LAUTERBACH A

Peripheral Files Programming

Peripheral Files Programming

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 DOCUMENTS ciceeiiiiiiiemns s inisess s snnsss s s rassss e e s s e s ee e m s e e ea s m s e b e a s mn e e R e a s annn e nnnnnn
Peripheral Filescccciiiiiiiiiiiiimiiisissnscsemsesssesssssssssss s s s s s ns s smsmssssssssssssssssssssssssssnsnnnnnsnnnnnnnn

Peripheral Files Programmingcccccviiemmmmmmissmssmmnssss s ssssssss s s ssss s snssssss s sssssssssss snssas

L 1= (o

Lo X o 11 T T o
Passing Arguments 8
Memory Classes 11
Comma-Separated-Values (CSV) File Format for *.per Files 12
Editing a *.per File in CSV Format in a Spreadsheet Editor 13
Mixing Regular and CSV Formats 16
Manual Peripheral File Generation ... eccenn s snms s s s 17
GROUP Commands 20
GROUP Define read/write GROUP 21
HGROUP Define read-once/write GROUP 22
RGROUP Define read-only GROUP 23
WSGROUP Define write-only and shadow GROUP 23
WGROUP Define write-only GROUP 24
SGROUP Commands 25
SGROUP Define sequence GROUP 25
SET Write constant value to memory 26
SETX Write SGROUP buffer to memory 27
GETX Read from memory to the SGROUP buffer 28
CONSTX Write constant value to the SGROUP buffer 29
VARX Write expression to SGROUP buffer 30
WRITEBACK Separate write a part from a read part 31
Other Top Level Commands 34
ASSERT Abort if condition not met 34
AUTOINDENT Indent content of peripheral file automatically 34
BASE Define a base address for following group definitions 41
BASEOUT Output a value before calculating a base address 42
BASESAVEOUT Output a value before calculating a base address 43
CONFIG Configure default access width and line break for BIT 43
csv Enables CSV capabilities 45
ELSE Conditional GROUP display 46
©1989-2024 Lauterbach Peripheral Files Programming 2

ELIF Conditional GROUP display 46
ENDIAN Define little or big endian 46
ENDIF Conditional GROUP display 46
ENTRY Assign parameters to macros 46
HELP Reference online manual 47
IF Conditional GROUP display 47
INCLUDE Include another peripheral file 49
MENCONFIG PERMENU configuration 49
PERCMD Row definition in CSV-formatted *.per file 49
REPEAT Repeat block of commands 52
REPEAT.REPLAY Replay last complete REPEAT block 54
SIF Conditional interpretation 54
TREE Define hierarchic display 55
WIDTH Width of register names and a BIT description 56
WAIT Wait with PER windows until system is ready 56
Commands within GROUPs 58
ABITFLD Assign values to BITFLD choice items 58
ASCII Display ASCII character 58
BIT Define bits 59
BITFLD Define bits individually 59
BUTTON Define command button 62
COPY Copy GROUP 63
DECMASK Define bits for decimal display 64
FLOATMASK Define bits for decimal floating point display 65
EVENTFLD Define event flag bits individually 67
HEXFLD Define hexword individually 68
HEXMASK Define bits for a hexadecimal display 69
HIDE Define write-only line 70
IN Define input field 70
INDEX Output a value 71
LINE Define line 73
MUNGING Translate to little endian mode (PowerPC only) 74
NEWLINE Line break within detailed register description 74
RBITFLD Define bits individually (read-only) 75
RHEXMASK Define bits for a hexadecimal display (read-only) 75
SAVEINDEX Save original and output a value 76
SAVETINDEX Save original and output a value 76
SDECMASK Signed DECMASK 77
SFLOATMASK Signed FLOATMASK 77
SETCLRFLD Define set/clear locations 77
STRING Display a string saved in memory 78
TEXTLINE Define text header with a new line 79
TEXTFLD Define text header 79
©1989-2024 Lauterbach Peripheral Files Programming 3

TINDEX Output a value 80
Automated Peripheral File Generation ... s snsenees 81
Graphical User Interface 81
Rules file 81
Rules file description 81
Rule definition 81
Selecting defined elements using <select> 82
Elements 83
Properties 84
Commands 85
<create_header> 86
<derive_module> 86
<destroy_module> 87
<include> 87
<include_module> 88
<open_module> 88
<modify> 89
<replace> 89
<protect> 95
<remove> 95
<create_module> 96
<for> 96
<create_view> 97
<map_cpu> 98
Variables 99
Schema Document Properties 100
Global Declarations 101
Element: create_header 101
Element: create_module 102
Element: create_view 103
Element: derive_module 104
Element: destroy_module 105
Element: field 105
Element: fields 106
Element: for 107
Element: get 108
Element: if 109
Element: include 110
Element: include_module 111
Element: map_cpu 112
Element: modify 113
Element: module 114
Element: modules 114
©1989-2024 Lauterbach Peripheral Files Programming | 4

Element: open_module 115
Element: protect 116
Element: register 117
Element: registers 118
Element: remove 119
Element: replace 119
Element: rule 120
Element: rules 122
Element: select 123
Element: state 124
Element: states 125
Element: variable 125
Global Definitions 127
Complex Type: protect_common_type 127
Complex Type: protect_field_type 127
Model Group: commands 128
Model Group: replace_element_type 129
Simple Type: access_type 130
Simple Type: bool 131
Simple Type: create_module_mode 132
Simple Type: create_module_position 132
Simple Type: derive_module_element 133
Simple Type: element_type 134
Simple Type: format_type 135
Simple Type: if_type 135
Simple Type: include_module_position 136
Simple Type: include_type 137
Simple Type: number 137
Simple Type: on_error_type 138
Simple Type: open_module_element 139
Simple Type: property_type 140
Simple Type: props_type 141
Glossary 143
Error Messages 145
<location> Invalid attribute <attribute> in tag <name> 145
<location> Invalid node <node> in tag <name> 145
<location> Invalid value <value> in tag <name> 146
<location> <name> from <name> must occur only once 146
<location> Missing <name> in tag <name> 147
Invalid value <value> for property “property” 147
<location> Invalid property attribute for selected component 148
<location> missing <select> for <name> tag 148
<location> <select> can not be used after <command> 149
©1989-2024 Lauterbach Peripheral Files Programming | 5

<location> <select> with ‘property=path’ can be used only once for single <rule> 149

<location> <name> tag requires subtags 150
None of component <name> elements match <value> 150
<location> <name> can’t be used with <name> 151
Invalid min_value 151
Invalid iter_name 152
The <value> register could not be found 152
ELSE command can not be created for <value> without if command 153
<location> Root tag <name> not found. 153
<location> duplicated element. 154
Wrong input file specified for <name> format. 154
This inputs are not supported by our converter 154
T 0 T o T 155

©1989-2024 Lauterbach Peripheral Files Programming | 6

Peripheral Files Programming

Version 06-Jun-2024

History

14-Sept-2022 New feature inherit for REPEAT command.

21-Jan-2022 Added %y... placeholder to BITLD and ABITFLD.

Introduction

This document describes the commands which are used to write peripheral files. This allows to
display/manipulate configuration registers and the on-chip peripheral registers at a logical level. Registers
and their contents are visible and accessible in the PER.view window.

Peripherals in MCU can be displayed and manipulated with the PER commands. TRACE32 offers
configurable window for displaying memory or I/O structures. Displaying the state of peripheral components
or memory based structures is very comfortable.

User can define 'chip macros' and put them together to generate 'project files'. These files describe the port
structure for a specific hardware system.

Examples for different microcontrollers reside in the directory ~~/demo/per/.

©1989-2024 Lauterbach Peripheral Files Programming | 7

Passing Arguments

You can pass arguments from a PRACTICE script to a PER file (peripheral file). These arguments can be
strings, hex and decimal values. See below for an example and an illustration and explanation of the
example.

Example

PRACTICE script (*.cmm) - Bold and red are used to highlight the information flow:

;Declare four PRACTICE macros and assign values to the PRACTICE macros
LOCAL &addr ®bdbit &name &idx

&addr=0xE0000000 ;Base address of the PER file called with PER.view.

®b6dbit=1. ; Show the 64bit or the 32bit specific register group.
&name="My Module" ;Module description of the register group.
&idx=35. ;Show a specific register out of an array of

;memory-mapped registers.
;... your code
SYStem.Up

;View the peripheral file and pass the four arguments
PER.view "per with_args.per" &addr ®b64bit "&name" &idx "*"

;Open the peripheral file in the built-in TRACE32 editor PER.Program

PER.Program "per_with_args.per" ;Do not pass arguments here!
;Set a different peripheral file as temporary new default file
PER.ReProgram "per with_args.per" ;Do not pass arguments here!

©1989-2024 Lauterbach Peripheral Files Programming |

The above PRACTICE script (*.cmm) calls this PER file (*.per):

CONFIG 16. 8.
WIDTH 10.

;The PER.view command arguments are passed to the ENTRY command arguments
ENTRY &baseaddr=0x0 ®64bit=0. &modulename="foo" &index=1.

BASE D:&baseaddr

SIF (®64bit==1.)
TREE "64bit Register Group &modulename"
GROUP.QUAD (0x8*&index)++0x07
LINE.QUAD 0x00 "CTL&index,Control Register &index"
TREE . END
ELSE
TREE "32bit Register Group &modulename"
GROUP.LONG (0x4*&index)++0x07
LINE.LONG 0x00 "CTL&index,Control Register &index"
TREE . END
ENDIF

©1989-2024 Lauterbach Peripheral Files Programming | 9

lllustration and Explanation of the Example

NOTE: Although the ENTRY command arguments may look like PRACTICE macros, they
are not PRACTICE macros and do not behave like PRACTICE marcos:

. When you try to create PRACTICE macros with the LOCAL command
inside a PER file and compile it, you receive the error message “unknown
command”.

. When you try to assign an ENTRY command argument to another
ENTRY command argument (&arg2=&argl) inside a PER file and com-
pile it, you also receive the error message “unknown command”.

Our example produces this PER.view window:

< BiPER.view "per_with_args.per” | 0xE0000000 64. "My Module” 35. ["*" = | 2|3

S—

64bit Register Group My Module
CTL35. 0000000000000000,
=

A The four values passed to the PER file are displayed in the window caption.

B " *displays all branches. For more information, see PER.view.

C Result of the information flow highlighted in bold and red in the above example (see &name).

NOTE: In the PER file, valid default values must be assigned to each ENTRY command
argument. See highlighted values in the ENTRY line.

The default values in the ENTRY line ensure that no “syntax error” is reported when
a PER file is compiled in the built-in TRACES32 editor PER.Program.

;Define default values for the ENTRY command arguments
ENTRY &baseaddr=0x0 ®64bit=0. &modulename="foo" &index=0.

As valid default values in a PER file, our example uses:

o 0x0 for hex values.
o 0. for decimal values.
. "foo" for strings.

When the PRACTICE macro values are passed to the same PER file, the passed values override the
default values in the ENTRY line of the PER file.

©1989-2024 Lauterbach Peripheral Files Programming | 10

Memory Classes

Format: <access._class>:<base_address>

<access_class> Appropriate access method to memory class (D, SD, A, AD, AP, ANC,DC, IC,
NC, ED, EAD, VM, P, etc.)

<base_address> Base address of the peripheral module.

©1989-2024 Lauterbach Peripheral Files Programming | 11

Comma-Separated-Values (CSV) File Format for *.per Files
[build 98464 - DVD 09/2018]

Peripheral files can be formatted as comma-separated values, i.e. the same format as in *.csv files.
However, the file extension for peripheral files remains *.per, as usual. The CSV format extends the regular
peripheral command set and offers you an alternative way to create and maintain peripheral files more easily
in a spreadsheet. Therefore it usually offers better readability. Peripheral files in CSV format can also be
generated more easily from binary files (such as netlists, etc.) by automated tools.

Example: Regular *.per file format (excerpt from ~~/demo/per/percsv_nocsv.per):

TREE "Common Registers"

GROUP 0xE80++0x01

LINE.WORD 0x0 "ADCR1l,ADC Control Register 1"

BITFLD.WORD 0 14. "STOP,Stop", "Normal operation, Stop"

BITFLD.WORD 0 13. "START, Start Conversion", "No action, Start"
BITFLD.WORD 0 12. "SYNC,Sync Select", "START bit,sync input or START bit"
GROUP 0xF80++0x01

LINE.WORD 0x0 "ADCR2,ADC Control Register 2"

HEXMASK.WORD.BYTE 0 0.--3. 1. "DIV,Clock Divisor Select"

TREE . END

The same register definitions in CSV format and displayed in a spreadsheet editor (excerpt from
~~/demo/per/percsv_simple.per):

PERCMD Address AccessWidth Name Tooltip From To Choices
TREE "Common Registers”
Oxe80 16. ADCR1 ADC Control Register 1
STOP Stop 14, 14, MNormal operation,Stop
START Start Conversion 13. 13. |No action,Start
SYNC Sync Select 12. 12, START bit,sync input or START bit
0xf80 16. ADCR2 ADC Control Register 2
DIV Clock Divisor Select 0. 3.
TREE.END

Whenever necessary, you can still mix the regular and CSV file format.

NOTE: Microsoft Excel is not capable of exporting true comma-separated-values files
on machines based in Europe (instead semicolons will be used as separators
due to system-wide Region and Language settings).

Therefore it is recommended to use LibreOffice Calc or any other spreadsheet
editor.

©1989-2024 Lauterbach Peripheral Files Programming | 12

Editing a *.per File in CSV Format in a Spreadsheet Editor

1. Do one of the following:

Create an empty file, or

Open/Import an existing *.per file. Make sure comma is selected as separator and the single
quote as text delimiter:

Text Import - [percsv.per] @

Import

Character set:

Language: Default - German (Germany) IZ|

From row: 1 =

Separator Options
() Fixed width @ Separated by

[Tab Comma [] Semicolon (] Space [Other

(] Merge delimiters Text delimiter: | IZI

Other Options
7] Quoted field as text [Detect special numbers

Fields

Column type: n

|Standard -
1 C5v.oN

2 TEXTLINE "Please execute a =Data.Set VM:@XES0 %LE %Long 0= fo view
3 AUTOINDENT.ON CENTER TREE

1 PERCMD

5 BASE wvm:@

& [TREE "ADCA (Analog-to-Digital Converter A)"

7 [TREE "Common Registers"

a o
4 I 2

o) e

2. The first command in the *.per file (except comments) must enable CSV capabilities:

CSV.ON

3. Optional step: Use your preferred auto-indent style (see AUTOINDENT):

AUTOINDENT.ON CENTER TREE

4. Optional step: Define the columns (see PERCMD).

The column name arguments of the PERCMD command will serve as column headers in your
spreadsheet, see [X] below.
CSV.ON

AUTOINDENT.ON CENTER TREE
PERCMD m’l\ddress AccessWidth Name Tooltip From To Choices

BASE x:0
TREE "ADCA (Analog-to-Digital Converter A)"

To freeze the headers, choose View menu > Freeze Rows and Columns.

If you omit the PERCMD command: The first column must always contain peripheral file
commands only and must be kept empty otherwise!

©1989-2024 Lauterbach Peripheral Files Programming | 13

5. Optional step: Use BASE and TREE commands in the subsequent rows to create an
environment.

6. Define the registers and bits:

CSV.ON

AUTOINDENT.ON CENTER TREE

PERCMD Address AccessWidth Name Tooltip From To Choices

BASE x:0

TREE "ADCA (Analog-to-Digital Converter A)"

TREE "Common Registers”

Oxe80 16. ADCR1 ADC Control Register 1

STOP Stop 14. 14, Normal operation,Stof
START Start Conversion 13. 13. |No action,Start
SYNC Sync Select 12, 12, |Initiated by START bit

NEWLINE
EQSIE End-of-Scan Interrupt Enable 11, 11, Disabled,Enabled
ICIE Zero Crossing Interrupt Enable |10. 10. Disabled,Enabled
LLMTIE Low Limit Interrupt Enable 9. 9. |Disabled,Enabled

NEWLINE
HLMTIE High Limit Interrupt Enable 8. 8. |Disabled,Enabled
CHMNCFG[3] Channel Configure ANB-ANT7 7. 7. Single ended ANG-AN
CHMNCFG[2] Channel Configure AN4-ANS 6. 6. Single ended AN4-AN

NEWLINE
CHMNCFG[1] Channel Configure AN2-AN3 5. 5. Single ended AN2-AN

CHMNCFG[0] Channel Configure ANO-ANL 4. 4. Single ended ANO-AN
SMODE ADC Mode Control 0. 2. |Once sequential,Once
Oxe82 16. ADCR2 ADC Control Register 2

DIV Clock Divisor Select 0. 3.

TREE.END

TREE.END

AtoC For a description, see Rules below.

7. When done, save/export the spreadsheet in CSV format as shown below:
Save As =
QQ | , % T32 » demo » per b4 | 3 | | Search per o |
File name: perc -
Save as type: | Text CSV (.csv) (F.csv) v]

[Automatic file name
extension

¥ Browse Folders [Save J ’ Cancel

Export Text File

Field Options

Character set:

Field delimiter:

Text delimiter:

I Save cell content as shown |

|| Save cell formulas instead of calculated values
[7] Quote all text cells
[Fixed column width

o][e

©1989-2024 Lauterbach Peripheral Files Programming | 14

Output:

™ B:PER.view ~~/demo/per/percsv.per "ADCA (Analog-to-Digital Converter A}, Common Registers”

(=[O el

ADCRZ 0000 DIV
mE L »

2 ADCA (Analog-to-Digital Converter A4)
= Common Registe
ADCR1 0000I Normal operation No action Initiated by START bit

Disabled
G[2] Single ended AN4-ANS
Once sequential

Disabled
_31 5ingle ended ANG-AN7
0] Single ended ANO-AN1

Disabled

HLMTIE Disabled

CHNCFGI1] Single ended ANZ-AN3
00

-

m

Ato C For a description, see Rules below.
Rules:
. A new register [A] will be created if at least one of the following conditions applies:
- The Address value is the first non-empty entry in the spreadsheet.
- The Address value differs from the previous one.
- The AccessWidth value differs from the previous one.
- From and To values are empty.
J A new customized bit description [B] will be created if the following conditions are all true:
- The Address value does not change, or the entry is empty.
- The AccessWidth value does not change, or the entry is empty.
- The Choices value is not empty.
. A new bit or bit range [C] is displayed as hexadecimal if the following conditions are all true:

The Address value does not change, or the entry is empty.
The AccessWidth value does not change, or the entry is empty.

The Choices value is empty.

©1989-2024 Lauterbach Peripheral Files Programming

15

Mixing Regular and CSV Formats

In order to simplify matters, peripheral files in CSV format do not offer the full functional range of regular *.per
files. However, you can easily include regular *per commands in the first column:

Excerpt from ~~/demo/per/percsv_mixed.per:

PERCMD Address AccessWidth Name Tooltip From To Choices
TREE "Common Registers”
Oxe80 16. ADCR1 ADC Control Register 1
IF (Data.Long(vm:0xeB80)==0x0)
STOP Stop 14. 14, Normal operation,Stop
START Start Conversion 13. 13. |No action,Start
SYNC Sync Select 12. 12, |START bit.sync input or START bit
ELSE
EQSIE End-of-Scan Interrupt Enable 11, 11, Disabled,Enabled
ICIE Zero Crossing Interrupt Enable |10. 10. Disabled,Enabled
LLMTIE Low Limit Interrupt Enable 9. 9. |Disabled,Enabled
ENDIF
NEWLINE
HLMTIE High Limit Interrupt Enable 8. 8. |Disabled,Enabled
CHMNCFG[3] Channel Configure ANB-ANT7 7. 7. Single ended ANG-ANT ANG + and ANT -
CHMNCFG[2] Channel Configure AN4-ANS 6. 6. |Single ended AN4-AN5,AN4 + and ANS -
0xf80 16. ADCR2 ADC Control Register 2
DIV Clock Divisor Select 0. 3.
TREE.END

In above example we utilize the regular peripheral commands TREE, IF and NEWLINE. In all other cases,
the first column must remain empty!

©1989-2024 Lauterbach Peripheral Files Programming | 16

Manual Peripheral File Generation

To start writing the peripheral file, please create a file with extension *.per.

“.per” is the TRACES2 standard extension for peripheral files.

The syntax of a peripheral file is line oriented. Blanks and empty lines can be inserted to define the

structure of the program. Comment lines start with semicolon.

Examples of the peripheral file reside in the directory ~~/demo/per.

At the beginning of the file, the commands WIDTH and CONFIG should be placed. The next step is to define
the base address using BASE command. Each implemented module has to be started with TREE

command and ended with the TREE.END command.

A typical peripheral file implementation is showed below:

"dots" mean decimal format
CONFIG 16. 8.

; 0x means hex format
WIDTH 0xb

"Treeview" of the module
TREE "Module Registers"

; base address of the module
BASE ad:0xf0000000

; GROUP definition
GROUP.LONG 0x00++0x3
; register definition
LINE.LONG 0x00 "REGO,Register 0"

; one bit filed definition

BITFLD.LONG 0x00 26. " BIT26 ,Bit 26"

; 2-bit field definition
BITFLD.LONG 0x00 23.--24.

; end of the tree
TREE.END

" BIT24_23

"O,l"

,Bits 24 to 23" "0,1,2,3"

©1989-2024 Lauterbach

Peripheral Files Programming

17

Register short name

(A TRACE2 ST

File Edit View Var Break Run CPU Misc Trace Perf Cov Window Help

ME 3¢ 2 ¥ 2R O HumScs @ 2 F

" B:PER D:\test.per

4 UART Registers
’REGD []

Bit field short name

Bit field value

Memory class
Address value

Detailed description

|B!' V4
[emmiate][trigser][cevices][tmce][Data][other][previows]

AD:FFFE0000 Register O [system ready [Mo op

©1989-2024 Lauterbach

Peripheral Files Programming

18

TREE "UART Registers"
BASE ad:0xfffe0000
GROUP.LONG 0x00++0x3
LINE.LONG 0x00 "REGO,Register 0"

BITFLD.LONG 0x00 26. " BIT26 ,Bit 26" "0,1"
BITFLD.LONG 0x00 23.--24. " BIT24_23 ,Bits 24 to 23" "0,1,2,3"
BITFLD.LONG 0x00 26. " BIT17 ,Bit 17" "0,1"

TREE . END

TREE.OPEN "PWM"
TREE "PwM1"
BASE ad:0xfffel000
GROUP.LONG 0x00++0x3
LINE.LONG 0x00 "REG1l,Register 1"
BITFLD.LONG 0x00 19. " BIT19 ,Bit 19" "O0,1"
BITFLD.LONG 0x00 14.--15. " BIT15_14 ,Bits 15 to 14" "0,1,2,3"
TREE . END
TREE "PwWM2"
BASE ad:0xfffe2000
GROUP.LONG 0x00++0x3
LINE.LONG 0x00 "REG2,Register 2"
BITFLD.LONG 0x00 8. " BITS8 ,Bit 8" "0,1"
BITFLD.LONG 0x00 5.--6. " BIT6_5 ,Bits 6 to 5" "0,1,2,3"
TREE . END
TREE . END
TREE "I2c Registers"
BASE ad:0xfffe3000
GROUP.LONG 0x00++0x3
LINE.LONG 0x00 "REG3,Register 3"

BITFLD.LONG 0x00 31. " BIT31 ,Bit 31" "0,1"
BITFLD.LONG 0x00 30. "™ BIT30 ,Bit 30" "O,1"
BITFLD.LONG 0x00 29. " BIT29 ,Bit 29" "0,1"
TEXTLINE " !

BITFLD.LONG 0x00 28. " BIT28 ,Bit 28" "O,1"
BITFLD.LONG 0x00 27. " BIT27 ,Bit 27" "0,1"
BITFLD.LONG 0x00 26. " BIT26 ,Bit 26" "0,1"
TEXTLINE " !

