PowerView Function Reference

PowerView Function Reference

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
PRACTICE Script LANQUAQJEcccceceriiiismmrriisssmmsssisssmsssssssssmsssssssssmssssssssmssssssssnmssssssssnmssssssssmnmssnnas r—~
TRACE32 FUNCLIONS ..eeeiiieiiceis s s s s s s san s s s s s s s s mnn e nmn e [
PowerView Function Reference ... isssssssssscsses s sssss s sssssmsssss s s s s ssssnsnsns 1
LT3 o 10

IN ThiS DOCUMENLcoeiiieiiiriiees e s s e e e s e amm e e e anm e n e e nnmne 11
AREA FUNCLIONS ...ccccccccccecccces s nnissss s s ssssmmsss s s n s s s s s s s ssmmmmn s s s s s e s ses s s s snnsmmmmmnsns s nnssnnsnnssnnnnns 12

In This Section 12
AREA.COUNT() Number of existing message areas 12
AREA.EXIST() Check if message area exists 12
AREA.LINE() Extract line from message area 13
AREA.MAXCOUNT() Maximum number of message areas 13
AREA.NAME() Names of existing message areas 14
AREA.SELECTed() Name of active message area 14
AREA.SIZE.COLUMNS() Columns of a message area 15
AREA.SIZE.LINES() Lines of a message area 15

L0 0 L 0 Qo 1 3 T £ 16
L0001 e T T e 17
CONFIG.SCREEN() Check if screen output is switched on 17
CONNECTION FUNCLIONSoomiiiiiiiiiiisiisssssnmmensssnssssssssssssssssssssssssssssssssssssnmmsnssssssnsssssssssannnns 18
CONNECTION.DEVice.IndexByName() Get device index 18
CONNECTION.DEVice.IndexBySerialNumber() Get device index 18
CONNECTION.DEVice.InUse() Debug module currently in use 18
CONNECTION.DEVice.NAME() Get device name of debug module 19
CONNECTION.DEVice.Number() Number of detected debug modules 19
CONNECTION.DEVice.PORT() Get host connection port of debug module 20
CONNECTION.DEVice.SerialNumber() Get device serial number 20
CONNECTION.GetDriverError() Get driver error of last connection attempt 21
CONNECTION.HOSTMCI.TestMciServer() Get MCI server state information 21
CONNECTION.INTerface.Available() Check connection interface availability 21
CONNECTION.STATE.ERROR() Failed to establish connection 22
CONNECTION.STATE.Interactive() Interactive connection state 22
©1989-2024 Lauterbach PowerView Function Reference 2

L0201\ =T 1T 4 o 1 o o L= 23
In This Section 23
CONVert. ADDRESSTODUALPORTY() Dualport access class 23
CONVert. ADDRESSTONONSECURE() Non-secure access class 24
CONVert. ADDRESSTOSECURE() Secure access class 24
CONvert.BOOLTOINT() Boolean to integer 25
CONVert.CHAR() Integer to ASCII character 25
CONVert.FLOATTOINTY() Float to integer 26
CONVert.HEXTOINTY() Hex to integer 26
CONVert.INTTOBOOL() Integer to boolean 27
CONVert.INTTOFLOATY() Integer to floating point value 27
CONVert.INTTOHEX() Integer to hex 28
CONVert.INTTOMASK() Compose bit-mask from integer value and mask 28
CONVert.LINEAR11TOFLOAT() LINEAR11 to float 29
CONVert.LINEAR16TOFLOAT() LINEAR16 to float 29
CONVert. MASKMTOINTY() Bits set to don't-care in given bit-mask 30
CONVert. MASKTOINTY() Bits set to 1 in given bit-mask 31
CONVert.OCTaltoint() Octal to decimal 31
CONVert.SignedByte() 1 byte to 8 bytes 32
CONVert.SignedLong() 4 bytes to 8 bytes 32
CONVert.SignedWord() 2 bytes to 8 bytes 33
CONVert. TIMEMSTOINTY() Time to milliseconds 33
CONVert. TIMENSTOINTY() Time to nanoseconds 34
CONVert. TIMERAWTOINT() Time to TRACE32 timer ticks 34
CONVert. TIMESTOINT() Time to seconds 34
CONVert. TIMEUSTOINT() Time to microseconds 35
CONVert. TOLOWER() String to lower case 36
CONVert. TOUPPER() String to upper case 36

DATE FUNCLIONS ... mms s s s e e mmmm s e s e e s s 37
In This Section 37
DATE.DATE() Current date 37
DATE.DAY() Today’s date 37
DATE.MakeUnixTime() Date to Unix timestamp 38
DATE.MONTH() Number of current month 39
DATE.SECONDS() Seconds since midnight 39
DATE.TIME() Current time 39
DATE.TimeZone() Time zone identifier and hh:mm:ss 40
DATE.UnixTime() Seconds since Jan 1970 40
DATE.UnixTimeUS() Microseconds since Jan 1970 40
DATE.utcOffset() Offset of current local time to UTC 41
DATE.YEAR() Currentyear 41

DIALOG FUNCHONS coeiiiiiiiiiniiiisssssssmsnnnssnsssssssssssssmssssssnsssssssssssssnsmmssssssnssnsssssssnsmmnnnnssnssnssnns 42
In This Section 42

©1989-2024 Lauterbach PowerView Function Reference 3

DIALOG.BOOLEAN() Current boolean value of checkbox 42
DIALOG.EXIST() Existence of dialog element 43
DIALOG.STRing() Current string value of dialog element, e.g. EDIT box 44
DIALOG.STRing2() Comma-separated list of values, e.g. from LISTBOX 45
ERROR FUNCLIONS ... ccerersces s s e e s s e s s s s e e smme s s e e e smmn s e e s smmnn e e e s mmnnnnas 46
In This Section 46
ERROR.CMDLINE() Erroneous command 46
ERROR.FIRSTID() ID of first error 46
ERROR.ID() ID of last error message 47
ERROR.MESSAGE() Error text 48
ERROR.OCCURRED() Error status 48
ERROR.POSITION() Error position 48
7 I T T (o T 49
In This Section 49
EVAL() Value of expression evaluated with Eval command 49
EVAL.ADDRESS() Address of expression evaluated with Eval cmd. 49
EVAL.BOOLEAN() Boolean expression evaluated with Eval cmd. boolean 49
EVAL.FLOAT() Float value of expression evaluated with Eval cmd. 50
EVAL.PARAM() Expression evaluated with Eval cmd. 50
EVAL.STRing() String composed by expression evaluated with Eval cmd. 50
EVAL.TIme() Value of time evaluated with Eval command 50
EVAL.TYPE() Type of expression evaluated with Eval command 51
FALSE FUNCHON ... s s s s s s s s s s mmm e s e e 52
FALSE() Boolean expression 52

L I T e ' 3 53
In This Section 53
__FILE_ () Path and file name of current PRACTICE script 53
__LINE_ () Number of script line to be executed next 53
FILE.EOF() Check if end of read-in file has been reached 53
FILE.EOFLASTREAD() Check if last read from file reached the end of the file 54
FILE.EXIST() Check if file exists 55
FILE.NEWHANDLE() Get next free handle 55
FILE.OPEN() Check if file is open 56
FILE.SUM() Get checksum from a file 56
FILE.TYPE() File type of loaded file 56
FORMAT FUNCLIONSeeociiiicccrrcescer s esss e s ss e s s e s s smme s s enssmmmn s e e smme s s easssmmn s eenssmmnn s eessnmmnnnnas 58
In This Section 58
FORMAT.BINary() Numeric to binary value (leading spaces) 58
FORMAT.CHAR() Numeric to ASCII character (fixed length) 59
FORMAT.Decimal() Numeric to string (leading spaces) 60
FORMAT.DecimalU() Numeric to unsigned decimal as string (leading spaces) 61
FORMAT.DecimalUZ() Numeric to unsigned decimal as string (leading zeros) 62
©1989-2024 Lauterbach PowerView Function Reference 4

FORMAT.FLOATY() Floating point value to string 63
FORMAT.HEX() Numeric to hex (leading zeros) 64
FORMAT.STRIing() Output string with fixed length 65
FORMAT.TIME() Time to string (leading spaces) 66
FORMAT.UDECIMAL() Refer to FORMAT.DecimalU() 66
FORMAT.UDECIMALZ() Refer to FORMAT.DecimalUZ() 67
FORMAT.UnixTime() Format Unix timestamps 67
FOUND FUNCLHIONS eeeiiiiiiiiis i sines s s sses s s s s s s s an s e s s e mn s mn nnannns 71
In This Section 71
FOUND() TRUE() if search item was found 71
FOUND.COUNTY() Number of occurrences found 72
GDB Function (TRACE32 as GDB Back-End)cccccecmriiiiimmminnssennisssesssssssssssssssssssnnes 73
GDB.PORTY() Port number for communication via GDB interface 73

L | = I T T T (oo 74
HELP.MESSAGE() Help search item 74

L [0 1S I T 4T o T 75
HOSTID() Host ID 75
HOSTIP() Host IP address 75
IFCONFIG and IFTEST FUNCLIONSccoiiiiciiieeecccmrennsnssssssssssssssssmsse s s s s sss s s s sssmmsmmmssnssnnssnns 76
In This Section 76
IFCONFIG.COLLISIONS() Collisions since start-up 76
IFCONFIG.CONFIGURATION() Connection type 77
IFCONFIG.DEVICENAME() Name of TRACES32 device 77
IFCONFIG.ERRORS() Errors since start-up 77
IFCONFIG.ETHernetADDRESS() MAC address of TRACE32 device 77
IFCONFIG.IPADDRESS() IP address of TRACE32 device 78
IFCONFIG.RESYNCS() Resyncs since start-up 78
IFCONFIG.RETRIES() Retries since start-up 78
IFTEST.DOWNLOAD() Download in KByte/sec 79
IFTEST.LATENCY() Latency in microseconds 79
IFTEST.UPLOAD() Upload in KByte/sec 79
INterCom FUNCLIONS ovieiiiet s s s s s e s e s 80
In This Section 80
InterCom.GetGlobalMacro() Exchange strings between PowerView instances 80
InterCom.GetPracticeState() PRACTICE run-state on other instance 81
InterCom.NAME() InterCom name of this TRACE32 instance 81
InterCom.PING() Check if ping is successful 82
InterCom.PODPORT() Port number of any TRACE32 instance 83
InterCom.PODPORTNAME() InterCom name of any TRACES32 instance 84
InterCom.PODPORTNUMBER() Number of TRACE32 instances 85
InterCom.PORTY() Port number of this TRACES32 instance 86
©1989-2024 Lauterbach PowerView Function Reference 5

LICENSE FUNCLUIONS ...occeeiiiiiiemsninisems s inssms s s nsssms s s sms s s s ssms s e s s s smmn s e smmn s e sammnnnnas 87
In This Section 87
LICENSE.DATE() Expiration date of maintenance contract 87
LICENSE.FAMILY() Name of the CPU family license 87
LICENSE.FEATURES() List of features licensed 88
LICENSE.getINDEX() Index of maintenance contract 88
LICENSE.GRANTED() License state 89
LICENSE.HAVEFEATURE() Checks if license is stored in debugger hardware 89
LICENSE.MSERIAL() Serial number of the maintenance contract 90
LICENSE.MULTICORE() Check if multicore debugging is licensed 90
LICENSE.RequiredForCPU() License required for selected CPU 90
LICENSE.SERIAL() Serial number of debug cable 91

IR0 L T3 T o o 92
LOG.DO.FILE() Get log file used by LOG.DO 92

Mathematical FUNCLIONS ccccoiiiiiiiemr s s s s e e 93
In This Section 93
math.ABS() Absolute value of decimal value 93
math.FABS() Absolute value of floating point number 93
math.FCOS() Cosine of an angle given in radian 94
math.FEXP() Exponentiation with base e (Euler's number) 94
math.FEXP10() Exponentiation with base 10 94
math.FINF() Positive infinity 94
math.FLOG() Natural logarithm of given value 95
math.FLOG10() Logarithm to base 10 of given value 95
math.FMAX() Return the larger one of two floating point values 95
math.FMIN() Return the smaller one of two floating point values 96
math.FMOD() Floating-Point Modulus 96
math.FNAN() Not a number value 97
math.FPOW() Y-th power of base x 97
math.FSIN() Sine of an angle given in radian 97
math.FSQRT() Square-root of given value 97
math.MAX() Return the larger one of two decimal values 98
math.MIN() Return the smaller one of two decimal values 98
math.SIGN() Return -1 or +1 depending on argument 98
math.SIGNUM() Return -1 or 0 or +1 depending on argument 99
math.TimeMAX() Return the larger one of two time values 99
math.TimeMIN() Return the smaller one of two time values 99

1= L ¥ T T e o 101
MENU.EXIST() Check if menu name exists 101

NODENAME FUNCHION ..cooieiiiiiiiiicns s s sssess s ssssms s ssss s s ssms s sams s ssms s ams e smsenssms s nnsmnnnnns 102
NODENAME() Node name of connected TRACE32 device 102

L0 T T T (o 4T 103

©1989-2024 Lauterbach PowerView Function Reference | 6

In This Section 103
OS.DIR() Check if directory exists 104
OS.DIR.ACCESS() Access rights to directory 104
OS.ENV() Value of OS environment variable 105
OS.FILE.readable() Check if file can be opened for reading 106
OS.FILE.ABSPATH() Absolute path to file or directory 106
OS.FILE.ACCESS() Access rights to file 107
OS.FILE.BASENAME() Strip directory and suffix from filenames 108
OS.FILE.DATE() Modification date and timestamp of file 108
OS.FILE.DATE2() Modification date of file 109
OS.FILE.EXIST() Check if file exists 109
OS.FILE.EXTENSION() File name extension 109
OS.FILE.JOINPATH() Join multiple paths 110
OS.FILE.LINK() Real file name of file link 111
OS.FILE.NAME() Extract file name from path 112
OS.FILE.PATH() Return path of file 113
OS.FILE.REALPATH() Canonical absolute path to file or directory 113
OS.FILE.SIZE() File size in bytes 114
OS.FILE.TIME() Modification timestamp of file 114
OS.FILE.UnixTime() Unix timestamp of file 115
OS.FIRSTFILE() First file name matching a pattern 116
OS.ID() User ID of TRACES32 instance 117
OS.NAME() Basic name of operating system 118
OS.NEXTFILE() Next file name matching a pattern 119
OS.PORTAVAILABLE.TCP() Check if TCP portisused 119
OS.PORTAVAILABLE.UDP() Check if UDP portisused 120
OS.PresentConfigurationFile() Name of used TRACE32 configuration file 120
OS.PresentDemoDirectory() Demo directory for the current architecture 121
OS.PresentExecutableDirectory() Directory of current TRACE32 exe. 121
OS.PresentExecutableFile() Path and file name of current TRACE32 exe. 121
OS.PresentHomeDirectory() Path of the home directory 122
OS.PresentHELPDirectory() Path of the TRACE32 online help directory 122
OS.PresentLicenseFile() Current TRACERS2 license file 122
OS.PresentPracticeDirectory() Directory of currently executed script 123
OS.PresentPracticeFile() Path and file name of currently executed script 123
OS.PresentSystemDirectory() TRACES32 system directory 123
OS.PresentTemporaryDirectory() TRACES32 temporary directory 124
OS.PresentWorkingDirectory() Current working directory 124
OS.RETURN() Return code of the last executed operating system command 125
OS.TIMER() OS timer in milliseconds 125
OS.TMPFILE() Name for a temporary file 125
OS.VERSION() Type of the host operating system 127
OS.Window.LINE() Get line from an OS.Window window 130
©1989-2024 Lauterbach PowerView Function Reference | 7

N I T U 13 e T 131
In This Section 131
PATH.NUMBER() Number of path entries 131
PATH.PATH() Search path entry 131

ProcessID FUNCHONccccceiiiiiiesriniems i ems s s s s s s s s s s e sammn e e 133
ProcessID() Process identifier of a TRACE32 PowerView instance 133

PRACTICE FUNCLIONSceeiiieisiiiisiims s s s s s s s s s s s sms s s san s s smna s assmnnnnsnns 134
In This Section 134
PRACTICE.ARG() Return value of GOSUB, DO, RETURN, and ENDDO 134
PRACTICE.ARG.SIZE() Number of passed or returned arguments 135
PRACTICE.CALLER.FILE() File name of the script/subscript caller 136
PRACTICE.CALLER.LINE() Line number in caller script 136
PRACTICE.CoMmanD.AVAlILable() Check if command is available 137
PRACTICE.FUNCtion.AVAlILable() Check if function is available 138

PRINTER FUNCHION ...ceoiiiiieis s s s s s s am s s s s s s s m e s mn s 139
PRINTER.FILENAME() Path and file name of next print operation 139

T LG T 3T e o 140
RADIX() Current radix setting 140

RANDOM FUNCLIONSociiiciicisemecmcnnnnsnssssssssssssmmms s s s s s s nssssss s ssmsmmmses s s s s sesssnsssssnnnmmnsnnssnns snnnns 141
RANDOM() Pseudo random number 141
RANDOM.RANGE() Pseudo random number from specified range 141
RANDOM.RANGE.HEX() Pseudo hex random number from specified range 142

0 I U 3T o 143
RCL.PORT() UDP Port number of remote APl interface 143
RCL.TCP.NrUsedCons() Number of remote API clients connected via TCP 143
RCL.TCP.PORT() TCP Port number of remote APl interface 144

SOFTWARE FUNCHONS ..ueeeiiiiiiiemssrnisss s s nnsssss s s snsssss s s s ssss e s ssss s s s sssss s ensssnsns snnnnes 145
In This Section 145
SOFTWARE.64BIT() Check if TRACE32 executable is 64-bit 145
SOFTWARE.BUILD() Upper build number 145
SOFTWARE.BUILD.BASE() Lower build number 145
SOFTWARE.VERSION() Release build or nightly build, etc. 146

STRING FUNCLIONS ..ot s s s s s s e s 147
In This Section 147
STRing.CHAR() Extract a character 147
STRing.ComPare() Check if string matches pattern 148
STRing.COUNTY() Substring occurrences 148
STRing.CUT() Cut string from left or right 149
STRing.ESCapeQuotes() Double quote character inside string 149
STRing.FIND() Check if search characters are found within string 150
STRing.LENgth() Length of string 150

©1989-2024 Lauterbach PowerView Function Reference | 8

STRing.LoWeR() String to lowercase 151
STRing.MID() Extract part of string 151
STRing.Replace() Modified string after search operation 152
STRing.SCAN() Offset of the found string 153
STRing.SCANAnNdEXxtract() Extract remaining string after search string 154
STRing.SCANBack() Offset of the found string 155
STRing.SPLIT() Return element from string list 156
STRing. TOKEN() Extract token from string 159
STRing.TRIM() String without leading and trailing whitespaces 161
STRing.UPpeR() String to uppercase 162
TCF Functions (TRACE32 as TCF Agent)ccccuirimmmmnnsemsmmnnssssnsnssss s s sssssssssssnas 163
In This Section 163
TCF.PORT() Port number of TCF interface 163
TCF.DISCOVERY() Check if TCF discovery is enabled 163
TEST FUNCLION ... es s s s s s s s s an s s e amn e am e e nnnn 164
TEST.TIMEISVALID() Check if time value is valid 164
QLI =00 L0 I L 4T (e o 165
TIMEOUTY() Check if command was fully executed 165
LI LI = VT e o 167
TITLE() Caption of the TRACE32 main window 167
B3 187 T T 3T o 168
TRUE() Boolean expression 168
WARNINGS FUNCHION ..cooiiieiii it s s s s s e smm s e s e e sammn e e 168
WARNINGS() Check if warning occurred during command execution 168
WINAOW FUNCHIONS .eeeeiiiiiie e rrnie s nrnss s s s s e s e mmmn e 169
In This Section 169
WINdow.COMMAND() Command string displayed in window 169
WINdow.EXIST() Check if window name exists 170
WINdow.LIST() Generate a comma-separated list of window names 170
WINdow.POSition() Information on window position and dimension 171
WINPAGE.CURRENTY() Get name of currently selected window page 172
WINPAGE.EXIST() Check if window page exists 172
WINPAGE.LIST() Generate comma-separated list of page names 173
©1989-2024 Lauterbach PowerView Function Reference | 9

PowerView Function Reference

History

Version 13-May-2024

03-May-2024
03-Mar-2024
31-Jan-2023
11-Nov-2022
07-Apr-2022
07-Apr-2022
06-Apr-2022
05-Apr-2022
28-Mar-2022
03-Mar-2022

20-Jan-2022

New function group, ‘CONNECTION Functions’.

New function FILE.NEWHANDLE().

Solaris was removed as supported host OS.
New function STRing.ESCapeQuotes().
New function RCL. TCP.NrUsedCons().

New function WINPAGE.LIST().

New function WINPAGE.CURRENT().

New function WINdow.LISTY().

New functions: EVAL.ADDRESS(), EVAL.BOOLEAN(), EVAL.FLOAT(), and EVAL.PARAM().

New functions: CONVert.LINEAR11TOFLOAT() and CONVert.LINEAR16TOFLOAT().

New function: STRing. TOKEN().

©1989-2024 Lauterbach

PowerView Function Reference

10

In This Document

This document lists all the host-related functions. These functions return information about the operating
system and the TRACES32 PowerView GUI.

Each system has additional system-specific functions:
. General Function Reference

o Stimuli Generator Function Reference

The following generic functions are available for all systems. The capital letters represent the short form of
the function. Any function name can be used in its long or short form.

For example: CONVert.SignedLong() can be abbreviated to CONV.SL()

For more information about the long and short form, see “Long Form and Short Form of Commands and
Functions” (ide_user.pdf).

©1989-2024 Lauterbach PowerView Function Reference | 11

AREA Functions

This figure provides an overview of the return values of some of the functions. For explanations of the
illustrated functions and the functions not shown here, see below.

AREA.SIZE.COLUMNS()
|

= | BuAREA List I =n| Wl <

area name columns | Tines output file

Fﬂ:ﬂ? ?}-g: ﬂg: ‘J__. AREA.SELECTed()
I estlog I ‘ 318. 108. =
] '
AREA.NAME() AREA SIZE.LINES()

In This Section

See also
B AREA 1J AREA.COUNT() 1 AREA.EXIST() 1 AREA.LINE()
J AREA.MAXCOUNT() 0 AREA.NAME() J AREA.SELECTed() (O AREA.SIZE.COLUMNS()

1 AREA.SIZE.LINES()

AREA.COUNT() Number of existing message areas

[build 79795 - DVD 02/2017]

Syntax: AREA.COUNT()

Returns the number of message areas which exist in the TRACES32 instance. After starting TRACES32 you
will have just one message area, but you can create additional message areas with the command
AREA.Create.

Return Value Type: Decimal value.

AREA.EXIST() Check if message area exists

[build 79795 - DVD 02/2017]

Syntax: AREA _EXIST(<area_name>)

Returns TRUE if a message area with the given name exists.
Parameter Type: String.

Return Value Type: Boolean.

©1989-2024 Lauterbach PowerView Function Reference | 12

AREA.LINE()

Extract line from message area

Syntax:

AREA.LINE(<area_name>,<line>)

Returns one line from a message area.

[build 79895 - DVD 02/2017]

In order to use the function, you do not need to open the AREA window of a message area. You just need to
open an AREA window if you want to display the message area output on screen.

- |B: :AREA
1]...
2|...
3|...
2...
E)1...

A Positive numbers for <line> starting with 1 identify lines from the top of the message area.

B 0 and negative numbers for <line> identify lines from the bottom of the message area.

Parameter and Description:

<area_name>

Parameter Type: String.

<line>

Parameter Type: Decimal value.

Return Value Type: String.

AREA.MAXCOUNT()

Maximum number of message areas

Syntax:

AREA.MAXCOUNT()

[build 79795 - DVD 02/2017]

Returns the maximum number of message areas which can be created in your version of TRACES32.

Return Value Type: Decimal

value.

©1989-2024 Lauterbach

PowerView Function Reference | 13

AREA.NAME() Names of existing message areas

[build 79795 - DVD 02/2017] [Go to figure]

Syntax: AREA.NAME(<index>)

Returns the name of a message area specified by an <index>. The <index> corresponds to the line number
in the AREA.List window. The <index> of the first line is 0.

Parameter Type: Decimal value.
Return Value Type: String.

Example: In addition to the default message area A00O, two more message areas are created. The
function AREA.NAME() is then used to return the name of the message area that has the <index> 2.

AREA.Create ephone ;create the message areas 'ephone'

AREA.Create testlog ;and 'testlog'

AREA.List ;overview of existing message areas

AREA.Select A000 ;select the default message area A000 for output
AREA.view A000 ;display the AREA window A000

PRINT AREA.NAME (2) ;print the AREA window name that has the index 2

;to the AREA window A000
; (here: 'testlog', see AREA.List window)

= | B:AREA List =] == = [B:AREAview AD00 [o |[& |
area name CD]%? 11;5%- output tile ‘| ~
ephone ‘ 318. ‘ 108. ‘ 1
estlog 318. 108. estlog -
AREA.SELECTed() Name of active message area
[build 80344 - DVD 02/2017] [Go to figure]
Syntax: AREA.SELECTed()

Returns the area name of the currently active message area. A message area is made the active message
area with the command AREA.Select.

Return Value Type: String.

©1989-2024 Lauterbach PowerView Function Reference | 14

AREA.SIZE.COLUMNS() Columns of a message area

[build 80344 - DVD 02/2017] [Go to figure]

Syntax: AREA.SIZE.COLUMNS(<area_name>)

Returns the number of columns a message area was created with. You can specify the number of columns
with the AREA.Create command.

Parameter Type: String.

Return Value Type: Decimal value.

AREA.SIZE.LINES() Lines of a message area

[build 80344 - DVD 02/2017] [Go to figure]

Syntax: AREA.SIZE.LINES(<area_name>)

Returns the number of lines a message area was created with. You can specify the number of lines with the
AREA.Create command.

Parameter Type: String.

Return Value Type: Decimal value.

©1989-2024 Lauterbach PowerView Function Reference | 15

CLOCK Functions

The CLOCK.*() functions have been renamed to DATE.*() functions, see “DATE Functions”, page 37.

©1989-2024 Lauterbach PowerView Function Reference | 16

CONFIG Function

CONFIG.SCREEN() Check if screen output is switched on

[build 22971 - DVD 11/2010]

Syntax: CONFIG.SCREEN()

Returns FALSE if the screen output is switched off inside the file config.t32 with SCREEN=0FF

Return Value Type: Boolean.

©1989-2024 Lauterbach PowerView Function Reference | 17

CONNECTION Functions

CONNECTION.DEVice.IndexByName() Get device index

[build 161831 - DVD 02/2024]

Syntax: CONNECTION.DEVice.IndexByName(" <device_name>")

Returns device index of the debug module with the specified device name. If there is no debug module with
this device name in the list of detected debug modules, the function returns -1.

Parameter Type: String.

Return Value Type: Decimal value.

CONNECTION.DEVice.IndexBySerialNumber() Get device index

[build 161831 - DVD 02/2024]

Syntax: CONNECTION.DEVice.IndexBySerialNumber(" <device_serial_number>")

Returns device index of the debug module with the specified device serial number. If there is no debug
module with this device serial number in the list of detected debug modules, the function returns -1.

Parameter Type: String.

Return Value Type: Decimal value.

