LAUTERBACH A

MAC71xx/72xx NEXUS
Debugger and Trace

MAC71xx/72xx NEXUS Debugger and Trace

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... s r—~
IMACTAXX/T2XX ceeeessssssmmmmsenssssssssssssssssnmmssssssssssssssssssssnmmssssssnssassssssassnmmssssssssssssssssssnsnmmnsnnssnssnsssns r=
MAC71xx/72xx NEXUS Debugger and Tracecccuveemisssmmssssmisssssmsssssmsssssmsssssssssssssssans 1
Brief Overview of Documents for New USErsccccoiiiiircecerresssmeerssssemeesesssmse s eensanes 5
L= o 1 ' 6
Quick Start of the JTAG DEDUGQETcceiiemriimiiriin i s ss s e anes 7

Lo 18] o == 0T To7 £ 3V 9
Communication Between Debugger and Processor cannot be established 9

o 9
L= Lo =T (= 1] e o 9
ARM specific Implementationscccccccimimiicicr e 10
Breakpoints 10
Software Breakpoints 10

On-chip Breakpoints for Instructions 10

On-chip Breakpoints for Data 10
Hardware Breakpoints (Bus Trace only) 11
Example for Standard Breakpoints 11
Complex Breakpoints 13

Direct ICE Breaker Access 13

Trigger 14

Virtual Terminal 14
Semihosting 14
Runtime Measurement 15
Coprocessors 15
Memory Classes 16
Programming the On-chip FLASH of the MACT71/72XXccccciinicmmrssmninsmsssssesssnesnssenens 17
ARM specific SYStem COmMMAaNASccccceiiiiimmnisininrsssns s s s s ssssssss s s sasssasas 18
SYStem.CONFIG.state Display target configuration 18
SYStem.CONFIG Configure debugger according to target topology 18
©1989-2024 Lauterbach MAC71xx/72xx NEXUS Debugger and Trace | 2

SYStem.CPU Select the used CPU 20
SYStem.JtagClock Define JTAG frequency 21
SYStem.LOCK Tristate the JTAG port 22
SYStem.MemAccess Select run-time memory access method 23
SYStem.Mode Establish the communication with the target 24
SYStem.Option.ABORTFIX Do not access 0x0-Ox1f 25
SYStem.Option.BUGFIX Breakpoint bug fix for ARM7TDMI-S REV2 25
SYStem.Option.BigEndian Define byte order (endianness) 26
SYStem.Option.CFLUSH FLUSH the cache before step/go 26
SYStem.Option.DBGACK DBGACK active on debugger memory accesses 26
SYStem.Option.DisMode Define disassembler mode 27
SYStem.Option.EnReset Allow the debugger to drive nRESET/nSRST 27
SYStem.Option.IMASKASM Disable interrupts while single stepping 28
SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 28
SYStem.Option.OVERLAY Enable overlay support 28
SYStem.Option.INTDIS Disable all interrupts 29
SYStem.Option.LOCKRES Go to 'Test-Logic Reset' when locked 29
SYStem.Option.NOIRCHECK No JTAG instruction register check 29
SYStem.Option.PC Define address for dummy fetches 30
SYStem.Option.ResBreak Halt the core after reset 31
SYStem.Option.RisingTDO Target outputs TDO on rising edge 31
SYStem.Option.ShowError Show data abort errors 32
SYStem.Option.SOFTLONG Use 32-bit access to set breakpoint 32
SYStem.Option.SOFTWORD Use 16-bit access to set breakpoint 32
SYStem.Option.SPLIT Access memory depending on CPSR 32
SYStem.Option.STEPSOFT Use software breakpoints for ASM stepping 33
SYStem.Option. TRST Allow debugger to drive TRST 33
SYStem.Option.TURBO Speed up memory access 33
SYStem.Option.WaitReset Wait with JTAG activities after deasserting reset 34
SYStem.RESetOut Assert nRESET/nSRST on JTAG connector 34
ARM specific NEXUS COMMAaNASccccceiriiismmrrmnnimmssnnssmss s s ssmss s sssssssss s ssssmsssssass 35
NEXUS.BTM Control for branch trace messages 35
NEXUS.ThumbBTM Control for branch trace messages 35
NEXUS.OTM Control for ownership trace messages 35
NEXUS.WTM Control for watchpoint messages 36
NEXUS.DTM Control for data trace messages 36
NEXUS.PortMode Set NEXUS trace port frequency 36
NEXUS.PortSize Set trace port width 36
NEXUS.UBA Specify user base address 37
NEXUS.STALL Stall the program execution 37
ARM specific TrOnchip COmMmMaNdSscccviiiemmmiimsinsssmnsssrssss s ssssssssssasssssssssnsans 38
TrOnchip.RESet Reset on-chip trigger settings 38
TrOnchip.CONVert Extend the breakpoint range 38
©1989-2024 Lauterbach MAC71xx/72xx NEXUS Debugger and Trace 3

TrOnchip.Mode Configure unit A and B 39

TrOnchip.A Programming the ICE breaker module 39
TrOnchip.A.Value Define data selector 39
TrOnchip.A.Size Define access size for data selector 40
TrOnchip.A.CYcle Define access type 40
TrOnchip.A.Address Define address selector 41
TrOnchip.A.Trans Define access mode 41
TrOnchip.A.Extern Define the use of EXTERN lines 42
TrOnchip.state Display on-chip trigger window 42
Filter and Trigger for the NEXUS Tracecccceccmimmisemmnimnsssmssisssssssssssssssssssssssssssssssssssas 43
Filter and Trigger provided by the Processor 43
Nexus specific TrOnchip CoOmMmMaNdscccciiieecmriinirrrinr s 44
TrOnchip.EVTI Allow the EVTI signal to stop the program execution 44
TrOnchip.EXTernal Generate a trigger for the trace on high pulse on INx 45
JTAG CONNECHION ...t s s s s e n s s e e e mmnn e 46
Mechanical Description of the 20-pin Debug Cable 46
Electrical Description of the 20-pin Debug Cable 47
Mechanical Description of the 14-pin Debug Cable 48
Electrical Description of the 14-pin Debug Cable 48
JLICET e T LT T 7 - 49
Pinout MICTOR 49
Mechanical Dimension 50
Adapter 50
Operation Voltage 50

©1989-2024 Lauterbach MAC71xx/72xx NEXUS Debugger and Trace | 4

MAC71xx/72xx NEXUS Debugger and Trace

Version 06-Jun-2024

Brief Overview of Documents for New Users

Architecture-independent information:

J “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
J “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

J “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

U “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your debug cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

. “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

©1989-2024 Lauterbach MAC71xx/72xx NEXUS Debugger and Trace | 5

Warning

WARNING:

To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1.

N o o A~

Disconnect the Debug Cable from the target while the target power is
off.

Connect the host system, the TRACES32 hardware and the Debug
Cable.

Power ON the TRACE32 hardware.

Start the TRACE32 software to load the debugger firmware.
Connect the Debug Cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:

1.

2
3.
4

Switch off the target power.

Disconnect the Debug Cable from the target.
Close the TRACES32 software.

Power OFF the TRACES32 hardware.

©1989-2024 Lauterbach

MAC71xx/72xx NEXUS Debugger and Trace |

6

Quick Start of the JTAG Debugger

Starting up the debugger is done as follows:

1. Select the device prompt for the ICD Debugger and reset the system.

198 g

RESet

The device prompt B: : is normally already selected in the command line. If this is not the case, enter
B: : to set the correct device prompt. The RESet command is only necessary if you do not start
directly after booting the TRACE32 development tool.

2. Specify the CPU specific settings.

SYStem.CPU <cpu_type>
SYStem.Option.BigEndian [ON | OFF]

SYStem.Option.EnReset [ON | OFF]

The all other options are set in such a way that it should be possible to work without modification.
Please consider that this is probably not the best configuration for your target.

3. Map the EPROM simulator if available (optional).

MAP.ROM 0x0--0x1FFFF

This command maps a standard 8 bit wide 27x010 EPROM.
4. Inform the debugger about read-only address ranges (ROM, FLASH).