BITFLD.LONG 0x00 25. " BIT25 ,Bit 25" "0,1"
BITFLD.LONG 0x00 24. " BIT24 ,Bit 24" "0,1"
BITFLD.LONG 0x00 23. " BIT23 ,Bit 23" "0,1"

TREE "Transmit/Receive Registers"
GROUP.LONG 0x10++0x17

LINE.LONG 0x00 "REG4,Register 4"
LINE.LONG 0x04 "REG5,Register 5"
LINE.LONG 0x08 "REG6,Register 6"
LINE.LONG 0x0c "REG7,Register 7"
LINE.LONG 0x10 "REG8,Register 8"
LINE.LONG 0x14 "REG9,Register 9"

TREE . END

TREE . END

©1989-2024 Lauterbach Peripheral Files Programming | 19

Peripheral modules are organized in a tree structure.

o B:PER Di\test.per

-

e
[UART Registers
4 Pl
[PMl
[PuM2

I I2c Registers

Contents of peripheral modules is also organized in a tree structure.

o B:PER Di\test.per

=)

4 UART Registers

-

REGOD 00000000 BITZe O BITZ24_23 O BITL7 O
4 PuM

4 PuMl

REGL 00000000 EBIT1S O BIT15_14 O

4 Punz2

REGZ 00000000 EITS O BITe_S 1]

4 I2c Registers

REGZ 00000000 EBIT31 O EIT30 O EBITZ9 O
BIT28 0 BIT27 0 BIT26 O
BEIT25 0 BIT24 0 BITZ3 O

a TrqnsT;t-Pece;ve Registers

REG4 00000000

G 0ooooo00
0ooooo00
0ooooo00
0ooooo00
0ooooo00

GROUP Commands

The GROUP commands describe how data is basically read or written to/from memory.

©1989-2024 Lauterbach

Peripheral Files Programming

20

GROUP Define read/write GROUP
Format: GROUP.<size> <datagrp>|<fifogroup> [" <name>"]
<datagrp>: <address>++<number_of_read_bytes-1> or <start_address>--<end_address>
<fifogroup>: <address> <address_range>

The GROUP commands control the debugger access to the target memory.

Size of registers (Byte, Word, TByte, Long, Quad) or auto.

<size>
<datagrp> Maximum size 4 kB (4096 bytes).
<name> Optional text.

If a name is given, the GROUP is separated from the previous lines and the name is used as headline in the
per window. Using numerical values (without memory access class) in address parameter, the address is
calculated by the entered value plus the base address (defined by the last BASE command). The GROUP
can either use normal memory access or fifo access (reads all bytes from the same address). The
whole address range of the GROUP command is read at once. Reading from reserved address range

may cause a bus error.

Example 1:

BASE ud:0x200 ;data

GROUP sd:0x100--0x101 "PortA"

GROUP 0x50--0x51 ;data

GROUP.LONG sd:0x60--0x6f ;read

GROUP sd:0x300 0x10 ;fifo
;deep

GROUP 0x10 0x4 ;fifo

BASE ad:0x00000000
GROUP 0x00++0x03

LINE.LONG 0x00 "CR,Control Register"

BITFLD.LONG 0x00 24. " TR
BITFLD.LONG 0x00 5. " RST
TEXTLINE *" "

BITFLD.LONG 0x00 1. " IDIS

, Transfer"
,Software Reset"

, Interrupt Enable"

bytes at address sd:0x100--0x101

bytes at address ud:0x250--0x251
memory with 32-bit access
at location sd:0x300,

16 bytes

at ud:0x210, 4 bytes deep

"No effect,Transferred"
"No reset,Reset"

"Disabled, Enabled"

©1989-2024 Lauterbach

Peripheral Files Programming | 21

o B:PER Di\test.per

= | B |

CR 00000000 TR No
IDIS Di

effect
sabled

R5T No reset

e

Example 2:

BASE ad:0x00000000

GROUP.BYTE 0x100 0x8

"Receiver FIFO"

LINE.BYTE 0x0 "FO,FIFO position 0"
LINE.BYTE 0x1 "F1,FIFO position 1"
LINE.BYTE 0x2 "F2,FIFO position 2"
LINE.BYTE 0x3 "F3,FIFO position 3"
LINE.BYTE 0x4 "F4,FIFO position 4"
LINE.BYTE 0x5 "F5,FIFO position 5"
LINE.BYTE 0x6 "F6,FIFO position 6"
LINE.BYTE 0x7 "F7,FIFO position 7"
- |':' B)] | 144 B:Data.dump 0:100 E@éj
a address [1] 0123 ¥
eceiver FIF D:00000100 [»66000000 T400 &
F [13 D:00000104 | 00000000 "4%Y =
F1 &6 D:00000108 | 00000000 "%%Y =
F 66 D:0000010C | 00000000 H%%Y -
F 66 D:00000110 | 00000000 %%%Y P
F4 &6 D:00000114 | 00000000 %%Y
F5 66 D:00000118 | 00000000 %%%
F& 66 D:0000011C | 00000000 %%Y
F7 66 D:00000120 | 00000000 %4%Y
v D:00000124 | 00000000 %4%Y w
HGROUP Define read-once/write GROUP
Format: HGROUP.<size> <datagrp>|<fifogroup>["<name>"]
<datagrp>: <address>++<number_of_read_bytes-1> or <start_address>--<end_address>
<fifogroup>: <address> <address_range>

Similar to GROUP, but this definition is useful for ports which are cleared by a read access. Refer to the
GROUP command description. HGROUP command prevents target memory from the periodic read access
and is useful for ‘write-only' ports. In hidden GROUPs only hidden elements e.g. HIDE command should be

used.

<size>
<datagrp>

<name>

Size of registers (byte, word, tbyte, long, quad).

Maximum size 4 kB (4096 bytes).

Optional text.

©1989-2024 Lauterbach

Peripheral Files Programming | 22

RGROUP Define read-only GROUP

Format: RGROUP.<size> <datagrp>|<fifogroup> [" <name>"]
<datagrp>: <address>++<number_of_read_bytes-1> or <start_address>--<end_address>
<fifogroup>: <address> <address_range>

Similar to GROUP, but this definition is useful for ‘read-only’ ports. Refer to the GROUP command

description.
<size> Size of registers (Byte, Word, TByte, Long, Quad).
<datagrp> Maximum size 4 kB (4096 bytes).
<name> Optional text.
WSGROUP Define write-only and shadow GROUP
Format: WSGROUP.<size> <wr_acc_addr> <rd_acc_addr>

WSGROUP is a specific GROUP command, which forces the debugger to access different registers for read
and for write accesses. It is only useful, if the core has write-only registers and their contents are duplicated
in shadow registers, which are read- and writable.

<size> Size of registers (byte, word, tbyte, long, quad).
<wr_acc_addr> Address of the register where data is to be written into.
<rd_acc_addr> Address of the register where data is to be read from.

Read-/write accesses have following effects:

J write access: Data is written to write-only registers (dataGROUP) as well as to the shadow
registers.

. read access: Data is read from the shadow registers.

Example:

WSGROUP .LONG (ecbu:0x0CB2)++0 (ed:0x100034C8)
LINE.LONG O0x0 "INT,Self-interrupt register"

©1989-2024 Lauterbach Peripheral Files Programming | 23

* BuPER.. ll:' (S S 14 B:Datalog |':' E] 3= .|1
=N punoLnan « || @ start || O stop |[@ Clear |
access |address width |data time !
READ ED:100034C5--100034CE 4., |00 00 OO OO 22327.734 | 4
READ ED:100034C5--100034CE 4, |00 00 00 OO0 22327.734
READ ED:100034C5--100034CE 4, |00 00 00 OO0 22327.750
= ||READ ED:100034C5--100034CE 4, |00 00 00 OO0 22327.765
- READ ED:100034C5--100034CE 4, |00 00 00 OO0 22327.765
] READ ED:100034C5--100034CE 4, |00 00 00 OO0 22327.781
READ ED:100034C5--100034CE 4, |00 00 00 OO0 22327.781
READ ED:100034C5--100034CE 4, |00 00 00 OO0 22327.796
READ ED:100034C5--100034CE 4, |00 00 00 OO0 22327.812
READ ED:100034C5--100034CE 4, |00 00 00 OO0 22327.812
READ ED:100034C8——100034CB__ __QT_OQ o0 00 00 - 22;;?_328 v
4 (1§ 3
14 B:Datalog =RACIE X
O stop][_9 Clear |
ress width |data time [
4, |00 00 OO0 OB 22552.812 | &
4, |00 00 00 OB 22552.812
WGROUP Define write-only GROUP
Format: WGROUP.<size> <datagrp>|<fifogroup> ["<name>"] [/[SETI/CLEAR]
<datagrp>: <address>++<number_of_read_bytes-1> or <start_address>--<end_address>
<fifogroup>: <address> <address_range>

Similar to GROUP command. This definition is useful for ‘write-only' ports. The current state of the port is
held in the emulation memory (must be mapped at this location). Refer to the GROUP command

description.
<size> Size of registers (byte, word, tbyte, long, quad).
<datagrp> Maximum size 4 kB (4096 bytes).
<name> Optional text.
ISET Only has an effect if WGROUP contains a BITFLD command. All bits
outside the BITFLD range will be set to ‘1’ on a write access.
/CLEAR Only has an effect if WGROUP contains a BITFLD command. All bits
outside the BITFLD range will be set to ‘0O’ on a write access.
Example:
WGROUP sd:0x50--0x51 ;the port at address sd:0x50--0x51

;is a write-only port (e.g. 74xx374)
;but the state can be read via
;dual-port access

©1989-2024 Lauterbach Peripheral Files Programming | 24

SGROUP Commands

SGROUP Define sequence GROUP

Format: SGROUP ["<name>"]

Sequence of memory accesses done to get/set the data.

<name> Optional text.

Usually GROUP commands specify the target memory accesses and the following commands e.g. BITFLD,
HEXMASK, etc. define how the data are displayed in the per window.

With SGROUP data is not accessed with SGROUP itself, but by a sequence of special commands, which
transfer data from memory to the “SGROUP data buffer” or from the “SGROUP data buffer” back to memory.
The size of the buffer is 256 bytes.

Afterwards this sequence of special commands the data in the buffer can be displayed by following
commands e.g. BITFLD, HEXMASK.

To read/write data from/to memory to/from SGROUP buffer you can use the following commands (which are
only allowed in SGROUPs):

Command Function

SET <address> %<format> <value> Constant value --> memory(address)
SETX <address> Y%<format> <index> Buffer(index) --> memory(address)
GETX <address> %<format> <index> Memory(address) --> buffer(index)
CONSTX <index> %<format> <value> Constant value --> buffer(index)
VARX <index> %<format> <expression> Variable value --> buffer(index)
WRITEBACK Separate write part from a read part

©1989-2024 Lauterbach Peripheral Files Programming | 25

Example:

SGROUP "Transmit Register" ; define sequence GROUP
GETX d:0x80000000 %1 O ; read data at 0x80000000 and store
; them in buffer + offset 0
WRITEBACK ; next commands only done for
CONSTX 2 %w 0x2222 ; per.set
; write 0x2222 to buffer + offset 2
SETX d:0x80000000 %1 O ; write data from buffer + offset 0
; to memory at 0x80000000
LINE.LONG 0x0 ; display AUTONTX1 register with
"AUTONTX1, Autonegotiation Next ; contents of buffer[0..3]
Page Transmit Register 1"
BITFLD.LONG 0 31. "ENABLE" "No,Yes" ; define bit "Enable"

o B:PER Di\testper il % | 131 (B:Dato.dump 0:B0000000] = [E[52 |

& address 0 0123 N
Transmit Register 5D:80000000 [»B0O002222 " %
AUTONTX1 80002222 ENAELE Yes SD:80000004 | 00000000 %%

SD:30000008 | 00000000 "5%%
SD:3000000C | 00000000 "5%%
SD:30000010 | 00000000 5%
SD:30000014 | 00000000 "5%%
SD:30000018 | 00000000 "5%%
- 5D:8000001C | 00000000 "4%% »

o4 |m e

SET Write constant value to memory

Format: SET <address> %<format> <value>

SET command writes data to memory.

The given value is written to the target memory at the specified address or at the base address with added
offset. The specified value is written continuously.

<address> Target address.
<format> Defines specific format (Byte, Word, TByte, Long, Quad, LE, BE).
<value> Constant value.
The value may be a hexadecimal o mask or binary mask. (E.g.:
Oyxxxx10xx)

Command is only allowed in SGROUP.

©1989-2024 Lauterbach Peripheral Files Programming | 26

Example:

BASE d:0x80000000 ; set base address to d:0x80000000
SGROUP ; define sequence GROUP

SET d:0x80000000 %1 0Ox1111 ; write 0x1111 to d:80000000

SET 4 %1 0x3344 ; write 0x3344 to base address

; (d:80000000) + offset 4
LINE.LONG 0x0 "Test,Test Register"

% BoPER Ditestper L[B (B8R | 4] B::d Data.dump 0x80000000 = (=] 5= |

Test FEPITVIEY i address [1] 4 01234567 ' |
D:80000000 [#00001111 00003344 375,30 .
D:80000008 | 00000000 00000000 ANNANYY
D:80000010 | 00000000 00000000 AN

D:80000018 | 00000000 00000000 *EWULEYY
D:80000020 [00000000 00000000 "LLN0Y
D:80000028 | 00000000 00000000 UYL
D:30000030 | 00000000 00000000 "EWAEEYYL —

» D:80000038 | 00000000 00000000 HERALEYYL ©

B 4 b

SETX Write SGROUP buffer to memory

Format: SETX <address> %<format> <index>

SETX command writes a buffered value to the memory.

A value stored in a buffer at the given buffer offset is written to the target memory at the specified address or
base address with added offset. The value is written only once.

<address> Target address.
<format> Defines specific format (Byte, Word, TByte, Long, Quad).
<index> Constant value.

Command is only allowed in SGROUP.

©1989-2024 Lauterbach Peripheral Files Programming | 27

Example:.

CONFIG 16. 8.

WIDTH 10.

BASE 0x80000000

TREE "Test Registers"

;write into buffer : 0x1122 at offet [0], 0x3344 at [4], 0x5566 at [8]
SGROUP

CONSTX 0 %1 0x1122

CONSTX 4 %1 0x3344

CONSTX 8 %1 0x5566
LINE.LONG 0x0 "TestRl,Test Register 1"
LINE.LONG Ox4 "TestR2,Test Register 2"
LINE.LONG 0x8 "TestR3,Test Register 3"

;write buffer contents into target memory : [0..3] at 0x80000004, ...

SETX 4 %1 0
SETX 0x10 %1 4
TREE . END

BPERDte. o) Sl | 34 :Datadump... [=[E[52 |

- address [1] 0123 '
a gisters D: 50000000 00000000 5100 =
DO001122 D:80000004 | 00001122 83"
00003344 D:80000008 | 00000000 iy |
00005566 D:8000000C | 00000000 %4%Y =
-~

D:80000010 [00003344 %530
D:30000014 | 00000000 %%
D:30000018 | 00000000 %%
D:8000001C | 00000000 %%
D:30000020 | 00000000 %%
D:80000024 | 00000000 %%

v D:80000028 [00000000 %U%% =
- B 4 b

GETX Read from memory to the SGROUP buffer

Format: GETX <address> %<format> <index>

GETX command reads data from the memory and puts it to the buffer. The memory contents from the
given address is read using specified access width format. The read data is stored in a buffer at the
defined offset.

<address> Target address equals base address + offset.
<format> Defines specific format (Byte, Word, TByte, Long, Quad).
<index> Defines buffer number.

Command is only allowed in SGROUP.

©1989-2024 Lauterbach Peripheral Files Programming | 28

Example:

BASE d:0x80000000
TREE "Test Registers"

SGROUP ; define sequence GROUP

SET d:0x80000004 %1 0x18 ; write value 0x18 to target memory
; at d:80000004

GETX 4 %1 0 ; read out target memory at base

; address d:80000000+o0ffset 4 and
; store it at buffer+offset 0

LINE.LONG 0x0 "Test,Test Register" ; display data of buffer[0..3]
TREE . END
™ B:PER D:\test.per = | B} @Sl | $8 BuData.dump 080000000 EETES
- address [\] 4 01234567
Registers 5D: 80000000 [+00000000 00000018 050t =
00000018 5D:80000008 | 00000000 00000000 HENNNNNN
5D:80000010 | 00000000 00000000 HENNNENN |2
5D:80000018 | 00000000 00000000 HEHHNHEy
v 5D:80000020 | 00000000 00000000 HEHHNHEY
CONSTX Write constant value to the SGROUP buffer
Format: CONSTX <index> % <format> <value>

CONSTX command writes a constant value to the buffer. This data is not written to the target memory. The
data can be displayed with a following line command.

<index> Defines indexed offset.
<format> Defines specific format (Byte, Word, TByte, Long, Quad, LE, BE).
<value> Defines a constant value.
The value may be a hexadecimal or mask or binary mask. (E.qg.:
Oyxxxx10xx)

Command is only allowed in SGROUP.

©1989-2024 Lauterbach Peripheral Files Programming | 29

Example:

SGROUP "Transmit Register" ; define sequence GROUP
SET 0x80000000 %1 O0x1400ffff ; write value 1400ffff to target
; memory at d:80000000
GETX d:0x80000000 %1 0x00 ; read out target memory at 80000000
; and store it at buffer + offset 0
CONSTX 2 %w 0x1 ; write 0x0001 at buffer + offset 2
LINE.LONG 0x0 "TXCTRL, Transmit ; display data of buffer[0..3]

Control Register"

o B:PERDAtes.. = B[32 || 5 BuData.dump 0x80000000 o=]
- address 1] 4 01234567 '
Transmit Registe 5D:80000000 [+1400FFFF 00000000 T

3 t Register Fruluuuy
TXCTRL 14000001 SD:30000008 | 00000000 00000000 "HWLwut =
SD:30000010 | 00000000 00000000 LWt

SD:30000018 | 00000000 00000000 HALHWLL =

v SD:30000020 | 00000000 00000000 HALWALY
F b

VARX Write expression to SGROUP buffer

Format: VARX <index> %<format> <expression>

VARX command writes a variable value to the SGROUP buffer. This data is not written to the target
memory. The data can be displayed with a following line command.

<index> Defines indexed offset.
<format> Defines specific format (Byte, Word, TByte, Long, Quad, LE, BE).
<expression> Defines a PRACTICE expression.

The expression will be parsed whenever the PER window updates and its
result will be assigned to the SGROUP buffer

The VARX command is very similar to the CONSTX command. However the value, which should be
assigned to the SGROUP buffer may be based on PRACTICE functions, whose values may change during
the display of the PER window.

With VARX you can modify the SGROUP buffer in any way you like by using the following PRACTICE
functions, which access the SGROUP buffer:

PER.Buffer.Byte(<index>) Returns a byte at position <index> from the SGROUP buffer.
PER.B.B(<index>)

PER.Buffer.Word(<index>) Returns a 16 bit word at position <index> from the SGROUP
PER.B.W(<index>) buffer.

©1989-2024 Lauterbach Peripheral Files Programming | 30

PER.Buffer.Long(<index>)
PER.B.L(<index>)

PER.Buffer.Quad(<index>)
PER.B.Q(<index>)

Returns a 32 bit word at position <index> from the SGROUP
buffer.

Returns a 64 bit at position <index> from the SGROUP buffer.

Due to performance reasons you should use VARX only, if there is no other solution possible.

Command is only allowed in SGROUP.

Example:

SGROUP "Dummy Counter"

varx 0 %quad os.timer ()

varx 9 %qg

textline ""

(PER.B.Q(0)/1000.)

; begin Sequence-GROUP

read timer from OS

define quad data from
SGROUP buffer at index 0 by
1000 and store the result
at index 9 as quad

display data at index 0 as

decmask.quad 0 0--63. 1 " milliseconds:" decimal
textline "" display data at index 9 as
decmask.quad 9 0--63. 1 " seconds: " decimal
textline "" ; Newline

WRITEBACK Separate write a part from a read part
Format: WRITEBACK

Separates the write part of a sequence from the read part. Command is only allowed in SGROUP.

©1989-2024 Lauterbach

Peripheral Files Programming |

31

Example 1:

SGROUP
SET 0 %1 0x1014
GETX 0 %1 0
WRITEBACK

CONSTX 2 %w 0x2014

SETX 0 %1 0

LINE.LONG 0x0 "LEDCONFIG,LED Configuration Register (20)"

BITFLD.LONG
BITFLD.LONG
BITFLD.LONG

0x0 31.
0x0 30.
0x0 29.

% B:PER Di\test.per

=HAES X

LEDCONFIG 00001014 RES Mo LOOP No SPEED 10 -

4

"RES ,Reset" "No,Yes"

LOOP ,Loopback" "No,Yes"
SPEED , Speed" "10,100"

The commands after write back are executed only if PER.Set command is used. For displaying the data in
the PER-window these commands are ignored.

Example 2:

SGROUP "Transmit Register"

GETX d:0x80000000

WRITEBACK

CONSTX 2 %w 0x2222
SETX d:0x80000000

%1 0

%1 0

LINE.LONG 0x0 "AUTX1l,Transmit Reg."

BITFLD.LONG 0 31.

"ENABLE "

"No, Yes" ;

define sequence GROUP

read data at 0x80000000 and store
them in buffer + offset 0

next commands only executed, if a
write access is done in per-window
write 0x2222 to buffer + offset 2
write data from buffer + offset 0
to memory at 0x80000000

display AUTX1 register with
contents of buffer[0..3]

if bit 31 is changed/written
constx and setx are done

©1989-2024 Lauterbach

Peripheral Files Programming | 32

Opening the per-window results in displaying data from memory.

o B:PER Di\testper il = 83 |[3] B:Date.dump 0:80000000 (=[=] =]
a address —0916\2—\3—I—'
Transmit Register 5D: 80000000 [+00000000 L1y P
AUTONTXL O0ODDODD0 ENAELE Mo 5D:80000004 | 00000000 4%%
5D:80000008 | 00000000 %4%% =
5D:8000000C | 00000000 %4%%
5D:80000010 | 00000000 %4%%
5D:80000014 | 00000000 4%% =
5D:80000018 | 00000000 H4%Y B
v 5D:8000001C | 00000000 4% v
4 4 [2 P

Changing state of the ENABLE bit results also in writing constant value 0x2222 to the register.

% B:PER Di\test.per

—|eE !izg!

4] [B:Data.dump 0x20000000]

o | B 28

Transmit Register

AUTONTX1 80002222 EMNAELE Yes

-

address

5D:
5D:
5D:
5D:
5D:
5D:
5D:
5D:

=
g
L8]
(=
L_

BO000000
80000004
80000008
B000000C
80000010
80000014
80000018
B000001C

+30002222
00000000 %Y
0Qooo000
0Qooo000

1

NE NN

NE NN

00000000 %Y
NENN

NE NN

NE NN

1 [»

0Qooo000
0Qooo000
0Qooo000

L b

S

©1989-2024 Lauterbach

Peripheral Files Programming

33

Other Top Level Commands

ASSERT Abort if condition not met

Format: ASSERT <expression> [<string>]

With ASSERT you can ensure that your environment meets a certain condition, before TRACE32
should go on with the parsing of the PER file.

If you omit the optional string with an error message, the following message will be shown instead:
Assertion failed: <expression>

<expression> Expression which must evaluate to a boolean.
If the result of the expression is FALSE, the parsing of the PER file will be
stopped and an error message will be shown.

<string> Optional string containing an error message, which will be shown if
<expression> evaluates to FALSE.

Example: This code line ensures that a PER file is only parsed by “TRACE32 for ARM”

ASSERT CPUFAMILY ()=="ARM" "Sorry, this PER file is only for ARM cores"
AUTOINDENT Indent content of peripheral file automatically
[Examples]
Format: AUTOINDENT.<command> <alignment> <type> [<number> | <columns>
<width>]
<command> ON | OFF | PUSH | POP
<alignment>: LEFT | RIGHT | CENTER
<type>: TREE | LINE | GRID
Default: OFF

Switches automatic indentation ON or OFF. Only available for TRACES32 versions >= 97444,

AUTOINDENT ignores all leading and trailing space characters within subsequent definitions and
rearranges the contents according to the specified <alignment>and <type>. It affects all entries within a
TREE and should therefore only be activated or changed outside of a TREE. Otherwise the result may be
undefined.

©1989-2024 Lauterbach Peripheral Files Programming | 34

PUSH Pushes current Autolndent configuration on the stack.
POP Recovers previously pushed Autolndent configuration from the stack.
<alignment> Alignment of the values in relation to their description: LEFT, RIGHT,
CENTER.
Default: LEFT
For examples, see here.
<type> Indentation type of description-value pairs: TREE, LINE, GRID.
Default: TREE
For examples, see here.
<number> Proximity range. Only available if <fype>= PROXIMITY.
Default: 5
<columns> Number of columns. Only available if <type> = GRID.
Default: 5
<width> Width of a column in characters. Only available if <type>= GRID.
Default: 16.
NOTE: AUTOINDENT affects only the following statements:

ASCII

BITFLD, EVENTFLD, RBITFLD, SETCLRFLD
BUTTON

DECMASK, FLOATMASK, HEXMASK
HEXFLD

HIDE

IN

LINE

NEWLINE

It explicitly does not affect the following statements:
J BIT
TEXTFLD, TEXTLINE

It makes the following statements obsolete:
WIDTH
CONFIG (If no BIT command is being used)

©1989-2024 Lauterbach

Peripheral Files Programming

35

Overriding AUTOINDENT for Binary Masks

Sometimes you may want to concatenate bits or include text fragments without switching auto-indentation

OFF. To override auto-indentation in this special case, omit the <name> entry of the HEXMASK or BITFLD.

