LAUTERBACH A

Integration for Rhapsody
in C/C++

Integration for Rhapsody in C/C++

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTS ciceeiiiiiiiemns s inisess s snnsss s s rassss e e s s e s ee e m s e e ea s m s e b e a s mn e e R e a s annn e nnnnnn =
3rd-Party Tool INtegrationscccccccccmmmmiiiiiiiii e r—~
Integration for Rhapsody in C/C++cciiciiiiissmiiniiniississss s ssssss s s s s ssas s s s samssesen 1

O T = 3
Architecture Of DIIVEr ...t s s s s e s 4
Driver INStallation ... s s 5

First Run of Integration DFVer ..o s s ssmns s 6
Selecting Rhapsody VErsion ... s ssssssssssssssssss s sssssssss s ssssssnens 8
Preparing Rhapsody ENVIroNmMent ... s sssss s 9
Preparing TRACES2 ..o s s e sm s s e s am s s e mmn s e e mmn e e e s ammnnnnas 10
Rhapsody Helpers Configuration ... s samss s 12
Rebuilding OXF LangCpp libraries for eCos, GCC and PPCccccoiiiiinrerrrrr s 15
Rebuilding OXF LangC Libraries for OSE, DIAB and PPCccociiiiiimminninmsnnnnnsesennnns 17
Rebuilding OXF LangC Libraries for eCos, GCC and PPCccoiiiirmminnnssmnnnssssssssnnnes 18
Preparing C/C++ Application for ANIMation ... 26
Integration FEatUres ... ses s s s e ms s s s s e e e 29
Locating Source in Rhapsody 30

Go and Break in TRACES32 35
©1989-2024 Lauterbach Integration for Rhapsody in C/C++ | 2

Integration for Rhapsody in C/C++

Version 06-Jun-2024

This document describes using the TRACE32 Integration Driver for Rhapsody 7.x or 8.x.

Overview

The TRACE32 Integration Driver for Rhapsody 7.x and 8.x allows you to debug, trace and animate
applications created with Rhapsody on a real target using TRACES32-ICD or on a simulated target using the
TRACE32 Instruction Set Simulator.

NOTE:

This integration uses internally the TRACE32 Remote API.
The Remote API has restrictions if TRACES32 runs in demo mode.

Please see there for further details.

©1989-2024 Lauterbach

Integration for Rhapsody in C/C++

3

Architecture of Driver

Rhapsody

OMIDE

i

Rhapsody
Animation Port

DLL
RhT32IDE

DriveriRhapsody
Integration IDE

F

Rhapsody
COM API

w

Show In Trace32

F N

w

w

EXE
RhT32Driver

Trace32IRhapsody
Integration Driver

... :: 732 API
TRACE32
SWMHW
Targetimage
FDX Animation...

T32_Fdx_InitChannel{fdxToRhapsody)
T32_Fdx_InitChannel(fdxToTarget)
T32_Fdx_EnableChannel(fdxToRhapsody)
T32_Fdx_EnableChannel(fdxToTarget)

<system>ConnectionPort::Connect

T32_Fdx_SendPoll(&fdxToRhapsody,..) |4 <system>ConnectionPort::Send
T32_Fdx_RecvPoll(&fdxToTarget,...) 4—| <system>ConnectionPort::readFromSockLoop
fdxToRhapsody [10240]

fdxToTarget [10240]

©1989-2024 Lauterbach

Integration for Rhapsody in C/C++

4

Driver Installation

Before you install the integration driver, make sure Rhapsody is not running.

Locate the installation files in the TRACE32 directory ~~/demo/env/rhapsody/cpp.
Run setup.exe and follow the installer instructions:

ﬁl Setup - Rhapsody and TRACE32 Integration Driver — *
Select Destination Location
Where should Rhapsody and TRACE32 Integration Driver be installed?
Setup will install Rhapsody and TRACE32 Integration Driver into the following
folder.

To continue, dick Next. If you would like to select a different folder, dick Browse.

Browse...

At least 1,7 MB of free disk space is required.

©1989-2024 Lauterbach Integration for Rhapsody in C/C++ | 5

First Run of Integration Driver

Make sure Rhapsody is not running before starting the driver the first time.

Start the driver from Menu Start -> All Programs -> Rhapsody and TRACES32 Integration -> Start Integration.

The driver needs to access some Rhapsody parameter files an connects to Rhapsody and TRACES32 via
ports. For this it needs to run with administrator privileges. Please acknowledge all privilege dialogs opened

by Windows.

After the first run you will be asked about several parameters described below, required for the integration
working. Provide your own values or select “Load default values*

IDE DLL to driver Port

TCP/IP port number for communication between Integration Driver
and IDE DLL located at
<RHAPSODY_ROOT>\Share\DLLs\RhT32IDE.dll

Rhapsody Helpers (local
menu) to driver Port

TCP/IP port number for communication between Driver invoked by
Helper commands and Driver which already runs for the
integration.

TRACE32 API Port

UDP port number which is used to communicate between Driver
and TRACE32. Must be the same as provided in config.t32 file in
your TRACES32 installation directory. See “Preparing TRACE32”
(int_rhapsody_cpp.pdf).

TRACE32 API Packet
length

Specifies the maximum packet length in bytes for the socket
communication between Driver and TRACE32. Must be the same
as provided in config.t32 file in your TRACES32 installation
directory. See “Preparing TRACE32” (int_rhapsody_cpp.pdf).

Rhapsody animation port

TCP/IP animation port. This port is defined in the rhapsody.ini file.
Instrumented applications communicate with Rhapsody on this
port during animation session. Default value is 6423.

To Rhapsody FDX Chan-
nel name

Name of FDX channel used by the “ConnectionPort” OSAL class.
Direction of data in this channel is from target to Rhapsody.

To Target FDX Channel
name

Name of FDX channel used by the “ConnectionPort” OSAL class.
Direction of data in this channel is from Rhapsody to Target. See
“Rebuilding OXF LangCpp Libraries for OSE, DIAB and PPC”
(int_rhapsody_cpp.pdf).

©1989-2024 Lauterbach

Integration for Rhapsody in C/C++ |

6

FDX Buffer Length

Size of FDX channels. This value must be the same as used by the
“ConnectionPort” class. See “Rebuilding OXF LangCpp Libraries
for OSE, DIAB and PPC” (int_rhapsody_cpp.pdf).

FDX Polling Interval

During animation, the driver periodically checks if there is any data
pending in FDX channels. This value is interpreted as number of
milliseconds between channel checks. For a slow PC or when
using the simulator, this value should be bigger (50-100 ms).
Default value is 10ms.

Rhapsody and TRACES2 Integration Driver - Parameters

Rhapsody version check
I Disable Rhapsody version compatibility check at startup

with Rhapsody version.

IDE DLL to driver

Port: pooos

Rhapsody Helpers (Jocal menu) to driver
Port: 20006

TRACE32 APL

Port: 20001
Packet length: 1024

Animation

Rhapsody animation port {only if Rhapsody is not running):

FDX Buffer Length (bytes):

FD¥ pooling interval (in ms, slow PC - higher values):

Load default values
oK | Cancel |

WARNING! Driver or Rhapsody may crash if driver is incompatible

To Rhapsody FDX Channel name: fdxToRhapsody
To Target FDX Channel name: fdxToTarget

==l

6423

10240
10

©1989-2024 Lauterbach

Integration for Rhapsody in C/C++ |

7

Selecting Rhapsody Version

During startup the integration driver queries the Windows registry to detect all supported Rhapsody versions

that are installed in the system. When detection completes successfully ad at least one version is present,

the combo box in the upper part of the main dialog is populated with the results.