MAP.BOnchip 0x100000++0x0fffff

The B(reak) on-chip information is necessary to decide where on-chip breakpoints must be used. On-
chip breakpoints are necessary to set program breakpoints to FLASH/ROM.

5. Enter debug mode.

SYStem.Up

This command resets the CPU and enters debug mode. After this command is executed it is possible
to access memory and registers.

©1989-2024 Lauterbach MAC71xx/72xx NEXUS Debugger and Trace | 7

6. Load the program.

Data.LOAD.El1f armf

; (ELF specifies the format, armf

; 1s the file name)

The format of the Data.LOAD command depends on the file format generated by the compiler.

A detailed description of the Data.LOAD command and all available options is given in the “General

Commands Reference”.

A typical start sequence without EPROM simulator is shown below. This sequence can be written to a
PRACTICE script file (*.cmm, ASCI! file format) and executed with the command DO <filename>.

193 3

WinCLEAR

MAP.BOnchip 0x100000++0xfffff
SYStem.Up

Data.LOAD.El1f armf.AXF
Register.Set pc main
Register.Set rl1l3 0x8000

PER.view

Data.List
Register /SpotLight

Frame.view /Locals /Caller

Var.Watch %$Spotlight flags ast

Break.Set 0x1000 /Program

Break.Set 0x101000 /Program

7

Select the ICD device prompt

Clear all windows

Specify where FLASH/ROM is

Reset the target and enter debug mode
Load the application

Set the PC to function main

Set the stack pointer to address 8000

Show clearly arranged peripherals
in window *)

Open source code window *)
Open register window *)

Open the stack frame with
local variables *)

Open watch window for wvariables *)

Set software breakpoint to address
1000 (address 1000 outside of BOnchip
range)

Set on-chip breakpoint (ice breaker)
to address 101000 (address 101000 is
within BOnchip range)

*) These commands open windows on the screen. The window position can be specified with the WinPOS

command.

©1989-2024 Lauterbach

MAC71xx/72xx NEXUS Debugger and Trace | 8

Troubleshooting

Communication Between Debugger and Processor cannot be established

The SYStem.Up command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command this may have the following reasons.

J The target has no power.

. The ARM core has no clock.
. The target is in reset.

J The ARM core is not enabled.

. There is logic added to the JTAG state machine.
J There are additional loads or capacities on the JTAG lines.

J There is a shortcut on at least one of the output lines of the core.

FAQ

Please refer to https://support.lauterbach.com/kb.

Trace Extension

The MAC71/7200 family offers Nexus class 2+ or 3+ trace, depending on the derivative.

©1989-2024 Lauterbach MAC71xx/72xx NEXUS Debugger and Trace | 9

https://support.lauterbach.com/kb

ARM specific Implementations

Breakpoints

Software Breakpoints

If a software breakpoint is used, the original code at the breakpoint location is patched by a breakpoint code.

While software breakpoints are used, one of both ICE breaker units is programmed with the breakpoint
code. This means whenever a software breakpoint is set only one ICE unit breakpoint is remaining for other
purposes. There is no restriction in the number of software breakpoints.

On-chip Breakpoints for Instructions

If on-chip breakpoints are used, the resources to set the breakpoints are provided by the CPU. For the ARM
architecture the on-chip breakpoints are provided by the “ICEbreaker” unit. On-chip breakpoints are usually
needed for instructions in FLASH/ROM.

With the command MAP.BOnchip <range> it is possible to tell the debugger where you have ROM / FLASH
on the target. If a breakpoint is set into a location mapped as BOnchip one ICEbreaker unit is automatically
programmed.

On-chip Breakpoints for Data

To stop the CPU after a read or write access to a memory location on-chip breakpoints are required. In the
ARM notation these breakpoints are called watchpoints. A watchpoint may use one or two ICEbreaker units.

Overview

. On-chip breakpoints: Total amount of available on-chip breakpoints.

o Instruction breakpoints: Number of on-chip breakpoints that can be used to set program
breakpoints into ROM/FLASH/EPROM.

J Read/Write breakpoints: Number of on-chip breakpoints that can be used as Read or Write
breakpoints.

J Data breakpoint: Number of on-chip data breakpoints that can be used to stop the program
when a specific data value is written to an address or when a specific data value is read from an
address

©1989-2024 Lauterbach MAC71xx/72xx NEXUS Debugger and Trace | 10

MAC71/72
XX
ARM7

On-chip
Breakpoints

2

(Reduced to 1 if

software

breakpoints are

used)

Instruction
Breakpoints

2/1
Breakpoint
ranges as bit
masks

Read/Write
Breakpoints

2/
Breakpoint
ranges as bit
masks

Data
Breakpoint

2

Hardware Breakpoints (Bus Trace only)

When a Preprocessor for ARM7 family is used, hardware breakpoints are available to filter the trace

information.

If a hardware breakpoint is used, the resources to set the breakpoint are provided by the TRACE32

development tool.

The Simple Trigger Unit (STU) as part of the Nexus trace probe, offers additional trigger and trace

capabilities.

Example for Standard Breakpoints

Assume you have a target with

. FLASH from 0x0--0x1ffff

. RAM from 0x100000--0x11£f£fff

The command to configure TRACES32 correctly for this configuration is:

Map.BOnchip 0x0--0xfffff

The following standard breakpoint combinations are possible.

©1989-2024 Lauterbach

MAC71xx/72xx NEXUS Debugger and Trace

11

1. Example: Unlimited breakpoints in RAM and one breakpoint in ROM/FLASH

Break.Set 0x100000 /Program ; Software breakpoint 1
Break.Set 0x101000 /Program ; Software breakpoint 2
Break.Set addr /Program ; Software breakpoint 3
Break.Set 0x100 /Program ; On-chip breakpoint
2. Example: Unlimited breakpoints in RAM and one breakpoint on a read or write access

Break.Set 0x100000 /Program ; Software breakpoint 1
Break.Set 0x101000 /Program ; Software breakpoint 2
Break.Set addr /Program ; Software breakpoint 3
Break.Set 0x108000 /Write ; On-chip breakpoint

3. Example: Two breakpoints in ROM/FLASH

Break.Set 0x100 /Program ; On-chip breakpoint 1
Break.Set 0x200 /Program ; On-chip breakpoint 2

4. Example: Two breakpoints on a read or write access
Break.Set 0x108000 /Write ; On-chip breakpoint 1
Break.Set 0x108010 /Read ; On-chip breakpoint 2

5. Example: One breakpoint in ROM/FLASH and one breakpoint on a read or write access
Break.Set 0x100 /Program ; On-chip breakpoint 1
Break.Set 0x108010 /Read ; On-chip breakpoint 2

©1989-2024 Lauterbach MACT71xx/72xx NEXUS Debugger and Trace

12

Complex Breakpoints

To use the advanced features of the ICE breaker unit the TrOnchip command group is possible. These

commands provide full access to both ICE breaker units called A and B in the TRACES32 system. Most

features can also be used by setting advanced breakpoints (e.g. task selective breakpoints, exclude

breakpoints). Ranged breakpoints use multiple breakpoint resources to better fit the range when the

resources are available.

Direct ICE Breaker Access

It is possible to program the complete ICE breaker unit directly, by using the access class ICE. E.g. the
command Data.Set ICE:10 %Long 12345678 writes the value 12345678 to the watchpoint 1

Address Value Register. The following table lists the addresses of the relevant registers.

Address
ICE:8
ICE:9
ICE:0A
ICE:0B
ICE:0C
ICE:0D
ICE:10
ICE:11
ICE:12
ICE:13
ICE:14
ICE:15

Register

Watchpoint 0 Address Value
Watchpoint O Address Mask
Watchpoint 0 Data Value
Watchpoint 0 Data Mask
Watchpoint 0 Control Value
Watchpoint 0 Control Mask
Watchpoint 1 Address Value
Watchpoint 1 Address Mask
Watchpoint 1 Data Value
Watchpoint 1 Data Mask
Watchpoint 1 Control Value
Watchpoint 1 Control Mask

For more details, please refer to the ARM data sheet. It is recommended to use the Break.Set or TrOnchip
commands instead of direct programming, because then no special ICEbreaker knowledge is required.

