
MANUAL

General Commands Reference
Guide T

General Commands Reference Guide T

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 General Commands .. 

 General Commands Reference Guide T ... 1

 History .. 15

 TargetSystem ... 16

 TargetSystem TRACE32 PowerView instances 16

 TargetSystem.NewInstance Start new TRACE32 PowerView instance 17

 TargetSystem.state Show overview of multicore system 21

 TASK ... 26

 TASK OS Awareness for TRACE32 26

 Overview TASK 26

 TASK.ACCESS Control memory access 31

 TASK.ATTACH Attach to a running process 31

 TASK.Break Stop the execution of a single task or thread 31

 TASK.CACHEFLUSH Reread task list 32

 TASK.CONFIG Configure OS Awareness 32

 TASK.COPYDOWN Copy file from host into target 33

 TASK.COPYUP Copy file from target into host 34

 TASK.Create Create task 35

 TASK.Create.MACHINE Define a manual machine 35

 TASK.Create.RUNNABLE Define an AUTOSAR runnable 36

 TASK.Create.SPACE Define a manual MMU space 37

 TASK.Create.task Define a manual task 39

 TASK.CreateExtraID Create a virtual task 40

 TASK.CreateID Create virtual task 40

 TASK.DELete Delete file from target 40

 TASK.DeleteID Delete virtual task 41

 TASK.DETACH Detach from task 41

 TASK.Go Start the execution of a single task or thread 41

 TASK.INSTALL Deprecated 42

 TASK.KILL End task 42

 TASK.List Information about tasks 43

 TASK.List.MACHINES List machines 43

 TASK.List.RUNNABLES List AUTOSAR runnables 44
General Commands Reference Guide T | 2©1989-2024 Lauterbach

 TASK.List.SPACES List MMU spaces 44

 TASK.List.tasks List all running tasks 45

 TASK.List.TREE Display tasks in a tree structure 46

 TASK.ListID List virtual tasks 47

 TASK.NAME Translation of task magic number to task name 48

 TASK.NAME.DELete Delete a task name table entry 48

 TASK.NAME.RESet Reset task name table 48

 TASK.NAME.Set Set a task name table entry 49

 TASK.NAME.view Show task name translation table 49

 TASK.ORTI AUTOSAR/OSEK support 50

 TASK.ORTI.CPU Set OSEK SMP CPU number 50

 TASK.ORTI.load Configure OS Awareness for OSEK/ORTI 50

 TASK.ORTI.NOSTACK Exclude an ORTI task from stack evaluation 51

 TASK.ORTI.SPLITSTACK Split stack analysis of idle ORTI task to cores 52

 TASK.RELOAD Reread task list 53

 TASK.RESet Reset OS Awareness 53

 TASK.RUN Load task 54

 TASK.select Display context of specified task 55

 TASK.SETDIR Set the awareness directory 56

 TASK.STacK Stack usage coverage 57

 TASK.STacK.ADD Add stack space coverage 57

 TASK.STacK.DIRection Define stack growth direction 59

 TASK.STacK.Init Initialize unused stack space 59

 TASK.STacK.PATtern Define stack check pattern 60

 TASK.STacK.PATternGAP Define check pattern gap 61

 TASK.STacK.ReMove Remove stack space coverage 61

 TASK.STacK.RESet Reset stack coverage 62

 TASK.STacK.view Open stack space coverage 63

 TCB ... 65

 TCB Trace control block 65

 TCB.AllBranches Broadcast all branches 66

 TCB.CPU Broadcast information for specified CPU only 66

 TCB.CycleAccurate Cycle accurate tracing 67

 TCB.DataTrace Broadcast specified address and data information 68

 TCB.EX Broadcast exception level information 69

 TCB.FCR Broadcast function call-return information 69

 TCB.IM Broadcast instruction cache miss information 69

 TCB.InstructionCompletionSizeBits Specify size of completion message 70

 TCB.KE Broadcast kernel mode information 70

 TCB.LSM Broadcast load store data cache information 71

 TCB.OFF Switch TCB off 71

 TCB.ON Switch TCB on 71

 TCB.PCTrace Broadcast program counter trace 72
General Commands Reference Guide T | 3©1989-2024 Lauterbach

 TCB.PortMode Specify trace clock ratio 73

 TCB.PortWidth Specify trace port width 73

 TCB.Register Display TCB control register 74

 TCB.RESet Reset TCB setup to default 75

 TCB.SourceSizeBits Specify number of bit for core information in trace 75

 TCB.SRC Control selective trace 75

 TCB.STALL Stall CPU for complete trace 76

 TCB.state Display TCB setup 76

 TCB.SV Broadcast supervisor mode information 77

 TCB.SyncPeriod Specify TCB sync period 77

 TCB.TC Broadcast information for specified HW thread 78

 TCB.ThreadSizeBits Specify number of bit for thread information in trace 78

 TCB.Type Specify TCB type 79

 TCB.UM Broadcast user mode information 79

 TCB.Version Specify trace cell version 80

 TERM .. 81

 TERM Terminal emulation 81

 Overview TERM 81

 Interface Routines 81

 Interface Routines (EPROM Simulator) 82

 Interface Routines (Single Character Modes) 83

 Interface Routines (Buffered Modes) 83

 Interface Routines (Serial Line Debugger) 83

 Interface Routines (Special Hardware, JTAG) 83

 Functions 84

 Fast Data Write 84

 Interface Routines 84

 TERM.CLEAR Clear terminal window 85

 TERM.CLOSE Close files 85

 TERM.CMDLINE Specify a command line 85

 TERM.GATE Terminal with virtual hosting 86

 TERM.HARDCOPY Print terminal window contents 86

 TERM.HEAPINFO Define memory heap parameters 87

 TERM.LocalEcho Enables/disables local echo for new terminal windows 87

 TERM.METHOD Select terminal protocol 88

 TERM.METHOD2 Select additional terminal protocol 91

 TERM.Mode Define terminal type 93

 TERM.Out Send data to virtual terminal 94

 TERM.OutBREAK Send serial break 94

 TERM.PIPE Connect terminal to named pipe 95

 TERM.PipeREAD Connect terminal input to named pipe 95

 TERM.PipeWRITE Connect terminal output to named pipe 95

 TERM.PULSE Enable pulse generator for transfers 96
General Commands Reference Guide T | 4©1989-2024 Lauterbach

 TERM.READ Get terminal input from file 97

 TERM.RESet Reset terminal parameters 97

 TERM.SCROLL Enable automatic scrolling for terminal window 97

 TERM.SIZE Define size of terminal window 98

 TERM.STDIN Get terminal input from file 98

 TERM.TCP Route terminal input/output to TCP port 99

 TERM.TELNET Open TELNET terminal window 99

 TERM.TRIGGER Trigger on string in terminal window 100

 TERM.view Terminal display 102

 TERM.WRITE Write terminal output to file 103

 TPIU .. 104

 TPIU Trace Port Interface Unit (TPIU) 104

 Overview TPIU 104

 TPIU.CLEAR Re-write the TPIU registers 105

 TPIU.IGNOREZEROS Workaround for a special chip 105

 TPIU.NOFLUSH Workaround for a chip bug affecting TPIU flush 105

 TPIU.PortClock Inform debugger about HSSTP trace frequency 106

 TPIU.PortMode Select the operation mode of the TPIU 107

 TPIU.PortSize Select interface type and port size of the TPIU 109

 TPIU.RefClock Set up reference clock for HSSTP 110

 TPIU.Register Display TPIU registers 111

 TPIU.RESet Reset TPIU settings 111

 TPIU.state Display TPIU configuration window 112

 TPIU.SWVPrescaler Set up SWV prescaler 112

 TPIU.SWVZEROS Workaround for a chip bug 113

 TPIU.SyncPeriod Set period of sync packet injection 114

 TPU ... 115

 TPU.BASE Base address 115

 TPU.Break Break TPU 115

 TPU.Dump Memory display 115

 TPU.Go Start TPU 115

 TPU.List View microcode 115

 TPU.ListEntry Table display 115

 TPU.Register.ALL Register operation mode 115

 TPU.Register.NEWSTEP New debugging mode 116

 TPU.Register.Set Register modification 116

 TPU.Register.view Register display 116

 TPU.RESet Disable TPU debugger 116

 TPU.SCAN Scannig TPU 116

 TPU.SELect Select TPU for debugging 116

 TPU.Step Single step TPU 116

 TPU.view View TPU channels 116
General Commands Reference Guide T | 5©1989-2024 Lauterbach

 Trace ... 117

 Trace Trace configuration and display 117

 Overview Trace 118

 About the Command Placeholder <trace> 119

 What to know about the TRACE32 default settings for Trace.METHOD 119

 Types of Replacements for <trace> 121

 Replacing <trace> with a Trace Method - Examples 121

 Replacing <trace> with a Trace Evaluation - Example 122

 Replacing <trace> with RTS for Real-time Profiling - Example 123

 Replacing <trace> with Trace Source and Trace Method - Examples 124

 How to access the trace sources in TRACE32 126

 List of <trace> Command Groups consisting of <trace_source><trace_method> 127

 Related Trace Command Groups 130

 <trace>.ACCESS Define access path to program code for trace decoding 131

 <trace>.Arm Arm the trace 134

 <trace>.AutoArm Arm automatically 135

 <trace>.AutoFocus Calibrate AUTOFOCUS preprocessor 135

 Preprocessor with AUTOFOCUS Technology 138

 <trace>.AutoInit Automatic initialization 140

 <trace>.AutoStart Automatic start 140

 <trace>.BookMark Set a bookmark in trace listing 140

 <trace>.BookMarkToggle Toggles a single trace bookmark 143

 <trace>.Chart Display trace contents graphically 144

 Parameters 144

 Options 145

 Drag and Drop 148

 <trace>.Chart.Address Time between program events as a chart 153

 <trace>.Chart.AddressGROUP Address group time chart 155

 <trace>.Chart.ChildTREE Display callee context of a function as chart 156

 <trace>.Chart.DatasYmbol Analyze pointer contents graphically 157

 <trace>.Chart.DistriB Distribution display graphically 159

 <trace>.Chart.Func Function activity chart 161

 <trace>.Chart.GROUP Group activity chart 162

 <trace>.Chart.INTERRUPT Display interrupt chart 163

 <trace>.Chart.INTERRUPTTREE Display interrupt nesting 164

 <trace>.Chart.Line Graphical HLL lines analysis 165

 <trace>.Chart.MODULE Code execution brocken down by module as chart 166

 <trace>.Chart.Nesting Show function nesting at cursor position 167

 <trace>.Chart.PAddress Which instructions accessed data address 168

 <trace>.Chart.PROGRAM Code execution broken down by program 169

 <trace>.Chart.PsYmbol Shows which functions accessed data address 170

 <trace>.Chart.RUNNABLE Runnable activity chart 172

 <trace>.Chart.sYmbol Symbol analysis 173
General Commands Reference Guide T | 6©1989-2024 Lauterbach

 <trace>.Chart.TASK Task activity chart 176

 <trace>.Chart.TASKFunc Task related function run-time analysis (legacy) 177

 <trace>.Chart.TASKINFO Context ID special messages 177

 <trace>.Chart.TASKINTR Display ISR2 time chart (ORTI) 178

 <trace>.Chart.TASKKernel Task run-time chart with kernel markers (flat) 179

 <trace>.Chart.TASKORINTERRUPT Task and interrupt activity chart 180

 <trace>.Chart.TASKORINTRState Task and ISR2 state analysis 181

 <trace>.Chart.TASKSRV Service routine run-time analysis 182

 <trace>.Chart.TASKState Task state analysis 183

 <trace>.Chart.TASKVSINTERRUPT Time chart of interrupted tasks 185

 <trace>.Chart.TASKVSINTR Time chart of task-related interrupts 186

 <trace>.Chart.TREE Display function chart as tree view 187

 <trace>.Chart.Var Variable chart 188

 <trace>.Chart.VarState Variable activity chart 189

 <trace>.CLOCK Clock to calculate time out of cycle count information 191

 <trace>.ComPare Compare trace contents 192

 <trace>.ComPareCODE Compare trace with memory 194

 <trace>.CustomTrace Custom trace 195

 <trace>.CustomTrace.<label>.COMMAND Send command to specific DLL 195

 <trace>.CustomTrace.<label>.ListString Display ASCII strings 195

 <trace>.CustomTrace.<label>.UNLOAD Unload a single DLL 196

 <trace>.CustomTraceLoad Load a DLL for trace analysis/Unload all DLLs 196

 <trace>.DISable Disable the trace 197

 <trace>.DisConfig Trace disassembler configuration 198

 <trace>.DisConfig.CYcle Trace disassemble setting 198

 <trace>.DisConfig.FlowMode Enable FlowTrace analysis 200

 <trace>.DisConfig.RESet Reset trace disassemble setting 200

 <trace>.DRAW Plot trace data against time 201

 Keywords for <format> 201

 Keywords for <width> 202

 General Options 202

 Draw Options 203

 <trace>.DRAW.channel Plot no-data values against time 204

 <trace>.DRAW.Data Plot data values against time 206

 <trace>.DRAW.Var Plot variable values against time 210

 <trace>.EXPORT Export trace data for processing in other applications 212

 <trace>.EXPORT.ARTI Export trace data as ARTI for CP 213

 <trace>.EXPORT.ARTIAP Export trace data as ARTI for AP 214

 <trace>.EXPORT.Ascii Export trace data as ASCII 215

 <trace>.EXPORT.Bin Export trace data as binary file 216

 <trace>.EXPORT.BRANCHFLOW Export branch events from trace data 218

 <trace>.EXPORT.CSVFunc Export the function nesting to a CSV file 219

 <trace>.EXPORT.cycles Export trace data 220
General Commands Reference Guide T | 7©1989-2024 Lauterbach

 <trace>.EXPORT.Func Export function nesting 223

 <trace>.EXPORT.MDF Export trace data as MDF 224

 <trace>.EXPORT.MTV Export in MCDS Trace Viewer format 225

 <trace>.EXPORT.TASK Export task switches 226

 <trace>.EXPORT.TASKEVENTS Export task event to CSV 227

 <trace>.EXPORT.TracePort Export trace packets as recorded at trace port 228

 <trace>.EXPORT.VCD Export trace data in VCD format 230

 <trace>.EXPORT.VERILOG Export trace data in VERILOG format 231

 <trace>.EXPORT.VHDL Export trace data in VHDL format 232

 <trace>.ExtractCODE Extract code from trace 232

 <trace>.FILE Load a file into the file trace buffer 233

 <trace>.Find Find specified entry in trace 235

 <trace>.FindAll Find all specified entries in trace 237

 <trace>.FindChange Search for changes in trace flow 238

 <trace>.FindProgram Advanced trace search 239

 <trace>.FindReProgram Activate advanced existing trace search program 240

 <trace>.FindViewProgram State of advanced trace search programming 240

 <trace>.FLOWPROCESS Process flowtrace 241

 <trace>.FLOWSTART Restart flowtrace processing 241

 <trace>.Get Display input level 242

 <trace>.GOTO Move cursor to specified trace record 244

 <trace>.Init Initialize trace 246

 <trace>.JOINFILE Concatenate several trace recordings 246

 <trace>.List List trace contents 248

 <trace>.ListNesting Analyze function nesting 263

 <trace>.ListVar List variable recorded to trace 266

 <trace>.LOAD Load trace file for offline processing 270

 <trace>.MERGEFILE Combine two trace files into one 272

 Trace.METHOD Select trace method 273

 <trace>.Mode Set the trace operation mode 276

 <trace>.OFF Switch off 278

 <trace>.PipeWRITE Connect to a named pipe to stream trace data 278

 <trace>.PlatformCLOCK Set clock for platform traces 278

 <trace>.PortFilter Specify utilization of trace memory 279

 <trace>.PortSize Set external port size 280

 <trace>.PortType Specify trace interface 280

 <trace>.PROfile Rolling live plots of trace data 282

 <trace>.PROfile.channel Display profile of signal probe channels 282

 <trace>.PROfile.CTU Display complex trigger unit counter profile 282

 <trace>.PROfileChart Profile charts 283

 Options 286

 <trace>.PROfileChart.Address Address profile chart 289

 <trace>.PROfileChart.AddressGROUP Address group time chart 290
General Commands Reference Guide T | 8©1989-2024 Lauterbach

 <trace>.PROfileChart.AddressRate Address rate profile chart 292

 <trace>.PROfileChart.COUNTER Display a profile chart 293

 <trace>.PROfileChart.DatasYmbol Analyze pointer contents graphically 295

 <trace>.PROfileChart.DIStance Time interval for a single event 296

 <trace>.PROfileChart.DistriB Distribution display in time slices 297

 <trace>.PROfileChart.DURation Time between two events 298

 <trace>.PROfileChart.GROUP Group profile chart 301

 <trace>.PROfileChart.INTERRUPT Display interrupt profile chart 302

 <trace>.PROfileChart.Line HLL-line profile chart 303

 <trace>.PROfileChart.MODULE Module profile chart 304

 <trace>.PROfileChart.PAddress Which instructions accessed data address 305

 <trace>.PROfileChart.PROGRAM Program profile chart 306

 <trace>.PROfileChart.PsYmbol Which functions accessed data address 307

 <trace>.PROfileChart.Rate Event frequency 309

 <trace>.PROfileChart.RUNNABLE Runnable profile chart 311

 <trace>.PROfileChart.sYmbol Dynamic program behavior graphically (flat) 312

 <trace>.PROfileChart.TASK Dynamic task behavior graphically (flat) 313

 <trace>.PROfileChart.TASKINFO Context ID special messages 314

 <trace>.PROfileChart.TASKINTR ISR2 profile chart (ORTI) 315

 <trace>.PROfileChart.TASKKernel Task profile chart with kernel markers 316

 <trace>.PROfileChart.TASKORINTERRUPT Task and interrupt profile chart 317

 <trace>.PROfileChart.TASKSRV Profile chart of OS service routines 318

 <trace>.PROfileChart.TASKVSINTERRUPT Interrupted tasks 319

 <trace>.PROfileChart.TASKVSINTR Profile chart for task-related interrupts 320

 <trace>.PROfileChart.Var Variable profile chart 321

 <trace>.PROfileSTATistic Statistical analysis in a table versus time 322

 Options 322

 <trace>.PROfileSTATistic.Address Statistical analysis for addresses 325

 <trace>.PROfileSTATistic.AddressGROUP Stat. for address groups 325

 <trace>.PROfileSTATistic.COUNTER Statistical analysis for counter 326

 <trace>.PROfileSTATistic.DatasYmbol Statistic analysis for pointer content 326

 <trace>.PROfileSTATistic.DistriB Distribution statistical analysis 327

 <trace>.PROfileSTATistic.GROUP Statistical analysis for groups 328

 <trace>.PROfileSTATistic.INTERRUPT Statistical analysis for interrupts 329

 <trace>.PROfileSTATistic.Line Statistical analysis for HLL lines 330

 <trace>.PROfileSTATistic.MODULE Statistical analysis for modules 331

 <trace>.PROfileSTATistic.PAddress Which instr. accessed data address 332

 <trace>.PROfileSTATistic.PROGRAM Statistical analysis for programs 332

 <trace>.PROfileSTATistic.PsYmbol Which functions accessed data address 333

 <trace>.PROfileSTATistic.RUNNABLE Statistical analysis for runnables 333

 <trace>.PROfileSTATistic.sYmbol Statistical analysis for symbols 334

 <trace>.PROfileSTATistic.TASK Statistical analysis for tasks 335

 <trace>.PROfileSTATistic.TASKINFO Context ID special messages 335
General Commands Reference Guide T | 9©1989-2024 Lauterbach

 <trace>.PROfileSTATistic.TASKINTR Statistical analysis for ISR2 (ORTI) 336

 <trace>.PROfileSTATistic.TASKKernel Stat. analysis with kernel markers 337

 <trace>.PROfileSTATistic.TASKORINTERRUPT Interrupts and tasks 337

 <trace>.PROfileSTATistic.TASKSRV Analysis of OS service routines 338

 <trace>.PROfileSTATistic.TASKVSINTERRUPT Interrupted tasks 338

 <trace>.PROTOcol Protocol analysis 339

 <trace>.PROTOcol.Chart Graphic display for user-defined protocol 339

 <trace>.PROTOcol.Draw Graphic display for user-defined protocol 341

 <trace>.PROTOcol.EXPORT Export trace buffer for user-defined protocol 342

 <trace>.PROTOcol.Find Find in trace buffer for user-defined protocol 343

 <trace>.PROTOcol.list Display trace buffer for user-defined protocol 344

 <trace>.PROTOcol.PROfileChart Profile chart for user-defined protocol 347

 <trace>.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol 348

 <trace>.PROTOcol.STATistic Display statistics for user-defined protocol 350

 Protocol specific Options 351

 Options for ASYNC 351

 Options for CAN 352

 Options for I2C 354

 Options for I2S 354

 Options for JTAG 355

 Options for USB 356

 <trace>.REF Set reference point for time measurement 357

 <trace>.RESet Reset command 357

 <trace>.SAVE Save trace for postprocessing in TRACE32 358

 Parameters 358

 Options 359

 <trace>.SelfArm Automatic restart of trace recording 362

 <trace>.ShowFocus Display data eye for AUTOFOCUS preprocessor 365

 <trace>.ShowFocusClockEye Display clock eye 368

 <trace>.ShowFocusEye Display data eye 370

 <trace>.SIZE Define buffer size 373

 <trace>.SnapShot Restart trace capturing once 373

 <trace>.SPY Adaptive stream and analysis 374

 <trace>.state Display trace configuration window 376

 <trace>.STATistic Statistic analysis 378

 Parameters 379

 List items 379

 Format 381

 Options 382

 <trace>.STATistic.Address Time between up to 8 program events 387

 <trace>.STATistic.AddressDIStance Time interval for single program event 388

 <trace>.STATistic.AddressDURation Time between two program events 389

 <trace>.STATistic.AddressGROUP Address group run-time analysis 391
General Commands Reference Guide T | 10©1989-2024 Lauterbach

 <trace>.STATistic.ChildTREE Show callee context of a function 393

 <trace>.STATistic.COLOR Assign colors to function for colored graphics 394

 <trace>.STATistic.CYcle Analyze cycle types 395

 <trace>.STATistic.DatasYmbol Analyze pointer contents numerically 398

 <trace>.STATistic.DIStance Time interval for a single event 400

 <trace>.STATistic.DistriB Distribution analysis 401

 <trace>.STATistic.DURation Time between two events 402

 <trace>.STATistic.FIRST Start point for statistic analysis 404

 <trace>.STATistic.Func Nesting function runtime analysis 406

 <trace>.STATistic.FuncDURation Statistic analysis of single function 422

 <trace>.STATistic.FuncDURationInternal Statistic analysis of single func. 423

 <trace>.STATistic.GROUP Group run-time analysis 424

 <trace>.STATistic.Ignore Ignore false records in statistic 426

 <trace>.STATistic.INTERRUPT Interrupt statistic 427

 <trace>.STATistic.InterruptIsFunction Statistics interrupt processing 428

 <trace>.STATistic.InterruptIsKernel Statistics interrupt processing 430

 <trace>.STATistic.InterruptIsKernelFunction Statistics interrupt processing 430

 <trace>.STATistic.InterruptIsTaskswitch Statistics interrupt processing 430

 <trace>.STATistic.INTERRUPTTREE Display interrupt nesting 431

 <trace>.STATistic.LAST End point for statistic analysis 433

 <trace>.STATistic.Line High-level source code line analysis 435

 <trace>.STATistic.LINKage Per caller statistic of function 436

 <trace>.STATistic.Measure Analyze the performance of a single signal 438

 <trace>.STATistic.MODULE Code execution broken down by module 440

 <trace>.STATistic.PAddress Which instructions accessed data address 441

 <trace>.STATistic.ParentTREE Show the call context of a function 442

 <trace>.STATistic.PROCESS Re-process statistics 444

 <trace>.STATistic.PROGRAM Code execution broken down by program 445

 <trace>.STATistic.PsYmbol Shows which functions accessed data address 446

 <trace>.STATistic.RUNNABLE Runnable runtime analysis 448

 <trace>.STATistic.RUNNABLEDURation Runnable duration analysis 449

 <trace>.STATistic.Sort Specify sorting criteria for statistic commands 450

 <trace>.STATistic.sYmbol Flat run-time analysis 458

 <trace>.STATistic.TASK Task activity statistic 461

 <trace>.STATistic.TASKFunc Task related function run-time analysis 464

 <trace>.STATistic.TASKINFO Context ID special messages 464

 <trace>.STATistic.TASKINTR ISR2 statistic (ORTI) 465

 <trace>.STATistic.TASKKernel Task analysis with kernel markers (flat) 466

 <trace>.STATistic.TASKLOCK Analyze lock accesses from tasks 469

 <trace>.STATistic.TASKORINTERRUPT Statistic of interrupts and tasks 470

 <trace>.STATistic.TASKORINTRState Task and ISR2 statistic analysis 471

 <trace>.STATistic.TASKSRV Analysis of time in OS service routines 472

 <trace>.STATistic.TASKState Performance analysis 474
General Commands Reference Guide T | 11©1989-2024 Lauterbach

 <trace>.STATistic.TASKStateDURation Task state runtime analysis 478

 <trace>.STATistic.TASKTREE Tree display of task specific functions 479

 <trace>.STATistic.TASKVSINTERRUPT Statistic of interrupts, task-related 480

 <trace>.STATistic.TASKVSINTR ISR2 statistic (ORTI), task related 481

 <trace>.STATistic.TREE Tree display of nesting function run-time analysis 482

 <trace>.STATistic.Use Use records 483

 <trace>.STATistic.Var Statistic of variable accesses 484

 <trace>.STREAMCompression Select compression mode for streaming 485

 <trace>.STREAMFILE Specify temporary streaming file path 486

 <trace>.STREAMFileLimit Set size limit for streaming file 487

 <trace>.STREAMLOAD Load streaming file from disk 488

 <trace>.STREAMSAVE Save streaming file to disk 490

 <trace>.TCount Set trigger counter 490

 <trace>.TDelay Trigger delay 491

 <trace>.TERMination Use trace line termination of preprocessor 493

 <trace>.TestFocus Test trace port recording 494

 <trace>.TestFocusClockEye Scan clock eye 496

 <trace>.TestFocusEye Check signal integrity 497

 <trace>.TestUtilization Tests trace port utilization 497

 <trace>.THreshold Optimize threshold for trace lines 498

 <trace>.Timing Waveform of trace buffer 499

 <trace>.TMode Select trigger mode 501

 <trace>.TraceCONNECT Select on-chip peripheral sink 501

 <trace>.TRACK Set tracking record 502

 <trace>.TRIGGER Trigger the trace 502

 <trace>.TSELect Select trigger source 503

 <trace>.View Display single record 504

 <trace>.ZERO Align timestamps of trace and timing analyzers 505

 TRACEPORT .. 506

 TRACEPORT Configure trace hardware 506

 TRACEPORT.EndsKiP Define number of bytes skipped at the end of frame 507

 TRACEPORT.LaneCount Select port size of the trace port 508

 TRACEPORT.LanePolarity Set polarity for each lane of the trace port 508

 TRACEPORT.LaneSpeed Inform debugger about trace port rate 509

 TRACEPORT.MsgBItEndian Change bit-order within each byte 510

 TRACEPORT.MsgBYteEndian Change byte-order within each word 511

 TRACEPORT.MsgLOngEndian Change dword-order within each qword 511

 TRACEPORT.MsgWOrdEndian Change word-order within each dword 512

 TRACEPORT.OSCFrequency Set OSC clock frequency 512

 TRACEPORT.PinReMap Adapt the lane order of the trace port 513

 TRACEPORT.RefCLocK Set up reference clock for trace port 514

 TRACEPORT.RESet Reset trace port configuration 514

 TRACEPORT.StartsKiP Define number of bytes skipped at the start of frame 515
General Commands Reference Guide T | 12©1989-2024 Lauterbach

 TRACEPORT.state Display trace port configuration window 516

 TRANSlation .. 517

 TRANSlation Debugger address translation 517

 Overview TRANSlation 517

 TRANSlation.AutoEnable Auto-enable debugger MMU translation 520

 TRANSlation.AutoSCAN Autoscan feature for debugger MMU 520

 TRANSlation.CacheFlush Flush TRACE32 address translation cache 521

 TRANSlation.CLEANUP Clean up MMU table 521

 TRANSlation.COMMON Common address ranges for kernel and tasks 522

 TRANSlation.COMMON.ADD Add another common address range 524

 TRANSlation.COMMON.CLEAR Clear all common logical address ranges 524

 TRANSlation.Create Create translation 525

 TRANSlation.CreateID Add entry to MMU space ID table 526

 TRANSlation.CreateTab Create multiple translations 526

 TRANSlation.Delete Delete translation 527

 TRANSlation.DeleteID Remove entry from MMU space ID table 527

 TRANSlation.List List MMU translation table 528

 TRANSlation.ListID List MMU space ID table 529

 TRANSlation.NoProtect Unprotect memory 529

 TRANSlation.OFF Deactivate debugger address translation 530

 TRANSlation.ON Activate debugger address translation 530

 TRANSlation.PAGER Allow paged breakpoints for Linux 531

 TRANSlation.Protect Protect memory 532

 TRANSlation.Protect.ADD Add range to protected memory ranges 532

 TRANSlation.Protect.OFF Switch protection of target memory off 533

 TRANSlation.Protect.ON Protect entire target memory 534

 TRANSlation.RESet Reset MMU configuration 535

 TRANSlation.SCANall Scan MMU tables 535

 TRANSlation.ScanID Scan MMU address space tables from kernel 536

 TRANSlation.SHADOW Enable shadow access to target memory 536

 TRANSlation.state Overview of translation settings 537

 TRANSlation.TableWalk Automatic MMU page table walk 538

 TRANSlation.TlbAutoScan Allow automatic TLB scans during table walk 539

 TRANSlation.TRANSparent Transparent banking area 541

 TrBus .. 542

 TrBus Trigger bus 542

 Overview TrBus 542

 Trigger Bus on the PowerTrace 544

 Interaction Between Independent PODBUS Devices 545

 TrBus.Arm Arm the trigger bus 547

 TrBus.Connect Configure TRIGGER as input or output 548

 TrBus.Mode Define polarity/edge for the trigger signal 548

 TrBus.OFF Switch trigger bus off 548
General Commands Reference Guide T | 13©1989-2024 Lauterbach

 TrBus.Out Define source for the external trigger pulse 549

 TrBus.RESet Reset setting for trigger bus 549

 TrBus.Set Define the target for the incoming trigger 550

 TrBus.state Display settings for the trigger bus 550

 TrBus.Trigger Stimulate a trigger on the trigger bus 550

 TrOnchip .. 551

 TrOnchip Onchip triggers 551

 TrOnchip.RESet Reset settings to defaults 551

 TrOnchip.state Display onchip trigger window 551

 TrPOD ... 553

 TrPOD Trigger probe 553

 TrPOD.Clock Defines data mask 553

 TrPOD.ClockPOL Defines data polarity 553

 TrPOD.Data Defines data mask 554

 TrPOD.DataPOL Defines data polarity 554

 TrPOD.Mode Defines data polarity 555

 TrPOD.OFF Switch off 556

 TrPOD.ON Switch on 556

 TrPOD.RESet Reset command 556

 TrPOD.state State display 557

 TrPOD.Time Defines the time for the pulse width trigger 557
General Commands Reference Guide T | 14©1989-2024 Lauterbach

General Commands Reference Guide T

Version 06-Jun-2024

History

22-May-2024 A more detailed description of the <trace>.STATistic.TASKState command.

26-Sep-2023 New commands <trace>.PROfile.channel and <trace>.PROfile.CTU.

13-Jul-2023 Moved the option /ARTIAP from <trace>.FLOWPROCESS to the command
<trace>.STATistic.PROCESS.

13-Jul-2023 New command <trace>.EXPORT.MDF.
New option /TimeZero for the command <trace>.EXPORT.ARTI.

21-Jun-2023 Added the TRIG connector characteristics on PowerDebug X50 in chapter ‘Overview TrBus’.

06-Jan-2023 New method <trace>.METHOD.CIProbe.

30-Aug-2022 Added the TRIG connector characteristics on PowerDebug E40 in chapter ‘Overview TrBus’.

11-Aug-2022 New modes for TERM.Mode command to support UTF-8 encoded characters.

05-Aug-2022 New option /Clear for TRANSlation.SCANall command.

19-Jul-2022 New option /BEAT for <trace>.List command.

12-Jul-2022 New command TRACEPORT.LanePolarity.

16-Feb-2022 New command TASK.RELOAD.

05-Jan-2022 New command <trace>.EXPORT.ARTIAP.

05-Jan-2022 New option /ARTIAP for the commands <trace>.Chart.TASK, <trace>.Chart.TASKState,
<trace>.FLOWPROCESS, <trace>.STATistic.TASK and <trace>.STATistic.TASKState.

05-Jan-2022 New ARTIAP items for <trace>.List.

Sep-2021 Description of the command <trace>.STATistic.TASKStateDURation.

Sep-2021 Description of the command <trace>.STATistic.RUNNABLEDURation.
General Commands Reference Guide T | 15©1989-2024 Lauterbach

TargetSystem

TargetSystem TRACE32 PowerView instances

Using the command group TargetSystem, you can start new TRACE32 PowerView instances from within a
running instance and keep an overview of these instances.

The instances started with TargetSystem.NewInstance are automatically connected to the same
PowerDebug hardware module or to the same MCI Server as the instance that initiated the start process. (In
case of the MCI Server, the setting in the config file is: PBI=MCISERVER).

The TargetSystem.state window provides an overview of the status of the cores assigned to the various
TRACE32 instances. The window also helps you keep an overview of the synchronization mechanism
between the TRACE32 instances, which is set up with the SYnch command group.

In addition, the TargetSystem.state window displays the InterCom names and UDP port numbers used by
the instances for communication with each other via the InterCom system.

See also

■ TargetSystem.NewInstance ■ TargetSystem.state ■ SYnch ■ InterCom

NOTE: The TargetSystem.NewInstance command is not available for:
• The TRACE32 Instruction Set Simulator (PBI=SIM in the config file)
• The debuggers connected to the target via the GDI interface (PBI=GDI)
• The debuggers connected to the target via the MCD interface (PBI=MCD)
General Commands Reference Guide T | 16©1989-2024 Lauterbach

TargetSystem.NewInstance Start new TRACE32 PowerView instance
[Examples]

Allows a TRACE32 PowerView instance to start new TRACE32 PowerView instances (max. 15 new
instances) for debugging AMP systems. In AMP (asynchronous multiprocessing) systems, each TRACE32
PowerView instance is responsible for an SMP subsystem or single core. For more information, see
CORE.ASSIGN.

All instances started with TargetSystem.NewInstance are automatically connected to the same
PowerDebug hardware module or the same MCI Server (PBI=MCISERVER in the config.t32 file) as the
instance that initiated the start process.

The instance that starts another instance clones the current config file (by default config.t32) and extends
the cloned file for the new instance.

Format: TargetSystem.NewInstance <intercom_name> [/<option>]

<option>: ARCHitecture <arch>
API.PORT <port_number>
ChipIndex <index> | ChipIndexMin <index_min>
GDB.PORT <port> | GDB.PROTocol [TCP | UDP]
InterCom.Port <port>
LICense.PoolPort [None | Merge | <port>]
ONCE
SCReen.Size [Normal | ICONic | FULL | INVisible]
TIMEOUT [None | Infinite | <time>]
USEmask <value>

<arch>: 8051 | COLDFIRE | ANDES | AP3 | ARC | ARM | ARM64 | …

<index>: 1. … 254.

<index_min>: 1. … 254.

NOTE: The TargetSystem.NewInstance command is not available for:
• The TRACE32 Instruction Set Simulator (PBI=SIM in the config file)
• The debuggers connected to the target via the GDI interface (PBI=GDI)
• The debuggers connected to the target via the MCD interface (PBI=MCD)
General Commands Reference Guide T | 17©1989-2024 Lauterbach

<intercom_name> Assigns a user-defined InterCom name to the new TRACE32 instance.

ARCHitecture
<arch>

Selects the architecture of the new TRACE32 instance. If the
ARCHitecture option is omitted, then a TRACE32 instance of the same
architecture will be started.

The softkeys below the TRACE32 command line include only
architectures and families that are used for AMP debugging.

API.PORT
<port_number>

Parameter Type: Decimal value.
Passes a UDP remote API <port_number> to the new TRACE32
instance.

ChipIndex<index> Sets the value of CORE= in the config file of the new instance.
See also:
• “Section PBI” in TRACE32 Installation Guide, page 42 (installa-

tion.pdf)
• SYStem.USECORE()

ChipIndexMin
<index_min>

Automatically chosen index will not be below the minimum specified with
<index_min>.

GDB.PORT <port> Enables the GDB server listening at the passed port for the new
TRACE32 instance to start.

GDB.PROTocol Setups the used IP protocol for the GDB service. Default: TCP.

InterCom.Port
<value>

Specifies the new InterCom port that shall be used for the new instance.
This option presumes that the current instance already have an assigned
InterCom port to avoid later conflicts.

LICense.PoolPort Manages license pool ports for TargetSystem.NewInstance command
for MCISERVER scenarios.
This option defines how new instance work with pool ports.
The default is Merge when the POOLPORT has been specified in the
current instance otherwise None.

None Does not use the POOLPORT keyword in the
LICENSE section.

Merge Introduces the POOLPORT and create new pools
depending the started architectures.

<port> Configures the POOLPORT to certain value.

ONCE Avoids starting an instance with the same name multiple times.
General Commands Reference Guide T | 18©1989-2024 Lauterbach

SCReen.Size Configures window modes.

Normal The new PowerView instance is started as normal
window.

ICONic The new PowerView instance is minimized.

FULL The new PowerView instance is started in full screen
mode.

INVisible The new PowerView instance is invisible.

TIMEOUT Used to configure the timeout to wait until the new instance has finished
the initialization phase.

None Immediately returns from the command and does not
wait until the new TRACE32 instance is spawned.

Infinite Waits until the new TRACE32 instance is spawned for
an infinite time or the STOP button is clicked.

<time> Waits a certain time until the new TRACE32 instance
is spawned. Default: 10 seconds.

USEmask <value> Used to overwrite USE= property of PBI section.
For rare use case the use mask to address POD bus devices can be
modified for the new GUI instance. The use mask can be passed as
string or as value with least significant bit corresponding to first POD bus
device in the chain.

Examples:

• /USEMASK 001101; generates USE=001101, first character
corresponds to the first device in the POD bus chain.

• /USEMASK 0y001101; generates USE=1011, least
significant bit corresponds to the first device in the POD bus
chain.

• /USEMASK 0x0D; generates USE=1011, least significant bit
corresponds to the first device in the POD bus chain.
General Commands Reference Guide T | 19©1989-2024 Lauterbach

Examples

Example 1: This script shows how to start a second TRACE32 instance named mySecondInstance from
within the current TRACE32 instance.

Example 2: Let’s assume you have started a number of instances and now want to quit a particular
instance. This script shows how to quit a TRACE32 instance named mySecondInstance in a set of
TRACE32 instances.

See also

■ TargetSystem ■ InterCom.ENable

▲ ’Release Information’ in ’Legacy Release History’

TargetSystem.NewInstance mySecondInstance /ARCHitecture ARM64
InterCom.execute mySecondInstance PRINT "started by the first instance"

InterCom.execute mySecondInstance QUIT
General Commands Reference Guide T | 20©1989-2024 Lauterbach

TargetSystem.state Show overview of multicore system
[Columns] [Options] [Use Cases]

Opens the TargetSystem.state window, providing an overview of the multicore system configuration and
state across multiple TRACE32 instances sharing one PowerDebug hardware module or MCI Server. The
indices on the first and second level are configured using SYStem.CONFIG.CORE <chip> <core>. The
indices on the third level indicate the thread index of the SMP system that can be defined by CORE.ASSIGN
or CORE.NUMber.

The TargetSystem window is not available for front-end debuggers.

To illustrate the TargetSystem.state command, the following use cases are provided:

• Use case 1: Diagnostic tool for the target system structure

• Use case 2: TRACE32 instance selector

• Use case 3: Manage the SYnch settings for all TRACE32 instances

Format: TargetSystem.state [<column> …] [/<option> …]

<column>: DEFault | ALL
TargetSystem | CoreType | CoreState |
Title |
InterComPort | InterComName | INSTance | UseCore
SYnch.All | SYnch.Go | SYnch.Step | SYnch.Break | SYnch.SystemMode
LicensePoolPort

<option>: Global | UseTitle | UseICName

1st level: <chip>

2nd level: <core> 3rd level: thread
General Commands Reference Guide T | 21©1989-2024 Lauterbach

<columns> - Description of Columns in the TargetSystem.state Window

DEFault Adds TargetSystem, CoreType and CoreState column. If no column is
passed DEFault is used automatically.

ALL Displays all available columns in the TargetSystem.state window.

TargetSystem Adds the TargetSystem column to show a hierarchical view on the
system. If the column is left out, it will be added automatically. The
parameter is used to tell the dialog that the DEFault option is not active
and only the TargetSystem column shall be shown.

CoreType Adds a column to show the target architecture of a core and core family
name if available.

CoreState Shows the state of the core. The state can be system down (gray color),
power down (red color), reset (red color), stopped (bold) or running. The
running state can be extended by an attribute that indicates a run mode
e.g. “no core clock”.

Title Adds a column with the corresponding window title. The title can be set
by the configuration file before start-up or by the TITLE command.

InterComPort Adds a column with the InterCom UDP port numbers of TRACE32
instances. The InterCom port numbers are used by the InterCom
commands and the SYnch commands.

You can assign a new port number by double-clicking a port number in
the ic port column. For an illustrated example, see InterCom.PORT.

InterComName Adds a column with the InterCom names of TRACE32 instances. Names
are created with the commands InterCom.NAME or InterCom.ENable.
The names can then be used as arguments in InterCom and SYnch
commands.

You can rename an instance by double-clicking a name in the ic name
column. For an illustrated example, see InterCom.NAME.

INSTance Adds a column, showing the value of INSTANCE= from the config file.

If INSTANCE= is missing in the config file, then 1 is displayed by default.
That is, in this case the display value is equivalent to the explicit setting
INSTANCE=1 in the config file.

UseCore Adds a column, showing the value of CORE= from the config file.

If CORE= is missing in the config file, then 1 is displayed by default. That is, in
this case the display value is equivalent to the explicit setting CORE=1 in the
config file.

See also SYStem.USECORE().
General Commands Reference Guide T | 22©1989-2024 Lauterbach

<options> - Options for the TargetSystem.state Window

SYnch.All Adds the columns SYnch.Go, SYnch.Step, SYnch.Break and
SYnch.SystemMode.