Let’s illustrate the override effect by comparing two source code snippets, one with <name> and the other
one without <name>. The relevant part in each source code snippet is highlighted in red in the two
PER.Program windows. The results are displayed directly below in the two PER.view windows.

With <name>:

|! B::PER.Program ~-~\with_name.per EI@
[& save | save As.. || &P save+Close || EF Quit+Close |[5 save+Comp (it Compile]
GROUP. LONG 0x08++0x03 i
LINE.LONG 0x00 "BIT_2
BITFLD.LONG Ox00 7. |" inary mask - bit 7" "0,1
BITFLD.LONG Ox00 & inary mask - bit &" "0,1"
BITFLD.LONG Ox00 5 inary mask - bit 5" "0,1" IC
BITFLD.LONG Ox00 4. inary mask - bit 4" "0,1" 3
BITFLD.LONG Ox00 3. |" inary mask - bit 3" "0,1"
BITFLD.LONG Ox00 2 inary mask - bit 2" "0,1"
BITFLD.LONG Ox00 1 inary mask - bit 1" "0,1"
BITFLD.LONG Ox00 O inary mask - bit 0" "0,1"
| -
4 2
[fok1][GROUP |(wWGROUP [WSGROUP][RGROUP | other
™ B:PER.view ~~\with_name.per EI@ W
THME_Z2 00000000 TIME 00:00:00 A
EIT_Z Q0000024 BINARY_MASKJO <name6> 0 <name5> W <named> 0 <name3» 0 <name2> § <namel> O <namel> Of

A The bits are not concatenated if a <name> is specified in BITFLD.

Without <name>:

|! B::PER.Program ~~\without_name.per EI@
[& save | save As.. || &P save+Close || EF Quit+Close |[5 save+Comp (it Compile]

GROUP. LONG Ox08++0x03
LINE.LONG Ox00 "BIT_Z2.B
BITFLD.LONG Ox00 7. |"
BITFLD.LONG 0x00 6. |",[B
BITFLD.LONG Ox00 5. |"
BITFLD.LONG Ox00 4. |"
BITFLD.LONG Ox00 3. |"
EITFLD.LONG Ox00 2.
BITFLD.LONG Ox00 1. |"
BEITFLD.LONG Ox00 O

m

] [}

[ekl |[GROUP |[WGROUP || WSGROUP |[RGROUP |[other

B:PER.view ~~\without_name.per EI@ W

THME_Z2 00000000 TIME 00:00:00
BIT_2 00000024 BINARY_MASI] OOZOOL00 |

B If <name> is omitted from BITFLD, then the bits are concatenated.

©1989-2024 Lauterbach Peripheral Files Programming |

36

Examples

Code Example

ASSERT version.build()>=97444.

AUTOINDENT.ON left tree
TREE "Tree 1"
GROUP . LONG
LINE.LONG O,
BITFLD.LONG 0, 0.--1.
TREE . END
AUTOINDENT.ON right tree
TREE "Tree 2"
GROUP . LONG
LINE.LONG O,

"Regl,First register"
"F1dl,First field"

"Reg32,32nd register"

"Please update TRACE32"

; AUTOINDENT using

; <alignment> = left and
; <type> = tree
||1,2,3,4n

; Second tree looks
; better with

; <alignment> = right

BITFLD.LONG O, 0.--1. "F1ldl,First field" "1,2,3,4"
TREE . END
AUTOINDENT.OFF ; Sometimes you do
TREE "Tree 3" ; not want to use
GROUP.LONG. . . ; AUTOINDENT
LINE.LONG 0, " Reg99 ,99th register"
BITFLD.LONG O, 0.--1. " Fldl ,First field" "1,2,3,4"
<alignment> Examples
Example 1: AUTOINDENT.ON RIGHT TREE aligns all values to the right.
™ B:PER.view pertest.per EI@
@ 1D i
= 5 n Control and Configuration
SCTLR 00000000 TE ARM AFE DisabTed TRE DisabTed
EE Little Mot forced | Not forced
v 0x00000000 I Disabled Z Disabled
Sh Disabled C Disabled 4 Disabled
I Disabled =
ACTLR 00000000 No Disabled I5 No
No No Disabled
CPACR 00000000 No No Denied
Denied
SCR 00000001 Permitted Undefined SCD No
Mot allowed Mot allowed EA Abort
FIQ IRQ 5 Non-secure
R 00000000 Denied Denied
R 00000000 Disabled No NSD32DI5 No
Denied Denied
R 00000000 0ooo0000
AR 00000000 VEADDR 00000000
00000000 A Not pending I Not pending F Not pending
& Memo Management Unit
Fl 10 2

©1989-2024 Lauterbach

Peripheral Files Programming

37

Example 2: AUTOINDENT.ON LEFT TREE aligns all values to the left next to their descriptions.

™ B:PER.view pertest.per

=&

==l

ID Registers

»

= System Control and Configuration
SCTLR 00000000 TE ARM
EE Little
Vo Ox00000000
SW Disabled
1 Disabled
ACTLR 00000000 DEDI No
LZRADIS No
ASEDIS No
CP10 Denied
SIF Permitted
AW Not allowed
FIO FIQ
SUNIDEN Denied
NS_SMP Disabled
CP11 Denied

CPACE 00000000
SCR 00000001

SDER 00000000
NSACR 00000000

AFE DisabTed TRE DisabTed
UwxN Not forced WxN Mot forced
I Disabled Z Disabled

C Disabled A Disabled

L1PCTL Disabled L1RADIS No

DODMBS No SMP Disabled
D32DI5 No CP11 Denied
HCE Undefined SCD No

Fu Not allowed E4 Abort

IR0 IRQ N5 Non-secure
SUIDEN Denied
NSASEDIS No
CP10 Denied

m

VEAR 00000000
MVEAR 00000000
ISR 00000000

VEADDE 00000000
MVEADDR 00000000

4 Not pending F Not pending

@ Memory Management Unit - -

4 [| +

I Not pending

Example 3: AUTOINDENT.ON CENTER TREE moves the values somewhere to the middle so they are

aligned.
™ B:PER.view pertest.per
-
ID Registers —
@ System Control and Configuration
SCTLR 00000000 TE ARM AFE DisabTed TRE DisabTed
EE Little UWXN Mot forced WXN Mot forced
v 0x00000000 I Disabled z Disabled
SW Disabled C Disabled A Disabled L
M Disabled 3
ACTLR 00000000 DEDI No L1PCTL Disabled L1RADIS |No
LZRADIS |No DODMBS No SMP Disabled
CPACE 00000000 ASEDIS |No D32D1I5 No CP11 Denied
CP10 Denied
SCR 00000001 S5IF Permitted HCE Undefined SCD No o
AW Not allowed Fu Not allowed A Abort
FIQ FIqQ IRG IRGQ NS Non-secure
SDER 00000000 SUNIDEN |Denied SUIDEN Denied
NSACR 00000000 N5_SMP |Disabled NSASEDIS |No NSD32DIS|No
CP11 Denied CP10 Denied
VEAR 00000000 VEADDRE |0OOQ00000
MVEAR 00000000 MVEADDR [00000000
ISR 00000000 A Not pending I Not pending F Not pending
@ Memory Management Unit -
4 | i | b

©1989-2024 Lauterbach Peripheral Files Programming | 38

<type> Examples

Example 1: AUTOINDENT.ON LEFT TREE aligns all description-value pairs within a TREE.

™ B:PER.view pertest.per

(=[O el

ID Registers

-

= System Control and Configuration

TLE 00000000 TE ARM
EE Little
Vo 0x 00000000
SW Disabled
1 Disabled

ACTLR 00000000 DEDI No
L

CPACE 00000000 SED!
CP10 Denied

SIF Permitted
AW Not allowed

SCR 00000001

FI0 FIQ
00000000 SUNTDEN Denied
00000000 MP Disabled

CP11 Denied
VEADDE 00000000
MVEADDR 00000000
4 Not pending

VEAR 00000000
MVEAR 00000000
ISR 00000000

Memory Management Unit

AFE DisabTed
UwxN Not forced
I Disabled

C Disabled

L1PCTL Disabled
[10] 5 No
D32DI5 No

HCE Undefined
Fu Not allowed
IRO IRQ

SUIDEN Denied
SEDIS No

10 Denied

I Not pending

TRE DisabTed
WxN Mot forced
Z Disabled

A Disabled

L1RADIS No
SMP Disabled
CP11 Denied

F Not pending

m

4 | i

Example 2: AUTOINDENT.ON LEFT LINE aligns all description-value pairs within a LINE.

™ B:PER.view pertest.per

(=[O el

ID Registers

-

= System Control and Configuration

TLE 00000000 TE ARM AFE
EE Little

SW Disabled
1 Disabled

ACTLR 00000000 DEDI No
L2RADIS

CPACE 00000000 SED!
P10 Denied

SIF Permitted
AW Not allowed

SCR 00000001

0Qo00000
00000000

CP11 Denied
VEADDE 00000000
MVEADDR 00000000
4 Not pending

VEAR 00000000
MVEAR 00000000
ISR 00000000

Memory Management Unit

Ui Not forced
Vo 0x 00000000 I Disabled z
C Disabled A

I Not pending

DisabTed

HCE Undefined
W Not allowed

EDIS No
P10 Denied

TRE DisabTed
WxN Mot forced
Disabled
Disabled

1RADIS No
SMP Disabled
CP11 Denied

CD No

E4 Abort

5 Non-secure

F Not pending

m

4 | i

©1989-2024 Lauterbach

Peripheral Files Programming

39

Example 4: AUTOINDENT.ON RIGHT GRID 5 16. divides the window into the given number of <columns>
which are <width> characters wide each.

™ B:PER.view pertest.per EI@
@ ID Registers m -

em Control and Configuratiop ;
[TE ARM) AFE DisabTe TRE—Ptsabted == ErEET
X

UWXN Mot forced [wxN Mot forced| V O0x00000000)
I Disabled Z Disabled 5% Disabled] C DisabTei A Disabled
Disabled =
0oo00000 Noj L1PCTL Disabled L1RADIS Nof LZRADIS No
Mo| SMP Disabled
0oo00000 Noj D32D1I5 No| CP11 Denied
Denied
SCR 00000001 Permitted HCE Undefined] sSCD MNoj
Mot allowed Fw Mot allowed EA Abort
FIq| IRG IRQ 5 Non-secure|
00000000 Denied IDEN Denied
0oo00000 Disabled Noj NSD32DIS Nof
Denied ¢ Denied
VEBAI 0ooo0000 VBADDR 0o000000 1 6
MVEAR 00000000 L_JVwBiDDP 0o000000
ISR 00000000 4 Not pending I Not pending| F Not pending -—p
[E Memory ‘-'anage-l nit
B

A In case a description-value pair does not fit within a column, two (or more) columns will be merged ->
see red box above.

B When defining the <width> of the columns, please take the first 3 separation characters into account.

This command is useful for peripheral files which have been generated automatically and do not contain any
NEWLINE statements. These will be added automatically if a LINE contains more than <columns>
subentries. NEWLINE statements, however, can still be added manually.

©1989-2024 Lauterbach Peripheral Files Programming | 40

BASE Define a base address for following group definitions

Format: BASE <address>|<offset>

This command sets the start address for the peripheral module and refers to simple offset ranges. This
expression is permanently recalculated. If the parameters contain functions or symbols, it reflects later
changes in the parameters. The BASE command specifies memory class which is responsible for setting
appropriate addressing mode. Memory classes are described in Memory Classes section.

<address> Fixed address or expression which evaluates to the start address of the
peripheral groups following the BASE command.

<offset> Fixed offset or expression which evaluates to the start address of the
peripheral groups following the BASE command. The access class will be
taken from the <address> of a preceding BASE command.

% B:PER Di\test.per | B

DATA 00 %
CNTL 00

Example:

// use fixed base
BASE d:0xff£f£0000
GROUP.LONG 0x00++0x3
LINE.LONG 0x00 "Reg_0,Register 0"

// use offset base
BASE 0x100

// use variable base
BASE (SYStem.BASE()&0x0f)*0x1000

// use variable base
BASE Data.Long (base_pointer)

©1989-2024 Lauterbach Peripheral Files Programming | 41

BASEOUT Output a value before calculating a base address

Format: BASEOUT <addr_expr> <address> [Y%<format>] <data>
<format>: Byte | Word | Long | Quad | TByte | HByte

Float. [leee | leeeDbl | leeeeXt | <others>]

BE | LE

Like the BASE command BASEOUT defines a start address for the peripheral group definitions following
the BASEOUT command. This address is usually frequently calculated by the given address
expression.

Unlike the BASE command BASEOUT writes a certain value (<data>) to a specified address (<address>)
before evaluating the expression which sets the start address for the following group definitions. If a bit-

mask is used the specified address will be read and modified before it will be written.

NOTE: If <addr_expr> is a constant address, no data will be written to <address>.

<addr_expr> Expression which evaluates to the start address of the peripheral groups
following the BASEOUT command.

<address> Address which should be written before evaluating the address
expression.
<data> Data which should be send to the specified address before evaluating the

address expression. This could also be a bit-mask.

Please consider: As the display is refreshed permanently the memory at <address> is modified
permanently as well.

Example 1: Write 0x01 to address 0x100 before reading the base address from address 0x104.
The GROUP command will then read the first three lines at that base address.

BASEOUT Data.Long(D:0x104) D:0x100 %Long 0x01
GROUP 0x00++0x3
LINE.LONG 0x00 "Reg 0,Register 0"

Example 2: Set the LSB in address 0x200 before reading the base address from 0x202.

BASEOUT Data.Word(D:0x202) D:0x200 %Word OyXXXXXXXXXXXXXXX1
GROUP 0x00++0x3
LINE.WORD 0x00 "TIMER_CTRL_O,Timer 0 Control register"

©1989-2024 Lauterbach Peripheral Files Programming | 42

BASESAVEOUT Output a value before calculating a base address

Format: BASESAVEOUT <addr_expr> <address> [%<format>] <data>
<format>: Byte | Word | Long | Quad | TByte | HByte

Float. [leee | leeeDbl | leeeeXt | <others>]

BE | LE

Outputs a value before calculating a base address with restore. This command is almost the same like
BASEOUT. However, unlike BASEOUT the data on the specified address gets restored after evaluating
the address expression.

<addr_expr> Expression which evaluates to the start address of the peripheral groups
following the BASESAVEOUT command.

<address> Address which should be written before evaluating the address
expression.
The original content gets saved before evaluating the expression and es
restored afterwards.

<data> Data which should be send to the specified address before evaluating the

address expression. This could also be a bit-mask.

CONFIG Configure default access width and line break for BIT

[Example]

Format: CONFIG <access_width> [<bits_per_line>]

Configures the default access width used with GROUP.auto, aligns the field description after a LINE
statement, and configures the bits-per-line emitted by the BIT statement.

<access_width> By default the <access_width> is set to 8, which means (a) byte accesses to
the memory by GROUP.auto and (b) no extra white space after any LINE
statement. The access width in bits configures two things:

1. The default data access width in bytes of a GROUP, which does
not specify its access width (GROUP.auto).
The access width in bytes is calculated as follows:
(access width + 7) / 8 = result (max.result: 8)

2. The minimum display width of the hex nibbles of a LINE statement.
The minimum width is calculated as follows:
(access width + 3) / 4 + 1 = result (max.result: 17)

©1989-2024 Lauterbach Peripheral Files Programming | 43

By default <bits_per_line> is set to <access_width>. The bits per line set
the number of bits shown in one line with the BIT statement before an

automatic line break.
This setting affects only the BIT statement, but not the BITFLD statement

(or others).

<bits_per_line>

©1989-2024 Lauterbach Peripheral Files Programming | 44

Example:

WIDTH

9.
CONFIG 16.

10.
4.

GROUP.auto D:0x000++1
0x00 "myLine"

LINE.BYTE

BIT 7. "flag7"
BIT 6. "flag6"
BIT 5. "flagb5"
BIT 4. "flag4d"
BIT 3. "flag3"
BIT 2. "flag2"
BIT 1. "flagl"
BIT 0. "flagO"
NEWLINE

"_ one
"_ on®
"_ on®
"_ on®
"_ on®
"_ one
"~ onv
"_ one

BITFLD.BYTE 0x00 0--1

"myBitFieldName " "john,paul, george,ringo"

<+—" << =
™ BuPER.iew [~~\demo_per_config.per El
myLine (42 agd -
2 'II -_
<r>

A Display width of the hex value emitted by the LINE statement. This width is the first parameter of
the CONFIG statement.
In this example, <access_width> is 16 bits, i.e. (<access_width> + 3) / 4 + 1 = 5 characters.

B Number of BIT items in one single line before an automatic line break. This is configured with the
second parameter of the CONFIG statement. (here: 4 BIT in one line).

C Width of the register name emitted by the LINE statement. This width is configured with the first
parameter of the WIDTH statement. (here: 9 characters)

D Width of a bit displayed by the BIT statement. This width is configured with second parameter of the

WIDTH statement. (here: 10 characters)

Ccsv

Enables CSV capabilities

Format:

CSV.[ON | OFF]

Enables or disables the new CSYV file format for *.per files. For more information, see “Comma-Separated-

Values (CSV) File Format for *.per Files”, page 12.

©1989-2024 Lauterbach

Peripheral Files Programming | 45

ELSE Conditional GROUP display

Refer to the IF command.

ELIF Conditional GROUP display

Refer to the IF command.

ENDIAN Define little or big endian

Format: ENDIAN [BE | LE | DEF]

With DEF parameter the endianness is set due to the configuration of the debugger. With this command the
debugger accesses the target data with the specified endianness. This is done independent of the target
and the system endianness settings.

Default: ENDIAN DEF

Example:
ENDIAN.LE ; little endian
ENDIAN.BE ; big endian
ENDIAN.DEF ; target default endian
ENDIF Conditional GROUP display

Refer to the IF command.

ENTRY Assign parameters to macros

Assign parameters used to open the peripheral file to macros, to parametrize the peripheral view (similar to
the PRACTICE ENTRY command).

Refer to “Passing Arguments”, page 8.

©1989-2024 Lauterbach Peripheral Files Programming | 46

HELP Reference online manual

Format: HELP.Winhelp " <file>,<item>"
HELP.Online "<item>"

Defines a button in the last GROUP header or tree control. HELP.Online calls the TRACE32 online manual.
HELP.Winhelp calls a windows help file (available on Windows only).

IF Conditional GROUP display

Format: IF <condition>
ELIF <condition>
ELSE
ENDIF

<condition>: Condition examples:
- eval()==<condition_val>
- Y%o<parameter>==<condition_val>
- (((data.<size>(<address>))&<bit_mask>)==<condition_val>)

GROUPs can be displayed conditionally using IF...ENDIF commands.
GROUPs defined in different IF and ELIF statements are overlaid at the same place in the window.

Only GROUPs which reside within the fulfilled condition are displayed. The ELSE part is displayed only
when no other condition is true. All conditions are dynamically recalculated to reflect the current state of the

peripheral.
NOTE: The IF command cannot be used inside a GROUP. (Please use IF always
before a new GROUP.).
NOTE: Unlike in the C programming language, the IF statement always evaluates all

expressions also for logical operators && and II.

©1989-2024 Lauterbach Peripheral Files Programming | 47

Example:

IF (((Data.Long(d:0x00))&0xf)==0x0)
GROUP.LONG d:0x0++0x7
LINE.LONG 0x0 "CR,Control register"
BITFLD.LONG 0x0 0.--1. " REGSEL
LINE.LONG 0x4 "REG_A,Register A"
ELIF (((Data.Long(d:0x00))&0xf)==0x1)
GROUP.LONG d:0x0++0x7
LINE.LONG 0x0 "CR,Control register"
BITFLD.LONG 0x0 0.--1. " REGSEL
LINE.LONG 0x4 "REG_B,Register B"
ELIF (((Data.Long(d:0x00))&0xf)==0x2)
GROUP.LONG d:0x0++0x7
LINE.LONG 0x0 "CR,Control register"
BITFLD.LONG 0x0 0.--1. " REGSEL
LINE.LONG 0x4 "REG_C,Register C"
ELSE
GROUP.LONG d:0x0++0x7
LINE.LONG 0x0 "CR,Control register"
BITFLD.LONG 0x0 0.--1. " REGSEL
LINE.LONG 0x4 "REG_D,Register D"
ENDIF

,Register select" "RegA,RegB,RegC,RegD"

,Register select"

"RegA, RegB, RegC, RegD"

,Register select"

"RegA, RegB, RegC, RegD"

,Register select" "RegA,RegB,RegC,RegD"

Register REG_A is selected if the value of the REGSEL bit field equals 0.

" BuPER D:\test.per ll:' [
ICR 02000000 REGSEL RegA -
FEG_A 00000000 |T Regh
RegB
4
RegC
RegD

Register REG_B is selected if the value of the REGSEL bit field equals 1.

o e

RegBE

o B:PER Di\test.per
ICR 02000001 REGSEL
FEG_E 00000000

Regh
|T RegB
RegC
RegD

Register REG_C is selected if the value of the REGSEL bit field equals 2.

=NACIH X
RegC &
Regh
RegB
|T RegC

RegD

o B:PER Di\test.per
ICR 0200000 REGSEL
REG_C 00000000

Register REG_D is selected if the value of the REGSEL bit field equals 3.

=HAEE X

RegD

o B:PER Di\test.per
ICR 02000003 REGSEL
FEGC_D 00000000

Regh
RegB
RegC

|T RegD

©1989-2024 Lauterbach

Peripheral Files Programming |

48

INCLUDE Include another peripheral file

Format INCLUDE <file>

Includes another peripheral file.

<file> Path to another peripheral file
MENCONFIG PERMENU configuration
[build 158791 - DVD 09/2023]
Format: MENCONFIG </evel>

Configures the number of submenu levels for the PERMENU command. Has no effect for normal peripheral
file processing. Overwrites the third optional parameter of PERMENU.

PERCMD Row definition in CSV-formatted *.per file
Format: PERCMD,<column_list>
<column_ Address,AccessWidth,Name,Tooltip,From,To,Choices[,RW][,Ignore]
list>:

Optional definition of the columns of a peripheral file in CSV format.

J Default: If the PERCMD command is omitted in the CSV-formatted *.per file, then the sequence
of columns must be: Address,AccessWidth,Name, Tooltip,From,To,Choices

J If the PERCMD command is included in a CSV-formatted *.per file, then <column_list> must
contain all column names that are flagged as mandatory in the table below. Column names are
case sensitive!

NOTE: With the PERCMD command included in the CSV-formatted *.per file, you are free
to arrange the mandatory and optional columns in any order.

©1989-2024 Lauterbach Peripheral Files Programming | 49

Please also refer to “Comma-Separated-Values (CSV) File Format for *.per Files”, page 12.

Column Names

Meaning in the spreadsheet

(mandatory/optional)

Address Absolute address of a register consisting of access class and value, or the
(mandatory) offset from a previously defined BASE command.
If empty, the value is assumed to be the same as the last known one.
An address different from the previous one corresponds to the LINE
command.
AccessWidth Access width of the register. Valid values are: 8. 16. 32. and 64.
(mandatory) If empty, the value is assumed to be the same as the last known one.
An access width different from the previous one corresponds to the LINE
command.
Name Name of the register. Mandatory for registers, optional for register fields

(see Autolndent -> binary mask).

Tooltip Tooltip or more meaningful name of the register, e.g. the long form of the

(mandatory) register name.

From Lower boundary of a bit field of a register.

(mandatory)

To Upper boundary of a bit field of a register.

(mandatory)

Choices . Not empty:

(mandatory) Comma-separated list of choices which will appear in the PER.view
window in drop-down lists. Corresponds to the BITFLD command. A
spreadsheet editor automatically adds the surrounding single
quotes when the *.per file is exported in CSV file format. Otherwise
the single quotes must be added manually.

. Empty:
Corresponds to the HEXMASK command.
RwW Access rights to the register or register field. Valid values are:
(optional) . RD (read)

. WR (write)
. RW (read/write)
If empty, WR (write) will be taken as default.

ClearAddress
(optional)

. Not empty:
Defines a SETCLRFLD command, see ClearFrom.

. Empty:
Defines a HEXMASK, BITFLD or EVENTFLD command, see
ClearFrom.