©1989-2024 Lauterbach

MAC71xx/72xx NEXUS Debugger and Trace

13

Trigger

A bidirectional trigger system allows the following two events:
J trigger an external system (e.g. logic analyzer) if the program execution is stopped.

. stop the program execution if an external trigger is asserted.

For more information, refer to the TrBus command.

Virtual Terminal

The command TERM opens a terminal window which allows to communicate with the ARM core over the
ICEbreaker Debug Communications Channel (DCC). All data received from the comms channel are
displayed and all data inputs to this window are sent to the comms channel. Communication occurs byte
wide or up to four bytes per transfer. The four bytes ASCIl mode (DCC4A) does not allow to transfer the byte
00. Each non-zero byte of the 32 bit word is a character in this mode. The four byte binary mode (DCC4B)
can be used to transfer non-ASCII 32bit data (e.g. to or from a file). The three bytes mode (DCC3) allows
binary transfers of up to 3 bytes per DCC transfer. The upper byte defines how many bytes are transferred
(0 = one byte, 1 =two bytes, 2 = three bytes). This is the preferred mode of operation, as it combines
arbitrary length messages with high bandwidth. The TERM.METHOD command selects which mode is
used (DCC, DCC3, DCC4A or DCC4B).

The communication mechanism is described e.g. in the ARM7TDMI data sheet in chapter 9.11. Only three
move to/from coprocessor 14 instructions are necessary.

The TRACE32 demo/arm/etc/terminal directory contains the file TERM . cMM which demonstrates how the
communication works.

Semihosting

The command TERM.GATE opens a terminal window which allows to support ARM compatible
semihosting. The communication can either be done by stopping the target at the SWI or by using the DCC
interface channel - which provides non-stop operation of the target.

The SWI emulation mode requires to stop the target at the SWI exception vector. On ARM7 this can be done
only with an on-chip or software breakpoint at location 8. On other ARM cores it can be done by enabling the
ICEbreaker breakpoint at the SWI vector (TrOnchip.Set SWI ON). The terminal must be set to the ARMSWI
method (TERM.METHOD ARMSWI). The handling of the SWI is only active when the TERM.GATE window
is existing.

The DCC communication mode requires an target agent for the SWI. The communication is done in the
DCC3 method of the TERM command.

©1989-2024 Lauterbach MAC71xx/72xx NEXUS Debugger and Trace | 14

Runtime Measurement

The command RunTime allows run time measurement based on polling the CPU run status by software.
Therefore the result will be about few milliseconds higher than the real value.

If the signal DBGACK on the JTAG connector is available, the measurement will automatically be based on
this hardware signal which delivers very exact results. Please do not disable the option
SYStem.Option.DBGACK. The runtime of the debugger accesses while the CPU is halted would also be
measured, otherwise.

Coprocessors

It is not possible to access coprocessors which are not included in an ARM macrocell from debug mode.
This means all coprocessors which are added to ARM cores by customers can not be accessed from debug
mode.

The following coprocessors can be accessed if available in the processor:
Coprocessor 14. Please refer to the chapter Virtual Terminal and to your ARM documentation for details.

Coprocessor 15, which allows the control of basic CPU functions. This coprocessor can be accessed with
the access class C15. For the detailed definition of the CP15 registers please refer to the ARM data sheet.
The CP15 registers can also be controlled in the PER window.

The TRACE32 address is composed of the CRn, CRm, op1, op2 fields of the corresponding coprocessor
register command

<MCR|MRC> pl5, <opl>, Rd, CRn, CRm, <op2>
BITO0-3:CRn, BIT4-7:CRm, BIT8-10:<op2>, BIT12-14:<opl>

is the corresponding TRACES32 address (one nibble for each field)

©1989-2024 Lauterbach MAC71xx/72xx NEXUS Debugger and Trace | 15

Memory Classes

The following ARM specific memory classes are available.

Memory Class Description
P Program Memory
D Data Memory
SP Supervisor Program Memory (privileged access)
UP User Program Memory (non-privileged access)
SR Supervisor ARM Memory (privileged access)
ST Supervisor Thumb Memory (privileged access)
UR User ARM Memory (non-privileged access)
uT User Thumb Memory (non-privileged access)
User Memory (non-privileged access)
Supervisor Memory (privileged access)
ARM Memory
T Thumb Memory
ICE ICE Breaker Register (debug register; ARM7)
Ci15 Coprocessor 15 Register (if implemented)
ETM Embedded Trace Macrocell Registers (if implemented)
VM Virtual Memory (memory on the debug system)
USR Access to Special Memory via User-Defined Access Routines
E Run-time memory access
(see SYStem.CpuAccess and SYStem.MemAccess)

To access a memory class write the class in front of the address.

Example:

Data.dump ICE:0--3

Normally there is no need to use the following memory classes: P, D, SP, UP, SR, ST, UR, UT, U, S, R, or T.
The memory class is set automatically depending on the setting of SYStem.Option.DisMode.

The memory class ICE should only be used from very advanced users. Wrong usage may cause

unpredictable problems.

©1989-2024 Lauterbach

MAC71xx/72xx NEXUS Debugger and Trace

16

Programming the On-chip FLASH of the MAC71/72xx

Some example scripts for programming of the on-chip FLASH of the MAC71/72XX can be found in the
TRACE32 demo folder ..\demo\arm\flash\<file>cmm (Example: M71x2.cmm.) Please be aware that these
are just an example scripts. The scripts have to be adapted to your memory layout. The FLASH
programming algorithm used is based on the FLASH library provided by Freescale.

©1989-2024 Lauterbach MAC71xx/72xx NEXUS Debugger and Trace | 17

ARM specific SYStem Commands

SYStem.CONFIG.state Display target configuration

Format: SYStem.CONFIG.state

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are notincluded in the SYStem.CONFIG.state window.

SYStem.CONFIG Configure debugger according to target topology

Format: SYStem.CONFIG <parameter>
SYStem.MultiCore <parameter> (deprecated)

<parameter>: DRPOST <bits>
DRPRE <bits>
IRPOST <bits>
IRPRE <bits>

Slave [ON | OFF]
TAPState <state>
TCKLevel <level>
TriState [ON | OFF]
FILLDRZERO [ON | OFF]

©1989-2024 Lauterbach MAC71xx/72xx NEXUS Debugger and Trace | 18

The SYStem.CONFIG commands inform the debugger about the available on-chip debug and trace
components and how to access them.

...IRPRE

...IRPOST

...DRPRE

...DRPOST

Slave [ON | OFF]

TriState [ON | OFF]

Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between the TAP you are
describing and the TDO signal. See possible TAP types and example
below.

Default: 0.

Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between TDI signal and
the TAP you are describing. See possible TAP types and example below.

Default: 0.

Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TAP you are describing and the TDO signal. In
BYPASS mode, each TAP contributes one data register bit. See possible
TAP types and example below.

Default: 0.

Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TDI signal and the TAP you are describing. In
BYPASS mode, each TAP contributes one data register bit. See possible
TAP types and example below.

Default: 0.

If several debuggers share the same debug port, all except one must
have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the signals
NTRST and nSRST (nNRESET). The other debuggers need to have the
setting Slave ON.

Default: OFF.
Default: ON if CORE=... >1 in the configuration file (e.g. config.t32).

TriState has to be used if several debug cables are connected to a common
JTAG port. TAPState and TCKLevel define the TAP state and TCK level
which is selected when the debugger switches to tristate mode.

Please note:

. nTRST must have a pull-up resistor on the target.

. TCK can have a pull-up or pull-down resistor.

. Other trigger inputs need to be kept in inactive state.
Default: OFF.

©1989-2024 Lauterbach

MAC71xx/72xx NEXUS Debugger and Trace | 19

TAPState <state>

TCKLevel <level>

FILLDRZERO [ON |

This is the state of the TAP controller when the debugger switches to
tristate mode. All states of the JTAG TAP controller are selectable.

0 Exit2-DR

1 Exit1-DR

2 Shift-DR

3 Pause-DR

4 Select-IR-Scan
5 Update-DR

6 Capture-DR

7 Select-DR-Scan
8 Exit2-IR

9 Exit1-IR

10 Shift-IR

11 Pause-IR

12 Run-Test/Idle
13 Update-IR

14 Capture-IR

15 Test-Logic-Reset

Default: 7 = Select-DR-Scan.