Rhapsody and TRACE32 Integration Driver — *
Version select
Select Rhapsody version
Rhapsody 8.3.1 j Select |
3.1 PE DLL from C++ environments |

Rhapsody 8.4
Add/RiRhapsody 8.3.1 (x64)

|IDE DLL from C environments |

Breakpoints |

Version: 2.0.0; Date: Feb 4 2020, 10:55:22 (c) Lauterbach GmbH 2009

The Integration Driver is started when the “Select” button is pressed. The driver loads the settings of the

selected version and attempts to establish a connection using COM API.

Rhapsody and TRACE32 Integration Driver —

A

NOT CONMECTED

Rhapsody TRACE32

NOT CONMNECTED

Integration Parameters

*

| Add/Remove IDE DLL from C++ environments |

Add/Remove Rhapsody Helpers

| Add/Remove IDE DLL from C environments |

Breakpoints

Waiting for Rhapsody to run...

Version: 2.0.0; Date: Feb 4 2020, 10:55:22 (c) Lauterbach GmbH 2009

©1989-2024 Lauterbach

Integration for Rhapsody in C/C++

8

Preparing Rhapsody Environment

Rhapsody uses one of several Environments depending on the current value of the
“CPP_CG::Configuration::Environment” or “C_CG::Configuration::Environment” property. To check the
environment of your model in Rhapsody, expand the “Components” and “Configurations” of your model in
the “Model View”, right-click the configuration, and select Features from the pop-up menu. Select the

Properties tab and “View All".

To enable the driver within Rhapsody for a specific environment, select “Add/Remove IDE DLL from C++
environments” in the driver dialog, then select the appropriate environments in the list. Close any open

projects before changing these settings. Settings can be edited separately for each Rhapsody installation:

select the version using the combo box near the top of the settings dialog:

Rhapsody and TRACE32 Integration Driver

Rhapsody

COMMECTED (Rhapsody in C++)

A

CONMNECTED

TRACE32

*

Integration Parameters

|(Add,.’Remove IDE DLL from C++ environments)

Add/Remove Rhapsody Helpers

| Add/Remove IDE DLL Nonmenm

Breakpoints |

N

Waiting for Rhapsody to run...
Rhapsody has been started.

Version: 2.0.0; Date: Feb 4 2020, 10:55:22

(c) Lauterbach GmbH 2009 .
Cygwin

MSVC
MSVCDLL
MicrosoftWinCESOD

VxWorksediab
VxWorks&diab_RTP
VxWorks6gnu_RTP
VxWorks6gnu
VxWaorks

Solaris2
Solaris2GNU

OsePPCDiab
Osesfk
QMNXMeutrinoGCC

Linux
MudeusPLUS-PPC
eCosARM
eCosPPC
eCosPPCsim

U Y I s e s s e s e s T e (i

Rhapsody and TRACE32 Integration Driver - IDE DLL *

Select C++ environments for TRACE32 Integration:

WorkbenchManaged
WorkbenchManageds53
WorkbenchManaged_RTP

MSVCStandardLibrary

QMNXMeutrinoMomentics

Save | Close

Rhapsody 8.3.1 j

SOMROOT,DLLsWorkbenchDebuggerIDE. dll
SOMROOT,DLLsWorkbenchDebuggerIDE. dll
S0MROOT/DLLs WorkbenchDebuggerIDE. dil
SOMROOT,DLLsWorkbenchDebuggerIDE. dll

SOMROOT,DLLsWorkbenchDebuggerIDE. dll
SOMROOT,DLLsTornadoIDE.dll

SOMROOT/DLLs/RhT32IDE. dl
SOMROOT/DLLs/RhT32IDE. dl
SOMROOT/DLLs/RhT32IDE. dl

©1989-2024 Lauterbach

Integration for Rhapsody in C/C++

9

Preparing TRACE32

To enable the communication of the driver to TRACES32, some changes need to be made in config.t32. This

file can be found in your TRACES32 Installation directory. Please keep one empty line before and after the

section with RCL, PORT and PACKLEN.

-
Rhapsody and TRACE32 Integration Driver

— \

Rhapsody = TRACE32
an,

COMMECTED (Rhapsody in C++)

A

CONMNECTED

| Integration Parameters

II Add/Remove IDE DLL from C++ environments |

Breakpoints | Add/Remove IDE DLL from C environments |

Waiting forfRhapsody to run...
Rhapsody hias been started.

to TRACE32.

Version: 1.0, 147; Date: Apr 24 2014, 13:20:57

(c) Lauterbach GmbH 2009

Rhapsody agd TRACE32 Integration Driver - Parameters ﬂ

—Rhapsody version check

|V Disal§e Rhapsody version compatibility check at startup

WARNING! Driver or Rhapsody may crash if driver is incompatible
with thapsody version.

—IDE DLL th driver

Port: I pooos

—Rhapsody Helpers {Jocal menu) to driver

Port: I 20008

~ TRACE33API

Port: 0 I 20001 O—I

i ™
| config.t32 - N... E@g

File Edit Format View Help
PEI=SIM ~

; Printer settings
PRINTER=WINDOWS

m

SCREEN=
FONT=5MALL

RCL=NETASS5IST

ACKLEN=1024

Packet length: I 1024 o_|

—Animation

Rhapsody animation port (only if Rhapsody is not running): | 2643

I fdxToRhapsody
I fdxToTarget
FDX Buffer Length (bytes): I 10240

FDX pooling interval {in ms, slow PC - higher values): I 10

To Rhapsody FDX Channel name:

To Target FDX Channel name:

Load default values |
oK I Cancel |

] 3

©1989-2024 Lauterbach

Integration for Rhapsody in C/C++

10

Changes described above can also be made by using the T32Start utility provided with TRACES32:

Rhapsady and TRACE32 Integration Driver

(=]

~Rhapsody F TRACE32

CONNECTED (Rhapsody in C++) CONNECTED
[Integration] addR IDEDLL from C | |
Breakpoints | ddfR IDEDLL from C | |

Waiting fof Rhapsody to run...
Rhapsody fias been started.
Connected to TRACE32.

Version: 1., 147; Date: Apr 24 2014, 13:20:57 (©) Lauterbach GmbH 200!

9

psody ad TRACE32 Integration Driver - P =

Rhapsody version check

¥ Disatje Rhapsody version compatibility check at startup

WARNING! Driver or Rhapsody may crash if driver is incompatible
with Rhapsody version.

"lDE DLL tp driver

Fort: kooos ‘

"Rhapsud Helpers (ocal menu) to driver

Port: 20006
[~ TRACE33APT

Port: 0 20001 O_I

b T32Start V2234 ¢

4] Configuration Tres
4.0 Settings
-] Global Settings
4] Default Advarced Settings
4.0 Paths
“wlorkingPath: C:AT32
SystemPath: C:AT32
TempPath: C:\UssrshUserAppDatatLocalhT emp
HelpPati: C:AT 325pdt
LicenseFile:
Use only 32-hit executable: no
Interfaces |
401 APl Port
Use Port: no
Uss Auto Increment Port: yes)

Packetlength: [1024 o_l

Rhapsady animation port {only if Rhapsedy is not running): | 2543

fdToRhapsody
fduToTarget

To Rhapsody FDX Channel name:

To Target FDX Channel name:

Port Start Value: 20000

Max UDP Packet Size: 1024

(X
b StartupSeript
4. Configuation

1: Podbus Device Chain
o w1 Praner Niskin 1l

m

Start

Add
Delete
Up
Down
Instances
Information.
Save and Exit
Save

Help

1D: //Settings/CoreAdvancedOptions/Interfaces

FDX Buffer Length (bytes): | 10240

FDX pooling interval (in ms, slow PC - higher values): 10

Load default values
s

©1989-2024 Lauterbach

Integration for Rhapsody in C/C++

11

Rhapsody Helpers Configuration

Helpers are the applications that can be added to Rhapsody menus. Integration Driver offers 10 helpers that
can be selectively included/excluded from Rhapsody menus to fit your needs. The “helpers.hep” file
contains all helpers. To generate new .hep and .sbs files, please run RhT32Driver.exe with the
parameter "-generate_profile".