CONNECTION.DEVice.InUse() Debug module currently in use

[build 161831 - DVD 02/2024]

Syntax: CONNECTION.DEVice.InUse(<index>)

Returns TRUE if the detected debug module at <index> is currently in use by this or another PowerView
instance.

Parameter Type: Decimal value.

Return Value Type: String.

©1989-2024 Lauterbach PowerView Function Reference | 18

CONNECTION.DEVice.NAME() Get device name of debug module

[build 161831 - DVD 02/2024]

Syntax: CONNECTION.DEVice.NAME(<index>)

Returns the device name of the detected debug module at <index>.
Parameter Type: Decimal value.

Return Value Type: String.

Example: Print list of USB debug module device names

// Select Interface
CONNECTION.USB.scan ON

// Find debug module (s)
CONNECTION.FindDEVices

LOCAL &num_devices &i
&num_devices=CONNECTION.DEVice.Number ()

PRINTF "%1i debug modules(s) found. Device names are:" &num_devices
&1=0
WHILE &i<&num_devices

(
PRINTF "%i: %s" &1 CONNECTION.DEVice.NAME (&1)

&i=&1+1
)
CONNECTION.DEVice.Number() Number of detected debug modules
[build 161831 - DVD 02/2024]
Syntax: CONNECTION.DEVice.Number()

Returns the number of found debug modules.

Return Value Type: Decimal value.

©1989-2024 Lauterbach PowerView Function Reference | 19

Example: Print number of TRAC32 debug modules which are connected via USB.

// Select Interface
CONNECTION.USB.scan ON

// Find debug module (s)
CONNECTION.FindDEVices

LOCAL &num_devices &i
&num_devices=CONNECTION.DEVice.Number ()
PRINTF "%i USB debug modules(s) found." &num_devices

CONNECTION.DEVice.PORT() Get host connection port of debug module

[build 161831 - DVD 02/2024]

Syntax: CONNECTION.DEVice.PORT(<index>)

Returns the device's host connection port name of the detected debug module at index <index> as string.
Parameter Type: Decimal value.
Return Value Type: String.

Return Value and Description:

UsB USB Port
ETH Ethernet connection
TCPUSB USB Port of remote PC
CONNECTION.DEVice.SerialNumber() Get device serial number
[build 161831 - DVD 02/2024]
Syntax: CONNECTION.DEVice.SerialNumber(<index>)

Returns the serial number of the detected debug module at <index>.
Parameter Type: Decimal value.

Return Value Type: String.

©1989-2024 Lauterbach PowerView Function Reference | 20

CONNECTION.GetDriverError() Get driver error of last connection attempt

[build 164324 - DVD 02/2024]

Syntax: CONNECTION.GetDriverError([<first_line_nr>[,<last_line_nr>]])

Returns the driver error message, if the last call of command CONNECTION.ESTABLISH aborted with
error. If no line numbers are given, the function will return the full error message.

Parameter Type: Decimal value.

Return Value Type: String.

CONNECTION.HOSTMCl.TestMciServer() Get MCI server state information

[build 167607 - DVD 09/2024]

Syntax: CONNECTION.HOSTMCI.TestMciServer(<hostname:port>)

Returns the state of the MCI server at the given hostname and port number.
Parameter Type: String.
Return Value Type: String.

Return Value and Description:

OK MCI server is accessible and ready to use.
ALREADY_IN_USE MCI server is accessible, but currently in use by another PowerView
instance.

VERSION_MISMATCH | MCI server is accessible, but needs to be updated to a newer version.

ERROR MCI server is not running or not accessible.

CONNECTION.INTerface.Available() = Check connection interface availability

[build 161831 - DVD 02/2024]

Syntax: CONNECTION.INTerface.Available(" <interface_name>")

Returns TRUE, if the specific interface name is supported for the current PowerView instance's target
architecture. See command CONNECTION.SELect for a list of available interface names.

Parameter Type: String.

Return Value Type: Boolean.

©1989-2024 Lauterbach PowerView Function Reference | 21

CONNECTION.STATE.ERROR() Failed to establish connection

[build 161831 - DVD 02/2024]

Syntax: CONNECTION.STATE.ERROR()

Returns TRUE if the last call of command CONNECTION.ESTABLISH aborted with error.

Return Value Type: Boolean.

CONNECTION.STATE.Interactive() Interactive connection state

[build 158069 - DVD 09/2023]

Syntax: CONNECTION.STATE.Interactive()

Returns TRUE if the PowerView instance is in Interactive Connection Mode (“Interactive Connection
Mode” in PowerView User's Guide, page 12 (ide_user.pdf)).
If the function returns false, the PowerView instance is already connected.

Return Value Type: Boolean.

©1989-2024 Lauterbach PowerView Function Reference | 22

CONVert Functions

In This Section

See also

1 CONVert. ADDRESSTODUALPORT() 1 CONVert. ADDRESSTONONSECURE()
J CONVert. ADDRESSTOSECURE() [CONVert.BOOLTOINT()

d CONVert.CHAR() (1 CONVert.FLOATTOINT()

1 CONVert.HEXTOINT() [CONVert.INTTOBOOL()

1 CONVert.INTTOFLOAT() [CONVert.INTTOHEX()

[CONVert.INTTOMASK() 1 CONVert.LINEAR11TOFLOAT()
1 CONVert.LINEAR16TOFLOAT() 1 CONVert. MASKMTOINT()

1 CONVert. MASKTOINT() 1 CONVert.OCTaltoint()

(d CONVert.SignedByte() (d CONVert.SignedLong()

[CONVert.SignedWord() 1 CONVert. TIMEMSTOINT()

1 CONVert. TIMENSTOINT() 1 CONVert. TIMERAWTOINT()

(1 CONVert. TIMESTOINT() (1 CONVert. TIMEUSTOINT()

1 CONVert. TOLOWER() 1 CONVert. TOUPPER()

CONVert. ADDRESSTODUALPORT()

Dualport access class

Syntax:

[build 75614 - DVD 02/2016]

CONVert.ADDRESSTODUALPORT(<address>)

Converts an address into the dualport access class if possible. If the access class was already a dualport
access class, the originally specified access class is returned.

Parameter Type: Address.

Return Value Type: Address.

Example:
PRINT ADDRESS.ADDRESSTODUALPORT (D:0x1000) ; returns ED:0x1000
PRINT ADDRESS.ADDRESSTODUALPORT (ED:0x1000) ; returns ED:0x1000
PRINT ADDRESS.ADDRESSTODUALPORT (ETB:0x0) ; returns EETB:0x0
PRINT ADDRESS.ADDRESSTODUALPORT (EETB:0x0) ; returns EETB:0x0
©1989-2024 Lauterbach PowerView Function Reference | 23

CONVert. ADDRESSTONONSECURE()

Non-secure access class

32-bit and 64-bit ARM cores

[build 75614 - DVD 02/2016]

Syntax: CONVert. ADDRESSTONONSECURE(<address>)

Converts an address into the non-secure access class if possible.

Parameter Type: Address.
Return Value Type: Address.

Example:

PRINT CONVert.ADDRESSTONONSECURE (AHB:0x0)
PRINT CONVert .ADDRESSTONONSECURE (ZAHB: 0x0)
PRINT CONVert .ADDRESSTONONSECURE (NAHB: 0x0)

CONVert.ADDRESSTOSECURE()

; returns NAHB:0x0
; returns NAHB:0x0
; returns NAHB:0x0

Secure access class

32-bit and 64-bit ARM cores

[build 75614 - DVD 02/2016]

Syntax: CONVert. ADDRESSTOSECURE(<address>)

Converts an address into the secure access class if possible.
Parameter Type: Address.

Return Value Type: Address.

©1989-2024 Lauterbach

PowerView Function Reference | 24

CONvert.BOOLTOINT() Boolean to integer

[build 21439 - DVD 04/2010]

Syntax: CONVert.BOOLTOINT(<bool>)

Converts a boolean value to an integer.
Parameter Type: Boolean.

Return Value Type: Hex value.
o TRUE becomes 1
o FALSE becomes 0

CONVert.CHAR() Integer to ASCII character

Syntax: CONVert.CHAR(<integer>)

Converts an integer to an ASCII character. For values from 0 to 127, the result is an ASCII character on
all operating systems. For values from 128 to 255, the result depends on the font setting in the
config.t32. On Windows, the result additionally depends on the active console code page.

Parameter Type: Hex or decimal value.
Return Value Type: ASCII value.

Example: If the number of the active console code page is 850, then the integers 0xa9 or 169. are
converted to the copyright character.

;the copyright (c) is returned as an ASCII value
PRINT $%$COLOR.TEAL CONVert.CHAR(169.)
PRINT %$COLOR.RED CONVert.CHAR (0xA9)

;an ASCII value can be converted to a string by concatenating the ASCII
;value with a string, an empty string in this example
PRINT ""+CONVert.CHAR(169.)

Eﬁi_l B::05.Window chcp EI@

’Act'lve code page: 850 P

B::AREA.view =n| Wl <

2= N

©1989-2024 Lauterbach PowerView Function Reference | 25

CONVert.FLOATTOINT() Float to integer

Syntax: CONVert.FLOATTOINT(<float>)

Converts a float value to an integer value.
Parameter Type: Float.

Return Value Type: Decimal value.

Example:
PRINT CONVert.FLOATTOINT (1.8887) ; result 1
CONVert.HEXTOINT() Hex to integer
[build 64298 - DVD 09/2015]
Syntax: CONVert.HEXTOINT(<hex>)

Converts a hex value to an integer value. The function is the counterpart of CONVert.INTTOHEX().

Parameter Type: Hex value.
Return Value Type: Decimal value.

Examples:

PRINT CONVert.HEXTOINT (0x42) ; result 66

Instead of using CONVert.HEXTOINT() you can also add 0. to a hex value to get an integer value.

PRINT 0x42+0. ; the result is also 66

©1989-2024 Lauterbach PowerView Function Reference | 26

CONVert.INTTOBOOL() Integer to boolean

[build 50832 - DVD 02/2014]

Syntax: CONVert.INTTOBOOL (<integer>)

Converts an integer to a boolean value.
Parameter Type: Decimal or hex value.

Return Value Type: Boolean.
. FALSE if value==
J TRUE if value!=0

CONVert.INTTOFLOAT() Integer to floating point value

[build 64326 - DVD 09/2015]

Syntax: CONVert.INTTOFLOAT(<integer>)

Converts an integer to a floating point value. The function is the counterpart of
CONVert.FLOATTOINT().

Instead of using CONVert.INTTOFLOAT(), you can also add 0.0 to an integer value to get a floating
point value.

Parameter Type: Decimal or hex value.
Return Value Type: Float.
Examples:

PRINT "<integer> <float>"

PRINT "11. == " CONVert.INTTOFLOAT (11.)
PRINT "OxB == " CONVert.INTTOFLOAT (0xB)
PRINT "Oyl1011 == " CONVert.INTTOFLOAT (0y1011)

= | BuAREAview =n| Wl <

<integer> <float> i

11. = 11.0

OxB = 11.0

Oy1011 = 11.0 -

4 [m 3

©1989-2024 Lauterbach PowerView Function Reference | 27

CONVert.INTTOHEX() Integer to hex

[build 50832 - DVD 02/2014]

Syntax: CONVert.INTTOHEX(<integer>)
Converts an integer to a hex value.
Parameter Type: Decimal or hex or binary value.
Return Value Type: Hex value.
Examples:

PRINT %COLOR.RED "<integer> <hex>"

PRINT "12. == " CONVert.INTTOHEX (12.)
PRINT "0xC == " CONVert.INTTOHEX (0xC)
PRINT "Oy1100 == " CONVert.INTTOHEX (0y1100)

= | BuAREAview =N Eoh(

<integer> <hex> i

12. == 0C

0xC == 0C

0y1100 == 0OC -

CONVert.INTTOMASK() Compose bit-mask from integer value and mask

Syntax: CONVert.INTTOMASK(<value>,<mask>)

In TRACERS?2, there is a special data type which realize masks. Bit and hex masks differ only in the input
format. The function converts two integers to a bitmask.

The first parameter stands for the value bits and the second parameter defines the mask bits.

Parameter and Description:

<value> Parameter Type: Decimal or hex or binary value.

<mask> Parameter Type: Decimal or hex or binary value.

Return Value Type: Bit mask.

©1989-2024 Lauterbach PowerView Function Reference | 28

Examples:

’

’

all examples represent the same mask value and print 0y0101xxxx
bitmask: 0y010I1XXXX
hexmask: 0x5X

bits 3..0

PRINT 0x5X

PRINT CONVert.
PRINT CONVert.
PRINT CONVert.
PRINT CONVert.
PRINT CONVert.
PRINT CONVert.

; bits 6 and 4 must be 1

are don’t care

INTTOMASK (0y01010000, 0y00001111)
INTTOMASK (0x50, 0x0£f)

INTTOMASK (0y01010000, 0x0£f)
INTTOMASK (0x50, 0y00001111)
INTTOMASK(OyOlOlOOOO 15.)
INTTOMASK (80.,0y00001111)

CONVert.LINEAR11TOFLOAT()

LINEAR11 to float

Syntax:

Converts a LINEAR11 (11bit signed mantissa / 5bit signed exponent) PMBus value to a floating point
value.

CONVert.LINEAR11TOFLOAT(<value>)

Parameter Type: Decimal value.

Return Value Type: Float.

CONVert.LINEAR16TOFLOAT()

[build 128910 - DVD 02/2021]

LINEAR16 to float

Syntax:

[build 128910 - DVD 02/2021]

CONVert.LINEAR16 TOFLOAT(<mantssa>,<exponent>)

Converts a LINEAR16 (16bit signed mantissa / 5 bit signed exponent) PMBus value to a floating point

value.

Parameter Type: Decimal value.

Return Value Type: Float.

©1989-2024 Lauterbach

PowerView Function Reference

29

CONVert. MASKMTOINT()

Bits set to don't-care in given bit-mask

Syntax: CONVert.MASKMTOINT(<mask_value>)

Converts a mask to an integer and returns the mask part.
Parameter Type: Bit or hex mask.

Return Value Type: Hex value.

Examples:

; bitmask: 0y0101XXXX
; hexmask: 0x5X
; bits 6 and 4 must be 1

; bits 3..0 are don'’t care
PRINT CONVert.MASKMTOINT (0Oy0101XXXX) ; prints Of
PRINT CONVert .MASKMTOINT (0x5X) ; prints Of

; bitmask: 0y01XXxxX10
; bits 6 and 2 must be 1
; bits 5..2 are don'’t care

PRINT CONVert.MASKMTOINT (0y01XXXX10) ; prints 3

©1989-2024 Lauterbach

PowerView Function Reference

30

CONVert.MASKTOINT()

Bits set to 1 in given bit-mask

Syntax: CONVert.MASKTOINT(<value>)

Converts a bitmask to an integer and CONVert.MASKTOINT() returns the value part.

Parameter Type: Bit or hex mask.
Return Value Type: Hex value.
Examples:

; bitmask: 0y0101XXXX
; hexmask: 0x5X
; bits 6 and 4 must be 1

; bits 3..0 are don'’t care
PRINT CONVert.MASKTOINT (0y0101XXXX) ; prints 50
PRINT CONVert.MASKTOINT (0x5X) ; prints 50

; bitmask: 0y01XXxx10
; bits 6 and 2 must be 1
; bits 5..2 are don'’t care

PRINT CONVert.MASKTOINT (0y01XXXX10) ; prints 42

CONVert.OCTaltoint()

Octal to decimal

Syntax: CONVert.OCTaltoint(" <string>")

Converts a string of octal digits into a number.
Parameter Type: String.

Return Value Type: Decimal value.

Examples:

PRINT CONVert.OCTaltoint ("71")

PRINT "Oy" %BINary CONVert.OCTaltoint("71")

[build 46260 - DVD 08/2013]

; prints 57

; prints 0y00111001

©1989-2024 Lauterbach

PowerView Function Reference | 31

CONVert.SignedByte() 1 byte to 8 bytes

Syntax: CONVert.SignedByte(<value>)

Converts a byte to a quad word with sign extension. A quad word has eight bytes.
Only the lowest byte (B0) from <value> is evaluated and all higher bytes will be ignored.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

Examples:
PRINT CONVert.SignedByte (0x70) ; result 70
PRINT CONVert.SignedByte (0x80) ; result Offffffffffff££80
PRINT CONVert.SignedByte (0x12345670) ; result 70
PRINT CONVert.SignedByte (0x12345680) ; result Offffffffffff££80
PRINT CONVert.SignedByte (0y101010000000) ; result Offffffffffff££80

Data.dump Register (bp)+CONVert.SignedByte (Register (bx))

CONVert.SignedLong() 4 bytes to 8 bytes

Syntax: CONVert.SignedLong(<value>)

Converts a long word (four bytes) to a quad word with sign extension. A quad word has eight bytes.
Only the lowest four bytes (BO...B3) from <value> are evaluated and all higher bytes will be ignored.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

Examples:
PRINT CONVert.SignedLong (0x7766554433221100) ; result 33221100
PRINT CONVert.SignedLong (0x7766554483221100) ; result Offff£f££f£83221100
PRINT CONVert.SignedLong (0x70561234) ; result 70561234
PRINT CONVert.SignedLong (0x80561234) ; result Offffffff80561234

©1989-2024 Lauterbach PowerView Function Reference | 32

CONVert.SignedWord() 2 bytes to 8 bytes

Syntax:

CONVert.SignedWord(<value>)

Converts a word (two bytes) to a quad word with sign extension. A quad word has eight bytes.
Only the lowest two bytes (B0 and B1) from <value> are evaluated and all higher bytes will be ignored.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

Examples:

PRINT
PRINT
PRINT
PRINT
PRINT

CONVert.
CONVert.

CONVert

CONVert.
CONVert.

SignedWord (0x7012) ; result 7012
SignedWord (0x8012) ; result Offfffffff£f£f£8012
.SignedWord (0x12347056) ; result 7056
SignedWord (0x12348056) ; result Offffffffffff8056
SignedWord (0y00010010001101001000000001010110)

; result Offffffffff£f£8056

Data.dump Register (bp)+CONVert.SignedWord (Register (bx))

CONVert.TIMEMSTOINT() Time to milliseconds

Syntax:

CONVert. TIMEMSTOINT(<time>)

Converts <time> to milliseconds.

Parameter Type: Time value.

Return Value Type: Decimal value.

Example:

PRINT CONVert.TIMEMSTOINT (1.8887s) ; result 1888

©1989-2024 Lauterbach

PowerView Function Reference | 33

CONVert.TIMENSTOINT() Time to nanoseconds

[build 66884 - DVD 02/2016]

Syntax: CONVert.TIMENSTOINT(<time>)

Converts <time> to nano seconds.
Parameter Type: Time value.

Return Value Type: Decimal value.

Example:
PRINT CONVert.TIMENSTOINT (1.8887s) ; result 1888700000
CONVert. TIMERAWTOINT() Time to TRACES32 timer ticks
[build 110672 - DVD 09/2019]
Syntax: CONVert.TIMERAWTOINT(<time>)

Converts <time>to TRACES32 timer ticks. One tick = 78.125ps
Parameter Type: Time value.

Return Value Type: Hex value.

CONVert.TIMESTOINT() Time to seconds

Syntax: CONVert. TIMESTOINT(<time>)

Converts <time> to seconds.
Parameter Type: Time value.
Return Value Type: Decimal value.

Example:

PRINT CONVert.TIMESTOINT (150000ms) ; result 150

©1989-2024 Lauterbach PowerView Function Reference | 34

CONVert.TIMEUSTOINT() Time to microseconds

Syntax: CONVert. TIMEUSTOINT(<time>)

Converts <time> to micro seconds.
Parameter Type: Time value.
Return Value Type: Decimal value.

Example:

PRINT CONVert.TIMEUSTOINT (20.1234s) ; result 20123400

©1989-2024 Lauterbach PowerView Function Reference | 35

CONVert.TOLOWER() String to lower case

[build 27143 - DVD 06/2011]

Syntax: CONVert. TOLOWER(" <string>")

Converts a string to lower case.
Parameter Type: String.

Return Value Type: String.

Example:
PRINT CONVert.TOLOWER ("aBcDeF") ; result abcdef
CONVert. TOUPPER() String to upper case
Syntax: CONVert.TOUPPER(" <string>")

Converts a string to upper case.
Parameter Type: String.
Return Value Type: String.

Example:

PRINT CONVert.TOUPPER ("aBcDeF") ; result ABCDEF

©1989-2024 Lauterbach PowerView Function Reference | 36

DATE Functions

In This Section

See also
W DATE O DATE.DATE() 0 DATE.DAY() (0 DATE.MakeUnixTime()
O DATE.MONTH() (0 DATE.SECONDS() 0 DATE.TIME() 0 DATE.TimeZone()
O DATE.UnixTime() O DATE.UnixTimeUS() O DATE.utcOffset() O DATE.YEAR()
DATE.DATE() Current date
Syntax: DATE.DATE()

CLOCK.DATE() (deprecated)

Returns the current date.
Return Value Type: String.

Example:

;returns the current date, e.g. 5. Aug 2015
PRINT DATE.DATE ()

;equivalent to the previous example:
PRINT FORMAT.UnixTime("j. M Y",DATE.UnixTime (),DATE.utcOffset())

DATE.DAY() Today’s date

[build 13598 - DVD 10/2008]

Syntax: DATE.DAY()
CLOCK.DAY() (deprecated)

Returns the today’s date.

Return Value Type: Decimal value.

©1989-2024 Lauterbach PowerView Function Reference | 37

DATE.MakeUnixTime() Date to Unix timestamp

[build 64298 - DVD 09/2015]

Syntax: DATE.MakeUnixTime(<year>,<month>,<day>,<hour>,<minute>,<second>)

Creates a Unix timestamp from a human readable date given in UTC. You can also use a local date, but then
you have to subtract your local offset from UTC afterwards, e.g. with DATE.utcOffset().

Parameter and Description:

<year> Parameter Type: Decimal value. Four-digit representation of a year (e.qg.
2000. or 2004.).

<month> Parameter Type: Decimal value. Numeric representation of a month (1. ...
12.).

<day> Parameter Type: Decimal value. Day of the month (1. ... 31.).

<hour> Parameter Type: Decimal value. 24-hour format of an hour (0. ... 23.).

<minute> Parameter Type: Decimal value. Minutes (0. ... 59.)

<second> Parameter Type: Decimal value. Seconds (0. ... 59.)

NOTE: Remember to append a dot so that the arguments are interpreted as decimal

constants.

Return Value Type: Decimal value.
Examples:

;converts 21-July-2015, 12:45 given in UTC to the Unix time 1437482700
PRINT DATE.MakeUnixTime (2015.,7.,21.,12.,45.,0.)

;returns -11644473600.
PRINT DATE.MakeUnixTime(1601.,1.,1.,0.,0.,0.)

;returns the Unix time of last midnight
PRINT DATE.MakeUnixTime (DATE.YEAR(),DATE.MONTH () ,DATE.DAY(),0.,0.,0.)

©1989-2024 Lauterbach PowerView Function Reference | 38

DATE.MONTH()

Number of current month

Syntax: DATE.MONTH()
CLOCK.MONTH() (deprecated)

Returns the number of the current month (1 to 12).

Return Value Type: Decimal value.

DATE.SECONDS()

[build 12210 - DVD 10/2008]

Seconds since midnight

Syntax: DATE.SECONDS()
CLOCK.SECONDS() (deprecated)

Returns the time since midnight in seconds.

Return Value Type: Decimal value.

DATE.TIME()

Current time

Syntax: DATE.TIME()
CLOCK.TIME() (deprecated)

Returns the current time.
Return Value Type: String.
Example:

;returns the current time, e.g. 18:35:02
PRINT DATE.TIME ()

;equivalent to the previous example:

PRINT FORMAT.UnixTime ("H:i:s",DATE.UnixTime () ,DATE.utcOffset())

©1989-2024 Lauterbach

PowerView Function Reference | 39

DATE.TimeZone() Time zone identifier and hh:mm:ss

Syntax: DATE.TimeZone()

Returns a three to five letter time zone identifier and the UTC offset in hh:mm:ss. The UTC offset is
positive if the time zone is west of UTC and negative if east of UTC.

Return Value Type: String.

Example:
PRINT DATE.TimeZone () ; returns: CEST-02:00:00
DATE.UnixTime() Seconds since Jan 1970
[build 64298 - DVD 09/2015]
Syntax: DATE.UnixTime()

CLOCK.UNIX() (deprecated)

Returns the time in UNIX format (in seconds since Jan 1970).

Return Value Type: Decimal value.

DATE.UnixTimeUS() Microseconds since Jan 1970

[build 115649 - DVD 02/2020]

Syntax: DATE.UnixTimeUS()

Returns the elapsed Microseconds since the Unix epoch (1 January 1970 00:00:00 UTC) without leap
seconds.

Return Value Type: Decimal value.

©1989-2024 Lauterbach PowerView Function Reference | 40

DATE.utcOffset() Offset of current local time to UTC

[build 64298 - DVD 09/2015]

Syntax: DATE.utcOffset()

The offset of the current local time to UTC, including an offset caused by daylight saving time. As in ISO
8601, positive values are east of UTC. Negative values are west of UTC.

Return Value Type: Decimal value.
Example:

;prints 7200. during summer in central Europe
PRINT DATE.utcOffset ()

;prints the current local time, e.g. 12:03:52
PRINT FORMAT.UnixTime("H:i:s",DATE.UnixTime (), DATE.utcOffset())

DATE.YEAR() Current year

[build 12210 - DVD 10/2008]

Syntax: DATE.YEAR()
CLOCK.YEAR() (deprecated)

Returns the current year.

Return Value Type: Decimal value.

©1989-2024 Lauterbach PowerView Function Reference | 41

DIALOG Functions

In This Section

See also

B DIALOG QO DIALOG.BOOLEAN() O DIALOG.EXIST() 0 DIALOG.STRing()
O DIALOG.STRing2()

DIALOG.BOOLEAN() Current boolean value of checkbox

Syntax: DIALOG.BOOLEAN(</abel>)

Returns the current value of a dialog element of the type boolean, e.g. a checkbox.

Parameter Type: String. A user-defined label identifying a dialog element.
Return Value Type: Boolean.

Example:

DIALOG.view

(; define checkbox
POS 33. 2. 10.

HEX: CHECKBOX "HEX Value" "GOSUB SelectedOrCleared"
)
STOP

; <your_code>

SelectedOrCleared:

; checks whether the CHECKBOX with the label HEX was activated by the
; user or not

IF DIALOG.BOOLEAN (HEX)==TRUE ()
PRINT "Selected"
ELSE

PRINT "Cleared"

RETURN

©1989-2024 Lauterbach PowerView Function Reference | 42

DIALOG.EXIST()

Existence of dialog element

[build 25341 - DVD 02/2012]

Syntax: DIALOG.EXIST(</abel>)

Returns TRUE if a certain dialog element exists, FALSE otherwise.

Parameter Type: String. A user-defined label identifying a dialog element.