Level of TCK signal when all debuggers are tristated. Normally defined
by a pull-up or pull-down resistor on the target.

Default: 0.

This changes the bypass data pattern for other TAPs in a multi-TAP JTAG

OFF] chain. It changes the pattern from all “1” to all “0”. This is a workaround
for a certain chip problem. It is available on the ARM9 debugger, only.
SYStem.CPU Select the used CPU
Format: SYStem.CPU <cpu>
<cpu>: MAC71xx | MAC7111 | MAC7202 | ...

Selects the processor type. If your CPU is not listed, select the type of the integrated ARM core.

Default selection: There is an auto detect mechanism which automatically selects the right CPU depending

on the debugger probe.

©1989-2024 Lauterbach

MAC71xx/72xx NEXUS Debugger and Trace | 20

SYStem.JtagClock Define JTAG frequency

Format: SYStem.JtagClock [<frequency> | RTCK | RTCK <frequency>] |
ARTCK <frequency>]
<frequency>: 10000. ... 40000000.
10. kHz ... 40. MHz

Default frequency: 10 MHz.

Selects the JTAG port frequency (TCK) used by the debugger to communicate with the processor. The
frequency affects e.g. the download speed. It could be required to reduce the JTAG frequency if there are
buffers, additional loads or high capacities on the JTAG lines or if VTREF is very low. A very high frequency
will not work on all systems and will result in an erroneous data transfer. Therefore we recommend to use
the default setting if possible.

<frequency>:

The debugger cannot select all frequencies accurately. It chooses the next possible frequency and displays
the real value in the SYStem.state window.

Besides a decimal number like “100000.” also short forms like “10kHZz” or “15MHZ” can be used. The short

forms implies a decimal value, although no “” is used.
RTCK: The JTAG clock is controlled by the RTCK signal (Returned TCK).

On some processor derivatives (e.g. ARMxxxE-S) there is the need to synchronize the processor clock and
the JTAG clock. In this case RTCK shall be selected. Synchronization is maintained, because the debugger
does not progress to the next TCK edge until after an RTCK edge is received.

When RTCK is selected, the maximum reachable frequency is limited to 10 MHz. This limit can be changed
by adding the frequency parameter. A limitation is required that the JTAG clock speed can not become
higher than the physical interface can manage.

Example: syStem.JtagClock RTCK 20MHz
ARTCK: Accelerated method to control the JTAG clock by the RTCK signal (Accelerated Returned TCK).

RTCK mode allows theoretical frequencies up to 1/6 of the processor clock. For designs using a very low
processor clock we offer a different mode (ARTCK) which does not work as recommended by ARM and
might not work on all target systems. In ARTCK mode the debugger uses a fixed JTAG frequency for TCK,
independent of the RTCK signal. This frequency must be specified by the user and has to be below 1/2 of
the processor clock speed. The signal RTCK clocks TDI and TMS and controls the sampling of TDO.
ARTCK is available on ARM7 debuggers, only.

©1989-2024 Lauterbach MAC71xx/72xx NEXUS Debugger and Trace | 21

SYStem.LOCK Tristate the JTAG port

Format: SYStem.LOCK [ON | OFF]

Default: OFF.

If the system is locked no access to the JTAG port will be performed by the debugger. While locked the JTAG
connector of the debugger is tristated. The intention of the lock command is for example to give JTAG
access to another tool. The process can also be automated, see SYStem.CONFIG TriState.

It must be ensured that the state of the ARM core JTAG state machine remains unchanged while the system
is locked. To ensure correct hand over the options SYStem.CONFIG TAPState and SYStem.CONFIG
TCKLevel must be set properly. They define the TAP state and TCK level which is selected when the
debugger switches to tristate mode. Please note: nTRST must have a pull-up resistor on the target,
EDBGRQ must have a pull-down resistor.

©1989-2024 Lauterbach MAC71xx/72xx NEXUS Debugger and Trace | 22

SYStem.MemAccess

Select run-time memory access method

Format:

<mode>:

SYStem.MemAccess <mode>

NEXUS
Denied

Default: Denied.

If SYStem.MemAccess is not Denied, it is possible to read from memory, to write to memory and to set
software breakpoints while the CPU is executing the program.

NEXUS

TSMon3

REALMon

TrkMon

GbdMon

Denied

Memory access is done via the Nexus Interface.

A run-time memory access is done via a Time Sharing Monitor.

The application is responsible for calling the monitor polling code
periodically. The call is typically included in a periodic interrupt or in the
idle task of the kernel.

Handling of interrupts when the application is stopped is possible when
the background monitor is activated. Manual break is not possible and
can only be emulated by polling the DCC port.

See also the example in the demo/arm/etc/tsmon directory.

A run-time memory access is done via the Real Monitor from ARM.

Select TRK for Run Mode Debugging of Symbian OS. DCC is used as
communication interface

Select T32server (extended gdbserver) for Run Mode Debugging of
embedded Linux. DCC is used as communication interface. For more
information refer to “Run Mode Debugging Manual Linux”
(rtos_linux_run.pdf).

No memory access is possible while the CPU is executing user code.

If specific windows that display memory or variables should be updated while the program is running, select
the memory class E: or the format option %E.

Data.dump E:0x100

Var.View %E first

©1989-2024 Lauterbach

MAC71xx/72xx NEXUS Debugger and Trace | 23

SYStem.Mode

Establish the communication with the target

Format:

<mode>:

SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

Down
NoDebug

Go

Attach
StandBy

Up

Down

NoDebug

Go

Attach

Standby

Up

Disables the debugger (default). The state of the CPU remains
unchanged. The JTAG port is tristated.

Disables the debugger. The state of the CPU remains unchanged. The
JTAG port is tristated.

Resets the target and enables the debugger and start the program
execution. Program execution can be stopped by the break command or
external trigger.

User program remains running (no reset) and the debug mode is
activated. After this command the user program can be stopped with the
break command or if any break condition occurs.

Selects a special start-up procedure of the debugger.

. The debugger checks continuously if target power is ok.

. Then it pulls RESET and initializes the JTAG interface to enter
debug mode and the Nexus cell as far as possible. Then it
releases RESET

. The debugger checks then continuously if RESET is really deas-
serted.

. After entering debug mode, all the rest of the necessary initializa-
tion will be done. (Breakpoint settings, trace setup, etc.)

. If everything is done, the debugger starts the user program from
Reset vector automatically.

Resets the target, sets the CPU to debug mode and stops the CPU. After
the execution of this command the CPU is stopped and all register are
set to the default level.

©1989-2024 Lauterbach

MAC71xx/72xx NEXUS Debugger and Trace | 24

SYStem.Option.ABORTFIX Do not access 0x0-0x1f

Format: SYStem.Option. ABORTFIX [ON | OFF]

Default: OFF.

Workaround for a special customer configuration. It suppresses all debugger accesses to memory area 0x0-

Ox1f.
SYStem.Option.BUGFIX Breakpoint bug fix for ARM7TDMI-S REV2
Format: SYStem.Option.BUGFIX [ON | OFF]
Default: OFF.

You need to activate this option when having an ARM7TDMI-S Rev2. The “consecutive breakpoint” bug is
fixed in ARM7TDMI-S Reva3.

With this option activated and ARM7TDMS selected as CPU type, we enable the software breakpoint
workaround as described in the ARM errata of ARM7TDMI-S Rev2. Software breakpoints are set as
undefined opcodes that cause the core to enter the undefined opcode handler. The debugger tries to set a
breakpoint at the undef vector (either software or on-chip). When a breakpoint is reached the core will take
the undefined exception and stop at the vector. The debugger detects this state and displays the correct
registers and cpu state. This workaround is only suitable where undefined instruction trap handling is not
being used.

©1989-2024 Lauterbach MAC71xx/72xx NEXUS Debugger and Trace | 25

SYStem.Option.BigEndian Define byte order (endianness)

Format: SYStem.Option.BigEndian [ON | OFF]

Default: OFF.

