case:

The register after applying second rule:

<rule>
 <select element="register" property="name" regex="REG" />
 <replace element="field">
 <fields>
 <field>
 <name>FEATURE_EN</name>
 <description>Featue Enable</description>
 <access>RW</access>
 <lower_range>1</lower_range>
 <upper_range>1</upper_range>
 <states>
 <state><name>Disabled</name><value>0</value></state>
 <state><name>Enabled</name><value>1</value></state>
 </states>
 </field>
 <field>
 <name>STATUS</name>
 <description>Status</description>
 <access>RO</access>
 <lower_range>0</lower_range>
 <upper_range>0</upper_range>
 <states>
 <state><name>Normal</name><value>0</value></state>
 <state><name>Error</name><value>1</value></state>
 </states>
 </field>
 </fields>
 </replace>
</rule>

group.long 0x00++0x03
 line.long 0x00 "REG,Test Register"
 bitfld.long 0x00 1. "FEATURE_EN,Feature Enable" "Disabled,Enabled"
 bitfld.long 0x00 0. "STATUS,Status" "Normal,Error"
Peripheral Files Programming | 93©1989-2024 Lauterbach

When using the <if> tag, only <register> is allowed as subtag. This is a special case which creates view
conditions for a given register. It may look similar to the example below::

<rule>
 <select element="register" property="name" regex="REG" />
 <replace>
 <if>
 <condition value="Data.Long(D:0x04)==0x01">
 <register>
 <name>REG</name>
 <description>Test Register</description>
 <access>RW</access>
 <offset>0x00</offset>
 <size>4</size>
 <intrusive_read>no</intrusive_read>
 <fields>
 <field>
 <name>FEATURE_EN</name>
 <description>Featue Enable</description>
 <access>RW</access>
 <lower_range>1</lower_range>
 <upper_range>1</upper_range>
 <states>
 <state><name>Disabled</name><value>0</value></state>
 <state><name>Enabled</name><value>1</value></state>
 </states>
 </field>
 <field>
 <name>STATUS</name>
 <description>Status</description>
 <access>RO</access>
 <lower_range>0</lower_range>
 <upper_range>0</upper_range>
 <states>
 <state><name>Normal</name><value>0</value></state>
 <state><name>Error</name><value>1</value></state>
 </states>
 </field>
 </fields>
 </register>
 </condition>
 </if>
 </replace>
</rule>
Peripheral Files Programming | 94©1989-2024 Lauterbach

The register after applying third rule:

<protect>

In some registers there are bit fields that can only be changed when another bit is written '1' at the same
time. Such bit fields are called "protected". To ease changing such bit fields by the peripheral file, one should
keep protection bits connected together into one bit field, with their values being "write protect/write enable".
Value descriptions should signal the state in which it is possible to alter the value of a secured register, for
instance: "Set value".

Supported elements: register

Structure of <protect> tag (Creates protected field if the specified field and protector are found.):

Structure of <protect> tag (Finds field with given prefix or suffix, then tries to find field that is protected by first
one and then creates protected field from them.):

<remove>

In some situations it is necessary to remove elements, e.g. confidential modules, registers or fields. Then the
command below should be used.

Structure of <remove> tag:

if (Data.Long(D:0x04)==0x01)
 group.long 0x00++0x03
 line.long 0x00 "REG,Test Register"
 bitfld.long 0x00 1. "FEATURE_EN,Feature Enable" "Disabled,Enabled"
 bitfld.long 0x00 0. "STATUS,Status" "Normal,Error"
endif

<protect>
 <field regex="name_regex" />
 <protected_by regex="name_regex" />
</protect>

<protect>
 <common prefix="prefix_string" suffix="suffix_string" />
</protect>

<remove />
Peripheral Files Programming | 95©1989-2024 Lauterbach

<create_module>

For a better useability, it is often required to place the registers of similar purpose in separate subtree. The
<create_module> command creates a new subtree and moves enclosed trees/registers into it.

Supported elements: module

Structure of <create_module> tag:

<for>

In case when groups of registers occurrence in several channels then you have to create subtree for each
channel separately (e.g. REG_0_A, REG_0_B, REG_1_A, REG_1_B, ...). To avoid redundant commands
you may use the <for> tag. <for> tags can be nested.

Supported elements: module

<create_module name="name_of_tree" description="description_of_tree"
is_open="yes|no" mode="mode_name" position="pos_mode">
 <element property="name|description" regex="REGA_([0-9]*)" />
 <element property="name|description" regex="REGB_([0-9]*)" />
</create_module>

name Name of new tree.

description Tooltip of new tree.

is_open • no: Default. Created module will be expanded.

• yes: Created module will be collapsed.

mode • single: Default. Create one tree for all matched groups of
elements.

• multi: Create separate trees for each matched groups of
elements. Names will be numerated.

position • inplace: Default. Place trees in position where elemet has been
found.

• top: Place trees on the top of module.

• bottom: Place trees on the bottom of module.

property Finds element by name or description.

regex Regular expression.
Peripheral Files Programming | 96©1989-2024 Lauterbach

Structure of <for> tag:

Index of the for in module's name attribute and element's regex attribute is allowed. Index must be placed in
#{} brackets. Is possible to change format of index value. Syntax accepts all C-like format specifiers (d, x,
etc.). Format must be placed after index name and ":" separator.

Example:

<create_view>

Some peripherals, e.g. an Ethernet Controller, may have different operating modes. Depending on the
mode, registers and their bitfields may have different meanings and encodings. <create_view> creates a
view with an alternative register element depending on the assigned condition. Created views can be
selected with <select> command and changed with <modify> command. A view corresponds to the IF
statement in peripheral files.

Supported elements: register, module

Structure of <create_view> tag:

<for iter_name="name" min_value="value" max_value="value">
 <create_module><!-- command definition --></create_module>
 <for><!-- ... --></for>
 <!-- other <create_module> or <for> commands...
</for>

<for iter_name="i" min_value="0" max_value="15">
 <create_module name="Module #{i:u}">
 <element regex="Reg#{i:u}_*" />
 </create_module>
</for>

<create_view view_name="view_name" if="practice_condition|default"
use="name_of_register" append=”name_of_other_view”/>

practice_condition Practice condition.

default Can be used to generate ‘else’ clause.

append Optional attribute which appends this view to a previously defined view.
The IF statement in the referenced will be turned into an ELIF as a result.

use Optional attribute that allows to create a view from an existing register.
Used register will be removed. Regular
expression of register's short name must be place here.
Peripheral Files Programming | 97©1989-2024 Lauterbach

Offset's param usage in <create_view>:

Reference of register's offset in if attribute is allowed. Index must be placed in #{} brackets. Is possible to
change format of offset value. Syntax accepts all C-like format specifiers (d, x, etc.). Format must be placed
after offset word and ":" separator. For example "#{offset:d}".

<map_cpu>

In case to change cpu name in sif conditions you can do it by selecting component via condition and then
use <modify> to change condition property. Instead of that you can create a cpu_map where all the
conditions under selected component that uses regex value will be replaced.

Supported elements: sif

Structure of <map_cpu> tag:

Example:

<create_view view_name="view1"
if="(per.long(D:#{offset:x})&0x800)==0x800" />
<!-- & expands to '&' -->

NOTE: When applied to a module, <create_view> will not include the TREE statement
in the IF condition.

<map_cpu regex="cpu_to_replace" value="new_cpus_separated_by_coma"/>

NOTE: It is recommended to select permodel using <select> and its attribute
element="permodel".

<select element="permodel" />
<map_cpu regex="ComputeCluster_*_*" value="CortexA15,CortexA15A7"/>
Peripheral Files Programming | 98©1989-2024 Lauterbach

Variables

Variables can be used to save certain properties of elements and use them later in rules.

The syntax is nearly the same as for rules. Simply replace the <rule> tag by a <variable> tag, do the
<select>ions and define the property you want to save by the <get> command:

The variable can later be referenced in a <rule> via:

Example:

<variable name=”variable_name”>
 <select element=... />
 <select element=.../>
 <get property=”property”
</variable>

#{variable_name[position]:format}

variable_name Name of the variable.

position If multiple elements have been selected with all_occurences=”yes”, the
variable will be created as an array. With the position you can select a
single array entry.

format C-like format:

• s = string

• i = decimal

• d = decimal.

• x = hexadecimal

• X = hexadecimal

<variable name=”bank_base”>
 <select element=”module” property=”name” regex=”bank0”/>
 <get property=”address” />
</variable>

<rule>
 <select element=”module” property=”name” regex”bank1” />
 <modify property=”address” value=”#{bank_base:x}” />
</rule>
Peripheral Files Programming | 99©1989-2024 Lauterbach

Schema Document Properties

The annotation file concept implies the existence of peripheral data to which it will refer and update. The
reference to components of data is obtained by using regular expressions.
The more general the expression, the more universal the rule, and the more it may also work for another
peripheral data.
There are several ways to update data's components. All of them are listed in the Commands section.