©1989-2024 Lauterbach

Peripheral Files Programming | 50

Column Names

Meaning in the spreadsheet

ClearFrom
(optional)

Not empty and column ClearAddress empty:

Bit(s) of a register which can only be cleared by writing a ‘1°. Corre-
sponds to the EVENTFLD command. This value must be the same
as in the From column while the range is defined as To - From.
Not empty and columns ClearAddress, SetAddress and SetFrom
not empty: Defines a register status bit with associated set and
clear bits. See SETCLRFLD command.

Empty:

Corresponds to HEXMASK or BITFLD command.

SetAddress
(optional)

Not empty:

Defines a SETCLRFLD command, see ClearFrom.
Empty:

Corresponds to HEXMASK or BITFLD command.

SetFrom
(optional)

Not empty:

Defines a SETCLRFLD command, see ClearFrom.
Empty:

Corresponds to HEXMASK or BITFLD command.

Ignore
(optional)

Ignores a column that is irrelevant for a *.per file, e.g. redundant
columns extracted from binaries.
User-defined column names will also be ignored in the *.per files.

Example: The two last columns Ignore and myCol1 will not have any effect.

PERCMD, Address, AccessWidth, Name, Tooltip, From, To, Choices, Ignore, myColl

©1989-2024 Lauterbach

Peripheral Files Programming | 51

REPEAT Repeat block of commands

[build 139117 - DVD 09/2021]

Format: REPEAT <count> (<argument1>) (<argument2>) ...
<block>
REPEAT.end

<argument>: increment <start> <step>

list <item1> <item2> ...
strings <item1> <item2> ...
function “<PRACTICE_ function>"

Repeat the enclosed <block> of peripheral commands <count> times. Within the <block>, placeholders can
be used in order to take into account iteration-specific register names and addresses. These placeholders
are denoted as $1, $2, etc. and refer to <argument1>, <argument2> and so on.

increment Placeholders within <block> have an initial value of <start> and get
incremented by <step> on each iteration.

list Placeholders within <block> will be assigned the <items>, which must be
addresses or numeric values.
There is a maximum of 16 list items.

strings Same as list, but <items> must be text strings instead of numbers.

function PRACTICE function which may contain placeholders. Quotes within the
PRACTICE function must be escaped by a second quote.

Example 1: A GROUP and a LINE command get repeated 4 times:

REPEAT 4. (increment 0x0 Ox1) (list O0x0 0x8 0xC 0x14)
GROUP.LONG $2++0x3
LINE.LONG 0x00 “MyRegister_ S$1,My test register $1”
REPEAT.end

Which is equivalent to:

GROUP.LONG 0x0++0x3
LINE.LONG 0x00 “MyRegister_ 0,My test register 0”
GROUP.LONG 0x8++0x3
LINE.LONG 0x00 “MyRegister_1,My test register 1”
GROUP.LONG 0xC++0x3
LINE.LONG 0x00 “MyRegister_ 2,My test register 2”
GROUP.LONG 0x14++0x3
LINE.LONG 0x00 “MyRegister_ 3,My test register 3”

©1989-2024 Lauterbach Peripheral Files Programming | 52

Example 2: PRACTICE function

SIF COMPonentNUMBER (“ETM”) >0

REPEAT COMPonentNUMBER (“ETM”) (increment 0 1)
(function “COMPonentNAME (“”ETM””, $1)”)
(function “COMPonent.BASE (“”$2”",0)")
BASE $3
TREE $2
TREE . END
REPEAT . END
ENDIF
NOTE: When using placeholders as addresses or offsets within the <block>, the
following restrictions apply:
] Placeholders cannot be used in expressions except for the ‘add’ opera-

tion (‘+” sign). In that case the placeholder must be written first. E.g.
‘LINE.LONG $1+0x100'.

. GROUP commands must use the ‘<placeholder>++<size>’ format.

. Expressions in GROUP definitions must be enclosed by parenthesis, e.qg.
‘GROUP.LONG ($1+0x100)++0x3’.

The following restrictions apply to placeholders:

Decimal / Addresses Strings
Hexadecimal
numbers

increment X only <start>

list X X

strings X

©1989-2024 Lauterbach Peripheral Files Programming | 53

REPEAT.REPLAY Replay last complete REPEAT block

[build 140299 - DVD 02/2022]

Format: REPEAT.REPLAY

Replays the last complete REPEAT block. A block is considered as completed after the final REPEAT.END.
The REPLAY command is typically used whenever more than 16 list items are required:

;The following example assumes 32 identical peripheral modules named
; ‘MyPeripheral 0’ to ‘MyPeripheral_31’. Their base addresses are
;distributed randomly and will thus not fit into the list argument.

TREE “MyPeripherals”

BASE D:0x1720900

TREE “MyPeripheral_ 0"
REPEAT 1.
<block>
REPEAT . END

TREE . END

BASE D:0x1310900

TREE “MyPeripheral_ 1"
REPEAT .REPLAY

TREE . END

BASE D:0x1687000
TREE “MyPeripheral_31"
REPEAT .REPLAY
TREE . END
TREE . END

SIF Conditional interpretation

Format: SIF (CPU()=="<cpu_name>")
SIF (CPUIS(" <cpu_name>*"))
SIF (<logical_comparison>)

According to the condition a block between SIF and ENDIF (or SIF and ELSE) will be interpreted when the
peripheral file is opened or reparsed. The SIF command can be used also inside the GROUPs.

©1989-2024 Lauterbach Peripheral Files Programming | 54

Example:

SIF (cpu()=="MIPS4KC")
GROUP.LONG CP0:16.++0.
LINE.LONG 0x0 "Config,Configuration Register"

BITFLD.LONG 0x00 31. " M ,Configl register is implemented" "no,yes"
ELIF (cpu()=="MIPS4KEC")
GROUP.LONG 0x0 "Config,Configuration Register"

BITFLD.LONG 0x00 31. " M ,Configl register is implemented" "no,yes"
ELSE
GROUP.LONG 0x0 "Config,Configuration Register"

BITFLD.LONG 0x00 31. " M ,Configl register is implemented" "no,yes"
ELSE
ENDIF

Conventions :

SIF is only to be used to distinguish between CPUs, memory accesses should be avoided (not possible in
system.mode down).

Using once a GROUP command inside a SIF block, all trees of the SIF block must contain GROUP
commands. Also the next command after a finished SIF block must be a GROUP command then.

Using the command PER.TestProgram the error will be detected.

TREE Define hierarchic display

Format: TREE "<name>"
TREE.OPEN "<name>"
TREE.END

Defines a “Treeview” of peripheral modules. The tree can be displayed/hidden by a tree control (+/-). It is
possible to nest trees.

Example:

TREE "Audio Serial Port" ; tree GROUP displayed closed by

; default

TREE . END ; definition of the GROUP members

TREE.OPEN "General Timers"
TREE "TIMERS1" ; tree GROUP displayed opened in the
; ; peripheral window
TREE . END

TREE . END

©1989-2024 Lauterbach Peripheral Files Programming | 55

% B:PER Di\test.per = |) |

WIDTH Width of register names and a BIT description

Format WIDTH [<register_name>] [<bit_width>]

Configures width of LINE register names and a BIT description.

<register_name> Sets the width of the register name emitted by the LINE statement.
(default: 6.)

<bit_width> Sets the width reserved for the output of a BIT statement. This setting
(default: 9.) affects only the BIT statement, but not the BITFLD statement (or others).

Example: For an example, see the CONFIG statement.

WAIT Wait with PER windows until system is ready

Format WAIT [<address> | <expression> | <boolean_expression>]

The WAIT command is available for all architectures and PER files, but it should only be used when required
(i.e. SIF with target-dependent values). Most architectures will probably not require WAIT. But if there is a
need to use WAIT, then the recommendation is to use WAIT at the beginning of a PER file.

<address> Target address which has to be accessible; see example 2.
<expression> TRACE32 expression which can be evaluated; see example 3.
<boolean_ Boolean expression which has to be true; see example 4.
expression>

There are four ways to use the WAIT command, see examples 1 to 4.

Example 1: Wait with compilation until the target is up and regular memory can be accessed (this usually
means that the target is stopped).

WAIT

©1989-2024 Lauterbach Peripheral Files Programming | 56

Example 2: Wait with compilation until the target is up and the given memory address can be accessed (it is
never really accessed).

WAIT ETM:O0

Example 3: Wait with compilation until the target is up and the expression can be evaluated (the result does
not matter).

WAIT Data.Long(D:0)

Example 4: Wait with compilation until the target is up and the boolean expression evaluates to true.

WAIT Data.Long(D:0) !=0

©1989-2024 Lauterbach Peripheral Files Programming | 57

Commands within GROUPs

These commands are only useful inside a GROUP (GROUP, RGROUP, WGROUP, HGROUP, SGROUP).

Beside the commands INDEX, SAVEINDEX and BUTTON, which extend the memory access by a GROUP,
the commands define how the data fetched by a GROUP command should be displayed and/or modified.

ABITFLD Assign values to BITFLD choice items

[build 134843 - DVD 09/2021]

Format: ABITFLD.<size> <offset> <bit_range1> [<bit_range2>]

"<display_name>,<tooltip>"
["<choices>[,%d...|%X...|<string>...]"] ...

Same as BITFLD, but allows to assign values to the choice items:

ABITFLD.BYTE 0x00 0.--7. "Lock" "OxA5=Yes, 0x5A=No"

The value and choice text must be separated by the equal sign and without blanks in between! Value/text
pairs not listed will be output as hexadecimal value.

ASCII Display ASCII character

Format: ASCII

The previously defined byte is displayed as an ASCII character.

Example:

GROUP.BYTE sd:0x100--0x101 "Centronics"

LINE.BYTE 0x0 "DATA,Centronics Data Register"
ASCIT

LINE.BYTE Ox1 "CNTL,Centronics Control Register"

% B:PER Di\test.per | B

DATA 00 %
CNTL 00

©1989-2024 Lauterbach Peripheral Files Programming | 58

BIT Define bits

Format: BIT <bit>I<bitrange> " <display_name>,<tooltip>" " <choices>"

These fields are in fixed positions in the per window. The bit numbers must be entered from MSB to LSB.
The size of a field depends on the number of bits and the size of the name header.

<bit> | Defines bit's number and range. LSB is defined as the first, MSB as the
<bitrange> second character.

<display_name> Short name (abbreviation) of corresponding bit.

<tooltip> The sentence accurately describing a bits functionality.

<choices> Indicates states with bit field may take. LSB is defined as the first, MSB as

the last one. Each state is separated by a comma.

Example:

GROUP sd:0x100--0x101 "Centronics"
LINE.BYTE 0x00 "CNTL,Centronics Control Register"
BIT 7 "BSY,Centronics Busy" "No,Yes"
BIT 6 "EN,Centronics Enable" "Off,On"
BIT 2--4 "IPL,Centronics Interrupt Level" "Off,1,2,3,4,5,6,NMI"

o B:PER Di\test.per =R X
g_‘:clc_ ESY No EN Off IPL NMI &
BITFLD Define bits individually
Format: BITFLD.<size> <offset> <bit_range1> [<bit_range2>]

"<display_name>,<tooltip>"
["<choices>[,%d...|%X...|%y...|<string>...]"] ...

BITFLD is used to display the bit field name and its contents in a free format. The fields are chained together
in a line. A new line can be created by a TEXTLINE command.

<size> Size of register (Byte, Word, TByte, Long, Quad).

<offset> The bit field offset refers to the start address of the GROUP command.

<bit_range1> Defines a range of bits (or a single bit) that belong to a bit field. The lower
bit number has to come before the higher bit number, e.g. 3.--7.

©1989-2024 Lauterbach Peripheral Files Programming | 59

<bit_range2> For disjunct bit fields (= where not all bits are in one block), you can define
a second range of bits (or a single bit). Please see examples.

<short_name> Short name (abbreviation) of corresponding bit field.

<long_name> The sentence accurately describing a bit field functionality.

<choices> Defines the possible values (in words) which the bit field may take. LSB is
defined as the first, MSB as the last one. Each state is separated by a
comma.

If you define fewer <choices> than required for the <bit_range>, then
append %x...

%d... Placeholder for reserved/unused values at the end of <choices>. The val-
ues will be formatted as decimal numbers when displayed in the PER.view
window.

The field width is defined by the <choices>. If the decimal value is too
large to fit into the field, a question mark is displayed.
Please see examples.

YoX... Placeholder for reserved/unused values at the end of <choices>. The val-
ues will be formatted as hexadecimal numbers when displayed in the
PER.view window.

The field width is defined by the <choices>. If the hex value is too large to
fit into the field, a question mark is displayed.

%y... Placeholder for reserved/unused values at the end of <choices>. The val-
ues will be formatted as binary numbers when displayed in the PER.view
window.

The field width is defined by the <choices>. If the hex value is too large to
fit into the field, a question mark is displayed.

<string>... Placeholder for reserved/unused values at the end of <choices>. The val-
ues will be displayed as strings in the PER.view window.

BASE d:0x00000000
GROUP 0x00++0x03
LINE.LONG 0x00 "CR,Control Register"

BITFLD.LONG 0x00 31. " CONV ,Conversion Bit" "No effect,Conv"
BITFLD.LONG 0x00 24. " TR ,Transfer" "No effect,Transferred"
BITFLD.LONG 0x00 16.--19. " CS ,Chip Select"
"Cs0,CSs1,Cs2,C83,C84,C85,C86,C87,€C88,C89,C810,€811,C812,C813,CS814,C815™"
BITFLD.LONG 0x00 5. " ONCHIP ,On chip trace implemented" "Not
implemented, Implemented"
TEXTLINE " "
BITFLD.LONG 0x00 1. 3. " DETM ,Detection mode"
"Rising,Falling,High level,Low level"
BITFLD.LONG 0x00 0. " RST ,Reset mode" "No reset,Reset"

©1989-2024 Lauterbach Peripheral Files Programming | 60

=NACIN X

o B:PER Di\test.per
ICR oooooooo CO

DETH Ris

ONV No effect TR No effect
ising RST No res

in

|T Rising
Falling
High level

Low level

5 C50
et

ONCHIF Not implemented .

Examples

Example for bitranges:

Example 1: \15|14|13|12]11]10\ 9 \ 8 | 7 | 6|5[4]3 \ 2 \ 1 |o\

Example 2:

Example 3:

Example 4:

Example 5:

Example 6:

;Example 1

BITFLD.<size>

;Example 2

BITFLD.<size>

;Example 3

BITFLD.<size>

;Example 4

BITFLD.<size>

;Example 5

BITFLD.<size>

;Example 6

BITFLD.<size>

...‘15|14|13|12‘11‘10‘9‘8|7|6|5‘4‘3‘2‘1|0‘

...‘15|14|13|12|11|10‘9‘8|7|6|5|4|3‘2‘1|0|

...‘15|14|13|12’11’10‘9‘8|7|6|5’4’3‘2‘1|O‘

...‘15|14|13|12|11|10‘9‘8|7|6|5|4|3‘2‘1|0|

...‘15|14|13|12’11’10‘9‘8|7|6|5’4’3‘2‘1|O‘

0x00

0x00

0x00

0x00

0x00

0x00

<bit_rangel>
2.

<bit_rangel>
2.--8.

<bit_rangel>
2.--8.

<bit_rangel>
2.--8.

<bit_rangel>
2.

<bit_rangel>
2.

<bit_range2>
14.

<bit_range2>
14.--15.

<bit_range2>
14.

<bit_range2>
14.--15.

©1989-2024 Lauterbach

Peripheral Files Programming

61

Example for handling unused/reserved values:

g B:PER.Program D:\per-reserved-values.per EI@
[2 save | ¥ save As.. || T save+Close || E5 Quit+Close][F¥save+Comp |[itki Cornpile

config 16. 8. i
width 15.

base d:0x00

group. long 0x0—H—0x3
Tine.long 0x00 TII‘-'IER_CONTROL Timer Clock Control Regi ster‘

bitfid.long 0x00 0.--3. TPSC T1mer‘ Prescaler ™ "0,1,2,3,4,5,6,7 yssrrvs S
textline
bitf1d.Tong Ox00 0.--3. " TPSC_1 ,Timer Prescaler " "0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07 ,%x..."
textline "
bitf1d.Tong Ox00 0.--3. " TPSC_2 ,Timer Prescaler " “00,01,p2,03,04,05,06,07,%d..."
textline " "
bitf1d.Tong Ox00 0.--3. " TPSC_3 ,Timer Prescaler” "0,1,2,3,4,reserved...”
textline "
bitf1d.Tong Ox00 0.--3. " TPSC_4 ,Timer Prescaler” "00,1,2,3,4,7..."
textline " -
4 I3
<string> pravious
|-
«® B:PER.view =N =N
TIMER_CONTROL OOQOQ000F ?
Ox0F
15
?
?
BUTTON Define command button
f n non g n
Format: BUTTON “<text>" "<cmdline>

Clicking an input field (button) executes the defined command line. This field can be used to execute
input/output commands or open different views (e.g. memory dumps).

<text> Name of the button.

<cmdline> Contains command, address area and an access size.

Example 1: Button with single command.

GROUP.LONG 0x00++0x3
LINE.LONG 0x00 "MEM,Memory Array"
BUTTON "MEM " "Data.dump ad:0x5C000000--ad:0x5CO1lFFFF /Long"

©1989-2024 Lauterbach Peripheral Files Programming | 62

o B:PER. =B [5] 8 Bud ad:0x5C000000—ad:0:5C0L.. el /o0 [t
[EN 00000000 _MEM s address 0 4 01234567 ~
ASD:5CO00000 (+00000000 COOO0000

-
A5D:5C000008 | 00000000 QO000000
A5D:5C000010 | 00000000 QO000000
v A5D:5C000018 | 00000000 QO000000
4 b A5D:5C000020 | 0OOO0000 QOQO00O00
A| A5D:5C0O00028 | 00000000 QOC000O00

m

A5D:5C000030 | 00000000 QO000000
A5D:5C000038 | 00000000 QO000000
A5D:5C000040 | 00000000 QOQO0000 "%
A5D:5C0000438 | 00000000 QOQO0000

A5D:5C000050 | 0QOO0000 QOCO00O00

4 b

Example 2: Button with multiple commands.

GROUP.LONG D:0x00++0xFF
LINE.LONG 0x00 "RST_VEC,Reset Vector"
BUTTON "Clear Vector Table"
(
Data.dump 0x00++0xFF /Long
Data.set %$Long ad:0x5C000000++01FFFF

COPY

0

Copy GROUP

Format: COPY [<number>]

Copies the last defined GROUP to the current GROUP. The optional argument defines which GROUP

should be copied. Number of the GROUP is calculated backward form the current one. The command is
used to duplicate the definition of GROUPs, e.g. for devices with many equal channels.

<number> Optional GROUP number.

Example 1:

GROUP.WORD sd:0x80008038--0x8000803f "MMU
LINE.WORD 0x0 "SL,Segment Length"
LINE.WORD 0x2 "SNR, Segment Number"

bit 5 " FN, Flush" "Inv.,Valid"
LINE.WORD 0x4 "SB,Segment Base Address"

GROUP.WORD sd:0x80008048--0x8000804f "MMU
copy

GROUP.WORD sd:0x80008050--0x80008057 "MMU
COPY

Descriptor 0"

Descriptor 1"

Descriptor 2"

©1989-2024 Lauterbach

Peripheral Files Programming

| 63

o B:PER Di\test.per =HRCIN X
MMU Descriptor 0 7
SL oooo
SNR oozo
FN valid
SE oooo
MMU Descriptor 1
SL oooo
SNR oozo
FN valid
SE oooo
MMU Descriptor 2
SL oooo
SNR oozo
FN valid
SE oooo
4 3
- A
Example 2:

GROUP.WORD sd:0x80008034--0x80008035
LINE.WORD 0x0 "SWI,Segment Width"
GROUP.WORD sd:0x80008036--0x80008037
LINE.WORD 0x0 "SPR,Segment Priority"
GROUP.WORD sd:0x80008038--0x8000803f "MMU Descriptor 0"
LINE.WORD 0x0 "SL, Segment Length"
LINE.WORD 0x2 "SNR, Segment Number"
bit 5 " FN, Flush" "Inv.,Valid"
LINE.WORD 0x4 "SB, Segment Base Address"
GROUP.WORD sd:0x80008048--0x8000804f "MMU Descriptor 1"

COPY 2
GROUP.WORD sd:0x80008050--0x80008057 "MMU Descriptor 2"
COPY 4
% B:PER Di\test.per =SHACI X
SWI o000 -
SPR oooo
MMU Descriptor 0
SL oooo
SNR oooo
FN Inv.
SB oooo
MMU Descriptor 1
SPR oooo
MMU Descriptor 2
SWI oooo
DECMASK Define bits for decimal display
Format: DECMASK.<access_size>[.<display_length>] <offset> <bit_range> <scale>

[<add>] "<display_name>,<tooltip>"

While the similar command HEXMASK displays bits as a hexadecimal value, DECMASK displays bits as
decimal value.

©1989-2024 Lauterbach Peripheral Files Programming | 64

DECMASK defines a set of bits, which should be displayed as decimal value. The bits are extracted from
the current buffer at location defined in the bitrange. The result of this extract is multiplied by <scale>and
increased by the optional <add> value.

<access_size>

Size of register access (Byte, Word, TByte, Long, Quad).

<display_length>

Length of displayed field (Byte, Word, TByte, Long, PByte, HByte,
SByte, Quad).

<offset>

The DECMASK field offset refers to the start address of the GROUP
command.

<bit_range>

Defines range of the DECMASK field. LSB is defined as the first, MSB as
the second character.

<scale> Multiplier value.
May be a floating point value since build. 46110
<add> Optional addend - increases value.

<display_name>

Short name (abbreviation) of corresponding DECMASK field.

<tooltip> The sentence accurately describing a DECMASK field functionality.
FLOATMASK Define bits for decimal floating point display
Format: FLOATMASK.<access_size>[.SIGNED][.<display_length>] <offset>

<bit_range> <scale> [<add>] " <display_name>,<tooltip>"

While the similar command DECMASK displays bits only as a decimal value without positions after decimal
point, FLOATMASK displays bits as decimal value with positions after decimal point.

FLOATMASK defines a set of bits, which should be displayed as decimal value. The bits are extracted from
the current buffer at location defined in the bitrange. The result of this extract is multiplied by <scale> and
increased by the optional <add> value.

<access_size>

Size of register access (Byte, Word, TByte, Long, Quad).

<display_length>

Length of displayed field (Byte, Word, TByte, Long, PByte, HByte,
SByte, Quad).

<offset>

The DECMASK field offset refers to the start address of the GROUP
command.

<bit_range>

Defines range of the DECMASK field. LSB is defined as the first, MSB as
the second character.

©1989-2024 Lauterbach

Peripheral Files Programming | 65

<scale>

Multiplier value.
May be a floating point value since build. 46110

<add>

Optional addend - increases value.

<display_name>

Short name (abbreviation) of corresponding DECMASK field.

<tooltip>

The sentence accurately describing a DECMASK field functionality.

<access_size>

Size of register access (byte, word, tbyte, long, quad).

<display_length>

Length of displayed field (byte, word, tbyte, long, quad).

<offset>

The FLOATMASK field offset refers to the start address of the GROUP
command.

<bit_range>

Defines range of the FLOATMASK field. LSB is defined as the first, MSB
as the second character.

<scale>

Multiplier value. Usually a floating point value.

<add>

Optional addend - increases value.

<display_name>

Short name (abbreviation) of corresponding FLOATMASK field.

<tooltip>

The sentence accurately describing a FLOATMASK field functionality.

Example:

GROUP D:0x80001204++3 "Timer"

TEXTLINE ""

DECMASK . LONG 0 0--31. 1 " milliseconds: "
TEXTLINE ""

FLOATMASK.LONG 0 0--31. 0.001 " seconds: "
TEXTLINE ""

©1989-2024 Lauterbach

Peripheral Files Programming | 66

EVENTFLD Define event flag bits individually

Format: EVENTFLD.<size> <offset> <bit_range> " <display_name>,<tooltip>"
"<choices>"

Defines an event bit display in a free format. An event bit can be cleared by writing a '1’. Writing '0' does not
affect event bit. The fields are chained together in a line. A new line can be created by a TEXTLINE
command. The implementation format is the same as a BITFLD format.

<size> Size of register (byte, word, tbyte, long, quad).
<offset> The event bit offset refers to the start address of the GROUP command.
<bit_range> Defines range of the bit field. LSB is defined as the first, MSB as the sec-

ond character. Optionally the third character is bit (or bit range), used if
two bit fields are conjuncted.