This option selects the byte ordering mechanism. For correct operation the following three settings must

correspond:
. this option
U the compiler setting (-li or -bi compiler option)

J the level of the ARM BIGEND input pin (ARM7x0T the bit in the CP15 control register)

SYStem.Option.CFLUSH FLUSH the cache before step/go
Format: SYStem.Option.CFLUSH [ON | OFF]
Default: ON.

If this option is ON the cache is invalidated automatically before each step or go command. This is
necessary to maintain software breakpoint consistency.

SYStem.Option.DBGACK DBGACK active on debugger memory accesses

Format: SYStem.Option.DBGACK [ON | OFF]

Default: ON.

If this option is on the DBGACK signal remains active during memory accesses in debug mode. If the
DBGACK signal is used to freeze timers or to disable other peripherals it is strictly recommended to enable
this option.

Disabling of this option may be useful for triggering on memory accesses from debug mode (only useful for
hardware developers).

©1989-2024 Lauterbach MAC71xx/72xx NEXUS Debugger and Trace | 26

SYStem.Option.DisMode Define disassembler mode

Format: SYStem.Option.DisMode <option>

<option>: AUTO
ACCESS
ARM
THUMB
THUMBEE

This command specifies the selected disassembler. Default: AUTO.

AUTO The information provided by the compiler output file is used for the
disassembler selection. If no information is available it has the same
behavior as the option ACCESS.

ACCESS The selected disassembler depends on the T bit in the CPSR or on the
selected access class. (e.g. Data.List SR:0 for ARM mode or
Data.List ST:0 for THUMB mode).

ARM Only the ARM disassembler is used (highest priority).
THUMB Only the THUMB disassembler is used (highest priority).
THUMBEE Only the THUMB disassembler is used which supports the Thumb-2

Execution Environment extension (highest priority).

SYStem.Option.EnReset Allow the debugger to drive nRESET/nSRST
Format: SYStem.Option.EnReset [ON | OFF]
Default: ON.

If this option is disabled the debugger will never drive the nRESET (ARM?7) line on the JTAG connector. This
is necessary if NRESET is no open collector or tristate signal.

From the view of the ARM core it is not necessary that NRESET becomes active at the start of a debug
session (SYStem.Up), but there may be other logic on the target which requires a reset.

©1989-2024 Lauterbach MAC71xx/72xx NEXUS Debugger and Trace | 27

SYStem.Option.IMASKASM Disable interrupts while single stepping

Format: SYStem.Option.IMASKASM [ON | OFF]

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After a single step, the interrupt mask bits are
restored to the value before the step.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
Format: SYStem.Option.IMASKHLL [ON | OFF]
Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After a single step, the interrupt mask bits are restored
to the value before the step.

SYStem.Option.OVERLAY Enable overlay support
Format: SYStem.Option.OVERLAY [ON | OFF | WithOVS]
Default: OFF.
ON Activates the overlay extension and extends the address scheme of the

debugger with a 16 bit virtual overlay ID. Addresses therefore have the
format <overlay_id>:<address>. This enables the debugger to handle
overlaid program memory.

OFF Disables support for code overlays.

WithOVS Like option ON, but also enables support for software breakpoints. This
means that TRACE32 writes software breakpoint opcodes to both, the
execution area (for active overlays) and the storage area. This way, it is
possible to set breakpoints into inactive overlays. Upon activation of the
overlay, the target’s runtime mechanisms copies the breakpoint opcodes
to the execution area. For using this option, the storage area must be
readable and writable for the debugger.

©1989-2024 Lauterbach MAC71xx/72xx NEXUS Debugger and Trace | 28

Example:

SYStem.Option.OVERLAY ON

Data.List 0x2:0x1llc4d ; Data.List <overlay_ id>:<address>
SYStem.Option.INTDIS Disable all interrupts
Format: SYStem.Option.INTDIS [ON | OFF]
Default: OFF.

If this option is ON all interrupts to the ARM core are disabled.

SYStem.Option.LOCKRES Go to "Test-Logic Reset" when locked

Format: SYStem.Option.LOCKRES [ON | OFF]

This command is only available on obsolete ICD hardware. The state machine of the JTAG TAP controller is
switched to Test-Logic Reset state (ON) or to Run-Test/Idle state (OFF) before a SYStem.LOCK ON is

executed.
SYStem.Option.NOIRCHECK No JTAG instruction register check
Format: SYStem.Option.NOIRCHECK [ON | OFF]
Default: OFF.

Bug fix for derivatives which do not return the correct pattern on a JTAG instruction register (IR) scan. When
activated the returned pattern will not be checked by the debugger. On ARM7 also the check of the return
pattern on a scan chain selection is disabled.

The option is automatically activated when using SYStem.Option.TURBO.

©1989-2024 Lauterbach MAC71xx/72xx NEXUS Debugger and Trace | 29

SYStem.Option.PC Define address for dummy fetches

Format: SYStem.Option.PC <address>

Default address: 0.

After each load or store operation from debug mode the ARM core makes some instruction fetches from
memory. These fetches are not necessary for the debugger, but it is not possible to suppress them.

This option allows to specify the base address of these fetches. The fetch address is anywhere within a
64 KByte block that begins at the specified base address. It is necessary to modify this option if these
fetches go to aborted memory locations.

©1989-2024 Lauterbach MACT71xx/72xx NEXUS Debugger and Trace | 30

SYStem.Option.ResBreak Halt the core after reset

Format: SYStem.Option.ResBreak [ON | OFF]

Default: ON. This option has to be disabled if the nTRST line is connected to the nRESET (ARM7) line on
the target. In this case the CPU executes some cycles while the SYStem.Up command is executed. The
reason for this behavior is the fact that it is necessary to halt the core (enter debug mode) by a JTAG
sequence. This sequence is only possible while nTRST is inactive. In the following figure the time between
the deassertion of reset and the entry to debug mode is the time for this JTAG sequence.

nSRST |
nTRST |

- <Sms >
CPU State | reset running debug

If N"TRST is available and not connected to nRESET/nSRST it is possible to force the CPU directly after
reset (without cycles) into debug mode. This is also possible by pulling nTRST fixed to VCC (inactive), but
then there is the problem that it is normally not ensured that the JTAG port is reset in normal operation. If the
ResBreak option is enabled the debugger first deasserts nTRST, then it executes a JTAG sequence to set
the DBGRQ bit in the ICE breaker control register and then it deasserts nRESET.

nSRST
nTRST |

CPU State | reset |___debug
SYStem.Option.RisingTDO Target outputs TDO on rising edge
Format: SYStem.Option.RisingTDO [ON | OFF]
Default: OFF.

Bug fix for chips which output the TDO on the rising edge instead of on the falling.

©1989-2024 Lauterbach MAC71xx/72xx NEXUS Debugger and Trace | 31

SYStem.Option.ShowError Show data abort errors

Format: SYStem.Option.ShowError [ON | OFF]

Default: ON. If the ABORT (if AMBA: BERROR) line becomes active during a system speed access the
ARM core can change to ABORT mode. When this option is on this change of mode is indicated by the
warning ‘emulator berr error'.

SYStem.Option.SOFTLONG Use 32-bit access to set breakpoint

Format: SYStem.Option.SOFTLONG [ON | OFF]

Default: OFF. This option instructs the debugger to use 32-bit accesses to patch the software breakpoint

code.
SYStem.Option.SOFTWORD Use 16-bit access to set breakpoint
Format: SYStem.Option.SOFTWORD [ON | OFF]

Default: OFF. This option instructs the debugger to use 16-bit accesses to patch the software breakpoint

code.
SYStem.Option.SPLIT Access memory depending on CPSR
Format: SYStem.Option.SPLIT [ON | OFF]

Default: OFF. If this option is ON, the debugger does privileged or non-privileged memory access depending
on the current CPU mode (CPSR register). If this option is OFF the debugger accesses the memory in
privileged mode except another access mode is requested. This feature is only available if a DEBUG
INTERFACE (LA-7701) is used for the ARM7.

©1989-2024 Lauterbach MAC71xx/72xx NEXUS Debugger and Trace | 32

SYStem.Option.STEPSOFT Use software breakpoints for ASM stepping

Format: SYStem.Option.STEPSOFT [ON | OFF]

Default: OFF.