Return Value Type: Boolean.
Example:

DIALOG
(
NAME "MyDlg"
POS 1. 0.25 10.
HEX: CHECKBOX "HEX Value" ""
POS 1. 1.5 10.
BUTTON "Ok" "CONTinue"
CLOSE
(
DIALOG.END
CONTinue

)
STOP

IF WINDOW.EXIST ("MyDlg")
(
IF DIALOG.EXIST (“HEX”)

(

PRINT "HEX value checked:

)
DIALOG.END

)

ENDDO

name of dialog window

labeled checkbox, empty command

continue in script

close and destroy dialog window
continue in script

check if dialog window still exists
check if label exists
DIALOG.BOOLEAN ("HEX")

close dialog now

©1989-2024 Lauterbach

PowerView Function Reference | 43

DIALOG.STRing() Current string value of dialog element, e.g. EDIT box

Syntax: DIALOG.STRing(</abel>)

Returns the current string value of a dialog element, such as EDIT, DYNTEXT, or DYNLTEXT. If the
dialog element is a list that supports multiple selections, then DIALOG.STRing() returns the currently
selected values.

Parameter Type: String. User-defined label identifying a dialog element.

Return Value Type: String. Depending on the type of the dialog element, the string is an individual string or
a parameter array consisting of multiple comma-separated values.

Example 1: The function DIALOG.STRing() is used to check whether the user has entered a value in the
EDIT box or not.

DIALOG.view

(
POS 17. 2. 15. 1.

CE: EDIT "" nmn
POS 33. 2. 10.
HEX: CHECKBOX "HEX Value" ""

; checks whether the EDIT box labeled CE is empty or not
IF DIALOG.STRing(CE)!=""

Example 2: A user has made multiple selections in a LISTBOX, a dialog element that supports multiple
selections. Using the function DIALOG.STRing(), the selected values can be returned as a comma-
separated parameter array. In addition, the example shows how to loop through the elements of the
parameter array. In this example, the elements are file names of PRACTICE script test cases.

/A DIALOG.STRing() Demo | = || & |[x=534]

LISTBOX with PRACTICE scripts (*.cmm)

testl_dram.cmm
test2_dram.cmm

test_smmu.cmm .
test_peripheral_clocks.comm B:AREA.view EI@

test interface uart.cmm

test interface eth.crmm
) est_timers.cmm,test_peripheral_clocks. cmm,test_interface_uart.cmm, E
Selected test scripts Done: C:3\T32%test_timers.cmm
Done: C:4T32\test_peripheral_clocks.cmm
Done: C:%T32\test_interface_uart.cmm -

4 I 2

A The dialog element LISTBOX is labeled myTESTS.

B Parameter array returned by DIALOG.STRing (myTESTS) +", "

©1989-2024 Lauterbach PowerView Function Reference | 44

&1ist=DIALOG.STRing (myTESTS)+", " ;return the list of selected test

;cases (*.cmm) as a parameter array
AREA.view

PRINT "&list" ;print the list to the AREA window

;loop through the list of selected test cases and scan for the first
; comma-separator

WHILE STRing.SCAN("&list", " 0.)>-1.

(

PRIVATE &testCase ;declare macro for WHILE block

;split list at the first comma-separator to get the first test case
&testCase=STRing.Split("&list", o O 0.)

7

DO ~~\&testCase ;execute the first test case

;remove the first test case and its comma-separator from the list
;by replacing test case and comma-separator with an empty string "™

&list=STRing.Replace("&list", "&testCase, ", oW, 0.)
)
DIALOG.STRing2() Comma-separated list of values, e.g. from LISTBOX
Syntax: DIALOG.STRing2(</abel>)

Retrieves the complete list of values from a list dialog element, e.g. from a LISTBOX, MLISTBOX,
DLISTBOX, and COMBOBOX.

Parameter Type: String. User-defined label identifying a list dialog element.

Return Value Type: String. The string is a parameter array containing all list items as comma-separated
values.

©1989-2024 Lauterbach PowerView Function Reference | 45

ERROR Functions

The ERROR functions give access to an information structure of PRACTICE which contains data of the last
occurred error.

The error structure can be cleared by the command ERROR.RESet.

In This Section

See also
0 ERROR.ADDRESS)() 0 ERROR.CMDLINE() O ERROR.FIRSTID() 0 ERROR.ID()
0O ERROR.MESSAGE() O ERROR.OCCURRED() O ERROR.POSITION()
ERROR.CMDLINE() Erroneous command
[build 110397 - DVD 09/2019]
Syntax: ERROR.CMDLINE()

Returns the command line content of the last occurred error. The buffer can be deleted with the
command ERROR.RESet.

Return Value Type: String.

Example: See ERROR.ID().

ERROR.FIRSTID() ID of first error

[build 105170 - DVD 02/2019]

Syntax: ERROR.FIRSTID()

Return ID of first error encountered after last error reset.

Return Value Type: String.

©1989-2024 Lauterbach PowerView Function Reference | 46

ERROR.ID()

ID of last error message

Syntax: ERROR.ID()

[build 67160 - DVD 02/2016]

Returns the search item string of the last error message for the online help. The search item can be

deleted with the command ERROR.RESet.
Return Value Type: String.
Example:

ERROR.RESet ; clear PRACTICE
1 system_ up:
SYStem.Up
IF ERROR.OCCURRED ()
(
2 check for target power fail
IF ERROR.ID()=="#emu_errpwrf"
(
2 PRINT "Please power up
DIALOG.OK "Please power up
GOTO 1 _system_ up
)
ELSE IF ERROR.ID()!=""
(
PRINT
)
OPEN #1 my_ errorlog.txt

WRITE #1 "error - faulty cmd:"
IF ERROR.POSITION()!=-1.

WRITE #1 "
WRITE #1 "error - message
CLOSE #1

"other error occurred: "

error structure

the target board!"
the target board!"

ERROR.ID()

/Create /Write

ERROR .CMDLINE ()

~">>ERROR.POSITION()
ERROR.MESSAGE ()

©1989-2024 Lauterbach

PowerView Function Reference | 47

ERROR.MESSAGE() Error text

[build 110397 - DVD 09/2019]

Syntax: ERROR.MESSAGE()

Returns the error message text if an error occurred since the last TRACES32 software start or since the
last error structure reset by the command ERROR.RESet.

Return Value Type: String.

Example: See ERROR.ID().

ERROR.OCCURRED() Error status

[build 76289 - DVD 09/2016]

Syntax: ERROR.OCCURRED()

Returns TRUE if an error occurred since the last TRACE32 software start or since the last error
structure reset by the command ERROR.RESet.

Return Value Type: Boolean.

Example: See ERROR.ID().

ERROR.POSITION() Error position

[build 110397 - DVD 09/2019]

Syntax: ERROR.POSITION()

Returns the error position inside the command line if an error occurred since the last TRACE32
software start or since the last error structure reset by the command ERROR.RESet.

Return Value Type: Decimal value.

-1 Indicates an unknown or an undetermined error position.

Example: See ERROR.ID().

©1989-2024 Lauterbach PowerView Function Reference | 48

EVAL Functions

In This Section

See also
W Eval a EVAL() 1 EVAL.ADDRESS() 1d EVAL.BOOLEAN()
1 EVAL.FLOAT() 1 EVAL.PARAM() 1 EVAL.STRing() 3 EVAL.TIme()

O EVALTYPE()

EVAL() Value of expression evaluated with Eval command

[build 17384 - DVD 12/2009]

Syntax: EVAL()

Returns the value of the expression parameter from the last Eval command. Only for expression types
boolean, binary, hex, integer and ASCII constant. For all other expression types the return value is 0.

Return Value Type: Hex value.

EVAL.ADDRESS() Address of expression evaluated with Eval cmd.

[build 125135 - DVD 02/2021]

Syntax: EVAL.ADDRESS()

Returns the value of the expression parameter from the last Eval command. Only for expression type
address. In all other cases the returned result is empty.

Return Value Type: Address.

EVAL.BOOLEAN() Boolean expression evaluated with Eval cmd. boolean

[build 125135 - DVD 02/2021]

Syntax: EVAL.BOOLEAN()

Returns TRUE if the type of the expression parameter from the last Eval command is boolean.

Return Value Type: Boolean.

©1989-2024 Lauterbach PowerView Function Reference | 49

EVAL.FLOAT() Float value of expression evaluated with Eval cmd.

[build 125135 - DVD 02/2021]

Syntax: EVAL.FLOAT()

Returns the value of the expression parameter from the last Eval command. Only for expression type
float. In all other cases the returned result is empty.

Return Value Type: Float.

EVAL.PARAM() Expression evaluated with Eval cmd.

[build 125139 - DVD 02/2021]

Syntax: EVAL.PARAM()

Returns the value of the expression parameter from the last Eval command, independently of the
expression type.

Return Value Type: String.

EVAL.STRing() String composed by expression evaluated with Eval cmd.

[build 17384 - DVD 12/2009]

Syntax: EVAL.STRing()

Returns the value of the expression parameter from the last Eval command. Only for expression type
string. In all other cases the returned string is empty.

Return Value Type: String.

EVAL.TIme() Value of time evaluated with Eval command
[build 110621 - DVD 09/2019]

Syntax: EVAL.TIme()

Returns the time value as evaluated by the last Eval command.

Return Value Type: Time value.

©1989-2024 Lauterbach PowerView Function Reference | 50

EVAL.TYPE()

Type of expression evaluated with Eval command

Syntax:

EVAL.TYPE()

[build 17384 - DVD 12/2009]

Returns the type of the expression parameter from the last Eval command.

Return Value Type: Hex value.

Return Values Expression Types

0x0001
0x0002
0x0004
0x0008
0x0010
0x0020
0x0040
0x0080
0x0100
0x0200
0x0400
0x0800
0x4000
0x8000

Example:

Boolean

binary value
Hex value
Decimal value
Float

ASCII value
String

Numeric range
Address
Address range
Time value
Time range

Bit or Hex mask
Empty/No expression parameter

ENTRY &delayvalue
Eval &delayvalue

IF EVAL.TYPE() !=0x400
GOSUB err_no_timevalue

7

7

evaluate user input value

time value entered?

©1989-2024 Lauterbach

PowerView Function Reference

51

FALSE Function

FALSE() Boolean expression

[build 36180 - DVD 02/2012]

Syntax: FALSE()

Returns always the boolean value FALSE. It can be used for increasing the readability of PRACTICE
scripts when initializing PRACTICE macros. The counterpart is TRUE().

Return Value Type: Boolean.
Example:

&s_error_occurred=FALSE () ; instead of
&s_error_occurred=(0!=0)

©1989-2024 Lauterbach PowerView Function Reference | 52

FILE Functions

In This Section

See also
1 FILE.EOF() 1 FILE.EOFLASTREAD() 1 FILE.EXIST() 1 FILE.NEWHANDLE()
O FILE.OPEN() QO FILE.SUM() 0 FILE.TYPE() Q__FILE_ ()
O __LINE_ ()
__FILE_ () Path and file name of current PRACTICE script
[build 13023, DVD 10/2008]
Syntax: __FILE_ ()

An alias for OS.PresentPracticeFile().

__LINE_ () Number of script line to be executed next
[build 13023, DVD 10/2008]

Syntax: __LINE_ ()

Returns the line number of the command to be executed next in the currently active PRACTICE script.

FILE.EOF() Check if end of read-in file has been reached

[build 31361 - DVD 06/2011]

Syntax: FILE.EOF(<file_number>)

Function returns a boolean whether the last READ command from a certain file reached the file end
or not.

Parameter Type: Decimal value.

Return Value Type: Boolean.

©1989-2024 Lauterbach PowerView Function Reference | 53

Example:

OPEN #1 myfile.txt /Read
OPEN #2 yourfile.txt /Read
READ #2 3LINE &myline
READ #1 2LINE &mylinel
WHILE !FILE.EOF (2)

(

; EOF of yourfile.txt reached?

PRINT "&myline"

READ #2 3LINE &myline ; assigns all characters up to the
) ; next EOL to &myline
CLOSE #2

FILE.EOFLASTREAD() Check if last read from file reached the end of the file

[build 31361 - DVD 06/2011]

Syntax: FILE.EOFLASTREAD()

EOF() - (deprecated)
[build 12285 - DVD 10/2008]

Function returns a boolean whether the last READ command reached the file end or not.
Return Value Type: Boolean.

Example:

OPEN #2 myfile.txt /Read
READ #2 SLINE &myline
WHILE !FILE.EOFLASTREAD() ;EOF of myfile.txt reached?
(
PRINT "&myline"

READ #2 SLINE &myline ;assigns all characters up to the
) ;next EOL to &myline
CLOSE #2

©1989-2024 Lauterbach PowerView Function Reference | 54

FILE.EXIST()

Check if file exists

Syntax: FILE.EXIST(<file>)

Returns TRUE if the file exists. Alias for OS.FILE.EXIST().

Parameter Type: String.

Return Value Type: Boolean.

FILE.NEWHANDLE()

[build 31361 - DVD 06/2011]

Get next free handle

Syntax: FILE.NEWHANDLE()

Returns the next free handle for file operations.
Return Value Type: String.
Example 2:

PRIVATE &fh

&fh=FILE.NEWHANDLE ()

OPEN #&fh “myfile.txt” /Create
WRITE #&fh “Hello World!”
CLOSE #&fh

Example 2:

PRIVATE &fh

&fh=FILE.NEWHANDLE ()
OPEN #&fh “myfile.txt” /Read
WHILE !FILE.EOF (&fh)
(
PRIVATE &line

READ #&fh SLINE &line
PRINT “&line”

)

CLOSE #&fh

[build 168178 - DVD 09/2024]

©1989-2024 Lauterbach

PowerView Function Reference

55

FILE.OPEN() Check if file is open

[build 36378 - DVD 08/2012]

Syntax: FILE.OPEN(<file_number>)

Returns TRUE if a file with <file_number>was opened with the command OPEN (and not yet closed).
Parameter Type: Decimal value.

Return Value Type: Boolean.

FILE.SUM() Get checksum from a file

[build 99438 - DVD 09/2018]

Syntax: FILE.SUM()

Gets the checksum of the last executed SHA1SUM command.
Return Value Type: String.
Example:

PRIVATE &shal &file
&file="myfile.bin"
&shal="739078942296c3febldabca810ed4483d0£79885
&shal="&shal 3e99463f765b53348d5e0cf31c8c63d2acf5d81b"
&shal="&shal 8450ad62442629453331baf8b4345d1c77b73b2d"
SILENT.SHA1SUM "&file"
IF STRing.SCAN("&shal",FILE.SUM(),0)==-1

DIALOG.OK "Cecksum of file ""&file"" not known!"

FILE.TYPE() File type of loaded file

Syntax: FILE.TYPE(<file>)

Detects the data format of the specified file. The detection algorithm is the same as used for
Data.LOAD.auto. The returned string is the format name as used with Data.LOAD.<file_format>. If the
file format is unknown, the function returns “BINARY”.

Parameter Type: String.

Return Value Type: String.

©1989-2024 Lauterbach PowerView Function Reference | 56

Examples:

LOCAL &file &format

&file="~~/demo/arm/compiler/arm/thumbbe.axft"
&format=FILE.TYPE("&file")

IF "&format"=="ELF"
Data.LOAD.E1f "&file" /NoCODE
ELSE

PRINT %ERROR "Error: Wrong file format, debug symbols not loaded!"

©1989-2024 Lauterbach PowerView Function Reference | 57

FORMAT Functions

In This Section

See also
0 FORMAT.BINary() 0 FORMAT.CHAR() d FORMAT.Decimal() (O FORMAT.DecimalU()
O FORMAT.DecimalUZ() 0 FORMAT.FLOAT() 1 FORMATHEX() O FORMAT.STRing()
J FORMAT.TIME() (O FORMAT.UDecimal() J FORMAT.UDECIMALZ() O FORMAT.UnixTime()
FORMAT.BINary() Numeric to binary value (leading spaces)
Syntax: FORMAT.BINary(<width>,<number>)

Formats a numeric expression to a binary number and generates an output string with a fixed length of
<width> with leading zeros.
Values which needs more characters than <width> for their loss-free representation are not cut.

Parameter and Description:

<width> Parameter Type: Hex or decimal value.
<number> Parameter Type: Hex or decimal value. Numeric expression to be
formatted.

Return Value Type: String.

Examples:
PRINT FORMAT.BINARY (8.,0x10) ; result "00010000"
PRINT FORMAT.BINARY (1.,0x10) ; result "10000" and not "0"

©1989-2024 Lauterbach PowerView Function Reference | 58

FORMAT.CHAR() Numeric to ASCII character (fixed length)

[build 44343 - DVD 02/2013]

Syntax: FORMAT.CHAR(<value>,<width>,<fill_character>)

Converts an integer value to an ASCII character and generates an output string in a fixed length of
<width>.

Parameter and Description:

<value> Parameter Type: Hex or decimal value. Integer value to be converted.

be enlarged by adding a necessary number of <fill_character>.

<width> Parameter Type: Hex or decimal value. Specifies the number of characters.
When the output string length <width> is larger than 1 the output string will

. 0 :empty string returned
. 1..n : length of output string (left aligned)
J -1..-n: length of output string (right aligned)
<fill_character> Parameter Type: ASCII value. Defines the fill character.
Return Value Type: String.
Examples:
PRINT FORMAT.CHAR(0x61,0.,'-") ; result ""
PRINT FORMAT.CHAR(0x61,1.,'-") ; result "a"
PRINT FORMAT.CHAR('B',1.,'-") ; result "B"
PRINT FORMAT.CHAR(' '+35.,1.,'-") ; result "C"

A positive value of <width>means left alignment.
A negative value of <width> means right alignment of <value>.

PRINT FORMAT.CHAR(0x61,10.,"'*") ; result "ax*xxkkkkkw
PRINT FORMAT.CHAR(0x61,-10.,"'*") ; result "FFxxkxxxAAGH
PRINT FORMAT.CHAR(0x61,-10.,"' ') ; result " a"

©1989-2024 Lauterbach PowerView Function Reference |

59

FORMAT.Decimal()

Numeric to string (leading spaces)

Syntax: FORMAT.Dec

imal(<width>,<number>)

Formats a numeric expression to a decimal number and generates an output string with a fixed length

of <width> with leading spaces.

Values which needs more characters than <width> for their loss-free representation aren’t cut.

Parameter and Description:

<width> Parameter Type: Hex or decimal value. Specifies the smallest number of
digits.

<number> Parameter Type: Hex or decimal value. Numeric expression to be
formatted.

It is recommended to use the string

“ as suffix when the number is printed. This allows the user to

identify the number clearly as a decimal number.

Return Value Type: String.
Examples:

PRINT FORMAT.Decimal (1.,
PRINT FORMAT.Decimal (8.,
PRINT FORMAT.Decimal (8.,

&i=0
WHILE
(
; the macro ®name w
®name="R"+FORMAT.De

&1<32.

; the macro ®no wil
; ®no=FORMAT .Decima
&value=&i|&i<<8.

&value=&value|&value<<
Register.Set ®name

; Register.Set R®no
&i=&1+1

0x12345) ; result "74565" and not "5"
0x12345) ; result " 74565"
0x12)+"." ; result " 18."

; register RO..R31 will be set to
; values 0x00000000..0x1f1f1f1f

ill contain the full register name e.g. R14
cimal (1+((&1/10.)%1),&1)

1 contain the register number only e.g. 14

1(1+((&1i/10.)%1),&1)

16.
&value

&value

©1989-2024 Lauterbach

PowerView Function Reference |

60

FORMAT.DecimalU() Numeric to unsigned decimal as string (leading spaces)

Syntax: FORMAT.DecimalU(<width>,<number>)

Formats a numeric expression to an unsigned decimal number and generates an output string with a
fixed length of <width> with leading spaces.

Values which needs more characters than <width> for their loss-free representation aren’t cut.

Alias for FORMAT.UDECIMAL().

Parameter and Description:

<width> Parameter Type: Hex or decimal value. Specifies the smallest number of
digits.

<number> Parameter Type: Hex or decimal value. Numeric expression to be
formatted.

It is recommended to use the string “” as suffix when the number is printed. This allows the user to
identify the number clearly as a decimal number.

Return Value Type: String.

Examples:
PRINT FORMAT.DecimalU(8.,0x12345) ; result " 74565"
PRINT FORMAT.DecimalU(8.,0x12)+"." ; result " 18."
PRINT FORMAT.DecimalU(1.,-1.) ; result "18446744073709551615™"

; and not "5"

©1989-2024 Lauterbach PowerView Function Reference | 61

FORMAT.DecimalUZ()

Numeric to unsigned decimal as string (leading zeros)

Syntax: FORMAT.DecimalUZ(<width>,<number>)

[build 65087 - DVD 09/2015]

Formats a numeric expression to a fixed width unsigned decimal number with leading zeros.
Values which need more characters than <width> for their loss-free representation are not cut. Alias for

FORMAT.UDECIMALZ().

Parameter and Description:

<width> Parameter Type: Hex or decimal value. Specifies the smallest number of
digits.

<number> Parameter Type: Hex or decimal value. Numeric expression to be
formatted.

Return Value Type: String.

Example 1:

PRINT FORMAT.DecimalUZ(8.,0x1235) 5
PRINT FORMAT.DecimalUZ(1.,0x1235) 5
PRINT FORMAT.DecimalUZ(1.,-1.) 5

result
result
result
and not

"00004661"

"4661" and not "1"
"18446744073709551615"
II5II

Example 2: This PRACTICE script example counts from 00001 to 00108. The result is displayed in the
default AREA window. To try this script, copy it to a test . cmm file, and then run it in TRACE32 (See

“How to...”).

LOCAL &idCounter
&idCounter=0x0

AREA.RESet ;initialize AREA system
AREA.view ;open the default AREA window

RePeat 108.

(; increment counter in steps of 1
&idCounter=&idCounter+0x1l
PRINT FORMAT.DecimalUZ (5., &idCounter)

To increase or decrease the number of lines displayed in an AREA window, use AREA.Create.

©1989-2024 Lauterbach

PowerView Function Reference | 62

FORMAT.FLOAT/()

Floating point value to string

Syntax:

Formats a floating point value to a text string. If not mentioned otherwise, the resulting string is right-
aligned and padded with blank spaces so that the string has at least the number of characters specified

FORMAT.FLOAT (<width>,<precision>,<number>)

with parameter <width>. The resulting string is not truncated even if the result is longer.

Parameter and Description:

<width> Parameter Type: Hex or decimal value.

. > 0: Minimum number of characters of the resulting string.

. 0: The resulting string is left-aligned and variable length. It contains

the specified number of <precision> digits.

<precision> Parameter Type: Hex or decimal value.

. > 0: Number of digits after the decimal point.

. 0: Standard notation with variable number of precision digits.

J -1: Scientific notation with variable number of precision digits.
<number> Parameter Type: Float. The value to be formatted and displayed.

Return Value Type: String.

Examples:

PRINT
PRINT
PRINT
PRINT

PRINT
PRINT

PRINT

FORMAT .
FORMAT .
FORMAT .
FORMAT .

FORMAT .
FORMAT .

FORMAT .

FLOAT(0.,3.,12.34567) ; result "12.346"
FLOAT(0.,5.,12.34567) ; result "12.34567"
FLOAT (10.,3.,12.34567) ; result " 12.346"
FLOAT (10.,5.,12.34567) ; result " 12.34567"
FLOAT (12.,0.,129345.67) ; result " 129345.67"
FLOAT (12.,-1.,129345.67) ; result "129.34567e+3"
FLOAT (13.,-1.,129345.67E+3) ; result " 129.34567e+6"

©1989-2024 Lauterbach

PowerView Function Reference

63

FORMAT.HEX() Numeric to hex (leading zeros)

Syntax: FORMAT.HEX(<width>,<number>)

Formats a numeric expression to a hexadecimal number and generates an output string with a fixed
length of <width> with leading zeros if necessary.
Values which need more characters than <width> for their loss-free representation are not cut.

Parameter and Description:

<width> Parameter Type: Hex or decimal value. Specifies the smallest number of
digits.

<number> Parameter Type: Hex or decimal value. Numeric expression to be
formatted.

Return Value Type: String.

Example:
PRINT FORMAT.HEX(1.,12345.) ; result "3039" and not "9"
PRINT FORMAT.HEX(8.,12345.) ; result "00003039"
PRINT "Ox"+FORMAT.HEX(8.,12345.) ; result "0x00003039"

It is recommended to use the string “Ox” as a prefix when the number is printed. This allows the user to
clearly identify the number as a hex number.

©1989-2024 Lauterbach PowerView Function Reference | 64

FORMAT.STRing() Output string with fixed length
[build 44315 - DVD 02/2013]
Syntax: FORMAT.STRing(<source_string>,<width>,<fill_character>)

Generates an output string with a fixed length of <width>.

Parameter and Description:

<source_string>

Parameter Type: String. Strings that are too long will be cut.
When the source string length is smaller than <width>, the output string
will be enlarged by adding a necessary number of <fill_character>.

<width>

Parameter Type: Hex or decimal value. Specifies the number of characters.
A positive value of <width> means left alignment of <source_string>.
A negative value of <width>means right alignment of <source_string>.

. 0 :empty string returned
. 1..n : length of output string (left aligned)
J -1..-n: length of output string (right aligned)

<fill_character>

Parameter Type: ASCII value. Defines the fill character.

Return Value Type: String.

Examples:
PRINT FORMAT.STRing ("abcdef",0.,'-") ; result ""
PRINT FORMAT.STRing ("abcdef",3.,'-") ; result "abc"

PRINT FORMAT.STRing ("abcdef",-3.,'-

) ; result "def"

PRINT FORMAT.STRing ("abcdef",10.,'*") ; result "abcdef**x*"
PRINT FORMAT.STRing("abcdef",-10.,'*") ; result "****gbcdef"
PRINT FORMAT.STRing ("abcdef",-10.," ") ; result " abcdef™

©1989-2024 Lauterbach

PowerView Function Reference | 65

FORMAT.TIME() Time to string (leading spaces)

[build 70825 - DVD 9/2016]

Syntax: FORMAT.TIME(<width>,<precision>," <unit>",<time>)

Formats a time value to a text string. If not mentioned otherwise, the resulting string is right-aligned and
padded with blank spaces so that the string has at least the number of characters specified with parameter
<width>. The resulting string is not truncated even if the result is longer.

Parameter and Description:

<width> Parameter Type: Hex or decimal value.
L > 3: Minimum number of characters of the resulting string, including
two characters for the unit.
. <=3: The resulting string is left-aligned and variable length. It con-

tains the specified number of <precision> digits.

<precision> Parameter Type: Hex or decimal value. Specifies the number of digits after
the decimal point. If the value is zero, an integer value is displayed.

<unit> Parameter Type: String. The time unit used for the resulting string. For a list
of the available parameters, click here.

<time> Parameter Type: Time value. The value to be formatted and displayed.

Parameters for <unit>:

ns The unit of the resulting string is unit nanoseconds.

us The unit of the resulting string is unit microseconds.

ms The unit of the resulting string is unit milliseconds.

s The unit of the resulting string is unit seconds. The output string is padded
with one blank space at the right side for proper formatting/alignment with
other units.

ks The unit of the resulting string is unit kiloseconds.

auto The unit is chosen automatically so that the value is 1000 > value >= 1.

Return Value Type: String.

FORMAT.UDECIMAL() Refer to FORMAT.DecimalU()

[build 25777 - DVD 11/2010]

Syntax: FORMAT.UDecimal(<width>,<number>)

Alias for FORMAT.DecimalU().

©1989-2024 Lauterbach PowerView Function Reference | 66

FORMAT.UDECIMALZ() Refer to FORMAT.DecimalUZ()

[build 25777 - DVD 11/2010]

Syntax: FORMAT.UDECIMALZ(<width>,<number>)

Alias for FORMAT.DecimalUZ().