<display_name> Short name (abbreviation) of corresponding event bit field.
<tooltip> The sentence accurately describing a event bit field functionality.
<choices> Indicates states with bit field may take. LSB is defined as the first, MSB

as the last one. Each state is separated by a comma.

Example:

GROUP.WORD d:0x100--0x11f "TPU Channels"
TEXTLINE ""
TEXTLINE "CH FUNC PRIO HSF HSR IEF ISF LNK SGL CHS PRMO PRM1"
TEXTLINE " 0,Channel 0"

BITFLD.WORD Oxle 0.--1. " " " Off, Low, Mid,High"
BITFLD.WORD Oxl1l6 0.--1. " " " s0, $1, s$2, s3"
EVENTFLD.WORD Oxla 0. " " "No,Yes"

©1989-2024 Lauterbach Peripheral Files Programming | 67

HEXFLD Define hexword individually

Format: HEXFLD.<length> <offset> " <display name>,<tooltip>"

Defines HEX value in a free format. The fields are chained together in a line. A new line can be created
using TEXTLINE command. If not the whole value should be displayed. The output size can be limited by
the “length” parameter.

<length> Length of HEX field (Byte, Word, TByte, Long, Quad).
<offset> The HEX field offset refers to the start address of the GROUP command.
<display_name> Short name (abbreviation) of corresponding HEX field.
<tooltip> The sentence accurately describing a HEX field functionality.
Example:

GROUP 0x100++0x03 "Counters"

LINE.LONG 0x00 "CNTR,Channel Counter Register"
HEXFLD.BYTE 0x00 " CCNTO ,Channel Counter 0"
HEXFLD.BYTE 0x01 " CCNT1 ,Channel Counter 1"
HEXFLD.BYTE 0x02 " CCNTZ2 ,Channel Counter 2"

.
o B:PER Di\test.per |':' E] 3= | 4] B:Data.dump ASD:0:100 /b ll:' (S S
- address 02 g e e T 02345 b iy
Counters A5D: 00000100 o0 00 00 00 O -
ICNTR 00000000 CCNTO 00 CCNT1 00 CCNTZ 00 ASD: 00000108 o0 00 00 00 O =
ASD:00000110 o0 00 00 00 O =l
ASD:00000118 o0 00 00 O -
A5SD:00000120 o0 00 00 O ”

ASD:00000128 o0 00 O

A5SD:00000130 o0 o
v ASD:00000138 oo o g

2 2
e =

©1989-2024 Lauterbach Peripheral Files Programming | 68

HEXMASK

Define bits for a hexadecimal display

Format:

HEXMASK.<access_size>[.<display_length>] <offset> <bit_range> <scale>
[<add>] "<display _name>,<tooltip>"

Defines set of bits using HEX value. The bits are extracted from the current buffer at location defined in the
bitrange. The result of this extract is multiplied by scale. The <add> value is optional.

<access_size>

Size of register access (Byte, Word, TByte, Long, Quad).

<display_length>

Length of displayed field (Byte, Word, TByte, Long, PByte, HByte,
SByte, Quad).

<offset>

The HEX mask field offset refers to the start address of the GROUP
command.

<bit_range>

Defines range of the HEX mask field. LSB is defined as the first, MSB as
the second character.

<scale> Multiplier value.
May be a floating point value since build. 46110.
<add> Optional addend - increases Hex mask value.

<display_name>

Short name (abbreviation) of corresponding HEX mask field.

<tooltip>

The sentence accurately describing a HEX mask field functionality.

Example:

CONFIG 16. 8.

BASE 0x0
WIDTH 6.

GROUP.LONG 0x00++0xb

LINE.LONG 0x00
HEXMASK . LONG

LINE.LONG 0x04
HEXMASK . LONG
TEXTLINE "
HEXMASK . LONG

LINE.LONG 0x8

" REGO,register 0"

0x00 0.--29. 1. 1. " EX HEX1l ,Example Hex mask 1"

" REG1l,Register 1"

.BYTE 0x04 23.--30. 1. 2. " EX HEX2 ,Example Hex mask 2"
.WORD 0x04 4.--15. 8. " EX HEX3 ,Example Hex mask 3"

" REG2,Register 2"

HEXMASK.LONG.TBYTE 0x08 0.--23. 1. 6. " EX_HEX4 ,Example Hex mask 4"

©1989-2024 Lauterbach

Peripheral Files Programming | 69

o B:PER Di\test.per ll:' =) eS| | {3 B:Data.dump SD:0:0 ... |':' B5)] & |

REGD 00000003 EX_HEXL 00000004 . T =
BEcd Sy e o = || sp:0xa [#1Find...] [Modiy... |

EX_HEX3 0008 address 0 0123 Yy
REGZ 00000002 EX_HEX4 000008 5D: 00000000 [+00000003 5000

SD:00000004 | 02800010 §%%5%

SD:00000008 | 00000002 57%%7%

SD:0000000C | 00000000 5%

v SD: 00000010 | 00000000 5%
r

4 [m »

HIDE Define write-only line

Format: HIDE.<size> <offset> "<display_name>,<tooltip>"

This field is used for write-only ports like USART transmitters data registers. HIDE command should be
used together with HGROUP command.

<size> Size of register (byte, word, tbyte, long, quad).
<offset> The register offset refers to the start address of the HGROUP command.
<display_name> Short name (abbreviation) of corresponding register.
<tooltip> The sentence accurately describing a register functionality.
Example:

HGROUP.LONG 0x00++0x3
HIDE.LONG 0x00 "WR,Write only Register"

® BuPER D:\test.per | o e

4 b

IN Define input field

Format: IN

An input-field (key) is displayed for the previously defined byte. Clicking that field results in reading data from
previously defined location. To execute a read cycle IN command must be used along with a HIDE definition.
It is used for destructive-read ports (i.e. data port of serial interface).

©1989-2024 Lauterbach Peripheral Files Programming | 70

Example:

BASE d:0xA00F0000
HGROUP.LONG 0x00++0x3
HIDE.LONG 0x00 "RFR,Receive FIFO Register"

IN
o B:PER Di\test.per |':' B 2 |
RFR DATA. TN
INDEX Output a value
Format: INDEX <address> [%<format>] <dataread> <datawrite>
OUT (deprecated)
<format>: Byte | Word | Long | Quad | TByte | HByte
Float. [leee | leeeDbl | leeeeXt | <others>]
BE | LE

Sends specified data to the port. INDEX command must be placed after a GROUP definition. The data is
sent to the port prior to the port access or modification. If two bytes are defined, the second byte is used for
writing to the specified port (different indices for reading and writing). It is useful for ports which must be

selected first.

Please consider: As the display is refreshed permanently the index register is modified as well.

NOTE: The INDEX command has no effect inside an SGROUP command.

<address> Destination address.

<dataread> Data send to the specified address before fetching the data shown by the group
definition.

<datawrite> Data send to the specified address before executing a write to a member of the

group definition.

©1989-2024 Lauterbach

Peripheral Files Programming | 71

Example 1:

GROUP sd:0x100--0x100
INDEX sd:0x100 0x01

LINE.BYTE 0x0

GROUP sd:0x101--0x101
INDEX sd:0x101 0x02

LINE.BYTE 0x0

"REG1l,Register index 1"

"REG2,Register index 2"

o B:PER Di\test.per l':' El i_hj 4] B:Data.dump...

== 5= |

REGL 01
REGZ 02

-

5D: 00000110

address

5D: 00000104
5D: 00000108
50:0000010C

1230

5D: 00000100 #00000201 555,

00000000 “%5Y
00000000 “%NY
00000000 “%NY
00000000 H%5Y

RN

{2

4 P

Example 2:

GROUP sd:0x101 0x10

INDEX sd:0x100 0 0x80 0

"Receiver FIFO"

LINE.BYTE 0x0 "FO,FIFO position 0"
LINE.BYTE Ox1 "F1,FIFO position 1"
LINE.BYTE 0x2 "F2,FIFO position 2"
LINE.BYTE O0x3 "F3,FIFO position 3"
LINE.BYTE Ox4 "F4,FIFO position 4"
LINE.BYTE O0x5 "F5,FIFO position 5"
LINE.BYTE 0Ox6 "F6,FIFO position 6"
LINE.BYTE O0x7 "F7,FIFO position 7"
LINE.BYTE 0x8 "F8,FIFO position 8"
e 5 =B | s (B:Data.dump SD:0:x101 /DIALOG] [EIETEE)
b EEm “ | sp:oxF1 (FiFnd..) [Modify...] | [evte [=] [
0 44 address e s - S s v e C] o e R
F1 00 5D:000000F0 [OO OO OO OO OO OO OO0 OO0 &
F2 44 5D:000000F8 | OO OO OO OO OO OO OO OO =,
F3 00 5D:00000100 (OO+44 00 0O OO OO OO OO |i|
F4 44 5D:00000108 | OO 0O OO -
F5 00 5D:00000110 (OO OO OO pes
F& 44 5D:00000118 | OO OO OO o
F7 00 5D:00000120 (OO OO OO |5
F5 44 . 5D:000001258 | 00 0O OO -
4 b 4 b

; select register 1

; select register 2

©1989-2024 Lauterbach

Peripheral Files Programming

72

LINE

Define line

Format:

LINE.[<size> | FLOAT.<format>] <offset> " <display_name>,<tooltip>"

The LINE command defines registers short name and its long name. The value of the offset is added to the
address defined in the previous GROUP command. The CONFIG command affects the displayed format

of the LINE command.

<Size>

<format>

<offset>
<display_name>

<tooltip>

Example:

BASE 0x0
WIDTH 6.

Size of register (Byte, Word, TByte, Long, Quad).

Display register content as floating point number. Currently the following

formats are supported:

o IEEE: 32 bit IEEE-754 single

J IEEEDBL: 64 bit IEEE-754 double

The register offset refers to the start address of the GROUP command.

Short name (abbreviation) of corresponding register.

Register long name (a sentence accurately describing the register
functionality).

GROUP.QUAD 0x00++0x7
" REGO,Register 0"

" REGl,Register 1"

" REG2,Register 2"

" REG3,Register 3"

LINE.QUAD 0x00
GROUP . LONG 0x08++0x3
LINE.LONG 0x00
GROUP.TBYTE 0x0c++0x2
LINE.TBYTE 0x00
GROUP .WORD 0x10++0x1
LINE.WORD 0x00
GROUP.BYTE 0x14++0x0
LINE.BYTE 0x00

" REG4,Register 4"

o B:PER Di\test.per

o= [| 2144 B::Data.dump SD:0x0 /DIALOG

== s

0123456789ABCDEF
23232323

ABCABC

1234

REG4 FF

&

SD:0x0

jFlnd Modify... | Lonu

address

4 01234567

5D : 00000000
5D: 00000008
5D: 00000010
5D: 00000018
5D: 00000020

+89ABCDEF 01234567 i‘}ggE#
23232323 DODABCABC ###2154%

00001234 000000FF 4%7%
00000000 00000000 "%

4 [m] » L

i B

©1989-2024 Lauterbach

Peripheral Files Programming

73

MUNGING Translate to little endian mode (PowerPC only)
Only available on TRACE32 for PowerPC

Format: MUNGING <belle>

Usually byte ordering is either little endian or big endian mode. For PPC additional munging little endian and
munging big endian modes are provided. For a detailed description refer to PPC documentation.

Special address translation for PowerPC little endian mode.

MUNGING. LE

NEWLINE Line break within detailed register description

Format: NEWLINE

Creates a line break for the detailed description of the fields of a peripheral register. The indentation of the
new line can be configured with the first parameter of WIDTH and CONFIG.

CONFIG 32.

WIDTH 10.

GROUP.LONG D:0x100++3

LINE.LONG 0x00 "STATUS,Status Register"

BITFLD.LONG 0x00 31. " Z ,Zero Flag" "off,on"
BITFLD.LONG 0x00 30. " N ,Negative Flag" "off,on"
NEWLINE

BITFLD.LONG 0x00 29. " C ,Carry Flag" "off,on"
BITFLD.LONG 0x00 28. " V ,Overflow Flag" "off,on"
NEWLINE

BITFLD.LONG 0x00 27. " E ,Interrupt Mask" "off,on"

HEXMASK.LONG.TBYTE 0x00 0.--23. 4 " PC ,Program Counter"

STATUS 00000000 Z off N off
- off v off

™ BuPER.wview ~~\demo_per_newline.per EI@
E off PC 000000

©1989-2024 Lauterbach Peripheral Files Programming | 74

RBITFLD Define bits individually (read-only)

Format: RBITFLD.<size> <offset> <bit_range> " <display _name>,<tooltip>"
"<choices>"

RBITFLD is identical to BITFLD with the difference that the defined bits are read-only. It can be used to
visualize that certain settings within a read-write register are read-only.

<size> Size of register (Byte, Word, TByte, Long, Quad).
<offset> The bit field offset refers to the start address of the GROUP command.
<bit_range> Defines range of the bit field. LSB is defined as the first, MSB as the sec-

ond character. Optionally the third character is bit (or bit range), used if
two bit fields are conjuncted.

<short_name> Short name (abbreviation) of corresponding bit field.

<long_name> The sentence accurately describing a bit field functionality.

<choices> Defines the possible values (in words) which the bit field may take. LSB is
defined as the first, MSB as the last one. Each state is separated by a
comma.

BASE D:0xF0001234
GROUP 0x00++0x03
LINE.LONG 0x00 "CSR,Control and Status Register"

RBITFLD.LONG 0x00 1. " RSTST ,Reset status" "Reset inactive, Reset
active"
BITFLD.LONG 0x00 0. " RST ,Reset" "No reset,Reset"
RHEXMASK Define bits for a hexadecimal display (read-only)
Format: RHEXMASK.<access_size>[.<display_length>] <offset> <bit_range> <scale>

[<add>] “<display_name>,<tooltip>”

Same as HEXMASK but bits are read-only.

©1989-2024 Lauterbach Peripheral Files Programming | 75

SAVEINDEX Save original and output a value

Format: SAVEINDEX <address> [Y%<format>] <dataread> <datawrite>
SAVEOUT (deprecated)

<format>: Byte | Word | Long | Quad | TByte | HByte
Float. [leee | leeeDbl | leeeeXt | <others>]
BE | LE

Sends the specified data to the port. The current values at the port are read before the access is made and
are restored after the access. The byte is sent to the port prior to the port access or modification.
SAVEINDEX command must be placed after a GROUP definition. If two bytes are defined, the second byte
will be used for writing to the specified port (different indices for reading and writing). This is useful for ports
which are selected by another port when the index register can be read back.

<address> Destination address.

<dataread> Data send to the specified address before fetching the data shown by the
group definition.

<datawrite> Data send to the specified address before executing a write to a member of
the group definition.

NOTE: SAVEINDEX command has no effect inside an SGROUP command.

GROUP d:0x11--0x11 "SERIAL CONTROL 80196"
SAVEINDEX d:0x14 %byte 0x00 0xO0f ;index 0 for read,
;15 for write

LINE.BYTE 0 "SCN, Serial Control Register"

SAVETINDEX Save original and output a value
Format: SAVETINDEX <address> [%<format>] <dataread> <datawrite>
<format>: Byte | Word | Long | Quad | TByte | HByte
Float. [leee | leeeDbl | leeeeXt | <others>]
BE | LE

Similar to SAVEINDEX, uses however a different sequence for write accesses: the data value is first written
to the address and the index is written to trigger/transfer the write operation.

©1989-2024 Lauterbach Peripheral Files Programming | 76

SDECMASK Signed DECMASK

Same as DECMASK, but values are interpreted as signed numbers.

SFLOATMASK Signed FLOATMASK

Same as FLOATMASK, but values are interpreted as signed numbers.

SETCLRFLD Define set/clear locations

Format: SETCLRFLD.<size> <offset1> <bit1> <offset2> <bit2> <offset3> <bit3>
"<display _name>,<tooltip>" "<choices>"

Defines a bit display in a free format. The fields are chained together in a line. A new line can be created by
a TEXTLINE command.

<size> Size of register (Byte, Word, TByte, Long, Quad).

<offset1><bit1> Status register offset and corresponding bit number.

<offset2> <bit2> Set register offset and corresponding bit number.

<offset3> <bit3> Clear register offset and corresponding bit number.

<display_name> Short name (abbreviation) of corresponding set/clear bits.

<tooltip> The sentence accurately describing a set/clear bits functionality.
<choices> Indicates states with bit field may take. The first state is responsible for

clearing, the second one for setting corresponding set/clear bits. Each
state is separated by a comma.

The command is an extension of the BITFLD command. Additionally to the BITFLD command two further
locations must be entered. The first parameter pair offset1 - bit1 is the location where the data is read from.
The second parameter pair offset2 - bit2 is the set location. The third parameter pair offset3 - bit3 is the clear
location.

©1989-2024 Lauterbach Peripheral Files Programming | 77

Usually the SETCLRFLD-command is used if the read location is a status register, which shows the status

of 1/0O ports and other (not static) registers exist to enable and disable ports. If the port is enabled, the value
of '1'is set to the corresponding bit in the register addressed by location 2 (other bits are cleared). If the port
is disabled, the value of '1' is set at the corresponding bit position in the register addressed by location 3 (the
other bits are cleared).

BASE sd:0xffec0000
GROUP.LONG 0x00++0x3
LINE.LONG 0x00 "Int_0,Interrupt Register 0"
SETCLRFLD.LONG 0x0 0. 0x4 0. 0x8 0. " B_0O ,Bit 0"
"No Interrupt, Interrupt"

;writing 1 sets the bit in the Set Register
;writing 0 sets the bit in the Clear Register
;the result is read from the Status register

< BiPER Ditest.per im0 W38 | 31 B:Data.dump SD0FFECD.. (= [E [5% |
LTE_D 00000000 B0 No wnterrupt . \on.ovFrECO000 | [$1Fnde.) [Modfye.] | [1

address 0 0123

SD:FFECO000 [(+00000000 05,
sD:FFECO004 | 00000001 9%
sD:FFECO00S | 00000000 %94
v sD:FFECO00C | 00000000 9%

i ’ F '

mf s

1

STRING Display a string saved in memory

Format: STRING <display width> <offset> <string>

Defines a field to display an ASCII encoded string, which is saved in target memory.

<width> Number of bytes/characters.

<offset> Offset to group start address.

<string> Field name. Will prepend the ASCII string.
Example:

BASE sd:0xf£000000
WIDTH 8.

GROUP.LONG 0x00++0x03
1INE.LONG 0x00 "KEYREG, "
STRING 4. 0. "KEY "
STRING 3. 0. " KEY "
STRING 3. 1. " KEY "

©1989-2024 Lauterbach Peripheral Files Programming | 78

TEXTLINE

Define text header with a new line

Format:

TEXTLINE " <text>"

The text can either be used as general comment or as a header to BITFLD or HEXFLD fields. TEXTLINE

creates a new line

<text>

GROUP d:0x
TEXTLINE
TEXTLINE
TEXTLINE
TEXTLINE

BITFLD.WORD Oxle 0.--1. " "

Optional text.

0e00--0x0fff

"TPU Channels"

"CH FUNC PRIO HSF HSR IEF ISF LNK SGL CHS
" 0,Channel O"
"Off, Low,Mid, High"

o B:PER Di\test.per

TEXTFLD

Define text header

Format:

TEXTFLD "<text>"

Defines text without creating a new line.

<text>

GROUP d:0x
TEXTLINE "
TEXTLINE
TEXTFLD "
TEXTFLD "
TEXTFLD "
TEXTLINE "
TEXTLINE

"STATUS
BITFLD.WORD 0x0 O0.--1. " "
BITFLD.WORD 0x0 2.--3. " "
BITFLD.WORD 0x0 4.--5. " "

Optional text.

80000000--0x80000££ff

"TPU Channels"

"CHANNEL "

0,Channel 0"

1,Channel 1"

2,Channel 2"

, Status"

"Off, Low,Mid, High"
"Off, Low,Mid, High"
"Off, Low,Mid, High"

©1989-2024 Lauterbach

Peripheral Files Programming |

79

o B:PER Di\test.per | B

TPU Channels

TINDEX Output a value
Format: TINDEX <address> [Y%<format>] <dataread> <datawrite>
<format>: Byte | Word | Long | Quad | TByte | HByte
Float. [leee | leeeDbl | leeeeXt | <others>]
BE | LE

Similar to INDEX, uses however a different sequence for write accesses: the data value is first written to the
address and the index is written to trigger/transfer the write operation.

©1989-2024 Lauterbach Peripheral Files Programming | 80

Automated Peripheral File Generation

Graphical User Interface

TRACERS2 is able to generate peripheral files out of certain other file formats. A unified GUI is available
through the PER.IMPORT.view command. But of course TRACES32 lets you convert all input files via
command line or cmm script as well.

For a complete list of input formats see PER.IMPORT.ForMaT.

Rules file

NOTE: A rules file is a XML based recipe which allows you to modify the appearance of
a converted input file retrospectively. The according schema file can be found at
/demov/tools/per_import/rules.xsd.

Rules file description

The rule file consists of root tag <rules> and list of <rule> tags inside of them. Nesting of <rule> tags is not
allowed.

Structure of <rules> tag:

<rules>
<rule><!-- rule definition --></rule>
<!-- other rules... --—>
</rules>
Rule definition

A rule definition contains one or more select tags <select> followed by one or more <command> tags
<command_name>:

. The <select> tag defines on which elements the <command> tags will be applied. The first
<select> tag will search in all elements of the XML file. The next <select> tag will search on the
results of the previous select tag. That way, selecting the desired elements can be achieved by
reducing the search base step by step.

. The <command> tag defines a modification that will be executed on the selected elements.
Several <command> tags can be specified to apply independent modifications on the same
search results.

©1989-2024 Lauterbach Peripheral Files Programming | 81

Structure of <rule> tag:

<rule verbose="yes|no">

<select ... />
<!-- other selects... -->
<command_name ... ><!-- command definition --></command_name>
<!-- other commands -->
</rule>

Available verbose values:

verbose description
no Default. Do not write debug messages into rules-logs.log file.
yes Write debug messages into rules-log.log file.

For example to change the name of the module MODULE_EXAMLE to a new one, you can write follow rule:

<rules>
<rule>
<select element="module" property="name" regex="MODULE_EXAMPLE"
/>
<modify property="name" value="BETTER_MODULE_NAME" />
</rule>
</rules>

The above rule is a one-step search with a single command for modification. It can be explained as follows:
1. <search>: Search all elements of type module, where element.name is "MODULE_EXAMPLE".

2. <command>: Change name of element.name to "BETTER_MODULE_NAME" for all found ele-
ments.

Selecting defined elements using <select>

Selects targets elements to be processed by the commands. The selection is determined by the element
type and its properties.

<select> tags usage:

<select element="element_name"
property="property_name"
regex="regular_expression"
all_occurrences="no|yes"
invert_regex="no|yes" />

©1989-2024 Lauterbach Peripheral Files Programming | 82

element Specifies the type of element to be searched for. See list of all elements.
property Specifies the type of property to be matched.See list of all properties.
Not all properties are allowed for a given element. See this table.
regex Regular expression for matching the property's value.
all_occurrences d no: Default. Search first occurrence only.
. yes: Search all occurrences (can reduce performance).
invert_regex . no: Default. regular expression is not inverted.
. yes: Invert regular expression.
Elements
element
sif (cpuis (“CORTE?R4*")) sif
repeat 2. (increment 0 1) (list ad:0x0 ad:0x10) repeat
tree.open “DAMS1” module
base $2
group.long 0x4++0x03 register
line.long 0x0 “ACCEN, Access Enable”
bitfld.long 0x00 0. “ENO,MasterO Enable” field
“Enabled, Disabled” state

©1989-2024 Lauterbach

Peripheral Files Programming | 83

Properties

module register field state

name X X X X
description X X X X
value X
access_type ¢ RW (read write) X

¢ RO (read only)
e WO (write only)
e W1C (write one to clear)

e WS (write secured)

e H (hidden)
access_class X
offset X
size X
lower_range X
upper_range X
intrusive_read * no: Reading of register is X

not intrusive.

e yes: Reading of register is
intrusive

is_open * no: Default. Tree is X
hidden.

e yes: Tree is shown.

sif X X X
view_name X
path X X X X
button_name X
button_command For multiple button X

commands use
 as

line break.

©1989-2024 Lauterbach Peripheral Files Programming | 84

Commands

Commands are element modificators that process data sets extracted from data model by the <select> tag.
One data set can be used by multiple commands. Command tags must follow the <select> tags.