Adding helper file to project:

1. Start Rhapsody with “Run as administrator”.

2. If the profile does not yet exist, import the profile:
File -> Add to Model..., select “%integratio patch%\profile.sbs”
Optionally you can copy the .sbs and .hep file to your Rhapsody project.

3. Double clock on the profile (profile property windows)
4. Select “Properties”

5. In “View” context menu, select “All”

Profile: profile in Project - B

General | Description ‘ Relations | Tags | Properties
View Common |~

All

Overridden

Locally Overridden
v Common

Filter...

Locate oK

©1989-2024 Lauterbach Integration for Rhapsody in C/C++ | 12

6.

Helper settings can be edited separately for each Rhapsody installation detected in the systems.

Select General -> Model -> HelpersFile and open “trace32_helpers.hep”

"Profile : profile in Project

hall = |

‘.Gmeni I Description l Relations] Tags | Propetties
View Al +
['FierlrsrsravedUnn‘: O
Fiter xS ‘ .
[l D
”GenemEIementMenuName At . Genera! Elements

IL

H1qhiqhtElement’sInAct:veCormonentScope .

ImageEditor AssucétedApphcatvon
MergeEIementsAPlPolscv ‘ NoDelete

ModelCodeAssociativityFine Tune ‘ Bldlrectmnal

NamesRegExp | ~(([a-zA-Z_][2-2A-Z0-9_]")|(operator.+))$
ObjectlsSavedUnit \a

OutputWindowFont ;Courier New 9 NoBold NolItalic
PackagelsSavedUnit

Dl T Dhm S il ik Y .

[Lm

zzModel:-Hel File

Note that if you specify a hep file by using this property, Rational Rhapsody does not recognize the helper applications defined in the profile-specific
hep file f one is provided for the profile you are using.

Locate OK inply ‘

Editing helper settings:

1. Click “Add/Remove Rhapsody helpers” button in Integration Driver dialog
2 Select Rhapsody version in combo box in Helpers dialog
3. Edit settings
4 Save settings by clicking “Save” button
Rhapsody and TRACE32 Integration Driver - Helpers b4

Select helpers (model element local menu items):

[V show in TRACE32 V¥ Enable breakpoint In TRACE32

[¥ GoInTRACE32
[V Break In TRACE32 V¥ Enable all TRACE32 breakpoints

¥ Set breakpaint In TRACE32
¥ Clear breakpaint In TRACE32 — —
™ Clear all TRACE32 breakpoints LI ﬂl

[Disable breakpaint In TRACE32

[Disable all TRACE32 breakpoints

WARNING: These options take effect only if Rhapsody is not running.

Save I Close |

The Helpetsﬁle property can be used to associate a hep file with a model. You can type in the full path of the hep file or you can use the "..." button
to select the hep file. .hep files are used to store the details of helper applications that have been developed to facilitate working in Rational Rhapsndy

©1989-2024 Lauterbach

Integration for Rhapsody in C/C++

13

Rebuilding OXF LangCpp Libraries for OSE, DIAB and PPC

To use Integration Driver, OXF libraries need to be rebuilt.

This chapter shows how to rebuild OXF libraries for OSE operating system, built with DIAB PPC compiler. To
rebuild OXF for other OS, please refer to “Rebuilding OXF Libraries for Other Environments”
(int_rhapsody_cpp.pdf)

Driver installation directory (usually: C:\Program Files\Lauterbach GmbH\Rhapsody and TRACE32
Integration Driver) contains all files with necessary changes needed for proper OXF building.

Following table lists all files from directory <driver installation directory>\Share\LangCpp that are used
during the build of OXF LangCpp libraries for OSE, DIAB and PPC environment.

aom\oseppcdiabaom.mak Makefiles that build specific part of OXF libraries
omcom\oseppcdiabomcom.mak

oxfloseppcdiaboxf.mak
tom\oseppcdiabtom.mak

oseppcdiabbuild.mak Makefile that builds entire OXF.
oseppcdiabpath.bat Batch file that sets environment paths.
oseppcdiabbuild.bat Batch file that starts build process by calling dmake
oxf\loseOS.cpp OSAL classes implementation.

oxf\lose0S.h oseConnectionPort is changed to use FDX routines

instead of TCP/IP sockets. Original declaration and
definition of oseConnectionPort is commented with
preprocessor commands.

oxf\t32fdx.c FDX routines implementation. t32fdxarm.c contains
oxf\t32fdxarm.c additional ARM specific FDX DCC communication
oxf\t32fdx.h routines, however this file is also needed by building

process if target is other than ARM.

Compare above listed files with your existing files in <RHAPSODY_ROOT>\Share\LangCpp directory by
using diff tool and alter your files appropriately. If some files don’t exist, copy them from the driver directory.

Before building, oseppcdiabpath.bat needs to be altered to match your environment (compiler and OSE
location).

To rebuild the framework, execute batch files in a command console:

oseppcdiabpath.bat
oseppcdiabbuild.bat

©1989-2024 Lauterbach Integration for Rhapsody in C/C++ | 14

Rebuilding OXF LangCpp libraries for eCos, GCC and PPC

To use Integration Driver, OXF libraries need to be rebuilt.

This chapter shows how to rebuild OXF libraries for eCos operating system using GCC powerpc-eabi
compiler. To rebuild OXF for other OS, please refer to “Rebuilding OXF Libraries for Other
Environments” (int_rhapsody_cpp.pdf).

Driver installation directory (usually: C:\Program Files\Lauterbach GmbH\Rhapsody 7.x and TRACE32
Integration Driver) contains all files with necessary changes needed for proper OXF building.

Following table lists all files from directory <driver installation directory>\Share\LangCpp that are used
during the build of OXF LangCpp libraries for eCos, GCC and PPC environment.

aom\ecosppcgccaom.mak Makefiles that build specific part of OXF libraries
omcom\ecosppcgccomcom.mak

oxflecosppcgccoxf.mak
tom\ecosppcgcctom.mak

ecosppcgccbuild.mak Makefile that builds entire OXF.

ecosppcgccpath.bat Batch file that sets environment paths.
ecosppcgccbuild.bat Batch file that starts build process by calling GNU make
oxf\leCosOS.cpp OSAL classes implementation.

oxf\eCos0S.h ecosConnectionPort is changed to use FDX routines

instead of TCP/IP sockets.

osconfig\eCos\omosconfig.h eCos adaptor configuration file

oxfit32fdx.c FDX routines implementation. t32fdxarm.c contains
oxfit32fdxarm.c additional ARM specific FDX DCC communication
oxf\t32fdx.h routines, however this file is also needed by building

process if target is other than ARM.

Compare above listed files with your existing files in <RHAPSODY_ROOT>\Share\LangCpp directory by
using diff tool and alter your files appropriately. If some files don’t exist, copy them from driver directory.