If set to ON, software breakpoints are used for single stepping on assembler level (advanced users only).

SYStem.Option.TRST Allow debugger to drive TRST

Format: SYStem.Option.TRST [ON | OFF]

Default: ON. If this option is disabled the nTRST line is never driven by the debugger. Instead five
consecutive TCK pulses with TMS high are asserted to reset the TAP controller which have the same effect.

SYStem.Option.TURBO Speed up memory access

Format: SYStem.Option. TURBO [ON | OFF]

Default: OFF. If TURBO is disabled the CPU checks after each system speed memory access in debug
mode if the CPU has finished the corresponding cycle. This check will significantly reduce the down- and
upload speed (30-40%).

If TURBO is enabled the CPU will make no checks. This may result in unpredictable errors if the memory
interface is slow. Therefore it is recommended to use this option only for a program download and in case
you know that the memory interface is fast enough to take the data with the speed they are provided by the
debugger.

©1989-2024 Lauterbach MAC71xx/72xx NEXUS Debugger and Trace | 33

SYStem.Option.WaitReset = Wait with JTAG activities after deasserting reset

Format: SYStem.Option.WaitReset [ON | OFF]

Default: OFF.

If SYStem.Option.WaitReset is enabled and SYStem.Option.ResBreak is disabled the debugger waits
after the deassertion of nRESET (ARM7) and nTRST before the first JTAG activity starts. It waits for at least
1 s, then it waits until NRESET/nSRST is released from target side, but at maximum 35 s. During this time
the ARM core may execute some code, e.g. to enable the JTAG port. If SYStem.Option.ResBreak is
enabled the SYStem.Option.WaitReset is ignored.

NnRESET/NSRST |

nTRST |

- >] S >
CPU State | reset running debug
SYStem.RESetOut Assert nRESET/nSRST on JTAG connector
Format: SYStem.RESetOut

If possible (NnRESET is open collector), this command asserts the nRESET line on the JTAG connector.
While the CPU is in debug mode this function will be ignored. Use the SYStem.Up command if you want to
reset the CPU in debug mode.

©1989-2024 Lauterbach MAC71xx/72xx NEXUS Debugger and Trace | 34

ARM specific NEXUS Commands

NEXUS.BTM

Control for branch trace messages

Format:

NEXUS.BTM [ON | OFF]

Control for the NEXUS branch trace messages.

ON (default)

NEXUS outputs branch trace messages.

OFF No branch trace messages are output by NEXUS.
NEXUS.ThumbBTM Control for branch trace messages
Format: NEXUS.ThumbBTM [ON | OFF]

Control for the NEXUS branch trace messages in Thumb mode.

ON (default)

NEXUS outputs branch trace messages.

OFF No branch trace messages are output by NEXUS.
NEXUS.OTM Control for ownership trace messages
Format: NEXUS.OTM [ON | OFF]
ON NEXUS outputs ownership trace messages.
OFF No ownership trace messages are output by NEXUS.

©1989-2024 Lauterbach

MAC71xx/72xx NEXUS Debugger and Trace | 35

NEXUS.WTM Control for watchpoint messages

Format: NEXUS.WTM [ON | OFF]
ON NEXUS outputs watchpoint messages.
OFF No watchpoint messages are output by NEXUS.
NEXUS.DTM Control for data trace messages
Format: NEXUS.DTM [Read | Write | ReadWrite | OFF]
OFF No data trace message are output by the NEXUS cell
READ NEXUS output data trace message for read accesses.
Write NEXUS output data trace message for write accesses.
ReadWrite NEXUS output data trace message for read and write accesses
NEXUS.PortMode Set NEXUS trace port frequency
Format: NEXUS.PortMode 1/111/211/411/8

Sets the NEXUS trace port frequency. For parallel NEXUS, the setting is the system clock divider. For Aurora
NEXUS, the setting is a fixed bit clock which is independent of the system frequency.

NEXUS.PortSize Set trace port width

Format: NEXUS.PortMode MOD2 | MOD8

Sets the NEXUS port width to the number of used MDO pins.

©1989-2024 Lauterbach MAC71xx/72xx NEXUS Debugger and Trace | 36

NEXUS.UBA Specify user base address

Format: NEXUS.UBA <address>

The UBA defines the memory mapped user base address for ownership trace register.

NEXUS.STALL Stall the program execution

Format: NEXUS.STALL [ON | OFF]

Stall the program execution whenever the NEXUS-FIFO threatens to overflow.

For older versions of the processor do not switching on the stall option. It can not prevent a trace data loss in
all cases.

©1989-2024 Lauterbach MAC71xx/72xx NEXUS Debugger and Trace | 37

ARM specific TrOnchip Commands

The TrOnchip command group provides full access to both ICE Breaker units called A and B. Most of the
features can also utilized easier by setting regular breakpoints (Break.Set command).

TrOnchip.RESet Reset on-chip trigger settings

Format: TrOnchip.RESet

Resets all TrOnchip settings.

TrOnchip.CONVert Extend the breakpoint range

Format: TrOnchip.CONVert [ON | OFF]

The ICE-breaker does not provide resources to set an on-chip breakpoint to an address range. Only bit
masks can be used to mark a memory range with a breakpoint.

If TrOnchip.Convert is set to ON (default) and a breakpoint is set to a range, this range is extended to the
next possible bit mask. The result is that in most cases a bigger address range is marked by the specified
breakpoint. This can be easily controlled by the Data.View command.

If TrOnchip.Convert is set to OFF, the debugger will only accept breakpoints which exactly fit to the on-chip
breakpoint hardware.

This setting affects all on-chip breakpoints.

©1989-2024 Lauterbach MAC71xx/72xx NEXUS Debugger and Trace | 38

TrOnchip.Mode Configure unit A and B

Format: TrOnchip.Mode <mode>
<mode>: AORB

AANDB

BAFTERA

Defines the way in which unit A and B are used together.

AORB Stop the program execution if unit A or unit B match.

AANDB Stop the program execution if both units match.

BAFTERA Stop the program execution if first unit A and then unit B match.
TrOnchip.A Programming the ICE breaker module
TrOnchip.A.Value Define data selector

Format: TrOnchip.A.Value <hexmask> | <bitmask>

TrOnchip.B.Value <hexmask> | <bitmask>

Defines the two data selectors of ICE breaker as hex or binary mask (x means don't care). If you want to
trigger on a certain byte or word access you must specify the mask according to the address of the access.
E.g. you make a byte access on address 2 and you want to trigger on the value 33, then the necessary mask
iS OXXB3XXXX.

©1989-2024 Lauterbach MAC71xx/72xx NEXUS Debugger and Trace | 39

TrOnchip.A.Size Define access size for data selector

Format: TrOnchip.A.Size <size>
TrOnchip.B.Size <size>

<size>: OFF
Byte
Word
Long

Defines on which access size when ICE breaker stops the program execution.

TrOnchip.A.CYcle Define access type

Format: TrOnchip.A.CYcle <cycle>
TrOnchip.B.CYcle <cycle>

<cycle>: OFF
Read
Write
Access
Execute

Defines on which cycle the ICE breaker stops the program execution.

OFF Cycle type doesn't matter.

Read Stop the program execution on a read access.

Write Stop the program execution on a write access.

Access Stop the program execution on a read or write access.
Execute Stop the program execution on an instruction is executed.

©1989-2024 Lauterbach MAC71xx/72xx NEXUS Debugger and Trace | 40

TrOnchip.A.Address Define address selector

Format: TrOnchip.A.Address <selector>
TrOnchip.B.Address <selector>

<selector>: OFF
Alpha
Beta
Charly

The address/range for an address selector can not be defined directly. Set an breakpoint of the type Alpha,
Beta or Charly to the address/range.