Structure of command tag:

<command_name command_atributes... > <!-- definition --> </command_name>
<!-- or -->
<command_name command_atributes... />

Each command has its own set of attributes. The following are common to all commands:

element Specifies target elements for command. Valid are elements chosen by
preceeding <select> operations.

property Property for filtering selected elements.

regex Regular expression for filtering selected elements.

Above attributes allow to extend the search operation of <select> tags in the commands. This way the
number of used <select> tags can be reduced. For example below rule:

<select element="module" property="name" regex="MODULE_NAME" />
<select element="register" property="name" regex="REG_NAME" />
<modify property="name" value="NEW_NAME" />

is the long version of:

<select element="module" property="name" regex="MODULE_NAME" />
<modify element="register" property="name" regex="REG_NAME"
value="NEW_NAME" />

Selecting all subelements is possible, too. To do this, omit the regex attribute:

<select element="module" property="name" regex="MODULE_NAME" />
<modify element="register" property="name" value="NEW_NAME" />

©1989-2024 Lauterbach Peripheral Files Programming | 85

<create_header>

Used to overwrite the default header at the beginning of each peripheral file.Only has an effect if
PER.<format>.Save is used with the /Header option.

Supported elements: permodel
Structure of <create_header> tag:

<create_header title="title" props="props” author="author”
changelog="changelog” manufacturer="manufacturer” doc="doc” core=“core”
chip="chip” copyright="copyright” include="include”/>

title (optional) Overwrites default @Title text.

props (mandatory) Must be “Confidential” or “Released”.
author (mandatory Set author.

changelog (optional) Overwrites default @ Changelog text.
manufacturer (optional) Overwrites default @ Manufacturer text.
doc (optional) Overwrites default @Doc text.

core (optional) Overwrites default @ Core text.

chip (optional) Overwrites default @ Chip text.
copyright (optional) Overwrites default @ Copyright text.
include (optional) Adds an %include after the copyright.

<derive_module>

Derives new trees by means of module or register names. A typical use case is an input file with no explicit
hierarchy information. This command helps in creating trees instead of using lots of <create_module> and
<modify> commands.

Supported elements: module , register
Structure of <derive_module> tag:

<derive_module separator="character" depth="max_level” element="element"
preserve="yes|no” />

©1989-2024 Lauterbach Peripheral Files Programming | 86

character Any character that separates module levels in the name.
depth Maximum number of tree levels to derive. Default=none.
element register | module | all. Default = all.
preserve Preserves original register name. Default=no.
Example:
<!-- Register name is MEM_FLASH_STATUS -->
<derive_module separator="_">
<!-- Tree “MEM” -—>
<l-- Tree “FLASH” -—>
<!-- Register “STATUS” -->

<destroy_module>

Removes a tree but not its content. This is different from <remove>, which deletes the tree and all its

subtrees and subcomponents.

Supported elements: module

Structure of <destroy_module> tag:

<select element="module" property="name" regex="MODULE_NAME" />

<destroy module/>

<include>

Include another rules files at the current postion.

Structure of <include> tag:

<include path="file_path"/>

©1989-2024 Lauterbach

Peripheral Files Programming

87

<include_module>

Adds an %include command to the generated .p/.ph/.per file.
Supported elements: module
Structure of <include_module> tag:

<include _module name="name_ of tree" view_name="view name of tree”
description="description_of_tree" path="file path” offset="address”
args="arguments” is_open="vyes|no" position="pos_mode"/>

name Name of the module. Used to be referenced by the <select> command.
view nhame Surround %include command by a TREE.
description Tooltip of new tree.
path Filename and path of the file to include.
is_open . no: Default. Created module will be expanded.
. yes: Created module will be collapsed.
position . sorted: If sorting of top/subtrees is enabled, the new module
will be positioned accordingly.
. top: Default. Place module at the top of the file.
. bottom: Place module at the bottom of the file.
offset Add a BASE command in front of the module.
args Arguments to pass to %include file..

Typically %include commands are used to include CPU-specific module files. The example below
demonstrates how to surround the included module by a conditional SIF:

<select element="include_module” property="name” regex="MyModule”/>
<modify element="module” property="condition” wvalue="SIF CPUIS (MyCPU) " />

<open_module>

By default all converters will create closed trees (TREE.close). Using this command you can create opened
trees (TREE.OPEN).

Supported elements: module

©1989-2024 Lauterbach Peripheral Files Programming | 88

Structure of <open_module> tag:

<open_module depth=<depth> element=<module|mixed|all>/>

depth(optional) Start with selected module and iterate over all submodules until depth
levels.
Default: Unlimited

module Apply rule only if (sub)module has no other submembers than modules.

mixed Apply rule only if (sub)module has no other submembers than modules
and registers.

all Apply rule always ((Sub)modules can have registers as only
submembers.)

<modify>

Changes chosen property of an element.
Supported elements: all
Structure of <modify> tag:

<modify element="element_type" property="property name" regex="reg_expr"
value="NEW_VALUE" />

<replace>

Replaces all found elements to new ones defined in <replace>.
Supported elements: all, register

Structure of <replace> tag:

<replace>
<!-- <state> or <field> or <register> or <module> or -->
<!-- <states> or <fields> or <registers> or <modules> -->
</replace>

©1989-2024 Lauterbach Peripheral Files Programming | 89

state <replace>
<state>
<name>state_name</name>
<value>number</value>
</state>
</replace>

states <replace>
<states>
<state><!-- ... --></state>
<l-- other states... -->
</states>
</replace>

field <replace>
<field>
<name>field_name</name>
<description>field_description</description>
<access>access_type_value</access>
<lower_range>number</lower_range>
<upper_range>number</upper_range>
<states><!-- ... --></states>
</field>
</replace>

fields <replace>
<fields>
<field><!-- ... --></field>
<!l-- other fields... -->
</fields>
</replace>

register <replace>
<register>
<name>register_name</name>
<description>register_description</description>
<access>access_type_value</access>
<offset>hex_number</offset>
<size>number</size>
<intrusive_read>yeslno</intrusive_read>
<fields><!-- ... --></fields>
</register>
</replace>

registers <replace>
<registers>
<register><!-- ... --></register>
<!-- other registers... -->
</registers>
</replace>

©1989-2024 Lauterbach Peripheral Files Programming | 90

module

<replace>
<module>
<name>module_name</name>
<description>module_description</description>
<is_open>yeslno</is_open>
<registers><!-- ... --></registers>
</module>
</replace>

modules

<replace>
<modules>
<module><!-- ... --></module>
<!-- other modules... -->
</modules>
</replace>

if (register only)

<replace>
<if>
<condition value="condition_of_practices_if_statement">
<register><!-- ... --></register>
</condition>
<!-- other conditions... -->
<default>
<register><!-- ... --></register>
</default>
</if>
</replace>

Above listing show several ways of using <replace>. Choice between element and subelement depends on
how <select> had been used. Let's see what will happen with following register:

group.long 0x00++0x03

line.long 0x00

"REG, Test Register"

bitfld.long 0x00 1. "FLD1,Field 1" "O,1"
bitfld.long 0x00 0. "FLDO,Field 0" "O,1"

©1989-2024 Lauterbach

Peripheral Files Programming

91

If selected element/elements comes directly from <select>, then there must be a definition of a single
element (the type must be the same with selected elements) in <replace>. Following listing shows this case:

<rule>
<select element="register" property="name" regex="REG" />
<select element="field" property="name" regex="FLD1" />
<replace>
<field>
<name>FEATURE_EN</name>
<description>Featue Enable</description>
<access>RW</access>
<lower_range>l</lower_range><upper_range>l</upper_range>
<states>
<state><name>Disabled</name><value>0</value></state>
<state><name>Enabled</name><value>l</value></state>
</states>
</field>
</replace>
</rule>

The register after applying first rule:

group.long 0x00++0x03
line.long 0x00 "REG,Test Register"
bitfld.long 0x00 1. "FEATURE_EN, Feature Enable" "Disabled, Enabled"
bitfld.long 0x00 0. "FLDO,Field 0" "O,1"

©1989-2024 Lauterbach Peripheral Files Programming | 92

However if subelements had been extruded from selected elements, then <replace> must contain the
definition of the element's group (type must match). Look below for this case:

<rule>
<select element="register" property="name" regex="REG" />
<replace element="field">
<fields>
<field>
<name>FEATURE_EN</name>
<description>Featue Enable</description>
<access>RW</access>
<lower_range>1l</lower_range>
<upper_range>l</upper_range>
<states>
<state><name>Disabled</name><value>0</value></state>
<state><name>Enabled</name><value>l</value></state>
</states>
</field>
<field>
<name>STATUS</name>
<description>Status</description>
<access>RO</access>
<lower_range>0</lower_range>
<upper_range>0</upper_range>
<states>
<state><name>Normal</name><value>0</value></state>
<state><name>Error</name><value>l</value></state>
</states>
</field>
</fields>
</replace>
</rule>

The register after applying second rule:

group.long 0x00++0x03
line.long 0x00 "REG,Test Register"
bitfld.long 0x00 1. "FEATURE_EN, Feature Enable" "Disabled, Enabled"
bitfld.long 0x00 0. "STATUS, Status" "Normal,Error"

©1989-2024 Lauterbach Peripheral Files Programming | 93

When using the <if> tag, only <register> is allowed as subtag. This is a special case which creates view
conditions for a given register. It may look similar to the example below::

<rule>
<select element="register" property="name" regex="REG" />
<replace>
<if>
<condition value="Data.Long (D:0x04)==0x01">
<register>
<name>REG</name>
<description>Test Register</description>
<access>RW</access>
<offset>0x00</offset>
<size>4</size>
<intrusive_ read>no</intrusive_ read>
<fields>
<field>
<name>FEATURE_EN</name>
<description>Featue Enable</description>
<access>RW</access>
<lower_range>1l</lower_range>
<upper_range>l</upper_range>
<states>
<state><name>Disabled</name><value>0</value></state>
<state><name>Enabled</name><value>l</value></state>
</states>
</field>
<field>
<name>STATUS</name>
<description>Status</description>
<access>RO</access>
<lower_range>0</lower_range>
<upper_range>0</upper_range>
<states>
<state><name>Normal</name><value>0</value></state>
<state><name>Error</name><value>l</value></state>
</states>
</field>
</fields>
</register>
</condition>
</if>
</replace>
</rule>

©1989-2024 Lauterbach Peripheral Files Programming | 94

The register after applying third rule:

if (Data.Long (D:0x04)==0x01)
group.long 0x00++0x03
line.long 0x00 "REG,Test Register"
bitfld.long 0x00 1. "FEATURE_EN, Feature Enable" "Disabled, Enabled"
bitfld.long 0x00 0. "STATUS, Status" "Normal,Error"
endif

<protect>

In some registers there are bit fields that can only be changed when another bit is written '1' at the same
time. Such bit fields are called "protected". To ease changing such bit fields by the peripheral file, one should
keep protection bits connected together into one bit field, with their values being "write protect/write enable”.
Value descriptions should signal the state in which it is possible to alter the value of a secured register, for
instance: "Set value".

Supported elements: register
Structure of <protect> tag (Creates protected field if the specified field and protector are found.):

<protect>
<field regex="name_regex" />
<protected_ by regex="name_regex" />
</protect>

Structure of <protect> tag (Finds field with given prefix or suffix, then tries to find field that is protected by first
one and then creates protected field from them.):

<protect>
<common prefix="prefix_string" suffix="suffix_string" />
</protect>

<remove>

In some situations it is necessary to remove elements, e.g. confidential modules, registers or fields. Then the
command below should be used.

Structure of <remove> tag:

<remove />

©1989-2024 Lauterbach Peripheral Files Programming | 95

<create_module>

For a better useability, it is often required to place the registers of similar purpose in separate subtree. The
<create_module> command creates a new subtree and moves enclosed trees/registers into it.

Supported elements: module

Structure of <create_module> tag:

<create_module name="name_of_tree" description="description_of_tree"
is_open="yes|no" mode="mode_name" position="pos_mode">
<element propertyz"name|description" regex="REGA_ ([0-9]*)" />
<element propertyz"name|description" regex="REGB_ ([0-9]*)" />

</create_module>

name Name of new tree.
description Tooltip of new tree.
is_open . no: Default. Created module will be expanded.
. yes: Created module will be collapsed.
mode . single: Default. Create one tree for all matched groups of
elements.
. multi: Create separate trees for each matched groups of
elements. Names will be numerated.
position . inplace: Default. Place trees in position where elemet has been
found.
. top: Place trees on the top of module.
. bottom: Place trees on the bottom of module.
property Finds element by name or description.
regex Regular expression.
<for>

In case when groups of registers occurrence in several channels then you have to create subtree for each

channel separately (e.g. REG_0_A, REG_0_B, REG_1_A, REG_1_B, ...). To avoid redundant commands
you may use the <for> tag. <for> tags can be nested.

Supported elements: module

©1989-2024 Lauterbach

Peripheral Files Programming

96

Structure of <for> tag:

<for iter name="name" min_ value="value" max_value="value">

<create_module><!-- command definition --></create_module>
<for><!-- ... —--></for>
<!-- other <create_module> or <for> commands...

</for>

Index of the for in module's name attribute and element's regex attribute is allowed. Index must be placed in
#{} brackets. Is possible to change format of index value. Syntax accepts all C-like format specifiers (d, x,
etc.). Format must be placed after index name and ":" separator.

Example:

<for iter name="i" min value="0" max_value="15">
<create_module name="Module #{i:u}">
<element regex="Reg#{i:u}_*" />
</create_module>
</for>

<create_view>

Some peripherals, e.g. an Ethernet Controller, may have different operating modes. Depending on the
mode, registers and their bitfields may have different meanings and encodings. <create_view> creates a
view with an alternative register element depending on the assigned condition. Created views can be
selected with <select> command and changed with <modify> command. A view corresponds to the IF
statement in peripheral files.

Supported elements: register, module
Structure of <create_view> tag:

<create_view view_name="view name" if="practice_condition|default"
use="name_of_register" append="name_of_other_view”/>

practice_condition Practice condition.
default Can be used to generate ‘else’ clause.
append Optional attribute which appends this view to a previously defined view.

The IF statement in the referenced will be turned into an ELIF as a result.

use Optional attribute that allows to create a view from an existing register.
Used register will be removed. Regular
expression of register's short name must be place here.

©1989-2024 Lauterbach Peripheral Files Programming | 97

Offset's param usage in <create_view>:

<create_view view_name="viewl"
if="(per.long(D:#{offset:x})& 0x800)==0x800" />
<!-- & expands to '&' -->

Reference of register's offset in if attribute is allowed. Index must be placed in #{} brackets. Is possible to
change format of offset value. Syntax accepts all C-like format specifiers (d, x, etc.). Format must be placed
after offset word and ":" separator. For example "#{offset:d}".

NOTE: When applied to a module, <create_view> will not include the TREE statement
in the IF condition.

<map_cpu>

In case to change cpu name in sif conditions you can do it by selecting component via condition and then
use <modify> to change condition property. Instead of that you can create a cpu_map where all the
conditions under selected component that uses regex value will be replaced.

Supported elements: sif
Structure of <map_cpu> tag:

<map_cpu regex="cpu_to_replace" value="new_cpus_separated_by coma"/>

NOTE: It is recommended to select permodel using <select> and its attribute
element="permodel".

Example:

<select element="permodel" />
<map_cpu regex="ComputeCluster_*_*" value="CortexAl5,CortexAl5A7"/>

©1989-2024 Lauterbach Peripheral Files Programming | 98

Variables

Variables can be used to save certain properties of elements and use them later in rules.

The syntax is nearly the same as for rules. Simply replace the <rule> tag by a <variable> tag, do the
<select>ions and define the property you want to save by the <get> command:

<variable name="variable_name”>
<select element=... />
<select element=.../>
<get property="property”

</variable>

The variable can later be referenced in a <rule> via:

#{variable name[position] :format}

variable_name Name of the variable.
position If multiple elements have been selected with all_occurences="yes”, the
variable will be created as an array. With the position you can select a
single array entry.
format C-like format:
. s = string
. i = decimal
. d = decimal.
. x = hexadecimal
. X = hexadecimal
Example:

<variable name="bank_base”>
<select element="module” property="name” regex="bank0”/>
<get property="address” />

</variable>

<rule>

<select element="module” property="name” regex”bankl” />
<modify property="address” value="#{bank_base:x}" />

</rule>

©1989-2024 Lauterbach

Peripheral Files Programming |

Schema Document Properties

Properties

Target Namespace https://www.lauterbach.com/per-converter/rules

Element and Attri-
bute Namespaces

The annotation file concept implies the existence of peripheral data to which it will refer and update. The
reference to components of data is obtained by using regular expressions.

The more general the expression, the more universal the rule, and the more it may also work for another
peripheral data.

There are several ways to update data's components. All of them are listed in the Commands section.

Declared Namespaces

Prefix Namespace

Default namespace https://www.lauterbach.com/per-converter/rules
xml http://www.w3.0rg/XML/1998/namespace

XS http://www.w3.0rg/2001/XMLSchema

Schema Component Representation

<xXs:schema "qualified"
"https://www.lauterbach.com/per-converter/rules" >

</xs:schema>

©1989-2024 Lauterbach Peripheral Files Programming | 100

Global Declarations

Element: create_header

Properties

Name create_header

Type Locally-defined complex type
Nillable no

Abstract no

Configures the header.
Special placeholders:

- “<chip>" - Is replaced with chip list.

- "<author>" - Is replaced with author name if specified.
- "<version>" - Is replaced with current TRACES32 version.

- "<date>" - Is replaced with current date.

XML Instance Representation

<create_header
"xs:string" [0..1]
"props_type" [1]
"xs:string" [1]
"xs:string" [O.
"xs:string"
"xs:string" [0..1]
"xs:string" [0..1]
"xs:string" [0..1]
"xs:string" [O.

.11
[0..1]

.11

"xs:string" [0..1]

/>

Schema Component Representation

©1989-2024 Lauterbach

Peripheral Files Programming

101

<xs:element
<xs:complexType>

"create header" >

<xs:attribute "title" "xXs:string" "optional" />
<xs:attribute "props" "props_type" "required" />
<xs:attribute "author" "xXs:string" "required" />
<xs:attribute "changelog" "xXs:string" "optional" />
<xs:attribute "manufacturer" "xXs:string" "optional" />
<xs:attribute "doc" "Xs:string" "optional" />
<xs:attribute "core" "xs:string" "optional" />
<xs:attribute "chip" "xs:string" "optional" />
<xs:attribute "copyright" "xs:string" "optional" />
<xs:attribute "include" "xs:string" "optional" />
</xs:complexType>
</xs:element>
Element: create_module
Properties
Name create_module
Type Locally-defined complex type
Nillable no
Abstract no
Creates new sub tree and moves trees/registers to them according to given template.
XML Instance Representation
<create_module
"xs:string" [0..1]
"xs:string" [0..1]
"bool" [0..1]
"create_module_mode" [0..1]
"create_module_position" [0..1]
>
<element
"property_type" [0..1]
"xs:string" [0..1]
/>[1..%]
</create_module>
Schema Component Representation
©1989-2024 Lauterbach Peripheral Files Programming | 102

<xs:element
<xs:complexType>
<xXs:sequence>
<xs:element
<xs:complexType>
<xs:attribute
<xs:attribute
</xXs:complexType>
</xs:element>
</Xs:sequence>
<xs:attribute "name"
<xs:attribute
<xs:attribute
<xs:attribute "mode"

"create_module"

"element"

"property"

"xs:string"
"description"
"is_open"

"unbounded" >

"property_type" />

"Xs:string" />

/>

"xs:string" />

"create_module_mode" />

<xs:attribute "position" "create_module_position" />
</xs:complexType>
</xXs:element>
Element: create_view

Properties

Name create_view

Type Locally-defined complex type

Nillable no

Abstract no

Creates if statements to the selected register.

XML Instance Representation

<create_view
"xs:string" [1]

n If_type " [1]
"xs:string" [0..1]
"xs:string" [0..1]

/>

Schema Component Representation

©1989-2024 Lauterbach

Peripheral Files Programming

103

<xs:element

<xs:complexType>

<Xs
<Xs
<Xs:
<Xs:

</xs:complexType>

</xs:eleme

:attribute
:attribute

attribute
attribute

nt>

Element: derive_module

"create view" >

"view_name" "xXs:string" "required" />
mif "if_type" "required" />

"use" "Xs:string" "optional" />
"append" "xXs:string" "optional" />

Properties

Name derive_module

Type Locally-defined complex type
Nillable no

Abstract no

Creates trees based on tree name and its separator.

XML Instance Representation

<derive_module

"number"

"xXs:string"
[0..1]

[1]

"derive_module_element" [0..1]

" bool]

/>

[0..1]

Schema Component Representation

<xs:element

<xs:complexType>

"derive_module" >

<xs:attribute "separator" "xs:string" "required" />
<xs:attribute "depth" "number" "optional" />
<xs:attribute "element" "derive_module_element" "optional" />
<xs:attribute "preserve" "bool" "optional" />
</xs:complexType>
</xs:element>
©1989-2024 Lauterbach Peripheral Files Programming | 104

Element: destroy_module

Properties

Name destroy_module

Type Locally-defined complex type
Nillable no

Abstract no

XML Instance Representation

<destroy module/>

Schema Component Representation

<xs:element "destroy_module" >
<xs:complexType>
<Xs:sequence/>
</xs:complexType>
</xs:element>

Element: field

Properties

Name field

Type Locally-defined complex type
Nillable no

Abstract no

XML Instance Representation

©1989-2024 Lauterbach

Peripheral Files Programming

105

<field

>

<name>xs:string </name>[1]
<description>xs:string </description>[1]
<access>access_type</access>[1]
<lower_range>number</lower range>[1]
<upper_range>number</upper_ range>[1]
<states. . .

</fiel

d>

</states[1]

Schema Component Representation

<xs:el

ement

"field" >

<xs:complexType>
<XSs:sequence>

<xs:element "name" "xs:string" " />
<xs:element "description" "Xs:string" "t />
<xs:element "access" "access_type" "1t />
<xs:element "lower_range" "number" "l />
<xs:element "upper_range" "number" " />
<xs:element "states" "t />
</Xs:sequence>
</xs:complexType>
</xs:element>
Element: fields
Properties
Name fields
Type Locally-defined complex type
Nillable no
Abstract no
XML Instance Representation
<fields>
<field. .. </field[0..*]
</fields>
©1989-2024 Lauterbach Peripheral Files Programming | 106

Schema Component Representation

<xs:element "fields" >
<xs:complexType>
<xXs:sequence>
<xs:element "field " i
</xXs:sequence>
</xs:complexType>
</xs:element>

"unbounded" />

Element: for
Properties
Name for
Type Locally-defined complex type
Nillable no
Abstract no

Creates sequence of <create_module> commands.

*Index of the for in module's “name’ attribute and element's “regex’ attribute is allowed.
Index must be placed in "#{}" brackets. Is possible to change format of index value.

Syntax C-like format specifiers (see available [format](#type_format_type)). Format must be placed after

index name and ":" separator.
For example ""Module #{i:d}".*

XML Instance Representation

<for
"xs:QName" [0..1]
"number" [0..1]
"number" [0..1]
"xs:string" [0..1]
>
<create_module. .. </create_module[O0. . *]
<for... </for[0..*]
</for>

Schema Component Representation

©1989-2024 Lauterbach

Peripheral Files Programming

107

<xs:element "for" >
<xs:complexType>

<Xs:sequence>

<xs:element "create_module" "Q" "unbounded" />
<xs:element "for" "unbounded" U J>
</xXs:sequence>
<xs:attribute "iter_name" "xS:QName"
<xs:attribute "min_value" "number" />
<xs:attribute "max_value" "number" />
<xs:attribute "description" "xs:string" />
</xs:complexType>
</xs:element>
Element: get
Properties
Name get
Type Locally-defined complex type
Nillable no
Abstract no
Defines property that will be saved
XML Instance Representation
<get
"property_type" [1]
/>
Schema Component Representation
<xs:element "get" >
<xs:complexType>
<xs:attribute "property" " property_type" "required" />
</xs:complexType>
</xs:element>
©1989-2024 Lauterbach Peripheral Files Programming 108

Element: if

Properties

Name if

Type Locally-defined complex type
Nillable no

Abstract no

XML Instance Representation

<if>
<condition
"xs:string" [0..1]
>[1..7%]
<register. . . </register[1. .*]
</condition>
<default >[0..1]
<register. .. </register[1. .*]
</default>
</if>

Schema Component Representation

©1989-2024 Lauterbach

Peripheral Files Programming

109

<xs:element "ifr >
<xs:complexType>
<XSs:sequence>

<xs:element "condition" "l "unbounded" >
<xs:complexType>
<Xs:sequence>
<xs:element "register" nqn "unbounded"
/>
</xXSs:sequence>
<xs:attribute "value" "xs:string" />
</xs:complexType>
</xs:element>
<xs:element "default" "0 >
<xs:complexType>
<Xs:sequence>
<xs:element "register" "1 "unbounded"
/>
</xXS:sequence>
</xs:complexType>
</xs:element>
</Xs:sequence>
</xs:complexType>
</xs:element>
Element: include
Properties
Name include
Type Locally-defined complex type
Nillable no
Abstract no
Defines either an absolute or relative path to a file to be included.
XML Instance Representation
<include
"xs:string" [1]
/>
Schema Component Representation
©1989-2024 Lauterbach Peripheral Files Programming | 110

<xs:element "include" >
<xs:complexType>
<xs:attribute "path" "xs:string"
</xs:complexType>
</xs:element>

Element: include_module

"required" />

Properties

Name include_module

Type Locally-defined complex type
Nillable no

Abstract no

Creates %include command.