FORMAT.UnixTime() Format Unix timestamps

[build 64298 - DVD 09/2015] [Examples]

Syntax: FORMAT.UnixTime(<formatstr>,<timestamp>,<utc_offset>)

Formats a Unix timestamp the same way PHP’s data function formats timestamps.
See also http://php.net/manual/en/function.date.php

Parameter and Description:

<formatstr> Parameter Type: String. Describes how to format the timestamp in
<timestamp>.
For a list of the available parameters, click here.

<timestamp> Parameter Type: Decimal value.
J The minimum year is -67768100567971200.
The maximum year is 67767976233532799.

J Arguments for <timestamp> can also be other functions, e.g.
DATE.UnixTime() or OS.FILE.UnixTime().
J As on 64-bit Linux systems, the year zero is taken into account

(which is the astronomical year numbering).

<utc_offset> Parameter Type: Decimal value.

Is optional and describes the offset of a local time-zone to UTC.
Set <utc_offset>to zero if you want a result in UTC or set it to an
appropriate value if you prefer local times.

Parameters for <formatstr>:

a Return value: am or pm in lower case.

A Return value: AM or PM in upper case.

b Seconds since midnight with leading zeros (Return values: 00000 ...
86399).

[build 69588 - DVD 02/2016] (TRACES32 specific parameter, not supported by PHP)

B Unlike the PHP date function, B (swatch Internet time) is not supported.

ISO 8601 date (Return value example: "2015-07-20T11:46:51+00:00").

C ISO 8601 date with trailing Z if <utc_offset> == 0
(Return value example: "2015-07-15T11:53:22Z2").

©1989-2024 Lauterbach PowerView Function Reference | 67

Day of the month with leading zeros (Return values: 01 ... 31).

O

Three-letter representation of the day of the week (Return values: Mon ...
Sun).

Long representation of a month (Return values: January ... December).

12-hour format of an hour (Return values: 1 ... 12).

24-hour format of an hour (Return values: 0 ... 23).

12-hour format of an hour with leading zeros (Return values: 01 ... 12).

T| > |o|ae | m

24-hour format of an hour with leading zeros (Return values: 00 ... 23).

Minutes with leading zeros (Return values: 00 ... 59).

Unlike the PHP date function, | (daylight saving time flag) is not supported.

Day of the month (Return values: 1 ... 31).

Day of the month with leading space (1 to 31).

Long representation of the day of the week (Return values: Monday ...
Sunday).

Returns 1 if it is a leap year, 0 otherwise.

Numeric representation of a month with leading zeros (Return values: 01
.. 12).

Three-letter representation of a month (Return values: Jan ... Dec).

Numeric representation of a month (Return values: 1 ... 12).

ISO 8601 numeric representation of the day of the week
(Return values: 1 for Monday, ..., 7 for Sunday).

ISO 8601 year number. This has the same value as Y, except that if the
ISO week number (W) belongs to the previous or next year, that year is
used instead.

Greenwich mean time difference (GMT) in hours (Return value example:
+0200).

Greenwich mean time difference (GMT) with colon between hours and
minute
(Return value example: +02:00).

RFC 2822 formatted date (Return value example: "Mon, 20 Jul 2015
17:02:08 +0200").

Seconds with leading zeros (Return values: 00 ... 59).

English ordinal suffix for the day of the month, two characters (Return
values: st, nd, rd or th). Can be combined with j.

Number of days in the given month (Return values: 28 ... 31).

Tore

Timezone identifier (Return value examples: CET, PST, UTC).

©1989-2024 Lauterbach

PowerView Function Reference | 68

u Unlike the PHP date function, u (microseconds) is not supported.

] Seconds elapsed since 1970-January-1,00:00:00 GMT.

w Numeric representation of the day of the week (Return values: 0 for
Sunday, ..., 6 for Saturday).

w ISO 8601 week number of year, weeks starting on Monday (Return
values: 0 ... 52)

y Two-digit representation of a year (Return value examples: 00 or 04).
Four-digit representation of a year (Return value examples: 2000 or 2004).

z Day of the year (Return values: 0 ... 365).

z Time zone offset in seconds. The offset for time zones west of UTC is
negative, and for those east of UTC positive (Return values: -43200 ...
50400).

Return Value Type: String.

Unlike the PHP date function, all other letter characters are replaced by a question mark.

To get a letter character in the output string you have to prefix it with a backslash. (e.g. "\Y\e\a\r: Y")

All non-letter characters (like punctuation marks or digits) do not require a backslash. However, if you like to
have a backslash in the output, you have to prefix the backslash with a backslash.

Examples

Example 1:

;current time of UTC
PRINT FORMAT.UnixTime ("H:i:s",DATE.UnixTime(),0)

;current local date
PRINT FORMAT.UnixTime("d.m.Y",DATE.UnixTime () ,DATE.utcOffset ())

;current date of UTC in ISO 8601
PRINT FORMAT.UnixTime ("c",DATE.UnixTime(),0)

;current date of Pacific Standard Time in RFC1123
PRINT FORMAT.UnixTime ("D, d M Y H:i:s O",DATE.UnixTime(),-8*3600.)

©1989-2024 Lauterbach

PowerView Function Reference | 69

Example 2: The following PRACTICE script shows how to precede a file name with a date-timestamp:

LOCAL &file
&file="_my"

;let's include seconds after midnight in the file name string as a
;simple precaution against duplicate log file names,
;See parameter b in the FORMAT.UnixTime () function below

;concatenate date-timestamp and file name
&file=FORMAT.UnixTime ("Y-m-d_b", DATE.UnixTime (), 0.)+"&file"

;open the system log file for writing
SYStem.LOG.state
SYStem.LOG.OPEN ~~\&file

£]] BSYStem.LOGstate =
— log — Set — OPEN

© OFF [Cpoling C:\T32\2016-01-28_40971_myog [(3]

@ on MermoryRead

MemoryWrite — Mode — SIZE

— commands — | [[] RegisterRead [compact 64.

[CIRegisterwrite [CIsource

[CcomponentRead | | [C]NoTime StopOnError

m [Tl componentwirite
CLOSE [ClvMaccess

ERROR

A System log file with date-timestamp. The file extension .log is added by default.

©1989-2024 Lauterbach PowerView Function Reference | 70

FOUND Functions

In This Section

See also
H FIND W WinFIND 1 FOUND() 1 FOUND.COUNT()
FOUND() TRUE() if search item was found
Syntax: FOUND()

Boolean function set by Data.Find, Trace.Find, FIND, ComPare or memory-test commands.

Return Value Type: Boolean.

Example:

; Check if function sieve is found in trace recording
Trace.Find ADDRess sieve
IF FOUND()==TRUE()

(
" TRACK.RECORD()

PRINT "Function sieve found at trace record no.

)

©1989-2024 Lauterbach PowerView Function Reference |

FOUND.COUNTY() Number of occurrences found

[build 68157 - DVD 02/2016]

Syntax: FOUND.COUNTY()

Returns the number of occurrences found by the commands Trace.Find ... /ALL, Data.Find ... /ALL, and
Data.FindCODE.

Return Value Type: Decimal value.
Example:

;list trace contents
Trace.List /Track

;find all occurrences of the specified data value in the record range
; (-2000.)--(-1.)
Trace.Find (-2000.)--(-1.) Data OxEI1AQ0E002 /All

;print the number of occurrences
PRINT FOUND.COUNT ()

;display all occurrences
Trace.FindAll (-2000.)--(-1.) Data O0xE1AQ0E002 /Track

= | BuAREAview =n| Wl <
-
ound in (-2000.)--(-1.) 57. t'l'mes
57 &
[< [Lm ¢
$9 Bu:Trace FindAll (-2000.)--(-1.) Data 0xELADE002 /Track =n| Wl <
57 |run |address cycle |data symbo | t1.back |
-0JWi52 R:00002244 Tetch] 2 harmleharmysievetOxlc L
1841 R:00002244 ch 1 2 “harmleharm'sievetOxl1C 1.200us =
B 1830 R:00002244 - 1 2 YAarmleharmisieve+0x1C 1.200us =
1819 R:00002244 1 2 YAarmleharmisieve+0x1C 1.200us -
-U01808 R:00002244 E1l 2 YAarmleharmisieve+0x1C 1.200us i
-001797 R:00002244 E1l 2 Sharmleharm'sieve+0x1C 1.200us =
4 I3

A This line is automatically printed by the Trace.Find ... /ALL command, unless the line is suppressed
with the SILENT pre-command.

B Equals the return value of FOUND.COUNT).

©1989-2024 Lauterbach PowerView Function Reference | 72

GDB Function (TRACE32 as GDB Back-End)

GDB.PORT()

Port number for communication via GDB interface

Syntax: GDB.PORTY()

[build 59804 - DVD 02/2015]

Returns the port number used by the currently selected TRACE32 PowerView instance for communication

via the GDB interface. Returns 0 if the port number is undefined.

Return Value Type: Decimal value.

Example: The port number is defined in the TRACES32 configuration file (default c:\t32\config.t32).

[B:TYPE C:AB2\config32 | =l e =]

25. of 42. =] [Z] [#Fnd...

Track

:T32 GDB

SORT 60001 GDB.PORT()

PACKLEN=1024

-

PRINT GDB.PORT ()

;returns 60001 because the InterCom setting in
;the above configuration file reads:

GDB=NETASSIST
PORT=60001

©1989-2024 Lauterbach

PowerView Function Reference | 73

HELP Function

HELP.MESSAGE() Help search item

Syntax: HELP.MESSAGE()

Returns the search item string of the last error message for the online help (only applicable in
PRACTICE scripts (*.cmm) in conjunction with the ON ERROR construct). Stepping through the script
will cause an empty function return value.

Return Value Type: String.

Example:

ON ERROR GOSUB ; install error handler in current PRACTICE stack frame
(

&help_message=HELP.MESSAGE ()

&error_occurred=1

PRINT "search item of error message in online help:"
PRINT %CONTinue " &help_message"
RETURN

LOCAL &help_message
LOCAL &error_occurred

1 _system up:
&help_message=""
&error_occurred=0
; a fail of SYStem.Up will call the ON ERROR routine above
SYStem.Up
IF &error_occurred==1
(
5 check for target power fail
IF "&help_message"=="#emu_errpwrf"
(
8 PRINT "Please power up the target board!"
DIALOG.OK "Please power up the target board!"
GOTO 1 _system_ up
)
ELSE IF "&help_message"!=""
(

PRINT "other error occurred: &help_ message"
ON ERROR ; remove current error handler from PRACTICE stack
ENDDO
)
)
ON ERROR ;remove current error handler from PRACTICE stack

©1989-2024 Lauterbach PowerView Function Reference | 74

HOST Functions

HOSTID() Host ID

Syntax: HOSTID()

Returns the host ID.
Return Value Type: Decimal value.
Example:

PRINT %Hex HOSTID() ;print ethernet address of your host as hex

HOSTIP() Host IP address

Syntax: HOSTIP()

Returns the host IP address.
Return Value Type: Hex value. 32-bit.

Example: For the IPv4 address 10.2.10.26 (= 0x0A.0x02.0x0A.0x1A) you get OxOAO020A1A.

£ B:IFCONFIG.state =n| Wl <
ip address host ip address
10.7.22.254 10.7.10.30 — HOSTIP()

ethernet address
00-C0-8A-82-16-24

device name
pod-hen0l

ethernet settings

host ethernet address
1C-6F-65-3F-B2-E9

statistics
recy packets | 8639.
send packets | 2194.
kbytes 7405.

RARP collisions 0.
BOOTP retries 0.
| DHCP (via device name) resyncs 20.
V| full duplex &rrors 0.
configuration: 1000BT
IESL
e to device

©1989-2024 Lauterbach

PowerView Function Reference

75

IFCONFIG and IFTEST Functions

This figure provides an overview of the return values of some of the functions. For explanations of the
illustrated functions and the functions not shown here, see below.

% BIFCONFIG = =R
ip address host ip address DHCP details
IFCONFlGIPADDRESS() — |]().2.22.96 10.2.10.143 Server IP:
Relay IP:
ethernet address host ethernet address Router IP:
IFCONFIGETHADDRESSO == (0-C0-BA-82-70-74 70-4D-7B-B5-F2-FA Leasetime: 0.
Select Reqs: 0.
device name statistics Select Acks: 0.
lFCONFlGDEVICENAME() ——f E18110012345 recv packets | 7008. Select NAcks: 0.
Set default device name send packets | 2358. Renewaltime: 0.
kbytes 5231, Renew Reqs: 0.
ethernet settings collisions 0. Renew Acks: 0. IFCONFI(
RARP retries 0. Renew MAcks: 0. COLL'S'(
BOOTP resyncs 0. == indingtime: 0. NS()
I:JL:-III(EIFL;\I;Izl fece ame) conﬁgeu..:i.:ison' EISBB ;:E::j iii_: E IFCONFI(
TEST - Rebind NAcks: 0. RETRIES
IFCONFI(
Save to device I: Close |
IFTEST.DOWNLOAD()
IFTEST.UPLOAD()
IFTEST.LATENCY()
In This Section
See also
B IFCONFIG 1 IFCONFIG.COLLISIONS()
1 IFCONFIG.CONFIGURATION() 1 IFCONFIG.DEVICENAME()
QO IFCONFIG.ERRORS() Q0 IFCONFIG.ETHernetADDRESS()
1 IFCONFIG.IPADDRESS() 1 IFCONFIG.RESYNCS()
1 IFCONFIG.RETRIES() 1 IFTEST.DOWNLOAD()
QO IFTEST.LATENCY() Q IFTEST.UPLOAD()
IFCONFIG.COLLISIONS() Collisions since start-up
[build 6086 - DVD 11/2006] [Go to figure.]
Syntax: IFCONFIG.COLLISIONS()

Returns the number of collisions since start-up.

Return Value Type: Decimal value.

©1989-2024 Lauterbach PowerView Function Reference | 76

IFCONFIG.CONFIGURATION() Connection type

[Go to figure.]

Syntax: IFCONFIG.CONFIGURATION()

Returns the connection type, e.g. USB2 or 1000BT.

Return Value Type: String. An empty string is returned if no TRACES32 devices are attached. To detect if
TRACE32 is running on the instruction set simulator, use SIMULATOR().

IFCONFIG.DEVICENAME() Name of TRACES2 device

[Go to figure.]

Syntax: IFCONFIG.DEVICENAME()

The TRACE32 software can connect to TRACES32 devices through Ethernet or USB. This function returns
the device name shown in the IFCONFIG.state window - regardless of whether the connection is an
Ethernet or USB connection.

Entering a new device name and clicking Save to device in the IFCONFIG.state window changes the
device name in the internal memory of the TRACE32 device.

Return Value Type: String.

See also: NODENAME().

IFCONFIG.ERRORS() Errors since start-up

[build 6086 - DVD 11/2006] [Go to figure.]

Syntax: IFCONFIG.ERRORS()

Returns the number of errors since start-up.

Return Value Type: Decimal value.

IFCONFIG.ETHernetADDRESS() MAC address of TRACES2 device

[build 62516 - DVD 09/2015] [Go to figure.]

Syntax: IFCONFIG.ETHernetADDRESS()

Returns the MAC address of the TRACES32 device as a single 48-bit number if it is connected via Ethernet.

Return Value Type: Hex value. Returns zero if the TRACES32 device is not connected via Ethernet.

©1989-2024 Lauterbach PowerView Function Reference | 77

IFCONFIG.IPADDRESS() IP address of TRACES32 device

[Go to figure.]

Syntax: IFCONFIG.IPADDRESS()

Returns the IP address of the TRACES32 device if it is connected via Ethernet.
Return Value Type: String. Returns an empty string if the TRACE32 device is not connected via Ethernet.

See also: IFCONFIG.DEVICENAME().

IFCONFIG.RESYNCS() Resyncs since start-up

[build 6086 - DVD 11/2006] [Go to figure.]

Syntax: IFCONFIG.RESYNCS()

Returns the number of resyncs since start-up.

Return Value Type: Decimal value.

IFCONFIG.RETRIES() Retries since start-up

[build 6086 - DVD 11/2006] [Go to figure.]

Syntax: IFCONFIG.RETRIES()

Returns the number of retries since startup. The same value and other data are displayed in the
IFCONFIG.state (interface statistic) window.

Return Value Type: Decimal value.
Example:

IF IFCONFIG.RESYNCS()>1000.
PRINT "poor network quality"

©1989-2024 Lauterbach PowerView Function Reference | 78

IFTEST.DOWNLOAD() Download in KByte/sec

[build 6086 - DVD 11/2006] [Go to figure.]

Syntax: IFTEST.DOWNLOAD()

Returns the download result of the last executed IFCONFIG.TEST command in KByte/sec.

Return Value Type: Decimal value.

IFTEST.LATENCY() Latency in microseconds

[build 6086 - DVD 11/2006] [Go to figure.]

Syntax: IFTEST.LATENCY()

Returns the latency result of the last executed IFCONFIG.TEST command in microseconds.

Return Value Type: Time value.

IFTEST.UPLOAD() Upload in KByte/sec

[build 6086 - DVD 11/2006] [Go to figure.]

Syntax: IFTEST.UPLOAD()

Returns the upload result of the last executed IFCONFIG.TEST command in KByte/sec.

Return Value Type: Decimal value.

©1989-2024 Lauterbach PowerView Function Reference | 79

InterCom Functions

In This Section

See also

B InterCom 1 InterCom.GetGlobalMacro()

A InterCom.GetPracticeState() A InterCom.NAME()

1 InterCom.PING() 1 InterCom.PODPORT()

1 InterCom.PODPORTNAME() 1 InterCom.PODPORTNUMBER()

1 InterCom.PORT()

InterCom.GetGlobalMacro() Exchange strings between PowerView
instances

[build 119109 - DVD 09/2020]

Syntax: InterCom.GetGlobalMacro(<name> | <host:port>,"<macro name>")

This function is intended to transfer strings from one PowerView instance to another via InterCom.

Return Value Type: String.

Example:

. You have two PowerView instances running.

. The first instance uses InterCom Port 10000.

. The second instance uses InterCom Port 10001.

. In the SECOND instance you run this PRACTICE script.

GLOBAL &myMacro
&myMacro="Hello World"

In the FIRST instance you now can get access to the content of the global macro named &myMacro of the
SECOND instance with the function InterCom.GetGlobalMacro().

For example, execute this command in the FIRST instance:

PRINT "&"+"myMacro ==
>"+InterCom.GetGlobalMacro (localhost:10001, "myMacro")+"<"

©1989-2024 Lauterbach PowerView Function Reference | 80

This command should print "&myMacro == >Hello World<" in the AREA message window.

NOTE: When specifying the name of the global macro with "<macro name>", you MUST
NOT prefix the macro name with a '&".

InterCom.GetPracticeState() PRACTICE run-state on other instance
[build 120851 - DVD 09/2020]

Syntax: InterCom.GetPracticeState(<intercom_name> | [<host>:]<port_number>)

Return Value Type: String.

Return Value and Description:

none No script running.
running Script is running (STOP button can be pressed).
stopped There is a PRACTICE script, but it is currently stopped.
dialog There is a PRACTICE script, but it executed something like
DIALOG.YESNO and is now waiting for user input.
err_* PRACTICE script is currently stopped, because an error was
encountered.
err_exec Execution of a command resulted in an error.
err_syntax There is was a syntax error (nothing was executed).
err_unknown Script was stopped because of a currently unkown error (should not
happen...).
InterCom.NAME() InterCom name of this TRACES2 instance

[build 94280 - DVD 09/2018]

Syntax: InterCom.NAME()

Returns the InterCom name of the currently selected TRACE32 PowerView instance. The InterCom name is
used for communication with remote TRACE32 PowerView instances via the InterCom interface.

An InterCom name can be created in the config file (by default config.t32). See example 1. Alternatively, an
InterCom name can be created with the commands InterCom.NAME or InterCom.ENable. See example 2.

Return Value Type: String.

©1989-2024 Lauterbach PowerView Function Reference | 81

Example 1:

[B:TVPE C:\t32\config.t32 | =n| Wl <
13, of 39, (=] (=] [Track

-

:T32 Intercom
IC=NETAS5IST
PORT=50000

PACKLEN=1024
NAME=Your_InterComName_for_this_TRACE3Z_Instance e |ntercomNAMEO

4 [}

PRINT InterCom.NAME () ;returns:
;Your_InterComName_for_this_ TRACE32_Instance
;because this InterCom name is used in the
;above config file

Example 2:
InterCom.NAME firstInst ;assigns the InterCom name ‘firstInst’ to the
;current TRACE32 PowerView instance
PRINT InterCom.NAME () ;returns: firstInst

See also: InterCom.PODPORTNAME().

InterCom.PING() Check if ping is successful

Syntax: InterCom.PING(<intercom_name> | [<host>:]<port_number>)

Returns TRUE if the ping was successful and FALSE if it failed. A runtime error occurs if the InterCom name
or InterCom UDP port number could not be found and resolved, e.g. wrong port number used.

Parameter Type: String.
Return Value Type: Boolean.
Example:

; second debugger already started?
IF InterCom.PING (secondInst)==TRUE ()
PRINT "2. TRACE32 PowerView GUI alive"

©1989-2024 Lauterbach PowerView Function Reference | 82

InterCom.PODPORT() Port number of any TRACES32 instance

Syntax: InterCom.PODPORT(<index>)

Returns the InterCom UDP port number of any TRACES32 PowerView instance that is connected to the
same PowerDebug hardware module or the same MCI Server (PBI=MCISERVER in the config file).

The port number is used for communication with remote TRACE32 PowerView instances via the InterCom
interface.

<instance> Parameter Type: Decimal value. The valid range for <index> is:
. 0 <= index < InterCom.PODPORTNUMBER().

Return Value Type: Decimal value. In case an instance does not have InterCom configured, the function
returns 0.

Example: See InterCom.PODPORTNUMBER().

See also: InterCom.PORT().

©1989-2024 Lauterbach PowerView Function Reference | 83

InterCom.PODPORTNAME() InterCom name of any TRACE32 instance

[build 94280 - DVD 09/2018]

Syntax: InterCom.PODPORTNAME(<index>)

Returns the InterCom name of any TRACE32 PowerView instance that is connected to the same
PowerDebug hardware module or the same MCI Server (PBI=MCISERVER in the config.t32 file).

The InterCom name is used for communication with remote TRACE32 PowerView instances via the
InterCom interface.

<index> Parameter Type: Decimal value. The valid range for <index> is:
. 0 <= index < InterCom.PODPORTNUMBER().

Parameter Type: Decimal value.

Return Value Type: String. In case an instance does not have InterCom configured, the function returns
an empty string.

Example: See InterCom.PODPORTNUMBER().

See also: InterCom.NAME().

©1989-2024 Lauterbach PowerView Function Reference | 84

InterCom.PODPORTNUMBER() Number of TRACES32 instances

Syntax: InterCom.PODPORTNUMBER()

Returns the number of TRACE32 PowerView instances that are connected to the same PowerDebug
hardware module or the same MCI Server (PBI=MCISERVER in the config.t32 file).

Return Value Type: Decimal value.

Example: This script iterates through the TRACES32 instances and prints their InterCom names and
UDP port numbers to an AREA.view window. To format the output, the PRINTF command is used
instead of the simple PRINT command.

&i=0.

AREA.view
PRINTF $%$COLOR.TEAL "%-14s: %s" "InterCom Name" "UDP Port Number"

RePeaT InterCom.PODPORTNUMBER ()

(
PRINTF "%-14s: %i" InterCom.PODPORTNAME (&1) InterCom.PODPORT (&1)
&i=&1i+1.

B::AREA.view =n| Wl <

InterCom Name : UDP Port Number
irst : 10000

second : 10001 =
4 n 3

©1989-2024 Lauterbach PowerView Function Reference | 85

InterCom.PORT() Port number of this TRACE32 instance

Syntax: InterCom.PORT()

Returns the InterCom UDP port number of the currently selected TRACE32 PowerView instance. The port
number is used for communication with remote TRACE32 PowerView instances via the InterCom interface.

A port number can be created in the config file (by default config.t32). See example 1. Alternatively, a port
number can be created with the commands InterCom.PORT or InterCom.ENable. See example 2.

Return Value Type: Decimal value. Returns 0 if the port number is undefined.

Example 1: The port number is defined in the TRACES32 configuration file (by default config.t32).

[B=TYPE c:\temp\T32_1000301.632] =n| Wl <
16. of 41. =] [X] [#3Fnd... [C] Track
:T32 Intercom i
PORT-10000 = InterCom.PORT()
PACKLEN=1024 57
PRINT InterCom.PORT () ;returns 10000 because the InterCom setting in

;the above configuration file reads:
; IC=NETASSIST
: PORT=10000

Example 2: The InterCom.PORT command overrides the port number (PORT= in the config file) in favor of
a new UDP port number.

InterCom.PORT 50000. ;assigns the port number 50000 to the currently
;selected TRACE32 PowerView instance

PRINT InterCom.PORT () ;returns: 50000

See also: InterCom.PODPORT().

©1989-2024 Lauterbach PowerView Function Reference | 86

LICENSE Functions

See also: “VERSION Functions” (general_func.pdf).

In This Section

See also
B LICENSE 1 LICENSE.DATE() 1 LICENSE.FAMILY() 1 LICENSE.FEATURES()
1 LICENSE.getINDEX() 1 LICENSE.GRANTED() 1 LICENSE.HAVEFEATURE() Q1 LICENSE.MSERIAL()

O LICENSE.MULTICORE() @ LICENSE.RequiredForCPU() 1 LICENSE.SERIAL()

LICENSE.DATE() Expiration date of maintenance contract

[build 32168 - DVD 02/2012]

Syntax: LICENSE.DATE(<index>)

Returns the expiration date of the maintenance contract specified by index in the form YYYY/MM.

The persons responsible for license management can use this function in their scripts to check if the
debugger licences are still valid and when licenses need to be renewed. Compare the value with
VERSION.DATE() to check if the maintenance contract is still valid.

Parameter Type: Decimal value. The <index> (starting at 0) is related to the different licenses stored
inside a debug cable.

Return Value Type: String.

See also: LICENSE.getINDEX().

LICENSE.FAMILY() Name of the CPU family license

[build 32168 - DVD 02/2012]

Syntax: LICENSE.FAMILY (<index>)

Returns the name of the CPU family license via the serial number specified by index.
See also LICENSE.getINDEX().

Parameter Type: Decimal value. The <index> (starting at 0) is related to the different licenses stored
inside a debug cable.

Return Value Type: String.

©1989-2024 Lauterbach PowerView Function Reference | 87

LICENSE.FEATURES() List of features licensed

[build 32168 - DVD 02/2012]

Syntax: LICENSE.FEATURES(<index>)

Returns a comma-separated list of features licensed by the serial number specified by index (as shown in
the LICENSE.List window).

The list of features refers to the features that are programmed into the debug cable, Nexus adapter,
CombiProbe, and preprocessor. You can use the STRing.SCAN() function to analyze the comma-separated
list of features.

The return values of LICENSE.FEATURES() and STRing.SCAN() can be used in scripts to check whether
or not a debugger supports the desired CPU family, e.g. ARM 9. If not, the script could display a dialog box to
notify the user, e.g. DIALOG.OK, and then exit.

Parameter Type: Decimal value. The <index> (starting at 0) is related to the different licenses stored
inside a debug cable.

Return Value Type: String.

See also: LICENSE.getINDEX().