Schema Component Representation

Properties

Target Namespace https://www.lauterbach.com/per-converter/rules

Element and Attri-
bute Namespaces

Declared Namespaces

Prefix Namespace

Default namespace https://www.lauterbach.com/per-converter/rules

xml http://www.w3.org/XML/1998/namespace

xs http://www.w3.org/2001/XMLSchema

<xs:schemaelementFormDefault"qualified"
targetNamespace"https://www.lauterbach.com/per-converter/rules" >
...
</xs:schema>
Peripheral Files Programming | 100©1989-2024 Lauterbach

Global Declarations

Element: create_header

Configures the header.

Special placeholders:

- `<chip>` - Is replaced with chip list.
- `<author>` - Is replaced with author name if specified.
- `<version>` - Is replaced with current TRACE32 version.
- `<date>` - Is replaced with current date.

XML Instance Representation

Schema Component Representation

Properties

Name create_header

Type Locally-defined complex type

Nillable no

Abstract no

<create_header
 title"xs:string" [0..1]
 props"props_type" [1]
 author"xs:string" [1]
 changelog"xs:string" [0..1]
 manufacturer"xs:string" [0..1]
 doc"xs:string" [0..1]
 core"xs:string" [0..1]
 chip"xs:string" [0..1]
 copyright"xs:string" [0..1]
 include"xs:string" [0..1]
/>
Peripheral Files Programming | 101©1989-2024 Lauterbach

Element: create_module

Creates new sub tree and moves trees/registers to them according to given template.

XML Instance Representation

Schema Component Representation

<xs:elementname"create_header" >
 <xs:complexType>
 <xs:attributename"title" type"xs:string" use"optional" />
 <xs:attributename"props" type"props_type" use"required" />
 <xs:attributename"author" type"xs:string" use"required" />
 <xs:attributename"changelog" type"xs:string" use"optional" />
 <xs:attributename"manufacturer" type"xs:string" use"optional" />
 <xs:attributename"doc" type"xs:string" use"optional" />
 <xs:attributename"core" type"xs:string" use"optional" />
 <xs:attributename"chip" type"xs:string" use"optional" />
 <xs:attributename"copyright" type"xs:string" use"optional" />
 <xs:attributename"include" type"xs:string" use"optional" />
 </xs:complexType>
</xs:element>

Properties

Name create_module

Type Locally-defined complex type

Nillable no

Abstract no

<create_module
 name"xs:string" [0..1]
 description"xs:string" [0..1]
 is_open"bool" [0..1]
 mode"create_module_mode" [0..1]
 position"create_module_position" [0..1]
>
 <element
 property"property_type" [0..1]
 regex"xs:string" [0..1]
/>[1..*]
</create_module>
Peripheral Files Programming | 102©1989-2024 Lauterbach

Element: create_view

Creates if statements to the selected register.

XML Instance Representation

Schema Component Representation

<xs:elementname"create_module" >
 <xs:complexType>
 <xs:sequence>
 <xs:elementname"element" maxOccurs"unbounded" >
 <xs:complexType>
 <xs:attributename"property" type"property_type" />
 <xs:attributename"regex" type"xs:string" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attributename"name" type"xs:string" />
 <xs:attributename"description" type"xs:string" />
 <xs:attributename"is_open" type"bool" />
 <xs:attributename"mode" type"create_module_mode" />
 <xs:attributename"position" type"create_module_position" />
 </xs:complexType>
</xs:element>

Properties

Name create_view

Type Locally-defined complex type

Nillable no

Abstract no

<create_view
 view_name"xs:string" [1]
 if"if_type" [1]
 use"xs:string" [0..1]
 append"xs:string" [0..1]
/>
Peripheral Files Programming | 103©1989-2024 Lauterbach

Element: derive_module

Creates trees based on tree name and its separator.

XML Instance Representation

Schema Component Representation

<xs:elementname"create_view" >
 <xs:complexType>
 <xs:attributename"view_name" type"xs:string" use"required" />
 <xs:attributename"if" type"if_type" use"required" />
 <xs:attributename"use" type"xs:string" use"optional" />
 <xs:attributename"append" type"xs:string" use"optional" />
 </xs:complexType>
</xs:element>

Properties

Name derive_module

Type Locally-defined complex type

Nillable no

Abstract no

<derive_module
 separator"xs:string" [1]
 depth"number" [0..1]
 element"derive_module_element" [0..1]
 preserve"bool" [0..1]
/>

<xs:elementname"derive_module" >
 <xs:complexType>
 <xs:attributename"separator" type"xs:string" use"required" />
 <xs:attributename"depth" type"number" use"optional" />
 <xs:attributename"element" type"derive_module_element" use"optional" />
 <xs:attributename"preserve" type"bool" use"optional" />
 </xs:complexType>
</xs:element>
Peripheral Files Programming | 104©1989-2024 Lauterbach

Element: destroy_module

XML Instance Representation

Schema Component Representation

Element: field

XML Instance Representation

Properties

Name destroy_module

Type Locally-defined complex type

Nillable no

Abstract no

<destroy_module/>

<xs:elementname"destroy_module" >
 <xs:complexType>
 <xs:sequence/>
 </xs:complexType>
</xs:element>

Properties

Name field

Type Locally-defined complex type

Nillable no

Abstract no
Peripheral Files Programming | 105©1989-2024 Lauterbach

Schema Component Representation

Element: fields

XML Instance Representation

<field>
 <name>xs:string </name>[1]
 <description>xs:string </description>[1]
 <access>access_type</access>[1]
 <lower_range>number</lower_range>[1]
 <upper_range>number</upper_range>[1]
 <states... </states[1]
</field>

<xs:elementname"field" >
 <xs:complexType>
 <xs:sequence>
 <xs:elementname"name" type"xs:string" minOccurs"1" />
 <xs:elementname"description" type"xs:string" minOccurs"1" />
 <xs:elementname"access" type"access_type" minOccurs"1" />
 <xs:elementname"lower_range" type"number" minOccurs"1" />
 <xs:elementname"upper_range" type"number" minOccurs"1" />
 <xs:elementref"states" minOccurs"1" />
 </xs:sequence>
 </xs:complexType>
</xs:element>

Properties

Name fields

Type Locally-defined complex type

Nillable no

Abstract no

<fields>
 <field... </field[0..*]
</fields>
Peripheral Files Programming | 106©1989-2024 Lauterbach

Schema Component Representation

Element: for

Creates sequence of <create_module> commands.

*Index of the for in module's `name` attribute and element's `regex` attribute is allowed.
Index must be placed in `#{}` brackets. Is possible to change format of index value.
Syntax C-like format specifiers (see available [format](#type_format_type)). Format must be placed after
index name and ":" separator.
For example `"Module #{i:d}"`.*

XML Instance Representation

Schema Component Representation

<xs:elementname"fields" >
 <xs:complexType>
 <xs:sequence>
 <xs:elementref"field" minOccurs"0" maxOccurs"unbounded" />
 </xs:sequence>
 </xs:complexType>
</xs:element>

Properties

Name for

Type Locally-defined complex type

Nillable no

Abstract no

<for
 iter_name"xs:QName" [0..1]
 min_value"number" [0..1]
 max_value"number" [0..1]
 description"xs:string" [0..1]
>
 <create_module... </create_module[0..*]
 <for... </for[0..*]
</for>
Peripheral Files Programming | 107©1989-2024 Lauterbach

Element: get

Defines property that will be saved

XML Instance Representation

Schema Component Representation

<xs:elementname"for" >
 <xs:complexType>
 <xs:sequence>
 <xs:elementref"create_module" minOccurs"0" maxOccurs"unbounded" />
 <xs:elementref"for" maxOccurs"unbounded" minOccurs"0" />
 </xs:sequence>
 <xs:attributename"iter_name" type"xs:QName" />
 <xs:attributename"min_value" type"number" />
 <xs:attributename"max_value" type"number" />
 <xs:attributename"description" type"xs:string" />
 </xs:complexType>
</xs:element>

Properties

Name get

Type Locally-defined complex type

Nillable no

Abstract no

<get
 property"property_type" [1]
/>

<xs:elementname"get" >
 <xs:complexType>
 <xs:attributename"property" type"property_type" use"required" />
 </xs:complexType>
</xs:element>
Peripheral Files Programming | 108©1989-2024 Lauterbach

Element: if

XML Instance Representation

Schema Component Representation

Properties

Name if

Type Locally-defined complex type

Nillable no

Abstract no

<if>
 <condition
 value"xs:string" [0..1]
 >[1..*]
 <register... </register[1..*]
 </condition>
 <default >[0..1]
 <register... </register[1..*]
 </default>
</if>
Peripheral Files Programming | 109©1989-2024 Lauterbach

Element: include

Defines either an absolute or relative path to a file to be included.