Before building, ecosppcgccpath.bat need to be altered to match your environment (compiler and eCos
location).

To rebuild the framework, execute batch files in a command console:

ecosppcgccpath.bat
ecosppcgccbuild.bat

©1989-2024 Lauterbach Integration for Rhapsody in C/C++ | 15

Rebuilding OXF LangCpp Libraries for eCos, GCC and ARM

To use Integration Driver, OXF libraries need to be rebuilt.

This chapter shows how to rebuild OXF libraries for eCos operating system with GCC arm-elf compiler. To
rebuild OXF for other OS, please refer to “Rebuilding OXF Libraries for Other Environments”
(int_rhapsody_cpp.pdf). Driver installation directory (usually: C:\Program Files\Lauterbach GmbH\Rhapsody
7.x and TRACERS2 Integration Driver) contains all files with necessary changes needed for proper OXF
building.

Following table lists all files from directory <driver installation directory>\Share\LangCpp that are used
during build of OXF LangCpp libraries for eCos, GCC and ARM environment.

aom\ecosarmgccaom.mak Makefiles that build specific part of OXF libraries
omcom\ecosarmgccomcom.mak

oxflecosarmgccoxf.mak
tom\ecosarmgcctom.mak

ecosarmgccbuild.mak Makefile that builds entire OXF.

ecosarmgccpath.bat Batch file that sets environment paths.
ecosarmgccbuild.bat Batch file that starts build process by calling GNU make
oxfleCosOS.cpp OSAL classes implementation.

oxfleCos0S.h ecosConnectionPort is changed to use FDX routines

instead of TCP/IP sockets.

osconfig\eCos\omosconfig.h eCos adaptor configuration file

oxf\t32fdx.c FDX routines implementation.
oxf\t32fdxarm.c

oxft32fdx.h

Compare above listed files with your existing files in <RHAPSODY_ROOT>\Share\LangCpp directory by
using diff tool and alter your files appropriately. If some files don’t exist, copy them from driver directory.

Before building, ecosarmgccpath.bat need to be altered to match your environment (compiler and eCos
location).

By default, oxflecosarmgccoxf.mak makefile is configured for ARM9 DCC communication (line 125-126). If
the target is not ARM9, compile flags need to changed to one of possible values: ARM7, ARM9, ARM11,
XSCALE, depending on your target. Simulators and some ARM processors don’'t support DCC
communication. If such a target is used, please remove both compile flags (-DT32_FDX_DCC and -
DARM9).

To rebuild framework, execute batch files in a command console:

ecosarmgccpath.bat
ecosarmgccbuild.bat

©1989-2024 Lauterbach Integration for Rhapsody in C/C++ | 16

Rebuilding OXF LangC Libraries for OSE, DIAB and PPC

To use Integration Driver, OXF libraries need to be rebuilt.

This chapter shows how to rebuild OXF libraries for OSE operating system with DIAB PPC compiler. To
rebuild OXF for other OS, please refer to “Rebuilding OXF Libraries for Other Environments”
(int_rhapsody_cpp.pdf)

Driver installation directory (usually: C:\Program Files\Lauterbach GmbH\Rhapsody 7.x and TRACE32
Integration Driver) contains all files with necessary changes needed for proper OXF building.

Following table lists all files from directory <driver installation directory>\Share\LangC that are used
during build of OXF LangC libraries for OSE, DIAB and PPC environment.

aom\oseppcdiabaom.mak Makefiles that build specific part of OXF libraries
omcom\oseppcdiabomcom.mak

oxfloseppcdiaboxf.mak

oseppcdiabbuild.mak Makefile that builds entire OXF.
oseppcdiabpath.bat Batch file that sets environment paths.
oseppcdiabbuild.bat Batch file that starts build process by calling dmake
Oxf\R!COSOSE-C OSAL classes implementation.
oxf\ARICOSOSE.h Original ConnectionPort is changed to use FDX routines
instead of TCP/IP sockets.
osconfig\OSE\ricosconfig.h OSE adaptor and configuration files
osconfig\OSE\RiCOS.h
oxf\t32fdx.c FDX routines implementation. t32fdxarm.c contains
oxf\t32fdxarm.c additional ARM specific FDX DCC communication
oxf\t32fdx.h routines, however this file is also needed by building

process if target is other than ARM.

Compare above listed files with your existing filesin <RHAPSODY_ROOT>\Share\LangC directory by
using diff tool and alter your files appropriately. If some files don’t exist, copy them from driver directory.

Before building, oseppcdiabpath.bat need to be altered to match your environment (compiler and OSE
location).

To rebuild framework, execute batch files in a command console:

oseppcdiabpath.bat
oseppcdiabbuild.bat

©1989-2024 Lauterbach Integration for Rhapsody in C/C++ | 17

Rebuilding OXF LangC Libraries for eCos, GCC and PPC

To use Integration Driver, OXF libraries need to be rebuilt.

This chapter shows how to rebuild OXF libraries for eCos operating system with GCC powerpc-eabi
compiler. To rebuild OXF for other OS, please refer to “Rebuilding OXF Libraries for Other
Environments” (int_rhapsody_cpp.pdf)

Driver installation directory (usually: C:\Program Files\Lauterbach GmbH\Rhapsody 7.x and TRACE32
Integration Driver) contains all files with necessary changes needed for proper OXF building.

Following table lists all files from directory <driver installation directory>\Share\LangC that are used
during build of OXF LangC libraries for eCos, GCC and PPC environment.

aom\ecosppcgccaom.mak Makefiles that build specific part of OXF libraries
omcom\ecosppcgccomcom.mak

oxflecosppcgccoxf.mak

ecosppcgccbuild.mak Makefile that builds entire OXF.

ecosppcgccpath.bat Batch file that sets environment paths.
ecosppcgccbuild.bat Batch file that starts build process by calling GNU make
oxf\RiCOSeCos.c OSAL classes implementation.

oxf\RiCOSeCos.h Original ConnectionPort is changed to use FDX routines

instead of TCP/IP sockets.

osconfig\eCos\ricosconfig.h eCos adaptor and configuration files
osconfig\eCos\RiCOS.h

oxf\t32fdx.c FDX routines implementation. t32fdxarm.c contains
oxf\t32fdxarm.c additional ARM specific FDX DCC communication
oxfit32fdx.h routines, however this file is also needed by building

process if target is other than ARM.

Compare above listed files with your existing filesin <RHAPSODY_ROOT>\Share\LangC directory by
using diff tool and alter your files appropriately. If some files don’t exist, copy them from driver directory.

Before building, ecosppcgccpath.bat need to be altered to match your environment (compiler and eCos
location).

To rebuild framework, execute batch files in a command console:

ecosppcgccpath.bat
ecosppcgccbuild.bat

©1989-2024 Lauterbach Integration for Rhapsody in C/C++ | 18

Rebuilding OXF LangC Libraries for eCos, GCC and ARM

To use Integration Driver, OXF libraries need to be rebuilt.

This chapter shows how to rebuild OXF libraries for eCos operating system with GCC arm-elf compiler. To
rebuild OXF for other OS, please refer to “Rebuilding OXF Libraries for Other Environments”
(int_rhapsody_cpp.pdf). Driver installation directory (usually: C:\Program Files\Lauterbach GmbH\Rhapsody
7.x and TRACERS2 Integration Driver) contains all files with necessary changes needed for proper OXF
building.