LICENSE.getINDEX() Index of maintenance contract

[build 32168 - DVD 02/2012]

Syntax: LICENSE.getINDEX()

Returns the index of the currently used maintenance contract. The index can be used in these functions:
. LICENSE.DATE()

. LICENSE.MSERIAL()

. LICENSE.SERIAL()

. LICENSE.FAMILY()

. LICENSE.FEATURES()

Return Value Type: Decimal value.

©1989-2024 Lauterbach PowerView Function Reference | 88

LICENSE.GRANTED() License state

Syntax: LICENSE.GRANTED(<product>,<version>)

Returns an integer value that reflects the current license state of a product-version combination.

Parameter and Description:

<product> Parameter Type: String. License product name, e.g. as given in a
lauterbach-*.lic file.
For example: “t32.trace.x86”

<version> Parameter Type: String. License version, e.g. as given in a lauterbach-*.lic
file.

For example: “2013.05”

If the version string is empty, e.g. “, then TRACE32 will try to auto-fill in
the version string, based on the product type.

Return Value Type: Decimal value.

Return Value and Description:

0 License found.

1 License not found.

2 License temporarily not available.

3 License permanently not available.

16 <product> name was an empty string.
Example:

PRINT LICENSE.GRANTED("t32.trace.x86","2013.05")

See also: LICENSE.REQuest command.

LICENSE.HAVEFEATURE() Checks if license is stored in debugger hardware

[build 45728 - DVD 08/2013]

Syntax: LICENSE.HAVEFEATURE(" <name>")

Returns TRUE if a specified feature license is available in the used Lauterbach debugger hardware.
Parameter Type: String.

Return Value Type: Boolean.

©1989-2024 Lauterbach PowerView Function Reference | 89

Example:

PRINT LICENSE.HAVEFEATURE ("arm9")

LICENSE.MSERIALY() Serial number of the maintenance contract

[build 32168 - DVD 02/2012]

Syntax: LICENSE.MSERIAL(<index>)

Returns the serial number of the maintenance contract specified by <index>. The function can be used to
check if a user has a temporary or regular maintenance contract.

Parameter Type: Decimal value. The <index> (starting at 0) is related to the different licenses stored
inside a debug cable.

Return Value Type: String.

See also: LICENSE.getINDEX().

LICENSE.MULTICORE() Check if multicore debugging is licensed

[build 68535, DVD 2016/02]

Syntax: LICENSE.MULTICORE()

Returns TRUE if multicore debugging is licensed.

Return Value Type: Boolean.

LICENSE.RequiredForCPU() License required for selected CPU

[build 128901 - DVD 02/2021]

Syntax: LICENSE.RequiredForCPU()

Returns the licenses required for the CPU seleted in SYStem.CPU as a name.
The result is empty for SYStem.CPU NONE
The result is also empty if you are not using a PowerDebug or HostMCI or ESI

Return Value Type: String.

©1989-2024 Lauterbach PowerView Function Reference | 90

LICENSE.SERIAL() Serial number of debug cable

[build 32168 - DVD 02/2012]

Syntax: LICENSE.SERIAL(<index>)
VERSION.LICENSE() (deprecated)

Returns the serial number of the debug cable specified by <index>.

Parameter Type: Decimal value. The <index> (starting at 0) is related to the different licenses stored
inside a debug cable.

Return Value Type: String.

See also: LICENSE.getINDEX().

©1989-2024 Lauterbach PowerView Function Reference | 91

LOG Function

LOG.DO.FILE() Get log file used by LOG.DO

[build 99855 - DVD 09/2018]

Syntax: LOG.DO.FILE()

Returns the name of the log file which is currently in use by the command LOG.DO. If no log is open, the
function returns an empty string.

Return Value Type: String.

©1989-2024 Lauterbach PowerView Function Reference | 92

Mathematical Functions

In This Section

See also

0 math.ABS() 0 math.FABS() 0 math.FCOS() 0 math.FEXP()

d math.FEXP10() A math.FINF() d math.FLOG() A math.FLOG10()

0 math.FMAX() @ math.FMIN() 0 math.FNAN() Q math.FPOW/()

0 math.FSIN() 0 math.FSQRT() 0 math.MAX() Q math.MIN()

1 math.SIGN() 1 math.SIGNUMY() 1 math.TimeMAX() 1 math.TimeMIN()
math.ABS() Absolute value of decimal value

[build 64326 - DVD 2015/09]
Syntax: math.ABS(<integer>)

Calculates the absolute value of an integer. Negative values are inverted.

Parameter Type: Decimal value.

Return Value Type: Decimal value.
math.FABS() Absolute value of floating point number

[build 69272 - DVD 2016/02]

Syntax: math.FABS(<float>)

Calculates the absolute value of a floating point number. Negative values are inverted.
Parameter Type: Float.

Return Value Type: Float.

©1989-2024 Lauterbach PowerView Function Reference | 93

math.FCOS() Cosine of an angle given in radian

Syntax: math.FCOS(<float>)
FCOS() (deprecated)

Returns cosine of an angle given in radian.
Parameter Type: Float.

Return Value Type: Float.

math.FEXP() Exponentiation with base e (Euler's number)

Syntax: math.FEXP(<float>)
FEXP() (deprecated)

Returns the exponentiation of base e (Euler's number) by given exponent.

Parameter Type: Float.

Return Value Type: Float.

math.FEXP10()

Exponentiation with base 10

Syntax: math.FEXP10(<float>)
FEXP10() (deprecated)

Returns the exponentiation of base 10 by given exponent.

Parameter Type: Float.

Return Value Type: Float.

math.FINF()

Positive infinity

Syntax: math.FINF()
FINF() (deprecated)

Returns inf() IEEE representation for positive infinity.

Return Value Type: Float.

©1989-2024 Lauterbach

PowerView Function Reference | 94

Example:

PRINT 1000000./math.FINF () ;result 0.0
math.FLOG() Natural logarithm of given value
Syntax: math.FLOG(<float>)

FLOG() (deprecated)

Returns natural logarithm (to base of Euler's number) of given value.
Parameter Type: Float.

Return Value Type: Float.

math.FLOG10() Logarithm to base 10 of given value

Syntax: math.FLOG10(<float>)
FLOG10() (deprecated)

Returns logarithm to base 10 of given value.
Parameter Type: Float.

Return Value Type: Float.

math.FMAX() Return the larger one of two floating point values

[build 66893 - DVD 02/2016]

Syntax: math.FMAX(<float1>,<float2>)

Compares two floating point parameters and returns the larger one of the two values.
Parameter Type: Float.
Return Value Type: Float.

Examples:

PRINT math.FMAX(3.9,4.1) ; result 4.1

PRINT math.FMAX(-3.9,-4.1) ; result -3.9

©1989-2024 Lauterbach PowerView Function Reference | 95

math.FMIN() Return the smaller one of two floating point values
[build 66893 - DVD 02/2016]

Syntax: math.FMIN(<float1>,<float2>)

Compares two floating point parameters and returns the smaller one of the two values.
Parameter Type: Float.

Return Value Type: Float.

Examples:
PRINT math.FMIN(3.9,4.1) ; result 3.9
PRINT math.FMIN(-3.9,-4.1) ; result -4.1
math.FMOD() Floating-Point Modulus
[build 133635 - DVD 09/2021]
Syntax: math.FMOD(<x>,<y>)

Compute the floating-point modulus, i. e. the remainder of the division x / y. The returned value z has the
same sign as x. It holds that z = x - k * y for some integer value k.

Parameter and Description:

<x> Parameter Type: Float.

<y> Parameter Type: Float.

Return Value Type: Float.
Examples:

ECHO math.FMOD(7.0,2.5) ; prints 2.0 because 2.0 = 7.0 - 2 * 2.5

ECHO math.FMOD(1.0,0.0) ; prints NAN

ECHO math.FMOD(1.0,0.1) ; prints 54.2101086242752217e-21 because 0.1
; cannot be represented exactly as a Float

©1989-2024 Lauterbach PowerView Function Reference | 96

math.FNAN()

Not a number value

Syntax: math.FNAN()

FNAN() (deprecated)

Returns nan() - Not A Number value.

Return Value Type: Float.

math.FPOW()

Y-th power of base x

Syntax: math.FPOW(<float_x>,<float_y>)

Calculates the y-th power of base x.
Parameter Type: Float.

Return Value Type: Float.

math.FSIN()

[build 64326 - DVD 2015/09]

Sine of an angle given in radian

Syntax: math.FSIN(<value>)

FSIN() (deprecated)

Returns sine of an angle given in radian.
Parameter Type: Float.

Return Value Type: Float.

math.FSQRT()

Square-root of given value

Syntax: math.FSQRT(<value>)

FSQRT() (deprecated)

Returns square-root of given value.
Parameter Type: Float.

Return Value Type: Float.

©1989-2024 Lauterbach

PowerView Function Reference | 97

math.MAX() Return the larger one of two decimal values
[build 66893 - DVD 02/2016]

Syntax: math.MAX(<integer1>,<integer2>)

Compares two integer parameters and returns the larger one of both values.
Parameter Type: Decimal value.
Return Value Type: Decimal value.

Examples:

PRINT math.MAX(5.,2.) ; result 5

PRINT math.MAX(-5.,-2.) ; result -2

math.MIN() Return the smaller one of two decimal values
[build 66893 - DVD 02/2016]

Syntax: math.MIN(<integer1>,<integer2>)

Compares two integer parameters and returns the smaller one of both values.
Parameter Type: Decimal value.

Return Value Type: Decimal value.

Examples:
PRINT math.MIN(5.,2.) ; result 2
PRINT math.MIN(-5.,-2.) ; result -5
math.SIGN() Return -1 or +1 depending on argument

[build 64326 - DVD 2015/09]

Syntax: math.SIGN(<integer>)

Returns -1 for negative values and +1 for positive values.
Parameter Type: Decimal value.

Return Value Type: Decimal value.

©1989-2024 Lauterbach PowerView Function Reference | 98

Examples:

PRINT math.SIGN(-300.) ; result -1
PRINT math.SIGN(500.) ; result 1
PRINT math.SIGN (+700.) ; result 1
math.SIGNUM() Return -1 or 0 or +1 depending on argument
[build 64326 - DVD 2015/09]
Syntax: math.SIGNUM(<integer>)

Returns -1 for negative values, O for a zero value and +1 for positive values.

Parameter Type: Decimal value.

Return Value Type: Decimal value.

math.TimeMAX() Return the larger one of two time values

[build 66893 - DVD 02/2016]

Syntax: math.TimeMAX(<time1>,<time2>)

Compares two time parameters and returns the larger one of the two values.

Parameter Type: Time value.

Return Value Type: Time value. It is measured in seconds.

Examples:

PRINT math.TimeMAX (120ms,1.5s) ; result 1.500000000s

PRINT math.TimeMAX (-120ms,-1.5s) ; result -0.120000000s

math.TimeMIN() Return the smaller one of two time values

[build 66893 - DVD 02/2016]

Syntax: math.TimeMIN(<time1>,<time2>)

Compares both time parameters and returns the smaller one of both values.

Parameter Type: Time value.

©1989-2024 Lauterbach PowerView Function Reference | 99

Return Value Type: Time value. It is measured in seconds.

Examples:
PRINT math.TimeMIN(120ms,1.5s) ; result 0.120000000s
PRINT math.TimeMIN(-120ms,-1.5s) ; result -1.500000000s

©1989-2024 Lauterbach PowerView Function Reference | 100

MENU Function

MENU.EXIST() Check if menu name exists

Syntax: MENU.EXIST(<name>)

Returns TRUE if a menu with a specified name exists.
Parameter Type: String. Menu names are case-insensitive.

Return Value Type: Boolean.

©1989-2024 Lauterbach PowerView Function Reference | 101

NODENAME Function

NODENAME()

Node name of connected TRACE32 device

Syntax:

TRACES2 software can connect to TRACES32 devices through Ethernet or USB. The NODENAME()

NODENAME()

function returns the node name of the connected TRACE32 device.

Return Value Type: String.

o For Ethernet connections, the node name of the connected TRACE32 device is returned. The
node name itself is a setting in the config.t32 file, as shown below.

. For USB connections, just an empty string is returned.

NODENAME()

% B:EDIT "CAT32\bin\windows64\ config.t32"

(=[O el

save |(5ave As... |[Save+CloseQuit+Close|

'/ TRACE32 configuration file for EtherNET {(Windows)
ID=NETO0Z2

; temporary directory for TRACE3Z

; system directory for TRACE3Z

; help directory for TRACE3Z

PEI=
NET

ODE=pod-hen0l

PRINTER=WINDOWS

4 T b

-

m

See also: IFCONFIG.DEVICENAME()

©1989-2024 Lauterbach

PowerView Function Reference

102

OS Functions

This figure provides an overview of the return values of some of the OS functions. For explanations of the
illustrated functions and the functions not shown here, see below.

[& B:VERSION.ENVironment

Windows 7 C -
henT32_1000001
C:
C:\Users'hen'AppData‘Local\Temp
C:\Users'hen'Documents
C:\T32\pdf

C:\Users'hen'Documents 1
C:\Users'hen'AppData‘\Local\TempihenT32_1000001.t32
C:\T32\bin‘\windows64'\t32marm. exe

\T32

A 0S.ID()

C 0OS.PresentTemporaryDirectory()
E OS.PresentConfigurationFile()
Alternatively use: VERSION.ENVironment()

B OS.PresentSystemDirectory()

D OS.PresentHELPDirectory()

F OS.PresentExecutableFile()

The VERSION.ENVironment command opens the above window, displaying the TRACES32 environment

settings.

In This Section

See also

OS.ACCESS()
OS.DIR.ACCESS()
OS.FILE.ABSPATH()
OS.FILE.BASENAME()
OS.FILE.DATE2()
OS.FILE.EXTENSION()
OS.FILE.LINK()
OS.FILE.PATH()
OS.FILE.REALPATH()
OS.FILE.TIME()
OS.FIRSTFILE()

OS.NAME()
OS.PORTAVAILABLE.TCP()
OS.PresentConfigurationFile()
OS.PresentExecutableDirectory()
OS.PresentHELPDirectory()
OS.PresentLicenseFile()
OS.PresentPracticeFile()
OS.PresentTemporaryDirectory()
OS.RETURN()
OS.TMPFILE()
OS.Window.LINE()

Iy

I e Oy iy

OS.DIR()

OS.ENV()
OS.FILE.ACCESS()
OS.FILE.DATE()
OS.FILE.EXIST()
OS.FILE.JOINPATH()
OS.FILE.NAME()
OS.FILE.readable()
OS.FILE.SIZE()
OS.FILE.UnixTime()

0OS.ID()

OS.NEXTFILE()
OS.PORTAVAILABLE.UDP()
OS.PresentDemoDirectory()
OS.PresentExecutableFile()
OS.PresentHomeDirectory()
OS.PresentPracticeDirectory()
OS.PresentSystemDirectory()
OS.PresentWorkingDirectory()
OS.TIMER()

OS.VERSION()

©1989-2024 Lauterbach

PowerView Function Reference

103

OS.DIR() Check if directory exists

Syntax: OS.DIR(<directory_name>)

Returns TRUE if the directory exists.
Parameter Type: String.

Return Value Type: Boolean.

OS.DIR.ACCESS() Access rights to directory

[build 30295 - DVD 06/2011]

Syntax: OS.DIR.ACCESS(<directory_name>,"{<access_right>}")
OS.ACCESS(<directory_name> |<file>,"{<access_right>}") (deprecated)

Returns TRUE when the <directory_name> fulfills all of the requested access rights.

Parameter and Description:

<directory_name> Parameter Type: String.
<access_right> Parameter Type: String.
o R : Permissions to list directory
. W: Permissions to change entries of directory
J X : Permissions to traverse/open directory
. D : Permissions to delete any file or subdirectory in directory
. K : Permissions to delete directory itself
J C : Permissions to create files in directory
. A or S : Permissions to create subfolders in directory

Return Value Type: Boolean.

NOTE: OS.DIR.ACCESS() will only check the permissions to read/write/delete/open a
directory. The function does not guarantee that you will be really able to access
the directory because it might be inaccessible for other reasons.

E.g. You can’t usually delete a directory if a file within this directory is has been
opened exclusively at the same time (although you might have the proper
access rights).

Example:

// returns TRUE if you are allowed to create or modify files
// inside directory "C:\Program Files"
PRINT OS.DIR.ACCESS("C:\Program Files", "wc")

©1989-2024 Lauterbach PowerView Function Reference | 104

OS.ENV() Value of OS environment variable

Syntax: OS.ENV(<env_var>)

Returns the contents of an OS environment variable.
Parameter Type: String.
Return Value Type: String. If the environment variable is not defined, OS.ENV() returns an empty string.

Example: An extra button is added to the TRACES32 toolbar for a particular user on a particular computer if
0S.ENV() returns the values Paul and PaulPC1 for the environment variables USER and
COMPUTERNAME.

LOCAL ¶ml ¶m?2

¶ml="USERNAME"
¶m2="COMPUTERNAME"

IF OS.ENV(¶ml)=="Paul"&&0OS.ENV (¶m2)=="PaulPCl"
(;Return the values of the env. variables in the TRACE32 message bar

PRINT OS.ENV(¶ml) +" "+0S.ENV (¶m2)
;Add button to toolbar: <tooltip text> <tool image> <command>
MENU.AddTool "Special Test" "sT,G" "DO ~~~~/special-test.cmm"

©1989-2024 Lauterbach PowerView Function Reference | 105

OS.FILE.readable() Check if file can be opened for reading

Syntax: OS.FILE.readable(<file>)

Returns TRUE if the file can be opened for reading. This is useful on operation systems, where an existing
file can maybe not opened because some other process is locking the file.

Parameter Type: String.
Return Value Type: Boolean.

Example: A file is opened for writing if it already exists, If not, the file is created. Then a timestamp is written

to the file.

MKTEMP &file ; Creates an empty file with unique name

ECHO OS.FILE.readable("&file") ; Returns here TRUE ()

ECHO OS.FILE ("&file") ; Short for OS.FILE.readable(), Returns TRUE ()

OPEN #1 "&file" /Write /Read ; Opens file exclusively on MS Windows

ECHO OS.FILE.readable("&file") ; Returns here FALSE ()

ECHO OS.FILE ("&file") ; Returns here FALSE ()

ECHO OS.FILE.EXIST("&file") ; Returns TRUE ()

ECHO FILE.EXIST ("&file") ; Returns TRUE ()

CLOSE #1 ; Closes the file for writing
OS.FILE.ABSPATH() Absolute path to file or directory

[build 70945 - DVD 09/2016]
Syntax: OS.FILE.ABSPATH(<file>)

Returns the absolute path to a file or directory. The absolute path does not contain any . or .. or any
leading tildes (~), nor any repeated path separators. In contrast to OS.FILE.REALPATH(), it does not
check if the file or directory actually exists. The return value may contain symbolic links (or junction
points).

Parameter Type: String.

Return Value Type: String.

©1989-2024 Lauterbach PowerView Function Reference | 106

OS.FILE.ACCESS() Access rights to file

[build 30295 - DVD 06/2011]

Syntax: OS.FILE.ACCESS(<file>,"{<access_type>}")
OS.ACCESS(<file> |<directory>,"{<access_type>}") (deprecated)

Returns TRUE when the <file> fulfills all of the requested access rights.

Parameter and Description:

<file> Parameter Type: String.

<access_type> Parameter Type: String.

R : Read file

W: Write file

X : Execute file

D or K: Delete file

C : Change data of file

A or S : Append data to file

Return Value Type: Boolean.

NOTE: OS.FILE.ACCESS() will only check the permissions to read/write/delete/execute
a file. The function does not guarantee that you will be really able to access the
file because it might be inaccessible for other reasons.

E.g. If a file is exclusively opened by another application (file-lock) you can’t
write to the file even you might have the permission to write the file.

Example:

//returns TRUE if you are allowed to READ and WRITE to/from file test.cmm
PRINT OS.FILE.ACCESS("C:\t32\test.cmm",6 "rw")

©1989-2024 Lauterbach PowerView Function Reference | 107

OS.FILE.BASENAME()

Strip directory and suffix from filenames

Syntax

OS.FILE.BASENAME(<path>{," <suffix>"])

Returns the pure name part of a file name, like the POSIX command "basename”".
The second parameter specifies a string which is removed from the end of the result if it matches. This
intended to remove a file extensions.

Parameter and Description:

<path>

Parameter Type: String.

<suffix>

Parameter Type: String.

Remove trailing suffix from <path>.

Special suffixes are

.* -remove last file extension
.** -remove all file extensions

Return Value Type: String.

Example:
ECHO OS.FILE.BASENAME (" /usr/bin/sort","")
ECHO OS.FILE.BASENAME ("include/stdio.h","")
ECHO OS.FILE.BASENAME ("include/stdio.h",".h")
ECHO OS.FILE.BASENAME ("include/stdio/.h",".h")
ECHO OS.FILE.BASENAME (".h",".h")
ECHO OS.FILE.BASENAME ("x.h",".h")
ECHO OS.FILE.BASENAME ("any/strl","")
ECHO OS.FILE.BASENAME ("any/strl\","")
ECHO OS.FILE.BASENAME ("~~/","")
; use wildcards
ECHO OS.FILE.BASENAME ("test.tar.gz",".*")
ECHO OS.FILE.BASENAME ("test.tar.gz",6 ".**")

Function nesting, i.e. 0S.FILE.NAME (OS.PresentExecutableFile (),

OS.FILE.DATE()

"sort"
"stdio.h"
"stdio"

n .h”

n .h”

"o
"strl"
"strl"
"T32"

"test.tar"
"test”

".exe"), is not supported.

Modification date and timestamp of file

Syntax

OS.FILE.DATE(<file>)

Returns the modification date and timestamp <day>.<month>.<year> <hour>:<minutes>:<second>

Parameter Type: String.

Return Value Type: String.

©1989-2024 Lauterbach

PowerView Function Reference | 108

OS.FILE.DATE2() Modification date of file

Syntax: OS.FILE.DATE2(<file>)

Returns the modification date <year>/<month>/<day>
Parameter Type: String.

Return Value Type: String.

OS.FILE.EXIST() Check if file exists

[build 115311 - DVD 02/2020]

Syntax: OS.FILE.EXIST(<file>)

Returns TRUE if the file exists. Alias for FILE.EXIST(). Use the function OS.FILE.readable() instead, if you
want to be sure that the file can be actually opened for reading.

Parameter Type: String.

Return Value Type: Boolean.

Example: A file is opened for writing if it already exists, If not, the file is created. Then a timestamp is written
to the file.

;If the file exists in the temporary directory of TRACE32

IF OS.FILE(~~~/myfile.txt)==TRUE ()

OPEN #1 ~~~/myfile.txt /Append ;Open the file for writing
ELSE

OPEN #1 ~~~/myfile.txt /Create ;Create the file and open it

WRITE #1 "Session start: "+CLOCK.TIME ()

CLOSE #1 ;Close the file for writing
OS.FILE.EXTENSION() File name extension
Syntax: OS.FILE.EXTENSION(<file>)

Returns the extension part of the file name.
Parameter Type: String.

Return Value Type: String.

©1989-2024 Lauterbach PowerView Function Reference | 109

Example:

PRINT OS.FILE.EXTENSION("~~/t32.men") ; result: .men
OS.FILE.JOINPATH() Join multiple paths
[build 124461 - DVD 02/2021]
Syntax: OS.FILE.JOINPATH(<path1>{,<pathN>})

The function OS.FILE.JOINPATH joins folder paths using the os-dependent separator. Duplicate separators
are removed from the resulting path. The resulting path ends with a separator in case of the directory/drive
root, otherwise it is removed.

It's recommended to use slash (/') as input separator for os-independent usage.
Return Value Type: String.

Example 1:

PRIVATE &sPwd
&sPwd=0S.PresentWorkingDirectory ()
PRINT OS.FILE.JOINPATH("&sPwd","../","logs", "trace32_current.log")

; Example:
; Windows: OS.PresentWorkingDirectory () = C:\T32
; Output: "C:\T32\..\logs\trace32_current.log"

; Linux/MacOS: 0OS.PresentWorkingDirectory () = /home/user/t32
; Output: /home/user/t32/../logs/trace32_current.log"

PRINT OS.FILE.JOINPATH("dirl/","\dir2", "dir3","/dird4\","file.txt")

; Output (Windows): dirl\dir2\dir3\dir4d\file.txt

; Output (Linux): The output for Linux does not give a valid path
; since the backslash ('\') is not a valid character, refer

; to next example

PRINT OS.FILE.JOINPATH("dirl/","/dir2","dir3","/dir4d/","file.txt")
; Output (Windows): dirl\dir2\dir3\dir4\file.txt
; Output (Linux/MacOS): dirl/dir2/dir3/dird/file.txt

©1989-2024 Lauterbach PowerView Function Reference | 110

Example 2:

Recursive search of all *.elf files in the TRACE32 system directory

OS.FIRSTFILE/NEXTFILE returns the relative path
OS.FILE.JOINPATH is used to prefix the base path again

’
’

’

PRIVATE &sBase &sPath
&sBase=0S.PresentSystemDirectory () ; TRACE32 system directory

&sPath=0S.FILE.JOINPATH ("&sBase", "/**/", "* . elf")
&sPath=0S.FIRSTFILE ("&sPath")
WHILE "&sPath"!=""

(
PRINT OS.FILE.JOINPATH ("&sBase", "&sPath")

&sPath=0S.NEXTFILE ()

OS.FILE.LINK() Real file name of file link

Syntax: OS.FILE.LINK(<file>)

Returns the real file name of a file link.
Parameter Type: String.
Return Value Type: String.

Example:

;return path and file name of this MS Windows shortcut
PRINT OS.FILE.LINK("~~/bin/t32marm.exe.lnk")

;result: C:\T32\bin\windows\t32marm.exe

ls -1 /home/t32/a.h ; a.h -> ../sources/include/b.h

PRINT OS.FILE.LINK(/home/t32/a.h) ; result "../sources/include/b.h"

©1989-2024 Lauterbach PowerView Function Reference | 111

OS.FILE.NAME() Extract file name from path

Syntax: OS.FILE.NAME(<path>)

Returns the pure name part of a file name (including file extension if there is one).
Parameter Type: String.
Return Value Type: String.

Example: The function returns the file name of a TRACES32 executable from the string that consists of path
and file name.

;Declare a PRACTICE macro (variable)
LOCAL &fname

;Returns path and file name of the active TRACE32 executable
&fname=0S.PresentExecutableFile ()
PRINT "&fname"
;Windows: e.g. C:\T32\bin\windows64\t32marm.exe
;Linux: e.g. /home/user/t32/t32marm

;Returns just the file name from the string assigned to &fname
PRINT OS.FILE.NAME (&fname)

;Windows: t32marm.exe

;Linux: t32marm

Function nesting, i.e. 0S.FILE.NAME (OS.PresentExecutableFile ()), is not supported.

©1989-2024 Lauterbach PowerView Function Reference | 112

OS.FILE.PATH() Return path of file

Syntax: OS.FILE.PATH(<file>)

Returns the path name part of the file name or when the name does not contain a path the actual
working directory. The resulting path does not include a trailing slash or backslash, unless the file is
located in a root directory.

Parameter Type: String.

Return Value Type: String.