SYnch.Go Adds the column to indicate and edit the SYnch.MasterGo and
SYnch.SlaveGo setting. The header of the column is named SG.

SYnch.Step Adds the column to indicate and edit the SYnch.MasterStep and
SYnch.SlaveStep setting. The header of the column is named SS.

SYnch.Break Adds the column to indicate and edit the SYnch.MasterBreak and
SYnch.SlaveBreak setting. The header of the column is named SB.

SYnch.System-
Mode

Adds the column to indicate and edit the SYnch.MasterSystemMode and
SYnch.SlaveSystemMode setting. The header of the column is named
SM.

LicensePoolPort Displays license pool port column in TargetSystem window.

Global Don’t highlight specific information for the TRACE32 instance from where
the dialog was opened. The dialog can be moved outside of the main
window and used to act as an independent window to bring a certain
instance to foreground by a double click to of an entry of the
TargetSystem tree column.

UseTitle Use the TRACE32 window title as name for an SMP Subsystem or Core.
The title can be set by the configuration file before start-up or by the
PRACTICE command TITLE.

UseICName Use the TRACE32 InterCom name as window title for an SMP subsystem
or core. The InterCom name can be set with the InterCom.NAME
command.
General Commands Reference Guide T | 23©1989-2024 Lauterbach

Use case 1: Diagnostic tool for the target system structure

The command opens the window showing the overall system. Nodes that belong to this TRACE32 instance
are displayed in bold. A double-click to a thread selects this thread to be active.

Use case 2: TRACE32 instance selector

The command opens the window showing the overall system and the state of the particular cores. The
window can be moved outside of the TRACE32 instance where the command was executed. A double-click
at an SMP system node or core will bring the assigned instance to foreground.

TargetSystem.state CoreType /UseTitle

TargetSystem.state CoreState /UseTitle /Global
General Commands Reference Guide T | 24©1989-2024 Lauterbach

Use case 3: Manage the SYnch settings for all TRACE32 instances

The command opens the window showing the overall system and the SYnch settings.

A single click at an entry in one of the columns will change the setting in the SYnch dialog and set the
connection ports.

See also

■ TargetSystem

TargetSystem.state SYnch.All /UseTitle /Global

default Neither master nor slave option is set.

1st click M master option set.

2nd click S slave option is set.

3rd click MS master and slave option is set.
General Commands Reference Guide T | 25©1989-2024 Lauterbach

TASK

TASK OS Awareness for TRACE32
[Task Magic Numbers, IDs, Names] [Machine Magic Numbers, IDs, Names] [Glossary]

See also

■ TASK.ACCESS ■ TASK.ATTACH ■ TASK.Break ■ TASK.CACHEFLUSH
■ TASK.CONFIG ■ TASK.COPYDOWN ■ TASK.COPYUP ■ TASK.Create
■ TASK.CreateExtraID ■ TASK.CreateID ■ TASK.DELete ■ TASK.DeleteID
■ TASK.DETACH ■ TASK.Go ■ TASK.INSTALL ■ TASK.KILL
■ TASK.List ■ TASK.ListID ■ TASK.NAME ■ TASK.ORTI
■ TASK.RELOAD ■ TASK.RESet ■ TASK.RUN ■ TASK.select
■ TASK.SETDIR ■ TASK.STacK ■ EXTension ❏ TASK.ACCESS()
❏ TASK.BACK() ❏ TASK.CONFIG() ❏ TASK.CONFIGFILE() ❏ TASK.COUNT()
❏ TASK.FIRST() ❏ TASK.FORE() ❏ TASK.ID() ❏ TASK.MACHINEID()
❏ TASK.MAGIC() ❏ TASK.MAGICADDRESS() ❏ TASK.MAGICRANGE() ❏ TASK.MAGICSIZE()
❏ TASK.NAME() ❏ TASK.NEXT() ❏ TASK.ORTIFILE() ❏ TASK.SPACEID()

▲ ’TASK Functions’ in ’General Function Reference’

Overview TASK

This chapter describes the OS Awareness features, generic to all processors and kernels. Kernel specific
features are described in additional manuals, see OS Awareness Manuals.

The OS Awareness may support the following main features:

• Display of kernel resources (e.g. tasks, queues, semaphores, messages).

• Task stack coverage.

• Task related breakpoints.

• Task context display.

• Operating system’s MMU support.

• Dynamic task performance measurement

• Task runtime statistics and flowchart display out of the trace buffer. Display of task switches in the
trace listing.

• Task state statistics and time chart out of the trace buffer, i.e. show how long each task is in a
certain state (running, ready, etc.).

• Task-related function runtime statistics, flowchart display and function nesting display out of the
trace buffer.

• Fast access to the features through dedicated menus.

Not all features are implemented for all processors and kernels. Please see the kernel specific manual for a
detailed description of the supported features.
General Commands Reference Guide T | 26©1989-2024 Lauterbach

OS Awareness Configurations

The OS Awareness is configured by the TASK.CONFIG command. The command loads a configuration file
that tells the debugger all kernel-related information. It can be adopted to any (RT)OS kernel. Lauterbach
provides ready-to-start configuration files for a wide range of operating systems. If you want to adapt it to
your own proprietary kernel, ask Lauterbach for assistance.

What to know about the Task Parameters

In TRACE32, operating system tasks (short: tasks) can be identified based on one of these values:

• Task magic number

• Task ID

• Task name

For OS-aware debugging and tracing, these three values are displayed in the TASK.List.tasks window and
can be returned with the functions TASK.MAGIC(), TASK.ID(), and TASK.NAME(). In addition, the three
values can be passed as parameters to task-related TRACE32 commands and options.

Task Magic Number

The task magic number is an arbitrary hex value, used by TRACE32 to uniquely identify a task of an
operating system. The meaning of the value depends on the OS Awareness; often it refers to the task
control block of the target OS or to the task ID.

Task ID

This value refers to the numeric task ID as given by the operating system. If the OS does not provide a task
ID, this option may not be available.

Task Name

This string refers to the task name as given by the operating system. If the OS does not provide a task name,
this option may not be available.

NOTE: In case of the TASK.CONFIG command, you will encounter the parameter
<magic_address>.

• <task_magic> and <magic_address> are not the same.

• For information about <magic_address>, see TASK.CONFIG command.

<task_magic> Parameter Type: Hex value.
Example: TASK.select 0xEFF7B040

<task_id> Parameter Type: Decimal value.
Example: TASK.select 1546.
General Commands Reference Guide T | 27©1989-2024 Lauterbach

If the task runs in a system involving virtualization, then the task name can be preceded with the machine
name.

What to know about the Machine Parameters

In hypervisor-based environments, TRACE32 identifies machines based on one of these values:

• Machine magic number

• Machine ID

• Machine name

For hypervisor debugging and tracing, these three values are displayed in the TASK.List.MACHINES
window. In addition, the three values can be passed as parameters to machine-related TRACE32
commands and options.

<task_name> Parameter Type: String.

Example 1: TASK.select "adbd:1546"
Example 2: TASK.select "FreeRTOS:::SieveDemo"
FreeRTOS is the name of the machine. The three colons ::: serve as the
separator between the machine name and the task name SieveDemo.
General Commands Reference Guide T | 28©1989-2024 Lauterbach

Machine Magic Number

A machine magic number is an arbitrary hex value, used by TRACE32 to uniquely identify a machine
(host machine or guest machine). The meaning of the value depends on the Hypervisor Awareness;
often it refers to the guest control block of the hypervisor or to the machine ID.

Machine ID

A machine ID is a numeric identifier which extends a logical address and intermediate address in TRACE32
or can be used together with the option MACHINE in some TRACE32 commands. The purpose of a
machine ID is to identify guest machines within a system that is using a hypervisor to run multiple virtual
machines.

In TRACE32, the machine ID clearly specifies which virtual machine (a guest machine or the host machine)
an address belongs to:

• The machine ID 0 (zero) is always associated with the host machine running the hypervisor.

• All the other machine IDs >= 1 are associated with the guest machines.

Format of addresses with machine IDs:

In the TRACE32 address format, the machine ID is always in the leading position, directly after the access
class specifier. The machine ID is followed a triple colon (:::) to separate the machine ID from the
remaining parts of an address. The format of a TRACE32 address containing a machine ID looks like this:

• Without space ID:

<access_class>:<machine_id>:::<address_offset>

• With space ID:

<access_class>:<machine_id>:::<space_id>::<address_offset>

Examples:

• Without space ID:

- G:0x1:::0x80000000

- 0x2:::0xA0000000

• With space ID:

<machine_magic> Parameter Type: Hex value.
Range: machine magic number > 0xFF

Machine magic numbers are displayed, for example, in the magic column
of the TASK.List.MACHINES window as hex values.

<machine_id> Parameter Type: Decimal or hex value.
Range: 0x0 <= machine ID < 0x1F

Machine IDs are displayed, for example, in the mid column of the
TASK.List.MACHINES window as decimal values (1., 2., etc.)
General Commands Reference Guide T | 29©1989-2024 Lauterbach

- G:0x3:::0x020A::0x80000000

- G:0x0:::0x0::0x4000C000

- 0x2:::0x170::0x1F000000

Notes:

• Machine IDs can only be used if a TRACE32 Hypervisor Awareness is loaded with the command
EXTension.LOAD.

• Use command SYStem.Option.MACHINESPACES ON to enable machine IDs in TRACE32.

Machine Name

A machine name is a meaningful string that allows users to identify a host or guest machine in a hypervisor-
based environment. The machine name is given by the Hypervisor Awareness. If the Hypervisor Awareness
does not provide a machine name, you can assign a name to a machine by using the NAME option of the
EXTension.LOAD command. Without the NAME option, the base name of the extension definition file will
be used.

In a hypervisor-based environment, the machine name precedes the task name.

Glossary

For important OS Awareness and Hypervisor Awareness terms, such as task, thread, process, machine,
kernel, MMU space, and virtual machine, refer to the “TRACE32 Concepts” (trace32_concepts.pdf).

<machine_name> Parameter Type: String.

Example: TASK.select "FreeRTOS:::SieveDemo"
FreeRTOS is the name of the machine. The three colons ::: serve as the
separator between the machine name and the task name SieveDemo.
General Commands Reference Guide T | 30©1989-2024 Lauterbach

TASK.ACCESS Control memory access

Defines the memory access class used by TASK related windows.

TASK related windows may access the target memory (e.g. when reading task control blocks). If the access
class is set to E:, the debugger uses emulation memory access to read the memory (e.g. emulation
memory, shadow memory or pseudo-dual-port access). If set to C:, the debugger uses CPU access. If the
appropriate access is not possible, the window is temporarily frozen.

TASK.ACCESS without parameter enables the default mode, which uses E:, if the application is running,
and C: if the application is stopped.

Please see refer to your Processor Architecture Manuals for a description of E: and C:.

See also

■ TASK

TASK.ATTACH Attach to a running process

Start the execution of a single task or thread.

Only applicable if GDB (Linux) is used as debug agent or for the Native Process Debugger.

See also

■ TASK

▲ ’GDB Front-End TASK Commands’ in ’TRACE32 as GDB Front-End’
▲ ’Native Process Debugger Specific TASK Commands’ in ’Native Process Debugger’

TASK.Break Stop the execution of a single task or thread

Stop the execution of a single task or thread.

Format: TASK.ACCESS [<class>]

Format: TASK.ATTACH <id>

Format: TASK.Break <id>
General Commands Reference Guide T | 31©1989-2024 Lauterbach

Only applicable if GDB (Linux) is used as debug agent or for the Native Process Debugger.

See also

■ TASK

▲ ’GDB Front-End TASK Commands’ in ’TRACE32 as GDB Front-End’
▲ ’Native Process Debugger Specific TASK Commands’ in ’Native Process Debugger’

TASK.CACHEFLUSH Reread task list

Usually not needed. Use only if advised to do so.

The debugger reads out the task list of the target at each single step or Go/Break sequence, and stores the
list internally (see TASK.List.tasks). If the task list or task characteristics change while the target is halted, a
manual update of the task list may be necessary. This command forces an immediate re-evaluation of the
task list.

See also

■ TASK

TASK.CONFIG Configure OS Awareness

Configures the OS Awareness using a given configuration file. Please refer to the OS-specific manual. See
OS Awareness Manuals.

Format: TASK.CACHEFLUSH

Format: TASK.CONFIG <os_awareness_file> <magic_address> <args> [/<option>]

<option>: ACCESS <class>
General Commands Reference Guide T | 32©1989-2024 Lauterbach

Arguments:

Options:

See also

■ TASK ■ EXTension.LOAD ■ MMU

▲ ’Release Information’ in ’Legacy Release History’

TASK.COPYDOWN Copy file from host into target

Copies a file from the host into the target. Only supported for Linux and QNX run mode debugging.

See also

■ TASK

▲ ’Commands for Run Mode Debugging’ in ’Run Mode Debugging Manual Linux’

<os_awareness_
file>

File name of the configuration file.

<magic_address> Address of the memory location holding the task magic number of the
currently running task. See “What to know about the Task Parameters”,
page 27.

<args> All other arguments are interpreted by the configuration file. Details of
predefined files are described in the kernel-specific part of an OS
Awareness Manual.

ACCESS Defines the memory access class used by TASK-related windows. See
TASK.ACCESS.

Format: TASK.COPYDOWN <source_file_host> <destination_file_target>
General Commands Reference Guide T | 33©1989-2024 Lauterbach

TASK.COPYUP Copy file from target into host

Copies a file from the target into the host. Only supported for Linux and QNX run mode debugging.

See also

■ TASK

▲ ’Commands for Run Mode Debugging’ in ’Run Mode Debugging Manual Linux’

Format: TASK.COPYUP <source_file_target> <destination_file_host>
General Commands Reference Guide T | 34©1989-2024 Lauterbach

TASK.Create Create task

The TASK.Create command group allows to create new tasks.

See also

■ TASK

TASK.Create.MACHINE Define a manual machine

Defines a persistent machine. Machines are usually created and removed from the machine list by a
Hypervisor Awareness. This commands creates machines that are independent of the Hypervisor
Awareness.

Only available if SYStem.Option.MACHINESPACES is ON.

All parameters are optional. If omitted (specify ','), the debugger will try to get the value from the Hypervisor
Awareness (if available).

Format: TASK.Create.MACHINE [<mach_magic>] [<id>] [<name>] [<vttb>]
[<trace_id>] [/<option>]

<option>: MMUspaces ON | OFF | EXTension
CORE <core1> [<core2>...]

Parameter: Format Description

<mach_magic> hex Specifies a value that uniquely identifies a machine.

<id> dec Specifies a machine ID as used by fully qualified virtual
addresses.

<name> string Specifies a machine name.

<vttb> hex Specifies the translation table base address of this machine.

<trace_id> hex Specifies a value that identifies a machine in the trace.
General Commands Reference Guide T | 35©1989-2024 Lauterbach

Examples:

See also

■ TASK.List.MACHINES

TASK.Create.RUNNABLE Define an AUTOSAR runnable

Defines an AUTOSAR runnable. Usually used in conjuntion with an ORTI awareness (see TASK.ORTI).

Option: Description

MMUspaces ON This machine has MMU spaces.

OFF This machine does not have MMU spaces.

EXTension
(default)

An OS Awareness for this machine (if available)
reports, if this machine has MMU spaces.

CORE Assigns a machine to specific logical cores.

;Declare a machine with machine ID 1 and name “guest1”:
TASK.Create.MACHINE , 1. “guest1”

;Set the trace ID of machine with magic “0x1234” to “0x2”:
TASK.Create.MACHINE 0x1234, , , , 0x2

;Machine with ID 2 is bound to logical cores 2 and 3:
TASK.Create.MACHINE , 2. /CORE 2. 3.

Format: TASK.Create.RUNNABLE [<function>] [<id>] [<name>] [<start>] [<stop>]
[<traceidstart>] [<traceidstop>] [/<option>]
General Commands Reference Guide T | 36©1989-2024 Lauterbach

All parameters are optional. If omitted (specify ','), the debugger will try to evaluate the other values by the
given values.

Example:

See also

■ TASK.List.RUNNABLES ■ <trace>.Chart.RUNNABLE
■ <trace>.EXPORT.ARTI ■ <trace>.STATistic.RUNNABLE

▲ ’Overview of TRACE32 Command Structure’ in ’Application Note Profiling on AUTOSAR CP with ARTI’

TASK.Create.SPACE Define a manual MMU space

Defines a persistent MMU space. MMU Spaces are usually created and removed from the space list by an
OS Awareness. This commands creates spaces that are independent of the OS Awareness.

Only available if SYStem.Option.MMUSPACES is ON.

Parameter: Format Description

<function> string Specifies a function symbol that represents this runnable.

<id> dec Specifies a runnable id.

<name> string Specifies a runnable name.

<start> address Specifies the start address of the runnable.

<stop> address Specifies the end address of the runnable.

<traceidstart> hex Specifies a value that identifies the start of a runnable in the
trace.

<traceidstop> hex Specifies a value that identifies the end of a runnable in the
trace.

;Declare a runnable:
TASK.Create.RUNNABLE Rte_Runnable_ComM_GetCurrentComMode_Start 3.\

 "GetCurrentComMode"

Format: TASK.Create.SPACE [<space_magic>] [<id>] [<name>] [<ttb>] [/<option>]

<option>: MACHINE <machine_magic> | <machine_id> | <machine_name>
General Commands Reference Guide T | 37©1989-2024 Lauterbach

All parameters are optional. If omitted (specify ','), the debugger will try to get the value from the OS
Awareness (if available).

Examples:

See also

■ TASK.List.SPACES

Parameter: Format Description

<space_magic> hex Specifies a value that uniquely identifies a space within a
machine.

<id> dec Specifies a space ID as used by fully qualified virtual
addresses.

<name> string Specifies a space name.

<ttb> hex Specifies the translation table base address of this space.

Option: Description

MACHINE Creates the task to be part of the given machine.
(only available if SYStem.Option.MACHINESPACES is ON)

;Declare an MMU space with space ID 1 and name "proc1":
TASK.Create.SPACE , 1. "proc1"

;Set the TTB of the MMU space with magic "0x1234" on machine 1 to
;"0x1000":
TASK.Create.SPACE 0x1234, , , 0x1000 /MACHINE 1.
General Commands Reference Guide T | 38©1989-2024 Lauterbach

TASK.Create.task Define a manual task

Defines a persistent task. Tasks are usually created and removed from the task list by an OS Awareness.
This commands creates tasks that are independent of the OS Awareness.

All parameters are optional. If omitted (specify ','), the debugger will try to get the value from the OS
Awareness (if available).

Examples:

See also

■ TASK.List.tasks

Format: TASK.Create.task [<task_magic>] [<id>] [<name>] [<trace_id>] [/<option>]

<option>: MACHINE <machine_magic> | <machine_id> | <machine_name>
SPACE <space_magic> | <space_id> | <space_name>

Parameter: Format Description

<task_magic> hex Specifies a value that uniquely identifies a task within a
machine.

<id> dec Specifies an arbitrary task ID.

<name> string Specifies a task name.

<trace_id> hex Specifies a value that identifies a task in the trace.

Option: Description

MACHINE Creates the task to be part of the given machine.
(only available if SYStem.Option.MACHINESPACES is ON)

SPACE Create the task to be part of the given space.
(only availabe if SYStem.Option.MMUSPACES is ON)

;Declare a task with magic "0x200" and name "thread1" as part of MMU
;space "proc1":
TASK.Create.task 0x200 , "thread1" /SPACE "proc1"

;Set the trace ID of task with magic "0x200" of machine 1 to "0x4":
TASK.Create.task 0x200 , , 0x4 /MACHINE 1.
General Commands Reference Guide T | 39©1989-2024 Lauterbach

TASK.CreateExtraID Create a virtual task

Creates a virtual task ID for trace analysis. Trace analysis will use the given task ID for task identification
rather than the task magic number. Only for some dedicated applications.

See also

■ TASK

TASK.CreateID Create virtual task

Creates a virtual task name for trace analysis. Trace analysis will use the given task name for task
identification, rather than the task magic. Only for some dedicated applications.

See also

■ TASK

TASK.DELete Delete file from target

Deletes a file from the target file system. Only applicable if GDB (Linux) is used as debug agent.

See also

■ TASK

Format: TASK.CreateExtraID <task_name> <task_id> <space_id> <trace_id>

Format: TASK.CreateID <task_name> <task_id> <space_id> <trace_id>

Format: TASK.DELete <target_file>
General Commands Reference Guide T | 40©1989-2024 Lauterbach

TASK.DeleteID Delete virtual task

Delete a virtual task created with TASK.CreateID or TASK.CreateExtraID.

See also

■ TASK

TASK.DETACH Detach from task

Requests the debug agent to detach from the process <id>.

Only applicable if GDB (Linux) is used as debug agent.

Example:

See also

■ TASK

▲ ’Native Process Debugger Specific TASK Commands’ in ’Native Process Debugger’

TASK.Go Start the execution of a single task or thread

Start the execution of a single task or thread.

Only applicable if GDB (Linux) is used as debug agent or for the Native Process Debugger.

See also

■ TASK

▲ ’GDB Front-End TASK Commands’ in ’TRACE32 as GDB Front-End’
▲ ’Native Process Debugger Specific TASK Commands’ in ’Native Process Debugger’

Format: TASK.DeleteID <task_id>

Format: TASK.DETACH <id>

TASK.DETACH 41.

Format: TASK.Go <id>
General Commands Reference Guide T | 41©1989-2024 Lauterbach

TASK.INSTALL Deprecated

See also

■ TASK

TASK.KILL End task

Request the debug agent to end the process <id>.

Only applicable if GDB (Linux) or TRK (Symbian) is used as debug agent.

Example:

See also

■ TASK

▲ ’Commands for Run Mode Debugging’ in ’Run Mode Debugging Manual Linux’
▲ ’Native Process Debugger Specific TASK Commands’ in ’Native Process Debugger’

Format: TASK.INSTALL (deprecated)

Format: TASK.KILL <id>

TASK.KILL 41.
General Commands Reference Guide T | 42©1989-2024 Lauterbach

TASK.List Information about tasks

The windows of the TASK.List command group provide information about processes, space IDs, MMU
spaces, machines, and tasks known to the debugger in an OS and hypervisor environment. The debugger
needs a so-called “awareness” of the OS or hypervisor to be able to read out these items from the target.

See also

■ TASK.List.MACHINES ■ TASK.List.RUNNABLES ■ TASK.List.SPACES ■ TASK.List.tasks
■ TASK.List.TREE ■ TASK

TASK.List.MACHINES List machines

Lists information about all machines known to the debugger. Machines refer to virtual machines in a
hypervisor environment. The hypervisor itself is listed as machine with ID 0.

Machines are only available if SYStem.Option.MACHINESPACES is set to ON.

For several purposes, the debugger needs to know which machines are active in the system. The debugger
uses the hypervisor specific awareness to read out all machine characteristics that it needs for its operation.
TASK.List.MACHINES shows the machine characteristics that the debugger uses.

Description of Columns in the TASK.List.MACHINE Window

Format: TASK.List.MACHINES

A The machine that is currently running on the selected core is marked.

magic Machine magic number. Unique number for the machine.
Usually the address of the control block structure.

name Name of the object, if available.

mid Machine ID if a hypervisor system is set up.

access Access class that an awareness uses for this machine.

vttb “Virtual translation table base” address of this machine. The VTTB address
points to the MMU table of the guest physical (= intermediate) address to host
physical address translation.

extension(s) Extensions loaded for this machine (EXTension.LOAD).

A

General Commands Reference Guide T | 43©1989-2024 Lauterbach

See also

■ TASK.List ■ TASK.List.tasks ■ TASK.Create.MACHINE

▲ ’Release Information’ in ’Legacy Release History’

TASK.List.RUNNABLES List AUTOSAR runnables

Lists information about AUTOSAR runnables.

Runnables are declared to the debugger by the command TASK.Create.RUNNABLE. The information is
used to create performance calculations shown with Trace.Chart.RUNNABLE and
Trace.STATistic.RUNNABLE. Trace.EXPORT.ARTI also relies on this information to export trace events
based on runnables.

See also

■ TASK.List ■ TASK.List.tasks
■ TASK.Create.RUNNABLE ■ <trace>.Chart.RUNNABLE
■ <trace>.EXPORT.ARTI ■ <trace>.STATistic.RUNNABLE

▲ ’Overview of TRACE32 Command Structure’ in ’Application Note Profiling on AUTOSAR CP with ARTI’

TASK.List.SPACES List MMU spaces

Lists all MMU spaces known to the debugger. MMU spaces usually refer to processes in an OS/RTOS
environment. MMU spaces are only available if SYStem.Option.MMUSPACES is set to ON.

Format: TASK.List.RUNNABLES

Format: TASK.List.SPACES
General Commands Reference Guide T | 44©1989-2024 Lauterbach

For several purposes, the debugger needs to know which MMU spaces are active in the system. The
debugger uses the kernel specific awareness to read out all space characteristics that it needs for its
operation. TASK.List.SPACES shows the space characteristics that the debugger uses.

Each kernel specific awareness has a different display command to show the active processes with the
characteristics that are essential to the specific kernel. Please see the appropriate OS Awareness Manual
(rtos_<os>.pdf) for this command.

Description of Columns in the TASK.List.SPACES Window:

See also

■ TASK.List ■ TASK.List.tasks ■ TASK.Create.SPACE

TASK.List.tasks List all running tasks

Lists all tasks known to the debugger. Additional information about machines and MMU spaces is only
displayed if SYStem.Option.MMUSPACES and SYStem.Option.MACHINESPACES are set to ON.

For several purposes, the debugger needs to know which tasks are active in the system. The debugger uses
the kernel specific awareness to read out all task characteristics that it needs for its operation.
TASK.List.tasks shows the task characteristics that the debugger uses.

A The MMU space that is currently active on the selected core is marked.

magic Space magic number. Unique number for the space.
Usually the address of the control block structure.

name Name of the object, if available.

id ID of the object, if available.

machine Machine name or machine ID if a hypervisor system is set up.

ttb TTB address of this space

task(s) Tasks running in this space

Format: TASK.List.task

A

General Commands Reference Guide T | 45©1989-2024 Lauterbach

Each kernel specific awareness has a different display command to show the active tasks with the
characteristics that are essential to the specific kernel. Please see the appropriate OS Awareness Manual
(rtos_<os>.pdf) for this command.

Description of Columns in the TASK.List.tasks Window:

See also

■ TASK.List ■ TASK.List.MACHINES ■ TASK.List.RUNNABLES ■ TASK.List.SPACES
■ TASK.List.TREE ■ TASK.Create.task ■ CORE.List

▲ ’Overview of TRACE32 Command Structure’ in ’Application Note Profiling on AUTOSAR CP with ARTI’

TASK.List.TREE Display tasks in a tree structure

Displays machines, MMU spaces, and tasks in the form of a tree structure.

A The task that is currently running on the selected core is marked.

magic Task magic number. Unique number for the task.
Usually the address of the control block structure.

name Name of the object, if available.

id ID of the object, if available.

space Space name or ID if the OS uses MMU spaces.

traceid ID that identifies an object in the trace list.

core Identifies in SMP systems at which core this task runs.

sel Task selected for debugging (only in Run Mode Debugging).

stop Task selected to stop on break (only in Run Mode Debugging).

machine Machine name or machine ID if a hypervisor system is set up.

Format: TASK.List.TREE [/<option>]

<option>: Machine <machine_magic> | <machine_id> | <machine_name>

A

General Commands Reference Guide T | 46©1989-2024 Lauterbach

Description of Columns in the TASK.List.TREE Window

See also

■ TASK.List ■ TASK.List.tasks

▲ ’Release Information’ in ’Legacy Release History’

TASK.ListID List virtual tasks

Opens the TASK.ListID window, displaying virtual tasks created withTASK.CreateID or
TASK.CreateExtraID.

See also

■ TASK

A Level 1 of the tree: Machines.

B Level 2: MMU spaces.

C Level 3: Tasks.

D Yellow lines: The machine, the MMU space, and the task that are currently running on the selected core
are marked.

magic Magic number. Unique number for each object (machine/MMU space/task).
Usually the address of the control block structure.

name Name of the object, if available.

Format: TASK.ListID

D

B

C

A

General Commands Reference Guide T | 47©1989-2024 Lauterbach

TASK.NAME Translation of task magic number to task name

Several windows of the OS Awareness show task-related information, e.g. TASK.STacK or
Trace.Chart.TASK. Internally, the OS Awareness always uses the task magic numbers to identify a task.
When displaying the task-related information, the debugger can translate this task magic number into a
more readable task name, using a task name translation table. If the debugger finds an entry with the
appropriate task magic number, it shows the task name instead of the task magic number (or task ID).

The translation table can be populated manually or automatically. If the TASK configuration file supports it,
the debugger automatically populates the table with the current available task magic numbers and their
names. Additionally, or if no configuration file exists, or if the configuration doesn’t support task names, table
entries may be added manually. If a manual entry and an automatic entry have the same task magic
number, the manual entry overwrites the automatic one.

See also

■ TASK.NAME.DELete ■ TASK.NAME.RESet ■ TASK.NAME.Set ■ TASK.NAME.view
■ TASK

TASK.NAME.DELete Delete a task name table entry

Deletes the entry, specified by <task_magic>, from the task name translation table. If the entry is an
automatic entry, the next usage of task names may add the automatic entry again.

See also

■ TASK.NAME ■ TASK.NAME.view

TASK.NAME.RESet Reset task name table

Erases the whole task name translation table. If the TASK configuration file supports task name evaluation,
the next usage of task names will populate the table again with automatic entries.

See also

■ TASK.NAME ■ TASK.NAME.view

Format: TASK.NAME.DELete <task_magic>

Format: TASK.NAME.RESet
General Commands Reference Guide T | 48©1989-2024 Lauterbach

TASK.NAME.Set Set a task name table entry

Adds a manual entry to the task name translation table.

Example:

See also

■ TASK.NAME ■ TASK.NAME.view

TASK.NAME.view Show task name translation table

Shows the contents of the task name translation table.

See also

■ TASK.NAME ■ TASK.NAME.DELete ■ TASK.NAME.RESet ■ TASK.NAME.Set

Format: TASK.NAME.Set <task_magic> <task_name>

<task_magic>,
<task_name>

The string specified by <task_name> is assigned to the task specified by
<task_magic>. If the table contains already an automatic entry for the
specified task magic number, it will be overwritten by the new entry!

TASK.NAME.Set 0x58D68 "My_Task 1"

Format: TASK.NAME.view

A Flag “a”: The entry was set automatically by the TASK configuration file.

B Flag “m”: The entry was set manually by the TASK.NAME.Set command.

A

B

General Commands Reference Guide T | 49©1989-2024 Lauterbach

TASK.ORTI AUTOSAR/OSEK support

See also

■ TASK.ORTI.CPU ■ TASK.ORTI.load ■ TASK.ORTI.NOSTACK ■ TASK.ORTI.SPLITSTACK
■ TASK

▲ ’Release Information’ in ’Legacy Release History’
▲ ’Configuration’ in ’OS Awareness Manual OSEK/ORTI’

TASK.ORTI.CPU Set OSEK SMP CPU number

If TRACE32 is set up in AMP mode (one PowerView instance for each core), it assigns a CPU ID to each
individual core, starting with zero. An AUTOSAR/OSEK operating system in SMP mode may assign a
different CPU ID to the cores, depending how the OS uses the chip.

This command instructs the debugger to use the given CPU ID when extracting core dependent information
from the ORTI file.

See also

■ TASK.ORTI

TASK.ORTI.load Configure OS Awareness for OSEK/ORTI

Configures the OS Awareness for AUTOSAR/OSEK operating systems using ORTI. For a detailed
description, please refer to the chapter “OS Awareness Manual OSEK/ORTI” (rtos_orti.pdf).

See also

■ TASK.ORTI

Format: TASK.ORTI.CPU <cpu_id>

Format: TASK.ORTI.load <file>
General Commands Reference Guide T | 50©1989-2024 Lauterbach

TASK.ORTI.NOSTACK Exclude an ORTI task from stack evaluation

When using the OS Awareness for ORTI (see TASK.ORTI.load), this command excludes a task from all
stack evaluations, e.g. when performing a trace function analysis. Usually used for the idle routine if it isn’t
running as a separate task.

See also

■ TASK.ORTI

Format: TASK.ORTI.NOSTACK <task_name>
General Commands Reference Guide T | 51©1989-2024 Lauterbach

TASK.ORTI.SPLITSTACK Split stack analysis of idle ORTI task to cores

Some AUTOSAR/OSEK OSs use the same magic (NO_TASK) for the idle ORTI tasks on all cores.
However, for the function analysis, the idle tasks need to be split to the individual cores because the cores
are executing the idle tasks concurrently.

The command TASK.ORTI.SPLITSTACK splits the stacks of the idle ORTI tasks to the individual cores.

Example:

Output: Function analysis in the <trace>.STATistic.TREE window

See also

■ TASK.ORTI

Format: TASK.ORTI.SPLITSTACK <task_name>

<task_name> Specify the name of the idle ORTI task.

TASK.ORTI.SPLITSTACK "idle"

A Note that there is no stack overflow after executing TASK.ORTI.SPLITSTACK.

B The core numbers, here 0 and 1, are appended to the name of the idle task idle:0 and idle:1

C Core coloring scheme, e.g. green for core 1. See also CORE.SHOWACTIVE.

A

A

Before

After B

C

General Commands Reference Guide T | 52©1989-2024 Lauterbach

TASK.RELOAD Reread task list

This command initiates a reloading of the task list and enables the OS Awareness.

The OS Awareness may be disabled if an access to the current task fails, or if the system state changed, to
prevent the debugger from accessing faulty memory. TASK.RELOAD explicitly re-enables the OS
Awareness and initiates the update of the internal task list.

See also

■ TASK

TASK.RESet Reset OS Awareness

Resets the OS Awareness.

The configuration is cleared, all additional commands and features are removed.

See also

■ TASK

Format: TASK.RELOAD

Format: TASK.RESet
General Commands Reference Guide T | 53©1989-2024 Lauterbach

TASK.RUN Load task

Loads <process> and prepares it for debugging.

Only applicable if GDB (Linux) or TRK (Symbian) is used as debug agent.

Example:

See also

■ TASK

▲ ’Commands for Run Mode Debugging’ in ’Run Mode Debugging Manual Linux’
▲ ’Native Process Debugger Specific TASK Commands’ in ’Native Process Debugger’

Format: TASK.RUN <process>

TASK.RUN /bin/hello
General Commands Reference Guide T | 54©1989-2024 Lauterbach

TASK.select Display context of specified task

Stop mode debugging: In the case of an SMP system the currently selected core is changed to the core
running the specified task. As a result the debugger view is changed to this core and all TRACE32
commands without /CORE <number> option apply to it.

If the specified task is not running, TRACE32 reads the register set of the specified task from the OS data
structures. This is needed to display the context of the specified task in the TRACE32 PowerView GUI.

The TRACE32 state line changes to a reddish look-and-feel (see screenshot below) to indicate that the
context of a not-running task is displayed. TRACE32 display commands such as List.auto, Register.view,
Frame.view or Var.Local apply to this task. Whereas all other commands switch back to the currently
running task before they are executed.

If the task is running on different virtual machine, TRACE32 reads the context of the VCPU that is
processing the task on this machine.

Run mode debugging: Selects the specified task for debugging (e.g. GDB (Linux) or TRK (Symbian)).

See also

■ TASK ■ CORE.select

Format: TASK.select <task_magic> | <task_id>. | "<task_name>"

<task_magic>, etc. See also “What to know about the Task Parameters”
(general_ref_t.pdf).

TASK.select 41.
General Commands Reference Guide T | 55©1989-2024 Lauterbach

▲ ’Release Information’ in ’Legacy Release History’
▲ ’Commands for Run Mode Debugging’ in ’Run Mode Debugging Manual Linux’

TASK.SETDIR Set the awareness directory
OS awarenesses: Linux only

The Linux awareness and menu call scripts from the awareness directory. This directory is set per default to
~~/demo/<arch>/kernel/linux/<linux_version>. When loading the awareness outside this directory,
TRACE32 prints a warning. With this command you can change the awareness directory. Scripts will be
called then from the new directory.

See also

■ TASK

Format: TASK.SETDIR <path>
General Commands Reference Guide T | 56©1989-2024 Lauterbach

TASK.STacK Stack usage coverage

The TASK.STacK command group allows to watch the stack usage in single tasking and multi-tasking
systems. In single tasking systems, or in non supported operating systems, the user has to specify the stack
area manually. The task magic number can be any number to identify a stack area.

In configured RTOS operation, the magic number must be the respective task magic number.

The debugger tries to get the current stack pointer. If the OS Awareness is configured, and the configuration
file supports stack coverage, the current stack pointer is read out of the task control block of the application.
When the application is stopped, the stack pointer is read from register and displayed at the current running
task. Without any RTOS configuration the stack pointer will be displayed at the stack that fits to the pointer
(pointer inside the stack). If no stack fits, or if the running task could not be found, the stack pointer of the
register is displayed in an extra line. (See also TASK.STacK.view)

To evaluate the maximum stack space, the debugger uses a pattern search. Note, that the stack has to be
initialized with a know pattern by the target application. The debugger searches from stack top to stack
bottom for the first byte, that is not equal to the specified pattern. (See also TASK.STacK.PATtern)

For more information on stack coverage in operating systems, refer to the OS Awareness Manuals.

See also

■ TASK.STacK.ADD ■ TASK.STacK.DIRection ■ TASK.STacK.Init ■ TASK.STacK.PATtern
■ TASK.STacK.PATternGAP ■ TASK.STacK.ReMove ■ TASK.STacK.RESet ■ TASK.STacK.view
■ TASK

TASK.STacK.ADD Add stack space coverage

With the 1st argument: Adds a stack area to the TASK.STacK.view window.

Without the 1st argument: Opens the TASK.STacK.ADD window. Double-click the entry of a stack area
you want to add to the TASK.STacK.view window.

Format: TASK.STacK.ADD [<task_magic> [<stackrange>]] [/<option>]

<option>: MACHINE <machine_magic> | <machine_id> | <machine_name>
General Commands Reference Guide T | 57©1989-2024 Lauterbach

When no OS Awareness is loaded:

When an OS Awareness is loaded:

In hypervisor-based environments:

Examples

Example 1: When no OS Awareness is loaded

Example 2: When an OS Awareness is loaded

Example 3: In a hypervisor-based environment

See also

■ TASK.STacK ■ TASK.STacK.view

<task_magic>,
<stackrange>

The task magic number is any number used to identify a stack area. In this
case the stack range must be specified as a second parameter.

See also “What to know about the Task Parameters”
(general_ref_t.pdf).

<task_magic> The magic number must be the task magic number. See also “What to
know about the Task Parameters” (general_ref_t.pdf).

<stackrange> If the extension definition file supplies automatic stack range detection (only
possible in some OS’s), then the stack range parameter can be omitted.
Otherwise specify the stack area manually. If available, you can omit the
magic and select a task from a task list.

MACHINE Add only stack areas that belong to the selected machine. See also “What
to know about the Machine Parameters” (general_ref_t.pdf).

TASK.STacK.ADD 2 0x1000--0x1fff

TASK.STacK.ADD 0x101433C0

TASK.STack.ADD 0x101433C0 /MACHINE 3
General Commands Reference Guide T | 58©1989-2024 Lauterbach

TASK.STacK.DIRection Define stack growth direction

Defines whether the stack grows downwards or upwards.

See also

■ TASK.STacK ■ TASK.STacK.view

TASK.STacK.Init Initialize unused stack space

Overwrites the currently unused stack space with the pattern defined by TASK.STacK.PATtern. The
memory starting from the stack pointer onto the stack boundary address (equaled the low address, if the
stack grows downwards) will be initialized with the pattern.

See also

■ TASK.STacK ■ TASK.STacK.view

Format: TASK.STacK.DIRection [UP | DOWN]

DOWN The stack starts with the high address and grows to a lower address.

UP The stack starts with the low address and grows to a higher address.

Format: TASK.STacK.Init [<task_magic>]

CAUTION: If the stack is used in an unusual way, e.g. some stack space is used even if the
stack pointer does not point behind the used area, relevant target data may be
overwritten, and your application may crash.
General Commands Reference Guide T | 59©1989-2024 Lauterbach

TASK.STacK.PATtern Define stack check pattern

Defines stack pattern for stack coverage calculation.

See also

■ TASK.STacK ■ TASK.STacK.view

Format: TASK.STacK.PATtern [[%<format>] <pattern>] [/<option>]

<option>: TASK <task_magic> | <task_id> | <task_name>

<pattern> Stack coverage calculation is done by comparing the stack data with
defined pattern. The pattern must be the value, which represents unused
stack space. This will only work, if the stack space is initialized with this
value. Use TASK.STacK.Init to re-initialize currently unused stack space
with the pattern.

<pattern> can also be a string enclosed in quotes.

<format> Use a <format> to define formats other than bytes e.g. %Long.

TASK Sets the stack pattern only for the given task.
General Commands Reference Guide T | 60©1989-2024 Lauterbach

TASK.STacK.PATternGAP Define check pattern gap

If the stack check pattern defined with TASK.STacK.PATtern is not contiguous, this command defines the
gap between two consecutive patterns.

Example: If the stack is pre-filled with a 4-byte pattern 0xdeadbeef on each 64byte boundary, specify:

See also

■ TASK.STacK ■ TASK.STacK.view

TASK.STacK.ReMove Remove stack space coverage

With the 1st argument: Removes a stack area from the TASK.STacK.view window.

Without the 1st argument: Opens the TASK.STacK ReMove window. Double-click the entry of a stack
area you want to remove from the TASK.STacK.view window.

Format: TASK.STacK.PATternGAP [<value>]

<value> Number of bytes between two consecutive stack check patterns.

TASK.STacK.PATtern %Long 0xDEADBEEF
TASK.STacK.PATternGAP 0x40-4

Format: TASK.STacK.ReMove [<task_magic>] [/<option>]

<option>: MACHINE <machine_magic> | <machine_id> | <machine_name>

<task_magic> Specify the task magic number of the task whose stack area you want to
remove.
See also “What to know about the Task Parameters”
(general_ref_t.pdf).

MACHINE Removes only stack areas that belong to the selected machine.
See also “What to know about the Machine Parameters”
(general_ref_t.pdf).
General Commands Reference Guide T | 61©1989-2024 Lauterbach

Example:

See also

■ TASK.STacK ■ TASK.STacK.view

TASK.STacK.RESet Reset stack coverage

Resets the stack coverage system and all manually defined stack areas.
Resets the defined pattern to zero.

See also

■ TASK.STacK ■ TASK.STacK.view

TASK.STacK.ReMove 0x10147420

Format: TASK.STacK.RESet [<task_magic>]
General Commands Reference Guide T | 62©1989-2024 Lauterbach

TASK.STacK.view Open stack space coverage

Opens a window with stack space coverage.