XML Instance Representation

Schema Component Representation

<xs:elementname"if" >
 <xs:complexType>
 <xs:sequence>
 <xs:elementname"condition" minOccurs"1" maxOccurs"unbounded" >
 <xs:complexType>
 <xs:sequence>
 <xs:elementref"register" minOccurs"1" maxOccurs"unbounded"
/>
 </xs:sequence>
 <xs:attributename"value" type"xs:string" />
 </xs:complexType>
 </xs:element>
 <xs:elementname"default" minOccurs"0" >
 <xs:complexType>
 <xs:sequence>
 <xs:elementref"register" minOccurs"1" maxOccurs"unbounded"
/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

Properties

Name include

Type Locally-defined complex type

Nillable no

Abstract no

<include
 path"xs:string" [1]
/>
Peripheral Files Programming | 110©1989-2024 Lauterbach

Element: include_module

Creates %include command.

XML Instance Representation

Schema Component Representation

<xs:elementname"include" >
 <xs:complexType>
 <xs:attributename"path" type"xs:string" use"required" />
 </xs:complexType>
</xs:element>

Properties

Name include_module

Type Locally-defined complex type

Nillable no

Abstract no

<include_module
 name"xs:string" [1]
 path"xs:string" [1]
 offset"xs:string" [0..1]
 position"include_module_position" [0..1]
 view_name"xs:string" [0..1]
 args"xs:string" [0..1]
 description"xs:string" [0..1]
 is_open"bool" [0..1]
 type"include_type" [0..1]
/>
Peripheral Files Programming | 111©1989-2024 Lauterbach

Element: map_cpu

Changes cpu name in sif conditions to a new `value`.

XML Instance Representation

Schema Component Representation

<xs:elementname"include_module" >
 <xs:complexType>
 <xs:attributename"name" type"xs:string" use"required" />
 <xs:attributename"path" type"xs:string" use"required" />
 <xs:attributename"offset" type"xs:string" use"optional" />
 <xs:attributename"position" type"include_module_position" use"optional"
/>
 <xs:attributename"view_name" type"xs:string" use"optional" />
 <xs:attributename"args" type"xs:string" use"optional" />
 <xs:attributename"description" type"xs:string" use"optional" />
 <xs:attributename"is_open" type"bool" use"optional" />
 <xs:attributename"type" type"include_type" use"optional" />
 </xs:complexType>
</xs:element>

Properties

Name map_cpu

Type Locally-defined complex type

Nillable no

Abstract no

<map_cpu
 regex"xs:string" [1]
 value"xs:string" [1]
/>
Peripheral Files Programming | 112©1989-2024 Lauterbach

Element: modify

Changes choosen property of element to `NEW_VALUE`.

XML Instance Representation

Schema Component Representation

<xs:elementname"map_cpu" >
 <xs:complexType>
 <xs:attributename"regex" type"xs:string" use"required" />
 <xs:attributename"value" type"xs:string" use"required" />
 </xs:complexType>
</xs:element>

Properties

Name modify

Type Locally-defined complex type

Nillable no

Abstract no

<modify
 element"element_type" [0..1]
 property"property_type" [0..1]
 regex"xs:string" [0..1]
 value"xs:string" [0..1]
/>

<xs:elementname"modify" >
 <xs:complexType>
 <xs:attributename"element" type"element_type" />
 <xs:attributename"property" type"property_type" />
 <xs:attributename"regex" type"xs:string" />
 <xs:attributename"value" type"xs:string" />
 </xs:complexType>
</xs:element>
Peripheral Files Programming | 113©1989-2024 Lauterbach

Element: module

XML Instance Representation

Schema Component Representation

Element: modules

Properties

Name module

Type Locally-defined complex type

Nillable no

Abstract no

<module>
 <name>xs:string </name>[1]
 <description>xs:string </description>[1]
 <address>number</address>[1]
 <is_open>bool</is_open>[1]
 <registers... </registers[1]
</module>

<xs:elementname"module" >
 <xs:complexType>
 <xs:sequence>
 <xs:elementname"name" type"xs:string" minOccurs"1" />
 <xs:elementname"description" type"xs:string" minOccurs"1" />
 <xs:elementname"address" type"number" minOccurs"1" />
 <xs:elementname"is_open" type"bool" minOccurs"1" />
 <xs:elementref"registers" minOccurs"1" />
 </xs:sequence>
 </xs:complexType>
</xs:element>

Properties

Name modules
Peripheral Files Programming | 114©1989-2024 Lauterbach

XML Instance Representation

Schema Component Representation

Element: open_module

Adds `.open` option to selected tree

XML Instance Representation

Type Locally-defined complex type

Nillable no

Abstract no

<modules>
 <module... </module[0..*]
</modules>

<xs:elementname"modules" >
 <xs:complexType>
 <xs:sequence>
 <xs:elementref"module" minOccurs"0" maxOccurs"unbounded" />
 </xs:sequence>
 </xs:complexType>
</xs:element>

Properties

Name open_module

Type Locally-defined complex type

Nillable no

Abstract no
Peripheral Files Programming | 115©1989-2024 Lauterbach

Schema Component Representation

Element: protect

Can be used in two different sequences:

- using `field` and `protected_by` - Creates protected field if the specified field and protector are found.
- using `common` - Finds field with given prefix or suffix, then tries to find field that is protected by first one
and then creates protected field from them.

XML Instance Representation

Schema Component Representation

<open_module
 depth"number" [0..1]
 element"open_module_element" [1]
/>

<xs:elementname"open_module" >
 <xs:complexType>
 <xs:attributename"depth" type"number" use"optional" />
 <xs:attributename"element" type"open_module_element" use"required" />
 </xs:complexType>
</xs:element>

Properties

Name protect

Type Locally-defined complex type

Nillable no

Abstract no

<protect>
 Start Choice[1]
 <field>protect_field_type</field>[0..1]
 <protected_by>protect_field_type</protected_by>[0..1]
 <common>protect_common_type</common>[0..1]
 End Choice
</protect>
Peripheral Files Programming | 116©1989-2024 Lauterbach

Element: register

XML Instance Representation

<xs:elementname"protect" >
 <xs:complexType>
 <xs:choice>
 <xs:sequence>
 <xs:elementname"field" type"protect_field_type" minOccurs"0"
maxOccurs"1" />
 <xs:elementname"protected_by" type"protect_field_type" minOccurs"0"
maxOccurs"1" />
 </xs:sequence>
 <xs:sequence>
 <xs:elementname"common" type"protect_common_type" minOccurs"0"
maxOccurs"1" />
 </xs:sequence>
 </xs:choice>
 </xs:complexType>
</xs:element>

Properties

Name register

Type Locally-defined complex type

Nillable no

Abstract no

<register>
 <name>xs:string </name>[1]
 <description>xs:string </description>[1]
 <access>access_type</access>[1]
 <offset>number</offset>[1]
 <size>number</size>[1]
 <intrusive_read>bool</intrusive_read>[1]
 <fields... </fields[1]
 <special>xs:string </special>[0..1]
 <port>number</port>[0..1]
 <dataread>number</dataread>[0..1]
 <datawrite>number</datawrite>[0..1]
</register>
Peripheral Files Programming | 117©1989-2024 Lauterbach

Schema Component Representation

Element: registers

XML Instance Representation

Schema Component Representation

<xs:elementname"register" >
 <xs:complexType>
 <xs:sequence>
 <xs:elementname"name" type"xs:string" minOccurs"1" />
 <xs:elementname"description" type"xs:string" minOccurs"1" />
 <xs:elementname"access" type"access_type" minOccurs"1" />
 <xs:elementname"offset" type"number" minOccurs"1" />
 <xs:elementname"size" type"number" minOccurs"1" />
 <xs:elementname"intrusive_read" type"bool" minOccurs"1" />
 <xs:elementref"fields" minOccurs"1" />
 <xs:elementname"special" type"xs:string" minOccurs"0" />
 <xs:elementname"port" type"number" minOccurs"0" />
 <xs:elementname"dataread" type"number" minOccurs"0" />
 <xs:elementname"datawrite" type"number" minOccurs"0" />
 </xs:sequence>
 </xs:complexType>
</xs:element>

Properties

Name registers

Type Locally-defined complex type

Nillable no

Abstract no

<registers>
 <register... </register[0..*]
</registers>
Peripheral Files Programming | 118©1989-2024 Lauterbach

Element: remove

XML Instance Representation

Schema Component Representation

Element: replace

<xs:elementname"registers" >
 <xs:complexType>
 <xs:sequence>
 <xs:elementref"register" minOccurs"0" maxOccurs"unbounded" />
 </xs:sequence>
 </xs:complexType>
</xs:element>

Properties

Name remove

Type Locally-defined complex type

Nillable no

Abstract no

<remove/>

<xs:elementname"remove" >
 <xs:complexType>
 <xs:sequence/>
 </xs:complexType>
</xs:element>

Properties

Name replace
Peripheral Files Programming | 119©1989-2024 Lauterbach

Replaces all found elements to new ones defined in `<replace>`.