Examples:
PRINT OS.FILE.PATH("C:/temp/test.cmm") ;returns "C:\temp"
CD C:/t32 ;change directory
PRINT OS.FILE.PATH("test.cmm") ;returns "C:\t32"

Path contains slash or backslash if file is located in root directory:

PRINT OS.FILE.PATH("C:\t32\test.cmm") ;returns "C:\temp"
PRINT OS.FILE.PATH("C:\test.cmm") ;returns "C:\"
OS.FILE.REALPATH() Canonical absolute path to file or directory

[build 70945 - DVD 09/2016]

Syntax: OS.FILE.REALPATH(<file>)

Returns the canonical absolute path to a file or directory. The canonical absolute path does not contain
any symbolic link (or junction point), nor any . or .. or leading tildes (~), nor any repeated path
separators.

In contrast to OS.FILE.ABSPATH() the given path of a directory or file must exist. Otherwise an empty string
will be returned.

While OS.FILE.REALPATH() resolves symbolic links and junction points, it does not resolve any file
shortcuts (*.Ink files) of a Windows operating system. To resolve file shortcuts on Windows use
OS.FILE.LINK().

Parameter Type: String.

Return Value Type: String.

©1989-2024 Lauterbach PowerView Function Reference | 113

OS.FILE.SIZE()

File size in bytes

Syntax: OS.FILE.SIZE(<file>)

Returns the size of the file in bytes.
Parameter Type: String.

Return Value Type: Decimal value.

OS.FILE.TIME()

Modification timestamp of file

Syntax: OS.FILE.TIME(<file>)

Returns the modification timestamp.
Parameter Type: String.

Return Value Type: String.

©1989-2024 Lauterbach

PowerView Function Reference | 114

OS.FILE.UnixTime() Unix timestamp of file

[build 64300 - DVD 09/2015]

Syntax: OS.FILE.UnixTime(<file>)

Returns the Unix timestamp of the last modification of the specified file. The Unix timestamp can be
formatted to a human readable form with DATE.MakeUnixTime().

Parameter Type: String.
Return Value Type: Decimal value.

Example: The backslash \ is used as a line continuation character. No white space permitted after the
backslash.

;last modification date and time of file t32.men in ISO 8601 (UTC)
PRINT FORMAT.UnixTime("c",OS.FILE.UnixTime("~~/t32.men"),0)

;same result as PRINT OS.FILE.DATE("~~/t32.men")
PRINT FORMAT.UnixTime ("d.m.Y H:i:s",\
OS.FILE.UnixTime("~~/t32.men"),DATE.utcOffset ())

2018-08-09T22:13:32+00:00
10.08.2018 00:13:32
4

BuAREAview = EcE <
2

©1989-2024 Lauterbach PowerView Function Reference | 115

OS.FIRSTFILE() First file name matching a pattern

Syntax: OS.FIRSTFILE(<pattern>)

OS.FIRSTFILE() in conjunction with OS.NEXTFILE() can be used to iterate over all files matching a specific
<pattern>.

The <pattern> supports '*' and '?' wildcards to match a specific name (e.g. 't32m™*') or files of a specific type
(e.g. ".cmm"). Per default the search is perfomed in the present working directory.

Optionally the <pattern>can be prefixed with a directory (e.g. 'C:\t32', /home/user’) which can be used for a
recursive search using the '**' syntax.

* matches any character O or more times.

? matches any character 1 time.

** | matches directories recursively.

Example patterns:

. Match all files with extension '.cmm' in the present working directory

PRINT OS.FIRSTFILE("*.cmm")
; —> OS.NEXTFILE()

. Match all files '<date>runtest.log' with date <year><month><day> in c:\logs

; -> OS.NEXTFILE ()

J Match all files with extension '.cmm' recursively in the TRACE32 system directory (~~/)

PRINT OS.FIRSTFILE ("~~/**/*_ cmm")
; -> OS.NEXTFILE ()

The function OS.NEXTFILE() returns the next file name matching the pattern. To return all file names
matching the pattern, use a WHILE loop as shown in the example below.

Parameter Type: String.

Return Value Type: String.

©1989-2024 Lauterbach PowerView Function Reference | 116

Example: This script lists all TRACES32 executable file names that meet the following criteria:
J They reside in the windows 64 subfolder of the TRACES32 system directory (~~/)
. They start with the prefix £t32m

. They have the suffix . exe

To try this script, copy it to a test . cmm file, and then run it in TRACES32 (See “How to...”).

LOCAL é&pattern &file

&pattern="~~\bin\windows64\t32m* .exe" ;define a pattern with folder path
;and file name

&file=0S.FIRSTFILE("&pattern™) ;get the first file name matching
;the pattern

OPEN #1 ~~~\list.dat /Create ;create an output file in the
; temporary directory of TRACE32
WHILE "&file"!=""

(
WRITE #1 "&file" ;write file name to output file

&file=0S .NEXTFILE() ;get next file name matching
) ;the pattern

CLOSE #1 ;close the output file and
TYPE ~~~\list.dat ;view the output file in TRACE32
0S.ID() User ID of TRACE32 instance
[Go to figure.]
Syntax: 0S.1D()

Returns the user ID. Each user has a different user ID for each TRACE32 instance. The user ID is the same
as in the VERSION.ENVironment window.

Return Value Type: String.

©1989-2024 Lauterbach PowerView Function Reference | 117

Example: The OS.ID() function is used to open the TRACE32 command history file referring to the active
TRACE32 instance. The history file contains, among other things, the list of recently opened files and
recently executed commands.

LOCAL &filename

;Concatenates the components of the history file name
&filename=0S.ID()+"store.cmm"

;The path prefix ~~~ expands to the temporary directory of TRACE32
EDIT ~~~/&filename ;Opens the history file

Commands that save a subset of the history file to a PRACTICE script file (*.cmm) are HISTory.SAVE and
STOre. The HISTory.type command opens the history of the active TRACES32 instance right away. But note
that double-clicking a line executes the selected command.

OS.NAME() Basic name of operating system

[build 64672 - DVD 09/2015]

Syntax: OS.NAME()

Returns the basic name of the operating system. A more detailed string can be obtained with the
VERSION.ENVironment(OS) function.

Return Value Type: String.

Return Values: Windows, Linux, MacOSX, HP-UX, PowerPC

©1989-2024 Lauterbach PowerView Function Reference | 118

OS.NEXTFILE() Next file name matching a pattern

Syntax: OS.NEXTFILE()

The function OS.FIRSTFILE(<pattern>) returns the name of the first file within a specified folder. The
function OS.NEXTFILE() returns the next file name matching the pattern.

Return Value Type: String.

Example: For an example of how to use both functions, see OS.FIRSTFILE().

0S.PORTAVAILABLE.TCP() Check if TCP port is used

[build 76440 - DVD 09/2016]

Syntax: OS.PORTAVAILABLE.TCP(<port_number>)

Returns TRUE if the TCP port having the specified <port_number> is available at the host, i.e. the TCP port
is not used.

Parameter Type: Decimal value. Range: 1. t0 65535.

Return Value Type: Boolean.

©1989-2024 Lauterbach PowerView Function Reference | 119

OS.PORTAVAILABLE.UDP() Check if UDP port is used

[build 76440 - DVD 09/2016]

Syntax: OS.PORTAVAILABLE.UDP(<port_number>)

Returns TRUE if the UDP port having the specified <port_number> is available at the host, i.e. the UDP port
number is not used.

Parameter Type: Decimal value. Range: 1. to 65535.
Return Value Type: Boolean.

Example: In this script, the function is used to find the next available UDP port number in the range
10000. to 10010.

GOSUB FindAvailableUDPPort 10000. 10010.
LOCAL &port
ENTRY &port
IF &port!=0.

PRINT "Found available UDP Port at &port"
ELSE

PRINT "no available UDP Port found"
ENDDO

FindAvailableUDPPort:
LOCAL &start &end &port
ENTRY &start &end
&port=&start

WHILE &port<=&end
(
IF OS.PORTAVAILABLE.UDP (&port)==TRUE ()
RETURN &port
&port=&port+1.
)
RETURN O.

OS.PresentConfigurationFile() Name of used TRACES2 configuration file

[Go to figure.]

Syntax: 0OS.PresentConfigurationFile()
[build 89127 - DVD 02/2018]
OS.PCF()
[build 12210 - DVD 10/2008]

Returns the name of the currently used TRACES32 configuration file (default config.t32). You can access
the configuration file by choosing Help menu > About TRACE32. Then click the edit button.

Return Value Type: String.

©1989-2024 Lauterbach PowerView Function Reference | 120

OS.PresentDemoDirectory() Demo directory for the current architecture

Syntax: 0OS.PresentDemoDirectory()
[build 89127 - DVD 02/2018]
0OS.PDD()

[build 63341 - DVD 09/2015]

Returns path to the demo directory of the architecture, e.g.: C:\T32\demo\arm
In some cases the path can change depending on the currently selected CPU.

Return Value Type: String.

OS.PresentExecutableDirectory() Directory of current TRACES32 exe.
[Go to figure.]
Syntax: OS.PresentExecutableDirectory()
[build 89127 - DVD 02/2018]
OS.PED()

[build 32382 - DVD 06/2011]

Returns the directory name of the currently started TRACE32 executable, e.g.: C:\T32\bin\windows64

Return Value Type: String.

OS.PresentExecutableFile() Path and file name of current TRACE32 exe.

[Go to figure.]

Syntax: OS.PresentExecutableFile()
[build 89127 - DVD 02/2018]
OS.PEF()
[build 17601 - DVD 12/2009]

Returns the path and the file name of the currently started TRACE32 executable, e.g.:
C:\T32\bin\windows64\t32marm.exe

Return Value Type: String.

Remarks:
. The OS.FILE.NAME() function can be used to return just the file name.

. The SOFTWARE.64BIT() function can be used to find out if the TRACE32 software is a 64-bit
executable.

©1989-2024 Lauterbach PowerView Function Reference | 121

OS.PresentHomeDirectory() Path of the home directory

[Go to figure.]
Syntax: 0OS.PresentHomeDirectory()
[build 89127 - DVD 02/2018]
0S.PHD()
[build 2280 - CD 07/2005]
Returns the path of the home directory.
Return Value Type: String.
OS.PresentHELPDirectory() Path of the TRACES2 online help directory
[Go to figure.]
Syntax: OS.PresentHELPDirectory()
[build 89127 - DVD 02/2018]
OS.PHELPD()
[build 12210 - DVD 10/2008]
Returns the path of the TRACES32 online help directory.
Return Value Type: String.
OS.PresentLicenseFile() Current TRACES?2 license file
Syntax: OS.PresentLicenseFile()
[build 89127 - DVD 02/2018]
OS.PLF()

[build 12210 - DVD 10/2008]

Returns the name of the currently used TRACE32 license file (default: license.t32).

Return Value Type: String.

©1989-2024 Lauterbach PowerView Function Reference | 122

OS.PresentPracticeDirectory() Directory of currently executed script

Syntax: 0OS.PresentPracticeDirectory()
[build 89127 - DVD 02/2018]
0OS.PPD()
[build 13751]

Returns the name of the directory of the currently executed PRACTICE script at the top of the
PRACTICE stack. If no PRACTICE script is loaded, then this function returns an empty string. Use
PMACRO.list to view the current PRACTICE stack.

Return Value Type: String.

OS.PresentPracticeFile() Path and file name of currently executed script
Syntax: OS.PresentPracticeFile()
[build 89127 - DVD 02/2018]
0S.PPF()

[build 12007 - DVD 10/2008]

Returns the path and file name of the currently executed PRACTICE script file at the top of the
PRACTICE stack. If no PRACTICE script is loaded, then this function returns an empty string. Use
PMACRO.list to view the current PRACTICE stack.

Return Value Type: String.

OS.PresentSystemDirectory() TRACE32 system directory
[Go to figure.]
Syntax: 0OS.PresentSystemDirectory()
[build 89127 - DVD 02/2018]
0S.PSD()

Returns the name of the TRACES32 system directory.

Return Value Type: String.

©1989-2024 Lauterbach PowerView Function Reference | 123

OS.PresentTemporaryDirectory()

TRACES32 temporary directory

Syntax: 0OS.PresentTemporaryDirectory()
[build 89127 - DVD 02/2018]
OS.PTD()

Returns the name of the TRACES32 temporary directory.

Return Value Type: String.

OS.PresentWorkingDirectory()

[Go to figure.]

Current working directory

Syntax: 0OS.PresentWorkingDirectory()
[build 89127 - DVD 02/2018]
0S.PWD()

[Go to figure.]

Returns the name of the current working directory of TRACES32.

Return Value Type: String.

©1989-2024 Lauterbach

PowerView Function Reference

124

OS.RETURN() Return code of the last executed operating system command

Syntax: OS.RETURN()

Returns the return code of the last executed operating system commands from OS.screen,
0S.Window, OS.Hidden, and OS.Area.

Return Value Type: Hex value.

Example:
OS.Area myscript.bat ; PRACTICE script under
IF OS.RETURN() !=0 ; TRACE32 PowerView GUI

GOTO 1_scripterrorl

// content of myscript.bat
perl myperlscript.pl // under Windows
exit $ERRORLEVEL% // forward the return value of
// Perl call to TRACE32 PowerView GUI

OS.TIMER() OS timer in milliseconds

[build 06753 - DVD 01/2007]

Syntax: OS.TIMER()

Returns the OS timer in milliseconds. The resolution of this timer depends on the host operating
system. For higher precision measurements, use DATE.UnixTimeUS().

Return Value Type: Decimal value.

OS.TMPFILE() Name for a temporary file

[Examples]

Syntax: OS.TMPFILE()

Suggests the name for a temporary file. The function generates a unique file name each time the function is
called.

To create the physical file with the suggested file name, you can use, for example, the Data.SAVE.Binary or
the OPEN command. The newly-created file is stored in the temporary directory of TRACES32, see
0S.PresentTemporaryDirectory().

Return Value Type: String.

©1989-2024 Lauterbach PowerView Function Reference | 125

Examples

In the examples below, data is exchanged between the TRACES2 virtual memory (VM:) and a temporary
file.

Example 1: The function OS.TMPFILE() and the command Data.SAVE.Binary are used to create a

temporary backup file for virtual memory contents. The virtual memory contents are restored later on by
loading them from the temporary backup file.

LOCAL &tfilel

; Get the file name for a temporary file
&tfilel=0S.TMPFILE ()

Data.Set VM:0 %Byte 0 1 2 3 4 5 6 7 8 ; Write data to memory
Data.SAVE.Binary "&tfilel" VM:0--8 ; Back up memory contents
Data.Set VM:0 %$Byte 0 O O O O O O O O ; Overwrite memory contents
Data.LOAD.Binary "&tfilel" VM:0--8 ; Restore memory contents
RM "&tfilel" ; Delete the temporary file

Example 2: The function OS.TMPFILE() and the command OPEN are used to create a temporary file.
The data written to the temporary file is then loaded to the TRACES32 virtual memory (VM:).

LOCAL &tfile2

; Get the file name for a temporary file
&tfile2=0S.TMPFILE()

OPEN #1 "&tfile2" /Create ; Create and open the file
WRITE #1 %String "Hello TRACE32" ; Write a string to the file
CLOSE #1

; Optional - lets you see the result on screen

Data.dump VM:0 /DIALOG
Data.LOAD.auto "&tfile2" VM:0 ; Load string to virtual memory

RM "&tfile2" ; Delete the temporary file

©1989-2024 Lauterbach PowerView Function Reference | 126

OS.VERSION() Type of the host operating system

[build 05629 - DVD 01/2007] [Examples] [Go to figure.]

Syntax: OS.VERSION(<version_data_type>)

Returns the type of the host operating system. The corresponding string is shown in the
VERSION.ENVironment window.

Parameter and Description:

<version_data_type> Parameter Type: Hex value.

0 returns the platform ID of the host operating system.

1 returns the major version.

2 returns the minor version.

3 returns the service pack number.

6 returns the product type (1:Workstation, 2:Domain-Citrl.,3:Server)
8 returns the build number

Return Value Type: Hex value.

For detailed information about the returned hex values, see table Operating System.

NOTE: If you only need to determine the OS name, see OS.NAME().

Operating OS.VERSION(0) OS.VERSION(1) OS.VERSION(2) OS.VERSION(6)
System

LINUX x86/x64 0x10 0 0 0

(x86 executable)

LINUX x64 0x11 0 0 0

(x64 executable)

LINUX on other >0x11 0 0 0
architectures <0x20

HP-UX 0x30 0 0 0

MAC OS X 0x40 0 0 0

(x86 executable)

MAC OS X 0x41 0 0 0

(x64 executable)

other / unknown 0x00 0 0 0

(should not

happen)

Microsoft Platformld MajorVersion MinorVersion ProductType
Windows

©1989-2024 Lauterbach PowerView Function Reference | 127

Operating OS.VERSION(0) OS.VERSION(1) OS.VERSION(2) OS.VERSION(6)
System
Windows 95/ 98 0x01 4 0/10 0
Windows ME 0x01 4 90 0
Windows NT 3.51 | 0x02 3 51 1
Windows NT 4.0 0x02 4 0 1
Windows 2000 0x02 5 0 1
Windows XP 0x02 5 1 1
Windows Server 0x02 5 2 3
2003
Windows Vista 0x02 6 0 1
Windows Server 0x02 6 0 3
2008 R1
Windows Server 0x02 6 1 3
2008 R2
Windows 7 0x02 6 1 1
Windows 8 0x02 6 2 1
Windows 8.1 0x02 6 3 1
Windows Server 0x02 6 2 3
2012 R1
Windows Server 0x02 6 3 3
2012 R2
Windows 10 0x02 10 1 1
©1989-2024 Lauterbach PowerView Function Reference | 128

Examples:

Example 1: PRACTICE script to detect the host operating system

; The logical OR operator in PRACTICE scripts is ||
IF (OS.VERSION(0)>=0x50) || (OS.VERSION(0)==0x00)
PRINT "Unkown OS"
ELSE IF OS.VERSION(0)>=0x40
PRINT "Mac OS X"
ELSE IF OS.VERSION(0)>=0x30
PRINT "HP-UX"
ELSE IF OS.VERSION(0)>=0x10
PRINT "Linux"
ELSE
PRINT "MS Windows"
ENDDO

Example 2: The different <version_data_types>01to 3

IF (OS.VERSION(0)==0x1X) ; For return values, see table
(; Operating System above, column 2.

PRINT "TRACE32 started on"
PRINT "LINUX computer"

PRINT OS.VERSION(1l) ; For return values, see table above, column 3.
PRINT OS.VERSION(2) ; For return values, see table above, column 4.

PRINT OS.VERSION(3) ; For return values, see table above, column 5.

©1989-2024 Lauterbach PowerView Function Reference | 129

OS.Window.LINE()

Get line from an OS.Window window

Syntax:

[build 113646 - DVD 02/2020]

OS.Window.LINE(WIinTOP | <window_name>,<line>)

Returns one line from a window opened with command OS.Window.

This is useful to get the result
PRACTCIE script.

of shell command executed in the host operating system, for further usage in a

— |B::0S.Window
1]...
21...
2. ..
0|...

A Positive numbers for <line> starting with 1 identify lines from the top of the OS.Window window.

B 0 and negative numbers

Parameter and Description:

for <line> identify lines from the bottom of the OS.Window window.

<window_name>

Parameter Type: String.

<line>

Parameter Type: Decimal value.

Return Value Type: String.
Example:

WinPOS
0S.Window ver

;v 000 WINVER

ECHO OS.Window.LINE (WINVER, 2)

©1989-2024 Lauterbach

PowerView Function Reference | 130

PATH Functions

In This Section

See also
B PATH QO PATH.NUMBER() O PATH.PATH()
PATH.NUMBER() Number of path entries
[build 99683 - DVD 09/2018]
Syntax: PATH.NUMBER()

Returns the number of defined directories in the search path.
The actual defined directories from the search path are shown with the command PATH.List.

Return Value Type: Decimal value.

PATH.PATH() Search path entry

[build 99683 - DVD 09/2018]

Syntax: PATH.PATH(<index>)

Returns a certain defined directory from the search path (see command PATH.List).

Parameter Type: Decimal value. The <index> (starting at 0) is related to the different directory names from
the search path variable.

Return Value Type: String.

©1989-2024 Lauterbach PowerView Function Reference | 131

Example:

PATH.Set W:\cmm ; define three search directories
PATH.Set W:\t32\exam\cmm W:\use\mycmm ; search directory order below
PRINT PATH.PATH(1.) ; output: W:\t32\exam\cmm

: S
7 Delete Al (47} Add Di...|[S2 Store...|

dirindex |directory
0 [W:cmm

[1 [wW:\t32 exam' cmm

2 Wi us e mycmm

B:

[w:\t32%exam'cmm

©1989-2024 Lauterbach PowerView Function Reference | 132

ProcessID Function

ProcesslID() Process identifier of a TRACE32 PowerView instance
[build 16069 - DVD 12/2009]

Syntax: ProcessiD()

Returns the PID (process identifier) of the TRACE32 PowerView instance from the Windows Task Manager.
Return Value Type: Decimal value.

To display the PID column in Windows Task Manager:
1. Start the Windows Task Manager.

2 Click the Processes tab.

3. Choose View menu > Select Columns.

4

Select the PID check box.

©1989-2024 Lauterbach PowerView Function Reference | 133

PRACTICE Functions

In This Section

See also
0 PRACTICE.ARG() 0 PRACTICE.ARG.SIZE()
0 PRACTICE.CALLER.FILE() 0 PRACTICE.CALLER.LINE()
Q0 PRACTICE.CoMmanD.AVAlLable() 0 PRACTICE.FUNCtion.AVAILable()
PRACTICE.ARG() Return value of GOSUB, DO, RETURN, and ENDDO
[build 65450 - DVD 02/2016]
Syntax: PRACTICE.ARG(<argument_index>)

Returns the value of the specified <argument_index>: a) passed by the commands GOSUB or DO or
b) returned by the commands RETURN or ENDDO.

Parameter Type: Decimal or hex or binary value. The index number of the first argument is 0.
Return Value Type: String.

Example: A file name string is passed to a subroutine. The subroutine fetches the string using
PRACTICE.ARG(). The illegal characters are removed and the cleaned string is returned to the caller.
The caller fetches the cleaned string using PRACTICE.ARG().

GOSUB fix filename "/test/in*t.system"
PRINT "cleaned file name: " PRACTICE.ARG(O0.)
ENDDO

fix filename:

PRIVATE &name
&name=PRACTICE.ARG(0.) ;get the file name string passed by GOSUB

;create an array with 'illegal' characters
Var .NEWLOCAL char[16] \remove_these = "[]|=/*./:;,\"\\"
Var .NEWLOCAL int \i = 0;

Var .WHILE \remove_ these[\1]!=0

(;replace all 'illegal' characters with an underscore '_'
PRIVATE &search_str
&search_str=""+CONVert.CHAR (Var.VALUE (\remove_these[\1++]))
&name=STRing.Replace ("&name", "&search_str", "_", 0.)

)

RETURN "&name" ;return the cleaned file name to the caller

©1989-2024 Lauterbach PowerView Function Reference | 134

PRACTICE.ARG.SIZE()

Number of passed or returned arguments

Returns the number of arguments: a) passed by the commands GOSUB or DO or b) returned by the

[build 65450 - DVD 02/2016]

Syntax: PRACTICE.ARG.SIZE()

commands RETURN or ENDDO.

Return Value Type: Decimal value.

Example: A subroutine returns a number of values to the caller. PRACTICE.ARG.SIZE() counts the

number of values, and each value is then printed to an AREA window using a WHILE loop and

PRACTICE.ARG().
PMACRO.EXPLICIT ;enforce explicit macro declaration
PRIVATE &range &boolean &i
&i=0.
GOSUB AnySubroutine ;call the subroutine
AREA.view ;open an AREA.view window
PRINT %COLOR.MAROON "No. of return values: " PRACTICE.ARG.SIZE()
WHILE &i<PRACTICE.ARG.SIZE() ;print each return value to the

(;AREA.view window
PRINT %COLOR.GREEN PRACTICE.ARG(&i)
&i=&i+1.

ENDDO

AnySubroutine:

PRIVATE &my rng &my bool

;assign two values to PRACTICE macros:

&my_rng="0x40000000++0xffff" ;— any range
&my_bool=FOUND () ;- any boolean expression
RETURN "&my rng" "&my bool" ;return the values to the caller
= | BuAREAview =n| Wl <

No.

of return values: 2

04 0000000++0x T
FALSE() -

4

1 }

©1989-2024 Lauterbach PowerView Function Reference

| 135

PRACTICE.CALLER.FILE() File name of the script/subscript caller

[build 65582 - DVD 09/2015]

Syntax: PRACTICE.CALLER.FILE(<index>)

Returns the file name of the script/subroutine caller.

Parameter and Description:

<index> Parameter Type: Decimal value. Is used to walk through the call hierarchy.

Return Value Type: String. The function returns an empty string if no further caller exists.

Example: See PRACTICE.CALLER.LINE().

PRACTICE.CALLER.LINE() Line number in caller script

[build 65582 - DVD 09/2015]

Syntax: PRACTICE.CALLER.LINE(<index>)

Returns the line number of a script/subroutine call in the caller script.

Parameter and Description:

<index> Parameter Type: Decimal value. Is used to walk through the call hierarchy.

Return Value Type: Decimal value. The function returns 0. if no further caller exists.
Example:

// caller.cmm

PRINT "This is "+PRACTICE.CALLER.FILE(O0.)

PRINT "line: "+FORMAT.Decimal (0., PRACTICE.CALLER.LINE(0.))
DO callee.cmm // this call is in line 4

ENDDO

// callee.cmm

PRINT " This is "+PRACTICE.CALLER.FILE(O0.)

PRINT " line "+FORMAT.Decimal (0., PRACTICE.CALLER.LINE(OQ.))
PRINT " Called from "+PRACTICE.CALLER.FILE(1l.)

PRINT " line "+FORMAT.Decimal (0., PRACTICE.CALLER.LINE(1.))
ENDDO

©1989-2024 Lauterbach PowerView Function Reference | 136

Output:

= | BuAREAview =n| Wl <
his is c:\temp'caller.cmm i
1'rl1'ﬁ1s is c:htempicallee.cmm
Ca}jlgg 'Fr‘om c:tempicaller.cmm
Tine v
PRACTICE.CoMmanD.AVAlILable() Check if command is available
[build 64113 - DVD 09/2015]
Syntax: PRACTICE.CoMmanD.AVAILable(<command>)

Returns TRUE if a specified TRACE32/PRACTICE command is available. Returns FALSE if the passed
TRACE32/PRACTICE command does not exist or is locked.

Parameter Type: String.
Return Value Type: Boolean.
Examples:

;returns TRUE ()
PRINT PRACTICE.CoMmanD.AVAILable (sys.mode.down)

;returns FALSE(), since there is no such command "sys.mode.lunchbreak"

PRINT PRACTICE.CoMmanD.AVAILable (sys.mode.lunchbreak)

PRACTICE.CoMmanD.AVAILable() does not check parameters or arguments of the passed command:

;returns TRUE() - reason: without the period between mode and lunchbreak,
; lunchbreak is interpreted as a command argument
PRINT PRACTICE.CoMmanD.AVAILable (sys.mode lunchbreak)

©1989-2024 Lauterbach PowerView Function Reference | 137

PRACTICE.FUNCtion.AVAIlLable() Check if function is available

[build 64113 - DVD 09/2015]

Syntax: PRACTICE.FUNCtion.AVAILable(<function>)

Returns TRUE if a specified PRACTICE function is available. Returns FALSE if the passed function does not
exist or is locked.