Following table lists all files from directory <driver installation directory>\Share\LangC that are used
during build of OXF LangC libraries for eCos, GCC and ARM environment.

aom\ecosarmgccaom.mak Makefiles that build specific part of OXF libraries
omcom\ecosarmgccomcom.mak

oxflecosarmgccoxf.mak

ecosarmgccbuild.mak Makefile that builds entire OXF.

ecosarmgccpath.bat Batch file that sets environment paths.
ecosarmgccbuild.bat Batch file that starts build process by calling GNU make
oxf\RiCOSeCos.c OSAL classes implementation.

oxf\RiCOSeCos.h ecosConnectionPort is changed to use FDX routines

instead of TCP/IP sockets.

osconfig\eCosl\ricosconfig.h eCos adaptor and configuration files
osconfig\eCos\RiCOS.h

oxf\t32fdx.c FDX routines implementation.
oxf\t32fdxarm.c

oxf\t32fdx.h

Compare above listed files with your existing files in <RHAPSODY_ROOT>\Share\LangC directory by
using diff tool and alter your files appropriately. If some files don’t exist, copy them from driver directory.

Before building, ecosarmgccpath.bat need to be altered to match your environment (compiler and eCos
location).

By default, oxflecosarmgccoxf.mak makefile is configured for ARM9 DCC communication (line 125-126). If
target is not ARM9, compile flags need to changed to one of possible values: ARM7, ARM9, ARM11,
XSCALE, depending on your target. Simulators and some ARM processors don’'t support DCC
communication. If such a target is used, please remove both compile flags (-DT32_FDX_DCC and -
DARM9).

To rebuild framework, execute batch files in a command console:

ecosarmgccpath.bat
ecosarmgccbuild.bat

©1989-2024 Lauterbach Integration for Rhapsody in C/C++ | 19

Rebuilding OXF Libraries for Other Environments

Driver installation directory (usually: C:\Program Files\Lauterbach GmbH\Rhapsody 7.x and TRACE32
Integration Driver) contains source files (in “Templates” directory) that allows TRACE32 FDX
communication. These files are templates that can be used to implement FDX communication for any
environment in Rhapsody.

Rhapsody in C++

LangCpp_templateOS.h contains ConnectionPort class definition template for TRACE32 and Rhapsody in
C++ Integration.

To implement FDX communication instead of standard TCP/IP, please make following steps for your
environment:

<OS_NAME> used below is a name of operating system for which you want to implement FDX
communication, for example: 'ose’, 'Vx, 'NU', etc...

<0OS_NAME>0S.h and <OS_NAME>0S.cpp files referred to in the following steps can be found in:

<RHAPSODY_ROOT>\Share\LangCpp\oxf

©1989-2024 Lauterbach Integration for Rhapsody in C/C++ | 20

10.

11.

12.

13.

14.

Comment <OS_NAME>ConnectionPort class definition in file <OS_NAME>0S.h

Copy content of file LangCpp_templateOS.h into <OS_NAME>0S.h, below previously
commented source code.

Comment following method definitions and variable initializations in <OS_NAME>0S.cpp:

char* <OS_NAME>ConnectionPort::m_Buf = NULL

int <OS_NAME>ConnectionPort::m_BufSize = 0
<OS_NAME>ConnectionPort::<OS_NAME>ConnectionPort()
<OS_NAME>ConnectionPort::~<OS_NAME>ConnectionPort()

void <OS_NAME>ConnectionPort::readFromSockLoop(<OS_NAME>ConnectionPort *me)

int <OS_NAME>ConnectionPort::Connect(const char* SocketAddress = NULL, unsigned int nSocketPort = 0)

int <OS_NAME>ConnectionPort::Send(OMSData *m)

Make sure that there are no other not commented methods of class <OS_NAME>ConnectionPort.
If there are any, comment them too.

Copy content of file LangCpp_templateOS.cpp below previously commented source code.

Replace all occurences of T32_INT_OS_NAME with your OS name in both <OS_NAME>0S.h
and <OS_NAME>0S.cpp files.

ConnectionPort class can report errors in some situations. Error descriptions are simple strings.
To implement handling of these errors please fill method ErrorNotification in
<0OS_NAME>ConnectionPort class with code appropriate for your system (for example
fprintf(stderr,message)). Filling this function is not obligatory.

<OS_NAME>0S.h with new <OS_NAME>ConnectionPort class definition copied in step 2
contains following preprocessor define:

#define T32_INT_READFROMSOCKLOOP_THREAD_CREATION_PARAMETERS

Replace ... in this define with <OS_NAME>Thread() constructor parameters. These parameters can
be found in <OS_NAME=>ConnectionPort::Connect method that you commented in step 3, nearly
at the end of that method.

<OS_NAME>0S.h with new <OS_NAME>ConnectionPort class definition copied in step 2
contains following preprocessor define:

#define T32_INT_DELAY NAME (miliseconds) ... (miliseconds)

Replace ... in this define with delay function name specific for your OS.

Copy t32fdx.c and t32fdx.h files to <RHAPSODY_ROOT>\Share\LangCpp\oxf directory and
add them to your OXF compilation/linking makefile. These files can be found in driver installation
directory (usually C:\Program Files\...).

Add:

#include "t32fdx.h"

©1989-2024 Lauterbach Integration for Rhapsody in C/C++ | 21

to the beginning of <OS_NAME>O0S.cpp file. The best place is immediately after:

#ifdef _OMINSTRUMENT

Rhapsody in C

LangC_templateOS.h contains ConnectionPort struct definition template for TRACE32 and Rhapsody in C
Integration.

To implement FDX communication instead of standard TCP/IP please make following steps for your
environment:

<OS_NAME> used below is a name of operating system for which you want to implement FDX
communication, for example: ‘ose', 'VX', 'Nu', etc...

RiCOS<0OS_NAME>0S.h and RiCOS<OS_NAME>O0S.c files referred to in the following steps can be
found in:

<RHAPSODY_ROQT>\Share\LangC\oxf

©1989-2024 Lauterbach Integration for Rhapsody in C/C++ | 22

1. Comment RiC<OS_NAME>ConnectionPort struct definition together with typedef below in file
RiCOS<OS_NAME=>0S.h

2. Copy content of file LangC_templateOS.h into RIiCOS<OS_NAME>0S.h, below previously
commented source code.

3. Comment following function definitions in RiICOS<OS_NAME>O0S.c:

RiCBoolean RiCOSConnectionPort_init(RiCOSConnectionPort * const me)

void RiCOSConnectionPort_cleanup(RiCOSConnectionPort * const me)

RiCOSConnectionPort * RICOSConnectionPort_create()

void RiCOSConnectionPort_destroy(RiCOSConnectionPort * const me)

static void readFromSockLoop(RiCOSConnectionPort *me);

RiCOSResult RiCOSConnectionPort_Connect(RiCOSConnectionPort * const me,const char* const SocketAddress,unsigned int
nSocketPort)

RiCOSResult RiCOSConnectionPort_Send(RiCOSConnectionPort * const me, struct RiCSData *m)

RiCBoolean RiCOSConnectionPort_SetDispatcher(RiCOSConnectionPort * const me, RiCOS_dispatchfunc dispfunc)

static void readFromSockLoop(RiCOSConnectionPort *me)

Make sure that there are no other not commented function RiCOSConnectionPort_... If there are
any, comment them too.

4. Copy content of file LangC_templateOS.c below previously commented source code.

5. Replace all occurences of T32_INT_OS_NAME with your OS name in RiCOS<OS_NAME>0S.h
file.

6. ConnectionPort functions can report errors in some situations. Error descriptions are simple

strings. To implement handling of these errors please fill function
RiCOSConnectionPort_ErrorNotification(char * message) with code appropriate for your
system (for example fprintf(stderr,message)). Filling this function is not obligatory.