XML Instance Representation

<include_module
"xs:string" [1]
"xs:string" [1]
"xs:string" [0..1]
"include_module_position" [0..1]
"xs:string" [0..1]
"xs:string" [0..1]
"xs:string" [0..1]
"bool" [0..1]
"include_type" [0..1]
/>

Schema Component Representation

©1989-2024 Lauterbach

Peripheral Files Programming

111

<xs:element "include_module" >

<xs:complexType>

<xs:attribute "name"
<xs:attribute "path"
<xs:attribute "offset"
<xs:attribute "position"

/>

<xs:attribute "view_name"

"Xs:string"

"Xs:string"
"xs:string"
"include_module_position "

"xXs:string"

"required" />
"required" />
"optional" />

"optional" />

"optional"

<xs:attribute "args" "xs:string" "optional" />
<xs:attribute "description" "xs:string" "optional" />
<xs:attribute "is_open" "bool "optional" />
<xs:attribute "type" "include_type" "optional" />
</xs:complexType>
</xs:element>
Element: map_cpu

Properties

Name map_cpu

Type Locally-defined complex type

Nillable no

Abstract no

Changes cpu name in sif conditions to a new “value'.

XML Instance Representation

<map_cpu
"xs:string" [1]
"xs:string" [1]
/>

Schema Component Representation

©1989-2024 Lauterbach

Peripheral Files Programming

112

<xs:element "map_cpu" >
<xs:complexType>
<xs:attribute "regex" "xXs:string" "required" />
<xs:attribute "value" "xXs:string" "required" />
</xs:complexType>
</xs:element>

Element: modify

Properties

Name modify

Type Locally-defined complex type
Nillable no

Abstract no

Changes choosen property of element to 'NEW_VALUE".

XML Instance Representation

<modify
"element_type" [0..1]
"property_type" [0..1]
"xs:string" [0..1]
"xs:string" [0..1]
/>
Schema Component Representation
<xs:element "modify" >
<xs:complexType>
<xs:attribute "element" "element_type" />
<xs:attribute "property" "property_type" />
<xs:attribute "regex" "xs:string" />
<xs:attribute "value" "xs:string" />

</xs:complexType>
</xs:element>

©1989-2024 Lauterbach Peripheral Files Programming | 113

Element: module

Properties

Name module

Type Locally-defined complex type
Nillable no

Abstract no

XML Instance Representation

<module>

<name>xs:string </name>[1]
<description>xs:string </description>[1]
<address>number</address>[1]
<is_open>bool</is_open>[1]

<registers. . .

</module>

</reqgisters[11]

Schema Component Representation

<xs:element

"module" >

<xs:complexType>
<Xs:seqguence>

<XSs
<Xs
<Xs
<XSs
<Xs

:element "name" "xs:string" "t />
:element "description" "xs:string" ml
:element "address" "number" 10 I
:element "is_open" "bool " LN~
:element "registers" />

</xXs:sequence>
</xs:complexType>
</xs:element>

Element: modules

/>

Properties

Name

modules

©1989-2024 Lauterbach

Peripheral Files Programming

114

Type Locally-defined complex type

Nillable no

Abstract no

XML Instance Representation

<modules>
<module. .. </module[0. .*]
</modules>

Schema Component Representation

<xs:element "modules" >
<xgs:complexType>
<Xs:sequence>
<xs:element "module" g™
</Xs:sequence>
</xs:complexType>
</xs:element>

Element: open_module

"unbounded" />

Properties

Name open_module

Type Locally-defined complex type
Nillable no

Abstract no

Adds ".open’ option to selected tree

XML Instance Representation

©1989-2024 Lauterbach

Peripheral Files Programming

115

<open_module
"number" [0..1]
"open_module_element" [1]
/>

Schema Component Representation

<xs:element "open_module" >
<xs:complexType>
<xs:attribute "depth" "number" "optional" />
<xs:attribute "element" "open_module_element" "required" />

</xs:complexType>
</xs:element>

Element: protect

Properties

Name protect

Type Locally-defined complex type
Nillable no

Abstract no

Can be used in two different sequences:

- using “field" and “protected_by" - Creates protected field if the specified field and protector are found.
- using ‘common’ - Finds field with given prefix or suffix, then tries to find field that is protected by first one
and then creates protected field from them.

XML Instance Representation

<protect>
Start Choice[1]
<field>protect_field_type</field>[0..1]
<protected_by>protect_field_type</protected_by>[0..1]
<common>protect_common_type</common>[0..1]
End Choice
</protect>

Schema Component Representation

©1989-2024 Lauterbach Peripheral Files Programming | 116

<xs:element "protect" >
<xs:complexType>

<xs:choice>

<Xs:sequence>
<xs:element "field" "protect_field_type" ngn

llln />

<xs:element "protected_by"

llln />

</Xs:sequence>
<Xs:sequence>
<xs:element "common" " protect_common_type"

llln />

</Xs:sequence>

</xs:choice>

</xs:complexType>

</xs:element>

Element: register

"protect_field_type"

IIOII

IIOII

Properties

Name

register

Type

Locally-defined complex type

Nillable

no

Abstract

no

XML Instance Representation

<register>

<name>xs:string </name>[1]
<description>xs:string </description>[1]
<access>access_type</access>[1]
<offset>number</offset>[1]
<size>number</size>[1]
<intrusive_read>bool</intrusive_ read>[1]
<fields. .. </fields[1]

<special>xs:string </special>[0..1]
<port>number</port>[0..1]
<dataread>number</dataread>[0..1]
<datawrite>number</datawrite>[0..1]

</register>

©1989-2024 Lauterbach

Peripheral Files Programming

117

<xs:element

<xs:complexType>
<Xs:sequence>

Schema Component Representation

"register" >

<xs:element "name" "xXs:string" "l />
<xs:element "description" "Xs:string" "l />
<xs:element "access" "access_type" "1t />
<xs:element "offset" "number" "l />
<xs:element @il z@" "number" "l />
<xs:element "intrusive_read" "bool" L
<xs:element "fields " "l />
<xs:element "special" "xs:string" "ot />
<xs:element "port" "number" "o" />
<xs:element "dataread" "number" "o" />
<xs:element "datawrite" "number" "o" />
</Xs:sequence>
</xs:complexType>
</xs:element>
Element: registers
Properties
Name registers
Type Locally-defined complex type
Nillable no
Abstract no

XML Instance Representation

<registers>
<register. . .
</registers>

</register[0. . *]

Schema Component Representation

©1989-2024 Lauterbach

Peripheral Files Programming

118

<xs:element "registers" >
<xs:complexType>
<xXs:sequence>
<xs:element "register" "o
</xXs:sequence>
</xs:complexType>
</xs:element>

Element: remove

"unbounded" />

Properties

Name remove

Type Locally-defined complex type
Nillable no

Abstract no

XML Instance Representation

<remove/>

Schema Component Representation

<xs:element "remove" >
<xs:complexType>
<Xs:sequence/>
</xs:complexType>
</xs:element>

Element: replace

Properties

Name replace

©1989-2024 Lauterbach

Peripheral Files Programming

119

Type Locally-defined complex type

Nillable no

Abstract no

Replaces all found elements to new ones defined in “<replace>".

XML Instance Representation

<replace
"element_type" [0..1]

Start Group: replace_element_type([1. . *]
Start Choice[1]

<module. .. </module[1]
<modules. .. </modules[1]
<register. . . </register[11]
<registers. . . </registers[1]

<field. .. </field[1]
<fields. .. </fields[1]

<state. .. </state[1]
<states. .. </states[1]
<if... <y/if[1]

End Choice
End Group: replace_element_type
</replace>

Schema Component Representation

<xs:element "replace" >
<xgs:complexType>
<Xs:sequence>
<XS:group "replace_element_type" mln "unbounded"
/>
</Xs:sequence>
<xs:attribute "element" "element_type" />
</xs:complexType>
</xs:element>

Element: rule

Properties

Name rule

©1989-2024 Lauterbach Peripheral Files Programming | 120

Type Locally-defined complex type

Nillable no

Abstract no

A rule definition contains one or more select tags “<select>" followed by one or more “<command>" tags

‘<command_name>:

- The “<select>" tag defines on which elements the *<command>" tags will be applied. The first "<select>’
tag will search in all elements of the XML file. The next “<select>" tag will search on the results of the
previous select tag. That way, selecting the desired elements can be achieved by reducing the search base

step by step.

- The "'<command>" tag defines a modification that will be executed on the selected elements. Several
"<command>" tags can be specified to apply independent modifications on the same search results.

XML Instance Representation

<rule>
<select. .. </select[1..*]

Start Group: commands[l..*]

Start Choice[1]

<modify. .. </modify[1]

<replace. .. </replace[1]

<protect. . . </protect[1]

<remove... </remove[l]
<create_module. .. </create_module[1]
<for... </for[1]

<create_view. .. </create_view[1]
<map_cpu... </map_cpull]

<destroy_module. . .
<include_module. . .

End Choice
End Group: commands
</rule>

Schema Component Representation

</destroy_module [1]
</include_module[1]
<derive_module. .. </derive_module[1]
<open_module. .. </open_module[1]
<create_header. .. </create_header[1]

©1989-2024 Lauterbach

Peripheral Files Programming | 121

<xs:element "rule" >
<xs:complexType>
<xXs:sequence>
<xs:element "select" 3@ "unbounded" />
<XS:group "commands" " "unbounded" />
</xXs:sequence>
</xs:complexType>
</xs:element>

Element: rules

Properties

Name rules

Type Locally-defined complex type
Nillable no

Abstract no

The rule file consists of root tag “<rules>" and list of "<rule>" or “"<variable>" tags inside of them. Nesting of
tags is not allowed.

XML Instance Representation

<rules
"bool" [0..1]

start Choice[l. . *]

<rule... </rule[1]
<variable. .. </variable[1]
<include. .. </include[1]
End Choice
</rules>

Schema Component Representation

©1989-2024 Lauterbach Peripheral Files Programming | 122

<xs:element
<xs:complexType>
<xs:choice
<xs:element
<xs:element
<xs:element
</xs:choice>
<xs:attribute
</xs:complexType>
</xs:element>

Element: select

"rules"

>

"unbounded" >
"rule" />
"variable" />
"include" />

"verbose" "bool"

"optional" />

Properties

Name select

Type Locally-defined complex type
Nillable no

Abstract no

Selects targets elements to be processed by the commands. The selection is determined by the element

type and its properties.

XML Instance Representation

<select
"element_type"
"property_type"
"xXs:string"
"xXs:string"
"bool

"bool" [O0.

" on_error_type "
/>

Q. -

[1]

[0..1]
1]
[0..1]
[0..1]
.11
[0..1]

Schema Component Representation

©1989-2024 Lauterbach

Peripheral Files Programming

123

<xs:element "select" >
<xs:complexType>

<xs:attribute "element" "element_type" "required" />
<xs:attribute "property" "property_type" "optional" />
<xs:attribute "regex" "xXs:string" "optional" />
<xs:attribute "num_equal" "xXs:string" "optional" />
<xs:attribute "all_occurrences" "bool" "optional" />
<xs:attribute "invert_regex" "bool" "optional" />
<xs:attribute "on_error" "on_error_type" "optional" />
</xs:complexType>
</xs:element>
Element: state
Properties
Name state
Type Locally-defined complex type
Nillable no
Abstract no
XML Instance Representation
<state>
<name>xs:string </name>[1]
<value>number</value>[1]
</state>
Schema Component Representation
<xs:element "state" >
<xs:complexType>
<Xs:sequence>
<xs:element "name" "xs:string" "l />
<xs:element "value" "number" "l />

</xXs:sequence>
</xs:complexType>
</xs:element>

©1989-2024 Lauterbach

Peripheral Files Programming

124

Element: states

Properties

Name states

Type Locally-defined complex type
Nillable no

Abstract no

XML Instance Representation

<states>
<state. .. </state[0..~*]
</states>

Schema Component Representation

<xs:element "states" >
<xs:complexType>
<Xs:seqguence>
<xs:element "state" 0" "unbounded" />
</xXs:sequence>
</xs:complexType>
</xs:element>

Element: variable

Properties

Name variable

Type Locally-defined complex type
Nillable no

Abstract no

©1989-2024 Lauterbach Peripheral Files Programming | 125

A variable definition contains one or more select tags “<select>" followed by one or more “<get>" tags:

- The "<select>" tag defines on which elements the '<command>" tags will be applied. The first "<select>’
tag will search in all elements of the XML file. The next “<select>" tag will search on the results of the
previous select tag. That way, selecting the desired elements can be achieved by reducing the search base
step by step.

- The "<get>" tag defines a property value that will be saved under variable name.

NOTE: to refer to the variable use "#{variable_name[position]:format}", where:
- variable_name - name of the variable
- [format](#type_format_type) - available C-like formats

- position (optional) - in_case of using all_occurrences while searching the values are stored in vector, use
this to refer to proper value.

XML Instance Representation

<variable
"xs:string" [1]

>
<select. .. </select[1..*]
<get... </get[1..*]
</variable>

Schema Component Representation

<xs:element "variable" >
<xgs:complexType>
<Xs:sequence>

<xs:element "select” maLw "unbounded" />
<xs:element "get" "l "unbounded" />
</Xs:sequence>
<xs:attribute "name" "xs:string" "required" />

</xs:complexType>
</xs:element>

©1989-2024 Lauterbach Peripheral Files Programming | 126

Global Definitions

Complex Type: protect_common_type

Type hierarchy

Super-types: None

Sub-types: None

Properties

Name protect_common_type
Abstract no

Finds field with given prefix or suffix, then tries to find field that is protected by first one and then creates

protected field from them.

XML Instance Representation

"xs:string" [1]
"xs:string" [1]
/>

Schema Component Representation

<xs:complexType "protect_common_type" >
<xs:attribute "prefix" "xs:string"
<xs:attribute "suffix" "xs:string"

</xs:complexType>

Complex Type: protect_field_type

"required" />
"required" />

Type hierarchy

Super-types: None

Sub-types: None

©1989-2024 Lauterbach

Peripheral Files Programming

127

Properties

Name protect_field_type

Abstract no

Creates protected field if the specified field and protector are found.

XML Instance Representation

"xs:string" [1]

/>

Schema Component Representation

<xs:complexType "protect_field_ type" >
<xXs:attribute "regex" "xs:string" "required" />
</xs:complexType>

Model Group: commands

Properties

Name commands

Commands are element modificators that process data sets extracted from data model by the “<select>
tag. One data set can be used by multiple commands. Command tags must follow the “<select>" tags.

XML Instance Representation

©1989-2024 Lauterbach Peripheral Files Programming | 128

Start Choice[1]
.. </modify[1]

<modify .
<replace. . .
<protect.
<remove. . .
<create_module. . .
</for[1]
<create_view. . .

<map_cpu. . .
<destroy_module. . .
<include_module. . .
<derive_module. . .

<for. ..

</replace[1]

.. </protect[1]

<open_module. . .

<create_header. . .
End Choice

</remove [1]

</create_module [1]

</create_view[1]
</map_cpull]

</destroy_module [1]
</include_module[1]
</derive_module [1]

</open_module[1]

</create_header[1]

Schema Component Representation

<XS:group

"commands" >

<xs:choice>

<XS:
:element
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:

<Xs

element

element
element
element
element
element
element
element
element
element
element
element

</xs:choice>
</xs:group>

"modify" />
"replace" />
"protect" />
"remove" />
"create_module" />
"for' />

"create_view" />
"map_cpu" />
"destroy_module" />
"include_module" />
"derive_module" />
"open_module" />
"create_header" />

Model Group: replace_element_type

Properties

Name

replace_element_type

XML Instance Representation

©1989-2024 Lauterbach

Peripheral Files Programming

129

Start Choice[1]

<module. .. </module[1]
<modules. .. </modules[1]
<register. . . </register[11]
<registers. .. </registers[11]
<field. .. </field[1]

<fields. .. </fields[1]
<state. .. </state[1]
<states. .. </states[1]
<if... </if[1]

End Choice

Schema Component Representation

<Xs:group
<xs:choice>
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
</xs:choice>
</xXs:group>

Simple Type: access_type

"replace_element_type"

"module" />
"modules" />
"register" />
"registers" />
"field" />
"fields" />
"state" />
"states" />
vifr />

Type hierarchy

Super-types: xs:token < access_type(by restriction)

Sub-types: None

Properties

Name access_type

Content Base XSD Type: token, value comes from list:
{RW'I'RO'I'WO'I'W1C'I'WS'I'H'}

©1989-2024 Lauterbach

Peripheral Files Programming

130

Available "access_type" values:

- 'RW': Read write (group, bitfld)
"RO’: Read only (rgroup, rbitfld)
"WO': Write only (wgroup)

- "W1C': Write one to clear (eventfld)
"WS': Write secured

"H': Hidden (hgroup)

Schema Component Representation

<xXs:simpleType "access_type" >
<Xs:restriction "xs:token" >
<Xs:enumeration "RW" />
<Xs:enumeration "RO" />
<Xs:enumeration "wo" />
<xXs:enumeration "wilc" />
<Xs:enumeration "Ws" />
<Xs:enumeration "H" />

</Xs:restriction>
</xs:simpleType>

Simple Type: bool

Type hierarchy

Super-types: xs:string < bool(by restriction)

Sub-types: None

Properties

Name bool

Content Base XSD Type: string, value comes from list: {'no'l'yes'}

Similar to xs:boolean but with a 'no/yes' representation

Schema Component Representation

©1989-2024 Lauterbach Peripheral Files Programming | 131

<xXs:simpleType "bool" >

<xXs:restriction "xXs:string" >
<xXs:enumeration "no" />
<xXs:enumeration "yes" />

</xs:restriction>
</xs:simpleType>

Simple Type: create_module_mode

Type hierarchy

Super-types: xs:token < create_module_mode(by restriction)
Sub-types: None

Properties

Name create_module_mode

Content Base XSD Type: token, value comes from list: {'single'lI'multi'}

- “single’ - Default. Create one tree for all matched groups of elements.
- 'multi’ - Create separate trees for each matched groups of elements. Names will be numerated.

Schema Component Representation

<xs:simpleType "create_module_mode" >
<xs:restriction "xs:token" >
<XsS:enumeration "single" />
<xs:enumeration "multi" />

</Xs:restriction>
</xs:simpleType>

Simple Type: create_module_position

Type hierarchy

Super-types: xs:token < create_module_position(by restriction)

Sub-types: None

©1989-2024 Lauterbach Peripheral Files Programming | 132

Properties

Name

create_module_position

Content

Base XSD Type: token, value comes from list: {'inplace'l'top'l'nottom’}

- “inplace’ - Default. Place trees in position where elemet has been found.
- "top” - Place trees on the top of module.
- "bottom’ - Place trees on the bottom of module.

Schema Component Representation

<xs:simpleType

"create_module_position" >

<xs:restriction "xs:token" >
<XsS:enumeration "inplace" />
<Xs:enumeration "top" />
<xs:enumeration "bottom" />

</Xs:restriction>

</xs:simpleType>

Simple Type: derive_module_element

Type hierarchy

Super-types: xs:token < derive_module_element(by restriction)

Sub-types: None

Properties

Name derive_module_element

Content Base XSD Type: token, value comes from list: {'register'I'module'l'all'}

- ‘register’ - Module contains registers only.
- ‘'module’ - Module contains submodules only.
- "all' - Module contains both modules and registers.

Schema Component Representation

©1989-2024 Lauterbach

Peripheral Files Programming |

133

<xs:simpleType
<xXs:restriction
<xXs:enumeration
<xXs:enumeration
<Xs:enumeration

"derive _module element" >
"xs:token" >
"register" />
"module" />
"all" />

</xs:restriction>

</xs:simpleType>

Simple Type: element_type

Type hierarchy

Super-types: xs:token < element_type(by restriction)

Sub-types: None

Properties

Name element_type

Content Base XSD Type: token, value comes from list:
{'permodel''module'l'register'l'field'|'state'l'include_module'}

- ‘permodel - Top level element.

- ‘'module’ - Can be nested in other module.

- ‘register’ -Can be nested in module.

- “field" -Can be nested in register.

- “state” -Can be nested in field.

- “include_module - Can be nested in permodel.

Schema Component Representation

<xs:simpleType
<xs:restriction
<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration

"element_type" >

"xs:token" >
"permodel" />
"module" />
"register" />
"field" />
"state" />
"include_module" />

</Xs:restriction>

</xs:simpleType>

©1989-2024 Lauterbach

Peripheral Files Programming

134

Simple Type: format_type

Type hierarchy

Super-types: xs:token < format_type(by restriction)

Sub-types: None

Properties

Name format_type

Content Base XSD Type: token, value comes from list: {'s'l''l'd'I'x'I'X"}

'S’ - saves string

I’ - saves decimal

'd" - saves decimal

"X - saves hexadecimal
"X - saves hexadecimal

Schema Component Representation

<xs:simpleType "format_type" >

<xs:restriction "xs:token" >
<xs:enumeration "S>
<xs:enumeration tito/>
<xs:enumeration tar />
<xs:enumeration X" />
<xs:enumeration "X />

</Xs:restriction>
</xs:simpleType>

Simple Type: if_type

Type hierarchy

Super-types: None

Sub-types: None

©1989-2024 Lauterbach Peripheral Files Programming

135

Properties

Name if_type

Content Union of following types: xs:token
Locally defined type: Base XSD Type: token, value comes from list:
{'default’}

- “practice_condition’ - PRACTICE condition syntax.
- “default’ - Can be used to generate else clause.

Schema Component Representation

<xs:simpleType "if _type" >
<xs:union "xs:token" >
<xXs:simpleType>
<xs:restriction "xs:token" >
<xs:enumeration "default" />

</xs:restriction>
</xs:simpleType>
</xs:union>
</xs:simpleType>

Simple Type: include_module_position

Type hierarchy

Super-types: xs:token < include_module_position(by restriction)

Sub-types: None

Properties

Name include_module_position

Content Base XSD Type: token, value comes from list: {'top'I'bottom'l'sorted'}

- top” - Place %include on the top of module. (default)
- "bottom’ - Place trees on the bottom of module.
- sorted’ - %include command will be sorted with “SortTopTrees™ option.

Schema Component Representation

©1989-2024 Lauterbach Peripheral Files Programming | 136

<xs:simpleType "include_module_position" >

<xXs:restriction "xs:token" >
<xXs:enumeration "top" />
<Xs:enumeration "bottom" />
<Xs:enumeration "sorted" />

</xs:restriction>
</xs:simpleType>

Simple Type: include_type

Type hierarchy

Super-types: xs:token < include_type(by restriction)

Sub-types: None

Properties

Name include_type

Content Base XSD Type: token, value comes from list: {%include'l'INCLUDE'"}

Outputs proper include command

Schema Component Representation

<xs:simpleType "include_type" >

<xs:restriction "xs:token" >
<xs:enumeration "%include" />
<xs:enumeration "INCLUDE" />

</Xs:restriction>
</xs:simpleType>

Simple Type: number

Type hierarchy

Super-types: xs:string < number(by restriction)

Sub-types: None

©1989-2024 Lauterbach Peripheral Files Programming | 137

Properties

Name

number

Content

Base XSD Type: string, pattern = 0x[0-9A-Fa-f]+1[0-9]+.?10[bly][01]+

The 'number’ type accepts either hexadecimal or decimal values.

Schema Component Representation

<xs:simpleType
<Xs:restriction
<xs:pattern

"number" >
"xs:string" >
"0x[0-9A-Fa-f]+|[0-9]+.?|0[b|y] [01]+" />

</Xs:restriction>

</xs:simpleType>

Simple Type: on_error_type

Type hierarchy

Super-types: xs:token < on_error_type(by restriction)

Sub-types: None

Properties

Name on_error_type

Content Base XSD Type: token, value comes from list: {'error'l'ignore'l'logfile'}

- “error (default) : Current behavior, conversion process is aborted with an error message.