Parameter Type: String.
Return Value Type: Boolean.
Examples:

;returns TRUE ()
PRINT PRACTICE.FUNCtion.AVAILable (Data.Long)

;returns FALSE ()
PRINT PRACTICE.FUNCtion.AVAILable (imaginary.function)

PRACTICE.FUNCtion.AVAILable() does not check parameters or arguments of the passed function.

;returns TRUE(), even the argument is rubbish
PRINT PRACTICE.FUNCtion.AVAILable (Data.Long ("rubbish"))

©1989-2024 Lauterbach PowerView Function Reference | 138

PRINTER Function

PRINTER.FILENAME() Path and file name of next print operation

[build 72057 - DVD 08/2016]

Syntax: PRINTER.FILENAME()

Returns the path and the initial file name set with the PRinTer.FILE command, e.g. c:\temp\file01.ixt. In
addition, the function returns the incremented file name for each subsequent print operation, e.g.
c:\temp\file02.txt, c:\temp\file03.txt, etc.

Return Value Type: String.

Example: Two List.Mix windows are printed to file, and each file name is returned with the
PRINTER.FILENAME() function.

PRinTer .FILE ~~~\fileOl.txt ; start with this file name
PRINT %COLOR.BLUE "Start file name: " $%$COLOR.RED PRINTER.FILENAME ()
WinPrint.List.Mix func7--funcl? ; print window to fileOl.txt
PRINT %COLOR.BLUE "Next file name: " $COLOR.RED PRINTER.FILENAME ()
WinPrint.List.Mix funcl8--func25 ; increment file name and print

; window to file02.txt

) B:PRinTer.select =N Eoh(= | B:AREAview AD00 =N =R
Start file name: c:‘\temp'filedl.txt i
printer |WIN (Windows Default) v| printout sent to: file c:\temp\fileOl.txt (ASCII)
Next file name: c:‘\temp'\filedZ.txt
printout sent to: file c:\temp'file0d2.txt (ASCII) i
CipBoard [ASCIE (ASCII enhanced) -] ¢ Ll -
@ FILE c:\temp\file03. ot == [AL browse |
[ascn (ascm -
Append
Area

PRINTER.FILENAME() -

©1989-2024 Lauterbach PowerView Function Reference | 139

RADIX Function

RADIX()

Current radix setting

Syntax:

Returns the current radix setting. See command SETUP.RADIX.

RADIX()

Return Value Type: Hex value.

Return Value and Description:

0x0a

Decimal mode.

0x10

Hex mode.

©1989-2024 Lauterbach

PowerView Function Reference

140

RANDOM Functions

RANDOM() Pseudo random number

Syntax: RANDOM()

Returns a pseudo random number (64-bit). See also SETUP.RANDOM command.
Return Value Type: Hex value.
Example:

LOCAL &randomHex

&randomHex=RANDOM ()

PRINT %COLOR.NAVY "Hex: " &randomHex
PRINT %CONTinue " = "
PRINT %CONTinue $%$COLOR.RED "Decimal: " CONVERT.HEXTOINT (&randomHex)
= | B:AREAview =N Eoh(
Hex: GE0782F7CDD1425B = Decimal: 7928449669830623835 :
RANDOM.RANGE() Pseudo random number from specified range
Syntax: RANDOM.RANGE(<min>, <max>)

Returns a pseudo random integer number in the range <min> ... <max>. See also SETUP.RANDOM
command.

Parameter and Description:

<min> Parameter Type: Decimal value. Is a signed 64-bit integer.

<max> Parameter Type: Decimal value. Is a signed 64-bit integer.

Return Value Type: Decimal value.

©1989-2024 Lauterbach PowerView Function Reference | 141

RANDOM.RANGE.HEX() Pseudo hex random number from specified range

Syntax: RANDOM.RANGE.HEX(<min>, <max>)

Returns a pseudo random hexadecimal number in the range <min> ... <max>. This function is useful to
fill registers with random values or generate random addresses. See also SETUP.RANDOM command.

Parameter and Description:

<min> Parameter Type: Decimal value. Is an unsigned 64-bit integer.

<max> Parameter Type: Decimal value. Is an unsigned 64-bit integer.

Return Value Type: Hex value.

©1989-2024 Lauterbach PowerView Function Reference | 142

RCL Function

RCL.PORT() UDP Port number of remote API interface

[build 59804 - DVD 02/2015]

Syntax: RCL.PORT(<index>)

Returns the UDP port number used by the currently selected TRACE32 PowerView instance for
communicating with <index> via the remote API interface. Returns 0 if the port number is undefined.

Parameter and Description:

Parameter Type: Decimal value. Stands for the client that connects to
TRACE32 via the remote API. More than one client can connect to TRACE32.
The port number is defined in the TRACE32 configuration file (default

c:\t32\config.t32).

<index>

Return Value Type: Decimal value.

Example:

[B:TYPE C:AB2\config32 | =l e =]
9. of 42. =) [x] [FiFnd... Track

-

:T32 API Access
RCL=NETASSIST
PORT=40000 E

PACKLEN=1024
RCL.PORT()

:T32 API Access
RCL=NETASSIST
PORT=40001
PACKLEN=1024

PRINT RCL.PORT(0.) ;returns 40000 and
PRINT RCL.PORT (1.) ;returns 40001 because the API setting in
;the above configuration file reads:
RCL=NETASSIST
PORT=40000 / PORT=40001

RCL.TCP.NrUsedCons() Number of remote API clients connected via TCP

[build 148343 - DVD 09/2022]

Syntax: RCL.TCP.NrUsedCons()
Returns the number of remote API clients currently connected via TCP.

Return Value Type: Decimal value.

©1989-2024 Lauterbach PowerView Function Reference | 143

RCL.TCP.PORT\() TCP Port number of remote API interface

[build 1222215 - DVD 09/2020]

Syntax: RCL.TCP.PORTY()

Returns the TCP port number used by the currently selected TRACE32 PowerView instance for
communicating via the remote API interface. Returns 0 if the configuration file does not contain
RCL=NETTCP.

©1989-2024 Lauterbach PowerView Function Reference | 144

SOFTWARE Functions

In This Section

See also
0O SOFTWARE.64BIT() 0 SOFTWARE.BUILD() 0O SOFTWARE.BUILD.BASE() 1 SOFTWARE.VERSION()
SOFTWARE.64BIT() Check if TRACES32 executable is 64-bit
[build 26300 - DVD 11/2010]
Syntax: SOFTWARE.64BIT()

Returns TRUE if the TRACE32 software is a 64-bit executable.

Return Value Type: Boolean.

SOFTWARE.BUILD() Upper build number

[build 13875 - DVD 10/2008]

Syntax: SOFTWARE.BUILD()

Returns the upper build number of TRACE32. Alias for VERSION.BUILD().

Return Value Type: Decimal value.

SOFTWARE.BUILD.BASE() Lower build number

[build 15283 - DVD 10/2008]

Syntax: SOFTWARE.BUILD.BASE()

Returns the lower build number of TRACE32. Alias for VERSION.BUILD.BASE().

Return Value Type: Decimal value.

©1989-2024 Lauterbach PowerView Function Reference | 145

SOFTWARE.VERSION() Release build or nightly build, etc.

[build 24375 - DVD 11/2010]

Syntax: SOFTWARE.VERSION()

Returns the version of the main software. For more information about the function, please refer to its alias
VERSION.SOFTWARE().

Return Value Type: String.

©1989-2024 Lauterbach PowerView Function Reference | 146

STRing Functions

In This Section

See also

0 STRing.CHAR() 1 STRing.ComPare() 0 STRing.COUNT() 1 STRing.CUT()

1d STRing.ESCapeQuotes() 1d STRing.FIND() 1 STRing.LENgth() 1d STRing.LoWeR()

1 STRing.MID() 1d STRing.Replace() 1 STRing.SCAN() 1J STRing.SCANANndEXxtract()
1 STRing.SCANBack() 1 STRing.SPLIT() 1 STRing. TOKEN() 1 STRing. TRIM()

1 STRing.UPpeR()

STRing.CHAR() Extract a character

Syntax: STRing.CHAR(" <string>",<index>)

Extracts a character at the given index position of the string.

Return Value Type: Hex value. The function returns -1 if the index exceeds the string length.

Examples:
PRINT STRing.CHAR ("abcdef", 2) ; result: 0x63 (=='c')
PRINT STRing.CHAR ("abcdef",10.) ; result: -1
IF STRing.CHAR("abcdef",10.)==-1

DIALOG.OK "<index> exceeds the string length."

©1989-2024 Lauterbach PowerView Function Reference | 147

STRing.ComPare() Check if string matches pattern

[build 53898 - DVD 09/2014]

Syntax: STRing.ComPare(" <string>"," <pattern>")

Returns TRUE if the string matches the wildcard pattern containing ™' and '?'.

Parameter and Description:

<string> Parameter Type: String.

<pattern> Parameter Type: String.

Return Value Type: Boolean.
Example:

;returns TRUE
PRINT STRing.ComPare (STRing.LoWeR ("JohnPaulGeorgeRingo"), "*paul*")

STRing.COUNT() Substring occurrences

[build 66950 - DVD 02/2016]

Syntax: STRing.COUNT(" <string>"," <substring>")

Counts the number of occurrences of <substring> in <string>.

Parameter and Description:

<string> Parameter Type: String. The original string.

<substring> Parameter Type: String. The string we search for in <string>.

Return Value Type: Decimal value.

Example:
PRINT STRing.COUNT ("Hello World","1") ; returns 3
PRINT STRing.COUNT ("Hello World","11") ; returns 1

©1989-2024 Lauterbach PowerView Function Reference | 148

STRing.CUT() Cut string from left or right

Syntax: STRing.CUT("<string>",<length>)

Cuts off the start or end of a string. Positive values cut off the start, negative values cut off the end of
the string.

Parameter and Description:

<string> Parameter Type: String. String to be modified.

<length> Parameter Type: Hex or decimal value.

Return Value Type: String.

Examples:
PRINT STRing.CUT ("abcdef",1) ; result "bcdef"
PRINT STRing.CUT ("abcdef",-1) ; result "abcde"

&abc="test"
&def=STRing.CUT ("&abc", 2) ; result &def="st"
PRINT "&def"

STRing.ESCapeQuotes() Double quote character inside string

[build 94943- DVD 09/2018]

Syntax: STRing.ESCapeQuotes(" <string>")

This function takes a string as parameter and doubles all " characters inside it.
Parameter Type: String.

Return Value Type: String.

As a use case for this function, here is an example PRACTICE script:

LOCAL &mycmd &mystr

&mystr=" starts with space, has "" double quotes "", ends with space "
&mycmd="PRINT "'"mystr:>"+STRing.ESCapeQuotes ("&mystr")+"<"""
&mycmd

This script will produce the following output in the AREA window:

mystr:> starts with space, has " double quotes ", ends with space <

©1989-2024 Lauterbach PowerView Function Reference | 149

STRing.FIND() Check if search characters are found within string

Syntax: STRing.FIND(" <string1>"," <string2>")
Checks if <string1> and <string2> share at least 1 character.
Parameter Type: String.

Return Value Type: Boolean.
Example 1:

PRINT STRing.FIND("auto", "sample")
PRINT STRing.FIND("abc", "xyz")

; result TRUE
; result FALSE

IF STRing.FIND("auto", "sample")==TRUE ()
(

DIALOG.OK "The two string share at least one character."

)

Example 2: In this script, the STRing.FIND() function is used to check if a file name contains characters
from the blacklist.

LOCAL &blackList
&blackList="\/:*?2""<>| -

IF STRing.FIND("hello world.dat", "&blackList")==TRUE ()
(

PRINT %ERROR "File name contains illegal characters!"
ENDDO

See also: STRing.SCAN().

STRing.LENgth() Length of string

[build 27143 - DVD 06/2011]

Syntax: STRing.LENgth(" <string>")

Returns the length of the string.

Return Value Type: Decimal value.

©1989-2024 Lauterbach PowerView Function Reference | 150

Example:

STRing.LENgth ("abcDEF") ; result 6
STRing.LoWeR() String to lowercase
[build 27143 - DVD 06/2011]
Syntax: STRing.LoWeR(" <string>")

Returns the string converted into lowercase.
Parameter Type: String.

Return Value Type: String.

Example:
STRing.LoWeR ("abcDEF") ; result "abcdef"
STRing.MID() Extract part of string
Syntax: STRing.MID("<string>",<start_at>,<length>)

Extracts a part of a string. The string starting at position <start_at> with the <length> is extracted. The
first element has the offset 0.

Parameter and Description:

<string> Parameter Type: String. String to be modified.
<start_at> Parameter Type: Hex or decimal value.
<length> Parameter Type: Hex or decimal value.

Return Value Type: String.

Examples:
STRing.MID("abcdef",2.,2.) ; result "cd"
STRing.MID("abcdef",2.,100.) ; result "cdef"
STRing.MID("abcdef",10.,100.) ; result ""

©1989-2024 Lauterbach PowerView Function Reference | 151

STRing.Replace()

Modified string after search operation

[build 39759 - DVD 08/2012] [Examples]

Syntax: STRing.Replace("<source_string>"," <search_string>"," <replace_string>",
<no_replaces>)

Scans the <source_string> for the occurrence of <search_string> and replaces these string parts by
<replace_string>. An empty <replace_string> will result in a string cutting. The function returns a

modified string.

Parameter and Description:

<*string*>

Parameter Type: String.

<no_replaces>

Parameter Type: Hex or decimal value. Defines the number of replacements:

0 Replace all occurrences of <search_string>.

1..n Number of replacements from string begin.

-1..-n Number of replacements from string end.

Return Value Type: String.
Examples:

&unix_path=STRi
&my_path="~~\te
&unix_path=STRi

; no expansion of

PRINT STRing.
; result:

PRINT STRing.
; result:

PRINT STRing.
; result:

PRINT STRing.
; result:

PRINT STRing.

ng.Replace(0S.PWD(),"\","/",0.)
stdir"
ng.Replace (&my_path, "\","/",0.)

"~~" will be done

Replace ("abcdefgabcdefgabcdefgabecdefg", "cd", "123",0.)
abl23efgabl23efgabl23efgabl23efg

Replace ("abcdefgabcdefgabcdefgabecdefg", "cd","",0.)
abefgabefgabefgabefgabefg

Replace ("abcdefgabcdefgabcdefgabecdefg", "acd", "12",0.)
abcdefgabcdefgabcdefgabecdefg

Replace ("abcdefgabcdefgabcdefgabecdefg", "cd", "123",2.)
abl23efgabl23efgabcdefgabcdefg

Replace ("abcdefgabcdefgabcdefgabcdefg", "cd", "123",-2.)

; result: abcdefgabecdefgabl23efgabl23efg
PRINT STRing.Replace ("aaaaaaaaaa", "aaa","123",2.)
; result: 123123aaaa
PRINT STRing.Replace ("aaaaaaaaaa", "aaa","123",-1.)
; result: aaaaaaal23
©1989-2024 Lauterbach PowerView Function Reference | 152

STRing.SCAN() Offset of the found string

Syntax: STRing.SCAN("<source_string>","<search_string>",<start_at>)

Scans the <source_string> for the first occurrence of <search_string>.
The search begins at the offset <start_at>. The first string element has index 0.
The function returns the offset of the found string or -1 if the string was not found.

Parameter and Description:

<source_string>, Parameter Type: String.
<search_string>

<start_at> Parameter Type: Hex or decimal value.

Return Value Type: Hex value.

Examples:
PRINT STRing.SCAN ("abcdefabcde", "cd",0) ;result 2
PRINT STRing.SCAN ("abcdefabcde", "cd", 3) ;result 8
PRINT STRing.SCAN ("abcdefabcde", "xy",0) ;result -1

©1989-2024 Lauterbach PowerView Function Reference | 153

STRing.SCANAnNdEXxtract() Extract remaining string after search string

[build 29755 - DVD 06/2011]

Syntax: STRing.SCANAnNdEXxtract(" <string>"," <key>"," <default_value>")

Scans the <string> for the first occurrence of <key> and extracts a subsequent value. Use to parse key-
value pairs of a configuration string in the form of “<key><value>".

This function is space sensitive. <key> must be preceded by a space character, unless it is at the start
of the string. <value> ends at the first space character found or at the end of <string>. <value> can
include whitespace characters if put in quotes.

The function returns the value found after the <key>. If <key> was not found <default_value> is
returned.

Parameter and Description:

<string>, <key>, Parameter Type: String.
<default_value>

Return Value Type: String.
Examples:

LOCAL ¶meters &device_id &node &name

ENTRY $LINE ¶meters
; e.g. ¶meters = DEVICEID=7 NODE= NAME="ETH 1"

&device_id=STRing.SCANAndExtract ("¶meters", "DEVICEID=","0")
; &device_id = 7

&1d=STRing.SCANAndExtract ("¶meters", "ID=","-1")
; &1d = -1, as there is no key "ID=" in ¶meters
&node=STRing.SCANAndExtract ("¶meters", "NODE=", "DEFAULT")

; &node is empty

&name=STRing.SCANAndExtract ("¶meters", "NAME=", "anonymous")
; &name = "ETH 1"

©1989-2024 Lauterbach PowerView Function Reference | 154

STRing.SCANBack() Offset of the found string
[build 100200 - DVD 09/2018]
Syntax: STRing.SCANBack(" <source_string>"," <search_string>",<start_at>)

Scans the <source_string> for the first occurrence of <search_string>.
The search begins backwards at the offset <start_at>. The first string element has index 0.
The function returns the offset of the found string or -1 if the string was not found.

Parameter and Description:

<source_string>,
<search_string>

Parameter Type: String.

<start_at>

Parameter Type: Hex or decimal value.

Return Value Type: Hex value.

Examples:
PRINT STRing.SCANBack ("abcdefabcdcde", "cd",0) ;result -1
PRINT STRing.SCANBack ("abcdefabcde", "cd", 3) ;result 2
PRINT STRing.SCANBack ("abcdefabcde", "xy",10.) ;result -1
PRINT STRing.SCANBack ("aaaaa", "aaa",4) ;result 2
PRINT STRing.SCANBack ("aaaaa", "aaa", 3) ;result 1
PRINT STRing.SCANBack ("azaaa", "aaa",1) ;result -1
PRINT STRing.SCANBack ("aaaaa", "aaa",STRing.LENgth ("aaaaa")-1) ;result 2
©1989-2024 Lauterbach PowerView Function Reference | 155

STRing.SPLIT()

Return element from string list

[build 60314 - DVD 02/2015]

Syntax: STRing.SPLIT("<string>"," <separator>",<index>[,<options>])

Splits a string in parts at the given separator and returns the resulting element at the specified index. If
a negative index is used, the elements are counted backwards (e.g -1: last element, -2: second last...).

As separatorthe parameter <separator> is interpreted as a list of characters (DELIMITER=char) or as
a string (default: DELIMITER=STRING). Per default there is no special handling for quotes. With option
QUOTEDSTRINGS=0N tokenization is disabled between matching quotes. Using an escape character
(ESCAPECHAR="'<c>"') quotes as well as a separator can be escaped.

Parameter and Description:

<string>

String to split.
Parameter Type: String.

<Separator>

Separator string / Sequence of character separators respectively
depending on DELIMITER= option.
Parameter Type: String.

<index>

Index of item.
Parameter Type: Hex or decimal value.

<options>

Available from build 143582 - DVD 02/2022
Optional: Key-Value string
QUOTEDSTRINGS=0ff | ON
DELIMITER=string|CHAR
ESCAPECHAR="'<c>'

Parameter Type: String.

Options and Description:

QUOTEDSTRINGS=ON

A token is not generated between matching quotes. E.g. key="value
with spaces" with separator <space> generates one token.

DELIMITER=string

String <separator> is used as separator.

DELIMITER=CHAR

A separator is any character part of <separator>.

ESCAPECHAR='<c>'

Escape separators and quotes using <c>. With QUOTEDSTRINGS=0N
<c> is not removed from the final token within a quoted string. The
escape char itself can be escaped using <c><c>.

Return Value Type: String.

©1989-2024 Lauterbach

PowerView Function Reference | 156

Examples:

PRINT STRing.SPLIT("Hello TRACE32!"," ",0) 5
PRINT STRing.SPLIT("C:\T32\demo\arm", "\",2) 5
PRINT STRing.SPLIT("C:\T32\demo\arm", "\",-1) 5
PRINT STRing.SPLIT("C:\T32\demo\arm", "demo",0) g

; negative indexes

PRINT STRing.SPLIT("a||b","|",0.) 5
PRINT STRing.SPLIT("a||b","|",1.) ;
PRINT STRing.SPLIT("a||b","|",2.) ;
PRINT STRing.SPLIT("a||b","|",-1.) ;
PRINT STRing.SPLIT("a||b","|",-2.) ;
PRINT STRing.SPLIT("a||b","|",-3.) 5
; negative indexes with no match

PRINT STRing.SPLIT("abcd","|",0.) ;
PRINT STRing.SPLIT("abcd","|",1.) ;
PRINT STRing.SPLIT("abcd","|",-1.) ;
; leading/trailing separator

PRINT STRing.SPLIT("|b||","|",0.) ;
PRINT STRing.SPLIT("|b||","|",1.) ;
PRINT STRing.SPLIT("|b||","|",-3.) ;

; Demonstrate QUOTEDSTRINGS=0N
PRIVATE &i &str
&i=0.

result
result
result
result

result
result
result
result
result
result

result
result
result

result
result
result

"Hello"

n demo n

n arm n
"C:\T32\"

ngn
llbll
llbll

g

n abcd n

n abcd n

llbll
llbll

&str="DRINK=""Lemonade, Apple juice,Tonic Water"" TIP=5$ PAID=TRUE"

RePeaT 3.

(
PRIVATE &sToken
&sToken=STRing.SPLIT("&str", "

PRINTF "; Index %2u - %s" &i “&sToken”
&i=&i+1.
)
; Result:
; Token 0 - DRINK="Lemonade,Apple juice,Tonic Water"
; Token 1 - TIP=5S$
; Token 2 - PAID=TRUE

", &1, QUOTEDSTRINGS=0N)

©1989-2024 Lauterbach

PowerView Function Reference |

157

; Demonstrate ESCAPECHAR='<c>'
PRIVATE &i &str

&i=0.

&str="COMMAND=""awk -f \""/scripts 2022/test.awk\"" output.txt"" "
KEY\ WITH\ SPACES=VALUE\ WITH\ SPACES "
BACKSLASH=\\ "

&str="&(str)
&str="&(str)

RePeaT 5
(

PRIVATE &sToken
&sToken=STRing.SPLIT("&str","

PRINTF

&i=&1i+1.

; Result
; Index
; Index
; Index
; Index
; Index
; Empty

See also STRing.TOKEN().

B W NP o

7

Index %2u - %s" &1 "&sToken"

COMMAND="awk -f \"/scripts 2022/test.awk\" output.txt"

KEY WITH SPACES=VALUE WITH SPACES

BACKSLASH=\
indexes 1&3 are caused by multiple <space>’'s in &str

; Demonstrate DELIMITER=CHAR
SUBROUTINE splitPath

(

PRIVATE &i &sPath
PARAMETERS &sPath

&i=0.

RePeaT 4.

(

PRIVATE &sToken

&sToken=STRing.SPLIT("&sPath", "/\", &i, DELIMITER=CHAR)

PRINTF
&i=&1i+1.

)

GOSUB splitPath ".

; Result
; Index
; Index
; Index
; Index

GOSUB splitPath ".

; Result
; Index
; Index
; Index
; Index

N B~ O

3

w N - O

; Index

demo
arm

demo
arm

%2u - %s" &1 "&sToken"

.\..\demo\arm"

./../demo/arm"

",&1, QUOTEDSTRINGS=ON ESCAPECHAR='\")

©1989-2024 Lauterbach

PowerView Function Reference

158

STRing.TOKEN() Extract token from string

[build 143582 - DVD 02/2022]

Syntax: STRing.TOKEN(" <string>"," <delimiter>" ,<index>[,<options>])

STRing.TOKEN is aligned to C/C++ strtok(). The functions extracts tokens from <string> which are

sequences of contiguous characters separated by separators. To extract a token the function scans
<string> till the first location not a separator. Sequences of consecutive separators between/after a
token are ignored.

As separator the parameter <delimiter> is interpreted as a list of characters (default:
DELIMITER=char) or as a string (DELIMITER=STRING). Per default there is no special handling for
quotes. With option QUOTEDSTRINGS=0N tokenization is disabled between matching quotes. Using an
escape character (ESCAPECHAR="'<c>") quotes as well as a separator can be escaped.

If a negative index is used, the tokens are counted backwards (e.g -1: last element, -2: second last...).

Parameter and Description:

<string> String to tokeninze.
Parameter Type: String.

<delimiter> Sequence of delimiters / Delimiter string respectively depending on
DELIMITER= option.
Parameter Type: String.

<index> Index of token.
Parameter Type: Hex or decimal value.

<options> Optional: Key-Value string
QUOTEDSTRINGS=0ff | ON
DELIMITER=char | STRING
ESCAPECHAR="<c>"'
Parameter Type: String.

Options and Description:

QUOTEDSTRINGS=ON A token is not generated between matching quotes. E.g. key="value
with spaces" with separator <space> generates one token.

DELIMITER=char A separator is any character part of <delimiter>, like
C/C++ strtok().
DELIMITER=STRING String <delimiter> is used as separator.
ESCAPECHAR='<c>' Escape separators and quotes using <c>. With QUOTEDSTRINGS=0N

<c> is not removed from the final token within a quoted string. The
escape char itself can be escaped using <c><c>.

Return Value Type: String.

©1989-2024 Lauterbach PowerView Function Reference | 159

Examples:

PRIVATE &1 &
&1i=0.

&str="String separated with one or multiple spaces,

semico
RePeaT 11.
(
PRINTEF ";
&i=&1i+1.

; Result:
; Token
; Token
; Token
; Token
; Token
; Token
; Token
; Token
; Token
; Token
; Token

P W o0 Jo Ul b WNEFE O
|

; negative i
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

STRing.
STRing.
STRing.
STRing.
STRing.
STRing.

str
lons ;."

Token %2u -

String
separated
with

one

or
multiple
spaces
colons

or
semicolons

ndexes
TOKEN (
TOKEN (
TOKEN (
TOKEN ("

(

(

||
||
|
|
TOKEN |
TOKEN

a
a
a
a
a |b"
a

| |b",

%S"

&1 STRing.TOKEN ("&str",

; negative indexes with one token

PRINT STRing.
PRINT STRing.

PRINT STRing.

; leading/trailing separato

TOKEN ("abcd",

TOKEN ("abcd",
TOKEN ("abcd",

7

PRINT STRing.TOKEN("|b]||"," ",
PRINT STRing.TOKEN("|b||","|".,1

PRINT STRing.TOKEN("|b||","|"

|
|
|
r
|
|
|

;" &L)

result
result
result
result
result
result

result
result
result

result
result
result

colons or \

©1989-2024 Lauterbach

PowerView Function Reference

160

; Demonstrate QUOTEDSTRINGS=0N
PRIVATE &i &str

&1i=0.
&str="DRINK=""Lemonade, Apple juice,Tonic Water"" TIP=5$S PAID=TRUE"
RePeaT 3.