XML Instance Representation

Schema Component Representation

Element: rule

Type Locally-defined complex type

Nillable no

Abstract no

<replace
 element"element_type" [0..1]
>
 Start Group: replace_element_type[1..*]
 Start Choice[1]
 <module... </module[1]
 <modules... </modules[1]
 <register... </register[1]
 <registers... </registers[1]
 <field... </field[1]
 <fields... </fields[1]
 <state... </state[1]
 <states... </states[1]
 <if... </if[1]
 End Choice
 End Group: replace_element_type
</replace>

<xs:elementname"replace" >
 <xs:complexType>
 <xs:sequence>
 <xs:groupref"replace_element_type" minOccurs"1" maxOccurs"unbounded"
/>
 </xs:sequence>
 <xs:attributename"element" type"element_type" />
 </xs:complexType>
</xs:element>

Properties

Name rule
Peripheral Files Programming | 120©1989-2024 Lauterbach

A rule definition contains one or more select tags `<select>` followed by one or more `<command>` tags
`<command_name>`:

- The `<select>` tag defines on which elements the `<command>` tags will be applied. The first `<select>`
tag will search in all elements of the XML file. The next `<select>` tag will search on the results of the
previous select tag. That way, selecting the desired elements can be achieved by reducing the search base
step by step.
- The `<command>` tag defines a modification that will be executed on the selected elements. Several
`<command>` tags can be specified to apply independent modifications on the same search results.

XML Instance Representation

Schema Component Representation

Type Locally-defined complex type

Nillable no

Abstract no

<rule>
 <select... </select[1..*]
 Start Group: commands[1..*]
 Start Choice[1]
 <modify... </modify[1]
 <replace... </replace[1]
 <protect... </protect[1]
 <remove... </remove[1]
 <create_module... </create_module[1]
 <for... </for[1]
 <create_view... </create_view[1]
 <map_cpu... </map_cpu[1]
 <destroy_module... </destroy_module[1]
 <include_module... </include_module[1]
 <derive_module... </derive_module[1]
 <open_module... </open_module[1]
 <create_header... </create_header[1]
 End Choice
 End Group: commands
</rule>
Peripheral Files Programming | 121©1989-2024 Lauterbach

Element: rules

The rule file consists of root tag `<rules>` and list of `<rule>` or `<variable>` tags inside of them. Nesting of
tags is not allowed.

XML Instance Representation

Schema Component Representation

<xs:elementname"rule" >
 <xs:complexType>
 <xs:sequence>
 <xs:elementref"select" minOccurs"1" maxOccurs"unbounded" />
 <xs:groupref"commands" minOccurs"1" maxOccurs"unbounded" />
 </xs:sequence>
 </xs:complexType>
</xs:element>

Properties

Name rules

Type Locally-defined complex type

Nillable no

Abstract no

<rules
 verbose"bool" [0..1]
>
 Start Choice[1..*]
 <rule... </rule[1]
 <variable... </variable[1]
 <include... </include[1]
 End Choice
</rules>
Peripheral Files Programming | 122©1989-2024 Lauterbach

Element: select

Selects targets elements to be processed by the commands. The selection is determined by the element
type and its properties.

XML Instance Representation

Schema Component Representation

<xs:elementname"rules" >
 <xs:complexType>
 <xs:choicemaxOccurs"unbounded" >
 <xs:elementref"rule" />
 <xs:elementref"variable" />
 <xs:elementref"include" />
 </xs:choice>
 <xs:attributename"verbose" type"bool" use"optional" />
 </xs:complexType>
</xs:element>

Properties

Name select

Type Locally-defined complex type

Nillable no

Abstract no

<select
 element"element_type" [1]
 property"property_type" [0..1]
 regex"xs:string" [0..1]
 num_equal"xs:string" [0..1]
 all_occurrences"bool" [0..1]
 invert_regex"bool" [0..1]
 on_error"on_error_type" [0..1]
/>
Peripheral Files Programming | 123©1989-2024 Lauterbach

Element: state

XML Instance Representation

Schema Component Representation

<xs:elementname"select" >
 <xs:complexType>
 <xs:attributename"element" type"element_type" use"required" />
 <xs:attributename"property" type"property_type" use"optional" />
 <xs:attributename"regex" type"xs:string" use"optional" />
 <xs:attributename"num_equal" type"xs:string" use"optional" />
 <xs:attributename"all_occurrences" type"bool" use"optional" />
 <xs:attributename"invert_regex" type"bool" use"optional" />
 <xs:attributename"on_error" type"on_error_type" use"optional" />
 </xs:complexType>
</xs:element>

Properties

Name state

Type Locally-defined complex type

Nillable no

Abstract no

<state>
 <name>xs:string </name>[1]
 <value>number</value>[1]
</state>

<xs:elementname"state" >
 <xs:complexType>
 <xs:sequence>
 <xs:elementname"name" type"xs:string" minOccurs"1" />
 <xs:elementname"value" type"number" minOccurs"1" />
 </xs:sequence>
 </xs:complexType>
</xs:element>
Peripheral Files Programming | 124©1989-2024 Lauterbach

Element: states

XML Instance Representation

Schema Component Representation

Element: variable

Properties

Name states

Type Locally-defined complex type

Nillable no

Abstract no

<states>
 <state... </state[0..*]
</states>

<xs:elementname"states" >
 <xs:complexType>
 <xs:sequence>
 <xs:elementref"state" minOccurs"0" maxOccurs"unbounded" />
 </xs:sequence>
 </xs:complexType>
</xs:element>

Properties

Name variable

Type Locally-defined complex type

Nillable no

Abstract no
Peripheral Files Programming | 125©1989-2024 Lauterbach

A variable definition contains one or more select tags `<select>` followed by one or more `<get>` tags:

- The `<select>` tag defines on which elements the `<command>` tags will be applied. The first `<select>`
tag will search in all elements of the XML file. The next `<select>` tag will search on the results of the
previous select tag. That way, selecting the desired elements can be achieved by reducing the search base
step by step.
- The `<get>` tag defines a property value that will be saved under variable name.

NOTE: to refer to the variable use `#{variable_name[position]:format}`, where:

- variable_name - name of the variable
- [format](#type_format_type) - available C-like formats
- position (optional) - in_case of using all_occurrences while searching the values are stored in vector, use
this to refer to proper value.

XML Instance Representation

Schema Component Representation

<variable
 name"xs:string" [1]
>
 <select... </select[1..*]
 <get... </get[1..*]
</variable>

<xs:elementname"variable" >
 <xs:complexType>
 <xs:sequence>
 <xs:elementref"select" minOccurs"1" maxOccurs"unbounded" />
 <xs:elementref"get" minOccurs"1" maxOccurs"unbounded" />
 </xs:sequence>
 <xs:attributename"name" type"xs:string" use"required" />
 </xs:complexType>
</xs:element>
Peripheral Files Programming | 126©1989-2024 Lauterbach

Global Definitions

Complex Type: protect_common_type

Finds field with given prefix or suffix, then tries to find field that is protected by first one and then creates
protected field from them.

XML Instance Representation

Schema Component Representation

Complex Type: protect_field_type

Type hierarchy

Super-types: None

Sub-types: None

Properties

Name protect_common_type

Abstract no

<...
 prefix"xs:string" [1]
 suffix"xs:string" [1]
/>

<xs:complexTypename"protect_common_type" >
 <xs:attributename"prefix" type"xs:string" use"required" />
 <xs:attributename"suffix" type"xs:string" use"required" />
</xs:complexType>

Type hierarchy

Super-types: None

Sub-types: None
Peripheral Files Programming | 127©1989-2024 Lauterbach

Creates protected field if the specified field and protector are found.

XML Instance Representation

Schema Component Representation

Model Group: commands

Commands are element modificators that process data sets extracted from data model by the `<select>`
tag. One data set can be used by multiple commands. Command tags must follow the `<select>` tags.