Description of Columns in the TASK.STacK.view Window

Format: TASK.STacK.view [<task_magic> [<stackrange>]] [/<option>]

<option>: HumanReadable
MACHINE <machine_magic> | <machine_id> | <machine_name>

<task_magic> In single-tasking systems, or in non-supported multitasking systems, you
have to specify the first stack manually. Use any task magic number as an
ID, and specify the stack range to cover.

<stackrange> If the RTOS configuration file supports detection of the stack range, you can
use the magic of a specific task and omit the stack range. The range will be
automatically calculated from the information of the operating system. In the
case of a fully supported operating system, you can start the window without
any parameter. The debugger then automatically adds all current active
tasks with its stacks to the window.

HumanReadable Shows the size of the stack and the spare stack memory in human readable
form (byte, kilobytes, megabytes).

MACHINE Shows only the stacks of the selected machine.

See also “What to know about the Machine Parameters”
(general_ref_t.pdf).

Column Description

name Name or ID for the stack space. In configured RTOS environment it
specifies the name or ID of the task.

low and high The lowest and highest address of the stack range.

sp (gray) Gray: The stack pointer, calculated from a task control block (if available).
General Commands Reference Guide T | 63©1989-2024 Lauterbach

See also

■ TASK.STacK ■ TASK.STacK.ADD ■ TASK.STacK.DIRection ■ TASK.STacK.Init
■ TASK.STacK.PATtern ■ TASK.STacK.PATternGAP ■ TASK.STacK.ReMove ■ TASK.STacK.RESet

sp (black) Black: The current value of the stack pointer register when the application
is halted. In non-configured systems, the black value is displayed at the
stack, where the current sp fits inside the stack borders. In configured
RTOS systems the sp is shown at the current running task. If no according
stack could be found, sp appears in an extra line at the end.

sp (red) Red: Either if the current sp does not fit into the stack range of the current
task, or if the sp fits into a stack range that is not the current task.

% Percentage of the currently used stack space.

lowest The lowest used stack address. If using the flag system, it shows the
address, at which the first write flag in the stack area appears. If using
pattern check, it shows the first address, at which the date is not equal to
the pattern.

spare Amount of bytes not used in the stack area.

max The maximum stack space used in percent (calculated from 'lowest'). The
following bar shows this percentage graphically.

Column Description
General Commands Reference Guide T | 64©1989-2024 Lauterbach

TCB

TCB Trace control block

The TCB (Trace Control Block) is the HW control interface to the MIPS hardware trace block. For details
please refer to the MIPS Trace specifications.

For configuration, use the TRACE32 command line, a PRACTICE script (*.cmm), or the TCB.state window:

In the following, TCB specific controlling and associated commands are described.

See also

■ TCB.AllBranches ■ TCB.CPU
■ TCB.CycleAccurate ■ TCB.DataTrace
■ TCB.EX ■ TCB.FCR
■ TCB.IM ■ TCB.InstructionCompletionSizeBits
■ TCB.KE ■ TCB.LSM
■ TCB.OFF ■ TCB.ON
■ TCB.PCTrace ■ TCB.PortMode
■ TCB.PortWidth ■ TCB.Register
■ TCB.RESet ■ TCB.SourceSizeBits
■ TCB.SRC ■ TCB.STALL
■ TCB.state ■ TCB.SV
■ TCB.SyncPeriod ■ TCB.TC
■ TCB.ThreadSizeBits ■ TCB.Type
■ TCB.UM ■ TCB.Version
General Commands Reference Guide T | 65©1989-2024 Lauterbach

TCB.AllBranches Broadcast all branches

See also

■ TCB ■ TCB.state

TCB.CPU Broadcast information for specified CPU only

The TCB broadcasts only information for the specified CPU.

See also

■ TCB ■ TCB.state

Format: TCB.AllBranches [ON | OFF]

OFF
(default)

The TCB broadcasts only the address information when the processor
branches to a location that cannot be directly inferred from the source
code.

ON The TCB broadcasts the address information for all branches or jumps.

Format: TCB.CPU ALL | <cpu_x>

<cpu_x>: CPU0 | CPU1

ALL
(default)

The TCB broadcasts information for executed instructions of all active
CPU’s.

<cpu_x> The TCB broadcasts only information for executed instructions of
<cpu_x>.
General Commands Reference Guide T | 66©1989-2024 Lauterbach

TCB.CycleAccurate Cycle accurate tracing

Cycle accurate tracing can be used to observe the exact number of cycles that a particular code sequence
takes to execute. If cycle accurate tracing is used, trace information is generated for each clock cycle. In this
case the <core_clock> can be used to calculate the timestamps for the trace information.

Example:

See also

■ TCB ■ TCB.state

Format: TCB.CycleAccurate [ON | OFF]

ON The TCB broadcasts the information which instructions were executed,
but additionally stall information. No timestamps are generated by
TRACE32.

OFF
(default)

The TCB broadcasts only the information which instructions were
executed. Timestamps are generated by TRACE32.

TCB.CycleAccurate ON

Trace.CLOCK 500.MHz ; specify the <core_clock> as
; base for the trace timestamps

Trace.List ; display the trace information
General Commands Reference Guide T | 67©1989-2024 Lauterbach

TCB.DataTrace Broadcast specified address and data information

The TCB broadcasts only specified address and data information.

See also

■ TCB ■ TCB.state

Format: TCB.DataTrace <def>

<def>: ON | OFF |
Address | ReadAddress | WriteAddress |
Data | ReadData | WriteData |
Read | Write

ON The TCB broadcasts all address and data information.

OFF (default) The TCB broadcasts no address and data but only PC information.

Address The TCB broadcasts all address information.

ReadAddress The TCB broadcasts only address information in case of a read.

WriteAddress The TCB broadcasts only address information in case of a write.

Data The TCB broadcasts all data information.

ReadData The TCB broadcasts only data information in case of a read.

WriteData The TCB broadcasts only data information in case of a write.

Read The TCB broadcasts address and data information in case of a read.

Write The TCB broadcasts address and data information in case of a write.
General Commands Reference Guide T | 68©1989-2024 Lauterbach

TCB.EX Broadcast exception level information

If enabled the TCB broadcasts information for instructions executed on exception level.

See also

■ TCB ■ TCB.state

TCB.FCR Broadcast function call-return information

Enables broadcasting of function call-return information. This information is not treated within TRACE32
PowerView but has to be taken into account for trace decoding especially in case of a belated trace analysis.

See also

■ TCB ■ TCB.state

TCB.IM Broadcast instruction cache miss information

Enables broadcasting of instruction cache miss information. This information is not treated within TRACE32
PowerView but has to be taken into account for trace decoding especially in case of a belated trace analysis.

See also

■ TCB ■ TCB.state

Format: TCB.EX [ON | OFF]

ON
(default)

The TCB broadcast information for executed instructions in exception
operating mode.

OFF The TCB does not broadcast information for executed instructions in
exception operating mode.

Format: TCB.FCR [ON | OFF]

Format: TCB.IM [ON | OFF]
General Commands Reference Guide T | 69©1989-2024 Lauterbach

TCB.InstructionCompletionSizeBits Specify size of completion message

This command is only required if a TRACE32 Instruction Set Simulator is used for a belated analysis of SMP
trace information.

This command allows to specify how many bits are used in the trace stream dot instruction completion
message.

See also

■ TCB ■ TCB.state

TCB.KE Broadcast kernel mode information

If enabled the TCB broadcasts information for instructions executed in kernel mode.

See also

■ TCB ■ TCB.state

Format: TCB.InstructionCompletionSizeBits <number>

Format: TCB.KE [ON | OFF]

OFF The TCB does not broadcast information for executed instructions in
kernel operating mode.

ON
(default)

The TCB broadcast information for executed instructions in kernel
operating mode.
General Commands Reference Guide T | 70©1989-2024 Lauterbach

TCB.LSM Broadcast load store data cache information

Enables broadcasting of load store data cache miss information. This information is not treated within
TRACE32 PowerView but has to be taken into account for trace decoding especially in case of a belated
trace analysis.

See also

■ TCB ■ TCB.state

TCB.OFF Switch TCB off

Disables TCB functionality.

See also

■ TCB ■ TCB.state

TCB.ON Switch TCB on

Enables TCB functionality.

See also

■ TCB ■ TCB.state

Format: TCB.LSM [ON | OFF]

Format: TCB.OFF

Format: TCB.ON
General Commands Reference Guide T | 71©1989-2024 Lauterbach

TCB.PCTrace Broadcast program counter trace

If enabled, the TCB broadcasts program counter trace information.

See also

■ TCB ■ TCB.state

Format: TCB.PCTrace [ON | OFF]

OFF The TCB does not broadcast program counter trace information.

ON (default) The TCB broadcast program counter trace information.
General Commands Reference Guide T | 72©1989-2024 Lauterbach

TCB.PortMode Specify trace clock ratio

Specifies the ratio between trace- and CPU clock in case of off-chip trace.

Example:

See also

■ TCB ■ TCB.state

TCB.PortWidth Specify trace port width

Specify the trace port width in number of bits. This value is determined automatically by selecting trace
method or reading trace configuration register from target. Therefore this command should only be used for
diagnosis purpose or if necessary belated trace analysis.

See also

■ TCB ■ TCB.state

Format: TCB.PortMode <trace_clock>/<cpu_clock>

<trace_clock>
/<cpu_clock>:

8/1 | 4/1 | 2/1 | 1/1 | 1/2 | 1/4 | 1/6 | 1/8

TCB.PortMode 1/2 ; <trace_clock> is one half of <core_clock>.

Format: TCB.PortWidth <width>

<width>: 4 | 8 | 16 | 64
General Commands Reference Guide T | 73©1989-2024 Lauterbach

TCB.Register Display TCB control register

Default: OFF.

Example:

See also

■ TCB ■ TCB.state

Format: TCB.Register [<file>] [/<option>]

<option>: SpotLight | DualPort | Track | AlternatingBackGround
CORE <core_number>
Deport

<option> For a description of the options, see PER.view.

Deport Updates the control registers while the program is running (only possible
if SYStem.MemAccess Enable is selected).

TCB.Register permipstcb.per ; display the TCB control registers

; use the format description in
; permipstcb.per

TCB.Register, /SpotLight ; display the TCB control registers

; mark changes on the registers
General Commands Reference Guide T | 74©1989-2024 Lauterbach

TCB.RESet Reset TCB setup to default

Resets the TCB settings to default.

See also

■ TCB ■ TCB.state

TCB.SourceSizeBits Specify number of bit for core information in trace

This command is only required if a TRACE32 Instruction Set Simulator is used for a belated analysis of SMP
trace information.

This command allows to specify how many bits are used in the trace stream to identify the source core.

See also

■ TCB ■ TCB.state

TCB.SRC Control selective trace

Controls if the TCB broadcasts information for the specified SRC.

See also

■ TCB ■ TCB.state

Format: TCB.RESet

Format: TCB.SourceSizeBits <number>

Format: TCB.SRC[<n>] ON | OFF
General Commands Reference Guide T | 75©1989-2024 Lauterbach

TCB.STALL Stall CPU for complete trace

If enabled, TCB broadcasts slow but complete trace information.

See also

■ TCB ■ TCB.state

TCB.state Display TCB setup

Displays the TCB configuration window.

See also

■ TCB ■ TCB.AllBranches
■ TCB.CPU ■ TCB.CycleAccurate
■ TCB.DataTrace ■ TCB.EX
■ TCB.FCR ■ TCB.IM
■ TCB.InstructionCompletionSizeBits ■ TCB.KE
■ TCB.LSM ■ TCB.OFF
■ TCB.ON ■ TCB.PCTrace

Format: TCB.STALL [ON | OFF]

OFF The TCB broadcasts trace information in real-time with the risk of broken
trace flow.

ON
(default)

The TCB stall CPU if necessary and broadcast always complete
information.

Format: TCB.state

A For descriptions of the commands in the TCB.state window, please refer to the TCB.* commands
in this chapter. Example: For information about ON, see TCB.ON.

A

General Commands Reference Guide T | 76©1989-2024 Lauterbach

■ TCB.PortMode ■ TCB.PortWidth
■ TCB.Register ■ TCB.RESet
■ TCB.SourceSizeBits ■ TCB.SRC
■ TCB.STALL ■ TCB.SV
■ TCB.SyncPeriod ■ TCB.TC
■ TCB.ThreadSizeBits ■ TCB.Type
■ TCB.UM ■ TCB.Version

TCB.SV Broadcast supervisor mode information

If enabled the TCB broadcasts information for instructions executed in supervisor mode.

See also

■ TCB ■ TCB.state

TCB.SyncPeriod Specify TCB sync period

Specify the period in cycles the TCB broadcasts a synchronization message.

See also

■ TCB ■ TCB.state

Format: TCB.SV [ON | OFF]

ON
(default)

The TCB broadcast information for executed instructions in supervisor
operating mode.

OFF The TCB does not broadcast information for executed instructions in
supervisor operating mode.

Format: TCB.SyncPeriod <period>

<period>: 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

<period> The TCB sync period in 2 ^ (<period> + 5) cycles.
General Commands Reference Guide T | 77©1989-2024 Lauterbach

TCB.TC Broadcast information for specified HW thread

The TCB broadcasts only information for the specified HW thread.

See also

■ TCB ■ TCB.state

TCB.ThreadSizeBits Specify number of bit for thread information in trace

This command is only required if a TRACE32 Instruction Set Simulator is used for a belated analysis of SMP
trace information.

This command allows to specify how many bits are used in the trace stream to identify the source thread
context.

See also

■ TCB ■ TCB.state

Format: TCB.TC ALL | <tc_x>

<tc_x>: TC0 | TC1 | TC2 | TC3 | TC4 | TC5 | TC6 | TC7 | TC8

ALL
(default)

The TCB broadcasts information for executed instructions of all active
TCs.

<tc_x> The TCB broadcasts only information for executed instructions of <tc_x>.

Format: TCB.ThreadSizeBits <number>
General Commands Reference Guide T | 78©1989-2024 Lauterbach

TCB.Type Specify TCB type

This command is only required if a TRACE32 Instruction Set Simulator is used for a belated analysis of SMP
trace information.

See also

■ TCB ■ TCB.state

TCB.UM Broadcast user mode information

If enabled the TCB broadcasts information for instructions executed in user mode.

See also

■ TCB ■ TCB.state

Format: TCB.Type | <tcb_type>

<tcb_type>: PD | PD74K | IFLOW | FALCON | ZEPHYR

PD MIPS standard program and data trace control block.

PD74K Specific MIPS74K program data trace control block.

IFLOW MIPS standard instruction flow trace control block.

FALCON Lantiq specific instruction flow trace control block.

ZEPHYR Broadcom specific program and data trace control block.

Format: TCB.UM [ON | OFF]

ON
(default)

The TCB broadcast information for executed instructions in user
operating mode.

OFF The TCB does not broadcast information for executed instructions in user
operating mode.
General Commands Reference Guide T | 79©1989-2024 Lauterbach

TCB.Version Specify trace cell version

This command is only required if a TRACE32 Instruction Set Simulator is used for a belated trace analysis.
This command allows to specify manually the version number of the TCB trace cell. The version number
must fit to the TCB the trace data have been recorded with. It could be found in the header of the TCB
window if TRACE32 is connected to the referring target.

See also

■ TCB ■ TCB.state

Format: TCB.Version <number>
General Commands Reference Guide T | 80©1989-2024 Lauterbach

TERM

TERM Terminal emulation

See also

■ TERM.CLEAR ■ TERM.CLOSE ■ TERM.CMDLINE ■ TERM.GATE
■ TERM.HARDCOPY ■ TERM.HEAPINFO ■ TERM.LocalEcho ■ TERM.METHOD
■ TERM.METHOD2 ■ TERM.Mode ■ TERM.Out ■ TERM.OutBREAK
■ TERM.PIPE ■ TERM.PipeREAD ■ TERM.PipeWRITE ■ TERM.PULSE
■ TERM.READ ■ TERM.RESet ■ TERM.SCROLL ■ TERM.SIZE
■ TERM.STDIN ■ TERM.TCP ■ TERM.TELNET ■ TERM.TRIGGER
■ TERM.view ■ TERM.WRITE ❏ TERM.LINE() ❏ TERM.NEWHANDLE()
❏ TERM.READBUSY() ❏ TERM.RETURNCODE() ❏ TERM.TRIGGERED()

▲ ’TERM Functions (Terminal Window)’ in ’General Function Reference’
▲ ’Release Information’ in ’Legacy Release History’

Overview TERM

Multitasking operating systems or monitor programs running on the target system often need a terminal
interface for operation. This interface can be implemented either using peripherals (e.g. serial port) or as a
memory based interface. The memory based interface can work in several operation modes. It can
communicate either on character basis or with blocks of up to 255 bytes length. The memory access can
either be made while the target is running (when the system supports such run-time memory accesses) or
only when the target is stopped.

When the EPROM simulator (ESI) is used, the ESI can be used as communication port as well. Some
processor architectures also provide a special communication interface which is accessible through the
BDM/JTAG port (DCC modes).

The standard terminal window provides only the basic functions Backspace, Return and LineFeed. A
VT100 emulation mode is also available. A character can only be entered when the cursor is positioned in an
active window. The terminal window may also be used for “virtual hosting”. This allows to access some basic
operation system functions and the file system of the host from the target program. This functionality is only
available in the TERM.GATE command.

Interface Routines

In this section:

• EPROM Simulator

• Single Character Modes

• Buffered Modes

• Serial Line Debugger

• Special Hardware, JTAG
General Commands Reference Guide T | 81©1989-2024 Lauterbach

Interface Routines (EPROM Simulator)

This is an example in C to access the terminal window. The address of the ports depends on the width and
location of the EPROMs. The example assumes 8-bit wide EPROMs. For 16-bit EPROMs the addresses
must be doubled and the types changed from char to short.

extern volatile unsigned char input_port at 0x1000;
extern volatile unsigned char status_port at 0x1400;
extern volatile unsigned char output_port[256] at 0x1800;

void char_out(c)
unsigned char c;
{

unsigned char dummy;
if (c == 0)

return;
while (status_port&2);
dummy = outport_port[c];

}

/* refuse to send 0 (break) character */

/* wait until port is free */
/* send character */

int char_in();
{

unsigned char c;
while (!(status_port&1));
c = input_port;
if (c == 0)

break_emulation();
return c;

}

/* wait until character is ready */
/* read character */
/* manual break executed ? */
General Commands Reference Guide T | 82©1989-2024 Lauterbach

Interface Routines (Single Character Modes)

This interface occupies two memory cells in which characters can be transferred. A zero means that no
character is available and the interface is ready. When the target is not able to provide a dual-ported memory
access it is possible to stop the target after it has placed a character in the communication area and the
terminal command will restart the target automatically after it has processed the character.

This is an example in C to access the terminal window. By changing the char_in and char_out routines
within the library, all more complex functions like printf() or scanf() are redirected to the terminal window.

Interface Routines (Buffered Modes)

An example for using the buffered mode can be found in ~~/demo/etc/terminal/t32term/t32term_memory.c.
This example contains also examples for using the virtual hosting feature of the TERM.GATE command.

Interface Routines (Serial Line Debugger)

The serial line can be used as usual. Only the data values 0 have a special meaning. Receiving such a value
means an emulation break. Sending such a value is not allowed for the user program.

Interface Routines (Special Hardware, JTAG)

Check the target appendix for your processor for details and availability.

NOTE: Some emulation heads have special dual-port access modes, that require special
cycles to be executed (e.g. IDLE mode on H8 probes).

extern volatile char input_port,
output_port

void char_out(c)
char c;
{

while (output_port != 0) ;
output_port = c;

}
int char_in();
{

char c;
while (input_port == 0) ;
c = input_port;
input_port = 0;
return c;

}

/* wait until port is free */
/* send character */

/* wait until character is ready */
/* read character */
/* clear input port */
General Commands Reference Guide T | 83©1989-2024 Lauterbach

Functions

Refer to “TERM Functions (Terminal Window)” in General Function Reference, page 363
(general_func.pdf).

Fast Data Write

The fast data write system allows to transfer data from the target to a file on the host. The data transfer rate
can be up to 250 KBytes/s. The max. reaction time is 50 µs when the transfer is not interruptible or 150 µs
when the transfer is interruptible. Data can be transferred either 8, 16 or 32 bit wide. The principle is similar
to the terminal emulation. The interface occupies two memory cells, one byte to control the transfer and a
second byte or word to hold the data. A zero in the control cell means that the debugger is ready to accept
data. Writing a '01' by the CPU causes the data to be transferred to the host. Writing '02' saves the current
data buffer to the host. The time required by this disk save dependents on the host and communication
speed. The data buffer is saved automatically after the buffer is full. The value '03' can be used as a NOP
command to wait for the start of the transfer. Writing 'ff' terminates the data transfer. The Fast Data Write
system has been replaced by the FDX system.

Interface Routines

This is an example in C to access the fast data transfer.

extern volatile char control_port;
extern volatile short data_port;

void word_out()
short c;
{

while (control_port != 0) ;
data_port = c ;
control_port = 1;

}

/* wait until port is free */
/* place 16 bit in buffer */
/* send data to buffer/host */

int begin_transfer(c);
short c;
{

while (control_port != 0) ;
}

/* wait until transfer is ready */

int end_transfer(c);
short c;
{

while (control_port != 0) ;
control_port = 0xff;

}

/* wait until port is free */
/* stop transfer program */
General Commands Reference Guide T | 84©1989-2024 Lauterbach

TERM.CLEAR Clear terminal window

Clears the terminal window and places the cursor to the home position.

See also

■ TERM ■ TERM.view

TERM.CLOSE Close files

Closes the output file created with TERM.WRITE.

See also

■ TERM ■ TERM.view

TERM.CMDLINE Specify a command line

The command can specify a command line for the SYS_GET_CMDLINE (0x15) system call if ARM
compatible semihosting is used.

See also

■ TERM ■ TERM.view

Format: TERM.CLEAR [<channel>]
TERM.CLEAR [<address>] (deprecated)

<channel>: #<number>

Format: TERM.CLOSE [<channel>]
TERM.CLOSE [<address>] (deprecated)

<channel>: #<number>

Format: TERM.CMDLINE <cmdline>
General Commands Reference Guide T | 85©1989-2024 Lauterbach

TERM.GATE Terminal with virtual hosting

TERM.GATE allows to an application program running on a target processor to communicate with the host
computer of the debugger. This way the application can use the I/O facilities of the host computer like
keyboard input, screen output, and file I/O. This is especially useful if the target platform does not provide
these I/O facilities or in order to output additional debug information in printf() style. The implementation on
target and settings in TRACE32 vary between targets, this is also not available for all platforms. Typically, you
need a third party library like newlib on your target (which is usually part of the compiler toolchain) and
correct TERM.METHOD settings in debugger. For more details, please refer to your Processor
Architecture Manual.

See also

■ TERM ■ TERM.view

▲ ’Release Information’ in ’Legacy Release History’

TERM.HARDCOPY Print terminal window contents

Opens the Print dialog of the operating system. From the Print dialog, you can select a printer to make a
hardcopy of the terminal window contents or print the terminal window contents to file.

See also

■ TERM ■ TERM.view

Format: TERM.GATE [<channel>]
TERM.GATE [<addresses>] (deprecated)

<channel>: #<number>

<addresses>: [<address_out>] [<address_in>]

Format: TERM.HARDCOPY [<channel>]

<channel>: #<number>
General Commands Reference Guide T | 86©1989-2024 Lauterbach

TERM.HEAPINFO Define memory heap parameters

Defines the memory heap and stack locations returned by the ARM compatible semihosting calls. Only
relevant when ARM compatible semihosting is used.

Please note that the heap grows toward higher memory addresses (heap_base < heap_limit) and the stack
grows towards lower memory addresses (stack_base > stack_limit). <heap_base> = 0 advises the
application to locate the heap at the top of the memory region.

See also

■ TERM ■ TERM.view

TERM.LocalEcho Enables/disables local echo for new terminal windows

Defines, if terminal windows, which are opened after the TERM.LocalEcho command with the TERM.view
or TERM.GATE command, will have a local echo or not.
Terminal windows with enabled local echo also show the transmitted characters in addition to the received
characters.

See also

■ TERM ■ TERM.view

Format: TERM.HEAPINFO [<heap_base>] [<heap_limit>] [<stack_base>]
 [<stack_limit>]

Format: TERM.LocalEcho [<channel>] [ON | OFF]

<channel>: #<number>
General Commands Reference Guide T | 87©1989-2024 Lauterbach

TERM.METHOD Select terminal protocol
[Examples]

Format: TERM.METHOD [<channel>] <method>
TERM.Protocol (deprecated)

<channel>: #<number>

<method>: SingleE [<output>] [<input>] [/<option>]
BufferE [<output>] [<input>] [/<option>]
SingleC <pc> [<output>] [<input>] [/<option>]
BufferC <pc> [<output>] [<input>] [/<option>]
SingleS [<output>] [<input>] [/<option>]
BufferS [<output>] [<input>] [/<option>]
COM [<name>] [<baudrate>] [<bits>] [<parity>] [<stopbits>] [<handshake>] /
[RTSDISabled | DTRDISabled]
TCP <host> [<port>]
PIPE

DCC [/<option>]
DCC3 [/<option>]
DCC4A [/<option>]
DCC4B [/<option>]

SIM

CCIO
BRK1_14 [<address>] [/<option>]
ARMSWI [<address>] [/<option>]
RISCVSWI [/<option>]
CHORUS

ESI
SERIAL

<input>:
<output>:

<address>

<name>: Windows:
COM1 | COM2 | … | COM9
alternatively (if COMx fails) and for ports >9:
\\.\COM1 | \\.\COM2 | … | \\.\COM10 | \\.\COM11 | …

Linux: path to device, e.g.
/dev/ttyS0 | /dev/ttyS1 | /dev/ttyUSB0 | …

<bits>: 5 | 6 | 7 | 8
General Commands Reference Guide T | 88©1989-2024 Lauterbach

Defines how data is exchanged between the target application and the debugger. On some targets
additional processor specific modes may be available.

<parity>: NONE | EVEN | ODD | MARK | SPACE

<stopbits>: 1STOP | 2STOP

<handshake>: NONE | RTSCTS | DTRDSR | XONXOFF

NOTE: This command does not change the settings of already opened terminal windows.
Therefore, if you want to change parameters of an existing one, close it and reopen
it again.

<methods> Description

SingleE Single characters using real time access (e.g. Dualport)

BufferE Buffered transfer using real time access

SingleS Single characters using regular access at spot points.

BufferS Buffered transfer using regular access at spot points.

BRK1_14
Only available for Xtensa

This is a CPU specific option for XTENSA. For more information, see
“CPU specific TERM.METHOD Command” in XTENSA Debugger, page
64 (debugger_xtensa.pdf).

SingleC Single characters, accessed when CPU is stopped.
The additional parameter the PC location of the breakpoint that stops the
CPU for communication.

BufferC Buffered transfer, accessed when CPU is stopped.

ESI Use the ESI for communication. This protocol can also be used when a
BDM/JTAG debugger is used together with an ESI (EPROM simulator).

SERIAL Use the serial (or ethernet) interface of the debug monitor to exchange
data.

DCC Use the DCC port of the JTAG interface (only on some architectures)

DCC3 Same as DCC, but transfer up to 3 characters at once.

DCC4A Same as DCC, but transfer up to 4 ascii characters at once.

DCC4B Same as DCC, but transfer always 4 characters at once.

ARMSWI ARM compatible SWI bases semihosting via SWI breakpoint.

RISCVSWI RISC-V compatible semihosting via semihosting trap instruction sequence
(slli, ebreak, srai).
General Commands Reference Guide T | 89©1989-2024 Lauterbach

Examples:

See also

■ TERM ■ TERM.view

▲ ’Release Information’ in ’Legacy Release History’

SIM Terminal via simulator API.

COM Serial interface of the host.

TCP Routes terminal input/output to TCP port. See example below.

Parameters Description

<output>
<input>

Addresses of the output (target->debugger) and input (debugger->target)
buffers for memory based terminals.

<host> Host name or IP address of TCP terminal (TELNET)

<port> TCP terminal port number (default: 23)

RTSDISabled If RTS is not used for handshaking (<handshake>!=RTSCTS), by default
RTS is permanently enabled. Use this option to permanently disable RTS.

DTRDISabled If DTR is not used for handshaking (<handshake>!=DTRDSR), by default
DTR is permanently enabled. Use this option to permanently disable DTR.

TERM.METHOD BufferE Var.ADDRESS("messagebufferout") \
Var.ADDRESS("messagebufferin")

TERM.METHOD #1 BufferE Var.ADDRESS("messagebufferout") \
Var.ADDRESS("messagebufferin")

; Route terminal input/output from /dev/ttyUSB0 on LAB-PC with baudrate
; 115200 to TCP port 8765
$RemoteMachine> socat TCP-LISTEN:8765,fork,reuseaddr FILE:/dev/ttyUSB0\
,b115200,raw,echo=0
TERM.METHOD TCP LAB-PC 8765.
TERM

<methods> Description
General Commands Reference Guide T | 90©1989-2024 Lauterbach

TERM.METHOD2 Select additional terminal protocol
[Examples]

Defines an additional method for the target to send data to the terminal.

Format: TERM.METHOD2 [<channel>] <method>

<channel>: #<number>

<method>: OFF
ITM <itm ch>

<method> Description

OFF Default setting. No additional method is configured.

ITM Use data written to an ITM stimuli channel by the target. An ITM is present
on many Arm Cortex-M chips. This requires that the ITM trace is captured
via the CAnalyzer in STREAM or PIPE mode.
Please refer to the demo PRACTICE script and application found at
~~/demo/arm/hardware/kinetis/kinetis_k/k60/itm_term_printf/.

Parameters Description

<itm ch> ITM channel where terminal data is written to by the application. On most
Cortex-M systems, channel 0 captures the data written to address
0xE0000000, channel 1 captures the data written to address 0xE0000004,
and so on.
General Commands Reference Guide T | 91©1989-2024 Lauterbach

Example: This example assumes that an external trace (either via SWV or parallel trace) is already set
up.

See also

■ TERM ■ TERM.view

; Set up a primary method for the terminal. This example can be used
; even if DCC is not available.
TERM.RESet #2
TERM.METHOD #2 DCC
TERM.Mode #2 STRING
TERM.SIZE #2 80. 25. 200.

; Set up the ITM method and show the terminal window.
TERM.METHOD2 #2 ITM 0.
TERM.view #2

; Set up and arm the trace. Due to a limitation of the Cortex-M
; infrastructure, the target must be running to generate proper
; synchronization packets on the trace port.
CAnalyzer.Mode PIPE ; STREAM would also work
CAnalyzer.AutoArm ON
Go.direct

; Write some text to the stimulus channel. This is only for
; demonstration purposes and should normally be done by the target
; application.
Data.Set E:0xE0000E00 %LE %Long 0xFFFFFFFF ; Enable stimuli channels
Data.Set E:0xE0000000 %LE %Long 0x6C6C6548 ; "Hell"
Data.Set E:0xE0000000 %LE %Long 0x57202C6F ; "o, W"
Data.Set E:0xE0000000 %LE %Long 0x646C726F ; "orld"
Data.Set E:0xE0000000 %LE %Word 0x2121 ; "!!"
Data.Set E:0xE0000000 %LE %Byte 0x0A ; "\n"
General Commands Reference Guide T | 92©1989-2024 Lauterbach

TERM.Mode Define terminal type

Defines the terminal type used for new terminal windows.

See also

■ TERM ■ TERM.view

Format: TERM.Mode [<channel>] [<mode>]

<channel>: #<number>

<mode>: ASCII | UTF8 | STRING | STRING-UTF8 | RAW | HEX | VT100 | VT-UTF8

<option>: CORE <corenumber>

ASCII Terminal behaves like a typewriter.
CR and LF are evaluated.

UTF8 Support UTF-8 encoded characters.
Terminal behaves like a typewriter.
CR and LF are evaluated.

STRING Terminal interprets data as single line strings.
Needed for some Printf libraries.
CR is ignored. LF is evaluated.

STRING-UTF8 Support UTF-8 encoded characters.
Terminal interprets data as single line strings.
Needed for some Printf libraries.
CR is ignored. LF is evaluated.

RAW Terminal shows the incoming data like an HEX/ASCII dump.
E.g. Spaces, Tabs, CRs, LFs are displayed as special characters only.
CR is ignored. LF is evaluated.

HEX Terminal shows the incoming bytes as HEX values.
CR and LF are ignored.

VT100 Terminal interprets the VT100 protocol.
Color Codes are evaluated e.g. Linux bash like console.
CR and LF are evaluated.

VT-UTF8 Support UTF-8 encoded characters.
Terminal interprets the VT100 protocol.
Color Codes are evaluated e.g. Linux bash like console.
CR and LF are evaluated.
General Commands Reference Guide T | 93©1989-2024 Lauterbach

▲ ’Release Information’ in ’Legacy Release History’

TERM.Out Send data to virtual terminal

Sends characters to a terminal. Can be used to control the terminal through a PRACTICE script (*.cmm) or
to input non-printable characters from the command line.

Example:

See also

■ TERM ■ TERM.view

TERM.OutBREAK Send serial break

Sends serial break to terminal.

See also

■ TERM ■ TERM.view

Format: TERM.Out [<channel>] <string> …
TERM.Out [<address_in>] <string> … (deprecated)

<channel>: #<number>

;configure u-boot through serial terminal
TERM.METHOD #1 COM COM1 115200. 8 NONE 1STOP NONE
TERM.view #1
TERM.Out #1 10. ;send a single line feed
TERM.Out #1 "setenv bootcmd bootm 0xfe000000 0xfe800000 0xffe00000" 10.
TERM.Out #1 "setenv bootargs root=/dev/ram console=ttyS0,115200" 10.
TERM.Out #1 "saveenv" 10.

Format: TERM.OutBREAK [<channel>]

<channel>: #<number>
General Commands Reference Guide T | 94©1989-2024 Lauterbach

TERM.PIPE Connect terminal to named pipe

Connects the terminal to a bidirectional named pipe.

See also

■ TERM ■ TERM.view

TERM.PipeREAD Connect terminal input to named pipe

Connects the terminal to a pipe which sends data to the host.

See also

■ TERM ■ TERM.view

TERM.PipeWRITE Connect terminal output to named pipe

Connects the terminal to a pipe which receives data from the host.

See also

■ TERM ■ TERM.view

Format: TERM.PIPE [<channel>] <pipename>
TERM.PIPE [<address_out>] [<address_in>] <pipename> (deprecated)

<channel>: #<number>

Format: TERM.PipeREAD [<channel>] <file>
TERM.PipeREAD [<address_in>] <file> (deprecated)

<channel>: #<number>

Format: TERM.PipeWRITE [<channel>] <file>
TERM.PipeWRITE [<output>] <file> (deprecated)

<channel>: #<number>
General Commands Reference Guide T | 95©1989-2024 Lauterbach

TERM.PULSE Enable pulse generator for transfers

Issues a pulse on the PODBUS trigger after each transfer. This pulse may be used to trigger an interrupt on
the target system to trigger interrupt based communication.

See also

■ TERM ■ TERM.view

Format: TERM.PULSE [<channel>] [ON | OFF]

<channel>: #<number>
General Commands Reference Guide T | 96©1989-2024 Lauterbach

TERM.READ Get terminal input from file

The contents of the file are send to the terminal, defined by the optional address. The terminal must already
exist to use this command. The TERM.CLOSE command closes the input file after or during transfer.

Example:

See also

■ TERM ■ TERM.view

TERM.RESet Reset terminal parameters

Closes the I/O redirection files and set all parameters to default values.

See also

■ TERM ■ TERM.view

TERM.SCROLL Enable automatic scrolling for terminal window

Default: OFF.

Format: TERM.READ [<channel>] <file>
TERM.READ [<address_in>] <file> (deprecated)

<channel>: #<number>

TERM.READ #1 key_input.in

Format: TERM.RESet [<channel>]

<channel>: #<number>

Format: TERM.SCROLL [<channel>] [ON | OFF]

<channel>: #<number>
General Commands Reference Guide T | 97©1989-2024 Lauterbach

Enables or disables automatic scrolling. With automatic scrolling enabled the visible window will follow the
terminal cursor.

To enable the display of the scroll bar within the TERM.view window, it is necessary to configure
TERM.SIZE accordingly.

See also

■ TERM ■ TERM.view

TERM.SIZE Define size of terminal window

Defines the size of the virtual terminal in lines and columns.

See also

■ TERM ■ TERM.view

▲ ’Release Information’ in ’Legacy Release History’

TERM.STDIN Get terminal input from file

The contents of the file are send to the terminal, defined by the optional address. The terminal must already
exist to use this command. The TERM.CLOSE command closes the input file after or during transfer. An
EOF is returned, for some semihosting interfaces, when the file is transferred.

See also

■ TERM ■ TERM.view

Format: TERM.SIZE [<channel>] [<columns>] [<lines>] [<backlog_size>]

<channel>: #<number>

<backlog_size> This value defines the lines of the backlog buffer.
The backlog is updated whenever a line scrolls out of the “real” part of the
TERM.view window.

Format: TERM.STDIN [<channel>] <file>

<channel>: #<number>
General Commands Reference Guide T | 98©1989-2024 Lauterbach

TERM.TCP Route terminal input/output to TCP port

Routes terminal input/output to TCP port.

See also

■ TERM ■ TERM.view

TERM.TELNET Open TELNET terminal window

Opens the terminal emulation window for TELNET.

Example:

See also

■ TERM ■ TERM.view

▲ ’Release Information’ in ’Legacy Release History’

Format: TERM.TCP [<channel>] <port>

<channel>: #<number>

Format: TERM.TELNET [<channel>]

<channel>: #<number>

TERM.METHOD TCP 10.2.23.140 ;using default port 23
TERM.MODE VT100
TERM.TELNET
General Commands Reference Guide T | 99©1989-2024 Lauterbach

TERM.TRIGGER Trigger on string in terminal window
[Example]

Sets a trigger for the occurrence of a specific string in the terminal window. The function
TERM.TRIGGERED() returns if the trigger has occurred or not.

Example: A typical use case might be to automatize the boot process. The following script stops the boot
process after the string “Hit any key to stop autoboot” appears in the terminal window.

Example terminal output:

Format: TERM.TRIGGER [<channel>] <message_string>
TERM.TRIGGER [<address_out>] <string> (deprecated)

<channel>: #<number>

<channel> Handle to refer to a terminal. A new handle can be created with
TERM.METHOD.

<address_out> Only required for memory-based data exchange (SingleE, BufferE,
SingleS, BufferS).

<message_string> Case sensitive.
The message string or substring you want the TERM.TRIGGER() function
to find in the TERM.view or TERM.GATE window.

U-Boot <year>.<month>
CPU: example CPU
Board: example Board
Boot: SD-Card
DRAM: 2 GiB
MMC: SDHC: 0
In: serial
Out: serial
Err: serial
Normal Boot
Hit any key to stop autoboot: 3
General Commands Reference Guide T | 100©1989-2024 Lauterbach

Script that waits for the message "Hit any key" and boots the target:

See also

■ TERM ■ TERM.view ❏ TERM.TRIGGERED() ❏ TIMEOUT()

;create terminal configuration and assign it to the handle #1
TERM.METHOD #1 COM COM3 115200. 8 NONE 1STOP NONE

;create the terminal and open the TERM.view window
TERM.view #1

; STATE.RUN() -> STOPPED
Break

; wait for trigger with timeout, press ENTER
TERM.TRIGGER #1 "Hit any key"
; start CPU
Go
SCREEN.WAIT TERM.TRIGGERED(#1) 10.s
IF !TIMEOUT()
(
 TERM.OUT #1 0xA
 WAIT 0.1s
 TERM.OUT #1 "setenv bootargs"
)
ELSE
(
 ; error handler
)

General Commands Reference Guide T | 101©1989-2024 Lauterbach

TERM.view Terminal display

Opens the terminal emulation window. The protocol of the terminal is defined through TERM.METHOD. For
protocols based on memory based data exchange (SingleE, BufferE, SingleS, BufferS), the
communication buffer addresses can either be specified with TERM.METHOD or directly with TERM.view.

Example:

See also

■ TERM ■ TERM.CLEAR ■ TERM.CLOSE ■ TERM.CMDLINE
■ TERM.GATE ■ TERM.HARDCOPY ■ TERM.HEAPINFO ■ TERM.LocalEcho
■ TERM.METHOD ■ TERM.METHOD2 ■ TERM.Mode ■ TERM.Out
■ TERM.OutBREAK ■ TERM.PIPE ■ TERM.PipeREAD ■ TERM.PipeWRITE
■ TERM.PULSE ■ TERM.READ ■ TERM.RESet ■ TERM.SCROLL
■ TERM.SIZE ■ TERM.STDIN ■ TERM.TCP ■ TERM.TELNET
■ TERM.TRIGGER ■ TERM.WRITE ❏ TERM.LINE()

▲ ’Release Information’ in ’Legacy Release History’

Format: TERM.view [<channel>]
TERM.view [<address_out>] [<address_in>] (deprecated)

<channel>: #<number>

; see terminal source code in
; ~~/demo/etc/terminal/t32term/t32term_memory.c
TERM.METHOD #1 BufferE E:0x00000100 E:0x00000200
TERM.MODE #1 VT100
TERM.view #1

; Hint: the pre-commands WinExt and WinResist create a window that is
; (a) “external” to the TRACE32 PowerView main window and that is
; (b) “resistant” to the WinCLEAR command.
WinExt.WinResist.TERM.view #1
General Commands Reference Guide T | 102©1989-2024 Lauterbach

TERM.WRITE Write terminal output to file

The output sent from the target to the terminal emulation window is written to the specified file. The terminal
emulation window must be opened before using this command. The TERM.CLOSE command closes the
output file after or during transfer.

Example:

See also

■ TERM ■ TERM.view

▲ ’Release Information’ in ’Legacy Release History’

Format: TERM.WRITE [<channel>] <file>
TERM.WRITE [<address_out>] <file> (deprecated)

<channel>: #<number>

TERM.WRITE #1 term_out.lst
General Commands Reference Guide T | 103©1989-2024 Lauterbach

TPIU

TPIU Trace Port Interface Unit (TPIU)

See also

■ TPIU.CLEAR ■ TPIU.IGNOREZEROS ■ TPIU.NOFLUSH ■ TPIU.PortClock
■ TPIU.PortMode ■ TPIU.PortSize ■ TPIU.RefClock ■ TPIU.Register
■ TPIU.RESet ■ TPIU.state ■ TPIU.SWVPrescaler ■ TPIU.SWVZEROS
■ TPIU.SyncPeriod

▲ ’TPIU Functions’ in ’General Function Reference’

Overview TPIU

The TPIU command group enables you to configure and control the Trace Port Interface Unit (TPIU) of an
ARM processor system or a non-ARM processor system using the ARM CoreSight trace. The TPIU is a
trace sink which sends the trace data off-chip for capturing by a trace tool.