7. RiCOS<OS_NAME=>0S.h with new RiC<OS_NAME>ConnectionPort struct definition copied in
step 2 contains following preprocessor define:

#define T32_INT_READFROMSOCKLOOP_TASK CREATION_PARAMETERS

Replace ... in this define with RiCOSTask_create() function parameters. These parameters can be
found in RiCOSConnectionPort_Connect function that you commented in step 3, nearly at the end
of that function.

8. RiCOS<OS_NAME=>0S.h with new RiC<OS_NAME>ConnectionPort struct definition copied in
step 2 contains following preprocessor define:

#define T32_INT_DELAY NAME (miliseconds) ... (miliseconds)

Replace ... in this define with delay function name specific for your OS.

©1989-2024 Lauterbach Integration for Rhapsody in C/C++ | 23

9. Copy t32dfx.c and t32fdx.h files to <RHAPSODY_ROOT>\Share\LangC\oxf directory and add
them to your OXF compilation/linking makefile. These files can be found in driver installation
directory (usually C:\Program Files\...)

10. Add:

#include "t32fdx.h"

to the beginning of RICOS<OS_NAME>O0S.c file. The best place is immediately after:

#ifdef _OMINSTRUMENT

©1989-2024 Lauterbach Integration for Rhapsody in C/C++ | 24

Preparing C++ Application for Animation

This section describes how to prepare a C++ application for animation in OSE, DIAB and PPC

Before you can begin animation, you must follow these steps:

1.

6.

Set the CPP_CG::Configuration::Environment property to environment you are working with.
For purposes of this manual environment is OsePpcDiab.

Set the Instrumentation flag for the configuration to Animation, and optionally the animation
scope using the Advanced button.

a. In the browser, expand the component, right-click the configuration, and select Features from the
pop-up menu.

b. Select the Settings tab.
c. Set the Instrumentation field to Animation.
d. To instrument operations and set a finer scope on the instrumentation, click the Advanced button.

For OSE, change heap share mode to yes in file:

<RHAPSODY_ROOT>\Share\MakeTmp\OseDiabPPCconf.mk

INCLUDE_OSE_HEAP*= yes

.IF $(INCLUDE_OSE_HEAP) == yes
HEAP_SHARE MODE *= yes# [yes | no]
HEAP_SIZE*= SIZE 276K

.END

Generate code for the configuration. If you don’t have a properly configured Embedded File
System in OSE, make sure that generated code doesn’t have any operations which are using file
system (stdout, stdin, cout, ...). It there are any, comment them out.

If DIAB PPC compiler is used together with OSE (like in this manual), -Xinit-section=2 need to
be added to CFLAGS and CXXFLAGS in <OSE_ROQOT>\powerpc\makefiles\compilers\diab.mk.

CFLAGS+= $ (FLAGS)
CFLAGS+= -Xlint
CFLAGS+= -Xinit-section=2

CXXFLAGS+= $ (FLAGS)
CXXFLAGS+= -Xinit-section=2

Build application using Code->Build.

©1989-2024 Lauterbach Integration for Rhapsody in C/C++ | 25

Preparing C/C++ Application for Animation

Driver installation directory (usually: C:\Program Files\Lauterbach GmbH\Rhapsody 7.x and TRACE32
Integration Driver) contains following files with environments definition:

Properties\siteC++.prp eCosARM and eCosPPC environments definition for C++
language

Properties\siteC.prp eCosARM, eCosPPC and OsePPCDiab environments definition
for C language

Please refer to documentation provided by Rhapsody: “RTOS Adapter Guide - chapter: The Deployment
Environment - Adapting Rhapsody to a New RTOS - Step 5: Creating Properties for a new RTOS*.
This documentation explains in detail the meaning and use of site<language>.prp files.

In case of using OsePPCDiab environment for C language, all steps listed in “Preparing C++ Application
for Animation” (int_rhapsody_cpp.pdf) apply, except step 1, where CPP_CG is changed to C_CG.

Environments listed in the table below require additional batch files in <RHAPSODY_ROOT>\Share\etc
directory. These files are used to invoke Rhapsody application build and can be found in <Driver
Installation Directory>\Share\etc:

oseppcdiabmake.bat OSE on PPC
ecosppcgccmake.bat eCos on PPC
ecosarmgccmake.bat eCos on ARM

All above batch files need to be altered to match your environment (compiler and eCos/OSE location).

©1989-2024 Lauterbach Integration for Rhapsody in C/C++ | 26

Downloading Application Image to Target

To download application from Rhapsody to target, Integration Driver requires a practice script
download.cmm to be provided in directory that contains linked application image. For Ping-Pong sample
this directory is
<RHAPSODY_ROOT>\Samples\CppSamples\PingPong\AnimComponent\AnimConfig.

Driver passes image path as parameter &mage_path in download script.

Download scripts for LangCpp and LangC can be found at <Driver Installation Directory>\Download:

LangCpp\download_OSE_FADS860.cmm

LangCpp\download_ECOS_FADS860.cmm

LangCpp\download_ECOS_ARM9Excalibur.cmm

LangC\download_OSE_FADS860.cmm

LangC\download_ECOS_FADS860.cmm

LangC\download_ECOS_ARM9Excalibur.cmm

Each of download script contains section “Target initialization”. Please alter this section appropriately for
your target.

Each download script also contains a &dcc_fdx_mode variable, that sets appropriate FDX communication
mode: DCC (&dcc_fdx_mode=1) or BUFFERE/BUFFERC (&dcc_fdx_mode=0). DCC communication can
be used only on targets that support Debug Communication Channel (most ARMs). BUFFERC can be used
on other targets (not supporting DCC) and TRACE32 simulators. BUFFERE can be used only on
simulators. FDX communication mode has to match mode used during OXF building. See “Rebuilding
OXF LangCpp Libraries for eCos, GCC and ARM” (int_rhapsody_cpp.pdf) and “Rebuilding OXF LangC
Libraries for eCos, GCC and ARM” (int_rhapsody_cpp.pdf) for details.

After preparing download script, please follow below steps to download application to target:

©1989-2024 Lauterbach Integration for Rhapsody in C/C++ | 27

1. Run Integration Driver.
2. Run TRACES32 Simulator or ICD.

3. From Rhapsody menu select Code->Target->Connect. If connection is estabilished, Rhapsody
status bar should contain “Connected” message. Driver indicates succesfull connection by
message in log window and “CONNECTED” status under TRACE32 icon. If connecting failed try
to connect again.

r 5
Rhapsody and TRACE32 Integration Driver l = e
Rhapsody — TRACE32
(R} A
)
CONMECTED {Rhapsody in C++) CONMECTED
Integration Parameters | Add/Remove IDE DLL from C++ environments |
Breakpoints | Add/Remove IDE DLL from C environments |

Waiting for Rhapsody to run...
Bhapendy has heer at=rted.

Connected to TRACE32.
—

Version: 1.0.147; Date: Apr 24 2014, 13:20:57 (c) Lauterbach GmbH 2009

4. In Rhapsody select Code->Target->Download to download application image. Successfull
downloading is indicated by “Download complete“ message in Rhapsody status bar and by
availability of Code->Run option in Rhapsody menu.

©1989-2024 Lauterbach Integration for Rhapsody in C/C++ | 28

Integration Features

General purpose of Integration Driver is to allow animation of application in target/simulator without
performing TCP/IP connection link beetween Rhapsody and instrumented application. Additionally

Integration Driver offers some features which can be helpfull during debbuging Rhapsody created
applications using TRACE32.