XML Instance Representation

Properties

Name protect_field_type

Abstract no

<...
 regex"xs:string" [1]
/>

<xs:complexTypename"protect_field_type" >
 <xs:attributename"regex" type"xs:string" use"required" />
</xs:complexType>

Properties

Name commands
Peripheral Files Programming | 128©1989-2024 Lauterbach

Schema Component Representation

Model Group: replace_element_type

XML Instance Representation

Start Choice[1]
 <modify... </modify[1]
 <replace... </replace[1]
 <protect... </protect[1]
 <remove... </remove[1]
 <create_module... </create_module[1]
 <for... </for[1]
 <create_view... </create_view[1]
 <map_cpu... </map_cpu[1]
 <destroy_module... </destroy_module[1]
 <include_module... </include_module[1]
 <derive_module... </derive_module[1]
 <open_module... </open_module[1]
 <create_header... </create_header[1]
End Choice

<xs:groupname"commands" >
 <xs:choice>
 <xs:elementref"modify" />
 <xs:elementref"replace" />
 <xs:elementref"protect" />
 <xs:elementref"remove" />
 <xs:elementref"create_module" />
 <xs:elementref"for" />
 <xs:elementref"create_view" />
 <xs:elementref"map_cpu" />
 <xs:elementref"destroy_module" />
 <xs:elementref"include_module" />
 <xs:elementref"derive_module" />
 <xs:elementref"open_module" />
 <xs:elementref"create_header" />
 </xs:choice>
</xs:group>

Properties

Name replace_element_type
Peripheral Files Programming | 129©1989-2024 Lauterbach

Schema Component Representation

Simple Type: access_type

Start Choice[1]
 <module... </module[1]
 <modules... </modules[1]
 <register... </register[1]
 <registers... </registers[1]
 <field... </field[1]
 <fields... </fields[1]
 <state... </state[1]
 <states... </states[1]
 <if... </if[1]
End Choice

<xs:groupname"replace_element_type" >
 <xs:choice>
 <xs:elementref"module" />
 <xs:elementref"modules" />
 <xs:elementref"register" />
 <xs:elementref"registers" />
 <xs:elementref"field" />
 <xs:elementref"fields" />
 <xs:elementref"state" />
 <xs:elementref"states" />
 <xs:elementref"if" />
 </xs:choice>
</xs:group>

Type hierarchy

Super-types: xs:token < access_type(by restriction)

Sub-types: None

Properties

Name access_type

Content Base XSD Type: token, value comes from list:
{'RW'|'RO'|'WO'|'W1C'|'WS'|'H'}
Peripheral Files Programming | 130©1989-2024 Lauterbach

Available `access_type` values:

- `RW`: Read write (group, bitfld)
- `RO`: Read only (rgroup, rbitfld)
- `WO`: Write only (wgroup)
- `W1C`: Write one to clear (eventfld)
- `WS`: Write secured
- `H`: Hidden (hgroup)

Schema Component Representation

Simple Type: bool

Similar to xs:boolean but with a 'no/yes' representation

Schema Component Representation

<xs:simpleTypename"access_type" >
 <xs:restrictionbase"xs:token" >
 <xs:enumerationvalue"RW" />
 <xs:enumerationvalue"RO" />
 <xs:enumerationvalue"WO" />
 <xs:enumerationvalue"W1C" />
 <xs:enumerationvalue"WS" />
 <xs:enumerationvalue"H" />
 </xs:restriction>
</xs:simpleType>

Type hierarchy

Super-types: xs:string < bool(by restriction)

Sub-types: None

Properties

Name bool

Content Base XSD Type: string, value comes from list: {'no'|'yes'}
Peripheral Files Programming | 131©1989-2024 Lauterbach

Simple Type: create_module_mode

- `single` - Default. Create one tree for all matched groups of elements.
- `multi` - Create separate trees for each matched groups of elements. Names will be numerated.

Schema Component Representation

Simple Type: create_module_position

<xs:simpleTypename"bool" >
 <xs:restrictionbase"xs:string" >
 <xs:enumerationvalue"no" />
 <xs:enumerationvalue"yes" />
 </xs:restriction>
</xs:simpleType>

Type hierarchy

Super-types: xs:token < create_module_mode(by restriction)

Sub-types: None

Properties

Name create_module_mode

Content Base XSD Type: token, value comes from list: {'single'|'multi'}

<xs:simpleTypename"create_module_mode" >
 <xs:restrictionbase"xs:token" >
 <xs:enumerationvalue"single" />
 <xs:enumerationvalue"multi" />
 </xs:restriction>
</xs:simpleType>

Type hierarchy

Super-types: xs:token < create_module_position(by restriction)

Sub-types: None
Peripheral Files Programming | 132©1989-2024 Lauterbach

- `inplace` - Default. Place trees in position where elemet has been found.
- `top` - Place trees on the top of module.
- `bottom` - Place trees on the bottom of module.

Schema Component Representation

Simple Type: derive_module_element

- `register` - Module contains registers only.
- `module` - Module contains submodules only.
- `all` - Module contains both modules and registers.

Schema Component Representation

Properties

Name create_module_position

Content Base XSD Type: token, value comes from list: {'inplace'|'top'|'bottom'}

<xs:simpleTypename"create_module_position" >
 <xs:restrictionbase"xs:token" >
 <xs:enumerationvalue"inplace" />
 <xs:enumerationvalue"top" />
 <xs:enumerationvalue"bottom" />
 </xs:restriction>
</xs:simpleType>

Type hierarchy

Super-types: xs:token < derive_module_element(by restriction)

Sub-types: None

Properties

Name derive_module_element

Content Base XSD Type: token, value comes from list: {'register'|'module'|'all'}
Peripheral Files Programming | 133©1989-2024 Lauterbach

Simple Type: element_type

- `permodel` - Top level element.
- `module` - Can be nested in other module.
- `register` -Can be nested in module.
- `field` -Can be nested in register.
- `state` -Can be nested in field.
- `include_module` - Can be nested in permodel.

Schema Component Representation

<xs:simpleTypename"derive_module_element" >
 <xs:restrictionbase"xs:token" >
 <xs:enumerationvalue"register" />
 <xs:enumerationvalue"module" />
 <xs:enumerationvalue"all" />
 </xs:restriction>
</xs:simpleType>

Type hierarchy

Super-types: xs:token < element_type(by restriction)

Sub-types: None

Properties

Name element_type

Content Base XSD Type: token, value comes from list:
{'permodel'|'module'|'register'|'field'|'state'|'include_module'}

<xs:simpleTypename"element_type" >
 <xs:restrictionbase"xs:token" >
 <xs:enumerationvalue"permodel" />
 <xs:enumerationvalue"module" />
 <xs:enumerationvalue"register" />
 <xs:enumerationvalue"field" />
 <xs:enumerationvalue"state" />
 <xs:enumerationvalue"include_module" />
 </xs:restriction>
</xs:simpleType>
Peripheral Files Programming | 134©1989-2024 Lauterbach

Simple Type: format_type

- `s` - saves string
- `i` - saves decimal
- `d` - saves decimal
- `x` - saves hexadecimal
- `X` - saves hexadecimal

Schema Component Representation

Simple Type: if_type

Type hierarchy

Super-types: xs:token < format_type(by restriction)

Sub-types: None

Properties

Name format_type

Content Base XSD Type: token, value comes from list: {'s'|'i'|'d'|'x'|'X'}

<xs:simpleTypename"format_type" >
 <xs:restrictionbase"xs:token" >
 <xs:enumerationvalue"s" />
 <xs:enumerationvalue"i" />
 <xs:enumerationvalue"d" />
 <xs:enumerationvalue"x" />
 <xs:enumerationvalue"X" />
 </xs:restriction>
</xs:simpleType>

Type hierarchy

Super-types: None

Sub-types: None
Peripheral Files Programming | 135©1989-2024 Lauterbach

- `practice_condition` - PRACTICE condition syntax.
- `default` - Can be used to generate else clause.

Schema Component Representation

Simple Type: include_module_position

- `top` - Place %include on the top of module. (default)
- `bottom` - Place trees on the bottom of module.
- `sorted` - %include command will be sorted with `SortTopTrees` option.

Schema Component Representation

Properties

Name if_type

Content Union of following types: xs:token
Locally defined type: Base XSD Type: token, value comes from list:
{'default'}

<xs:simpleTypename"if_type" >
 <xs:unionmemberTypes"xs:token" >
 <xs:simpleType>
 <xs:restrictionbase"xs:token" >
 <xs:enumerationvalue"default" />
 </xs:restriction>
 </xs:simpleType>
 </xs:union>
</xs:simpleType>

Type hierarchy

Super-types: xs:token < include_module_position(by restriction)

Sub-types: None

Properties

Name include_module_position

Content Base XSD Type: token, value comes from list: {'top'|'bottom'|'sorted'}
Peripheral Files Programming | 136©1989-2024 Lauterbach

Simple Type: include_type

Outputs proper include command

Schema Component Representation

Simple Type: number

<xs:simpleTypename"include_module_position" >
 <xs:restrictionbase"xs:token" >
 <xs:enumerationvalue"top" />
 <xs:enumerationvalue"bottom" />
 <xs:enumerationvalue"sorted" />
 </xs:restriction>
</xs:simpleType>

Type hierarchy

Super-types: xs:token < include_type(by restriction)

Sub-types: None

Properties

Name include_type

Content Base XSD Type: token, value comes from list: {'%include'|'INCLUDE'}

<xs:simpleTypename"include_type" >
 <xs:restrictionbase"xs:token" >
 <xs:enumerationvalue"%include" />
 <xs:enumerationvalue"INCLUDE" />
 </xs:restriction>
</xs:simpleType>

Type hierarchy

Super-types: xs:string < number(by restriction)

Sub-types: None
Peripheral Files Programming | 137©1989-2024 Lauterbach

The `number` type accepts either hexadecimal or decimal values.