The TPIU typically outputs trace data via a parallel trace interface consisting of up to 32 trace data signals, a
trace clock and optionally a trace control signal (indicating idle).

Some chip designs use these signals internally as an input to a High Speed Serial Trace Port (HSSTP)
which converts the parallel data into a serial Xilinx-Aurora-based protocol for sending the serial bit stream
off-chip on differential lanes.

A variant of the TPIU is the Serial Wire Output (SWO) which outputs trace data of the Serial Wire Viewer
(SWV) via a single signal line. This output has a much lower bandwidth, is typically used for system trace,
and is typically found on Cortex-M based designs. This variant does normally not use a dedicated trace
connector. Instead it re-uses the TDO pin of a debug connector.

For TPIU setup, use the TRACE32 command line, a PRACTICE script (*.cmm), or the TPIU.state window.
General Commands Reference Guide T | 104©1989-2024 Lauterbach

TPIU.CLEAR Re-write the TPIU registers

Re-writes the TPIU registers on the target with the settings displayed on the TPIU.state window.

See also

■ TPIU ■ TPIU.state

TPIU.IGNOREZEROS Workaround for a special chip

See also

■ TPIU ■ TPIU.state

TPIU.NOFLUSH Workaround for a chip bug affecting TPIU flush

Default: OFF.

Activates a workaround for a chip bug which caused serious issues when the trace tool caused a TPIU flush
at the end of the trace recording.

See also

■ TPIU ■ TPIU.state

Format: TPIU.CLEAR

Format: TPIU.IGNOREZEROS [ON | OFF]

Format: TPIU.NOFLUSH [ON | OFF]
General Commands Reference Guide T | 105©1989-2024 Lauterbach

TPIU.PortClock Inform debugger about HSSTP trace frequency

Default: 1500Mbps

Informs the debugger about the HSSTP trace frequency to improve the accuracy of the timestamp
calculation.

Example:

See also

■ TPIU ■ TPIU.state

Format: TPIU.PortClock <frequency>
ETM.PortClock <baud_rate> (deprecated)
ITM.PortClock <frequency> (deprecated)

TPIU.PortClock 3125Mbps
TPIU.PortClock 3125M ; M is the short form of Mbps
General Commands Reference Guide T | 106©1989-2024 Lauterbach

TPIU.PortMode Select the operation mode of the TPIU

Selects the operation mode of the TPIU.

Example:

Format: TPIU.PortMode <mode>
ITM.PortMode <option> (deprecated)

<mode>: Bypass | Wrapped | Continuous | NRZ

Modes for Parallel Trace and HSSTP

The TPIU can optionally output a trace control signal (TRACECTL) which indicates idle cycles of the
trace port not worth to record. The TPIU formatter can be used to add the idle information to the
trace packets. The formatter needs to be used in case of multiple trace sources to add the ID of the
trace source.

Bypass TRACECTL pin is available, formatter is not used.

Wrapped TRACECTL pin is available, formatter is used.

Continuous TRACECTL pin is not available, formatter is used.

Modes for Serial Wire Output

TRACE32 supports the UART/NRZ (NRZ = Non-Return-to-Zero) coding of the Serial Wire Output
but not yet the Manchester coding. The bitrate of this asynchronous interface is derived by dividing
the CPU frequency.

NRZ NRZ coding at CPU clock divided by <divisor> set up by:
TPIU.SWVPrescaler <divisor> (default: 1)

NRZ/2 (deprecated)
See example below.

NRZ coding at half of the CPU clock speed.

NRZ/3 (deprecated)
See example below.

NRZ coding at a third of the CPU clock speed.

NRZ/4 (deprecated)
See example below.

NRZ coding at a quarter of the CPU clock speed.

;(deprecated)
TPIU.PortMode NRZ/4

;please use these two commands instead of NRZ/<divisor>
TPIU.PortMode NRZ
TPIU.SWVPrescaler 4.
General Commands Reference Guide T | 107©1989-2024 Lauterbach

See also

■ TPIU ■ TPIU.state
General Commands Reference Guide T | 108©1989-2024 Lauterbach

TPIU.PortSize Select interface type and port size of the TPIU

Specifies the interface type and port size of the TPIU.

See also

■ TPIU ■ TPIU.state ■ <trace>.PortSize

Format: TPIU.PortSize <size>

<size>: 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 16 | 18 | 20 | 24 | 32 | 8A | 12A | 16A |
16E | 1Lane | 2Lane | 3Lane | 4Lane | 5Lane | 6Lane | SWV

Size in case of Parallel Trace:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12,
16, 18, 20, 24, 32

Number of trace data signals. TRACE32 supports the listed sizes. A
TPIU can support all sizes from 1 to 32 or only a few out of 1 to 32.

8A, 12A, 16A, 16E Variants of “8”, “12”, “16” in case of SoC from Texas Instruments.
The selected size is the same, but additionally the Debug Resource
Manager (DRM) gets configured which maps trace signals to output
pins:
• 8A: TRACEDATA[0:7] -> EMU[4:11]
• 12A: TRACEDATA[0:11] -> EMU[4:15]
• 16A: TRACEDATA[0:15] -> EMU[4:19]
• 16E: TRACEDATA[0:1] -> EMU[0:1], TRACEDATA[2:15] ->

EMU[4:17]

Size in case of HSSTP:

1Lane, 2Lane, 3Lane,
4Lane, 5Lane, 6Lane

Number of used differential lanes.

Size in case of Serial Wire Viewer (SWV) / Serial Wire Output (SWO):

SWV Selects SWV/SWO which uses only one signal.
General Commands Reference Guide T | 109©1989-2024 Lauterbach

TPIU.RefClock Set up reference clock for HSSTP

Defines the reference clock frequency the serial preprocessor outputs to the target. Defaults depending on
architecture:

• PowerPC: bit clock frequency

• TriCore and RH850: 100MHz

• ARM: bit clock frequency

See also

■ TPIU ■ TPIU.state

Format: TPIU.RefClock [/<option>]

<option>: OFF | OSC | 1/1 | 1/2 | 1/20 | 1/25 | 1/30 | 1/40 | 1/50

OFF TRACE32 does not send any reference clock to the target.

OSC An asynchronous oscillator will be enabled. Its frequency is architecture
dependent.

1/<x> A synchronous clock source will be enabled. Its dividers generate a
reference clock as a fraction of the bit clock (lane speed), e.g. 100MHz at
5Gbps with divider 1/50. Once a divider is selected, the reference clock will
automatically change with the lane speed.
General Commands Reference Guide T | 110©1989-2024 Lauterbach

TPIU.Register Display TPIU registers

Opens the TPIU.Register window, displaying the TPIU registers and the registers of other trace related
modules.

See also

■ TPIU ■ TPIU.state

TPIU.RESet Reset TPIU settings

Resets the settings in the TPIU.state window to their default values and re-configures the TPIU registers on
the target.

See also

■ TPIU ■ TPIU.state

Format: TPIU.Register [/<option>]

<option>: SpotLight | DualPort | Track | AlternatingBackGround
CORE <core_number>

<option> For a description of the options, see PER.view.

Format: TPIU.RESet
General Commands Reference Guide T | 111©1989-2024 Lauterbach

TPIU.state Display TPIU configuration window

Displays the TPIU.state configuration window.

See also

■ TPIU ■ TPIU.CLEAR ■ TPIU.IGNOREZEROS ■ TPIU.NOFLUSH
■ TPIU.PortClock ■ TPIU.PortMode ■ TPIU.PortSize ■ TPIU.RefClock
■ TPIU.Register ■ TPIU.RESet ■ TPIU.SWVPrescaler ■ TPIU.SWVZEROS
■ TPIU.SyncPeriod

TPIU.SWVPrescaler Set up SWV prescaler

Default: 1.

In case of TPIU.PortMode NRZ, the bitrate of the Serial Wire Viewer / Serial Wire Output is derived by
dividing the CPU frequency. The command TPIU.SWVPrescaler sets up the divisor, which can range
from 0x1 to 0x1000 (1. to 4096.).

Format: TPIU.state

A For descriptions of the commands in the TPIU.state window, please refer to the TPIU.* commands in
this chapter. Example: For information about the SyncPeriod box, see TPIU.SyncPeriod.

Exceptions:
• The setting TPIU.ON and TPIU.OFF is read-only. The setting depends on the selected trace

mode (Analyzer, Onchip, ...).
• The Trace button opens the main trace control window (Trace.state)
• The List button the main trace list window (Trace.List).

Format: TPIU.SWVPrescaler <divisor>

A

General Commands Reference Guide T | 112©1989-2024 Lauterbach

Examples:

See also

■ TPIU ■ TPIU.state

TPIU.SWVZEROS Workaround for a chip bug

Default: OFF.

Activates a workaround for a chip bug affecting SWV/SWO data of a certain device.

See also

■ TPIU ■ TPIU.state

TPIU.PortMode NRZ
TPIU.SWVPrescaler 7. ; NRZ coding at a 7th of the CPU clock

TPIU.PortMode NRZ
TPIU.SWVPrescaler 10. ; NRZ coding at a 10th of the CPU clock

Format: TPIU.SWVZEROS [ON | OFF]
General Commands Reference Guide T | 113©1989-2024 Lauterbach

TPIU.SyncPeriod Set period of sync packet injection

Sets the number of regular TPIU packets which will be output to the trace stream between two
synchronization packets.

What are synchronization packets? Synchronization packets are periodic starting points in the trace
stream, which allow the recorded flow trace data to be decoded. The result can then be visualized in the
<trace>.* windows of TRACE32, e.g. the Trace.List or the Trace.PROfileChart.sYmbol window. A
visualization of the flow trace data is usually not possible without synchronization packets in the trace
stream.

In this example, the number of regular packets is 1024.

See also

■ TPIU ■ TPIU.state

Format: TPIU.SyncPeriod [<packets>]

<packets> If omitted, then the default number of regular packets between
synchronization packets is chosen by the debugger or the chip.

 RP ... RP SP RP ... RP SP RP ... RP SP RP ...

RP = regular packet
SP = synchronization packet

1024 10241024
General Commands Reference Guide T | 114©1989-2024 Lauterbach

TPU

TPU.BASE Base address

See command TPU.BASE in 'TPU Debugger' (tpu.pdf, page 5).

TPU.Break Break TPU

See command TPU.Break in 'TPU Debugger' (tpu.pdf, page 11).

TPU.Dump Memory display

See command TPU.Dump in 'TPU Debugger' (tpu.pdf, page 9).

TPU.Go Start TPU

See command TPU.Go in 'TPU Debugger' (tpu.pdf, page 12).

TPU.List View microcode

See command TPU.List in 'TPU Debugger' (tpu.pdf, page 11).

TPU.ListEntry Table display

See command TPU.ListEntry in 'TPU Debugger' (tpu.pdf, page 10).

TPU.Register.ALL Register operation mode

See command TPU.Register.ALL in 'TPU Debugger' (tpu.pdf, page 6).
General Commands Reference Guide T | 115©1989-2024 Lauterbach

TPU.Register.NEWSTEP New debugging mode

See command TPU.Register.NEWSTEP in 'TPU Debugger' (tpu.pdf, page 7).

TPU.Register.Set Register modification

See command TPU.Register.Set in 'TPU Debugger' (tpu.pdf, page 9).

TPU.Register.view Register display

See command TPU.Register.view in 'TPU Debugger' (tpu.pdf, page 8).

TPU.RESet Disable TPU debugger

See command TPU.RESet in 'TPU Debugger' (tpu.pdf, page 13).

TPU.SCAN Scannig TPU

See command TPU.SCAN in 'TPU Debugger' (tpu.pdf, page 5).

TPU.SELect Select TPU for debugging

See command TPU.SELect in 'TPU Debugger' (tpu.pdf, page 12).

TPU.Step Single step TPU

See command TPU.Step in 'TPU Debugger' (tpu.pdf, page 13).

TPU.view View TPU channels

See command TPU.view in 'TPU Debugger' (tpu.pdf, page 6).
General Commands Reference Guide T | 116©1989-2024 Lauterbach

Trace

Trace Trace configuration and display

See also

■ <trace>.CustomTrace ■ <trace>.CustomTraceLoad ■ <trace>.ListVar ■ <trace>.MERGEFILE
■ <trace>.PipeWRITE ■ <trace>.SPY ■ <trace>.TRIGGER ■ <trace>.TSELect
■ Analyzer.TOut ■ Analyzer.TraceCLOCK ■ Integrator.CSELect ■ Integrator.TPreDelay
■ Integrator.TSYNC ■ Probe.TDelay

▲ ’Trace Functions’ in ’General Function Reference’

Format: Trace | <trace>

<trace>: <trace_method> | <trace_source><trace_method>

Trace For information, see section Overview Trace in this command group
description.

<trace> For information, see subsection About the Command Placeholder
<trace> in this command group description

<trace_method> For information, see subsection Replacing <trace> with a Trace Method -
Examples in this command group description.

<trace_source><trace
_method>

For information, see subsection Replacing <trace> with Trace Source and
Trace Method - Examples in this command group description.

NOTE: There is NO period between <trace_source><trace_method>.

This syntax convention is reserved for:
• Processing trace data from only one particular trace source, e.g. ITM.
• Processing trace data from more than one trace source, e.g. ITM and

HTM.
• Processing trace data from very special trace sources.
General Commands Reference Guide T | 117©1989-2024 Lauterbach

Overview Trace

The command Trace is a general command for trace configuration and trace display. It is available for all kind
of trace methods provided by TRACE32. The currently used trace method is displayed under METHOD in
the Trace.state window.

For descriptions of the trace methods, see Trace.METHOD.

In this section:

• About the Command Placeholder <trace>

• What to know about the TRACE32 default settings for Trace.METHOD

• Types of Replacements for <trace>

• Replacing <trace> with a Trace Method - Examples

• Replacing <trace> with a Trace Evaluation - Example

• Replacing <trace> with RTS for Real-time Profiling - Example

• Replacing <trace> with Trace Source and Trace Method - Examples

• How to access the trace sources in TRACE32

• List of <trace> Command Groups consisting of <trace_source><trace_method>

• Related Trace Command Groups
General Commands Reference Guide T | 118©1989-2024 Lauterbach

About the Command Placeholder <trace>

In the TRACE32 manuals, <trace> is used as a placeholder for all types of trace commands. As the name
placeholder implies, it cannot be used directly in the TRACE32 command line. As soon as you type
<trace>.List at the command line, you receive the error message “unknown command”. Consequently, you
need to replace <trace> with the correct trace command before the command line accepts your input.

What to know about the TRACE32 default settings for Trace.METHOD

The easiest way to replace <trace> with a correct command is to type Trace at the command line. The
meaning of Trace, e.g. in Trace.List, is then controlled by a sequence of TRACE32 default settings.

1. The TRACE32 hardware module connected to your target board determines the trace method.
And this trace method will be used for recording the trace data. In the header of the Trace.state
window, you can view the selected trace method.

TRACE32 determines the default trace method as follows:

- If the hardware module connected to your target board is a PowerTrace, then the Analyzer
trace method becomes the default setting for the 1st TRACE32 PowerView GUI. For the other
GUIs of an AMP configuration, the default setting is Trace.METHOD NONE.

- If a hardware module other than a PowerTrace is connected to your target board, TRACE32
adjusts the trace method accordingly. For the other GUIs of an AMP configuration, the default
setting is Trace.METHOD NONE.

- If the chip has an onchip trace sink, then the Onchip trace method becomes the default
setting for the 1st TRACE32 PowerView GUI.
However, if the onchip trace recording is not yet operational, then the trace method is set to
NONE. For the other GUIs of an AMP configuration, the default setting is Trace.METHOD
NONE.

- If the chip does not have an onchip trace sink, then the ART trace method becomes the
default setting.

- If TRACE32 runs in software-only mode as an instruction set simulator, then it is again the
Analyzer trace method that becomes the default setting.

2. The Analyzer trace method is designed to look for a specific trace source that generates the
program flow trace on the chip. For ARM chips, this trace source is called Embedded Trace
Macrocell (ETM). For other chips, the trace source can be NEXUS or a proprietary trace block.

3. All Trace commands refer to the selected trace method.

In the following first figure, the arrows illustrate the default settings used by the 1st TRACE32 PowerView
GUI.

The second figure shows the effects of the default setting Trace.METHOD NONE on all other TRACE32
PowerView GUIs of an AMP configuration.
General Commands Reference Guide T | 119©1989-2024 Lauterbach

1st TRACE32 PowerView GUI:

All other TRACE32 PowerView GUIs: How does a TRACE32 PowerView GUI indicate that the
Trace.METHOD is set to NONE?

A In the Trace.state window, NONE is selected as trace method.

B All other GUI controls in the Trace.state window are temporarily hidden. Their underlying Trace.*
commands cannot be successfully executed at the TRACE32 command line either. The only
command exceptions are Trace.METHOD and Trace.state.

C The state line displays a white X against a red background.

ETM* (...)

ITM HTM

Chip
PowerTrace hardware module

*ETM, ITM, and HTM
are the names of
<trace_sources> on a
chip.

A

B

C

General Commands Reference Guide T | 120©1989-2024 Lauterbach

Types of Replacements for <trace>

You can rely on the trace method that TRACE32 selects by default, but you can also select a trace method
other than the default. As soon as you have selected the trace method you want in the Trace.state window,
you can replace the placeholder <trace> with:

• Trace as explained in the previous section (Click here)

• The name of the trace method you have selected in the Trace.state window (Click here)

• Trace evaluation commands (Click here)

• RTS, the command for real-time profiling (Click here)

• Names of trace sources immediately followed by the name of the trace methods (Click here)

Replacing <trace> with a Trace Method - Examples

You can replace <trace> with the name of the selected trace method. The trace method commands are
displayed in the Trace.state window:

• Onchip, Analyzer, CAnalyzer, , Integrator, Probe, IProbe, LA, ART, LOGGER, SNOOPer, FDX,

Example 1 for the trace method SNOOPer:

Example 2 for the trace method LOGGER:

Trace.state ;select the trace method SNOOPer for recording
Trace.METHOD SNOOPer ;trace data.
;<configuration>

;trace data is recorded using the commands Go, WAIT, Break

Trace.List ;display the trace data recorded with SNOOPer
 ;as a trace listing.
SNOOPer.List ;this is the equivalent and explicit command.

Trace.state ;select the trace method LOGGER for recording
Trace.METHOD LOGGER ;trace data.
;<configuration>

;trace data is recorded using the commands Go, WAIT, Break

Trace.List ;display the trace data recorded with LOGGER
 ;as a trace listing.
LOGGER.List ;this is the equivalent and explicit command.
General Commands Reference Guide T | 121©1989-2024 Lauterbach

Replacing <trace> with a Trace Evaluation - Example

For trace evaluations, you can replace <trace> with a trace evaluation command; the name of the trace
method is omitted.

The trace evaluation commands are accessible via the TRACE32 softkey bar:

• COVerage, ISTATistic, MIPS, CTS, ETA, BMC

Example:

Trace.state ;select the trace method Analyzer for recording
Trace.METHOD Analyzer ;trace data.
;<configuration>

;trace data is recorded using the commands Go, WAIT, Break

COVerage.List ;<trace> is just replaced with the trace
 ;evaluation command, since the trace method
 ;Analyzer is defined above anyway.
General Commands Reference Guide T | 122©1989-2024 Lauterbach

Replacing <trace> with RTS for Real-time Profiling - Example

For real-time profiling, you can replace the placeholder <trace> with RTS.

The RTS command is accessible via the TRACE32 softkey bar:

Example:

Trace.state ;select the trace method Analyzer for
Trace.METHOD Analyzer ;recording trace data.
;<configuration>

RTS.state
RTS.ON
;<configuration>

Go ;processes the trace data being recorded from
 ;the target while the target is running.

ISTATistic.ListModule ;ISTATistic windows display real-time
 ;trace data as long as RTS is switched ON
 ;(RTS.ON)
General Commands Reference Guide T | 123©1989-2024 Lauterbach

Replacing <trace> with Trace Source and Trace Method - Examples

As stated in the blue Format table, the placeholder <trace> can be replaced with trace commands consisting
of <trace_source> and <trace_method>.

These <trace> command groups are accessible via the TRACE32 softkey bar and include for example:

• CoreSightTrace, ETMTrace, ETMAnalyzer, STMAnalyzer, CoreSightCAnalyzer, …

• For an overview, see List of <trace> Command Groups consisting of
<trace_source><trace_method>.

Using these <trace> command groups, you can display trace data recorded from one or more trace sources.

Example for displaying trace data from one trace source: This script assumes that the CoreSight
components of the chip output their trace data to the same trace sink.

Trace.state ;select the trace method Analyzer for recording
Trace.METHOD Analyzer ;trace data.
;<configuration>

ETM.ON ;switch on the trace source from which you want
;<configuration> ;to record trace data, here the ETM.

;trace data is recorded using the commands Go, WAIT, Break

Trace.List ;display the ETM trace data recorded with the
 ;trace method Analyzer as a trace listing.
Analyzer.List ;this is the equivalent and explicit command.

 <trace_source> <trace_method>

 <trace>

+ HTM Analyzer

 HTMAnalyzer

+

Rule Example
General Commands Reference Guide T | 124©1989-2024 Lauterbach

Example for displaying trace data from two trace sources: This script assumes that the CoreSight
components of the chip output their trace data to the same trace sink.

Trace.state ;select the trace method Analyzer for recording
Trace.METHOD Analyzer ;trace data.
;<configuration>

ETM.ON ;switch the 1st trace source ETM on.
;<configuration>

HTM.ON ;switch the 2nd trace source HTM on.
;<configuration>

;trace data is recorded using the commands Go, WAIT, Break

Trace.List ;display the ETM trace data.
HTMTrace.List ;display the HTM trace data.
General Commands Reference Guide T | 125©1989-2024 Lauterbach

How to access the trace sources in TRACE32

As you have seen in the previous sections, the Trace.state window is the starting point for configuring a
trace recording and recording the trace data: It provides an overview of the trace methods [A], and it
dynamically adjusts to the trace method you have selected [B].

In addition, the Trace.state window displays buttons for each trace source found on the chip [C]. Clicking a
button lets you access a <trace_source>.state window, where you can configure the selected trace source
directly in TRACE32.

Example: TRACE32 has found has three trace sources on a QorIQ chip, including a NEXUS trace source
[C]. Click the NEXUS button to open the NEXUS.state window [D]. You can now configure the NEXUS trace
source.

C

B

D

A

General Commands Reference Guide T | 126©1989-2024 Lauterbach

List of <trace> Command Groups consisting of <trace_source><trace_method>

Trace methods can be combined with a trace source are:

• Trace: method-independent analysis

• Analyzer: analyze information recorded by TRACE32 PowerTrace

• CAnalyzer: analyze information recorded by Compact Analyzer (e.g. CombiProbe, µTrace
(MicroTrace))

• HAnalyzer: analyze information recorded by the Host Analyzer

• Onchip / Onchip2: analyze information recorded in target onchip memory / second onchip
memory

• LA: analyze information recorded from binary source

Not all trace sources can be combined with these trace methods.The table below shows all supported
combinations.

<trace_source> Supported <trace_source><trace_method>
commands

AET
Advanced Triggering Trace
(C5000, C6000, C7000)

AETAnalyzer

CoreSight CoreSightTrace
CoreSightAnalyzer
CoreSightCAnalyzer
CoreSightHAnalyzer
CoreSightOnchip
CoreSightOnchip2
CoreSightLA

CMN
Coherent Mesh Network trace
(Arm/Cortex)

CMNTrace
CMNAnalyzer
CMNCAnalyzer
CMNHAnalyzer
CMNOnchip
CMNOnchip2
CMNLA

DDR
NEXUS DDR controller debug trace
(PowerPC QorIQ)
See “QorIQ Debugger and NEXUS
Trace” (debugger_ppcqoriq.pdf)

DDRTrace
DDRAnalyzer
DDROnchip
DDRLA

DQM
NEXUS Data Acquisition trace messages
(PowerPC QorIQ)
See “QorIQ Debugger and NEXUS
Trace” (debugger_ppcqoriq.pdf)

DQMTrace
DQMAnalyzer
DQMOnchip
DQMLA
General Commands Reference Guide T | 127©1989-2024 Lauterbach

DTM
Data Trace Module
(Arm/Cortex, ARC)

DTMAnalyzer
DTMCAnalyzer
DTMHAnalyzer
DTMLA
DTMOnchip
DTMTrace

ELA
Embedded Logic Analyzer
(Arm/Cortex)

ELATrace
ELAAnalyzer
ELACAnalyzer
ELAHAnalyzer
ELAOnchip
ELAOnchip2
ELALA

ETM
Embedded Trace Macrocell
(Arm/Cortex)

ETMTrace
ETMAnalyzer
ETMCAnalyzer
ETMHAnalyzer
ETMOnchip
ETMLA

ETMD
ETM Data Stream
(Arm/Cortex)

ETMDTrace
ETMDAnalyzer
ETMDCAnalyzer
ETMDHAnalyzer
ETMDOnchip
ETMDLA

ETMX
(Arm/Cortex)

ETMXTrace
ETMXAnalyzer
ETMXCAnalyzer
ETMXHAnalyzer
ETMXOnchip
ETMXLA

Funnel
(Arm/Cortex)

FunnelAnalyzer
FunnelOnchip

HTM
CoreSight HTM (AHB Trace Macrocell)

HTMTrace
HTMAnalyzer
HTMCAnalyzer
HTMHAnalyzer
HTMOnchip
HTMLA

ITH
Intel Trace Hub

ITHTrace

ITM
(Arm/Cortex)

ITMTrace
ITMAnalyzer
ITMCAnalyzer
ITMHAnalyzer
ITMOnchip
ITMLA
General Commands Reference Guide T | 128©1989-2024 Lauterbach

MCDSBase
Non-optimized MCDS trace
(TriCore)

MCDSBaseAnalyzer
MCDSBaseCAnalyzer
MCDSBaseOnchip
MCDSBaseLA

MCDSDCA
MCDS trace processing with data cycle
assignment
(TriCore)

MCDSDCAAnalyzer
MCDSDCACAnalyzer
MCDSDCAOnchip
MCDSDCALA

MCDSDDTU
MCDS trace processing with DDTU
reordering
(TriCore)

MCDSDDTUAnalyzer
MCDSDDTUCAnalyzer
MCDSDDTUOnchip
MCDSDDTULA

NPKReorder
Northpeak Reorder
(Intel x86)

NPKReorderTrace
NPKReorderAnalyzer
NPKReorderCAnalyzer
NPKReorderHAnalayzer
NPKReorderLA

OCeaN
On Chip Network debug trace
(PowerPC QorIQ)
See “QorIQ Debugger and NEXUS
Trace” (debugger_ppcqoriq.pdf)

OCeaNTrace
OCeaNAnalyzer
OCeaNOnchip
OCeaNLA

RTP
RAM Trace Port
(Arm/Cortex)
See “RAM Trace Port” (trace_rtp.pdf)

RTPAnalyzer

SFT
Software Trace
(RH850)

SFTTrace
SFTAnalyzer
SFTOnchip

STM / STM2
System Trace

STMTrace / STM2Trace
STMAnalyzer / STM2Analyzer
STMCAnalyzer / STM2CAnalyzer
STMHAnalyzer
STMOnchip / STM2Onchip
STMOnchip2 / STM2Onchip2
STMLA / STM2LA

TSI / TSI2
(CEVA-X)

TSITrace / TSI2Trace
TSIAnalyzer / TSI2Analyzer
TSICAnalyzer / TSI2CAnalyzer
TSIHAnalyzer / TSI2HAnalyzer
TSIOnchip / TSI2Onchip
TSILA / TSI2LA
General Commands Reference Guide T | 129©1989-2024 Lauterbach

Related Trace Command Groups

UltraSOC UltraSOCTrace
UltraSOCHAnalayzer
UltraSOCLA

XGate
(MCS12)

XGateOnchip

XTI XTICAnalyzer

CMITrace Clock management instrumentation trace by Texas Instruments on
OMAP4.

CPTracerTrace Analyzes and displays CPT trace data.

OCPTrace OpenCoreProtocol WatchPoint trace by Texas Instruments on OMAP4
and OMAP5.

PMITrace Power management instrumentation trace by Texas Instruments on
OMAP4.

PrintfTrace Displays and analyzes software messages.

SLTrace Allows to trace and analyze SYStem.LOG events.

StatColTrace Statistics collector trace by Texas Instruments on OMAP4 and OMAP5.

SystemTrace Displays and analyzes trace information generated by various trace
sources.
General Commands Reference Guide T | 130©1989-2024 Lauterbach

<trace>.ACCESS Define access path to program code for trace decoding

The core trace generation logic on the processor/chip generates trace packets to indicate the instruction
execution sequence (program flow). TRACE32 merges the following sources of information in order to
provide an intuitive display of the instruction execution sequence (flow trace).

• The trace packets recorded.

• The program code from the target memory (usually read via the JTAG interface).

• The symbol and debug information already loaded to TRACE32.

Format: <trace>.ACCESS <path>
COVerage.ACCESS [auto | VM | DualPort] (deprecated)

<path>: auto | AutoVM | CPU | DualPort | VM | OVS | DENIED
General Commands Reference Guide T | 131©1989-2024 Lauterbach

Symbol and debug
information loaded

to TRACE32

Recorded trace
packets

Uploaded from
the source of

trace information

Program code from
target memory

Read via
JTAG

interface

Trace packets generated by core trace logic
General Commands Reference Guide T | 132©1989-2024 Lauterbach

Troubleshooting

1. Trace information should be analyzed while the program execution is running and the
debugger has no run-time access to the target memory to read the program code.

NOACCESS in a trace display window indicates that the debugger can not read the target memory.

You can overcome this problem by loading the program code to the TRACE32 virtual memory.

2. Reading the target via JTAG is very slow therefore all trace display and analysis windows
are slow.

You can overcome this problem by loading the program code to the TRACE32 virtual memory and by
specifying Trace.ACCESS AutoVM.

3. Trace information should be inspected, but there is no program code available.

You can overcome this problem by specifying Trace.ACCESS Denied to advise TRACE32 not to
merge program code information. The Trace.List window will list the available program addresses
and mark all cycles as unknown.

; load the program code additional to the TRACE32 virtual memory
; whenever you load it to the target memory
Data.LOAD.Elf diabc.x /PlusVM

; load the program code additional to the TRACE32 virtual memory
; whenever you load it to the target memory
Data.LOAD.Elf diabc.x /PlusVM

; advise TRACE32 to read the target code from the virtual memory

; if no code is loaded to the virtual memory for a program address
; TRACE32 will read the code by using the best practice procedure
Trace.ACCESS AutoVM
General Commands Reference Guide T | 133©1989-2024 Lauterbach

Recommended access paths:

Rarely used access paths:

<trace>.Arm Arm the trace

The trace memory and if available the trigger unit are prepared for recording and triggering. It is not possible
to read the trace contents while the trace is in Arm state.

For most trace methods it is possible to AutoArm (<trace>.AutoArm) the trace. That means:

• Recording and triggering are prepared whenever the program execution is started.

• Recording and triggering are stopped whenever the program execution is stopped.

This is the default setting.

It is also possible to manually switch off the trace (<trace>.OFF) to read the trace contents and arm it again
afterwards.

See also

■ <trace>.AutoArm ■ <trace>.AutoStart ■ <trace>.Init ■ IProbe.state
■ RunTime ■ RunTime.state

▲ ’Release Information’ in ’Legacy Release History’

auto TRACE32 uses its own best practice procedure to read the program code.
(Note: For the ARM architecture this mode is usually not using the
DualPort access.)

AutoVM If the program code for a program address is available via the TRACE32
virtual memory it is read from there. Otherwise the best practice procedure
is used.

VM The program code is always read from the TRACE32 virtual memory.

Denied No program code information is read.

OVS Code overlays are handled by the best practice procedure. If the best
practice procedure does not deliver correct results, you can advise
TRACE32 to read the program code by using the overlay table.

CPU Advise TRACE32 to read the code via the CPU/core.

DualPort Advise TRACE32 to read the code via the run-time access to the target
memory.

Format: <trace>.Arm
General Commands Reference Guide T | 134©1989-2024 Lauterbach

<trace>.AutoArm Arm automatically

Default: <trace>.AutoArm ON.

• Recording and if available triggering is prepared whenever the program execution is started.

• Recording and if available triggering is stopped whenever the program execution is stopped.

See also

■ <trace>.Arm ■ IProbe.state ■ RunTime ■ RunTime.state
❏ SNOOPer.STATE()

<trace>.AutoFocus Calibrate AUTOFOCUS preprocessor

The command Trace.AutoFocus configures an AutoFocus preprocessor for an error-free sampling on a
high-speed trace port.

For preprocessors without AUTOFOCUS technology, but adjustable reference voltage, this command will
modify the reference voltage (see Trace.THreshold) and try to find a value were the trace capture is free of
errors. This might take anywhere from a few up to 30 s.

If available the test pattern generator of the trace port is used to generate the trace data for the auto-
configuration. Otherwise a test program is loaded and started by TRACE32.

If a test program is used, TRACE32 attempts to load the test program to the memory addressed by the PC
or the stack pointer. It is also possible to define an <address_range> for the test program.

If TRACE32 is unable to load the test program the following error message is displayed:
“Don‘t know where to execute the test code”.

Format: <trace>.AutoArm [ON | OFF]

Format: <trace>.AutoFocus [<address_range>] [/<option>]

<option>: Accumulate
KEEP
ALTERNATE
NoTHreshold

Trace.AutoFocus ; start the auto-configuration

Trace.AutoFocus 0x24000000++0xfff ; start auto-configuration, load
; the test program to address
; 0x24000000
General Commands Reference Guide T | 135©1989-2024 Lauterbach

By default the original RAM contents is restored after the auto-configuration and the trace contents is
deleted.

The option /Accumulate allows to overlay several auto-configurations. It is recommended to proceed as
follows:

1. Execute the command Trace.AutoFocus at the highest CPU clock frequency.

2. Reduce the CPU clock frequency and execute the command Trace.AutoFocus /Accumulate.

If a preprocessor with AUTOFOCUS technology is used, the clock and data delays are adjusted,
while the termination voltage, the clock reference voltage and the data reference voltage remain
unchanged.

3. Repeat step 2 for all relevant frequencies.
If

Accumulate If the application program varies the CPU clock frequency, this affects
also the trace port and the auto-configuration. In such a case it is
recommended to overlay the auto-configurations for all relevant CPU
clock frequencies by using the option /Accumulate.

KEEP When the auto-configuration is completed, the test pattern generator/test
program is started once again to test the correctness of the trace
recording. After this test the trace is cleared and an eventually loaded
test program is removed from the target RAM.
With the option /KEEP the test trace is not cleared and can be viewed
with the Trace.List command. If a test program was loaded by TRACE32
it also remains in the target RAM.

ALTERNATE If the trace port provides a test pattern generator, it is always used for the
auto-configuration. The option /ALTERNATE forces TRACE32 to use its
own test program.
This is recommended e.g. if a CoreSight test pattern generator is not
stimulating the TRACECLT signal.

NoTHreshold Do not calibrate the Trace.THreshold reference voltage.

Trace.AutoFocus ; Execute the command for the
; highest CPU clock

Trace.AutoFocus /Accumulate ; Re-execute the command for the
; next lower CPU clock

;…

Trace.AutoFocus /Accumulate ; Re-execute the command for the
; lowest relevant CPU clock
General Commands Reference Guide T | 136©1989-2024 Lauterbach

A failure in the Trace.AutoFocus command results in a stop of a PRACTICE script. The following
workaround can be used to avoid this behavior:

; go to the label error_autofocus: if an error occurred in the script

ON ERROR GOTO error_autofocus

Trace.AutoFocus

; go to the label end: if an error occurred in the script

ON ERROR GOTO end

…

end:

ENDDO

error_autofocus:

PRINT %ERROR "Trace.AutoFocus failed. Script is aborted"

ENDDO

NOTE: The NEXUS AutoFocus adapter does not support this feature.
General Commands Reference Guide T | 137©1989-2024 Lauterbach

Preprocessor with AUTOFOCUS Technology

The Trace.AutoFocus command causes the preprocessor with AUTOFOCUS technology to configure
itself. The auto-configuration searches for the best set of reference voltages and assures optimal
sampling of the information broadcast by the trace port. The higher the trace port data rate, the more
effort is put in the hardware configuration. For trace port data rates higher 200 Mbit/s the command may
need up to 7 s for completion.

In contrast to Trace.TestFocus, the command Trace.AutoFocus does both the hardware configuration as
well as a trace port test.

For preprocessors with AUTOFOCUS technology the hardware auto-configuration includes:

• Automatic setup of proper termination voltage to assure signal integrity.

• Automatic setup of clock reference voltage resulting in a stable clock with 50/50 duty cycle.

• Automatic setup of data reference voltage resulting in broad data eyes.

• Automatic setup of clock and data delays resulting in optimal sampling for each data channel.

The complete auto-configuration executes the following steps:

1. If available the trace port’s test pattern generator is started. Otherwise a test program (maximum
size 4 kB) is loaded by TRACE32 to the target RAM and started.

2. A hardware auto-configuration as described above is executed. When the optimal hardware
configuration is found the test pattern generator/test program is stopped and the trace data is
discarded. After executing the hardware auto-configuration the data eyes and optimal sampling
points are known to the TRACE32 software and can be viewed by the user with the
Trace.ShowFocus command.

3. The test pattern generator/test program is started once again and the program and data flow is
recorded to the trace buffer to allow TRACE32 to verify the correctness of the trace recording.

If the self calibration was successful, the following message is displayed in the message line
(f=<trace_port_frequency>):

The result of the Trace.AutoFocus command can be displayed with the Trace.ShowFocus command. If
the user wants to verify that the current hardware configuration is complying with the current requirements
(e.g. after a frequency change) without wanting to change this configuration, the Trace.TestFocus
command can be used.

NOTE: The trace port frequency does not necessarily equal the CPU clock
frequency. E. g. for the ARM-ETM:
• An ETMv1 or ETMv2 operating at HalfRate results in an ETM clock fre-

quency that is half the CPU clock frequency
• An ETMv3 operating with PortMode 1/2 results in an ETM frequency that

is a quarter of the CPU clock frequency.
General Commands Reference Guide T | 138©1989-2024 Lauterbach

If the auto-configuration fails and you need technical support, please use the AutoFocus Diagnosis menu
to prepare all relevant information for the support person.

See also

❏ AUTOFOCUS.FREQUENCY() ❏ AUTOFOCUS.OK()

▲ ’Release Information’ in ’Legacy Release History’
General Commands Reference Guide T | 139©1989-2024 Lauterbach

<trace>.AutoInit Automatic initialization

The <trace>.Init command will be executed automatically, when the user program is started (or stepped
through). This causes that

• Trace memory contents is erased and previous records are no longer visible.

• The trigger unit is set to its initial state.

• All used counters are initialized and all used flags are set to OFF.

In combination with the command <trace>.SelfArm the trace is able to generate continuous recording and
display like a trace snapshot.

See also

■ <trace>.Init ■ IProbe.state ■ RunTime ■ RunTime.state
❏ SNOOPer.STATE()

▲ ’Release Information’ in ’Legacy Release History’

<trace>.AutoStart Automatic start

The <trace>.AutoStart command will execute the <trace>.Init automatically, when a specified break event
is encountered and a user program is re-started with the command Go or Step.

See also

■ <trace>.Arm

<trace>.BookMark Set a bookmark in trace listing

Sets a trace bookmark in the trace listing. A small yellow rectangle next to the record number indicates a
trace bookmark.

Format: <trace>.AutoInit [ON | OFF]

Format: <trace>.AutoStart [ON | OFF]

Format: <trace>.BookMark <string> [<time> | <value>] [/FILE]
General Commands Reference Guide T | 140©1989-2024 Lauterbach

The BookMark.List window provides an overview of all trace bookmarks. Clicking a yellow trace bookmark
takes you to the location of that trace bookmark. Additionally, you can use the Goto button in a <trace>.List
window to jump to a bookmarked trace record.

Example 1:

<string> User-defined bookmark name. An auto-incremented bookmark name can
be generated via the TRACE32 command line if a comma is entered
instead of a user-defined name.

<time> Creates a trace bookmark at a timestamp that is based on zero time. See
example 2 below.

<value> Creates a trace bookmark at the specified record number, e.g. -120000.

;create a trace bookmark named "BM2" for the trace record -120000.
Trace.BookMark "BM2" -120000.

Trace.List DEFault /Track ;list the trace contents
BookMark.List ;display all bookmarks in a list
General Commands Reference Guide T | 141©1989-2024 Lauterbach

Example 2 shows how to create a bookmark 0.300ms after the zero-time reference point. The optional
steps are included in this example to let you view on screen what happens behind the scenes.

See also

■ <trace>.List ■ <trace>.BookMarkToggle ■ <trace>.GOTO ■ BookMark
■ BookMark.Create ■ BookMark.EditRemark ■ BookMark.List ■ IProbe.state
■ RunTime ■ RunTime.state

▲ ’BookMark’ in ’General Commands Reference Guide B’

;optional step: In the trace listing, the TIme.ZERO column is displayed
;as the first column, followed by the DEFault columns
Trace.List TIme.ZERO DEFault /Track

;optional step: go to the first trace record, i.e. the record with the
;lowest record number
Trace.GOTO Trace.FIRST()

;set the zero-time reference point to the first trace record
ZERO.offset Trace.RECORD.TIME(Trace.FIRST())

Trace.BookMark "BM3" 0.300ms ;create a bookmark 0.300ms after the
 ;zero-time reference point

Trace.GOTO "BM3" ;optional step: got to the new bookmark

BookMark.List ;optional step: display all bookmarks
General Commands Reference Guide T | 142©1989-2024 Lauterbach

<trace>.BookMarkToggle Toggles a single trace bookmark

Switches a single trace bookmark on or off. TRACE32 executes the same command when you right-click in
a <trace>.List window, and then choose Toggle Bookmark. The resulting bookmark names are auto-
incremented 1, 2, 3, etc. User-defined bookmark names can be created via the command line.
A small yellow rectangle next to the record number indicates a trace bookmark.

Example:

See also

■ <trace>.BookMark ■ BookMark ■ BookMark.List ■ BookMark.Toggle

▲ ’BookMark’ in ’General Commands Reference Guide B’

Format: <trace>.BookMarkToggle <string> [<time> | <value>] [/FILE]

<string> User-defined bookmark name. An auto-incremented bookmark name can
be generated via the command line if a comma is entered instead of a
user-defined name.