(
PRIVATE &sToken

&sToken=STRing.TOKEN ("&str"," ", &1, QUOTEDSTRINGS=0N)
PRINTF "; Token %2u - %s" &i "&sToken"
&i=&i+1.

)

; Result:

; Token 0 - DRINK="Lemonade,Apple juice,Tonic Water"
; Token 1 - TIP=5$
; Token 2 - PAID=TRUE

; Demonstrate ESCAPECHAR='<c>'
PRIVATE &i &str
&1i=0.
&str="COMMAND=""awk -f \""/scripts 2022/test.awk\"" output.txt"" "
&str="&(str) KEY\ WITH\ SPACES=VALUE\ WITH\ SPACES "
&str="&(str) BACKSLASH=\\ "
RePeaT 3.
(
PRIVATE &sToken

&sToken=STRing.TOKEN ("&str"," ", &i,QUOTEDSTRINGS=ON ESCAPECHAR='\")
PRINTF "; Token %2u - %s" &i "&sToken"
&i=&1i+1.

)

; Result:

; Token 0 - COMMAND="awk -f \"/scripts 2022/test.awk\" output.txt"
; Token 1 - KEY WITH SPACES=VALUE WITH SPACES
; Token 2 - BACKSLASH=\

STRing.TRIM() String without leading and trailing whitespaces

[build 34324 - DVD 02/2012]

Syntax: STRing.TRIM(" <string>")

Returns a string without leading and trailing whitespaces.
Parameter Type: String.

Return Value Type: String.

©1989-2024 Lauterbach PowerView Function Reference | 161

Examples:

; Remove whitespaces.
PRINT STRing.TRIM(" abcDEF ") ; result "abcDEF"

; Remove whitespaces and convert to upper case.
PRINT STRing.TRIM(STRing.UPpeR (" abcDEF ")) ; result "ABCDEF"

STRing.UPpeR() String to uppercase

[build 27143 - DVD 06/2011]

Syntax: STRing.UPpeR(" <string>")

Returns the string converted to uppercase.
Parameter Type: String.

Return Value Type: String.

Example:

PRINT STRing.UPpeR ("abcDEF") ;result ABCDEF

©1989-2024 Lauterbach PowerView Function Reference | 162

TCF Functions (TRACE32 as TCF Agent)

For information about how to configure and use TRACE32 as TCF agent, refer to “TRACE32 as TCF
Agent” (app_tcf_setup.pdf).

In This Section

See also
O TCFDISCOVERY() Q TCFPORT()
TCF.PORT() Port number of TCF interface
[build 71558 - DVD 02/2016]
Syntax: TCF.PORT()

Returns the port number used by the currently selected TRACE32 PowerView instance for communication
via the TCF interface. Returns 0 if the port number is undefined.

Return Value Type: Decimal value.

TCF.DISCOVERY() Check if TCF discovery is enabled

[build 71558 - DVD 02/2016]

Syntax: TCF.DISCOVERY()

Returns TRUE if the TCF discovery is enabled in TRACES32.

Return Value Type: Boolean.

©1989-2024 Lauterbach PowerView Function Reference | 163

TEST Function

TEST.TIMEISVALID() Check if time value is valid

[build 78580 - DVD 02/2017]

Syntax: TEST.TIMEISVALID(<time>)

Returns TRUE if the given time value is correct. Returns FALSE otherwise.
This function is not intended for syntax checking of strings containing time values.
Parameter Type: Time value.

Return Value Type: Boolean.

Example:

IF TEST.TIMEISVALID (Trace.RECORD.TIME (-12.))==FALSE()

(
PRINT 3WARNING "timestamp of record -12. isn’t wvalid"

)

©1989-2024 Lauterbach PowerView Function Reference | 164

TIMEOUT Function

TIMEOUT() Check if command was fully executed

[build 45047 - DVD 08/2013]

Syntax: TIMEOUT()

Returns TRUE if a previous command terminated due to a timeout. The commands which can be
terminated by a timeout are:

WAIT [<condition>] [<period>] Waits until a condition is true or a period has
[build 94995 - DVD 09/2015] elapsed.

The screen is not updated while waiting.

TIMEOUT <period> <command> Specifies a timeout for a TRACE32 command.
[build 45047 - DVD 08/2013]

SCREEN.WAIT [<condition> | <period>] Updates the screen while waiting.
[build 94995 - DVD 09/2015]

Return Value Type: Boolean.

Example 1:
Go.direct main ;set temporary breakpoint on main ()
; function and start CPU
WAIT !STATE.RUN() 5.s ;wait 5.s for CPU to stop
IF TIMEOUT ()==TRUE ()

ECHO %ERROR "CPU does not stop."

Example 2:

;your start-up script
TIMEOUT 500.ms Data.Copy D:0--0x3ffffff VM:0 /Byte /Verify

IF TIMEOUT ()==TRUE ()
(

PRINT SWARNING "'Data.Copy D:0--0x3ffffff VM:0' canceled after 50.ms"
)

©1989-2024 Lauterbach PowerView Function Reference | 165

Example 3:

TERM.TRIGGER #1 " [U-BOOT]"
SCREEN.WAIT TERM.TRIGGERED (#1) 15.s
IF TIMEOUT ()
STOP %ERROR "Failed to reach prompt"

©1989-2024 Lauterbach PowerView Function Reference | 166

TITLE Function

TITLE() Caption of the TRACE32 main window

[build 24341 - DVD 11/2010]

Syntax: TITLE()

Returns the caption of the TRACE32 main window. The caption can be modified with the TITLE
command.

Return Value Type: String.

Example:
TITLE "TRACE32 for CPUO" ; Define the caption of the
; TRACE32 main window
IF TITLE()=="TRACE32 for CPUO" ; Check if the actual caption
; matches a certain debugger
; scenario

©1989-2024 Lauterbach PowerView Function Reference | 167

TRUE Function

TRUE() Boolean expression
[build 36180 - DVD 02/2012]

Syntax: TRUE()

Always returns the boolean value TRUE. It can be used for increasing the readability of PRACTICE
scripts when initializing PRACTICE macros. The counterpart is FALSE().

Return Value Type: Boolean.

Example:

&s_error_occurred=TRUE ()
&s_error_occurred=(0==0)

; instead of

WARNINGS Function

WARNINGS() Check if warning occurred during command execution

Syntax: WARNINGS()

Returns TRUE if a warning occurred during command execution (only applicable in PRACTICE script
files *.cmm).

Return Value Type: Boolean.

©1989-2024 Lauterbach PowerView Function Reference | 168

WINdow Functions

NOTE:

Window names are case-sensitive.
Page names are case-sensitive.

In This Section

See also

B Win 0 WINdow.COMMAND() 0 WINdow.EXIST() 0 WINdow.LIST()

O WINdow.POSition() O WINPAGE.CURRENT() 0 WINPAGE.EXIST() O WINPAGE.LIST()
WINdow.COMMAND() Command string displayed in window

Syntax:

[build 69465 - DVD 02/2016]

WINdow.COMMAND(WinTOP | <window_name>)

Returns the TRACE32 command which was used to open a window. The device prompt, e.g. B: :, is

included in the return value.

Parameter and Description:

WinTOP
(or TOP as an alias)

Returns the TRACE32 command of the active window.

<window_name>

Parameter Type: String. Window names are case-sensitive. They are
created with the WinPOS command.

Return Value Type: String. The string is empty if the specified window name does not exist.

Example:
wWinPOS ,,,,,, abc ;assign the name 'abc' to the next window
List.auto ;open the window
PRINT WINdow.COMMAND (abc) ;prints "B::List.auto" to the message AREA

©1989-2024 Lauterbach

PowerView Function Reference | 169

WINdow.EXIST() Check if window name exists

Syntax: WINdow.EXIST(<window_name>)
WINDOW.NAME() (deprecated)

Returns TRUE if a window with the specified name exists.

Parameter Type: String. Window names are case-sensitive. They are created with the WinPOS
command or the DIALOG NAME element.

Return Value Type: Boolean.
Example:

WinPOS ,,,,,,abc ;create a window with a user-defined name
Register.view

IF WINdow.EXIST (abc)==TRUE () ;check if this window still exists

WINdow.LIST() Generate a comma-separated list of window names
[build 146569 - DVD 08/2022]

Syntax: WINdow.LIST([<page_name>])

Returns a comma-separated list of window names of all open windows either on all window pages, on a
specific window page or the currently selected window page. If no open window exist the returned string is

empty.

Parameter and Description:

no parameter Parameter Type: none. If no parameter is given the function returns a list
of all window names of all opened windows on all window pages.

<page_name> Parameter Type: String. Name of a window page created with the
WinPAGE.Create command. Page names are case-sensitive.

The returned comma-separated list contains all window names of all
opened windows for the given window page

©1989-2024 Lauterbach PowerView Function Reference | 170

Return Value Type: String.

NOTE: The list may contain duplicate window names because the window name could
be a user-defined value that is not a unique identifier for a window. See
command WinPOS how to set the name of a window.

The order of the window names in the list can vary between calls to the function
and depends on the overlapping order (Z-order) of the windows on the screen.

Examples:
PRINT WINdow.LIST () ; no parameter will print a list of all window
; names on all window pages

PRINT WINdow.LIST(“P000”) ; print a list of all window names on page P000

WINdow.POSition() Information on window position and dimension
[build 64413 - DVD 09/2015]

Syntax: WINdow.POSition(WinTOP | <window_name>,<position_item_name>)

<position_ LEFT | UP | HSIZE | VSIZE | HSCALE | VSCALE

item_name>:

Returns the current value of the specified position type if a window with the specified name exists.

Parameter and Description:

WinTOP Returns the values of the active window.
(or TOP as an alias)

<window_name> Parameter Type: String. Window names are case-sensitive. They are
created with the WinPOS command.

<position_item_ For a description of LEFT to VSCALE, refer to the parameters of the

name> WinPOS command.

Return Value Type: Float.

©1989-2024 Lauterbach PowerView Function Reference | 171

Examples:

WinPOS 10.25 20.50 80. 25. 15. 2. abc ; create a window with defined

List.auto ; name, position and size
PRINT WINdow.POSition (abc,left) ; ==> 10.25
PRINT WINdow.POSition (abc,up) ; ==> 20.50
PRINT WINdow.POSition (abc,hsize) ; ==> 80.0
PRINT WINdow.POSition (abc,vsize) ; ==> 25.0
PRINT WINdow.POSition (abc,hscale) ; ==> 15.0
PRINT WINdow.POSition (abc,vscale) ; ==> 2.0
WINPAGE.CURRENT() Get name of currently selected window page
[build 146627 - DVD 08/2022]
Syntax: WINPAGE.CURRENT()

Returns the name of the currently selected window page. Use the command WinPAGE.select to change
the currently selected window page or the command WinPAGE.Create to create a new named window

page.
Return Value Type: String.

Example:

LOCAL &page &list

&page=WINPAGE.CURRENT ()

&1list=WINdow.LIST (&page)

PRINT “Windows on current page &page: &list”

WINPAGE.EXIST() Check if window page exists

Syntax: WINPAGE.EXIST(<page_name>)

Returns TRUE if a window page with the specified name exists.

Parameter Type: String. Name of a window page created with the WinPAGE.Create command. Page
names are case-sensitive.

Return Value Type: Boolean.

©1989-2024 Lauterbach PowerView Function Reference | 172

Example:

WinPAGE.Create Analyzer ; Ccreate separate window page
Trace.List ; with defined name
IF WINPAGE.EXIST (Analyzer)==TRUE () ; check if this window page still
; exists
WINPAGE.LIST() Generate comma-separated list of page names

[build 146654 - DVD 08/2022]

Syntax: WINPAGE.LIST()

Returns a comma-separated list containing the names of all existing window pages.
Return Value Type: String.

A new named window page is created with the command WinPAGE.Create. An interactive window
displaying all window pages and their included windows is shown with the command WinPAGE.List.

Example:
LOCAL &pagelist ; define macro
WinPAGE.Create “MYPAGE” /NoSELect ; create window page named MYPAGE
&pagelist=WINPAGE.LIST() ; get list of all page names
PRINT “list:&pagelist” ; shows “1ist:P000,MYPAGE”

©1989-2024 Lauterbach PowerView Function Reference | 173

	PowerView Function Reference
	History
	In This Document
	AREA Functions
	In This Section
	AREA.COUNT() Number of existing message areas
	AREA.EXIST() Check if message area exists
	AREA.LINE() Extract line from message area
	AREA.MAXCOUNT() Maximum number of message areas
	AREA.NAME() Names of existing message areas
	AREA.SELECTed() Name of active message area
	AREA.SIZE.COLUMNS() Columns of a message area
	AREA.SIZE.LINES() Lines of a message area

	CLOCK Functions
	CONFIG Function
	CONFIG.SCREEN() Check if screen output is switched on

	CONNECTION Functions
	CONNECTION.DEVice.IndexByName() Get device index
	CONNECTION.DEVice.IndexBySerialNumber() Get device index
	CONNECTION.DEVice.InUse() Debug module currently in use
	CONNECTION.DEVice.NAME() Get device name of debug module
	CONNECTION.DEVice.Number() Number of detected debug modules
	CONNECTION.DEVice.PORT() Get host connection port of debug module
	CONNECTION.DEVice.SerialNumber() Get device serial number
	CONNECTION.GetDriverError() Get driver error of last connection attempt
	CONNECTION.HOSTMCI.TestMciServer() Get MCI server state information
	CONNECTION.INTerface.Available() Check connection interface availability
	CONNECTION.STATE.ERROR() Failed to establish connection
	CONNECTION.STATE.Interactive() Interactive connection state

	CONVert Functions
	In This Section
	CONVert.ADDRESSTODUALPORT() Dualport access class
	CONVert.ADDRESSTONONSECURE() Non-secure access class
	CONVert.ADDRESSTOSECURE() Secure access class
	CONvert.BOOLTOINT() Boolean to integer
	CONVert.CHAR() Integer to ASCII character
	CONVert.FLOATTOINT() Float to integer
	CONVert.HEXTOINT() Hex to integer
	CONVert.INTTOBOOL() Integer to boolean
	CONVert.INTTOFLOAT() Integer to floating point value
	CONVert.INTTOHEX() Integer to hex
	CONVert.INTTOMASK() Compose bit-mask from integer value and mask
	CONVert.LINEAR11TOFLOAT() LINEAR11 to float
	CONVert.LINEAR16TOFLOAT() LINEAR16 to float
	CONVert.MASKMTOINT() Bits set to don't-care in given bit-mask
	CONVert.MASKTOINT() Bits set to 1 in given bit-mask
	CONVert.OCTaltoint() Octal to decimal
	CONVert.SignedByte() 1 byte to 8 bytes
	CONVert.SignedLong() 4 bytes to 8 bytes
	CONVert.SignedWord() 2 bytes to 8 bytes
	CONVert.TIMEMSTOINT() Time to milliseconds
	CONVert.TIMENSTOINT() Time to nanoseconds
	CONVert.TIMERAWTOINT() Time to TRACE32 timer ticks
	CONVert.TIMESTOINT() Time to seconds
	CONVert.TIMEUSTOINT() Time to microseconds
	CONVert.TOLOWER() String to lower case
	CONVert.TOUPPER() String to upper case

	DATE Functions
	In This Section
	DATE.DATE() Current date
	DATE.DAY() Today’s date
	DATE.MakeUnixTime() Date to Unix timestamp
	DATE.MONTH() Number of current month
	DATE.SECONDS() Seconds since midnight
	DATE.TIME() Current time
	DATE.TimeZone() Time zone identifier and hh:mm:ss
	DATE.UnixTime() Seconds since Jan 1970
	DATE.UnixTimeUS() Microseconds since Jan 1970
	DATE.utcOffset() Offset of current local time to UTC
	DATE.YEAR() Current year

	DIALOG Functions
	In This Section
	DIALOG.BOOLEAN() Current boolean value of checkbox
	DIALOG.EXIST() Existence of dialog element
	DIALOG.STRing() Current string value of dialog element, e.g. EDIT box
	DIALOG.STRing2() Comma-separated list of values, e.g. from LISTBOX

	ERROR Functions
	In This Section
	ERROR.CMDLINE() Erroneous command
	ERROR.FIRSTID() ID of first error
	ERROR.ID() ID of last error message
	ERROR.MESSAGE() Error text
	ERROR.OCCURRED() Error status
	ERROR.POSITION() Error position

	EVAL Functions
	In This Section
	EVAL() Value of expression evaluated with Eval command
	EVAL.ADDRESS() Address of expression evaluated with Eval cmd.
	EVAL.BOOLEAN() Boolean expression evaluated with Eval cmd. boolean
	EVAL.FLOAT() Float value of expression evaluated with Eval cmd.
	EVAL.PARAM() Expression evaluated with Eval cmd.
	EVAL.STRing() String composed by expression evaluated with Eval cmd.
	EVAL.TIme() Value of time evaluated with Eval command
	EVAL.TYPE() Type of expression evaluated with Eval command

	FALSE Function
	FALSE() Boolean expression

	FILE Functions
	In This Section
	__FILE__() Path and file name of current PRACTICE script
	__LINE__() Number of script line to be executed next
	FILE.EOF() Check if end of read-in file has been reached
	FILE.EOFLASTREAD() Check if last read from file reached the end of the file
	FILE.EXIST() Check if file exists
	FILE.NEWHANDLE() Get next free handle
	FILE.OPEN() Check if file is open
	FILE.SUM() Get checksum from a file
	FILE.TYPE() File type of loaded file

	FORMAT Functions
	In This Section
	FORMAT.BINary() Numeric to binary value (leading spaces)
	FORMAT.CHAR() Numeric to ASCII character (fixed length)
	FORMAT.Decimal() Numeric to string (leading spaces)
	FORMAT.DecimalU() Numeric to unsigned decimal as string (leading spaces)
	FORMAT.DecimalUZ() Numeric to unsigned decimal as string (leading zeros)
	FORMAT.FLOAT() Floating point value to string
	FORMAT.HEX() Numeric to hex (leading zeros)
	FORMAT.STRing() Output string with fixed length
	FORMAT.TIME() Time to string (leading spaces)
	FORMAT.UDECIMAL() Refer to FORMAT.DecimalU()
	FORMAT.UDECIMALZ() Refer to FORMAT.DecimalUZ()
	FORMAT.UnixTime() Format Unix timestamps

	FOUND Functions
	In This Section
	FOUND() TRUE() if search item was found
	FOUND.COUNT() Number of occurrences found

	GDB Function (TRACE32 as GDB Back-End)
	GDB.PORT() Port number for communication via GDB interface

	HELP Function
	HELP.MESSAGE() Help search item

	HOST Functions
	HOSTID() Host ID
	HOSTIP() Host IP address

	IFCONFIG and IFTEST Functions
	In This Section
	IFCONFIG.COLLISIONS() Collisions since start-up
	IFCONFIG.CONFIGURATION() Connection type
	IFCONFIG.DEVICENAME() Name of TRACE32 device
	IFCONFIG.ERRORS() Errors since start-up
	IFCONFIG.ETHernetADDRESS() MAC address of TRACE32 device
	IFCONFIG.IPADDRESS() IP address of TRACE32 device
	IFCONFIG.RESYNCS() Resyncs since start-up
	IFCONFIG.RETRIES() Retries since start-up
	IFTEST.DOWNLOAD() Download in KByte/sec
	IFTEST.LATENCY() Latency in microseconds
	IFTEST.UPLOAD() Upload in KByte/sec

	InterCom Functions
	In This Section
	InterCom.GetGlobalMacro() Exchange strings between PowerView instances
	InterCom.GetPracticeState() PRACTICE run-state on other instance
	InterCom.NAME() InterCom name of this TRACE32 instance
	InterCom.PING() Check if ping is successful
	InterCom.PODPORT() Port number of any TRACE32 instance
	InterCom.PODPORTNAME() InterCom name of any TRACE32 instance
	InterCom.PODPORTNUMBER() Number of TRACE32 instances
	InterCom.PORT() Port number of this TRACE32 instance

	LICENSE Functions
	In This Section
	LICENSE.DATE() Expiration date of maintenance contract
	LICENSE.FAMILY() Name of the CPU family license
	LICENSE.FEATURES() List of features licensed
	LICENSE.getINDEX() Index of maintenance contract
	LICENSE.GRANTED() License state
	LICENSE.HAVEFEATURE() Checks if license is stored in debugger hardware
	LICENSE.MSERIAL() Serial number of the maintenance contract
	LICENSE.MULTICORE() Check if multicore debugging is licensed
	LICENSE.RequiredForCPU() License required for selected CPU
	LICENSE.SERIAL() Serial number of debug cable

	LOG Function
	LOG.DO.FILE() Get log file used by LOG.DO

	Mathematical Functions
	In This Section
	math.ABS() Absolute value of decimal value
	math.FABS() Absolute value of floating point number
	math.FCOS() Cosine of an angle given in radian
	math.FEXP() Exponentiation with base e (Euler's number)
	math.FEXP10() Exponentiation with base 10
	math.FINF() Positive infinity
	math.FLOG() Natural logarithm of given value
	math.FLOG10() Logarithm to base 10 of given value
	math.FMAX() Return the larger one of two floating point values
	math.FMIN() Return the smaller one of two floating point values
	math.FMOD() Floating-Point Modulus
	math.FNAN() Not a number value
	math.FPOW() Y-th power of base x
	math.FSIN() Sine of an angle given in radian
	math.FSQRT() Square-root of given value
	math.MAX() Return the larger one of two decimal values
	math.MIN() Return the smaller one of two decimal values
	math.SIGN() Return -1 or +1 depending on argument
	math.SIGNUM() Return -1 or 0 or +1 depending on argument
	math.TimeMAX() Return the larger one of two time values
	math.TimeMIN() Return the smaller one of two time values

	MENU Function
	MENU.EXIST() Check if menu name exists

	NODENAME Function
	NODENAME() Node name of connected TRACE32 device

	OS Functions
	In This Section
	OS.DIR() Check if directory exists
	OS.DIR.ACCESS() Access rights to directory
	OS.ENV() Value of OS environment variable
	OS.FILE.readable() Check if file can be opened for reading
	OS.FILE.ABSPATH() Absolute path to file or directory
	OS.FILE.ACCESS() Access rights to file
	OS.FILE.BASENAME() Strip directory and suffix from filenames
	OS.FILE.DATE() Modification date and timestamp of file
	OS.FILE.DATE2() Modification date of file
	OS.FILE.EXIST() Check if file exists
	OS.FILE.EXTENSION() File name extension
	OS.FILE.JOINPATH() Join multiple paths
	OS.FILE.LINK() Real file name of file link
	OS.FILE.NAME() Extract file name from path
	OS.FILE.PATH() Return path of file
	OS.FILE.REALPATH() Canonical absolute path to file or directory
	OS.FILE.SIZE() File size in bytes
	OS.FILE.TIME() Modification timestamp of file
	OS.FILE.UnixTime() Unix timestamp of file
	OS.FIRSTFILE() First file name matching a pattern
	OS.ID() User ID of TRACE32 instance
	OS.NAME() Basic name of operating system
	OS.NEXTFILE() Next file name matching a pattern
	OS.PORTAVAILABLE.TCP() Check if TCP port is used
	OS.PORTAVAILABLE.UDP() Check if UDP port is used
	OS.PresentConfigurationFile() Name of used TRACE32 configuration file
	OS.PresentDemoDirectory() Demo directory for the current architecture
	OS.PresentExecutableDirectory() Directory of current TRACE32 exe.
	OS.PresentExecutableFile() Path and file name of current TRACE32 exe.
	OS.PresentHomeDirectory() Path of the home directory
	OS.PresentHELPDirectory() Path of the TRACE32 online help directory
	OS.PresentLicenseFile() Current TRACE32 license file
	OS.PresentPracticeDirectory() Directory of currently executed script
	OS.PresentPracticeFile() Path and file name of currently executed script
	OS.PresentSystemDirectory() TRACE32 system directory
	OS.PresentTemporaryDirectory() TRACE32 temporary directory
	OS.PresentWorkingDirectory() Current working directory
	OS.RETURN() Return code of the last executed operating system command
	OS.TIMER() OS timer in milliseconds
	OS.TMPFILE() Name for a temporary file
	OS.VERSION() Type of the host operating system
	OS.Window.LINE() Get line from an OS.Window window

	PATH Functions
	In This Section
	PATH.NUMBER() Number of path entries
	PATH.PATH() Search path entry

	ProcessID Function
	ProcessID() Process identifier of a TRACE32 PowerView instance

	PRACTICE Functions
	In This Section
	PRACTICE.ARG() Return value of GOSUB, DO, RETURN, and ENDDO
	PRACTICE.ARG.SIZE() Number of passed or returned arguments
	PRACTICE.CALLER.FILE() File name of the script/subscript caller
	PRACTICE.CALLER.LINE() Line number in caller script
	PRACTICE.CoMmanD.AVAILable() Check if command is available
	PRACTICE.FUNCtion.AVAILable() Check if function is available

	PRINTER Function
	PRINTER.FILENAME() Path and file name of next print operation

	RADIX Function
	RADIX() Current radix setting

	RANDOM Functions
	RANDOM() Pseudo random number
	RANDOM.RANGE() Pseudo random number from specified range
	RANDOM.RANGE.HEX() Pseudo hex random number from specified range

	RCL Function
	RCL.PORT() UDP Port number of remote API interface
	RCL.TCP.NrUsedCons() Number of remote API clients connected via TCP
	RCL.TCP.PORT() TCP Port number of remote API interface

	SOFTWARE Functions
	In This Section
	SOFTWARE.64BIT() Check if TRACE32 executable is 64-bit
	SOFTWARE.BUILD() Upper build number
	SOFTWARE.BUILD.BASE() Lower build number
	SOFTWARE.VERSION() Release build or nightly build, etc.

	STRing Functions
	In This Section
	STRing.CHAR() Extract a character
	STRing.ComPare() Check if string matches pattern
	STRing.COUNT() Substring occurrences
	STRing.CUT() Cut string from left or right
	STRing.ESCapeQuotes() Double quote character inside string
	STRing.FIND() Check if search characters are found within string
	STRing.LENgth() Length of string
	STRing.LoWeR() String to lowercase
	STRing.MID() Extract part of string
	STRing.Replace() Modified string after search operation
	STRing.SCAN() Offset of the found string
	STRing.SCANAndExtract() Extract remaining string after search string
	STRing.SCANBack() Offset of the found string
	STRing.SPLIT() Return element from string list
	STRing.TOKEN() Extract token from string
	STRing.TRIM() String without leading and trailing whitespaces
	STRing.UPpeR() String to uppercase

	TCF Functions (TRACE32 as TCF Agent)
	In This Section
	TCF.PORT() Port number of TCF interface
	TCF.DISCOVERY() Check if TCF discovery is enabled

	TEST Function
	TEST.TIMEISVALID() Check if time value is valid

	TIMEOUT Function
	TIMEOUT() Check if command was fully executed

	TITLE Function
	TITLE() Caption of the TRACE32 main window

	TRUE Function
	TRUE() Boolean expression

	WARNINGS Function
	WARNINGS() Check if warning occurred during command execution

	WINdow Functions
	In This Section
	WINdow.COMMAND() Command string displayed in window
	WINdow.EXIST() Check if window name exists
	WINdow.LIST() Generate a comma-separated list of window names
	WINdow.POSition() Information on window position and dimension
	WINPAGE.CURRENT() Get name of currently selected window page
	WINPAGE.EXIST() Check if window page exists
	WINPAGE.LIST() Generate comma-separated list of page names