Schema Component Representation

Simple Type: on_error_type

- `error (default)`: Current behavior, conversion process is aborted with an error message.
- `ignore`: Ignore error.
- `logfile`: Conversion process continues but error is printed to logfile. Same as ignore option if logfile is
disabled.

Schema Component Representation

Properties

Name number

Content Base XSD Type: string, pattern = 0x[0-9A-Fa-f]+|[0-9]+.?|0[b|y][01]+

<xs:simpleTypename"number" >
 <xs:restrictionbase"xs:string" >
 <xs:patternvalue"0x[0-9A-Fa-f]+|[0-9]+.?|0[b|y][01]+" />
 </xs:restriction>
</xs:simpleType>

Type hierarchy

Super-types: xs:token < on_error_type(by restriction)

Sub-types: None

Properties

Name on_error_type

Content Base XSD Type: token, value comes from list: {'error'|'ignore'|'logfile'}
Peripheral Files Programming | 138©1989-2024 Lauterbach

Simple Type: open_module_element

-`module` - Only open tree if module does not have registers (only other submodules)*
-`mixed` - Only open tree if module has registers and submodules.*
-`all` - Open tree unconditionally*

The specified attribute supersedes another attribute. For instance, when using "element"="module" and
"depth"="3" as an example, it means,
if there are registers at the top level, the sublevels at depths 2 and 3 will not be opened.

Schema Component Representation

<xs:simpleTypename"on_error_type" >
 <xs:restrictionbase"xs:token" >
 <xs:enumerationvalue"error" />
 <xs:enumerationvalue"ignore" />
 <xs:enumerationvalue"logfile" />
 </xs:restriction>
</xs:simpleType>

Type hierarchy

Super-types: xs:token < open_module_element(by restriction)

Sub-types: None

Properties

Name open_module_element

Content Base XSD Type: token, value comes from list: {'module'|'mixed'|'all'}

<xs:simpleTypename"open_module_element" >
 <xs:restrictionbase"xs:token" >
 <xs:enumerationvalue"module" />
 <xs:enumerationvalue"mixed" />
 <xs:enumerationvalue"all" />
 </xs:restriction>
</xs:simpleType>
Peripheral Files Programming | 139©1989-2024 Lauterbach

Simple Type: property_type

- `name` - Name of the element.
- `description` - Description of the element.
- `value` - State code value.
- `access_type` - Access type of the given element (e.g., read/write/...).
- `offset` - Address offset from the base address in hexadecimal.
- `size` - Size of the register in bytes.
- `lower_range` - Field's lower boundary.
- `upper_range` - Field's upper boundary.
- `intrusive_read` - Indicates whether reading the given register causes data loss or not.
- `condition` - Indicates the display condition of the given element.
- ̀ view_name` - Indicates the reference name for the conditional view of the given element. It is used for view
creation or selection for making changes.
- `path` - Path of the element based on element names.
- `button_name` - Button name of the given element.
- `button_command` - Button commands of the given element.
- `address` - Base address of the module.
- `access_class` - Access classification for the base address.
- `special` - Is register part of group saveindex, savetindex, index, tindex.
- `port` - Is the address of the reg addr register for saveindex, savetindex, index, and tindex commands.
- `dataread` - Index of the register within special group.
- `datawrite` - If unspecified, value is same as dataread.

Schema Component Representation

Type hierarchy

Super-types: xs:token < property_type(by restriction)

Sub-types: None

Properties

Name property_type

Content Base XSD Type: token, value comes from list:
{'name'|'description'|'value'|'access_type'|'offset'|'size'|'lower_range'|'upp
er_range'|'intrusive_read'|'condition'|'view_name'|'path'|'button_name'|'bu
tton_command'|'address'|'access_class'|'special'|'port'|'dataread'|'datawri
te'}
Peripheral Files Programming | 140©1989-2024 Lauterbach

Simple Type: props_type

Schema Component Representation

<xs:simpleTypename"property_type" >
 <xs:restrictionbase"xs:token" >
 <xs:enumerationvalue"name" />
 <xs:enumerationvalue"description" />
 <xs:enumerationvalue"value" />
 <xs:enumerationvalue"access_type" />
 <xs:enumerationvalue"offset" />
 <xs:enumerationvalue"size" />
 <xs:enumerationvalue"lower_range" />
 <xs:enumerationvalue"upper_range" />
 <xs:enumerationvalue"intrusive_read" />
 <xs:enumerationvalue"condition" />
 <xs:enumerationvalue"view_name" />
 <xs:enumerationvalue"path" />
 <xs:enumerationvalue"button_name" />
 <xs:enumerationvalue"button_command" />
 <xs:enumerationvalue"address" />
 <xs:enumerationvalue"access_class" />
 <xs:enumerationvalue"special" />
 <xs:enumerationvalue"port" />
 <xs:enumerationvalue"dataread" />
 <xs:enumerationvalue"datawrite" />
 </xs:restriction>
</xs:simpleType>

Type hierarchy

Super-types: xs:token < props_type(by restriction)

Sub-types: None

Properties

Name props_type

Content Base XSD Type: token, value comes from list:
{'Confidential'|'Released'|'Strictly-confidential'}
Peripheral Files Programming | 141©1989-2024 Lauterbach

<xs:simpleTypename"props_type" >
 <xs:restrictionbase"xs:token" >
 <xs:enumerationvalue"Confidential" />
 <xs:enumerationvalue"Released" />
 <xs:enumerationvalue"Strictly-confidential" />
 </xs:restriction>
</xs:simpleType>
Peripheral Files Programming | 142©1989-2024 Lauterbach

Glossary

Abstract(Applies to complex type definitions and element declarations). An abstract element or complex type
cannot used to validate an element instance. If there is a reference to an abstract element, only element
declarations that can substitute the abstract element can be used to validate the instance. For references to
abstract type definitions, only derived types can be used.

All Model GroupChild elements can be provided in any orderin instances. See:
http://www.w3.org/TR/xmlschema-1/#element-all.

Choice Model GroupOnly onefrom the list of child elements and model groups can be provided in instances.
See: http://www.w3.org/TR/xmlschema-1/#element-choice.

Collapse Whitespace PolicyReplace tab, line feed, and carriage return characters with space character
(Unicode character 32). Then, collapse contiguous sequences of space characters into single space
character, and remove leading and trailing space characters.

Disallowed Substitutions(Applies to element declarations). If substitution is specified, then substitution
groupmembers cannot be used in place of the given element declaration to validate element instances. If
derivation methods , e.g. extension, restriction, are specified, then the given element declaration will not
validate element instances that have types derived from the element declaration's type using the specified
derivation methods. Normally, element instances can override their declaration's type by specifying an
xsi:typeattribute.

Key ConstraintLike Uniqueness Constraint, but additionally requires that the specified value(s) must be
provided. See: http://www.w3.org/TR/xmlschema-1/#cIdentity-constraint_Definitions.

Key Reference ConstraintEnsures that the specified value(s) must match value(s) from a Key Constraintor
Uniqueness ConstraintSee: http://www.w3.org/TR/xmlschema-1/#cIdentity-constraint_Definitions.

Model GroupGroups together element content, specifying the order in which the element content can occur
and the number of times the group of element content may be repeated. See:
http://www.w3.org/TR/xmlschema-1/#Model_Groups.

Nillable(Applies to element declarations). If an element declaration is nillable, instances can use the
xsi:nilattribute. The xsi:nilattribute is the boolean attribute, nil , from the
http://www.w3.org/2001/XMLSchema-instance namespace. If an element instance has an
xsi:nilattribute set to true, it can be left empty, even though its element declaration may have required
content.

NotationA notation is used to identify the format of a piece of data. Values of elements and attributes that are
of type, NOTATION, must come from the names of declared notations. See:
http://www.w3.org/TR/xmlschema-1/#cNotation_Declarations.

Preserve Whitespace PolicyPreserve whitespaces exactly as they appear in instances.

Prohibited Derivations(Applies to type definitions). Derivation methods that cannot be used to create sub-
types from a given type definition.

Prohibited Substitutions(Applies to complex type definitions). Prevents sub-types that have been derived
using the specified derivation methods from validating element instances in place of the given type definition.
Peripheral Files Programming | 143©1989-2024 Lauterbach

Replace Whitespace PolicyReplace tab, line feed, and carriage return characters with space character
(Unicode character 32).