<time> Creates a trace bookmark at a timestamp that is based on zero time.

<value> Creates a trace bookmark at the specified record number, e.g. -120000.

Trace.List TIme.Zero DEFault /Track ;list the trace contents

;let's toggle two trace bookmarks with user-defined names
Trace.BookMarkToggle "TStart" -Trace.Records() ;bookmark at first record
Trace.BookMarkToggle "TEnd" -1. ;bookmark at last record

BookMark.List ;display all bookmarks in a list

Trace bookmark for
record -94.
General Commands Reference Guide T | 143©1989-2024 Lauterbach

<trace>.Chart Display trace contents graphically
[Parameters] [Options] [Examples]

The <trace>.Chart command group allows to display the analyzed trace information graphically. Examples
are:

• Function run-time (Trace.Chart.Func)

• Time chart (Trace.Chart.sYmbol)

• Task run-time (Trace.Chart.TASK)

• Variable contents (Trace.Chart.VarState)

Parameters

This section describes the optional <trace_area> parameters of the <trace>.Chart command group.

<record_range> Defines which part of the trace buffer is displayed.
See example.

<record> Defines which trace record is centered on the x-axis when the window is
opened. Records at the beginning or end of the x-axis are not centered.
See example.

<time> Defines which timestamp is centered on the x-axis when the window is
opened. Timestamps at the beginning or end of the x-axis are not
centered.

NOTE: Only zero-time timestamps can be used as <time> parameters.

You can display the zero-time timestamps in a Trace window by adding
the TimeZero option to Trace.Chart.* or by adding the TIme.Zero column
to Trace.List.

See examples.

<time_range> Defines which timestamp is displayed on left of the x-axis when the
window is opened.

NOTE: Only zero-time timestamps can be used as <time_range>
parameters.

You can display the zero-time timestamps in a Trace window by adding
the TimeZero option to Trace.Chart.* or by adding the TIme.Zero column
to Trace.List.

See example.
General Commands Reference Guide T | 144©1989-2024 Lauterbach

Options

This section describes the options of the <trace>.Chart command group. Not all options are supported by
all <trace>.Chart commands.

<timescale> The <timescale> parameter defines the display scaling as time per
character.
It is useful for printing operations and allows to print out any timing chart in a
fixed scale on multiple pages.
• See example.
• For the units of measurement, see “Parameter Types” in Power-

View User’s Guide, page 41 (ide_user.pdf).
Rule of thumb: The smaller the <timescale> value, the higher the resolution
and the wider the chart in the data area of a <trace>.Chart.* window.

<trace_bookmark> Defines which bookmark position is centered on the x-axis when the
window is opened. Bookmark positions at the beginning or end of the x-
axis are not centered.

NOTE: You can only use the names of trace bookmarks, which are
created with the <trace>.BookMark command.

See example.

Track The cursor in the <trace>.Chart window follows the cursor movement in
other trace windows. Default is a time tracking. If no time information is
available tracking to record number is performed.
The zoom factor of the <trace>.Chart window is retained, even if the
trace content changes.

ZoomTrack Same as option Track. If the tracking in performed with another
<trace>.Chart window the same zoom factor is used.

Sort [<sort_visible>]
[<sort_core>]
[<sort>]

Specify sorting criterion for analyzed items. For almost all commands the
analyzed items are displayed in the order they are recorded by default.

Details on the sorting criterion can be found at the description of the
command Trace.STATistic.Sort.

INCremental Intermediate results are displayed while TRACE32 PowerView is
processing the trace analysis (default).

FULL TRACE32 PowerView displays the result when the processing is done.
General Commands Reference Guide T | 145©1989-2024 Lauterbach

Option for SMP multicore tracing

FILE Use the trace contents loaded with the command <trace>.FILE.

TASK <task_magic>,
etc.

Operating system task in OS-aware debugging and tracing.

See also “What to know about the Task Parameters”
(general_ref_t.pdf).

SplitTASK Trace information is analyzed independently for each task. The time chart
displays these individual results.

MergeTASK Trace information is analyzed independently for each task. The time chart
summarizes these results to a single result.

CORE <n> Time chart is only displayed for the specified core.

SplitCORE Trace information is analyzed independently for each core. The time
chart displays these individual results.

MergeCORE Trace information is analyzed independently for each core. The time
chart summarizes these results to a single result.

JoinCORE Core information is ignored for the time chart.

RecScale Display trace in fixed record raster. This is the default.

TimeScale Display trace as true time display, time relative to the trigger point
(respectively the last record in the trace).

TimeZero Display trace as true time display, time relative to zero point. For more
information about the zero point refer to ZERO.

TimeREF Display trace as true time display, time relative to the reference point. For
more information about the reference point refer to <trace>.REF.

FlowTrace Trace works as a program flow Trace. This option is usually not required.

BusTrace Trace works as a bus trace. This option is usually not required.
General Commands Reference Guide T | 146©1989-2024 Lauterbach

Option for ARTIAP trace decoding

INLINE Treat inline functions as separate functions (default).

NoINLINE Discard inline function from the results.

LABEL Include all symbols in the results.

NoLABEL Only include functions in the results.

Filter <item> Filter the described item.

ARTIAP Option for AUTOSAR Real-Time Interface on Adaptive Platform trace
decoding. Decode MIPI STP (System Trace Protocol) format trace which
is defined in ARTI Trace Driver on AUTOSAR Adaptive Platform.
General Commands Reference Guide T | 147©1989-2024 Lauterbach

Drag and Drop

A Trace.Chart window may contain a Drag & Drop area which is marked by a straight line.

Items of interest can be dragged to the appropriate position in the Drag & Drop area with the left mouse
button.

The sort order of all items outside of the Drag & Drop area remains unchanged.

Items can be removed from the Drag & Drop area by dropping them to the item description area.

Drag & Drop
area

Item description area
General Commands Reference Guide T | 148©1989-2024 Lauterbach

Example for <trace_bookmark>
[Parameter Descr.]

Example for <record>
[Parameter Descr.]

Trace.BookMark "begin" 10.005s
Trace.BookMark "end" 10.010s

Trace.Chart.sYmbol "begin" /Track /TimeZERO

Trace.GOTO "begin" ;highlight the bookmark in the chart

BookMark.List ;optional: ;display all bookmarks in a list

A To display the zero-time timestamps on the x-axis, the TimeZero option is used.

;print distribution of data values written to flags[3], with the record
;-1950. centered on the x-axis of the window
Trace.Chart.DistriB -1950. Data.L /Filter Address Var.RANGE(flags[3]) \
/RecScale

A To display the record numbers on the x-axis, the RecScale option is used.

NOTE: The backslash \ can be used as a line continuation character in PRACTICE
script files (*.cmm). No white space permitted after the backslash.

A

A

General Commands Reference Guide T | 149©1989-2024 Lauterbach

Example for <record_range>
[Parameter Descr.]

Examples for <time>
[Parameter Descr.]

Example 1:

;print distribution of data values written to flags[3] for the
;record range (-2000.)--(-1000.)
Trace.Chart.DistriB (-2000.)--(-1000.) Data.L /Filter Address \
Var.RANGE(flags[3]) /RecScale

A To display the record numbers on the x-axis, the RecScale option is used.

;open the chart window with the zero-time timestamp 10.009s and set the
;<timescale> resolution to 10us (optional)
Trace.Chart.TREE 10.009s 10us /Track /TimeZero

Trace.GOTO 10.009s ;highlight the timestamp in the chart

A To display the zero-time timestamps on the x-axis, the TimeZero option is used.

A

A

General Commands Reference Guide T | 150©1989-2024 Lauterbach

Example 2: This PRACTICE script shows how to open the Trace.Chart.sYmbol window with a <time>
parameter that is located 50 microseconds after the 4th occurrence of the HLL symbol sieve.

Example for <time_range>
[Parameter Descr.]

;find the first occurrence of the HLL symbol 'sieve'
Trace.Find , sYmbol sieve

RePeaT 3. ;find the next three occurrences of 'sieve'
 Trace.Find

IF FOUND()==TRUE() ;if the 4th occurrences of 'sieve' has been found
(
 ;get the timestamp of the 4th occurrence and add an offset of 50.us
 &time=TRACK.TIME()+50.us

 ;open the chart window with the calculated timestamp and set the
 ;<timescale> resolution to 9.5us
 Trace.Chart.sYmbol &time 9.5us /Address encode||subst||sieve \
 /Track /TimeZero

 Trace.GOTO &time ;highlight the timestamp in the chart
)

A Location of the calculated timestamp

Trace.Chart.sYmbol (10.005s)--(10.010s) 10.us /Track /TimeZero

A

General Commands Reference Guide T | 151©1989-2024 Lauterbach

Examples for <timescale>
[Parameter Descr.]

Example 1: Using WinPrint, you can print the window content without actually opening the window.

Example 2: Using the WinPOS command, you can assign a name to a window. Then you open the window
and print it with WinPRT <name>. This example illustrates three different <timescale> resolutions.

PRinTer.select WIN ;select the printer to which you want to print

;print distribution of data values written to flags[3] for the
;record range (-2000.)--(-1000.), use resolution 10.us per pixel
WinPrint.Trace.Chart.DistriB (-2000.)--(-1000.) 10.us Data.L /Filter
Address Var.RANGE(flags[3])

;the following resolutions are used:
;[A] 5.us per pixel, [B] 1.us per pixel, [C] 0.5us per pixel

PRinTer.select WIN ;select the printer to which you want to print

WinPOS , , , , , , W0
Trace.Chart.DistriB (-2000.)--(-1000.) 5.us Data.L /Filter Address \
Var.RANGE(flags[3])

WinPOS , , , , , , W1
Trace.Chart.DistriB (-2000.)--(-1000.) 1.us Data.L /Filter Address \
Var.RANGE(flags[3])

WinPOS , , , , , , W2
Trace.Chart.DistriB (-2000.)--(-1000.) 0.5us Data.L /Filter Address \
Var.RANGE(flags[3])

WinPRT W0 ;print the window named W0

A

B

C

General Commands Reference Guide T | 152©1989-2024 Lauterbach

See also

■ <trace>.Chart.Address ■ <trace>.Chart.AddressGROUP
■ <trace>.Chart.ChildTREE ■ <trace>.Chart.DatasYmbol
■ <trace>.Chart.DistriB ■ <trace>.Chart.Func
■ <trace>.Chart.GROUP ■ <trace>.Chart.INTERRUPT
■ <trace>.Chart.INTERRUPTTREE ■ <trace>.Chart.Line
■ <trace>.Chart.MODULE ■ <trace>.Chart.Nesting
■ <trace>.Chart.PAddress ■ <trace>.Chart.PROGRAM
■ <trace>.Chart.PsYmbol ■ <trace>.Chart.RUNNABLE
■ <trace>.Chart.sYmbol ■ <trace>.Chart.TASK
■ <trace>.Chart.TASKFunc ■ <trace>.Chart.TASKINFO
■ <trace>.Chart.TASKINTR ■ <trace>.Chart.TASKKernel
■ <trace>.Chart.TASKORINTERRUPT ■ <trace>.Chart.TASKORINTRState
■ <trace>.Chart.TASKSRV ■ <trace>.Chart.TASKState
■ <trace>.Chart.TASKVSINTERRUPT ■ <trace>.Chart.TASKVSINTR
■ <trace>.Chart.TREE ■ <trace>.Chart.Var
■ <trace>.Chart.VarState ■ <trace>.PROfileChart
■ <trace>.PROfileSTATistic ■ <trace>.STATistic
■ IProbe.state ■ RunTime
■ RunTime.state

▲ ’Release Information’ in ’Legacy Release History’

<trace>.Chart.Address Time between program events as a chart

Displays the time interval between up to 8 program events as a chart. The <trace>.Chart.Address
command is the counterpart of the <trace>.STATistic.Address command.

Example:

Format: <trace>.Chart.Address <address1> [<address2> …] [/<option>]

<option>: FILE
FlowTrace | BusTrace
TASK <task> | SplitTrack | MergeTASK
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL
Filter <item>
Sort <item>
Address <address | range>

<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.

Trace.Chart.Address sieve func2
General Commands Reference Guide T | 153©1989-2024 Lauterbach

See also

■ <trace>.Chart
General Commands Reference Guide T | 154©1989-2024 Lauterbach

<trace>.Chart.AddressGROUP Address group time chart

The time for accessed address groups is displayed as time chart (flat statistic). The results include groups
for both program and data addresses.

Example:

See also

■ <trace>.Chart ■ <trace>.Chart.GROUP

Format: <trace>.Chart.AddressGROUP [<list_item> …] [/<option>]

<option>: FILE
FlowTrace | BusTrace
TASK <task> | SplitTASK | MergeTASK
CORE <number> | SplitCORE | MergeCORE | JoinCORE
RecScale | TimeScale | TimeZero | TimeREF
Track | ZomTrack
RecScale | TimeScale | TimeZero | TimeREF
Filter <item>
Address <item> | <range>
INCremental | FULL
Sort <item>

<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.

GROUP.Create "DATA1" 0x6800--0x68FF /RED

GROUP.Create "DATA2" 0x6700--0x67FF /GREEN

Trace.Chart.AddressGROUP
General Commands Reference Guide T | 155©1989-2024 Lauterbach

<trace>.Chart.ChildTREE Display callee context of a function as chart

The call tree of the selected function is displayed graphically as a chart with the time spent in different
functions. The <trace>.Chart.ChildTREE command is the counterpart of the
<trace>.STATistic.ChildTREE command.

Example:

See also

■ <trace>.Chart ■ CTS.Chart.ChildTREE

Format: <trace>.Chart.CTREE <address> [/<option>]

<option>: FILE
FlowTrace | BusTrace
TASK
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL
Filter <item>
Sort <item>

<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.

Trace.Chart.ChildTREE main
General Commands Reference Guide T | 156©1989-2024 Lauterbach

<trace>.Chart.DatasYmbol Analyze pointer contents graphically

The command Trace.Chart.DatasYmbol analyzes the contents of a pointer graphically.

Examples:

Format: <trace>.Chart.DatasYmbol [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
TASK <task> | SplitTrack | MergeTASK
LABEL | NoLABEL | INLINE | NoINLINE
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL
Filter <item>
Sort <item>

<trace_area> For parameter descriptions and examples, see Parameters.

<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.

; analyze the contents of the pointer vpchar graphically
Trace.Chart.DatasYmbol /Filter Address vpchar
General Commands Reference Guide T | 157©1989-2024 Lauterbach

A more effective usage of the trace memory is possible, if only write accesses to the pointer are recorded to
the trace.

See also

■ <trace>.Chart

▲ ’Release Information’ in ’Legacy Release History’

; set a filter to record only write cycles to the pointer vpchar to the
; trace
Var.Break.Set vpchar /Write /TraceEnable

…

; analyze the contents of the pointer
Trace.Chart.DatasYmbol

; analyze the contents of the pointer, sort the result by symbol names
Trace.Chart.DatasYmbol /Sort sYmbol
General Commands Reference Guide T | 158©1989-2024 Lauterbach

<trace>.Chart.DistriB Distribution display graphically

The distribution of any trace data is displayed if <item> is specified. Without argument the distribution of the
addresses is displayed symbolically.

If no selective tracing is done, use the option /Filter to filter out the <item> of interest.

Format: <trace>.Chart.DistriB [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
TASK <task> | SplitTrack | MergeTASK
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL
Filter <item>
Sort <item>
Address <address | range>

<trace_area> For parameter descriptions and examples, see Parameters.

<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.

; Display distribution of data value for flags[3]
Trace.Chart.DistriB Data.L /Filter Address Var.RANGE(flags[3])

; Display the distribution of data value written for flags[3] for the
; record range (-2000.)--(-1000.)
Trace.Chart.DistriB (-2000.)--(-1000.) Data.L /Filter Address \
Var.RANGE(flags[3])
General Commands Reference Guide T | 159©1989-2024 Lauterbach

See also

■ <trace>.Chart
General Commands Reference Guide T | 160©1989-2024 Lauterbach

<trace>.Chart.Func Function activity chart

The time spent in different functions is displayed graphically. The measurement is the same as for the
command <trace>.STATistic.Func.

See also

■ <trace>.Chart ■ CTS.Chart.Func

Format: <trace>.Chart.Func [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
TASK
INTRROOT | INTRTASK
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL
Filter <item>
Sort <item>
Address <address | range>

<trace_area> For parameter descriptions and examples, see Parameters.

<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.
General Commands Reference Guide T | 161©1989-2024 Lauterbach

<trace>.Chart.GROUP Group activity chart

Displays a GROUP time chart (flat statistic). The results only include groups within the program range.
Groups for data addresses are not included.

Example:

See also

■ <trace>.Chart ■ <trace>.Chart.AddressGROUP
■ <trace>.Chart ■ GROUP.Create

Format: <trace>.Chart.GROUP [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
TASK <task> | SplitTrack | MergeTASK
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL
Filter <item>
Sort <item>
Address <address | range>

<trace_area> For parameter descriptions and examples, see Parameters.

<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.

GROUP.Create "INPUT" \jquant2 \jquant1 \jidctred \jdinput /AQUA

GROUP.Create "JPEG" \jdapimin \jdcolor \jddctmgr \jdcoefct /NAVY

Go

Break

Trace.Chart.GROUP
General Commands Reference Guide T | 162©1989-2024 Lauterbach

▲ ’Release Information’ in ’Legacy Release History’

<trace>.Chart.INTERRUPT Display interrupt chart

The time spent in different interrupts is displayed graphically.

See also

■ <trace>.Chart ■ CTS.Chart.INTERRUPT

Format: <trace>.Chart.INTERRUPT [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL
Sort <item>

<trace_area> For parameter descriptions and examples, see Parameters.

<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.
General Commands Reference Guide T | 163©1989-2024 Lauterbach

<trace>.Chart.INTERRUPTTREE Display interrupt nesting

Displays the interrupt nesting as time chart.

See also

■ <trace>.Chart ■ CTS.Chart.INTERRUPTTREE

Format: <trace>.Chart.INTERRUPTTREE [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL
Sort <item>

<trace_area> For parameter descriptions and examples, see Parameters.

<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.
General Commands Reference Guide T | 164©1989-2024 Lauterbach

<trace>.Chart.Line Graphical HLL lines analysis

The time spent in different HLL lines is analyzed graphically.

See also

■ <trace>.Chart

▲ ’Release Information’ in ’Legacy Release History’

Format: <trace>.Chart.Line [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
TASK <task> | SplitTrack | MergeTASK
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL
Filter <item>
Sort <item>
Address <address | range>

<trace_area> For parameter descriptions and examples, see Parameters.

<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.
General Commands Reference Guide T | 165©1989-2024 Lauterbach

<trace>.Chart.MODULE Code execution brocken down by module as chart

Displays the code execution brocken down by symbol module as chart. The list of loaded modules can be
displayed with sYmbol.List.Module.

See also

■ <trace>.Chart

Format: <trace>.Chart.MODULE [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> | <time_range>

<option>: FILE
FlowTrace | BusTrace
TASK <task> | SplitTASK | MergeTASK
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL
Filter <item>
Sort <item>
Address <address | range>

<trace_area> For parameter descriptions and examples, see Parameters.

<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.
General Commands Reference Guide T | 166©1989-2024 Lauterbach

<trace>.Chart.Nesting Show function nesting at cursor position

Shows the function call stack as a time chart.

See also

■ <trace>.Chart ■ CTS.Chart.Nesting

Format: <trace>.Chart.Nesting [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
TASK
IncludeINTR | INTRROOT
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL
Filter <item>
Sort <item>

<trace_area> For parameter descriptions and examples, see Parameters.

<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.
General Commands Reference Guide T | 167©1989-2024 Lauterbach

<trace>.Chart.PAddress Which instructions accessed data address

The command provides a graphical chart of the instructions that accessed data addresses. You can select a
specific address using the /Filter option.

Example:

See also

■ <trace>.Chart

Format: <trace>.Chart.PAddress /Filter Address [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
TASK <task> | SplitTASK | MergeTASK
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL
Filter <item>
Sort <item>
Address <address | range>

<trace_area> For parameter descriptions and examples, see Parameters.

<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.

Trace.Chart.PAddress /Filter Address mstatic1
General Commands Reference Guide T | 168©1989-2024 Lauterbach

<trace>.Chart.PROGRAM Code execution broken down by program

Displays the code execution brocken down by loaded object files (programs) as chart. The loaded programs
can be displayed with the command sYmbol.Browse *.

See also

■ <trace>.Chart

Format: <trace>.Chart.PROGRAM [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
TASK <task> | SplitTASK | MergeTASK
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL
Filter <item>
Sort <item>
Address <address | range>

<trace_area> For parameter descriptions and examples, see Parameters.

<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.
General Commands Reference Guide T | 169©1989-2024 Lauterbach

<trace>.Chart.PsYmbol Shows which functions accessed data address

The command provides a graphical chart of the functions that accessed the data addresses. You can select
a specific address using the /Filter option.

Format: <trace>.Chart.PsYmbol [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
TASK <task> | SplitTASK | MergeTASK
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL
Filter <item>
Sort <item>
Address <address | range>
General Commands Reference Guide T | 170©1989-2024 Lauterbach

Examples:

See also

■ <trace>.Chart

; display a chart of all functions that accessed the variable mstatic1
Trace.Chart.PsYmbol /Filter sYmbol mstatic1

; display a chart of all functions that performed a write access to the
; variable mstatic1
Trace.Chart.PsYmbol /Filter sYmbol mstatic1 CYcle Write
General Commands Reference Guide T | 171©1989-2024 Lauterbach

<trace>.Chart.RUNNABLE Runnable activity chart

The time spent in different AUTOSAR Runnables is displayed graphically. This feature is only available if an
OSEK/ORTI system is used and if the OS Awareness is configured with the TASK.ORTI command. Please
refer to “OS Awareness Manual OSEK/ORTI” (rtos_orti.pdf) for more information.

On TriCore AURIX there’s a solution available for the Vector AUTOSAR tools that uses an automated
instrumentation to trace runnables on all cores with minimum overhead. See
~~/demo/env/vector/rte_profiling.

Otherwise, all functions that start an AUTOSAR “Runnable” have to be marked with the command
sYmbol.MARKER.Create RUNNABLESTARTPLUSSTOP. Please refer to “Trace Export for Third-Party
Timing Tools” (app_timing_tools.pdf) for more information.

See also

■ <trace>.Chart ■ CTS.Chart.RUNNABLE ■ TASK.Create.RUNNABLE ■ TASK.List.RUNNABLES

▲ ’Runnable Runtime Analysis’ in ’Application Note Profiling on AUTOSAR CP with ARTI’
▲ ’Release Information’ in ’Legacy Release History’

Format: <trace>.Chart.RUNNABLE [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
TASK <task>
CORE <item> | SplitCORE | MergeCORE
INTRROOT | INTRTASK
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL
Filter <item>
Sort <item>
Address <address | range>

<trace_area> For parameter descriptions and examples, see Parameters.

<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.
General Commands Reference Guide T | 172©1989-2024 Lauterbach

<trace>.Chart.sYmbol Symbol analysis
[Examples]

The distribution of program execution time at different symbols is displayed as a time chart. This can be used
to get a quick overview about the functions sampled in the trace buffer.

Format: <trace>.Chart.sYmbol [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
TASK <task> | SplitTASK | MergeTASK
LABEL | NoLABEL
INLINE | NoINLINE
Track
RecScale | TimeScale | TimeZero | TimeREF
Address <function1>||<function2> …
Address <function1>--<function2>
Filter Address <function1>||<function2> …
Filter Address <function1>--<function2>

<trace_area> For parameter descriptions and examples, see Parameters.

<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.
General Commands Reference Guide T | 173©1989-2024 Lauterbach

Example:

#

The GROUP command provides more features to structure your time chart.

Go
Break
Trace.STATistic.Sort sYmbol ; sort the result alphabetically

; draw time chart for specified functions, assign time for all other
; functions to (other)
Trace.Chart.sYmbol /Address func2||func10||sfpDoubleNormalize

; draw time chart for specified functions (address range), assign time
; for all other functions to (other)
Trace.Chart.sYmbol /Address func2--func10
General Commands Reference Guide T | 174©1989-2024 Lauterbach

See also

■ <trace>.Chart ■ <trace>.STATistic.sYmbol ■ CTS.Chart.sYmbol

▲ ’Release Information’ in ’Legacy Release History’

; filter specified functions out of the address stream
; and draw time chart for filtered trace information
Trace.Chart.sYmbol /Filter Address main||func2||func10||func26

func26

main

func2

main

func10

main

func26

Recording (filtered functions are displayed in black)

Analysis result

(other)

main main

func11
func10

main

func2b

init

func2 func2

func12

func10
General Commands Reference Guide T | 175©1989-2024 Lauterbach

<trace>.Chart.TASK Task activity chart

Displays the time spent in different tasks. This feature is only available if TRACE32 has been set for OS-
aware debugging.

See also

■ <trace>.Chart ■ CTS.Chart.TASK

▲ ’Release Information’ in ’Legacy Release History’

Format: <trace>.Chart.TASK [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
CORE <number> | SplitCORE | MergeCORE | JoinCORE
INCremental | FULL
Filter <item>
Sort <item>
ARTIAP

<trace_area> For parameter descriptions and examples, see Parameters.

<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.
General Commands Reference Guide T | 176©1989-2024 Lauterbach

<trace>.Chart.TASKFunc Task related function run-time analysis (legacy)

For details, refer to <trace>.Chart.Func.

See also

■ <trace>.Chart

<trace>.Chart.TASKINFO Context ID special messages

Displays a time chart of special messages written to the Context ID register for ETM trace. The range of
special values has to be reserved with the ETM.ReserveContextID command. These special values are
then not interpreted for task switch or memory space switch detection.

Format: <trace>.Chart.TASKFunc [<record_range>] [<scale>] [/<option>] (legacy)

<option>: FILE
FlowTrace | BusTrace
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
CORE <number> | SplitCORE | MergeCORE | JoinCORE
INCremental | FULL
Filter <item>
Sort <item>

Format: <trace>.Chart.TASKINFO [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
Track | ZoomTrack
CORE <number> | SplitCORE | MergeCORE | JoinCORE
RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL
Filter <item>
Sort <item>
General Commands Reference Guide T | 177©1989-2024 Lauterbach

This can be used for cores without data trace to pass data by the target application to the trace tool by writing
to the ContextID register.

See also

■ <trace>.Chart ■ CTS.Chart.TASKINFO

<trace>.Chart.TASKINTR Display ISR2 time chart (ORTI)

Displays an ORTI based ISR2 time chart. This feature can only be used if the ISR2 can be traced based on
the information provided by the ORTI file. Please refer to “OS Awareness Manual OSEK/ORTI”
(rtos_orti.pdf) for more information.

See also

■ <trace>.Chart ■ CTS.Chart.TASKINTR

Format: <trace>.Chart.TASKINTR [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
Track | ZoomTrack
CORE <number> | SplitCORE | MergeCORE | JoinCORE
RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL
Filter <item>
Sort <item>

<trace_area> For parameter descriptions and examples, see Parameters.

<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.
General Commands Reference Guide T | 178©1989-2024 Lauterbach

▲ ’ISR2 Runtime Analysis’ in ’Application Note Profiling on AUTOSAR CP with ARTI’
▲ ’Trace Features’ in ’OS Awareness Manual OSEK/ORTI’

<trace>.Chart.TASKKernel Task run-time chart with kernel markers (flat)

Time chart for results of Trace.STATistic.TASKKernel. This feature is only available if TRACE32 has been
set for OS-aware debugging.

See also

■ <trace>.Chart ■ CTS.Chart.TASKKernel

Format: <trace>.Chart.TASKKernel [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL
Filter <item>
Sort <item>

<trace_area> For parameter descriptions and examples, see Parameters.

<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.
General Commands Reference Guide T | 179©1989-2024 Lauterbach

<trace>.Chart.TASKORINTERRUPT Task and interrupt activity chart

Displays the time spent in different tasks and interrupts as time chart. This feature is only available if
TRACE32 has been set for OS-aware debugging.

See also

■ <trace>.Chart ■ CTS.Chart.TASKORINTERRUPT

Format: <trace>.Chart.TASKORINTERRUPT [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL
Filter <item>
Sort <item>

<trace_area> For parameter descriptions and examples, see Parameters.

<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.
General Commands Reference Guide T | 180©1989-2024 Lauterbach

<trace>.Chart.TASKORINTRState Task and ISR2 state analysis

Displays a graphical chart of task and ORTI-based ISR2 states. Before using this function the interrupt and
task state transitions must be sampled by the trace. This feature is highly dependent on the used RTOS
kernel, and needs the TASK to be configured. Please see kernel specific “OS Awareness Manuals”
manuals for more information.

Refer for more information to <trace>.Chart.TASKState.

See also

■ <trace>.Chart

▲ ’ISR2 Runtime Analysis’ in ’Application Note Profiling on AUTOSAR CP with ARTI’

Format: <trace>.Chart.TASKORINTRState [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL
Filter <item>
Sort <item>
General Commands Reference Guide T | 181©1989-2024 Lauterbach

<trace>.Chart.TASKSRV Service routine run-time analysis

The time spent in OS service routines and different tasks is displayed. Service routines that are used by
multiple tasks are displayed for each task. This feature is only available if an OSEK/ORTI system is used and
if the OS Awareness is configured with the TASK.ORTI command. Please refer to “OS Awareness Manual
OSEK/ORTI” (rtos_orti.pdf) for more information.

See also

■ <trace>.Chart

Format: <trace>.Chart.TASKSRV [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL
Filter <item>
Sort <item>

<trace_area> For parameter descriptions and examples, see Parameters.

<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.
General Commands Reference Guide T | 182©1989-2024 Lauterbach

<trace>.Chart.TASKState Task state analysis

The time different task spent in specific states is displayed. Before using this function the task state
transitions must be sampled by the trace. This feature is highly dependent on the used RTOS kernel, and
needs the TASK to be configured. Please see kernel specific “OS Awareness Manuals” manuals for more
information.

Format: <trace>.Chart.TASKState [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL
Filter <item>
Sort <item>
ARTIAP

<trace_area> For parameter descriptions and examples, see Parameters.

<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.
General Commands Reference Guide T | 183©1989-2024 Lauterbach

See also

■ <trace>.Chart

▲ ’Task Runtime Analysis’ in ’Application Note Profiling on AUTOSAR CP with ARTI’

Graphics

running solid black bar

ready medium blue bar

waiting two thin red lines

suspended thin grey line

activated green or red line

undefined/unknown no line
General Commands Reference Guide T | 184©1989-2024 Lauterbach

<trace>.Chart.TASKVSINTERRUPT Time chart of interrupted tasks

Shows a graphical representation of tasks that were interrupted by interrupt service routines. This feature is
only available if TRACE32 has been set for OS-aware debugging.

See also

■ <trace>.Chart ■ CTS.Chart.TASKVSINTERRUPT

Format: <trace>.Chart.TASKVSINTERRUPT [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL
Filter <item>
Sort <item>

<trace_area> For parameter descriptions and examples, see Parameters.

<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.
General Commands Reference Guide T | 185©1989-2024 Lauterbach

<trace>.Chart.TASKVSINTR Time chart of task-related interrupts

Displays a time-chart for task-related interrupt service routines. This feature can only be used if ISR2 can be
traced based on the information provided by the ORTI file. Please refer to “OS Awareness Manual
OSEK/ORTI” (rtos_orti.pdf) for more information.

See also

■ <trace>.Chart ■ CTS.Chart.TASKVSINTR

Format: <trace>.Chart.TASKVSINTR [<trace_area>] [/<options> …]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL
Filter <item>
Sort <item>

<trace_area> For parameter descriptions and examples, see Parameters.

<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.
General Commands Reference Guide T | 186©1989-2024 Lauterbach

<trace>.Chart.TREE Display function chart as tree view

The result of this command shows a graphical chart tree of the function nesting.

See also

■ <trace>.Chart ■ CTS.Chart.TREE

Format: <trace>.Chart.TREE [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE
TASK <task>
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL
Filter <item>
Sort <item>
Address <address | range>

<trace_area> For parameter descriptions and examples, see Parameters.

<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.
General Commands Reference Guide T | 187©1989-2024 Lauterbach

<trace>.Chart.Var Variable chart

The command provides a graphical chart of variable accesses.

Example:

See also

■ <trace>.Chart

▲ ’Release Information’ in ’Legacy Release History’

Format: <trace>.Chart.Var [<trace_area>] [/<option>]

<option>: FILE
FlowTrace | BusTrace
TASK <task> | SplitTASK | MergeTASK
CORE <number> | SplitCORE | MergeCORE | JoinCORE
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
INCremental | FULL
Filter <item>
Sort <item>
Address <address | range>

<trace_area> For parameter descriptions and examples, see Parameters.

<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.

; Display a graphical chart of all variable accesses:
Trace.Chart.Var /Filter sYmbol mstatic1 /Filter CYcle Write

; Display a graphical chart of write accesses to the mstatic1 variable
Trace.Chart.Var /Filter sYmbol mstatic1 /Filter CYcle Write
General Commands Reference Guide T | 188©1989-2024 Lauterbach

<trace>.Chart.VarState Variable activity chart

Displays the contents of variables over the time. Each variable access must be sampled with one single
CPU cycle. If an address is not a variable it is displayed in form of a single marker. This can be used to track
program execution addresses.

Format: <trace>.Chart.VarState [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
Track | ZoomTrack
CORE <number> | SplitCORE | MergeCORE | JoinCORE
RecScale | TimeScale | TimeZero | TimeREF
FILL | FillFirst
DECODE <value> …
INCremental | FULL
Filter <item>
Sort <item>

<trace_area> For parameter descriptions and examples, see Parameters.

<option> Refer to <trace>.Chart for a description of the <trace>.Chart options.

FILL Repeat the value instead of displaying the value only directly after the
transition.

FillFirst Repeat the value without any space instead of displaying the value only
directly after the transition.

DECODE <value> Define a decoding for enumeration variables.
General Commands Reference Guide T | 189©1989-2024 Lauterbach

Example: use the /Filter option to filter out the variables

See also

■ <trace>.Chart

▲ ’Release Information’ in ’Legacy Release History’

Go
Break
Trace.Chart.VarState /Filter Address sYmbol.SECRANGE(.bss)
General Commands Reference Guide T | 190©1989-2024 Lauterbach

<trace>.CLOCK Clock to calculate time out of cycle count information

Set clock frequency for processor generated timestamps. If called without parameter, time measurements
using processor generated timestamps are disabled.

Some trace protocols can generate cycle count information. TRACE32 can calculate time information out of
the cycle count information if the appropriate clock frequency is specified with the Trace.CLOCK command.

For most trace protocols cycle count indicates the number of core clock cycles. That’s why <frequency> has
to be the core clock frequency. Please be aware the specifying the core clock frequency only makes sense if
the frequency was constant while recording.

Example for the ARM-ETM:

If the cores of an SMP run at different speeds, the frequency can be specified per core.

See also

■ ETM.CycleAccurate ■ RunTime ■ RunTime.state

Format: <trace>.CLOCK
<trace>.CLOCK <frequency>
<trace>.CLOCK <frequency0> <frequency1> … (SMP tracing only)

ETM.TImeMode CycleAccurate

Trace.CLOCK 800.MHz

ETM.TImeMode CycleAccurate

Trace.CLOCK 800.MHz 600.MHz 1.GHz
General Commands Reference Guide T | 191©1989-2024 Lauterbach

<trace>.ComPare Compare trace contents
[Examples]

Compares the trace contents. If the command <trace>.ComPare is used without arguments the previous
compare is repeated.

The compare function will set the pointers for the tracking option. All analyzer windows, which are in track
mode, will follow these pointers.

For valid channel names refer to the Processor Architecture Manuals.
.

Examples:

Format: <trace>.ComPare [<record_range>] [<record_number>] [{<items>}]
 [{/<options>}]

<options>: Tolerance <count>
FILE
Back

<item> Only the given <item> … are compared.

<record_range>,
<record_number>

If <record_range> and <record_number> are not used, a comparison of
the complete trace is performed.

FILE Compare the trace contents with the loaded file. See also Trace.FILE.

Back Compare backwards.

Tolerance <count> When external asynchronous data are traced, a jitter in the signal will result
in different sampling data. In this case the precision of the compare function
may be controlled by the option Tolerance.

; compare the current trace contents from record (500.--1000.) with the
; current trace contents starting at record number 5000. with regards to
; the address
Trace.ComPare (500.--1000.) 5000. Address

Sample clock

Signal

Reference

No difference Difference found
General Commands Reference Guide T | 192©1989-2024 Lauterbach

See also

■ IProbe.state ■ RunTime ■ RunTime.state

; load saved trace contents
Trace.FILE old_trace

; compare the current trace contents from record (500.--1000.) with the
; loaded trace contents starting at record number 300. with regards to
; the data on byte 0
Trace.ComPare (500.--1000.) 300. Data.B0 /FILE

; load saved trace contents
Trace.FILE old_trace

; compare the complete current trace contents with the complete
; loaded trace contents with regards to the data on byte 0
Trace.ComPare Data.B0 /FILE

; Repeat the previous compare
Trace.ComPare

; load saved trace contents
Trace.FILE old_trace

; compare the complete current trace contents with the complete
; loaded trace contents with regards to the data and address
Trace.ComPare Data Address /FILE

; compare against file TEST1 on line RXD
Port.FILE TEST1 ; load reference file
Port.ComPare RXD /Tolerance 3. /FILE ; compare line RXD
IF FOUND() ; print result if difference
 PRINT "Difference found" ; will be found
;…
Port.ComPare ; search for next difference
General Commands Reference Guide T | 193©1989-2024 Lauterbach

<trace>.ComPareCODE Compare trace with memory

Compares the trace with the memory contents. This command can e.g. be used to check if the loaded trace
matches the loaded binary in the TRACE32 Instruction Set Simulator.

Format: <trace>.ComPareCODE [<access class>] [/<option>]

<option> FILE
FlowTrace | BusTrace
General Commands Reference Guide T | 194©1989-2024 Lauterbach

<trace>.CustomTrace Custom trace

PRACTICE script examples of custom trace demos can be found in the following *_demo.cmm files:

• ~~/demo/customtrace/pipe_dll/dll_stp_demo.cmm

• ~~/demo/customtrace/pipe_dll/dll_csstm_demo.cmm

• ~~/demo/customtrace/pipe_dll/dll_itm_demo.cmm

For details about these files, refer to the readme.txt in the demo folder.

See also

■ <trace>.CustomTrace.<label>.COMMAND ■ <trace>.CustomTrace.<label>.ListString
■ <trace>.CustomTrace.<label>.UNLOAD ■ <trace>.CustomTraceLoad
■ Trace

▲ ’Software Trace with the ITM’ in ’CombiProbe for Cortex-M User’s Guide’
▲ ’Software Trace with the ITM’ in ’MicroTrace for Cortex-M User’s Guide’

<trace>.CustomTrace.<label>.COMMAND Send command to specific DLL

Sends a command to a specific DLL that has been assigned a user-defined <label>.

See also

■ <trace>.CustomTrace

<trace>.CustomTrace.<label>.ListString Display ASCII strings

Displays ASCII strings logged by the DLL.

See also

■ <trace>.CustomTrace

Format: <trace>.CustomTrace.<label>.COMMAND <command_line_args>
<trace>.PipePROTO.COMMAND [<cmd_line_args>] (deprecated)

Format: <trace>.CustomTrace.<label>.ListString
General Commands Reference Guide T | 195©1989-2024 Lauterbach

<trace>.CustomTrace.<label>.UNLOAD Unload a single DLL

Unloads a single DLL identified by <label>.

See also

■ <trace>.CustomTrace

<trace>.CustomTraceLoad Load a DLL for trace analysis/Unload all DLLs

Format 1: TRACE32 supports a mechanism for passing trace data to a shared library or DLL allowing for
custom trace handling. This command loads the shared object.

Format 2: When executed with an empty string, the command unloads all DLLs.

See also

■ <trace>.CustomTrace ■ Trace

Format: <trace>.CustomTrace.<label>.UNLOAD

Format 1: <trace>.CustomTraceLoad "<name>" <file>
<trace>.PipePROTO.load <dll_name> [<cmd_line_args>] (deprecated)

Format 2: <trace>.CustomTraceLoad ""
<trace>.PipePROTO (deprecated)

NOTE: Use the command <trace>.CustomTrace.<label>.UNLOAD to unload a single
DLL.

<name> A user-defined name for the DLL or shared object. TRACE32 supports
up to 8 loaded shared objects at any one time. The <name> is used to
differentiate them.

<file> A shared library or DLL which is appropriate for your host Operating
System. This DLL will receive trace data from TRACE32 and perform
custom analysis on it.
General Commands Reference Guide T | 196©1989-2024 Lauterbach

<trace>.DISable Disable the trace

Disables the trace.

See also

■ IProbe.state ■ RunTime ■ RunTime.state

Format: <trace>.DISable
General Commands Reference Guide T | 197©1989-2024 Lauterbach

<trace>.DisConfig Trace disassembler configuration

For background information and examples about how to use the <trace>.DisConfig command group, see:

• “PowerIntegrator Trace DisConfig Application Note” (powerintegrator_app_dc.pdf)

• www.lauterbach.com/publications/advanced_debug_with_powerintegrator.pdf

See also

■ IProbe.state ■ <trace>.DisConfig.CYcle
■ <trace>.DisConfig.FlowMode ■ <trace>.DisConfig.RESet
■ Integrator.DisConfig.LOAD

▲ ’General Function’ in ’PowerIntegrator Trace DisConfig Application Note’

<trace>.DisConfig.CYcle Trace disassemble setting

Format: <trace>.DisConfig.CYcle "<name> [, <ext>]" <cycle>

<cycle>: Read <definition>
Write <definition>
Fetch <definition>
FLOW <definition>
Fetch1 <definition>
ReadOrFetch <definition>
ReadSpecial <definition>
WriteSpecial <definition>
MERGE ["<name>" <offset>...]

<definition>: TransientStrobe [<time>] [<channels>]

Strobe[2|3] [[<channel> [Low | High | Falling | Rising]]

Strobe[2|3]Sample [Last | Next | AT number] [<channel> [Low | High |
 Falling | Rising]]

Address[2]Sample [Last | Next | AT number] [<channel> [Low | High |
 Falling | Rising]]

Address[2] [<channels>

Address[2]SHift <value>

AddressBase <address>
General Commands Reference Guide T | 198©1989-2024 Lauterbach

http://www.lauterbach.com/publications/advanced_debug_with_powerintegrator.pdf

The command <trace>.DisConfig.CYcle informs the trace software where to find program-fetch, data-read
and data-write cycles in a not qualified trace recording which was taken by the PowerProbe or
PowerIntegrator. With this information a standard bus trace listing can be generated.