Break.Set 1000 /Alpha ; set an Alpha breakpoint to 1000
TrOnchip.A.Address Alpha ; use Alpha breakpoint as address
; selector for the unit A

Var .Break.Set flags[3] /Beta ; set a Beta breakpoint to flags[3]
TrOnchip.B.Address Beta ; use Beta breakpoint as address
; selector for the unit B

TrOnchip.A.Trans Define access mode

Format: TrOnchip.A.Trans <mode>
TrOnchip.B.Trans <mode>

<mode>: OFF
User
Svc

Defines in which mode ICE breaker should stop the program execution.

OFF Mode does not matter.
User Stop the program execution only in user mode.
Svc Stop the program execution only in supervisor mode.

©1989-2024 Lauterbach MAC71xx/72xx NEXUS Debugger and Trace | 41

TrOnchip.A.Extern Define the use of EXTERN lines

Format: TrOnchip.A.Extern <mode>
TrOnchip.B.Extern <mode>

<mode>: OFF
Low
High

Defines if the EXTERN lines are considered by unit A or unit B.

TrOnchip.state Display on-chip trigger window

Format: TrOnchip.state

Opens the TrOnchip.state window.

©1989-2024 Lauterbach MAC71xx/72xx NEXUS Debugger and Trace | 42

Filter and Trigger for the NEXUS Trace

Filter and Trigger provided by the Processor

The internal watchpoints of the MAC71/72xxcan be used to control the output of the trace data. The
following actions for the NEXUS trace are provided by the Break.Set command:

Actions for the Trace (provided by the CPU)

TraceON

Switch the sampling to the trace ON on the specified event.

TraceOFF

Switch the sampling to the trace OFF on the specified event.

TraceTrigger

Stop the sampling to the trace on the specified event. A trigger delay is
possible.

BusTrigger Generate a 100 ns high pulse on the trigger connector of the PowerTrace
on the defined trigger event.

BusCount Use the TRACE32 counter to analyze the trigger event.

WATCH Set a watchpoint on the event. The CPU will trigger the EVTO pin if the
event occurs.

Alpha - Echo Used to configure DMA trace and trigger events. These conditions can be
assigned to DMA trace actions in the TrOnchip window.

SPOT Stops user program, updates all windows on the screen and continues

user program execution

Var.Break.Set flags[3] /Write /TraceEnable

; NEXUS outputs only trace messages
; for write accesses to flags[3]

Var.Break.Set flags /Write /TraceData

; NEXUS outputs the complete
; program flow and all write
; accesses to the variable flags

Break.Set func2 /Program /TraceON ; NEXUS switches the trace output
Break.Set v.end(func2)-3 /TraceOFF ; to ON at the entry to func2 and

; switches the trace output to OFF
; at the exit of func2

©1989-2024 Lauterbach

MAC71xx/72xx NEXUS Debugger and Trace | 43

Nexus specific TrOnchip Commands

TrOnchip.EVTI

Allow the EVTI signal to stop the program execution

Format: TrOnchip.EVTI [ON | OFF]

ON Allow the EVTI signal to stop the program execution (it's much faster).

OFF The program execution is stopped by sending a break sequence via
JTAG.

Example: Stop the program execution on the falling edge of the external signal on the TRIGGER connector

of POWERTRACE / ETHERNET.

TrOnchip.EVTI ON

7

; Enable fast stop via an external signal

; Configure the internal trigger bus

TrBus.RESet
TrBus.Connect In

TrBus.Mode Falling

TrBus.Set Break ON

TrBus.Out Break OFF

7

Reset trigger bus settings

Configure TRIGGER as input

The trigger is active on the falling edge of

the connected signal

Define Break as the trigger event

©1989-2024 Lauterbach

MAC71xx/72xx NEXUS Debugger and Trace

44

TrOnchip.EXTernal Generate a trigger for the trace on high pulse on INx

Format: TrOnchip.EXTernal <source>
<source>: OFF

INO

IN1

Generate a trigger for the trace on a high pulse (at least 20 ns) on the INO or the IN1 connector on the
NEXUS Adapter. INO and IN1 are ORed for the trigger.

TrOnchip.EXTernal INO

Go

©1989-2024 Lauterbach MAC71xx/72xx NEXUS Debugger and Trace | 45

JTAG Connection

Mechanical Description of the 20-pin Debug Cable

This connector is defined by ARM and we recommend this connector for all future designs. Our debuggers
“JTAG Debugger for ARM7” (LA-7746) are supplied with this connector.

Signal
VREF-DEBUG
TRST-

TDI
TMSITMSCISWDIO
TCKITCKCISWCLK
RTCK

TDOI-ISWO
RESET-

DBGRQ

DBGACK

Pin Pin Signal
1 2 VSUPPLY (not used)
3 4 GND
5 6 GND
7 8 GND
9 10 GND
11 12 GND
13 14 GND
15 16 GND
17 18 GND
19 20 GND

This is a standard 20 pin double row connector (pin-to-pin spacing: 0.100 in.).

We strongly recommend to use a connector on your target with housing and having a center polarization

(e.g. AMP: 2-827745-0). A connection the other way around indeed causes damage to the output driver of

the debugger.

©1989-2024 Lauterbach

MAC71xx/72xx NEXUS Debugger and Trace

46

Electrical Description of the 20-pin Debug Cable

The input and output signals are connected to a supply translating transceiver (74ALVC164245).
Therefore the ICD can work in a voltage range of (1.5 V) 1. ... 3.3 V (3.6 V). Please note that a
5 V supply environment is not supported! This would cause damage on the ICD.

The newer debug cables (October 2003 and newer) can work in a voltage range of 0.4 ... 5.0 V
(5.25 V). Check the serial number of the debug cable. The first four digits mean <year> <month>.

VTREEF is used as a sense line for the target voltage. It is also used as supply voltage for the
supply translating transceiver of the ICD interface to make an adaptation to the target voltage
(1.5V) 1.8... 3.3 V(3.6 V). On the newer debug cables (September 2003 and newer) it is used as
sense line, only.

nTRST, TDI, TMS, TCK are driven by the supply translating transceiver. In normal operation
mode this driver is enabled, but it can be disabled to give another tool access to the JTAG port. In
environments where multiple tools can access the JTAG port, it is absolutely required that there
is a pull down resistor at TCK. This is to ensure that TCK is low during a hand over between
different tools.

RTCK is the return test clock signal from the target JTAG port. This signal can be used to
synchronize JTAG clock with the processor clock (see SYStem.JtagClock).

TDO is an ICD input. It is connected to the supply translating transceiver.

nSRST (=nRESET) is used by the debugger to reset the target CPU or to detect a reset on the
target. It is driven by an open collector buffer. A pull-up resistor is included in the ICD connector.
The debugger will only assert a pulse on nSRST when the SYStem.UP, the SYStem.Mode Go or
the SYStem.RESetOUT command is executed. If it is ensured that the ARM is able to enter
debug mode every time (no hang-up condition), the nSRST line is optional.

EDBGRAQ is driven by the supply translating transceiver. This line is optional. It allows to halt the
program execution by an external trigger signal.

DBGACK is an ICD input. It is connected to the supply translating transceiver. A pull-down
resistor is included in the ICD connector. This line is optional. It allows exact runtime
measurement and exact triggering of other devices on a program execution halt.

N/C (= Vsupply) is not connected in the ICD. This pin is used by debuggers of other
manufacturers for supply voltage input. The ICD is self-powered.

There is an additional plug in the connector on the debug cable to the debug interface. This signal is tristated
if the JTAG connector is tristated by the debugger and it is pulled low otherwise. This signal is normally not
required, but can be used to detect the tristate state if more than one debug tools are connected to the same
JTAG port.

©1989-2024 Lauterbach MAC71xx/72xx NEXUS Debugger and Trace | 47

Mechanical Description of the 14-pin Debug Cable

This connector was defined by ARM. We do not recommend to use this connector in future designs. Our
debugger “JTAG Debugger for ARM7” (LA-7740, obsolete) is supplied with this connector. An adapter to the 20-
pin connector (see above) and vice versa is available (LA-7747: JTAG ARM Converter 14-20).

Signal Pin Pin Signal
VCCS 1 2 GND
TRST- 3 4 GND
TDI 5 6 GND
TMS 7 8 GND
TCK 9 10 GND
TDO 11 12 SRST-
VTREF 13 14 GND

This is a standard 14 pin double row (two rows of seven pins) connector (pin to pin spacing: 0.100 in.).