Sequence Model GroupChild elements and model groups must be provided in the specified orderin
instances. See: http://www.w3.org/TR/xmlschema-1/#element-sequence.

Substitution GroupElements that are membersof a substitution group can be used wherever the
headelement of the substitution group is referenced.

Substitution Group Exclusions(Applies to element declarations). Prohibits element declarations from
nominating themselves as being able to substitute a given element declaration, if they have types that are
derived from the original element's type using the specified derivation methods.

Target NamespaceThe target namespace identifies the namespace that components in this schema
belongs to. If no target namespace is provided, then the schema components do not belong to any
namespace.

Uniqueness ConstraintEnsures uniqueness of an element/attribute value, or a combination of values, within
a specified scope. See: http://www.w3.org/TR/xmlschema-1/#cIdentity-constraint_Definitions.
Peripheral Files Programming | 144©1989-2024 Lauterbach

Error Messages

<location> Invalid attribute <attribute> in tag <name>

Unknown attribute occured for parent tag.

Example:

Fix:
Remove the attribute from file or report the problem to developer.

<location> Invalid node <node> in tag <name>

Unknown node occurred for parent tag.

Example:

Fix:
Check spelling or report the problem to developer.

<rules xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="rules.xsd">
 <rule>
 <select unknown="unknown" element="module" property="name"
regex="MODULE" all_occurrences="yes" invert_regex="yes" />
 <remove />
 </rule>
</rules>

test.xml:5:120 Invalid attribute unknown in tag <select>

<rules xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="rules.xsd">
 <rule>
 <select element="module" property="name" regex="CSCU" />
 <unknown_command name="ACCEN" position="bottom">
 <element regex="CSCU_ACCEN_.*" />
 </unknown_command>
 </rule>
</rules>

test.xml:5:47 Invalid node 'unknown_command' in tag '<rule>'
Peripheral Files Programming | 145©1989-2024 Lauterbach

<location> Invalid value <value> in tag <name>

Unknown value occurred in node or attribute.

Example:

Fix:
Check spelling or report the problem to developer.

<location> <name> from <name> must occur only once

Node or attribute has occured more than once.

Example:

Fix:
Remove duplicates or report the problem to developer.

...
<enumeratedValue>
 <name>DISABLED</name>
 <description>N/A</description>
 <value>UnknownValue</value>
</enumeratedValue>
...

cyt2b7.svd:3208:26 Invalid value 'UnknownValue' of 'value'

<rules xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="rules.xsd">
 <rule>
 <select element="module" element="register" property="name"
regex="CSCU"/>
 </rule>
</rules>

test.xml:4:50 'element' from 'select' must occur only once
Peripheral Files Programming | 146©1989-2024 Lauterbach

<location> Missing <name> in tag <name>

Node or attribute is missing in parent node.

Example:

Fix:
Add the missing element or report the problem to developer.

Invalid value <value> for property “property”

The right side of a property represents an invalid value.

Example:

Fix:
Change the value to proper decimal format.

...
<device schemaVersion="1.3" xmlns:xs="http://www.w3.org/2001/XMLSchema-
instance"
xs:noNamespaceSchemaLocation="CMSIS-SVD.xsd">
 <vendor>Cypress Semiconductor</vendor>
 <vendorID>Cypress</vendorID>
 <name>cyt2b7</name>
 ...
 <peripherals>
 </peripherals>
</device>
...

cyt2b7.svd:29:12 Missing 'peripheral' in tag '<peripherals>'

<rules>
 <rule>
 <select element="module" property="name" regex="PERI" />
 <select element="register" property="name" regex="TIMEOUT_CTL" />
 <select element="field" property="name" regex="TIMEOUT" />
 <modify property="lower_range" value="unknownValue" />
 </rule>
</rules>

Invalid value "unknownValue" for property "lower_range"
Peripheral Files Programming | 147©1989-2024 Lauterbach

<location> Invalid property attribute for selected component

Property does not match with selected component.

Example:

Fix:
Set proper property according to availability of properties.

<location> missing <select> for <name> tag

Command does not has a selected item defined.

Example:

Fix:
Define <select> before <modify>.

<rules>
 <rule>
 <select element="module" property="lower_range" regex="PERI" />
 <modify property="lower_range" value="unknownValue" />
 </rule>
</rules>

test.xml:4:38 Invalid property attribute for selected component

<rules>
 <rule>
 <modify property="lower_range" value="unknownValue" />
 </rule>
</rules>

test.xml:4:53 missing <select> for <modify> tag
Peripheral Files Programming | 148©1989-2024 Lauterbach

<location> <select> can not be used after <command>

<select> node can not be written after using a <command>.

Example:

Fix:
Define <select> before <create_module>.

<location> <select> with ‘property=path’ can be used only once for single <rule>

<select> with property=path can be used only once for each rule <command>.

Example:

Fix:
Define whole path in single <select>.

<rules>
 <rule>
 <create_module name="ACCEN" position="bottom">
 <element regex="CSCU_ACCEN_.*" />
 </create_module>
 <select element="module" property="name" regex="PERI" />
 </rule>
</rules>

test.xml:7:55 <select> can not be used after <command>

<rules>
 <rule>
 <select element="module" property="path" regex="PERI,PERI" />
 <select element="register" property="path" regex="PERI,TIMEOUT"
/>
 </rule>
</rules>

test.xml:5:65 <select> with 'property=path' can be used only once for single <rule>
Peripheral Files Programming | 149©1989-2024 Lauterbach

<location> <name> tag requires subtags

Node was found that should contain subtags but is empty.

Example:

Fix:
Define subtags.

None of component <name> elements match <value>

No components were found by regex=<value>.

Example:

Fix:
Check spelling in <field> regex.

<rules>
 <rule>
 <select element="register" property="name" regex="\w+_OCS"
all_occurrences="yes" />
 <protect>
 </protect>
 </rule>
</rules>

test.xml:5:8 <protect> tag requires subtags

<rules>
 <rule>
 <select element="register" property="path" regex="PERI,TR_CMD"
all_occurrences="yes" />
 <protect>
 <field regex="TR_SEL_WRONG" />
 <protected_by regex="GROUP_SEL" />
 </protect>
 </rule>
</rules>

None of component "TR_CMD" elements match "TR_SEL_WRONG"
Peripheral Files Programming | 150©1989-2024 Lauterbach

<location> <name> can’t be used with <name>

Both tags can't be combined.

Example:

Fix:
Choose either <field> or <common> for single rule or split them to different rules.

Invalid min_value

Both tags can't be combined.

Example:

Fix:
Fix the min value to be either the decimal value or it refers to another <for>.

<rules>
 <rule>
 <select element="register" property="path" regex="PERI,TR_CMD"
all_occurrences="yes" />
 <protect>
 <field regex="TR_SEL" />
 <common prefix="prefix" suffix="suffix" />
 </protect>
 </rule>
</rules>

test.xml:5:8 <field> can't be used with <common>.

<rules>
 <rule>
 <select element="register" property="path" regex="PERI"
all_occurrences="yes" />
 <for iter_name="i" min_value="UNKNOWN" max_value="20">
 <create_module name="CH#{i:u}" position="bottom">
 <element regex="CSS\d_CH#{i:u}_.*" />
 </create_module>
 </for>
 </rule>
</rules>

Invalid min_value
Peripheral Files Programming | 151©1989-2024 Lauterbach

Invalid iter_name

Variables with same iter_name can not be nested.

Example:

Fix:
Fix the min_value fixing the 'o' to 'i' as there is no 'o' named for above.

The <value> register could not be found

Register defined in use attribute could not be found in selected component.

Example:

Fix:
Check spelling in register and make sure it belongs to selected components parent.

<rules>
 <rule>
 <select element="register" property="path" regex="PERI"
all_occurrences="yes" />
 <for iter_name="i" min_value="0" max_value="20">
 <for iter_name="i" min_value="#{o:u}" max_value="20">
 <create_module name="CH#{i:u}" position="bottom">
 <element regex="CSS\d_CH#{i:u}_.*" />
 </create_module>
 </for>
 </for>
 </rule>
</rules>

Invalid iter_name

<rules>
 <rule>
 <select element="register" property="path"
regex="PERI,TIMEOUT_CTL" all_occurrences="yes" />
 <create_view view_name="view1" if="(per.long(D:#
{offset:x})&0x800)==0x800" use="UNKNOWN" />
 </rule>
</rules>

The "UNKNOWN" register could not be found
Peripheral Files Programming | 152©1989-2024 Lauterbach

ELSE command can not be created for <value> without if command

Register defined in use attribute could not be found in selected component.

Example:

Fix:
Use create_view with condition before "default".

<location> Root tag <name> not found.

Its thrown if any of leading node from xml is not found in xml.