- “ignore’: Ignore error.

- "logfile’: Conversion process continues but error is printed to logfile. Same as ignore option if lodfile is

disabled.

Schema Component Representation

©1989-2024 Lauterbach

Peripheral Files Programming |

138

<xXs:simpleType

<xs:restriction

"on_error_type" >
"xs:token" >

<xXs:enumeration "error" />
<xXs:enumeration "ignore" />
<Xs:enumeration "logfile" />

</xs:restriction>

</xs:simpleType>

Simple Type: open_module_element

Type hierarchy

Super-types: xs:token < open_module_element(by restriction)

Sub-types: None

Properties

Name open_module_element

Content Base XSD Type: token, value comes from list: {'module’l'mixed'l'all'}

-‘module’ - Only open tree if module does not have registers (only other submodules)*
-‘mixed’ - Only open tree if module has registers and submodules.*
-"all' - Open tree unconditionally*

The specified attribute supersedes another attribute. For instance, when using "element"="module" and
"depth"="3" as an example, it means,
if there are registers at the top level, the sublevels at depths 2 and 3 will not be opened.

Schema Component Representation

<xs:simpleType

<Xs:restriction

"open_module_element" >

"xs:token" >

<Xs:enumeration "module" />
<XsS:enumeration "mixed" />
<Xs:enumeration "all" />

</Xs:restriction>

</xs:simpleType>

©1989-2024 Lauterbach

Peripheral Files Programming |

139

Simple Type: property_type

Type hierarchy

Super-types: xs:token < property_type(by restriction)

Sub-types: None

Properties

Name property_type

Content Base XSD Type: token, value comes from list:
{'name'l'description'l'value'l'access_type'l'offset'I'size'l'lower_range'l'upp
er_range'l'intrusive_read'l'condition'l'view_name'l'path'l'button_name'l'bu
tton_command'l'address'l'access_class'l'special'l'port'|'dataread'l'datawri
te'}

- 'name’ - Name of the element.

- “description’ - Description of the element.

- “value’ - State code value.

- "access_type’ - Access type of the given element (e.g., read/write/...).

- “offset’” - Address offset from the base address in hexadecimal.

- “size’ - Size of the register in bytes.

- "lower_range’ - Field's lower boundary.

- ‘upper_range’ - Field's upper boundary.

- “intrusive_read’ - Indicates whether reading the given register causes data loss or not.
- “condition” - Indicates the display condition of the given element.

- 'view_name’ - Indicates the reference name for the conditional view of the given element. It is used for view
creation or selection for making changes.

- ‘path’ - Path of the element based on element names.

- “button_name’ - Button name of the given element.

- “button_command’ - Button commands of the given element.

- "address’ - Base address of the module.

- "access_class’ - Access classification for the base address.

- “special’ - Is register part of group saveindex, savetindex, index, tindex.

- “port’ - Is the address of the reg addr register for saveindex, savetindex, index, and tindex commands.
- “dataread’ - Index of the register within special group.

- “datawrite” - If unspecified, value is same as dataread.

Schema Component Representation

©1989-2024 Lauterbach Peripheral Files Programming | 140

<xs:simpleType
<xXs:restriction
<xXs:enumeration
<Xs:enumeration
<Xs:enumeration
<Xs:enumeration
<Xs:enumeration
<Xs:enumeration
<xXs:enumeration
<Xs:enumeration
<Xs:enumeration
<Xs:enumeration
<xXs:enumeration
<Xs:enumeration
<Xs:enumeration
<Xs:enumeration
<Xs:enumeration
<xXs:enumeration
<Xs:enumeration
<Xs:enumeration
<xXs:enumeration
<Xs:enumeration
</xs:restriction>
</xs:simpleType>

Simple Type: props_type

"property_ type" >
"Xs:

token" >

"name" />
"description" />
"value" />
"access_type" />
"offset" />
"size" />
"lower_range" />
"upper_range" />
"intrusive_read" />
"condition" />
"view_name" />
"path" />
"button_name" />
"button_command" />
"address" />
"access_class" />
"special" />
"port" />
"dataread" />
"datawrite" />

Type hierarchy

Super-types: xs:token < props_type(by restriction)

Sub-types: None

Properties

Name props_type

Content Base XSD Type: token, value comes from list:
{'Confidential'l'Released'|'Strictly-confidential'}

Schema Component Representation

©1989-2024 Lauterbach

Peripheral Files Programming

141

<xs:simpleTypename"props_type" >
<xs:restrictionbase"xs:token" >
<xXs:enumerationvalue"Confidential" />
<Xs:enumerationvalue"Released" />
<xs:enumerationvalue"Strictly-confidential" />
</xs:restriction>
</xs:simpleType>

©1989-2024 Lauterbach Peripheral Files Programming | 142

Glossary

Abstract(Applies to complex type definitions and element declarations). An abstract element or complex type
cannot used to validate an element instance. If there is a reference to an abstract element, only element
declarations that can substitute the abstract element can be used to validate the instance. For references to
abstract type definitions, only derived types can be used.

All Model GroupChild elements can be provided in any orderin instances. See:
http://www.w3.org/TR/xmlschema-1/#element-all.

Choice Model GroupOnly onefrom the list of child elements and model groups can be provided in instances.
See: http://www.w3.org/TR/xmlschema-1/#element-choice.

Collapse Whitespace PolicyReplace tab, line feed, and carriage return characters with space character
(Unicode character 32). Then, collapse contiguous sequences of space characters into single space
character, and remove leading and trailing space characters.

Disallowed Substitutions(Applies to element declarations). If substitution is specified, then substitution
groupmembers cannot be used in place of the given element declaration to validate element instances. If
derivation methods , e.g. extension, restriction, are specified, then the given element declaration will not
validate element instances that have types derived from the element declaration's type using the specified
derivation methods. Normally, element instances can override their declaration's type by specifying an
xsi: typeattribute.

Key ConstraintLike Uniqueness Constraint, but additionally requires that the specified value(s) must be
provided. See: http://www.w3.org/TR/xmischema-1/#cldentity-constraint_Definitions.

Key Reference ConstraintEnsures that the specified value(s) must match value(s) from a Key Constraintor
Uniqueness ConstraintSee: http://www.w3.org/TR/xmlschema-1/#cldentity-constraint_Definitions.

Model GroupGroups together element content, specifying the order in which the element content can occur
and the number of times the group of element content may be repeated. See:
http://www.w3.org/TR/xmlschema-1/#Model_Groups.

Nillable(Applies to element declarations). If an element declaration is nillable, instances can use the
xs1:nilattribute. The xsi:nilattribute is the boolean attribute, nil, from the
http://www.w3.0rg/2001/XMLSchema-instance namespace. If an element instance has an

xs1 :nilattribute set to true, it can be left empty, even though its element declaration may have required
content.

NotationA notation is used to identify the format of a piece of data. Values of elements and attributes that are
of type, NOTATION, must come from the names of declared notations. See:
http://www.w3.org/TR/xmlIschema-1/#cNotation_Declarations.

Preserve Whitespace PolicyPreserve whitespaces exactly as they appear in instances.

Prohibited Derivations(Applies to type definitions). Derivation methods that cannot be used to create sub-
types from a given type definition.

Prohibited Substitutions(Applies to complex type definitions). Prevents sub-types that have been derived
using the specified derivation methods from validating element instances in place of the given type definition.

©1989-2024 Lauterbach Peripheral Files Programming | 143

Replace Whitespace PolicyReplace tab, line feed, and carriage return characters with space character
(Unicode character 32).

Sequence Model GroupChild elements and model groups must be provided in the specified orderin
instances. See: http://www.w3.org/TR/xmlschema-1/#element-sequence.

Substitution GroupElements that are membersof a substitution group can be used wherever the
headelement of the substitution group is referenced.

Substitution Group Exclusions(Applies to element declarations). Prohibits element declarations from
nominating themselves as being able to substitute a given element declaration, if they have types that are
derived from the original element's type using the specified derivation methods.

Target NamespaceThe target namespace identifies the namespace that components in this schema
belongs to. If no target namespace is provided, then the schema components do not belong to any
namespace.

Uniqueness ConstraintEnsures uniqueness of an element/attribute value, or a combination of values, within
a specified scope. See: http://www.w3.0org/TR/xmlIschema-1/#cldentity-constraint_Definitions.

©1989-2024 Lauterbach Peripheral Files Programming | 144

Error Messages

<location> Invalid attribute <attribute>in tag <name>

Unknown attribute occured for parent tag.
Example:

<rules xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemal.ocation="rules.xsd">
<rule>

<select unknown="unknown" element="module" property="name"

regex="MODULE" all_occurrences="yes" invert_regex="yes" />
<remove />
</rule>
</rules>

I test.xml:5:120 Invalid attribute unknown in tag <select>

Fix:
Remove the attribute from file or report the problem to developer.

<location> Invalid node <node> in tag <name>

Unknown node occurred for parent tag.
Example:

<rules xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalL.ocation="rules.xsd">
<rule>
<select element="module" property="name" regex="CSCU"
<unknown_command name="ACCEN" position="bottom">
<element regex="CSCU_ACCEN_.*" />
</unknown_ command>
</rule>
</rules>

I test.xml:5:47 Invalid node 'unknown_command' in tag ‘<rule>'

Fix:
Check spelling or report the problem to developer.

/>

©1989-2024 Lauterbach Peripheral Files Programming

145

<location> Invalid value <value> in tag <name>

Unknown value occurred in node or attribute.
Example:
<enumeratedvValue>
<name>DISABLED</name>
<description>N/A</description>

<value>UnknownValue</value>
</enumeratedvValue>

I cyt2b7.svd:3208:26 Invalid value 'UnknownValue' of ‘value'

Fix:
Check spelling or report the problem to developer.

<location> <name> from <name> must occur only once

Node or attribute has occured more than once.
Example:

<rules xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="rules.xsd">
<rule>
<select element="module" element="register" property="name"
regex="CSCU" />
</rule>
</rules>

I test.xml:4:50 'element' from 'select’ must occur only once

Fix:
Remove duplicates or report the problem to developer.

©1989-2024 Lauterbach Peripheral Files Programming | 146

<location> Missing <name> in tag <name>

Node or attribute is missing in parent node.

Example:

<device schemaVersion="1.3" xmlns:xs="http://www.w3.0rg/2001/XMLSchema-

instance"

xs:noNamespaceSchemalLocation="CMSIS-SVD.xsd">
<vendor>Cypress Semiconductor</vendor>
<vendorID>Cypress</vendorID>
<name>cyt2b7</name>

<peripherals>

</peripherals>
</device>

I cyt2b7.svd:29:12 Missing 'peripheral’ in tag '<peripherals>'

Fix:
Add the missing element or report the problem to developer.

Invalid value <value> for property “property”

The right side of a property represents an invalid value.

Example:
<rules>
<rule>
<select element="module" property="name" regex="PERI" />
<select element="register" property="name" regex="TIMEOUT_CTL" />
<select element="field" property="name" regex="TIMEOUT" />
<modify property="lower_range" value="unknownValue" />
</rule>
</rules>
I Invalid value "unknownValue" for property "lower_range"
Fix:
Change the value to proper decimal format.
©1989-2024 Lauterbach Peripheral Files Programming | 147

<location> Invalid property attribute for selected component

Property does not match with selected component.

Example:
<rules>
<rule>
<select element="module" property="lower_range" regex="PERI" />
<modify property="lower_range" value="unknownValue" />
</rule>
</rules>

I test.xml:4:38 Invalid property attribute for selected component

Fix:
Set proper property according to availability of properties.

<location> missing <select> for <name> tag

Command does not has a selected item defined.
Example:

<rules>
<rule>
<modify property="lower_range" value="unknownValue" />
</rule>
</rules>

I test.xml:4:53 missing <select> for <modify> tag

Fix:
Define <select> before <modify>.

©1989-2024 Lauterbach Peripheral Files Programming | 148

<location> <select> can not be used after <command>

<select> node can not be written after using a <command>.

Example:
<rules>
<rule>
<create_module name="ACCEN" position="bottom">
<element regex="CSCU_ACCEN_.*" />
</create_module>
<select element="module" property="name" regex="PERI" />
</rule>
</rules>

I test.xml:7:55 <select> can not be used after <command>

Fix:
Define <select> before <create_module>.

<location> <select> with ‘property=path’ can be used only once for single <rule>

<select> with property=path can be used only once for each rule <command>.

Example:
<rules>
<rule>
<select element="module" property="path" regex="PERI, PERI" />
<select element="register" property="path" regex="PERI, TIMEOUT"
/>
</rule>
</rules>

I test.xml:5:65 <select> with 'property=path' can be used only once for single <rule>

Fix:
Define whole path in single <select>.

©1989-2024 Lauterbach Peripheral Files Programming | 149

<location> <name> tag requires subtags

Node was found that should contain subtags but is empty.
Example:

<rules>
<rule>
<select element="register" property="name" regex="\w+_O0CS"
all_occurrences="yes" />
<protect>
</protect>
</rule>
</rules>

I test.xml:5:8 <protect> tag requires subtags

Fix:
Define subtags.

None of component <name> elements match <value>

No components were found by regex=<value>.
Example:

<rules>
<rule>
<select element="register" property="path" regex="PERI,TR_CMD"
all_occurrences="yes" />
<protect>
<field regex="TR_SEL_WRONG" />
<protected_by regex="GROUP_SEL" />
</protect>
</rule>
</rules>

I None of component "TR_CMD" elements match "TR_SEL_WRONG"

Fix:
Check spelling in <field> regex.

©1989-2024 Lauterbach Peripheral Files Programming |

<location> <name> can’t be used with <name>

Both tags can't be combined.
Example:

<rules>
<rule>
<select element="register" property="path" regex="PERI,TR_CMD"
all_occurrences="yes" />
<protect>
<field regex="TR_SEL" />
<common prefix="prefix" suffix="suffix" />
</protect>
</rule>
</rules>

I test.xml:5:8 <field> can't be used with <common>.

Fix:
Choose either <field> or <commonx> for single rule or split them to different rules.

Invalid min_value

Both tags can't be combined.
Example:

<rules>
<rule>
<select element="register" property="path" regex="PERI"
all_occurrences="yes" />
<for iter_name="i" min_value="UNKNOWN" max_value="20">
<create_module name="CH#{i:u}" position="bottom">
<element regex="CSS\d_CH#{i:u}_.*" />
</create_module>
</for>
</rule>
</rules>

I Invalid min_value

Fix:
Fix the min value to be either the decimal value or it refers to another <for>.

©1989-2024 Lauterbach Peripheral Files Programming | 151

Invalid iter_name

Variables with same iter_name can not be nested.
Example:

<rules>
<rule>
<select element="register" property="path" regex="PERI"
all_occurrences="yes" />
<for iter_name="i" min_value="0" max_value="20">
<for iter name="1" min_value="#{o:u}" max_value="20">
<create_module name="CH#{i:u}" position="bottom">
<element regex="CSS\d_CH#{i:u}_.*" />
</create_module>
</for>
</for>
</rule>
</rules>

I Invalid iter_name

Fix:
Fix the min_value fixing the 'o' to 'i' as there is no ‘o' named for above.

The <value> register could not be found

Register defined in use attribute could not be found in selected component.
Example:

<rules>
<rule>
<select element="register" property="path"
regex="PERI, TIMEOUT _CTL" all_occurrences="yes" />

<create_view view_name="viewl" if="(per.long(D:#
{offset:x}) & 0x800)==0x800" use="UNKNOWN" />
</rule>
</rules>

I The "UNKNOWN" register could not be found

Fix:
Check spelling in register and make sure it belongs to selected components parent.

©1989-2024 Lauterbach Peripheral Files Programming | 152

ELSE command can not be created for <value> without if command

Register defined in use attribute could not be found in selected component.
Example:

<rules>
<rule>
<select element="register" property="path"
regex="PERI, TIMEOUT_CTL" all_occurrences="yes" />
<create_view view_name="viewl" if="default"/>
</rule>
</rules>

I ELSE command can not be created for "TIMEOUT_CTL" without if command

Fix:
Use create_view with condition before "default".

<location> Root tag <name> not found.

Its thrown if any of leading node from xml is not found in xml.
Example:

<rule>
<select element="module" property="name" regex="PERI" />
</rule>

I test.xml::0:0 Root tag <rules> not found.

Fix:
Insert proper root tag to the xml.

©1989-2024 Lauterbach Peripheral Files Programming | 153

<location> duplicated element.

Duplicated element in create_module was found.
Example:

<rules>
<rule>
<select element="register" property="path"
regex="PERI, TIMEOUT_CTL" all_occurrences="yes" />
<create_module name="ACCENCS" position="bottom">
<element regex="CSS\d_ACCENCS_.*" />
<element regex="CSS\d_ACCENCS_.*" />
</create_module>
</rule>
</rules>

I test.xml:7:35 duplicated element

Fix:
Use create_view with condition before "default".

Wrong input file specified for <name> format.

Unknown file was asked to be converted using wrong converter Type.
Example:

SVD converter was asked to be convert a file without <device> node

I Wrong input file specified for SVD format

This inputs are not supported by our converter

Unknown input file is being converted using AUTO mode.

©1989-2024 Lauterbach Peripheral Files Programming | 154

Functions

The table below shows an extract of functions useful for writing PER files.

For a complete list of available functions please see:

. PowerView Function Reference
o General Function Reference
. Stimuli Generator Function Reference
<int> CONVert.BOOLTOINT(<book) Converts a boolean value to an integer.
TRUE becomes 1, FALSE becomes 0
This function allows you to write conditional base
statements e.g.:
base VM: (0x1010*conv.booltoint (d.1l(vm:0)==4
2) |0x1070*conv.booltoint (d.1 (vm:0) !=42)
<int> PER.ARG(<index>) We recommend that you no longer use these two
and deprecated functions. Instead, use the method
PER.ARG.ADDRESS() described in “Passing Arguments”, page 8.
(deprecated)
Returns the (optional) argument of the Per.view
command. The parameter is currently not used.
Only useful inside peripheral definition files.
<int> PER.Buffer.Byte(<index>) Returns a byte from the SGROUP buffer. Only
useful within a SGROUP of a PER file.
<int> PER.Buffer.Word(<index>) Returns a 16 bit word from the SGROUP buffer.
Only useful within a SGROUP of a PER file.
<int> PER.Buffer.Long(<index>) Returns a 32 bit word from the SGROUP buffer.
Only useful within a SGROUP of a PER file.
<int> PER.Buffer.Quad(<index>) Returns a 64 bit from the SGROUP buffer. Only
useful within a SGROUP of a PER file.
<address> PER.EVAL(<index>) Returns the value of a expression (defined with

BASE) inside a peripheral definition file (PER file),
which was defined after BASE, IF, ELIF or ELSE
command.

The parameter defines which expression is
returned (O=first one).

Note 1: The function returns only the last evaluated
value of the expression. It will not evaluated the
expression again. Expressions after BASE, will be
evaluated by a GROUP command after the BASE
command in a PER file.

Note 2:The function must only be used in the
context of IF or ELIF.

©1989-2024 Lauterbach Peripheral Files Programming | 155

©1989-2024 Lauterbach Peripheral Files Programming | 156

	Peripheral Files Programming
	History
	Introduction
	Passing Arguments
	Memory Classes
	Comma-Separated-Values (CSV) File Format for *.per Files
	Editing a *.per File in CSV Format in a Spreadsheet Editor
	Mixing Regular and CSV Formats

	Manual Peripheral File Generation
	GROUP Commands
	GROUP Define read/write GROUP
	HGROUP Define read-once/write GROUP
	RGROUP Define read-only GROUP
	WSGROUP Define write-only and shadow GROUP
	WGROUP Define write-only GROUP

	SGROUP Commands
	SGROUP Define sequence GROUP
	SET Write constant value to memory
	SETX Write SGROUP buffer to memory
	GETX Read from memory to the SGROUP buffer
	CONSTX Write constant value to the SGROUP buffer
	VARX Write expression to SGROUP buffer
	WRITEBACK Separate write a part from a read part

	Other Top Level Commands
	ASSERT Abort if condition not met
	AUTOINDENT Indent content of peripheral file automatically
	BASE Define a base address for following group definitions
	BASEOUT Output a value before calculating a base address
	BASESAVEOUT Output a value before calculating a base address
	CONFIG Configure default access width and line break for BIT
	CSV Enables CSV capabilities
	ELSE Conditional GROUP display
	ELIF Conditional GROUP display
	ENDIAN Define little or big endian
	ENDIF Conditional GROUP display
	ENTRY Assign parameters to macros
	HELP Reference online manual
	IF Conditional GROUP display
	INCLUDE Include another peripheral file
	MENCONFIG PERMENU configuration
	PERCMD Row definition in CSV-formatted *.per file
	REPEAT Repeat block of commands
	REPEAT.REPLAY Replay last complete REPEAT block
	SIF Conditional interpretation
	TREE Define hierarchic display
	WIDTH Width of register names and a BIT description
	WAIT Wait with PER windows until system is ready

	Commands within GROUPs
	ABITFLD Assign values to BITFLD choice items
	ASCII Display ASCII character
	BIT Define bits
	BITFLD Define bits individually
	BUTTON Define command button
	COPY Copy GROUP
	DECMASK Define bits for decimal display
	FLOATMASK Define bits for decimal floating point display
	EVENTFLD Define event flag bits individually
	HEXFLD Define hexword individually
	HEXMASK Define bits for a hexadecimal display
	HIDE Define write-only line
	IN Define input field
	INDEX Output a value
	LINE Define line
	MUNGING Translate to little endian mode (PowerPC only)
	NEWLINE Line break within detailed register description
	RBITFLD Define bits individually (read-only)
	RHEXMASK Define bits for a hexadecimal display (read-only)
	SAVEINDEX Save original and output a value
	SAVETINDEX Save original and output a value
	SDECMASK Signed DECMASK
	SFLOATMASK Signed FLOATMASK
	SETCLRFLD Define set/clear locations
	STRING Display a string saved in memory
	TEXTLINE Define text header with a new line
	TEXTFLD Define text header
	TINDEX Output a value

	Automated Peripheral File Generation
	Graphical User Interface
	Rules file
	Rules file description
	Rule definition
	Selecting defined elements using <select>
	Elements
	Properties
	Commands
	<create_header>
	<derive_module>
	<destroy_module>
	<include>
	<include_module>
	<open_module>
	<modify>
	<replace>
	<protect>
	<remove>
	<create_module>
	<for>
	<create_view>
	<map_cpu>

	Variables
	Schema Document Properties
	Global Declarations
	Element: create_header
	Element: create_module
	Element: create_view
	Element: derive_module
	Element: destroy_module
	Element: field
	Element: fields
	Element: for
	Element: get
	Element: if
	Element: include
	Element: include_module
	Element: map_cpu
	Element: modify
	Element: module
	Element: modules
	Element: open_module
	Element: protect
	Element: register
	Element: registers
	Element: remove
	Element: replace
	Element: rule
	Element: rules
	Element: select
	Element: state
	Element: states
	Element: variable

	Global Definitions
	Complex Type: protect_common_type
	Complex Type: protect_field_type
	Model Group: commands
	Model Group: replace_element_type
	Simple Type: access_type
	Simple Type: bool
	Simple Type: create_module_mode
	Simple Type: create_module_position
	Simple Type: derive_module_element
	Simple Type: element_type
	Simple Type: format_type
	Simple Type: if_type
	Simple Type: include_module_position
	Simple Type: include_type
	Simple Type: number
	Simple Type: on_error_type
	Simple Type: open_module_element
	Simple Type: property_type
	Simple Type: props_type

	Glossary

	Error Messages
	<location> Invalid attribute <attribute> in tag <name>
	<location> Invalid node <node> in tag <name>
	<location> Invalid value <value> in tag <name>
	<location> <name> from <name> must occur only once
	<location> Missing <name> in tag <name>
	Invalid value <value> for property “property”
	<location> Invalid property attribute for selected component
	<location> missing <select> for <name> tag
	<location> <select> can not be used after <command>
	<location> <select> with ‘property=path’ can be used only once for single <rule>
	<location> <name> tag requires subtags
	None of component <name> elements match <value>
	<location> <name> can’t be used with <name>
	Invalid min_value
	Invalid iter_name
	The <value> register could not be found
	ELSE command can not be created for <value> without if command
	<location> Root tag <name> not found.
	<location> duplicated element.
	Wrong input file specified for <name> format.
	This inputs are not supported by our converter

	Functions