Electrical Description of the 14-pin Debug Cable

o TCK, TMS, TDI and nTRST are driven by a VHC125 driver which is supplied with VCCS.
Therefore the ICD can work in an voltage range of (2.25 V) 2.5... 5.0 V (5.5 V). In normal
operation mode this driver is enabled, but it can be disabled to give another tool access to the
JTAG port. The TMS, TDI and nTRST lines have a 47k pull-up resistor in the ICD connector.

In environments where multiple tools can access the JTAG port, it is absolutely required that
there is a pull down resistor at TCK. This is to ensure that TCK is low during a endeavor between
different tools.

. TDO is ICD input only and needs standard TTL level.

. VCCS is used as a sense line for the target voltage. It is also used as supply voltage for the
output driver of the ICD interface to make an adaptation to the target voltage (I(VCCS) approx.
3 mA).

J nRESET (= nSRST) is used by the debugger to reset the target CPU or to detect a reset on the
target. It is driven by an open collector buffer. A 22 k pull-up resistor is included in the ICD
connector. The debugger will only assert a pulse on nRESET when the SYStem.Up command is
executed. If it is ensured that the ARM is able to enter debug mode every time (no hang-up
condition), the nRESET line is optional.

©1989-2024 Lauterbach MAC71xx/72xx NEXUS Debugger and Trace | 48

Technical Data

Pinout MICTOR
Signal Pin Pin Signal
N/C 1 2 N/C
N/C 3 4 N/C
MDOO09 (VENIOO) 5 6 CLKOUT
RSTOUT (VENIO2) 7 8 MDOO08 (VENIOS3)
RSTIN- 9 10 EVTI-
TDO 11 12 VTREF
MDO10 (VENIO4) 13 14 RDY-
TCK 15 16 MDOO07
T™MS 17 18 MDOO06
TDI 19 20 MDOO05
TRST- 21 22 MDOO04
MDO11 (VENIO1) 23 24 MDOO03
N/C 25 26 MDOO02
TDET (TOOLIO2) 27 28 MDOO01
ARBGRT(TOOLIO1) 29 30 MDOO00
N/C 31 32 EVTO-
N/C 33 34 MCKO
ARBREQ(TOOLIOO0) 35 36 MSEO1-
N/C 37 38 MSEOO-
. There are 5 additional GND pins in the center of the connector, which are not shown in the list.

J TCK, TMS, TDI and nTRST are driven by a driver which is supplied with a voltage derived by
VTREF. It can be disabled to give another tool access to the JTAG port. The TMS, TDI and
nTRST lines have no pull-up resistor in the probe. TDO is ICD input only and needs standard

TTL level.

. VTREEF is used as a sense line for the target voltage. It is also used as supply voltage for the
output driver of the Debug interface as well as the supply of the AUX port input buffer.

J RSTI- is used by the debugger to reset the target CPU and to detect a reset on the target. It is
driven by an open drain buffer. A 22 k pull-up resistor is included on the probe. The debugger will
only assert a pulse on RSTI- when the SYStem.Up command is executed. If it is ensured that the
ARM is able to enter debug mode every time (no hang-up condition), the nRESET line is

optional.

©1989-2024 Lauterbach

MAC71xx/72xx NEXUS Debugger and Trace |

Mechanical Dimension

Dimension

LA-7620 NEXUS-MAC71XX

TOP VIEW

CABLE

T PINT
R
500
<+—1050

2475
1525

538

A

le——1500—=1
4050
SIDE VIEW
:I§§
2l s
8. H
275 L]
L

ALL DIMENSIONS IN 1/1000 INCH

i

——

Adapter

Not necessary.

Operation Voltage
Adapter OrderNo Voltage Range
NEXUS Debugger and Trace for MAC71xx/MAC72xx LA-7620 16..36V

©1989-2024 Lauterbach

MAC71xx/72xx NEXUS Debugger and Trace

50

	MAC71xx/72xx NEXUS Debugger and Trace
	Brief Overview of Documents for New Users
	Warning
	Quick Start of the JTAG Debugger
	Troubleshooting
	Communication Between Debugger and Processor cannot be established

	FAQ
	Trace Extension
	ARM specific Implementations
	Breakpoints
	Software Breakpoints
	On-chip Breakpoints for Instructions
	On-chip Breakpoints for Data
	Hardware Breakpoints (Bus Trace only)
	Example for Standard Breakpoints
	Complex Breakpoints
	Direct ICE Breaker Access

	Trigger
	Virtual Terminal
	Semihosting
	Runtime Measurement
	Coprocessors
	Memory Classes

	Programming the On-chip FLASH of the MAC71/72xx
	ARM specific SYStem Commands
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	SYStem.CPU Select the used CPU
	SYStem.JtagClock Define JTAG frequency
	SYStem.LOCK Tristate the JTAG port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the target
	SYStem.Option.ABORTFIX Do not access 0x0-0x1f
	SYStem.Option.BUGFIX Breakpoint bug fix for ARM7TDMI-S REV2
	SYStem.Option.BigEndian Define byte order (endianness)
	SYStem.Option.CFLUSH FLUSH the cache before step/go
	SYStem.Option.DBGACK DBGACK active on debugger memory accesses
	SYStem.Option.DisMode Define disassembler mode
	SYStem.Option.EnReset Allow the debugger to drive nRESET/nSRST
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.OVERLAY Enable overlay support
	SYStem.Option.INTDIS Disable all interrupts
	SYStem.Option.LOCKRES Go to "Test-Logic Reset" when locked
	SYStem.Option.NOIRCHECK No JTAG instruction register check
	SYStem.Option.PC Define address for dummy fetches
	SYStem.Option.ResBreak Halt the core after reset
	SYStem.Option.RisingTDO Target outputs TDO on rising edge
	SYStem.Option.ShowError Show data abort errors
	SYStem.Option.SOFTLONG Use 32-bit access to set breakpoint
	SYStem.Option.SOFTWORD Use 16-bit access to set breakpoint
	SYStem.Option.SPLIT Access memory depending on CPSR
	SYStem.Option.STEPSOFT Use software breakpoints for ASM stepping
	SYStem.Option.TRST Allow debugger to drive TRST
	SYStem.Option.TURBO Speed up memory access
	SYStem.Option.WaitReset Wait with JTAG activities after deasserting reset
	SYStem.RESetOut Assert nRESET/nSRST on JTAG connector

	ARM specific NEXUS Commands
	NEXUS.BTM Control for branch trace messages
	NEXUS.ThumbBTM Control for branch trace messages
	NEXUS.OTM Control for ownership trace messages
	NEXUS.WTM Control for watchpoint messages
	NEXUS.DTM Control for data trace messages
	NEXUS.PortMode Set NEXUS trace port frequency
	NEXUS.PortSize Set trace port width
	NEXUS.UBA Specify user base address
	NEXUS.STALL Stall the program execution

	ARM specific TrOnchip Commands
	TrOnchip.RESet Reset on-chip trigger settings
	TrOnchip.CONVert Extend the breakpoint range
	TrOnchip.Mode Configure unit A and B
	TrOnchip.A Programming the ICE breaker module
	TrOnchip.A.Value Define data selector
	TrOnchip.A.Size Define access size for data selector
	TrOnchip.A.CYcle Define access type
	TrOnchip.A.Address Define address selector
	TrOnchip.A.Trans Define access mode
	TrOnchip.A.Extern Define the use of EXTERN lines
	TrOnchip.state Display on-chip trigger window

	Filter and Trigger for the NEXUS Trace
	Filter and Trigger provided by the Processor

	Nexus specific TrOnchip Commands
	TrOnchip.EVTI Allow the EVTI signal to stop the program execution
	TrOnchip.EXTernal Generate a trigger for the trace on high pulse on INx

	JTAG Connection
	Mechanical Description of the 20-pin Debug Cable
	Electrical Description of the 20-pin Debug Cable
	Mechanical Description of the 14-pin Debug Cable
	Electrical Description of the 14-pin Debug Cable

	Technical Data
	Pinout MICTOR
	Mechanical Dimension
	Adapter
	Operation Voltage