See also

■ <trace>.DisConfig

Data[2]Sample [Last | Next | AT number] [<channel> [Low | High | Falling |
 Rising]]

Data[2] [<channels>]

Data[2]SHift <value>

DataUnknown

DataWidthUnknown

SpaceID | SpaceIDSample

Word | Group | Integrator.<x> | eXt.<x>

<name>, <ext> “name” is displayed in the cycle-type row of the Trace.List window. Its length is
limited to 7. The ”ext” is not displayed but used to differ between cycle types.
Example: “rd_byte,0” --> rd_byte.
This way it is possible to define different cycle types (rd_byte,0; rd_byte,1 …)
which are displayed in the same way (rd_byte)

<cycle> Is used by the trace disassembler
• Read: data read cycle
• Write: data write cycle
• Fetch: program fetch cycle
• Fetch1: first program fetch code of an instruction
• ReadOrFetch: data-read or program-fetch cycle. The disassembler will do

the final decision out of the program flow knowledge
• ReadSpecial: special read cycle (e.g. dma)
• WriteSpecial: special write cycle (e.g. dma)
• MERGE: merge the data of multiple cycles

<definition> Defines where to find a <cycle> in the trace, where to find the appropriate
address and data, and how to display them.
General Commands Reference Guide T | 199©1989-2024 Lauterbach

<trace>.DisConfig.FlowMode Enable FlowTrace analysis

Enables the analysis of certain FlowTrace protocols like ARM-ETM.

See also

■ <trace>.DisConfig

<trace>.DisConfig.RESet Reset trace disassemble setting

Resets the trace disassemble setting.

See also

■ <trace>.DisConfig

Format: <trace>.DisConfig.FlowMode [ETMB | ETMK | OFF]

OFF FlowTrace analysis disabled

ETMB ARM-ETM FlowTrace analysis enabled, Mictor probe AB in use.

ETMK ARM-ETM FlowTrace analysis enabled, Mictor probe JK in use.

Format: <trace>.DisConfig.RESet
General Commands Reference Guide T | 200©1989-2024 Lauterbach

<trace>.DRAW Plot trace data against time

The <trace>.DRAW command group can be used to plot the values of recorded trace data against time. An
introduction to the usage of the Trace.DRAW commands is provided in “Application Note for
Trace.DRAW” (app_trace_draw.pdf).

Keywords for <format>

Decimal Display the data as decimal number.

DecimalU Display the data as unsigned decimal number.

Hex Display the data as hexadecimal number.

HexS Display the data as signed hexadecimal number.

OCTal Display the data as octal number.

Float The following floating-point formats are available:
Ieee | IeeeQuad | IeeeRev | IeeeS | IeeeHalf | ArmHalf
IeeeXt80 | IeeeXt96 | IeeeXt96G
IeeeDbl | IeeeDblS | IeeeDblT |
MFFP | Pdp11 | Pdp11Dbl | RTOSUH | RTOSUHD |
Dsp16 | Dsp16C | Dsp16Fix | Dsp32Fix |
M56 | M560 | M561 | LACCUM |
Fract8 | Fract16 | Fract24 | Fract32 | Fract48 | Fract64 | Fract40G |
Fract72G
UFract8 | UFract16 | UFract24 | UFract32 | UFract48 | UFract64 |
MICRO | MICRO64 | MILLI | MILLI64 | NANO64 | PICO64

Byte, Word, ... See “Keywords for <width>”, page 202.
General Commands Reference Guide T | 201©1989-2024 Lauterbach

Keywords for <width>

General Options

Byte 8-bit

Word 16-bit

TByte 24-bit (tribyte)

Long 32-bit (long word)

PByte 40-bit (pentabyte)

HByte 48-bit (hexabyte)

SByte 56-bit (septuabyte)

Quad 64-bit (quad word)

FILE Visualize the trace contents loaded with the command <trace>.FILE.

BusTrace This option is usually not required. It switches off the FlowTrace decoder. In
the bus trace mode, all valid bus cycles are sampled.

RecScale The resolution on the x-axis is based on trace record numbers. This is the
default if timestamps are not available.

TimeScale The resolution on the x-axis is based on timestamps.

TimeZero Display the trace as a real-time display, time relative to the zero point.
For more information about the zero point refer to ZERO.

TimeREF Display the trace as a real-time display, time relative to the reference
point. For more information about the reference point refer to
<trace>.REF.

FIRST <address> Define which address contains the first part of the data value if the data
value cannot be sampled within one bus cycle (e.g. a 16 bit data value on a
8 bit data bus).

Track The cursor in the <trace>.DRAW window follows the cursor movement in
other trace windows. Default is a time tracking. If no time information is
available tracking to record number is performed. The zoom factor of the
<trace>.DRAW window is retained, even if the trace content changes.
General Commands Reference Guide T | 202©1989-2024 Lauterbach

Draw Options

See also

■ <trace>.DRAW.channel ■ <trace>.DRAW.Data
■ <trace>.DRAW.Var ■ CAnalyzer.<specific_cmds>
■ Data.DRAW ■ Data.DRAWFFT
■ Data.DRAWXY ■ Data.IMAGE
■ IProbe.state ■ Var.DRAW

▲ ’Introduction’ in ’Application Note for Trace.DRAW’
▲ ’Release Information’ in ’Legacy Release History’

ZoomTrack Same as option Track. If the tracking in performed with another
<trace>.DRAW window the same zoom factor is used.

Filter <filter_items> Filter the described item.

Points Display each data value as a dot.

Vector Connect the dots for the data values by vectors.

MarkedVector Same as Vector, with every trace record holding a data value marked with
a vertical line.

Steps Connect the dots for the data values by steps.

Impulses Draw each data value as a single pulse.

MinMax Display minimum and maximum values.

LOG Display the data values in a logarithmic format.

Color Remove the color legend when multiple addresses are displayed in the
<trace>.DRAW window.
General Commands Reference Guide T | 203©1989-2024 Lauterbach

<trace>.DRAW.channel Plot no-data values against time

Plot specified <item> against time. This command is mainly used to plot no-data items. Please refer
<trace>.DRAW.Data for a description of the different parameters and options.

Format: <trace>.DRAW.channel [<start> | <range>] [%<format>] [<items …>]
 [/<options>]
<trace>.Chart.Draw (deprecated)

<format>: Decimal. [<width>]
DecimalU. [<width>]
Hex. [<width>]
HexS. [<width>]
OCTal. [<width>]
Float. [Ieee | IeeeDbl | IeeeeXt | IeeeMFFP | …]
Byte | Word | Long | Quad | TByte | PByte | HByte | SByte

<width>: DEFault | Byte | Word | Long | Quad | TByte | PByte | HByte | SByte

<items>: ENERGY.Abs | POWER …

<options>: <draw_options> | FILE | BusTrace | RecScale | TimeScale | TimeZero |
TimeREF | FIRST <address> | Filter <filter_items> | Track | ZoomTrack

<draw_
options>:

Points | Vector | MarkedVector | Steps | Impulses | MinMax | LOG | Color

<filter_items>: <range> | <address> | <bitmask>

<start> Start point of the plot which could be a trace bookmark, a trace record
number or a time.

<range> Trace record range or time range displayed in the plot.

<format> Refer to “Keywords for <format>”, page 201.

<option> Refer to “General Options”, page 202 for a description of the general
options.
Refer to “Draw Options”, page 203 for a description of t<draw_
options>.
General Commands Reference Guide T | 204©1989-2024 Lauterbach

The example below shows a temperature measurement recorded by a logic analyzer. The
Trace.DRAW.channel command is used to show the temperature profile.

See also

■ <trace>.DRAW

▲ ’Release Information’ in ’Legacy Release History’
General Commands Reference Guide T | 205©1989-2024 Lauterbach

<trace>.DRAW.Data Plot data values against time

Plots one or more data values. An introduction to the usage of the Trace.DRAW.Data command is provided
in “Application Note for Trace.DRAW” (app_trace_draw.pdf).

Format: <trace>.DRAW.Data [<start> | <range>] [<hscale>] <vscale> <v_offset>
 {[%<format>] <data_address> | <data_range>} [/<options>]

<format>: Decimal. [<width>]
DecimalU. [<width>]
Hex. [<width>]
HexS. [<width>]
OCTal. [<width>]
Float. [Ieee | IeeeDbl | IeeeeXt | IeeeMFFP | …]
Byte | Word | Long | Quad | TByte | PByte | HByte | SByte

<width>: DEFault | Byte | Word | Long | Quad | TByte | PByte | HByte | SByte

<option>: <draw_options> | FILE | BusTrace | RecScale | TimeScale | TimeZero |
TimeREF | FIRST <address> | Filter <filter_items> | Track | ZoomTrack

<draw_
option>:

Points | Vector | MarkedVector | Steps | Impulses | MinMax | LOG | Color

<start> Start point of the plot which could be a trace bookmark, a trace record
number or a time.

<range> Trace record range or time range displayed in the plot.

<hscale> time scale of the x-axis e.g. 100.us

<vscale> Units per pixel of y-axis (floating point).

E.g. a signal has a max. height of 50 units shall be visualized window that
has a height of 400 pixels: 50 units divided by 400 pixels = 0.125

By default the scale factor is set so that the window displays the complete
possible value range for the selected variable.

<v_offset> Offset of y-axis (floating point). Default: 0.0.

<format> Refer to “Keywords for <format>”, page 201.

<data_address> The content at the specified data address(es) is displayed graphically.
The access width (Byte, Word, ...) has to be specified within the format.
General Commands Reference Guide T | 206©1989-2024 Lauterbach

<data_range> If no access width is specified, the access width is determined by the size
of the <data_range>.

<option> Refer to “General Options”, page 202 for a description general options.
Refer to “Draw Options”, page 203 for a description of <draw_
options>.
General Commands Reference Guide T | 207©1989-2024 Lauterbach

Examples:

; display 8-bit value at address 0x67C0
; restrict the display to the time range 60.ms--100.ms
; the option /TimeZero is used to display the trace as true time display
; relative to zero
Trace.DRAW.Data 60.ms--100.ms %Decimal.Byte 0x67C0 /TimeZero

; Display 8-bit unsigned value at address 0x67C0 starting at its first
; occurrence in the trace. Use horizontal time scale 100.us, vertical
; scale factor 1.9 and vertical offset 0x0

; find address 0x67C0 in the trace.
Trace.Find Address 0x67C0
; FOUND() returns TRUE if the address is found. TRACK.RECORD() returns
; the trace record number containing the found item
IF FOUND()
 Trace.Draw.Data TRACK.RECORD() 100.us 1.9 0.0 %DecimalU.Byte 0x67C0

; Plot graph for the specified record range.
Trace.DRAW.Data (-04254171.)--(-04246616.) %Hex.Word 0x67C0 /Track
General Commands Reference Guide T | 208©1989-2024 Lauterbach

See also

■ <trace>.DRAW

▲ ’Release Information’ in ’Legacy Release History’
General Commands Reference Guide T | 209©1989-2024 Lauterbach

<trace>.DRAW.Var Plot variable values against time

Plots the value changes of one or more variables against time, based on the recorded trace information. An
introduction to the usage of the Trace.DRAW.Var command is provided in “Application Note for
Trace.DRAW” (app_trace_draw.pdf).

Format 1: <trace>.DRAW.Var %[<format>] {<var>} [/<options>]

Format 2: <trace>.DRAW.Var [<start> | <range>] [<hscale>] <vscale> <v_offset>
 [%<format>] {<var>} [/<options>]

<format>: DEFault | STandDard | Decimal | Hex

<option>: <draw_options> | FILE | BusTrace | RecScale | TimeScale | TimeZero |
TimeREF | FIRST <address> | Filter <filter_items> | Track | ZoomTrack

<draw_
option>:

Points | Vector | MarkedVector | Steps | Impulses | MinMax | LOG

<start> Start point of the plot which could be a trace bookmark, a trace record
number or a time.

<range> Trace record range or time range displayed in the plot.

<hscale> time scale of the x-axis e.g. 100.us

<vscale> Units per pixel of y-axis (floating point).

E.g. a signal has a max. height of 50 units shall be visualized window that
has a height of 400 pixels: 50 units divided by 400 pixels = 0.125

By default the scale factor is set so that the window displays the complete
possible value range for the selected variable.

<v_offset> Offset of y-axis (floating point). Default: 0.0.

<format> Refer to “Keywords for <format>”, page 201.

<data_address> The content at the specified data address(es) is displayed graphically.
The access width (Byte, Word, ...) has to be specified within the format.
General Commands Reference Guide T | 210©1989-2024 Lauterbach

Examples:

See also

■ <trace>.DRAW

▲ ’Release Information’ in ’Legacy Release History’
▲ ’Filter and Trigger - Single-Core and AMP’ in ’Training AURIX Tracing’

<data_range> If no access width is specified, the access width is determined by the size
of the <data_range>.

<option> Refer to “General Options”, page 202 for a description general options.
Refer to “Draw Options”, page 203 for a description of <draw_
options>.

; plot value of a single variable
Trace.DRAW.Var %DEFault mstatic1

; plot values of two variables
; colors are assigned by TRACE32
Trace.DRAW.Var %DEFault mstatic1 mstatic2

; plot values of three variables
; colors are assigned by TRACE32
; <display_option> Steps
Trace.DRAW.Var %DEFault mstatic1 fstatic fstatic2 /Steps

; plot values of variable vchar for specified <record_range>
Trace.DRAW.Var (-30000.)--(-29000.) %DEFault vchar
General Commands Reference Guide T | 211©1989-2024 Lauterbach

<trace>.EXPORT Export trace data for processing in other applications

Using the <trace>.EXPORT command group, you can export trace data for processing in other applications.
Various export file formats are available, including ASCII, binary, PGT, VERILOG, etc.

See also

■ <trace>.SAVE ■ <trace>.EXPORT.ARTI
■ <trace>.EXPORT.ARTIAP ■ <trace>.EXPORT.Ascii
■ <trace>.EXPORT.Bin ■ <trace>.EXPORT.BRANCHFLOW
■ <trace>.EXPORT.CSVFunc ■ <trace>.EXPORT.cycles
■ <trace>.EXPORT.Func ■ <trace>.EXPORT.MDF
■ <trace>.EXPORT.MTV ■ <trace>.EXPORT.TASK
■ <trace>.EXPORT.TASKEVENTS ■ <trace>.EXPORT.TracePort
■ <trace>.EXPORT.VCD ■ <trace>.EXPORT.VERILOG
■ <trace>.EXPORT.VHDL ■ LA.IMPORT
■ RunTime ■ RunTime.state

▲ ’Release Information’ in ’Legacy Release History’

NOTE: The various export formats are primarily designed for import into other
applications.
Trace data exported with the <trace>.EXPORT.* commands can only be
imported back into TRACE32 if you inform the debugger about all the trace-
relevant circumstances.

We recommend the following approach if you want to view and analyze
recorded trace data in a subsequent TRACE32 session:
1. Save the trace data to file using <trace>.SAVE.
2. To load this file back into TRACE32, use <trace>.LOAD.
General Commands Reference Guide T | 212©1989-2024 Lauterbach

<trace>.EXPORT.ARTI Export trace data as ARTI for CP

Exports the trace contents to an ARTI file for AUTOSAR Classic Platform. White spaces are used as
delimiters.

See also

■ <trace>.EXPORT ■ <trace>.EXPORT.cycles ■ TASK.Create.RUNNABLE ■ TASK.List.RUNNABLES

▲ ’Export’ in ’Application Note Profiling on AUTOSAR CP with ARTI’

Format: <trace>.EXPORT.ARTI <file> [<trace_area>] [/<options>]

<option>: TRaceRecord
CORE
ENHanced

<file> The default extension of the file name is *.csv

TRaceRecord ARTI data are exported with trace record numbers.

CORE Only the trace information of the specified core is exported.

ENHanced For enhanced ARTI format.

TimeZero Exports the timestamp relative to ZERO (TRACE32 has Global zero point
time.zero, B::ZERO). Without this option, the exported timestamp starts
with zero at the first event.
General Commands Reference Guide T | 213©1989-2024 Lauterbach

<trace>.EXPORT.ARTIAP Export trace data as ARTI for AP
[build 141966 - DVD 02/2022]

Exports the trace contents for AUTOSAR Adaptive Platform. White spaces are used as delimiters.

See also

■ <trace>.EXPORT ■ <trace>.EXPORT.cycles

Format: <trace>.EXPORT.ARTIAP <file> [<trace_area>] [/<options>]

<option>: TRaceRecord
CORE

<trace> Currently only support for SystemTrace.

<file> The default extension of the file name is *.csv

TRaceRecord ARTI data are exported with trace record numbers.

CORE Only the trace information of the specified core is exported.
General Commands Reference Guide T | 214©1989-2024 Lauterbach

<trace>.EXPORT.Ascii Export trace data as ASCII

Exports the trace contents to an ASCII file. White spaces are used as delimiters.

Example:

The backslash \ is used as a line continuation character. No white space permitted after the backslash.

See also

■ <trace>.EXPORT ■ <trace>.EXPORT.cycles

Format: <trace>.EXPORT.Ascii <file> [<record_range>] [<items> …] [/<options>]

<option>: FILE | BusTrace
FILTER
ShowRecord
Append

<file> The default extension of the file name is *.ad.

FILE Exports the trace contents loaded with the command <trace>.FILE.

BusTrace The trace works as a bus trace. This option is usually not required.

FILTER Exports only records matching the filter. For an example, see below.

ShowRecord Includes the trace record numbers in the export file.

Append Appends trace contents at the end of the file.

<option> For a description of the other <options>, see <trace>.EXPORT.flow.

Trace.EXPORT.Ascii ~~\myfile.ad (-120000.)--(-1.) /ShowRecord \
 /FILTER ADDRESS Var.RANGE(sieve)
General Commands Reference Guide T | 215©1989-2024 Lauterbach

<trace>.EXPORT.Bin Export trace data as binary file

Exports the trace contents to a file in binary format. This command is used to export logic analyzer
(PowerProbe, Integrator, IProbe) recordings. The data is stored in little endian format.

The file starts with a text header describing item names and byte size of each item. Each record begins with
an 8-byte timestamp (1 ns per tick), followed by the selected items in the order as given in the command.
Each item has a minimum width of 1 byte (max. 8 byte). The following options are available:

Example: This script export data from a parallel port recorded with the IProbe.

Format: <trace>.EXPORT.Bin <file> [<record_range>] [<items> …] [/<options>]

<option>: FILE | BusTrace | NoDummy | NoHeader | NoTimeStamps | NoFetch

FILE Exports the trace contents loaded with <trace>.FILE.

BusTrace The trace works as a bus trace. This option is usually not required.

NoDummy Exclude records which do not hold flow information (do not use when
exporting logic analyzer data).

NoHeader The resulting file does not contain a header.

NoTimeStamps The records do not contain the 8 byte timestamp.

NoFetch Exclude control cycles from export.

;define the data word of the port, connected to signals ip.00...ip.07
NAME.WORD w.PARPORT ip.00 ip.01 ip.02 ip.03 ip.04 ip.05 ip.06 ip.07

;export analyzer data
IProbe.EXPORT.Bin pardat.ad W.PARPORT /NoHeader

;show resulting file: one record has 9 byte (w.PARPORT has 1 bytes)
DUMP pardat.ad /WIDTH 9
General Commands Reference Guide T | 216©1989-2024 Lauterbach

See also

■ <trace>.EXPORT ■ <trace>.EXPORT.cycles

A Timestamp B Data of W.PARPORT

A B
General Commands Reference Guide T | 217©1989-2024 Lauterbach

<trace>.EXPORT.BRANCHFLOW Export branch events from trace data

Exports the branch events from the trace data.

See also

■ <trace>.EXPORT ■ <trace>.EXPORT.cycles

Format: <trace>.EXPORT.BRANCHFLOW <file> [<record_range>] [/<options>]

<option>: FILE | BusTrace | TRaceRecord | NOINNER | NOSYMBOL | CALLer

FILE Exports the trace contents loaded with <trace>.FILE.

BusTrace The trace works as a bus trace. This option is usually not required.

TRaceRecord Branch events are exported with trace record numbers.

NOINNER Only branch events that jump to the current symbol are exported. The
internal branch is not exported.

NOSYMBOL Branch events are exported with addresses instead of symbols.

CALLer Branch events are exported with caller events.
General Commands Reference Guide T | 218©1989-2024 Lauterbach

<trace>.EXPORT.CSVFunc Export the function nesting to a CSV file

Exports the function nesting of the recorded trace data to a CSV file for processing by an external tool.

Example:

See also

■ <trace>.EXPORT ■ <trace>.EXPORT.cycles

▲ ’Release Information’ in ’Legacy Release History’

Format: <trace>.EXPORT.CSVFunc <file> [<trace_area>]

<trace_area>: <string>
<range>
<value>
<time_range>

<file> The default extension of the file name is *.csv.

;export the entire function nesting
Analyzer.EXPORT.CSVFunc ~~\csvfunc_all.csv

EDIT ~~\csvfunc_all.csv
General Commands Reference Guide T | 219©1989-2024 Lauterbach

<trace>.EXPORT.cycles Export trace data

Exports the trace contents for postprocessing by an external analysis tool.

The trace contents can only be exported when the trace is in OFF or break state. Please refer to the
Trace.state command for more information.

The default export format is binary. A description of the binary format is given at the end of this command
description.

In the case of an SMP system, the following options are provided:

Format: <trace>.EXPORT.cycles <file> [<record_range>] [/<options>]

<option>: FILE | BusTrace | ZIP | NoDummy
CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)

<file> The default extension of the file name is *.ad.

FILE Exports the trace contents loaded with <trace>.FILE.

BusTrace The trace works as a bus trace. This option is usually not required.

ZIP File is compressed with the gzip archive format.

NoDummy Exclude records which do not hold flow information (do not use when
exporting logic analyzer data).

MergeCORE
(default)

The trace information for all cores is exported.

SplitCORE Same as MergeCORE.

JoinCORE Same as MergeCORE.

CORE <number> Only the trace information for the specified core is exported.
General Commands Reference Guide T | 220©1989-2024 Lauterbach

Binary File Format Header and Data Structure

When an exported file contains a file header (not the case e.g. for /ByteStream, /CoreByteStream, ...) it
has the following format:

Byte Nr. Meaning

0..31 Export file header string (“trace32 analyzer export data“ 0x1a 0x00)

32 Reserved (set to zero for IMPORT)

33 CPU code

34 Timestamp available flag

35 Prestore mode flag

36 Trigger unit available flag

37 Port analyzer available/mode flag

38 Analyzer type

39 Reserved

40 Length of one record in bytes (0x20)

41..43 Reserved

44..47 Number of records in file (if record number can exceed 32 bits, e.g.
Trace.Mode.STREAM, calculate number of records based on file size)

48..51 Record number of last recorded record

52..55 Reference record number

56..63 Reserved

Byte Nr. Meaning

0..3 Cycle information flags:

Bit 0: data cycle

Bit 1: program cycle

Bit 6: write cycle

Bit 8:
Power Architecture MPC5XXX: read/write cycle of peripheral NEXUS bus master

Bit 21: FLOW ERROR

Bit 25: FIFO OVERFLOW

Bit 31: OWNERSHIP Cycle
General Commands Reference Guide T | 221©1989-2024 Lauterbach

See also

■ <trace>.EXPORT ■ <trace>.EXPORT.ARTI
■ <trace>.EXPORT.ARTIAP ■ <trace>.EXPORT.Ascii
■ <trace>.EXPORT.Bin ■ <trace>.EXPORT.BRANCHFLOW
■ <trace>.EXPORT.CSVFunc ■ <trace>.EXPORT.Func
■ <trace>.EXPORT.MDF ■ <trace>.EXPORT.MTV
■ <trace>.EXPORT.TASK ■ <trace>.EXPORT.TASKEVENTS
■ <trace>.EXPORT.TracePort ■ <trace>.EXPORT.VCD
■ <trace>.EXPORT.VERILOG ■ <trace>.EXPORT.VHDL

▲ ’Release Information’ in ’Legacy Release History’

4 Data byte enable mask
Bit 0: Byte 0 valid
Bit 1: Byte 1 valid
…

5 CPU specific information
SH2A I-bus marker (bit meaning is device specific):
Bit 0: iadma bus
Bit 1: idma bus
Bit 2: icpu1 bus
Bit 3: icpu2 bus
ARM Bustrace:
Bit 0: EXEC signal (relevant only when SYStem.Option.EXEC is set to ON)
ARM Flowtrace (ETM/PTM):
Bit 1: Thumb Mode
Bit 2: ARM Mode
Bit 3: AArch64 Mode
Bit 5: not executed
Bit 6: executed

6 Reserved

7 Core number (on SMP targets)

8..15 Address (64 bits)

16..23 Data (64 bits)

24..31 Timestamp (time relative to ZERO in ns)

Byte Nr. Meaning
General Commands Reference Guide T | 222©1989-2024 Lauterbach

<trace>.EXPORT.Func Export function nesting

Exports the function nesting from the trace contents to a binary file.

Exported function nestings contain the function entries and exits as well as task switches with task entries
and exits. Function nestings are displayed in the <trace>.ListNesting window.

Example:

See also

■ <trace>.EXPORT ■ <trace>.EXPORT.cycles

Format: <trace>.EXPORT.Func <file> [<record_range>] [/<options>]

<option>: FILE | BusTrace | ZIP

<file> The default extension of the file name is *.ad.

FILE Exports the trace contents loaded with <trace>.FILE.

BusTrace The trace works as a bus trace. This option is usually not required.

ZIP File is compressed with the gzip archive format.

Analyzer.EXPORT.Func ~~~\trace.ad (-131072.)--(-100000.)
General Commands Reference Guide T | 223©1989-2024 Lauterbach

<trace>.EXPORT.MDF Export trace data as MDF

Exports the trace contents to an MDF file as specified by the “ASAM Run-Time Interface Base Standard”
(ASAM ARTI BS).

See also

■ <trace>.EXPORT ■ <trace>.EXPORT.cycles

▲ ’Export’ in ’Application Note Profiling on AUTOSAR CP with ARTI’

Format: <trace>.EXPORT.MDF <file> [<trace_area>] [/<options>]

<option>: STanDard
ENHanced
ZIP

<file> The default extension of the file name is *.mf4

STanDard Default.
Uses the standard task state machine, as specified in the ASAM
standard.

ENHanced Uses the enhanced task state machine, as specified in the ASAM
standard.

ZIP File is compressed with the gzip archive format.
General Commands Reference Guide T | 224©1989-2024 Lauterbach

<trace>.EXPORT.MTV Export in MCDS Trace Viewer format
TriCore, GTM, C166

Exports a trace recording in the MCDS Trace Viewer format.

See also

■ <trace>.EXPORT ■ <trace>.EXPORT.cycles

Format: <trace>.EXPORT.MTV <file> [<record_range>] [/<options>]

<option>: FILE | BusTrace | NoDummy

<file> The default extension of the file name is *.mcds.

FILE Exports the trace contents loaded with <trace>.FILE.

BusTrace The trace works as a bus trace. This option is usually not required.

NoDummy Exclude records which do not hold flow information (do not use when
exporting logic analyzer data).
General Commands Reference Guide T | 225©1989-2024 Lauterbach

<trace>.EXPORT.TASK Export task switches

Exports task switching information from the trace contents to a binary file.

See also

■ <trace>.EXPORT ■ <trace>.EXPORT.cycles

Format: <trace>.EXPORT.TASK <file> [<record_range>] [/<options>]

<option>: FILE | BusTrace | ZIP

<file> The default extension of the file name is *.ad.

FILE Exports the trace contents loaded with <trace>.FILE.

BusTrace The trace works as a bus trace. This option is usually not required.

ZIP File is compressed with the gzip archive format.
General Commands Reference Guide T | 226©1989-2024 Lauterbach

<trace>.EXPORT.TASKEVENTS Export task event to CSV

Generates a CSV file that contains task event (state) information and time information.

For details refer to “Trace Export for Third-Party Timing Tools” (app_timing_tools.pdf).

On TriCore AURIX there’s a solution available for the Vector AUTOSAR tools that uses an automated
instrumentation to trace task states and runnables on all cores with minimum overhead. See
~~/demo/env/vector/rte_profiling.

See also

■ <trace>.EXPORT ■ <trace>.EXPORT.cycles

▲ ’Release Information’ in ’Legacy Release History’

Format: <trace>.EXPORT.TASKEVENTS <file> [<record_range>] [/<options>]

<option>: TRaceRecord | NOSTATEDATA | NOSTATEFLOW
CORE <number>

<file> The default extension of the file name is *.csv.

TRaceRecord Trace information is exported with trace record numbers.

NOSTATEDATA Data trace based Task event (state) information is not exported.

NOSTATEFLOW Flow trace based Task event (state) information is not exported.

CORE <number> Only the trace information of the specified core is exported.
General Commands Reference Guide T | 227©1989-2024 Lauterbach

<trace>.EXPORT.TracePort Export trace packets as recorded at trace port

Exports the recorded trace data in a low-level binary format. Available options depend on the used
processor architecture and trace port.

Format: <trace>.EXPORT.TracePort <file> [<record_range>] [/<options>]

<option>: FILE

ByteStream | CoreByteStream | TimedByteStream | TPStream | Timed-
CoreByteStream | NibbleStream

<file> The default extension of the file name is *.bin.

ByteStream Exports the byte stream broadcast by the ETM (same as TP column if
command Trace.List TP DEFault is used).

CoreByteStream Similar to the option ByteStream, but strips away synchronisation
patterns (continuous mode) and trace source identifiers (e.g. in case of
multicore systems). The exported data is that shown in the TPC column
in the command Trace.List TPC DEFault.

By default, the data corresponding to the currently active core is exported
(selected by the CORE command), but this can be overridden by the
/CORE <number> option.

TimedByteStream Exports the byte stream broadcast by the ETM together with the
Time.Zero timestamp information.
For a description of the file format, see below.

TPStream Power Architecture only. Exports NEXUS packets received through
Aurora interface.

TimedCoreByteS-
tream

Exports the unwrapped byte stream broadcast by the ETM together with
the Time.Zero timestamp information. This format also supports multiple
cores in SMP configuration.

NibbleStream Exports just pure STP data, excluding non-STP headers (STP = System
Trace Protocol).
General Commands Reference Guide T | 228©1989-2024 Lauterbach

File Format produced by the option TimedByteStream

The TimedByteStream format consists of two-byte records; possible formats are:

• 0y0xxxxxxx <tracedata_byte>

- xxxxxxx: Time relative to previous records (in nanoseconds).

• 0y10xxxxxx 0yxxxxxxxx

- xxxxxx: Time relative to previous record (bits 7 to 12).

- xxxxxxxx: Upper bits (bits 13 to 20).

• 0y11000xxx 0yxxxxxxxx

- xxx: Selects which part of the absolute time is transferred.

- xxxxxxxx: Byte of absolute timestamp.

• 0y11001000 0yxxxxxxxx

- xxxxxxxx: Selects to which core the following data belongs (only in CoreByteStream with
SMP).

See also

■ <trace>.EXPORT ■ <trace>.EXPORT.cycles

▲ ’Release Information’ in ’Legacy Release History’
General Commands Reference Guide T | 229©1989-2024 Lauterbach

<trace>.EXPORT.VCD Export trace data in VCD format

Exports the trace contents collected by the TRACE32 logic analyzers PowerProbe and PowerIntegrator to a
file in VCD format.

See also

■ <trace>.EXPORT ■ <trace>.EXPORT.cycles

Format: <trace>.EXPORT.VCD <file> [<record_range>] [<items> …] [/<option>]

<option>: FILE | NoDummy | BusTrace

<file> The default extension of the file name is *.vcd.

FILE Exports the trace contents loaded with <trace>.FILE.

BusTrace The trace works as a bus trace. This option is usually not required.

NoDummy Exclude records which do not hold flow information (do not use when
exporting logic analyzer data).
General Commands Reference Guide T | 230©1989-2024 Lauterbach

<trace>.EXPORT.VERILOG Export trace data in VERILOG format

Exports the trace contents collected by the TRACE32 logic analyzers PowerProbe and PowerIntegrator to a
file in VERILOG format.

See also

■ <trace>.EXPORT ■ <trace>.EXPORT.cycles

Format: <trace>.EXPORT.VERILOG <file> [<record_range>] [<items> …] [/<option>]

<option>: FILE | NoDummy | BusTrace

<file> The default extension of the file name is *.v.

FILE Exports the trace contents loaded with <trace>.FILE.

BusTrace The trace works as a bus trace. This option is usually not required.

NoDummy Exclude records which do not hold flow information (do not use when
exporting logic analyzer data).
General Commands Reference Guide T | 231©1989-2024 Lauterbach

<trace>.EXPORT.VHDL Export trace data in VHDL format

Exports the trace contents collected by the TRACE32 logic analyzers PowerProbe and PowerIntegrator to a
file in VHDL format.

See also

■ <trace>.EXPORT ■ <trace>.EXPORT.cycles

<trace>.ExtractCODE Extract code from trace

Extracts code from trace and writes it to the memory.

Format: <trace>.EXPORT.VHDL <file> [<record_range>] [<items> …] [/<option>]

<option>: FILE | NoDummy | BusTrace

<file> The default extension of the file name is *.vhd.

FILE Exports the trace contents loaded with <trace>.FILE.

BusTrace The trace works as a bus trace. This option is usually not required.

NoDummy Exclude records which do not hold flow information (do not use when
exporting logic analyzer data).

Format: <trace>.ExtractCODE [<access class>] [/<option>]

<option>] FILE
BusTrace | FlowTrace
General Commands Reference Guide T | 232©1989-2024 Lauterbach

<trace>.FILE Load a file into the file trace buffer

Loads trace data from a file into a dedicated file trace buffer on the host. Typically this feature is used to
analyze data in a simulator or to compare different recordings.

Example: To use the file trace buffer as source for trace-related commands, the commands need to be
invoked with the additional parameter /FILE

Trace-related commands without the parameter /FILE keep operating on the trace data stored in the
“normal” trace buffer which is filled when recording data using the analyzer hardware (e.g. PowerTrace,
PowerProbe, PowerIntegrator).

Format: <trace>.FILE <file> [/Config]

<file> The default extension of the file name is *.ad.

Config Restore analyzer and NAME settings contained in <file>. Only applicable
for Trace.METHOD Probe and Trace.METHOD Integrator.

Trace.FILE myfile.ad
Trace.List /FILE

A Windows working on trace contents loaded with the Trace.FILE command are marked with a red label
FILE in the bottom-left corner:

A

General Commands Reference Guide T | 233©1989-2024 Lauterbach

Using the file trace buffer and the “normal” trace buffer concurrently allows to compare trace data stored in a
file from a previous recording with recently recorded data as shown in the following example:

See also

■ <trace>.LOAD ■ IProbe.state ■ RunTime ■ RunTime.state

▲ ’Release Information’ in ’Legacy Release History’

Trace.FILE test4 ; load trace contents from test4.ad

Trace.List /FILE ; display loaded trace contents

Trace.Chart.sYmbol /FILE ; works on loaded trace data

; compare the recently recorded trace with the trace contents loaded
; from test4.ad regarding to the addresses
Trace.ComPare , Address /FILE

NOTE: In addition to Trace.FILE there is a command Trace.LOAD for loading trace
data from a file into the “normal” trace buffer. Therefore data loaded with
Trace.LOAD is treated as if it was recently recorded by the analyzer hardware.
As a consequence all standard trace commands automatically work on the
loaded via Trace.LOAD (without specifying additional parameters).
General Commands Reference Guide T | 234©1989-2024 Lauterbach

<trace>.Find Find specified entry in trace
[Examples]

Searches for matching items in the given range of trace records. The default search range is the complete
trace. When the command is invoked without parameters, the previous search is repeated.

If the search finds a matching trace record, the PRACTICE function FOUND() will return TRUE(). If a
matching trace record was found, TRACK.RECORD() returns the record number of the matching record.

Details about the <trace>.Find command as well as examples can be found in “Application Note for
Trace.Find” (app_trace_find.pdf).

Format: <trace>.Find [<record_number> | <record_range>] [<item> …] [/<options>]

<item>:
(mostly with
specified
value)

Address <address> | <address_range>
Address.MATCH <address> | <address_range>
FAddress <address> | <address_range>
Data <value> | <value_range>
Data !<value> | !<value_range>
Data <value>||<value>||…
Data <value_range>||<value_range>||…
CYcle <cycle_type>
Var
GROUP <group_name>
TIme.Back <time_range>
TIme.Zero <time_range>
TIme.AddressBack <time_range>
TIme.AddressFore <time_range>

<item>:
(special
events)

EXCEPTION | INTERRUPT | TRAP
FIFOFULL | FLOWERROR | TRACEENABLE
CORE | IGNORE | Var

OR
|| (Address item only)
AT <offset> (bus trace only)
CHANGE <item>

<option>: Back
FILE
NoFind
ALL
FlowTrace | BusTrace
TASK <task>
General Commands Reference Guide T | 235©1989-2024 Lauterbach

See also

■ <trace>.FindAll ■ <trace>.FindChange ■ <trace>.FindProgram ■ IProbe.state
■ RunTime ■ RunTime.state ❏ FOUND() ❏ FOUND.COUNT()

▲ ’The Trace Find Dialog’ in ’Application Note for Trace.Find’
▲ ’Introduction’ in ’Application Note for Complex Trigger Language’
▲ ’Release Information’ in ’Legacy Release History’

ALL Searches for all occurrences and displays the result in the message line.

The number of occurrences can be returned with the function
FOUND.COUNT().

Back Search backwards.

FILE Takes trace memory contents loaded by Trace.FILE.

NoFind Set up search, but don’t search. Search can be done at a later point by
using the <trace>.Find command without parameters.

FlowTrace The trace works as a program flow trace. This option is usually not
required.

BusTrace The trace works as a bus trace. This option is usually not required.

TASK <task> Filters search results for selected task.
General Commands Reference Guide T | 236©1989-2024 Lauterbach

<trace>.FindAll Find all specified entries in trace

Searches for and displays all entries matching the item specification. Without range, the complete trace
memory is searched for matching entries. Details about the <trace>.FindAll command can be found in
“Application Note for Trace.Find” (app_trace_find.pdf).

Example:

See also

■ <trace>.Find ■ <trace>.FindChange ■ IProbe.state ■ RunTime
■ RunTime.state ❏ FOUND() ❏ FOUND.COUNT()

▲ ’Introduction’ in ’Application Note for Complex Trigger Language’
▲ ’Release Information’ in ’Legacy Release History’

Format: <trace>.FindAll [<record_number> | <record_range>] <items> … [/<options>]

<option>: Back
FILE
FlowTrace | BusTrace
List
Track
TASK <task>

Back The option Back reverses the direction of the search command.

BusTrace The trace works as a bus trace. This option is usually not required.

FILE Takes trace memory contents loaded by Trace.FILE.

FlowTrace The trace works as a program flow trace. This option is usually not
required.

List Change the default display of the result.

TASK <task> Filters search results for selected task.

Track The cursor in the <trace>.FindAll window follows the cursor movement in
other trace windows.

Trace.FindAll , sYmbol sieve /List TIme.Zero DEFault
General Commands Reference Guide T | 237©1989-2024 Lauterbach

<trace>.FindChange Search for changes in trace flow
.

Searches for entries in the given range where the specified items have new values. Without range the entry
is searched within the complete trace memory. Without items the command searches for changes in
program flow. This is useful to search for the end of a complex program loop, or in general to search for
“something happens” in a traced program flow.

See also

■ <trace>.Find ■ <trace>.FindAll ■ IProbe.state ■ RunTime
■ RunTime.state

Format: <trace>.FindChange [<record_number> | <record_range>] [{<items>]}
 [/<options>]

<items>: OR
<channels>
AT <offset>

<option>: Back
FILE
FlowTrace | BusTrace
NoFind
ALL

Back Reverses the direction of the search command.

FILE Takes trace memory contents loaded by Trace.FILE.

FlowTrace The trace works as a program flow trace. This option is usually not
required.

BusTrace The trace works as a bus trace. This option is usually not required.

ALL Searches for all occurrences and displays the result in the message line.

The number of occurrences can be returned with the function
FOUND.COUNT().

NoFind Set up search, but don’t search. Search can be done at a later point by
using the <trace>.FindChange command without parameters.
General Commands Reference Guide T | 238©1989-2024 Lauterbach

<trace>.FindProgram Advanced trace search

Opens the <trace>.FindProgram editor window, where you can create an advanced trace search program
using the Complex Trigger Language (CTL). The editor provides syntax highlighting, configurable auto-
indentation and an online syntax check. The input is guided by softkeys.

Example: find all read accesses to the variable mstatic1 in the trace within the function func2c

See also

■ <trace>.Find ■ <trace>.FindReProgram ■ <trace>.FindViewProgram

▲ ’Introduction’ in ’Application Note for Complex Trigger Language’

Format: <trace>.FindProgram [<file>]

Buttons common to all TRACE32 editors:

A For button descriptions, see EDIT.file.

Buttons specific to this editor:

B Compile performs a syntax check and, if an error is found, displays an error message.
If the file is error free, then the advanced trace search is programmed.

C Executes Trace.Find command.

D Opens a Trace.FindAll window with all occurence in the trace.

E Opens the Trace.FindViewProgram window showing the programming resources.

F Commands for advanced trace search programming.

A

F

B C D E
General Commands Reference Guide T | 239©1989-2024 Lauterbach

<trace>.FindReProgram Activate advanced existing trace search program

Activates an existing advanced trace search program file.

See also

■ <trace>.FindProgram

▲ ’Introduction’ in ’Application Note for Complex Trigger Language’

<trace>.FindViewProgram State of advanced trace search programming

Opens a windows that shows the state of the advanced trace search programming.

See also

■ <trace>.FindProgram

▲ ’Introduction’ in ’Application Note for Complex Trigger Language’

Format: <trace>.FindReProgram [<file>]

Format: <trace>.FindViewProgram
General Commands Reference Guide T | 240©1989-2024 Lauterbach

<trace>.FLOWPROCESS Process flowtrace

Processes all trace data in the analyzer and calculates the instruction flow for all of it. This is in contrast to
<trace>.FLOWSTART which discards the processing results and thus indirectly causes a reprocessing of
the limited set of trace data required to draw the currently open windows (reprocessing on demand).

The command is used mostly for diagnostic purposes.

<trace>.FLOWSTART Restart flowtrace processing

Discards all results from previous decoding of instruction flow. This indirectly causes a reprocessing of the
limited set of trace data required to draw the currently open windows (reprocessing on demand). Effectively
the decoding of flow information is done again “from the start”.

The command is typically used when the memory contents at the time of decoding was wrong and the
decoding is therefore incorrect (contains flow errors). The command is executed after providing a correct
memory image (e.g. by activating chip selects) to re-initialize the flow processing.