©1989-2024 Lauterbach Integration for Rhapsody in C/C++ | 29

Locating Source in Rhapsody

To use this feature, additional PRACTICE command - SETUP.EDITEXT ON - need to be executed in
download script. Please refer to “Downloading Application Image to Target” (int_rhapsody_cpp.pdf).

To edit source in Rhapsody, right-click source line of function (other than constructor and destructor) in
TRACE32 and select Edit Source.

Break Run CPU Misc

P TN

File Edit

HE 4 &

[B::d.LPing;::Ping]

Wiew War

Trace Perf Cov MPCSxx Window Help

Hum oes @ i

S=1Es

50 [void Ping::doHit{int roumnds] {

GEN{ gamelver());
getltaPo i
theJud

58 Afcout<<"\nPing'n"<<flush;
59 getIltaPongl) ->GEN{ evReceive
B

6l Fit]
I

64 |Pong* Ping::getItsPongl) const {
65 return itsPong;

Bl Step || M Over || 4 Wext || @ Retum|| ¢ Up B Go || Il Break || ¥ Mode | Find:
addr/Tine [source

48

45

A1 NOTIFV_OFERATION(doHit, doHit(int), 1, Default_Ping_doHit_SE
52 /740 operation deHit(int)
53 if (roundsz==0) {

Program Address
+ GoTil

ﬁ Breakpoint...
a Breakpoints

@ Display Memory
‘ Toggle Bookmark,
* el PC Here

| £

|»

g Edit Source

i Miew Info

General] Description Implementation]Alguments Helatinns] Tags] Propertigs

=

|vu:|id doHit{int rounds]

UF

if (rounds==0) {
GEM (gaxnelrrer () 2

I —

Locate |

theJudge->GEN (gameCver ()) ;
} else {

cout<<™ nPingn"<<flush;

getItsPong () —->GEN |evReceive (rounds-1)) ;

getItsPong () —>GEN (gameCwrer () 2

©1989-2024 Lauterbach

Integration for Rhapsody in C/C++

30

To locate model element in Rhapsody project browser, right-click on function header (or on any line of
constructor or destructor) in TRACE32 and select Edit Source.

LEX

File Edit ‘iew Yar Break Fun CPU Misc Trace Perf Cov MPCSxx window Help

M o= *JC L2 || N_-:- ?k? ggﬁj. ﬁ@@ ag

| |9/ [B::d.l Referee::Referee] g@ E@
M Step || M Ower || & Mest || F Betun| ¢ Up B Go || 1N Break || B Mode | Find:

addr/1ine [source
5 cleanUpRelationz(;
cleanUpStatechart() ;

void Referee::changelurrentServer() { B o
NOTIFY_OPERATION{changeCurrentSery oo o ADONEss
N#E operation changn(aCurrentSewn(ag * GoTil
if (currentServers== (*getltzPing B int. ..

currentServer = (*getItsPongl) ﬁ reskpain
el=e Breakpoints 3

NﬂcurrentSewer = (#getItsPingl) i Display Memary ¥
T @E Toggle Bookmark

void Referee::makePlay() { A58 et PC Here
NOTIFY _OFPERATION (wmakePlay, makePlE% Edit Source B dree_nake

A/40 operation makePlay(%' R

/¢ Create the players £ MEw It b

|«
fi.&-,.EF.:rW"--- = 1= el = 7

[B::

[emulate][trigger][dewices][trace][D ata][War][FERF][ther][TCEIONS]
JP-00032434 ManimComponent R eferee R eferes:; ztopped at breakpoint HLL LF

Entire Model Wiew -

=I-f] pingpang
+-[_] Components
+-[_] Obiject Maodel Diagrams
--[_] Packages

+-F PredefinedTypes (REF)
+-F PredefinedTypestpp (REF)
+-[_7] Profiles
+ [:l Sequence Diagrarms

©1989-2024 Lauterbach Integration for Rhapsody in C/C++ | 31

Locating Source in TRACE32

To locate source in TRACES32 right-click on model element in diagram or project browser and select Show
In TRACE32. The selected method is displayed in the Data.List window. For classes TRACE32 lists
constructor source.

|
Flayer &

Features. ..

Show In Trace32 4

Go In Trace32

Fing & 1 Break In Trace3e

— itsPing itsPon Set Breakpoint In Trace32
itsPing itsPong lear Breakpoint In Tracesz

& * Enable Breakpoint In Trace32

Disable Breakpoint In Trace3z

Clear all Trace32 Breakpoints

Enable Al Trace32 Breakpoints

Disable All Trace32 Breakpoints

1

Feferee B

thedudge

File Edit Wiew Wwar Break PRun CPU Misc Trace Perf Cov MPCHoc Window Help
ME ¢ » B 7N Sl dics @ -

:d. list Pong::Pong

Bl Step || B Over || § Wext || & Retum|| ¢ Up B Go || 1N Break || (% Mode | Fi =

addr/Tine |source

Porg : : Pong{ I0xfhActive* thehctiveContext) { 8
WOTIFY_REACTIVE CONSTRUCTOR(FPong, Pongl), 0, Default_Pong_PFong
sethctiveContext(thefctiveContext, false);
itzPing = HIULL;

! initStatechart();

Fong: :“Fong() {
NOTIFY_DESTRUCTOR! “Pong, falzel;
cleanUpRelations();

woid Pong::doHit(int rounds) {
NOTIFV_OFERATION(doHit, doHit(int), 1, Default_Pong_doHit_SERT
AL operation doHit(int) “

| >

[ermlate][trigger][devices][trace][Data][War][PERF][other][p'fevitrus]
LP:0003F 494 dnimComponent i aindnimCompone [stopped at breakpoint HLL P

©1989-2024 Lauterbach Integration for Rhapsody in C/C++ | 32

Breakpoints

Integration Driver allows setting/clearing/disabling/enabling breakpoints directly from Rhapsody by using

right-click menu.

To set, clear, enable or disable a breapoint right-click on model element in diagram or project browser and

select appropriate option. Refer to “Supported Model Elements” (int_rhapsody_cpp.pdf) to see details

about model elements support.

|
Flayer &

1 1

Fing &
—1 itsPing ItsPon
itsFing itsP'ang
Referee &
theJudge

Fil= Edit View Yar Break Run CPU Misc

HE 3 &2

Pl 7N

Trace Perf

Features. ..

Show In Trace32
Go In Trace32
Break In Trace3z2
Set Breakpoint In Trace?
Clear Breakpoint In Trace3Z
Enable Breakpoint In Trace3z
Disable Breakpaint In Trace3z
Clear all Trace3z2 Brealpoinks
Enable All Trace3Z2 Breakpoints
Disable All Trace3Z2 Breakpoints

Cov MPCSxx window Help

Humoes @

Pl Step || B Ower

addr/1ine

C

<+ Mewt || ¢ Retum| ¢ Up p Go 1l Break
=]

Fon

itsPing = HOLL;
initStatechart();

r:™Pongl) A

q
{0TIFY_DESTRUCTOR(“Pony, false);

: :Pongl I0xfhctive* thehctiveContext) {
HOTIFY_REACTIVE_CONSTRUCTOR! Pong, Fongl), 0, Default_Poy
zethctiveContext(thehctiveContext, falsel;

addeo tuno

dae]

C:00030514||Program
C:000306ES||Program
C:000307FO||Program

SOFT
SOFT
SOFT

Pong::Paong i
“Pong:i~Pong’
Pong::doHit

r;::

[ermlate][trigger

][dewices][frace][Data

I

War

|[PERF [ofher]| mrevious

|JP:0003F434 Y\AnimComponentMaindnimCompon (stopped at breakpaint

HLL UF

©1989-2024 Lauterbach

Integration for Rhapsody in C/C++

33

To manage breakpoints, click “Breakpoints” button in Integration Driver dialog. Tool window “TRACE32
Breakpoints® allows deleting, enabling and disabling each breakpoint that was set in Rhapsody model.