Example:

Fix:
Insert proper root tag to the xml.

<rules>
 <rule>
 <select element="register" property="path"
regex="PERI,TIMEOUT_CTL" all_occurrences="yes" />
 <create_view view_name="view1" if="default"/>
 </rule>
</rules>

ELSE command can not be created for "TIMEOUT_CTL" without if command

<rule>
 <select element="module" property="name" regex="PERI" />
</rule>

test.xml::0:0 Root tag <rules> not found.
Peripheral Files Programming | 153©1989-2024 Lauterbach

<location> duplicated element.

Duplicated element in create_module was found.

Example:

Fix:
Use create_view with condition before "default".

Wrong input file specified for <name> format.

Unknown file was asked to be converted using wrong converter Type.

Example:

SVD converter was asked to be convert a file without <device> node

This inputs are not supported by our converter

Unknown input file is being converted using AUTO mode.

<rules>
 <rule>
 <select element="register" property="path"
regex="PERI,TIMEOUT_CTL" all_occurrences="yes" />
 <create_module name="ACCENCS" position="bottom">
 <element regex="CSS\d_ACCENCS_.*" />
 <element regex="CSS\d_ACCENCS_.*" />
 </create_module>
 </rule>
</rules>

test.xml:7:35 duplicated element

Wrong input file specified for SVD format
Peripheral Files Programming | 154©1989-2024 Lauterbach

Functions

The table below shows an extract of functions useful for writing PER files.

For a complete list of available functions please see:

• PowerView Function Reference

• General Function Reference

• Stimuli Generator Function Reference

<int> CONVert.BOOLTOINT(<bool>) Converts a boolean value to an integer.
TRUE becomes 1, FALSE becomes 0
This function allows you to write conditional base
statements e.g.:

base VM:(0x1010*conv.booltoint(d.l(vm:0)==4
2)|0x1070*conv.booltoint(d.l(vm:0)!=42)

<int> PER.ARG(<index>)
and
PER.ARG.ADDRESS()
(deprecated)

We recommend that you no longer use these two
deprecated functions. Instead, use the method
described in “Passing Arguments”, page 8.

Returns the (optional) argument of the Per.view
command. The parameter is currently not used.
Only useful inside peripheral definition files.

<int> PER.Buffer.Byte(<index>) Returns a byte from the SGROUP buffer. Only
useful within a SGROUP of a PER file.

<int> PER.Buffer.Word(<index>) Returns a 16 bit word from the SGROUP buffer.
Only useful within a SGROUP of a PER file.

<int> PER.Buffer.Long(<index>) Returns a 32 bit word from the SGROUP buffer.
Only useful within a SGROUP of a PER file.

<int> PER.Buffer.Quad(<index>) Returns a 64 bit from the SGROUP buffer. Only
useful within a SGROUP of a PER file.

<address> PER.EVAL(<index>) Returns the value of a expression (defined with
BASE) inside a peripheral definition file (PER file),
which was defined after BASE, IF, ELIF or ELSE
command.
The parameter defines which expression is
returned (0=first one).
Note 1: The function returns only the last evaluated
value of the expression. It will not evaluated the
expression again. Expressions after BASE, will be
evaluated by a GROUP command after the BASE
command in a PER file.
Note 2:The function must only be used in the
context of IF or ELIF.
Peripheral Files Programming | 155©1989-2024 Lauterbach

Peripheral Files Programming | 156©1989-2024 Lauterbach

	Peripheral Files Programming
	History
	Introduction
	Passing Arguments
	Memory Classes
	Comma-Separated-Values (CSV) File Format for *.per Files
	Editing a *.per File in CSV Format in a Spreadsheet Editor
	Mixing Regular and CSV Formats

	Manual Peripheral File Generation
	GROUP Commands
	GROUP Define read/write GROUP
	HGROUP Define read-once/write GROUP
	RGROUP Define read-only GROUP
	WSGROUP Define write-only and shadow GROUP
	WGROUP Define write-only GROUP

	SGROUP Commands
	SGROUP Define sequence GROUP
	SET Write constant value to memory
	SETX Write SGROUP buffer to memory
	GETX Read from memory to the SGROUP buffer
	CONSTX Write constant value to the SGROUP buffer
	VARX Write expression to SGROUP buffer
	WRITEBACK Separate write a part from a read part

	Other Top Level Commands
	ASSERT Abort if condition not met
	AUTOINDENT Indent content of peripheral file automatically
	BASE Define a base address for following group definitions
	BASEOUT Output a value before calculating a base address
	BASESAVEOUT Output a value before calculating a base address
	CONFIG Configure default access width and line break for BIT
	CSV Enables CSV capabilities
	ELSE Conditional GROUP display
	ELIF Conditional GROUP display
	ENDIAN Define little or big endian
	ENDIF Conditional GROUP display
	ENTRY Assign parameters to macros
	HELP Reference online manual
	IF Conditional GROUP display
	INCLUDE Include another peripheral file
	MENCONFIG PERMENU configuration
	PERCMD Row definition in CSV-formatted *.per file
	REPEAT Repeat block of commands
	REPEAT.REPLAY Replay last complete REPEAT block
	SIF Conditional interpretation
	TREE Define hierarchic display
	WIDTH Width of register names and a BIT description
	WAIT Wait with PER windows until system is ready

	Commands within GROUPs
	ABITFLD Assign values to BITFLD choice items
	ASCII Display ASCII character
	BIT Define bits
	BITFLD Define bits individually
	BUTTON Define command button
	COPY Copy GROUP
	DECMASK Define bits for decimal display
	FLOATMASK Define bits for decimal floating point display
	EVENTFLD Define event flag bits individually
	HEXFLD Define hexword individually
	HEXMASK Define bits for a hexadecimal display
	HIDE Define write-only line
	IN Define input field
	INDEX Output a value
	LINE Define line
	MUNGING Translate to little endian mode (PowerPC only)
	NEWLINE Line break within detailed register description
	RBITFLD Define bits individually (read-only)
	RHEXMASK Define bits for a hexadecimal display (read-only)
	SAVEINDEX Save original and output a value
	SAVETINDEX Save original and output a value
	SDECMASK Signed DECMASK
	SFLOATMASK Signed FLOATMASK
	SETCLRFLD Define set/clear locations
	STRING Display a string saved in memory
	TEXTLINE Define text header with a new line
	TEXTFLD Define text header
	TINDEX Output a value

	Automated Peripheral File Generation
	Graphical User Interface
	Rules file
	Rules file description
	Rule definition
	Selecting defined elements using <select>
	Elements
	Properties
	Commands
	<create_header>
	<derive_module>
	<destroy_module>
	<include>
	<include_module>
	<open_module>
	<modify>
	<replace>
	<protect>
	<remove>
	<create_module>
	<for>
	<create_view>
	<map_cpu>

	Variables
	Schema Document Properties
	Global Declarations
	Element: create_header
	Element: create_module
	Element: create_view
	Element: derive_module
	Element: destroy_module
	Element: field
	Element: fields
	Element: for
	Element: get
	Element: if
	Element: include
	Element: include_module
	Element: map_cpu
	Element: modify
	Element: module
	Element: modules
	Element: open_module
	Element: protect
	Element: register
	Element: registers
	Element: remove
	Element: replace
	Element: rule
	Element: rules
	Element: select
	Element: state
	Element: states
	Element: variable

	Global Definitions
	Complex Type: protect_common_type
	Complex Type: protect_field_type
	Model Group: commands
	Model Group: replace_element_type
	Simple Type: access_type
	Simple Type: bool
	Simple Type: create_module_mode
	Simple Type: create_module_position
	Simple Type: derive_module_element
	Simple Type: element_type
	Simple Type: format_type
	Simple Type: if_type
	Simple Type: include_module_position
	Simple Type: include_type
	Simple Type: number
	Simple Type: on_error_type
	Simple Type: open_module_element
	Simple Type: property_type
	Simple Type: props_type

	Glossary

	Error Messages
	<location> Invalid attribute <attribute> in tag <name>
	<location> Invalid node <node> in tag <name>
	<location> Invalid value <value> in tag <name>
	<location> <name> from <name> must occur only once
	<location> Missing <name> in tag <name>
	Invalid value <value> for property “property”
	<location> Invalid property attribute for selected component
	<location> missing <select> for <name> tag
	<location> <select> can not be used after <command>
	<location> <select> with ‘property=path’ can be used only once for single <rule>
	<location> <name> tag requires subtags
	None of component <name> elements match <value>
	<location> <name> can’t be used with <name>
	Invalid min_value
	Invalid iter_name
	The <value> register could not be found
	ELSE command can not be created for <value> without if command
	<location> Root tag <name> not found.
	<location> duplicated element.
	Wrong input file specified for <name> format.
	This inputs are not supported by our converter

	Functions