The optional address parameter can be used to indicate the address of the first instruction executed by the
processor. In this way the debugger can correctly decode code sequences even before the first sync
message appears in the trace stream.

See also

❏ FOUND()

Format: <trace>.FLOWPROCESS [<address>]

Format: <trace>.FLOWSTART [<address>]
General Commands Reference Guide T | 241©1989-2024 Lauterbach

<trace>.Get Display input level

Displays the current state of all input lines. The format of the channel definition is similar to the <trace>.View
command. This command can be executed, while the port analyzer is running.

For valid channel names refer to the Processor Architecture Manuals.

Examples:

Format: <trace>.Get [%<format>] [<item> …]

<items>: %<format>
DEFault | ALL | CPU | LINE | PORTS
Run
CYcle | Data[.<subitem> | BDATA | List[.<subitem>]
Address | BAddress | FAddress
| sYmbol | sYmbolN | PAddress | PsYmbol | Var
TIme[.<subitem>]
FUNC | FUNCR | FUNCVar | IGNORE
LeVel | MARK[.<marker> | FLAG[.<flag_index>]
Trigger | Trigger.A | Trigger.B
SPARE
<special_lines>

<format>: Ascii | BINary | Decimal | Hex | Signed | Unsigned
HighLow | Timing
TimeAuto | TimeFixed
LEN <size>

<option>: FILE
Track
FlowTrace | BusTrace
Mark <item>

; Display the state of all port lines in hex and HIGH/LOW format.
Port.Get
General Commands Reference Guide T | 242©1989-2024 Lauterbach

See also

■ IProbe.state

; Display the state of port lines P2 in binary format, lines P3.0, P3.1
; and P3.2 in timing waveform, port lines P5 in decimal format, port
; lines P4 in hex format and port PX in ASCII format.Port.Get

Port.Get p.2 p.30 p.31 p.32 %Decimal p.5 %Hex p.4 %Ascii p.x

; Display the state of all port lines in timing waveform.
Port.Get ALL
General Commands Reference Guide T | 243©1989-2024 Lauterbach

<trace>.GOTO Move cursor to specified trace record
[Examples]

Goes to the specified trace record in a Trace.* window by moving the cursor to that trace record.
Alternatively, click the Goto button in a Trace.* window, and enter a record number, a time index, or the
name of a trace bookmark.

Description of Buttons in the Trace Goto Dialog

Format: <trace>.GOTO "<bookmark>" | <record_number> | <time> [/<options>]

<option>: FILE
FlowTrace | BusTrace | CORE <number>

A To go to a trace <bookmark>, enclose the bookmark name in quotation marks.

B To go to a trace <record_number>, append a period (.). Mind the + or - sign of the record number.

C To go to a <time>, prepend a plus or minus sign and append the unit of measurement. To view the
<time>, include the TIme.ZERO column in the Trace.List command, as shown in the example
below.

BusTrace The trace works as a bus trace. This option is usually not required.

FILE Takes trace memory contents loaded by Trace.FILE.

FlowTrace The trace works as a program flow trace. This option is usually not
required.

CORE The goto operation takes the specified core number into account. Only
available for SMP multicore tracing.

Previous / Next Go to the previous / next user-defined trace bookmark.
Trace bookmarks are created with Trace.BookMark.

First / Last Go to the first / last trace record.

Trigger Go to the trigger record.

Ref Go to the reference point, which has been set with the Trace.REF
command.
You can also set the reference point by right-clicking in a Trace.* window
and pointing to Set Ref in the Trace popup menu.

A B C
General Commands Reference Guide T | 244©1989-2024 Lauterbach

Examples

The Trace.List window is always opened with the Track option. Thanks to the Track option, the subsequent
Trace.GOTO command scrolls to the desired trace record in the Trace.List window.

Example 1: Go to a <record_number>.

Example 2: Go to a trace <bookmark>.

Example 3: Go to a <time> index.

See also

■ <trace>.BookMark ■ <trace>.REF
■ <trace>.TRACK ■ BookMark
■ IProbe.state ■ RunTime
■ RunTime.state ❏ Analyzer.RECORD.ADDRESS()
❏ Analyzer.RECORD.DATA() ❏ Analyzer.RECORD.OFFSET()
❏ Analyzer.RECORDS() ❏ Analyzer.REF()

Zero Go to the zero reference point, which has been set with the ZERO.offset
command.
You can also set the zero reference point by right-clicking in a Trace.*
window and pointing to Set Zero in the Trace popup menu.

Track Go to the last tracked record.

;open the Trace.List window
Trace.List /Track

;go to this <record_number> in the Trace.List window
Trace.GOTO -12000.

;create a trace bookmark named 'BM1' for record -14000.
Trace.BookMark "BM1" -14000.

;open the Trace.List window
Trace.List /Track

;go to this <bookmark> in the Trace.List window
Trace.GOTO "BM1"

; <first_column> <other_columns>
Trace.List TIme.ZERO DEFault /Track

;go to this <time> in the Trace.List window
Trace.GOTO -5.000ms
General Commands Reference Guide T | 245©1989-2024 Lauterbach

<trace>.Init Initialize trace

The contents of the trace memory/streaming file is erased. All user setups, like the trace mode or trace
memory size, remain unchanged.

If the chip includes an onchip trigger unit, counters and trigger levels are cleared. The detailed behavior
strongly depends on the onchip trigger unit.

The trace is in OFF state, after a Trace.Init was executed.

See also

■ <trace>.Arm ■ <trace>.AutoInit ■ IProbe.state ■ RunTime
■ RunTime.state

▲ ’Release Information’ in ’Legacy Release History’

<trace>.JOINFILE Concatenate several trace recordings

Concatenates several trace recordings to increase the volume of trace information to be analyzed.

Format: <trace>.Init

Format: <trace>.JOINFILE <file> [<records>] [/<option>]

<records>: <string> | <range> | <value> | <time_range>

<option>: ZIP | NoCompress | Compress | QuickCompress | TIMEGAP
General Commands Reference Guide T | 246©1989-2024 Lauterbach

The reference point is automatically set to the start of the last added trace recording.

Time gaps between the trace recording result in a large TIme.Back time (see screenshot above). The option
TIMEGAP <time> allows a seamless concatenation with regards to the timestamp.

Trace.SAVE my_joinfile.ad ; save current trace
; contents to file

Trace.FILE my_joinfile.ad ; load trace contents
; from file

;… ; run program to fill the
; trace

Trace.JOINFILE my_joinfile /TIMEGAP 0.1us ; append current trace
; contents to loaded
; trace contents

;… ; run program to fill the
; trace

Trace.JOINFILE my_joinfile /TIMEGAP 0.1us ; append current trace
; contents

Trace.Chart.sYmbol /FILE ; display timing for
; concatenated trace

;…

Trace.FILE ; close loaded trace file

; use record numbers to specify the trace recording to be added
Trace.JOINFILE my_joinfile (4665.)--(5168.)

; use bookmarks to specify record range
Trace.JOINFILE my_joinfile "start" "end" /TIMEGAP 0.1us
General Commands Reference Guide T | 247©1989-2024 Lauterbach

<trace>.List List trace contents

Opens a window showing the recorded trace data. For trace modes other than RTS (see <trace>.Mode),
the trace contents can only be displayed if the trace is in OFF or break state. Please refer to the
<trace>.state command for more information.

Please refer to your Processor Architecture Manual for target-specific information and options.

Format: <trace>.List [<record> | <record_range> | <time> | <time_range>] [<items> …]
[/<options>]

<option>: FILE | Track | FlowTrace | BusTrace
NorthWestGravity
CORE <number> | SplitCORE | TASK <task>
Mark <item> | Raw | TimeZero

<items>: %<format>
DEFault | ALL | CPU | LINE | PORT
Run
CYcle | Data[.<subitem> | BDATA | List[.<subitem>]
Address | BAddress | FAddress |sYmbol | sYmbolN | PAddress | PsYmbol
Var | VarName | VarValue
TIme[.<subitem>] | CLOCKS[.<subitem>]
FUNC | FUNCR | FUNCVar | IGNORE
LeVel | MARK[.<marker> | FLAG[.<flag_index>]
Trigger | Trigger.A | Trigger.B
SPARE
<special_lines>

FLOWERROR | FIFOFULL (trace error diagnosis)
FAddress | FsYmbol | FCOUNT | FLen (program flow diagnosis)
TP | TPC | TPINFO (raw trace data and decoded packet)
TSINFO (timestamp calculation diagnosis)
TP0 | TP1 | TP2 | … (trace port pins)
ARTIAPCore | ARTIAPEvent | ARTIAPData | ARTIAP

<format>: Ascii | BINary | Decimal | Hex | Signed | Unsigned
HighLow | Timing| TimeAuto | TimeFixed | LEN <size>
General Commands Reference Guide T | 248©1989-2024 Lauterbach

For SMP systems, each core is represented in the Trace.List window by a different background color.

<record> The recorded trace data is displayed starting at the selected record.

<record_range> The recorded trace data is displayed for the selected range of trace
records (e.g. (-10000.)--(-2000.)) .

<time> Defines which timestamp is centered on the x-axis when the window is
opened. Timestamps at the beginning or end of the x-axis are not
centered.

NOTE: Only zero-time timestamps can be used as <time> parameters.

You can display the zero-time timestamps in a Trace window by adding
the TIme.Zero column to Trace.List.

<time_range> Defines which timestamp is displayed on the left of the x-axis when the
window is opened.

NOTE: Only zero-time timestamps can be used as <time_range>
parameters.

You can display the zero-time timestamps in a Trace window by adding
the TIme.Zero column to Trace.List.

<bookmark> Defines which bookmark position is centered on the x-axis when the
window is opened. Bookmark positions at the beginning or end of the x-
axis are not centered.

NOTE: You can only use the names of trace bookmarks, which are
created with the <trace>.BookMark command.

<items> The columns of the <trace>.List window can be defined using the <items>.
The order of the columns in the window is according to the order of the
<item> parameters given (with a few exceptions like the run column that
always appears at the very left).
Note that the default columns are hidden, when you manually specify the
columns you want to display. The default columns can be included again in
the user-defined column display using the option DEFault.
Example: Trace.List List.ADDRESS DEFault
For details on the available columns, see further down.
General Commands Reference Guide T | 249©1989-2024 Lauterbach

Core 1

Core 3

Core 0

Core number, additionally different background colors
General Commands Reference Guide T | 250©1989-2024 Lauterbach

Description of Buttons in the <trace>.List Window

If no parameters are specified, a predefined set of items will appear in the window. By selecting items,
specific items can be displayed in any order defined by the user. It is possible to remove a selection from the
list by appending the keyword.OFF. The display format of the entries can be changed by the %<format>
options.

Setup … Open a <trace>.state window, to configure the trace.

Goto … Open a <trace>.GOTO dialog box, to move the cursor to a specific record.

Find … Open a <trace>.Find dialog box, to search for specific entries in the trace.

Chart Display the program execution time at different symbols as a time chart.
See the <trace>.Chart.sYmbol command.

Profile Open a <trace>.PROfileChart.sYmbol window.

MIPS Open a MIPS.PROfileChart.sYmbol window.

More/Less Switch step-by-step from full display (all CPU cycles including dummies)
to HLL display and vise versa.
General Commands Reference Guide T | 251©1989-2024 Lauterbach

Options

In the case of an SMP system, the following options are provided:

FILE Displays trace memory contents loaded with Trace.FILE.

FlowTrace The trace works as a program flow trace. This option is usually not
required.

BusTrace The trace works as a bus trace. This option is usually not required.

Track Track the <trace>.List window with other trace list windows (tracking to
record number or time possible).

Mark <item> Bold print all cycles on a yellow background which contain the specified
item.

NorthWestGravity With NorthWestGravity: The record numbering in the top left corner
stays fixed as you resize the <trace>.List window.

Without NorthWestGravity: The record numbering scrolls as you resize
the window.

Raw Displays all channels as raw hexadecimal values (where applicable)

TASK <task> Displays the trace recording of the specified task only.

TimeZero Use timestamp of first entry in listing as global reference (item
TIme.Zero).

Trace.FILE test1
Trace.List /FILE

; load trace file
; display trace listing, source for the
; trace data is the loaded file

Trace.List /Mark Address sieve ; mark all trace lines which contain the
; address sieve

SplitCORE Displays the trace recording of all cores side by side.

CORE <number> Displays the trace recording of the specified core.
General Commands Reference Guide T | 252©1989-2024 Lauterbach

Formats

Examples:

The following <items> define the columns shown in the <trace>.List windows

Ascii Displays single bytes as ASCII characters

BINary Displays single bytes in binary values

Decimal Displays single bytes in decimal values

Hex Displays single bytes in hex values

HighLow Displays single bits as 'H' or 'L' character

LEN <size> Specifies the width of non numeric fields (e.g. symbols)

Signed Displays single bytes signed

TimeAuto Displays time values in a floating display format (short)

TimeFixed Displays time values in a fixed point format (long format)

Timing Displays single bits as vertical timing

Unsigned Displays single bytes unsigned

; display trace listing, limit the symbol names to 20 characters
Trace.List Address CYcle Data.L %LEN 20. sYmbol TIme.Back

; display trace listing, show the external trigger input 0 as vertical
; timing
Trace.List %Timing TIme.ZERO DEFault

DEFault Default trace display.
The default trace display can be configured with the command
SETUP.ALIST.

ALL Select all available channels (superset of DEFault)

CPU Set of channels describing the CPU state (similar to the original setting of
DEFault but no source code display).

LINE Set of channels which contains all CPU control lines.
General Commands Reference Guide T | 253©1989-2024 Lauterbach

Run Gives various information about the execution of the current record.

• GO: the first instruction that was executed by the CPU after
starting program execution with Go.
BRK Indicates that the program execution was stopped.

• T : Indicates a trigger event.

• f : Foreground program

• b : Background program

• ft : Trigger event occurred in the foreground program

• bt: Trigger event occurred in the background program

• 0,1,2,3 ... in SMP systems, the run column indicates the number
of the core that executed the given code; additionally, the
background color of the records changes to high-light the relevant
core (light red, light green, ...).

Address start address of each displayed block of executed opcodes; for displaying
the address of each single opcode, use the channel List.Address.

sYmbol Symbolic address with path and offset
(as find item will search on all processor busses)

sYmbolN Symbolic address without path but with offset

sYmbolInline Inline symbol name with path.

sYmbolInlineN Inline symbol name without path.

AAddress Physical (absolute) CPU address

AAddress.0--31 Physical address bits A0..A31

PAddress This column display the address of the instruction that was executed before
a read or write access was performed.

PsYmbol This column display the address of the instruction that was executed before
a read or write access was performed.

FAddress Flowtrace execution address (when flowtrace available)

FsYmbol Symbolic flowtrace execution address

BAddress Bus address, same like physical address, but also displayed when the bus is
not transferring data
General Commands Reference Guide T | 254©1989-2024 Lauterbach

Var Symbolic display of data accesses to HLL variables

VarName Returns the names of the HLL variables.

VarValue Returns the values of the HLL variables.

CYcle Bus cycle

Data CPU data full width

Data.B CPU data single byte

Data.B0 CPU data lower byte

Data.W0 CPU data lower word

Data.T0 CPU data lower triple

Data.0..31 CPU data bit 0 to 31

Data.0--7 CPU data bits 0 to 7 as single bits (8 bit processor)

Data.0--15 CPU data bits 0 to 15 as single bits (16 bit processor)

Data.0--31 CPU data bits 0 to 31 as single bits (32 bit processor)

Data.sYmbol Display the data value symbolically

BData Like Data, but always displays the data even when the bus is idle

List.Address Lists the address for each individual opcode (instead of the start address of
blocks of executed opcodes)

List.Asm Disassembled mnemonics

List.Mix Disassembled mnemonics and HLL source

List.Hll HLL source only, dequeueing based on disassembler

List.HllOnly HLL source only no dequeueing

List.NoFetch Suppresses the display of op-fetches

List.NoPFetch Suppresses the display of prefetch cycles

List.NoCycle Suppresses the display of more than one cycle between lines

List.Label Label of disassembled mnemonic
General Commands Reference Guide T | 255©1989-2024 Lauterbach

List.Comment Comments to disassembled mnemonics

List.Queue Start address of disassembled mnemonic

List.TASK Displays OS Awareness information (system-calls etc.)

List.Reorder Reorders bus cycles logically (only some processors)

List.NoDummy Suppresses the display of dummy cycles (where applicable)

List.Bondout Display internal bondout information (where applicable)

List.TIme Display time information in assembler or HLL lines

List.CTS Display CTS information (Context Tracking System)

List.SOURCE-
FILE

Display source file name for each line

TIme Time marker (default Time.Fore)

TIme.Fore Time marker, relative time to next record

TIme.Back Time marker, relative time to previous record

TIme.Zero Time marker, relative to global reference

TIme.REF Time marker, relative to reference point

TIme.Trigger Time marker, relative to trigger point

TIme.FUNC Time spent in a function (*1)

TIme.FUNCEX Time spent in calls (*1)

TIme.FUNCIN Time spent in code of function (*1)

TIme.MARKAB Time relative back to the last marker A

TIme.MARKAF Time relative forward to the next marker A

TIme.MARKBB Time relative back to the last marker B

TIme.MARKBF Time relative forward to the next marker B

TIme.MARKCB Time relative back to the last marker C

TIme.MARKCF Time relative forward to the next marker C
General Commands Reference Guide T | 256©1989-2024 Lauterbach

TIme.MARKDB Time relative back to the last marker D

TIme.MARKDF Time relative forward to the next marker D

CLOCKS.Back Number of clocks relative time to previous record

CLOCKS.Fore Number of clocks relative time to next record

CLOCKS.Trigger Number of clocks relative to trigger point

CLOCKS.REF Number of clocks relative to reference point

CLOCKS.Zero Number of clocks relative to global zero point

FUNC Function nesting display (*1)

FUNCVar Function nesting plus variables

FUNCR Record number associated with this entry/exit point (*1)

IGNORE Record ignored or used for performance/nesting analysis

LeVel Trigger unit logical level

MARK.all Display markers

MARK.A Display marker A

FLAG.all Flags of the trigger unit in a short form

FLAG.0 Flag 0 of the trigger unit

Trigger.0 External trigger bit 0

Trigger.0--7 External trigger input bit 0--7

SPARE Displays an empty block

VarsYmbol HLL display of accesses to variables including bitfields and symbols.

traceID If a context ID or ownership packet is decoded and if it can not be assigned
to a task or any other protocol-specific content such as service, intr etc. the
cycle type traceID and the packet content is displayed.
General Commands Reference Guide T | 257©1989-2024 Lauterbach

(1): The trace must be the same as for the command <trace>.STATistic.Func. The combination of the
FUNC keyword with the List.TASK keyword makes the function nesting display task sensitive.

FLOW ERROR Diagnosis

Flow Trace Decoding

FLOWERROR Display flow error column

FAddress To decompress the recorded trace information the program code starting at
FAddress is read.

FsYmbol Symbolic address of FAddress.

FCOUNT To decompress the recorded trace information FCOUNT number of byte is
read.

FLen (deprecated)
General Commands Reference Guide T | 258©1989-2024 Lauterbach

Trace Raw Data and Packet Decoding

TP All raw trace data as recorded at the trace port.
For multicore systems the stream of trace data may contain information for
multiple cores (e.g. in “wrapped mode” for CoreSight systems).

TPC Raw trace data pertaining to a single core.
For multicore systems this data is extracted from the overall trace data
stream.

TPINFO Information obtained by decoding a single trace packet (which may consist
of multiple bytes).

BEAT All raw trace data as recorded at the Nexus port.
Displays the same data as TP, but in a different format.
BEAT displays the data in the format “MSEO[1..0]-BLANK-MDO[7..0]”, e.g.
“3 42”, whereas TP displays the same data in the format “MDO[7..0]-
MSEO[1..0]”, e.g. “10B”.
General Commands Reference Guide T | 259©1989-2024 Lauterbach

TSINFO Timestamp calculation background information, required for the diagnosis of
complex timing scenarios.
General Commands Reference Guide T | 260©1989-2024 Lauterbach

Context ID/Ownership Trace Packet Decoding

If the machine ID is encoded, the machine name is also displayed ("sender" in the screenshot below).

ARTIAP Trace Decoding

ARTI (AUTOSAR Real-Time Interface) Trace Driver format defined on AUTOSAR Adaptive Platform is in
MIPI STP (SYStem Trace Protocol) format.

task If a Context ID or ownership packet is decoded and if it is assignable to a
task, the "task" cycle type and the task name is displayed. The displayed
data value is a TRACE32 internal value.

traceid If a Context ID or ownership packet is decoded and if it can not be assigned
to a task or any other protocol-specific content such as service, intr etc. the
cycle type "traceid" and the packet content is displayed.
General Commands Reference Guide T | 261©1989-2024 Lauterbach

The items are only supported when the hardware contains Arm System Trace Macrocell (STM).

See also

■ <trace>.BookMark ■ <trace>.Timing
■ <trace>.View ■ IProbe.state
❏ Analyzer.RECORD.ADDRESS() ❏ Analyzer.RECORD.DATA()
❏ Analyzer.RECORD.OFFSET() ❏ Analyzer.RECORDS()
❏ Analyzer.REF()

▲ ’Release Information’ in ’Legacy Release History’

ARTIAPCore Decode STM MasterID into Core index based on board information.

ARTIAPEvent Decode STM Channel as OS Event.

ARTIAPData Decode STM data into meaningful data based on OS Event.

ARTIAP ARTIAP shows 3 items: ARTIAPCore ARTIAPEvent ARTIAPData.
General Commands Reference Guide T | 262©1989-2024 Lauterbach

<trace>.ListNesting Analyze function nesting

The command Trace.ListNesting is mainly used to investigate issues in the construction of the call tree for
the nesting function run-time analysis. Typical commands for the nesting function run-time analysis are the
commands Trace.STATistic.Func or Trace.STATistic.TREE.

The Trace.ListNesting window provides the nesting details. If a function entry point is selected, the path to
the function exit is highlighted.

If the function exit is located far apart, you can use the Down Arrow (v) to jump to the function exit.

Format: <trace>.ListNesting [/<option>]

<option>: CORE <number>
SplitCORE
<generic_options>

<option> For a description of the generic options, see <trace>.List.

CORE <number>
SMP tracing only.

Filters the Trace.ListNesting window by the specified core.
Processing is done for all cores, but only the specified core is displayed.
All other cores are temporarily hidden in the window.

SplitCORE
SMP tracing only.

Displays the trace recording of the cores side by side in the
Trace.ListNesting window.
General Commands Reference Guide T | 263©1989-2024 Lauterbach

The interrupt nesting if marked specially (see screenshot below).

Code optimizations are the main reason for issues in the construction of the call tree. TRACE32 indicates
these issues as PROBLEMs or WORKAROUNDs.

PROBLEMs

• A PROBLEM is a point in the trace recording that TRACE32 can not integrate into the current
nesting.

• PROBLEMs are marked with (!) in the Trace.ListNesting window. The name of the expected
function is shown.

• PROBLEMs are ignored in the construction of the call tree.

• PROBLEMs may affect the construction of the call tree, so it is important to inspect them. The
Statistic Markers can be used to solve a PROBLEM.

To inspect a PROBLEM, proceed as follows:

1. Go to the start of the trace recording.

2. Use the Find… command from the Edit menu. Type (!) as find item.

3. Open a Trace Listing to inspect the problem in detail.

Trace.List List.TASK List.ADDRESS DEFault /Track
General Commands Reference Guide T | 264©1989-2024 Lauterbach

WORKAROUND

• A WORKAROUND is a point in the trace recording that TRACE32 can not integrate into the
current nesting.

• TRACE32 attempts to integrate this point into the function nesting, by deriving information from
previous scenarios in the nesting.

• WORKAROUNDs are marked with (?) in the Trace.ListNesting window.

• WORKAROUNDs may affect the construction of the call tree, if the derived information is wrong.
It is recommended to inspect the WORKAROUNDs.

To inspect a WORKAROUND, proceed as follows:

1. Go to the start of the trace recording.

2. Use the Find… command from the Edit menu. Type (?) as find item.

3. Open a Trace Listing to inspect the problem in detail.

See also

■ IProbe.state

▲ ’Release Information’ in ’Legacy Release History’

Trace.List List.TASK List.ADDRESS DEFault /Track
General Commands Reference Guide T | 265©1989-2024 Lauterbach

<trace>.ListVar List variable recorded to trace

Format 1: <trace>.ListVar %[<format>] [{<var>}] [{/<options> }]

Format 2: <trace>.ListVar <range> [%[<format>]] [{<var>}]

<format>: DEFault | STandDard | Decimal | Hex

<range>: <record_range> | <time_range>

<options> TASK <task>
CORE <core_number>
Split | SplitFill
List | Mark | Track
FILE
Filter <filter>
General Commands Reference Guide T | 266©1989-2024 Lauterbach

Displays a list of all variable recorded if it is used without parameters.

The option Mark allows to mark the specified variable access.

Format 1 represents the standard syntax, in which the variable names follow the %<format> parameter.
The following options provide a representation in which variable values can be better compared:

; mark trace entry when a 0x0 is written to variable mstatic1
Trace.ListVar /Mark Address Var.RANGE(mstatic1) CYcle Write Data 0x0

Split Each specified variable gets its own column. If a variable is
accessed its value is displayed.
Write accesses are printed in black, read accesses are printed in
gray.

SplitFill Each specified variable gets its own column. Whenever one of the
specified variables is displayed, the current values of all other
specified variables are displayed as well.
Write accesses are printed in black, everything else is printed in
gray.
General Commands Reference Guide T | 267©1989-2024 Lauterbach

Examples for Format 1:

//Display all accesses to the variable mstatic1
Trace.ListVar %DEFault mstatic1
//Display all accesses to the listed variables
Trace.ListVar %DEFault mstatic1 fstatic fstatic2
//Display all accesses to the listed variables, but display
//the values of each variable in a separate column
Trace.ListVar %DEFault mstatic1 mstatic2 vlong /Split
Trace.ListVar %Hex mstatic1 fstatic fstatic2 /Split
//Display all accesses to the listed variables, but display
//the values of each variable in a separate column
//fill in the current value of the not accessed variable to each line
Trace.ListVar %DEFault mstatic1 mstatic2 vlong /SplitFill
General Commands Reference Guide T | 268©1989-2024 Lauterbach

Format 2 represents the advanced syntax, here it is possible to restrict the display to the specified
<record_range> or <time_range>.

Examples for Format 2:

See also

■ IProbe.state ■ Trace

▲ ’Release Information’ in ’Legacy Release History’

Trace.ListVar (-14874903.)--(-14874761.)
Trace.ListVar 1.8s--10.8s
Trace.ListVar (-14874903.)--(-14874761.) vfloat
Trace.ListVar 1.8s--10.8s mstatic1 fstatic fstatic2 /SplitFill
General Commands Reference Guide T | 269©1989-2024 Lauterbach

<trace>.LOAD Load trace file for offline processing

Loads trace data from a file into the debugger. Typically <trace>.LOAD is used to analyze data in a
simulator or to compare different recordings.

The command loads the data into the “normal” trace buffer i.e. the same buffer that is filled when recording
data using an analyzer (e.g. via PowerTrace, PowerProbe, PowerIntegrator etc.). As the standard trace
commands work on this buffer, they automatically work on the loaded data. To highlight that loaded data is
displayed, windows are marked by a red label LOAD label in the bottom-left corner.

To save trace data, use the command <trace>.SAVE.

An example for working on loaded trace data:

Format: <trace>.LOAD [<file>] [/Config]

<file> The default extension for the file name is *.ad.

NOTE: There is a similar but slightly different command <trace>.FILE. It loads the trace
data into a dedicated file trace buffer. To have trace commands (e.g. Trace.List)
work on the file trace buffer, they need to be invoked with the parameter /FILE.

Trace.LOAD test4 ; load trace contents from file

Data.LOAD.Elf demo.elf /NoCODE ; load symbol information for the
; post-processing

Trace.List ; display loaded trace contents

Trace.Chart.sYmbol ; symbol analysis of trace

Trace.STATistic.Func ; function run-time analysis
General Commands Reference Guide T | 270©1989-2024 Lauterbach

The TRACE display and analysis commands are re-directed to the selected trace method if:

• Trace.LOAD is executed without the parameter <file>.

• A trace configuration command is executed.

• The program execution is started while Trace.AutoArm is set to ON.

If the Trace.METHOD Probe or Trace.METHOD Integrator was selected, when the trace contents were
saved, the option /Config can be used to re-activate the Probe/Integrator and NAME settings.

See also

■ <trace>.FILE ■ <trace>.SAVE ■ IProbe.state ■ RunTime
■ RunTime.state

▲ ’Release Information’ in ’Legacy Release History’

Trace.LOAD ; Re-direct trace display and
; analysis commands to the selected
; trace method

Trace.Init ; the trace configuration command
; Trace.Init re-directs the trace
; display and analysis commands to
; the selected trace method

Trace.METHOD Probe ; select the trace method Probe
; for the PowerProbe

;…

Trace.SAVE probetest1 ; save the trace contents to the
; file probetest1

;…

QUIT ; end TRACE32

; use a TRACE32 instruction set
; simulator to postprocess the
; PowerProbe trace data

Trace.LOAD probetest1 /Config ; load the trace contents from the
; file probetest1

; load the Probe settings and NAMEs

Trace.List
General Commands Reference Guide T | 271©1989-2024 Lauterbach

<trace>.MERGEFILE Combine two trace files into one

Combines two trace files into one. This is useful for traces recorded for different cores working in AMP mode.

See also

■ Trace

Format: <trace>.MERGEFILE <file> [<trace_area>] [/<options> …]

<trace_area>: <string>
<range>
<value>
<time_range>

<option>: TIMEGAP <time>
ZIP
QuickCompress
Compress
NoCompress

TIMEGAP <time> Allows a seamless concatenation with regards to the timestamp

ZIP,
QuickCompress,
Compress,
NoCompress

Control the compressing of the resulting file. These option are obsolete
because the resulting file is compressed by default.
General Commands Reference Guide T | 272©1989-2024 Lauterbach

Trace.METHOD Select trace method

Selects the trace method you want to use. This allows you to work with a trace method other than the one
suggested by TRACE32.

For information about how TRACE32 makes its suggestion, see “What to know about the TRACE32
default settings for Trace.METHOD”, page 119.

Format: Trace.METHOD <method>

<method>: Analyzer
ART
CAnalyzer
CIProbe
FDX
Integrator
IProbe
LA
LOGGER
Onchip
Onchip2
Probe
SNOOPer
NONE

Trace Methods Description

Analyzer Trace memory is provided by one of the following TRACE32 tools:

• TRACE32 PowerTrace or RiscTrace

• TRACE32 Instruction Set Simulator

• TRACE32 Front-End to virtual targets supporting trace

ART Advanced Register Trace.

CAnalyzer Compact Analyzer. Trace memory is provided as follows:

• TRACE32 CombiProbe

• µTrace (MicroTrace)

• PowerDebug/Debug Cable configuration

CIProbe The Lauterbach Analog Probe within the CombiProbe / µTrace
(MicroTrace) is used to record signals.
General Commands Reference Guide T | 273©1989-2024 Lauterbach

FDX Fast Data eXchange.

The target application needs to write the required trace information to a
small ring buffer (min. size 2 trace records). The contents of the ring buffer
is transferred to the TRACE32 software while the program execution is
running and saved there for later display.

If the on-chip debug unit provides a Debug Communications Channel
(DCC) the required trace information can be transferred directly to the
TRACE32 software.

HAnalyzer Trace RAM is provided by the host. This method is used for targets that
provide a specifically implemented trace channel over interfaces like
USB3.

Integrator The Lauterbach logic analyzer PowerIntegrator is used to record the trace
information.

IProbe The Lauterbach IProbe logic analyzer within the PowerTrace II /
PowerTrace III is used to record signals.

LA LA (Logic Analyzer).

Trace information not recorded by TRACE32 can be loaded and
processed. This requires that the TRACE32 software is familiar with the
format of the trace information.

LOGGER The target application can write the required trace information to target
RAM. TRACE32 loads the trace information from the target RAM for
display and processing.

Onchip
Onchip2

The trace information is saved in the first/second onchip trace buffer
provided by the chip.

Probe The Lauterbach logic analyzer PowerProbe is used to record the trace
information.

SNOOPer SNOOPer trace. For details, see “Application Note for the SNOOPer
Trace” (app_snooper.pdf).

NONE A dummy trace method indicating that the trace feature, including the
Trace.* commands, is not yet operational. The only command exceptions
are Trace.METHOD and Trace.state.

Select the trace method you want to use, using either the Trace.METHOD
command, the Trace.state window, or a PRACTICE script (*.cmm).

For more information including illustrations, see “What to know about the
TRACE32 default settings for Trace.METHOD”, page 119.

Trace Methods Description
General Commands Reference Guide T | 274©1989-2024 Lauterbach

See also

■ <trace>.Mode ■ <trace>.state ■ Analyzer ■ ART
■ CAnalyzer ■ FDX ■ HAnalyzer ■ Integrator
■ IProbe ■ LA ■ LOGGER ■ Onchip
■ Probe ■ SNOOPer ■ SystemTrace ❏ Trace.METHOD.Analyzer()
❏ Trace.METHOD.ART() ❏ Trace.METHOD.CAnalyzer() ❏ Trace.METHOD.FDX() ❏ Trace.METHOD.HAnalyzer()
❏ Trace.METHOD.Integrator() ❏ Trace.METHOD.IProbe() ❏ Trace.METHOD.LA() ❏ Trace.METHOD.LOGGER()
❏ Trace.METHOD.ONCHIP() ❏ Trace.METHOD.Probe() ❏ Trace.METHOD.SNOOPer()

▲ ’Trace Functions’ in ’General Function Reference’
▲ ’Release Information’ in ’Legacy Release History’
General Commands Reference Guide T | 275©1989-2024 Lauterbach

<trace>.Mode Set the trace operation mode

Selects the trace operation mode. The supported modes depend on the selected trace method. Please refer
to the description of the trace operation mode for the selected trace method for more information, e.g. for the
trace method Analyzer, refer to Analyzer.Mode. The most common operation modes are:

Format: <trace>.Mode [<mode>]

<mode>: Fifo
Stack

<other modes>

Fifo If the trace is full, new records will overwrite older records. The trace
records always the last cycles before the break. This mode is supported
by all trace methods.

Stack If the trace is full recording will be stopped. The trace always records the
first cycles after starting the trace. This mode is supported by all trace
methods.

Leash Stops the program execution when trace is nearly full.
General Commands Reference Guide T | 276©1989-2024 Lauterbach

See also

■ Trace.METHOD ■ <trace>.STREAMCompression
■ <trace>.STREAMFILE ■ <trace>.STREAMFileLimit
■ <trace>.STREAMLOAD ■ <trace>.STREAMSAVE
■ Analyzer.Mode ■ ART.Mode
■ CIProbe.Mode ■ FDX.Mode
■ HAnalyzer.Mode ■ Integrator.Mode
■ IProbe.Mode ■ LA.Mode
■ LOGGER.Mode ■ Onchip.Mode
■ Probe.Mode ■ SNOOPer.Mode

STREAM The trace data is immediately conveyed to a file on the host after it was
placed into the trace memory of the TRACE32 trace tool. This procedure
extends the size of the trace memory to up to several T Frames.

STREAM mode can only be used if the average data rate at the trace
port does not exceed the maximum transmission rate of the host
interface in use. Peak loads at the trace port are intercepted by the trace
memory of the TRACE32 trace tool, which can be considered to be
operating as a large FIFO.

Depending on the command group, STREAM mode can only be used for
some TRACE32 trace tools:
• Analyzer:

- PowerTrace Serial / PowerTrace Serial 2
- PowerTrace II / PowerTrace III
- TRACE32 POWERTRACE/ ETHERNET supports STREAM

mode for some trace protocols. If it is not supported, the
command Trace.Mode STREAM is blocked.

• CAnalyzer:
- All configurations

• Integrator:
- PowerIntegrator II (Probe A-E only)

• IProbe:
- All tools except PowerTrace II

• CIProbe:
- All tools

The streaming file is placed into the TRACE32 temp directory
(OS.PresentTemporaryDirectory()) by default and is named
<trace32_instance_id>stream<method>.t32 (trace32_instance_id is the
value of OS.ID(), method is one of a/ca/i/ip/cip). If you explicitly want to
specify a location for the streaming file use the command
<trace>.STREAMFILE <file>.

PIPE The trace data is immediately conveyed to the host and distributed to
user-defined trace sinks. Not supported with PowerTrace Ethernet
256/512MB. See <trace>.PipeWRITE.

RTS The RTS radio button is only an indicator that shows if Real-time Profiling
is enabled. For enabling RTS use the command RTS.ON.
General Commands Reference Guide T | 277©1989-2024 Lauterbach

<trace>.OFF Switch off

Disables both trace memory and the trigger unit. The trace memory can be read and the trigger unit be
programmed.

See also

■ IProbe.state ■ RunTime ■ RunTime.state ❏ Analyzer.STATE()

<trace>.PipeWRITE Connect to a named pipe to stream trace data

Connect to a named pipe to stream the raw trace data to an external application. If <name> is omitted, the
debugger disconnects from the named pipe.

Example: (for Windows)

See also

■ Trace

<trace>.PlatformCLOCK Set clock for platform traces
PowerPC QorIQ

Sets the clock for platform traces (DDRTrace, OCeaNTrace).

Format: <trace>.OFF

Format: <trace>.PipeWRITE [<name>]

Trace.Mode PIPE ; switch to PIPE mode

Trace.PipeWRITE \\.\pipe\ptrace ; connect to named pipe

; run test
Go ; trace data now streamed to
;... ; external application
Break

Trace.PipeWRITE ; disconnect from named pipe

Format: <trace>.PlatformCLOCK <frequency>
General Commands Reference Guide T | 278©1989-2024 Lauterbach

This command is only available for PowerPC QorIQ cores. Refer to “QorIQ Debugger and NEXUS Trace”
(debugger_ppcqoriq.pdf) for more information.

<trace>.PortFilter Specify utilization of trace memory

If a TRACE32 trace tool is used and the trace information is conveyed to the host computer at the recording
time, it is advantageous to reduce the amount of data to be conveyed. This goal can be achieved by the
following:

• Reducing the recording of idle cycles (applies only if the on-chip trace logic generates idle
cycles).

• Not conveying TRACE32 tool time stamps to the host computer, if they are not required for the
intended analysis.

The command Trace.PortFilter allows the following configurations:

See also

■ RTS.ON

Format: <trace>.PortFilter AUTO | OFF | MIN | PACK | MAX

AUTO Best setting is done automatically by TRACE32 (default). This means in
detail:
• With streaming (Trace.Mode STREAM) or PIPE Mode

(Trace.Mode.PIPE) all TRACE32 trace tools operate in PACK
mode.

• With real-time profiling (RTS.ON) all TRACE32 trace tools operate
in MAX mode.

Otherwise:
• CombiProbe and µTrace (MicroTrace) operate in PACK mode.
• A PowerTrace with an AutoFocus II or AutoFocus MIPI preproces-

sor operates in PACK mode.
• All other PowerTrace setups operate in MIN mode.

OFF All generated trace information is recorded (for diagnostic purposes
only).

MIN Idle cycles are partly not recorded.

PACK No idle cycles are recorded. Caveats: The accuracy of the TRACE32 tool
time stamps is reduced.

MAX No idle cycles are recorded and no TRACE32 tool time stamps are
conveyed to the host computer.
General Commands Reference Guide T | 279©1989-2024 Lauterbach

<trace>.PortSize Set external port size
Embedded cores in Xilinx FPGAs [Zynq]

Informs the debugger that the externally visible port size differs from the internal port size setting of
TPIU.PortSize and sets the specified external port size. Use this command if there is application-specific
logic between the TPIU and the analyzer, for example in the programmable logic part of an FPGA SoC.

The external port size value refers to the number of data pins that are physically connected to the analyzer.

The internal port size value refers to the setting that will be programmed into the target’s TPIU.

See also

■ TPIU.PortSize

▲ ’Introduction’ in ’Debugging Embedded Cores in Xilinx FPGAs [Zynq]’

<trace>.PortType Specify trace interface

Inform TRACE32 PowerView about the trace port interface type provided by your target. This might be
necessary for the following TRACE32 trace tools:

TRACE32 CombiProbe:

Format: <trace>.PortSize 1 | 2 | 3 | … | 16 | AUTO

AUTO
(default)

The external port size value of <trace>.PortSize equals the internal port size
value of TPIU.PortSize.

1 … 16 Use the specified number of data pins as the external port size.

Format: <trace>.PortType TPIU | STM | SWV (CombiProbe)

<trace>.PortType TPIU | TPIUX2 | TPIUX3 | TPIUX4 | STM | RTP | TPIU+RTP
(Preprocessor AutoFocus II)

<trace>.PortType HSSTP | SETM3 (Preprocessor Serial)

TPIU (default) CombiProbe is connected to TPIU.

STM CombiProbe is connected to STM interface.

SWV CombiProbe is connected to Serial Wire Viewer interface.
General Commands Reference Guide T | 280©1989-2024 Lauterbach

TRACE32 Preprocessor AutoFocus II:

TRACE32 Preprocessor Serial:

TPIU TRACE32 AutoFocus II Preprocessor is connected to TPIU (default).
Also supported by LA-7991 PP-ARM-ETM-AF.

TPIUX2 TRACE32 AutoFocus II is connected to a trace port interface that
provides 2 ETMv3 interfaces, multicore chip without TPIU (NEC Triton
only).

TPIUX3 TRACE32 AutoFocus II is connected to a trace port interface that
provides 3 ETMv3 interfaces, multicore chip without TPIU (NEC Triton
only).

TPIUX4 TRACE32 AutoFocus II is connected to a trace port interface that
provides 4 ETMv3 interfaces, multicore chip without TPIU (NEC Triton
only).

STM TRACE32 AutoFocus II Preprocessor is connected to STM interface.
Also supported by LA-7991 PP-ARM-ETM-AF.

RTP TRACE32 AutoFocus II Preprocessor is connected to Ram Trace Port
interface.

TPIU+RTP TRACE32 AutoFocus II Preprocessor is connected to a trace port
interface that includes a TPIU and a Ram Trace Port interface.

HSSTP TRACE32 Preprocessor Serial is connected to a HSSTP interface
(default).

SETM TRACE32 Preprocessor Serial is connected to a SETM interface.
General Commands Reference Guide T | 281©1989-2024 Lauterbach

<trace>.PROfile Rolling live plots of trace data

The <trace>.PROfile command group displays plots that are based on polling trace hardware and update in
real time. See also Count.PROfile, Data.PROfile and Var.PROfile for similar plots of data polled directly
from the target.