To locate model element in Rhapsody, right-click on breakpoint in the list and select “Show In Rhapsody”.
Additionaly, model element can be located by double-clicking on breakpoint.

To open source code for model element in TRACES32, right-click on breakpoint and select “Show in
TRACE32".

If application is downloaded to target (see “Downloading Application Image to Target”
(int_rhapsody_cpp.pdf)), driver disables all breakpoints. Please check “Enable breakpoints after download”
to enable breakpoints after download is finished.

©1989-2024 Lauterbach Integration for Rhapsody in C/C++ | 34

NOTE: Symbols used by breakpoints are evaluated only once during set. If statechart implementation is
changed, breakpoints need to be deleted and set again to evaluate new symbols.

fE.- Rhapsody in C++ by Telelogic - pingpong - [Statechart of : Referee] |ﬂ|
E File Edit Wiew Code Layout Tools Window Help
DSE| & B | Z 2|0 MHE | X ||RRAEBEME AW | 55
| B I IAnimEomponent lenimEonfig v] | i} A | E
F P Bh ¥ | | | SR e G A B
Bl go/startGame) 2
Entire Model View = =)
{:I Packages -
=-F5 Default iy
=B Classes .,
: Ping
Player ®
Pang
Referse @
-4 Assaciation Ends @
- Attributes @
—E Operations
@ changeCurrents >
gameOver() (o
& gop = @
- E Bunged [T R ——
Trace3Z Breakpoints =]
Delete all breakpoinks | Enable all breakpoints | Disable all breakpoints |
I” Enable breakpaints after download [¥ always on top
Marme | Owner class | State | Address | Syrmbol
., default of ready Referee Enabled 0x0001AF44 Referee:ready_entDef
Dgame Referee Enabled 0x0001B61C Referee::game_enter
FE EW Referee Enabled 0x00019F5C Referee::changeCurren
------- 3 Show In Rhapsady
Far He Fi 3
N— Shows In Trace3z

Disable

Delete

Go and Break in TRACE32

By using Go In TRACE32 and Break in TRACE32 you can control the execution of animated application
separately from Rhapsody. Go In TRACE32 is a way to resume execution after stopping at breakpoint

©1989-2024 Lauterbach Integration for Rhapsody in C/C++ | 35

Supported Model Elements

The table below shows supported model elements and their mapping into C++/C source code symbols in
TRACE32. These mapping is used by “Locating Source in TRACE32” (int_rhapsody_cpp.pdf) and
“Breakpoints” (int_rhapsody_cpp.pdf) features of this integration.

Class E Example: Player

Symbols of following elements are used: constructor, destructor,
primitive and triggered operations. See below for examples of each
element.

Constructor & Example: Player::Player

C++: Player::Player
C, public: Player_lInit
C, private: \Playen\nit

Destructor Example: Player::~Player

C++: Player::~Player
C, public: Player_Cleanup
C, private: \Player\Cleanup

Primitive E Example: Player::doHit
Operation

C++: Player::doHit

C, public: Player_doHit

C, private: \Player\doHit
Triggered E Example: Player::catch
Operation

C++: Player::catch

C, public: Player_catch

C, private: \Player\catch
Event \ Example: serve

C++: serve::serve
C: serve_lnit

©1989-2024 Lauterbach Integration for Rhapsody in C/C++ |

36

State

NOTE: If statechart implementation is set to “Flat” for current
configuration, change value of property
“CG::Class::ComplexityForlnlining” to “0”, to generate method calls
instead of inlining.

Example: Class Ping inherits from class Player. States Ready and

Playing are defined in class Player, while state GameEnd is defined in

class Ping. Class Ping has below statechart:

Ready Flaying GameEnd

¥
¥

Driver will use below symbols for state Playing:
J C++ (reusable): Player_Playing::enterState
J C++ (flat): Ping::Playing_enter
. C: Ping_Playing_enter

Driver will use below symbols for state GameEnd:
J C++ (reusable): Ping_GameEnd::enterState
J C++ (flat): Ping::GameEnd_enter

J C: Ping_GameEnd_enter

Default Tran-
sition

<

NOTE: If statechart implementation is set to “Flat” for current
configuration, change value of property
“CG::Class::ComplexityForlnlining” to “0”, to generate method calls
instead of inlining.

Example: Class Ping inherits from class Player. State Playing is
defined in class Player. Class Ping has below statechart:

Driver will use below symbols for default transition:
. C++ (reusable): Player_Ready::entDef
. C++ (flat): Ping::Ready_entDef
J C: \Ping\Ready_entDef

©1989-2024 Lauterbach

Integration for Rhapsody in C/C++ |

37

©1989-2024 Lauterbach Integration for Rhapsody in C/C++ | 38

Transition

My

NOTE: If statechart implementation is set to “Flat” for current
configuration, change value of property
“CG::Class::ComplexityForlnlining” to “0”, to generate method calls
instead of inlining.

Driver supports following types of transitions in both Flat and Reusable
Statechart implementation:

. transition without trigger

. transition with trigger: timeout, event or triggered operation

Example: Class Ping inherits from class Player. Class Ping has below
statechart:

triggeredop_1
™

Driver will use following symbols for each transition:

. tm(1000)
C++ (reusable): Player::ReadyTakeTimeout
C++ (flat): Ping::ReadyTakeTimeout
C: Ping_ReadyTakeTimeout

. serve_event
C++ (reusable): Player::ReadyTakeserve
C++ (flat): Ping::ReadyTakeserve
C: Ping_ReadyTakeserve

. triggeredop_1
C++: Ping::ReadyTaketriggeredop_1_Ping_Event
C: Ping_ReadyTaketriggeredop_1_Ping_Event

NOTE: last “Ping” in symbol is an owner of triggered
operation.

. no trigger
C++ (reusable): Player::PlayingTakeNull
C++ (flat): Ping::PlayingTakeNull

C: Ping_PlayingTakeNull

©1989-2024 Lauterbach

Integration for Rhapsody in C/C++ | 39

	Integration for Rhapsody in C/C++
	Overview
	Architecture of Driver
	Driver Installation
	First Run of Integration Driver
	Selecting Rhapsody Version
	Preparing Rhapsody Environment
	Preparing TRACE32
	Rhapsody Helpers Configuration
	Rebuilding OXF LangCpp Libraries for OSE, DIAB and PPC
	Rebuilding OXF LangCpp libraries for eCos, GCC and PPC
	Rebuilding OXF LangCpp Libraries for eCos, GCC and ARM
	Rebuilding OXF LangC Libraries for OSE, DIAB and PPC
	Rebuilding OXF LangC Libraries for eCos, GCC and PPC
	Rebuilding OXF LangC Libraries for eCos, GCC and ARM
	Rebuilding OXF Libraries for Other Environments
	Preparing C++ Application for Animation
	Preparing C/C++ Application for Animation
	Downloading Application Image to Target
	Integration Features
	Locating Source in Rhapsody
	Locating Source in TRACE32
	Breakpoints
	Go and Break in TRACE32
	Supported Model Elements