See also

■ IProbe.state

<trace>.PROfile.channel Display profile of signal probe channels

Displays a rolling live plot of analog or digital channels of e. g. a Mixed-Signal Probe. If no <items> are given,
the command plots all analog channels that are enabled (see POD.ADC).

With the options AutoInit and AutoArm, the window can be tied to the execution of the target program.

Channels are sampled approximately every 100 milliseconds and data is shown for the last 100 seconds.
Sampling happens independently from the normal operation of the trace (i. e. <trace>.Arm or
<trace>.OFF). This command is intended as a visual aid for slow or interactive changes of channels, not as
a replacement for windows like <trace>.DRAW.channel or <trace>.Timing.

<trace>.PROfile.CTU Display complex trigger unit counter profile

The contents of a trigger unit counter can be displayed as a function of time. Time counters are displayed in
percent and event counters as events/s. Refer to “Complex Trigger Unit for Nexus MPC5xxx”
(app_ctu_mpc5xxx.pdf) for more information.

Format: <trace>.PROfile.channel [<items ...>] [/options]

<options>: AutoInit | AutoArm

Format: <trace>.PROfile <counter> [<gate>]

<gate>: 0.1s | 1.0s | 10.0s
General Commands Reference Guide T | 282©1989-2024 Lauterbach

<trace>.PROfileChart Profile charts

The <trace>.PROfileChart command group displays distributions versus time graphically as color chart
with fixed time intervals. The result is a stacked graph where the total ratio at a given time represent the sum
of the ratios for all items at that time.

To draw the Trace.PROfileChart graphic, TRACE32 PowerView partitions the recorded instruction flow
information into time intervals. The default interval size is 10 us. For each time interval rectangles are draw
that represent the time ratio, events or time consumed within the time interval. For the final display this basic
graph is smoothed.

func2d

func2b

main
General Commands Reference Guide T | 283©1989-2024 Lauterbach

The time interval size can be changed using the Fine and Coarse buttons.

The time interval size can also be set manually using the /InterVal option:

The tooltip at the cursor position shows the color assignment and the used interval size.

Fine Decrease the time interval size by the factor 10

Coarse Increase the time interval size by the factor 10

Trace.PROfileChart.sYmbol /InterVal 5.ms ; change the time
; interval size to 5.ms
General Commands Reference Guide T | 284©1989-2024 Lauterbach

Use the control handle on the right upper corner of the Trace.PROfileChart window to get a color legend.

The color assignment is done per default statically (FixedColors), i.e. colors are assigned fixed to items.
Fixed color assignment has the risk that two functions with the same color are drawn side by side and
thus may convey a wrong impression of the dynamic behavior. Alternatively, a dynamic color
assignment can be used instead (AlternatingColors), i.e. colors are assigned by the recording order of
the items again and again for each measurement. The color assignment can be changed from the
Trace.PROfileChart window using the Config button or using the /Color option in the command line.

Control
handle
General Commands Reference Guide T | 285©1989-2024 Lauterbach

Options

This section describes the options of the <trace>.PROfileChart command group. Not all options are
supported by all <trace>.PROfileChart commands.

Track The cursor in the <trace>.PROfileChart window follows the cursor
movement in other trace windows. Default is a time tracking. If no time
information is available tracking to record number is performed.
The zoom factor of the <trace>.PROfileChart window is retained, even if
the trace content changes.

ZoomTrack Same as option Track. If the tracking in performed with another
<trace>.PROfileChart window the same zoom factor is used.

Sort [<sort_visible>]
[<sort_core>]
[<sort>]

Specify sorting criterion for analyzed items. For almost all commands the
analyzed items are displayed in the order they are recorded by default.

Details on the sorting criterion can be found at the description of the
command Trace.STATistic.Sort.

InterVal <time> Allows to divide the time period recorded by the trace (total) into time slices.
Additional analysis details can be displayed for these time slices.

Address
<address | range>

Display the results for the selected address or address range

FILE Use the trace contents loaded with the command <trace>.FILE.

FlowTrace Trace works as a program flow Trace. This option is usually not required.

BusTrace Trace works as a bus trace. This option is usually not required.

INLINE Treat inline functions as separate functions (default).

NoINLINE Discard inline function from the results.

LABEL Include all symbols in the results.

NoLABEL Only include functions in the results.

RecScale Display trace in fixed record raster. This is the default.

TimeScale Display trace as true time display, time relative to the trigger point
(respectively the last record in the trace).

TimeZero Display trace as true time display, time relative to zero point. For more
information about the zero point refer to ZERO.

TimeREF Display trace as true time display, time relative to the reference point. For
more information about the reference point refer to <trace>.REF.
General Commands Reference Guide T | 286©1989-2024 Lauterbach

Draw Options:

See also

■ <trace>.Chart ■ <trace>.PROfileChart.Address
■ <trace>.PROfileChart.AddressGROUP ■ <trace>.PROfileChart.AddressRate
■ <trace>.PROfileChart.COUNTER ■ <trace>.PROfileChart.DatasYmbol
■ <trace>.PROfileChart.DIStance ■ <trace>.PROfileChart.DistriB
■ <trace>.PROfileChart.DURation ■ <trace>.PROfileChart.GROUP
■ <trace>.PROfileChart.INTERRUPT ■ <trace>.PROfileChart.Line

Filter <item> Filter the described item.

TASK <task_magic>,
etc.

Operating system task in OS-aware debugging and tracing.

See also “What to know about the Task Parameters”
(general_ref_t.pdf).

SplitTASK Trace information is analyzed independently for each task. The time chart
displays these individual results.

MergeTASK Trace information is analyzed independently for each task. The time chart
summarizes these results to a single result.

CORE <n> Time chart is only displayed for the specified core. Only available for SMP
multicore tracing.

SplitCORE Trace information is analyzed independently for each core. The time
chart displays these individual results. Only available for SMP multicore
tracing.

MergeCORE Trace information is analyzed independently for each core. The time
chart summarizes these results to a single result. Only available for SMP
multicore tracing.

JoinCORE Core information is ignored for the time chart. Only available for SMP
multicore tracing.

Steps Connect the dots for the data values by steps.

Vector Connect the dots for the data values by vectors.

Color FixedColors Colors are assigned fixed to items (default).

Fixed color assignment has the risk that two functions with the same
color are drawn side by side and thus may convey a wrong impression of
the dynamic behavior.

Color
AlternatingColors

Colors are assigned by the recording order of the items again and again
for each measurement.
General Commands Reference Guide T | 287©1989-2024 Lauterbach

■ <trace>.PROfileChart.MODULE ■ <trace>.PROfileChart.PAddress
■ <trace>.PROfileChart.PROGRAM ■ <trace>.PROfileChart.PsYmbol
■ <trace>.PROfileChart.Rate ■ <trace>.PROfileChart.RUNNABLE
■ <trace>.PROfileChart.sYmbol ■ <trace>.PROfileChart.TASK
■ <trace>.PROfileChart.TASKINFO ■ <trace>.PROfileChart.TASKINTR
■ <trace>.PROfileChart.TASKKernel ■ <trace>.PROfileChart.TASKORINTERRUPT
■ <trace>.PROfileChart.TASKSRV ■ <trace>.PROfileChart.TASKVSINTERRUPT
■ <trace>.PROfileChart.TASKVSINTR ■ <trace>.PROfileChart.Var
■ <trace>.PROfileSTATistic ■ <trace>.STATistic
■ BMC.PROfileChart ■ EVENTS.PROfileChart
■ IProbe.state ■ RunTime
■ RunTime.state

▲ ’Release Information’ in ’Legacy Release History’
General Commands Reference Guide T | 288©1989-2024 Lauterbach

<trace>.PROfileChart.Address Address profile chart

Display the time interval between up to 8 program events as a profile chart.

Example:

See also

■ <trace>.PROfileChart

Format: <trace>.PROfileChart.Address [<trace_area>] <address1> [<address2> ...]
 [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE
TASK <task> | SplitTASK | MergeTASK
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
Filter <item>
Sort <item>
Address <address | range>
InterVal <time>
Vector | Steps
Color [FixedColors | AlternatingColors]

<option> Refer to <trace>.PROfileChart for a description of the options.

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

Trace.PROfileChart.Address func2 func3
General Commands Reference Guide T | 289©1989-2024 Lauterbach

<trace>.PROfileChart.AddressGROUP Address group time chart

The time for accessed address groups is displayed as time profile chart (flat statistic). The results include
groups for both program and data addresses.

Format: <trace>.PROfileChart.AddressGROUP [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
TASK <task> | SplitTASK | MergeTASK
CORE <number> | SplitCORE | MergeCORE | JoinCORE
RecScale | TimeScale | TimeZero | TimeREF
Track | ZomTrack
RecScale | TimeScale | TimeZero | TimeREF
Filter <item>
Address <item> | <range>
Sort <item>
InterVal <time>
Vector | Steps
Color [FixedColors | AlternatingColors]

<option> Refer to <trace>.PROfileChart for a description of the options.

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.
General Commands Reference Guide T | 290©1989-2024 Lauterbach

Example:

See also

■ <trace>.PROfileChart ■ <trace>.PROfileChart.GROUP
■ BMC.PROfileChart.AddressGROUP

GROUP.Create "DATA1" 0x0000--0x1FFF /RED

GROUP.Create "DATA2" 0x2000--0x6FFF /OLIVE

GROUP.Create "DATA3" 0x7000--0x9fff /AQUA

Trace.PROfileChart.AddressGROUP
General Commands Reference Guide T | 291©1989-2024 Lauterbach

<trace>.PROfileChart.AddressRate Address rate profile chart

Display the frequency of execution for the selected address.

See also

■ <trace>.PROfileChart

Format: <trace>.PROfileChart.AddressRate [<trace_area>] <address1> [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE
TASK <task> | SplitTASK | MergeTASK
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
Filter <item>
Sort <item>
Address <address | range>
InterVal <time>
Vector | Steps
Color [FixedColors | AlternatingColors]

<option> Refer to <trace>.PROfileChart for a description of the options.

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.
General Commands Reference Guide T | 292©1989-2024 Lauterbach

<trace>.PROfileChart.COUNTER Display a profile chart

Shows the time profiles of a counter that is traced as data value.

Format: <trace>.PROfileChart.COUNTER [%<format>] [<trace_area>] [<items>]
 [/<option>]

<format>: ZeroUp. [<width>] | Up. [<width>] | Down. [<width>] | Frequency. [<width>] |
POWER. [<width>]

<width>: DEFault | Byte | Word | Long | Quad | TByte | HByte | SByte

<items>: DEFault | ALL | <cpu> | <signals> | Port[.<subitem>] | MARK[.<marker>] |
ENERGY.Abs | POWER[.OFF] | SAMPLE[.OFF] | SPARE[.OFF] |
LOW | HIGH | FINDINDEX

<option>: FILE | FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE
RecScale | TimeScale | TimeZero | TimeREF
InterVal <time>
Filter <filter_item>
Sort <item>
Track
ZoomTrack
Vector | Steps
Color [FixedColors | AlternatingColors]

<option> Refer to <trace>.PROfileChart for a description of the options.

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

ZeroUp The counter does not increment steadily but starts counting from zero on
each trace record.

Up The counter starts counting from zero and increments steadily (default).

Down The counter starts counting at its maximum value and decrements steadily.

Frequency The trace records do not contain counter values but frequencies.

POWER Used for ETA traces.
General Commands Reference Guide T | 293©1989-2024 Lauterbach

Example: sample data cache / data buffer hits and misses on a TriCore processor with SNOOPer trace and
BenchMark Counter

The result is a stacked graph i.e. the total number of events/s at a given time represent the sum of the events
for all counters at that time.

See also

■ <trace>.PROfileChart

▲ ’Release Information’ in ’Legacy Release History’

BMC.RESet ; reset BMC configuration

BMC.M1CNT DATA_X_HIT ; count data cache / data buffer
; hits

BMC.M2CNT DATA_X_CLEAN ; count data cache / data buffer
; misses

BMC.SnoopSet ON ; configure the SNOOPer trace for
; event counter recording

SNOOPer.PROfileChart.COUNTER
General Commands Reference Guide T | 294©1989-2024 Lauterbach

<trace>.PROfileChart.DatasYmbol Analyze pointer contents graphically

Analyzes the contents of a pointer graphically.

See also

■ <trace>.PROfileChart ■ BMC.PROfileChart.DatasYmbol

Format: <trace>.PROfileChart.DatasYmbol [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE | FlowTrace | BusTrace
RecScale | TimeScale | TimeZero | TimeREF
TASK <task> | SplitTASK | MergeTASK
CORE <core> | SplitCORE | MergeCORE | JoinCORE
LABEL | NoLABEL | INLINE | NoINLINE
InterVal <time>
Filter <filter_items>
Sort <item>
Track | ZoomTrack
Vector | Steps
Color [FixedColors | AlternatingColors]

<option> Refer to <trace>.PROfileChart for a description of the options.

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.
General Commands Reference Guide T | 295©1989-2024 Lauterbach

<trace>.PROfileChart.DIStance Time interval for a single event

Display the time interval for a single event graphically.

Example: use the option /Filter to filter out the event of interest.

See also

■ <trace>.PROfileChart

Format: <trace>.PROfileChart.DIStance [<trace_area>] [/<option>]
<trace>.Chart.DIStance (deprecated)

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
Filter <item>
Steps | Vector

<option> Refer to <trace>.PROfileChart for a description of the options.

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

Trace.PROfileChart.DIStance /Filter Address SVC_Handler
General Commands Reference Guide T | 296©1989-2024 Lauterbach

<trace>.PROfileChart.DistriB Distribution display in time slices

Shows a graphical representation of the specified trace item as a percentage of a time slice.

Example: Display distribution of data value for AVG_QADC

See also

■ <trace>.PROfileChart

Format: <trace>.PROfileChart.DistriB [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE | FlowTrace | BusTrace
RecScale | TimeScale | TimeZero | TimeREF
TASK <task> | SplitTASK | MergeTASK
CORE <core> | SplitCORE | MergeCORE | JoinCORE
Address <address | range> | InterVal <time>
Filter <filter_items> | Sort <item>
Track | ZoomTrack
Vector | Steps | Color [FixedColors | AlternatingColors]

<option> Refer to <trace>.PROfileChart for a description of the options.

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

Trace.PROfileChart.DistriB Data.L /Filter Address AVG_QADC
General Commands Reference Guide T | 297©1989-2024 Lauterbach

<trace>.PROfileChart.DURation Time between two events

Graphical display of time intervals between two events.

In order to use the command Trace.STATistic.DURation:

• Check if both events are exported by a trace packet. Information reconstructed by TRACE32 is
not analyzed.

• Alternatively use a TraceEnable breakpoint export the event as a trace packet.

The options FilterA and FilterB provide you with the means to describe your event.

Format: <trace>.PROfileChart.DURation [<trace_area>] [/<option>]
<trace>.Chart.DURation (deprecated)

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: ATOA | ATOB
BTOA | BTOB
FilterA <filter> | FilterB <filter>
FILE
FlowTrace | BusTrace
CORE <core> | SplitCORE | MergeCORE | JoinCORE
RecScale | TimeScale | TimeZero | TimeREF
Track | ZoomTrack
Vector | Steps

<option> Refer to <trace>.PROfileChart for a description of the general options.

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

FilterA <item> Specify the first event, see example below.

FilterB <item> Specify the second event, see example below.

ATOA Display the time interval from A to A, see example below.

ATOB Display the time interval from A to B, see example below.

BTOA Display the time interval from B to A, see example below.

BTOB Display the time interval from B to B, see example below.
If no selective tracing is possible and more specific events should be
displayed it is also possible to use the options:
General Commands Reference Guide T | 298©1989-2024 Lauterbach

Trace.Mode Leash

Break.Set 0x9cb0 /Program /TraceEnable

Break.Set 0x9e3c /Program /TraceEnable

Go

WAIT !STATE.RUN()

Trace.STATistic.DURation /FilterA Address 0x9cb0 /FilterB Address 0x9e3c

Trace.PROfileChart.DURation /FilterA Address 0x9cb0
 /FilterB Address 0x9e3c

Displays min and max duration per 10 pixels
General Commands Reference Guide T | 299©1989-2024 Lauterbach

See also

■ <trace>.PROfileChart

Displays min and max duration per 10 pixels (with a higher resolution)
General Commands Reference Guide T | 300©1989-2024 Lauterbach

<trace>.PROfileChart.GROUP Group profile chart

Analyzes the group behavior and displays the result as a color chart with fixed time intervals. The results
only include groups within the program range. Groups for data addresses are not included.

Example:

Format: <trace>.PROfileChart.GROUP [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE | FlowTrace | BusTrace
RecScale | TimeScale | TimeZero | TimeREF
TASK <task> | SplitTASK | MergeTASK
CORE <core> | SplitCORE | MergeCORE | JoinCORE
Address <address | range> | InterVal <time>
Filter <filter_items> | Sort <item> | Track | ZoomTrack
Vector | Steps | Color [FixedColors | AlternatingColors]

<option> Refer to <trace>.PROfileChart for a description of the options.

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

GROUP.Create "INPUT" \jquant2 \jquant1 \jidctred \jdinput /AQUA
GROUP.Create "JPEG" \jdapimin \jdcolor \jddctmgr \jdcoefct /NAVY
Trace.PROfileChart.GROUP
General Commands Reference Guide T | 301©1989-2024 Lauterbach

See also

■ <trace>.PROfileChart ■ <trace>.PROfileChart.AddressGROUP
■ BMC.PROfileChart.GROUP

▲ ’Release Information’ in ’Legacy Release History’

<trace>.PROfileChart.INTERRUPT Display interrupt profile chart

The time spent in different interrupts is displayed graphically as profile chart. This feature is only available if
TRACE32 has been set for OS-aware debugging.

See also

■ <trace>.PROfileChart

Format: <trace>.PROfileChart.INTERRUPT [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
CORE <core> | SplitCORE | MergeCORE | JoinCORE
Sort <item>
InterVal <time>
Vector | Steps
Color [FixedColors | AlternatingColors]

<option> Refer to <trace>.PROfileChart for a description of the options.

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.
General Commands Reference Guide T | 302©1989-2024 Lauterbach

<trace>.PROfileChart.Line HLL-line profile chart

Analyzes the dynamic program behavior for high-level code lines and displays the result as a color chart with
fixed time intervals.

Trace.PROfileChart.Line is based on a flat function run-time analysis.

See also

■ <trace>.PROfileChart ■ BMC.PROfileChart.Line

Format: <trace>.PROfileChart.Line [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
TASK <task> | SplitTASK | MergeTASK
CORE <core> | SplitCORE | MergeCORE | JoinCORE
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
Filter <item>
Sort <item>
InterVal <time>
Vector | Steps
Color [FixedColors | AlternatingColors]

<option> Refer to <trace>.PROfileChart for a description of the options.

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.
General Commands Reference Guide T | 303©1989-2024 Lauterbach

<trace>.PROfileChart.MODULE Module profile chart

Analyzes the dynamic program behavior for symbol modules and displays the result as a color chart with
fixed time intervals. The list of loaded modules can be displayed with sYmbol.List.Module.

Trace.PROfileChart.MODULE is based on a flat function run-time analysis.

See also

■ <trace>.PROfileChart ■ BMC.PROfileChart.MODULE

Format: <trace>.PROfileChart.MODULE [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
TASK <task> | SplitTASK | MergeTASK
CORE <core> | SplitCORE | MergeCORE | JoinCORE
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
Address <address | range>
Filter <item>
Sort <item>
InterVal <time>
Vector | Steps
Color [FixedColors | AlternatingColors]

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

<option> Refer to <trace>.PROfileChart for a description of the options.
General Commands Reference Guide T | 304©1989-2024 Lauterbach

<trace>.PROfileChart.PAddress Which instructions accessed data address

The command provides a graphical profile chart of the instructions that accessed data addresses. You can
select a specific address using the /Filter option.

Format: <trace>.PROfileChart.PAddress [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
TASK <task> | SplitTASK | MergeTASK
CORE <core> | SplitCORE | MergeCORE | JoinCORE
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
Address <address | range>
Filter <item>
Sort <item>
InterVal <time>
Vector | Steps
Color [FixedColors | AlternatingColors]

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

<option> Refer to <trace>.PROfileChart for a description of the options.
General Commands Reference Guide T | 305©1989-2024 Lauterbach

Example:

See also

■ <trace>.PROfileChart

<trace>.PROfileChart.PROGRAM Program profile chart

Analyzes the dynamic execution behavior brocken down by loaded object files (program) and displays the
result as a color chart with fixed time intervals. The loaded programs can be displayed with the command
sYmbol.Browse *.

; display a profile chart of all addresses that accessed mstatic1
Trace.PROfileChart.PAddress /Filter sYmbol mstatic1

Format: <trace>.PROfileChart.PROGRAM [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
TASK <task> | SplitTASK | MergeTASK
CORE <core> | SplitCORE | MergeCORE | JoinCORE
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
Address <address | range>
Filter <item>
Sort <item>
InterVal <time>
Vector | Steps
Color [FixedColors | AlternatingColors]
General Commands Reference Guide T | 306©1989-2024 Lauterbach

Trace.PROfileChart.PROGRAM is based on a flat function run-time analysis.

See also

■ <trace>.PROfileChart ■ BMC.PROfileChart.PROGRAM

<trace>.PROfileChart.PsYmbol Which functions accessed data address

The command provides a graphical profile chart of the functions that accessed data addresses. You can
select a specific address using the /Filter option.

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

<option> Refer to <trace>.PROfileChart for a description of the options.

Format: <trace>.PROfileChart.PsYmbol [<trace_area>] [/<option>]

<option>: FILE
FlowTrace | BusTrace
TASK <task> | SplitTASK | MergeTASK
CORE <core> | SplitCORE | MergeCORE | JoinCORE
INLINE | NoINLINE | LABEL | NoLABLE
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
Address <address | range>
Filter <item>
Sort <item>
InterVal <time>
Vector | Steps
Color [FixedColors | AlternatingColors]

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

<option> Refer to <trace>.PROfileChart for a description of the options.
General Commands Reference Guide T | 307©1989-2024 Lauterbach

Example:

See also

■ <trace>.PROfileChart

; display a profile chart of all functions that accessed mstatic1
Trace.PROfileChart.PsYmbol /Filter sYmbol mstatic1
General Commands Reference Guide T | 308©1989-2024 Lauterbach

<trace>.PROfileChart.Rate Event frequency

Graphical display of the event frequency over the time. Displays the rate of all cycles except dummy cycles.

Format: <trace>.PROfileChart.Rate [<trace_area>] [/<option>]
<trace>.Chart.Rate (deprecated)

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
TASK <task> | SplitTASK | MergeTASK
CORE <core> | SplitCORE | MergeCORE | JoinCORE
INLINE | NoINLINE | LABEL | NoLABEL
Address <address | range>
Filter <item>
InterVal <time>
Vector | Steps
Color [FixedColors | AlternatingColors]

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

<option> Refer to <trace>.PROfileChart for a description of the options.
General Commands Reference Guide T | 309©1989-2024 Lauterbach

Example: Display the TARGET FIFO OVERFLOW (FIFOFULL) rate over the time.

See also

■ <trace>.PROfileChart

Trace.PROfileChart.Rate /Filter FIFOFULL
General Commands Reference Guide T | 310©1989-2024 Lauterbach

<trace>.PROfileChart.RUNNABLE Runnable profile chart

The command provides a graphical profile chart of AUTOSAR runnables. This feature can only be used if
ISR2 can be traced based on the information provided by the ORTI file. Please refer to “OS Awareness
Manual OSEK/ORTI” (rtos_orti.pdf) for more information.

On TriCore AURIX there’s a solution available for the Vector AUTOSAR tools that uses an automated
instrumentation to trace runnables on all cores with minimum overhead. See
~~/demo/env/vector/rte_profiling.

Otherwise, all functions that start an AUTOSAR “Runnable” have to be marked with the command
sYmbol.MARKER.Create RUNNABLESTARTPLUSSTOP. Please refer to “Trace Export for Third-Party
Timing Tools” (app_timing_tools.pdf) for more information.

See also

■ <trace>.PROfileChart

Format: <trace>.PROfileChart.RUNNABLE [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE
FlowTrace | BusTrace
TASK <task> | SplitTASK | MergeTASK
CORE <core> | SplitCORE | MergeCORE | JoinCORE
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
Address <address | range>
Filter <item>
Sort <item>
InterVal <time>
Vector | Steps
Color [FixedColors | AlternatingColors]

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

<option> Refer to <trace>.PROfileChart for a description of the options.
General Commands Reference Guide T | 311©1989-2024 Lauterbach

<trace>.PROfileChart.sYmbol Dynamic program behavior graphically (flat)

Analyzes the dynamic program behavior and displays the result as a color chart with fixed time intervals.
Trace.PROfileChart.sYmbol is based on a flat function run-time analysis.

See also

■ <trace>.PROfileChart ■ BMC.PROfileChart.sYmbol ■ CTS.PROfileChart.sYmbol

Format: <trace>.PROfileChart.sYmbol [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE | FlowTrace | BusTrace
RecScale | TimeScale | TimeZero | TimeREF
TASK <task> | SplitTASK | MergeTASK
CORE <core> | SplitCORE | MergeCORE | JoinCORE
LABEL | NoLABEL | INLINE | NoINLINE
Address <address | range>
InterVal <time>
Filter <filter_items>
Sort <item>
Track | ZoomTrack
Vector | Steps
Color [FixedColors | AlternatingColors]

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

<option> Refer to <trace>.PROfileChart for a description of the options.
General Commands Reference Guide T | 312©1989-2024 Lauterbach

<trace>.PROfileChart.TASK Dynamic task behavior graphically (flat)

Analyzes the dynamic task behavior and displays the result as a color chart with fixed time intervals. This
command requires OS-ware tracing.

Example to analyze CPU load:

Format: <trace>.PROfileChart.TASK [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE | FlowTrace | BusTrace
RecScale | TimeScale | TimeZero | TimeREF
CORE <core> | SplitCORE | MergeCORE | JoinCORE
InterVal <time>
Sort <item>
Track
ZoomTrack
Vector | Steps
Color [FixedColors | AlternatingColors]

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

<option> Refer to <trace>.PROfileChart for a description of the options.

; group all tasks that contain an idle loop to the group "Idle"
; all other tasks are members of the group "other"

; merge the result of all "Idle" group members and
; use white as "Idle" group color
GROUP.CreateTASK "Idle" "Idle_Task" /Merge /WHITE

; merge the result of all "other" group members
GROUP.Merge "other"

; use green as "other" group color
GROUP.COLOR "other" GREEN

; display the CPU load graphically
Trace.PROfileChart.TASK
General Commands Reference Guide T | 313©1989-2024 Lauterbach

(unknown) represents the time before the first task information was recorded to the trace.

See also

■ <trace>.PROfileChart ■ BMC.PROfileChart.TASK ■ CTS.PROfileChart.TASK

▲ ’CPU Load Measurement’ in ’Application Note Profiling on AUTOSAR CP with ARTI’

<trace>.PROfileChart.TASKINFO Context ID special messages

Displays a graphical profile chart of special messages written to the Context ID register for ETM trace. The
range of special values has to be reserved with the ETM.ReserveContextID command. These special
values are then not interpreted for task switch or memory space switch detection.

Format: <trace>.PROfileChart.TASKINFO [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE | FlowTrace | BusTrace
RecScale | TimeScale | TimeZero | TimeREF
CORE <core> | SplitCORE | MergeCORE | JoinCORE
InterVal <time>
Sort <item>
Track
ZoomTrack
Vector | Steps
Color [FixedColors | AlternatingColors]
General Commands Reference Guide T | 314©1989-2024 Lauterbach

This can be used for cores without data trace to pass data by the target application to the trace tool by writing
to the ContextID register.

See also

■ <trace>.PROfileChart ■ BMC.PROfileChart.TASKINFO
■ CTS.PROfileChart.TASKINFO

<trace>.PROfileChart.TASKINTR ISR2 profile chart (ORTI)

Displays graphical profile chart for ORTI based ISR2. This feature can only be used if the ISR2 can be
traced based on the information provided by the ORTI file.

See also

■ <trace>.PROfileChart ■ BMC.PROfileChart.TASKINTR
■ CTS.PROfileChart.TASKINTR

▲ ’Trace Features’ in ’OS Awareness Manual OSEK/ORTI’

Format: <trace>.PROfileChart.TASKINTR [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE | FlowTrace | BusTrace
RecScale | TimeScale | TimeZero | TimeREF
CORE <core> | SplitCORE | MergeCORE | JoinCORE
InterVal <time>
Sort <item>
Track
ZoomTrack
Vector | Steps
Color [FixedColors | AlternatingColors]

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

<option> Refer to <trace>.PROfileChart for a description of the options.
General Commands Reference Guide T | 315©1989-2024 Lauterbach

<trace>.PROfileChart.TASKKernel Task profile chart with kernel markers

Displays profile chart for results of Trace.STATistic.TASKKernel. This feature is only available if TRACE32
has been set for OS-aware debugging.

See also

■ <trace>.PROfileChart ■ BMC.PROfileChart.TASKKernel
■ CTS.PROfileChart.TASKKernel

Format: <trace>.PROfileChart.TASKKernel [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE | FlowTrace | BusTrace
RecScale | TimeScale | TimeZero | TimeREF
CORE <core> | SplitCORE | MergeCORE | JoinCORE
InterVal <time>
Sort <item>
Track
ZoomTrack
Vector | Steps
Color [FixedColors | AlternatingColors]

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

<option> Refer to <trace>.PROfileChart for a description of the options.
General Commands Reference Guide T | 316©1989-2024 Lauterbach

<trace>.PROfileChart.TASKORINTERRUPT Task and interrupt profile chart

Analyzes the dynamic task and interrupt behavior and displays the result as a color chart with fixed time
intervals. This command requires OS-ware tracing.

See also

■ <trace>.PROfileChart ■ BMC.PROfileChart.TASKORINTERRUPT
■ CTS.PROfileChart.TASKORINTERRUPT

Format: <trace>.PROfileChart.TASKORINTERRUPT [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE | FlowTrace | BusTrace
RecScale | TimeScale | TimeZero | TimeREF
CORE <core> | SplitCORE | MergeCORE | JoinCORE
InterVal <time>
Sort <item>
Track
ZoomTrack
Vector | Steps
Color [FixedColors | AlternatingColors]

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

<option> Refer to <trace>.PROfileChart for a description of the options.
General Commands Reference Guide T | 317©1989-2024 Lauterbach

<trace>.PROfileChart.TASKSRV Profile chart of OS service routines

The time spent in OS service routines and different tasks is displayed as profile chart. This feature is only
available if an OSEK/ORTI system is used and if the OS Awareness is configured with the TASK.ORTI
command. Please refer to “OS Awareness Manual OSEK/ORTI” (rtos_orti.pdf) for more information.

See also

■ <trace>.PROfileChart ■ BMC.PROfileChart.TASKSRV
■ CTS.PROfileChart.TASKSRV

Format: <trace>.PROfileChart.TASKSRV [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE | FlowTrace | BusTrace
RecScale | TimeScale | TimeZero | TimeREF
CORE <core> | SplitCORE | MergeCORE | JoinCORE
InterVal <time>
Sort <item>
Track
ZoomTrack
Vector | Steps
Color [FixedColors | AlternatingColors]

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

<option> Refer to <trace>.PROfileChart for a description of the options.
General Commands Reference Guide T | 318©1989-2024 Lauterbach

<trace>.PROfileChart.TASKVSINTERRUPT Interrupted tasks

Displays a graphical profile chart of tasks that were interrupted by interrupt service routines. This command
requires OS-ware tracing.

See also

■ <trace>.PROfileChart ■ BMC.PROfileChart ■ ETA.PROfileChart ■ MIPS.PROfileChart

Format: <trace>.PROfileChart.TASKVSINTERRUPT [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE | FlowTrace | BusTrace
RecScale | TimeScale | TimeZero | TimeREF
CORE <core> | SplitCORE | MergeCORE | JoinCORE
InterVal <time>
Sort <item>
Track
ZoomTrack
Vector | Steps
Color [FixedColors | AlternatingColors]

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

<option> Refer to <trace>.PROfileChart for a description of the options.
General Commands Reference Guide T | 319©1989-2024 Lauterbach

<trace>.PROfileChart.TASKVSINTR Profile chart for task-related interrupts

Displays a graphical profile chart for task-related interrupt service routines. This feature is only available if an
OSEK/ORTI system is used and if the OS Awareness is configured with the TASK.ORTI command. Please
refer to “OS Awareness Manual OSEK/ORTI” (rtos_orti.pdf) for more information.

See also

■ <trace>.PROfileChart ■ BMC.PROfileChart.TASKVSINTR
■ CTS.PROfileChart.TASKVSINTR

Format: <trace>.PROfileChart.TASKVSINTR [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE | FlowTrace | BusTrace
RecScale | TimeScale | TimeZero | TimeREF
CORE <core> | SplitCORE | MergeCORE | JoinCORE
InterVal <time>
Sort <item>
Track
ZoomTrack
Vector | Steps
Color [FixedColors | AlternatingColors]

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

<option> Refer to <trace>.PROfileChart for a description of the options.
General Commands Reference Guide T | 320©1989-2024 Lauterbach

<trace>.PROfileChart.Var Variable profile chart

Displays a profile chart for variable accesses in the trace recording.

Example:

See also

■ <trace>.PROfileChart

Format: <trace>.PROfileChart.Var [<record_range>] [<scale>] [/<option>]

<option>: FILE
FlowTrace | BusTrace
TASK <task> | SplitTASK | MergeTASK
CORE <core> | SplitCORE | MergeCORE | JoinCORE
Track | ZoomTrack
RecScale | TimeScale | TimeZero | TimeREF
Filter <item>
Address <address | range>
Sort <item>
InterVal <time>
Vector | Steps
Color [FixedColors | AlternatingColors]

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

<option> Refer to <trace>.PROfileChart for a description of the options.

Trace.PROfileChart.Var /Filter CYcle WRITE
General Commands Reference Guide T | 321©1989-2024 Lauterbach

<trace>.PROfileSTATistic Statistical analysis in a table versus time

The command group <trace>.PROfileSTATistic shows the results of numerical interval analysis in tabular
format.

Options

This section describes the options of the <trace>.PROfileSTATistic command group. Not all options are
supported by all <trace>.PROfileChart commands.

<option>: FILE
FlowTrace | BusTrace
TASK <task> | SplitTASK | MergeTASK
CORE <core> | SplitCORE | MergeCORE | JoinCORE
RecScale | IndexScale | TimeScale | TimeZero | TimeREF
InterVal <time>
Ratio | Compress | ROTATE
Filter <item>
INCremental | FULL
Sort <item>
Track
General Commands Reference Guide T | 322©1989-2024 Lauterbach

FILE Use the trace contents loaded with the command <trace>.FILE.

FlowTrace Trace works as a program flow Trace. This option is usually not required.

BusTrace Trace works as a bus trace. This option is usually not required.

TASK <task_magic>,
etc.

Operating system task in OS-aware debugging and tracing.

See also “What to know about the Task Parameters”
(general_ref_t.pdf).

SplitTASK Trace information is analyzed independently for each task. The time chart
displays these individual results.

MergeTASK Trace information is analyzed independently for each task. The time chart
summarizes these results to a single result.

CORE <n> Time chart is only displayed for the specified core. Only available for SMP
multicore tracing.

SplitCORE Trace information is analyzed independently for each core. The time
chart displays these individual results. Only available for SMP multicore
tracing.

MergeCORE Trace information is analyzed independently for each core. The time
chart summarizes these results to a single result. Only available for SMP
multicore tracing.

JoinCORE Core information is ignored for the time chart. Only available for SMP
multicore tracing.

RecScale Display trace in fixed record raster. This is the default.

IndexScale Results with index display.

TimeScale Display trace as true time display, time relative to the trigger point
(respectively the last record in the trace).

TimeZero Display trace as true time display, time relative to zero point. For more
information about the zero point refer to ZERO.

TimeREF Display trace as true time display, time relative to the reference point. For
more information about the reference point refer to <trace>.REF.

InterVal <time> Allows to divide the time period recorded by the trace (total) into time slices.
Additional analysis details can be displayed for these time slices.

Ratio Ratio of time spent over the complete measurement is displayed instead
of time.
General Commands Reference Guide T | 323©1989-2024 Lauterbach

See also

■ <trace>.Chart ■ <trace>.PROfileChart ■ <trace>.STATistic ■ BMC.PROfileSTATistic
■ EVENTS.PROfileSTATistic

▲ ’Release Information’ in ’Legacy Release History’

ROTATE Rotate x- and y-axis.

Filter <item> Filter the described item.

INCremental Intermediate results are displayed while the TRACE32 software analyzes
the trace contents (default).

FULL The result is displayed after the TRACE32 software finished the analysis.

Sort [<sort_visible>]
[<sort_core>]
[<sort>]

Specify sorting criterion for analyzed items. For almost all commands the
analyzed items are displayed in the order they are recorded by default.

Details on the sorting criterion can be found at the description of the
command Trace.STATistic.Sort.

Track The cursor in the <trace>.PROfileChart window follows the cursor
movement in other trace windows. Default is a time tracking. If no time
information is available tracking to record number is performed.
The zoom factor of the <trace>.PROfileChart window is retained, even if
the trace content changes.
General Commands Reference Guide T | 324©1989-2024 Lauterbach

<trace>.PROfileSTATistic.Address Statistical analysis for addresses

Shows the results of numerical interval analysis in tabular format for addresses.

See also

■ BMC.PROfileSTATistic.Address

<trace>.PROfileSTATistic.AddressGROUP Stat. for address groups

Shows the results of numerical interval analysis in tabular format for address groups. The results include
groups for both program and data addresses.

See also

■ <trace>.PROfileSTATistic.GROUP ■ BMC.PROfileSTATistic.AddressGROUP

Format: <trace>.PROfileSTATistic.Address [<trace_area>] <address1>
 [<address2> ...] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

<option> Refer to <trace>.PROfileSTATistic for information about the available
options.

Format: <trace>.PROfileSTATistic.AddressGROUP [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

<option> Refer to <trace>.PROfileSTATistic for information about the available
options.
General Commands Reference Guide T | 325©1989-2024 Lauterbach

<trace>.PROfileSTATistic.COUNTER Statistical analysis for counter

Shows the results of numerical interval analysis in tabular format for counter traced as data value.

<trace>.PROfileSTATistic.DatasYmbol Statistic analysis for pointer content

Shows the results of numerical interval analysis in tabular format for pointer contents symbolically.

See also

■ BMC.PROfileSTATistic.DatasYmbol

Format: <trace>.PROfileSTATistic.COUNTER [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

<option> Refer to <trace>.PROfileSTATistic for information about the available
options.

Format: <trace>.PROfileSTATistic.DatasYmbol [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]
General Commands Reference Guide T | 326©1989-2024 Lauterbach

<trace>.PROfileSTATistic.DistriB Distribution statistical analysis

Shows the results of numerical interval analysis in tabular format for the statistical distribution of a selected
item or based on the symbolic addresses if no item is specified.

Example:

See also

■ BMC.PROfileSTATistic.DistriB

Format: <trace>.PROfileSTATistic.DistriB [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

<option> Refer to <trace>.PROfileSTATistic for information about the available
options.

Trace.profileSTATistic.DistriB Data.B /Filter Address
Var.RANGE(flags[3])
General Commands Reference Guide T | 327©1989-2024 Lauterbach

<trace>.PROfileSTATistic.GROUP Statistical analysis for groups

Shows the results of numerical interval analysis in tabular format for groups. The results only include groups
within the program range. Groups for data addresses are not included.

See also

■ <trace>.PROfileSTATistic.AddressGROUP ■ BMC.PROfileSTATistic.GROUP

Format: <trace>.PROfileSTATistic.GROUP [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

<option> Refer to <trace>.PROfileSTATistic for information about the available
options.
General Commands Reference Guide T | 328©1989-2024 Lauterbach

<trace>.PROfileSTATistic.INTERRUPT Statistical analysis for interrupts

Shows the results of numerical interval analysis in tabular format for interrupts. This command requires OS-
ware tracing.

See also

■ BMC.PROfileSTATistic.INTERRUPT

Format: <trace>.PROfileSTATistic.INTERRUPT [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

<option> Refer to <trace>.PROfileSTATistic for information about the available
options.
General Commands Reference Guide T | 329©1989-2024 Lauterbach

<trace>.PROfileSTATistic.Line Statistical analysis for HLL lines

Shows the results of numerical interval analysis in tabular format for HLL code lines.

See also

■ BMC.PROfileSTATistic.Line

Format: <trace>.PROfileSTATistic.Line [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

<option> Refer to <trace>.PROfileSTATistic for information about the available
options.
General Commands Reference Guide T | 330©1989-2024 Lauterbach

<trace>.PROfileSTATistic.MODULE Statistical analysis for modules

Shows the results of numerical interval analysis in tabular format for the code execution broken down by
symbol module. The list of loaded modules can be displayed with sYmbol.List.Module.

See also

■ BMC.PROfileSTATistic.MODULE

Format: <trace>.PROfileSTATistic.MODULE [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

<option> Refer to <trace>.PROfileSTATistic for information about the available
options.
General Commands Reference Guide T | 331©1989-2024 Lauterbach

<trace>.PROfileSTATistic.PAddress Which instr. accessed data address

Shows the results of numerical interval analysis in tabular format of the instructions that accessed data
addresses. You can select a specific address using the /Filter option.

Example:

<trace>.PROfileSTATistic.PROGRAM Statistical analysis for programs

Shows the results of numerical interval analysis in tabular format for the code execution broken down by
loaded object file (program). The loaded programs can be displayed with the command sYmbol.Browse *.

See also

■ BMC.PROfileSTATistic.PROGRAM

Format: <trace>.PROfileSTATistic.PAddress [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

<option> Refer to <trace>.PROfileSTATistic for information about the available
options.

; display a profile statistic of all addresses that accessed mstatic1
Trace.PROfileSTATistic.PAddress /Filter sYmbol mstatic1

Format: <trace>.PROfileSTATistic.PROGRAM [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

<option> Refer to <trace>.PROfileSTATistic for information about the available
options.
General Commands Reference Guide T | 332©1989-2024 Lauterbach

<trace>.PROfileSTATistic.PsYmbol Which functions accessed data address

Shows the results of numerical interval analysis in tabular format of the functions that accessed data
addresses. You can select a specific address using the /Filter option.

Example:

<trace>.PROfileSTATistic.RUNNABLE Statistical analysis for runnables

Shows the results of numerical interval analysis in tabular format for AUTOSAR runnables. This feature is
only available if an OSEK/ORTI system is used and if the OS Awareness is configured with the TASK.ORTI
command. Please refer to “OS Awareness Manual OSEK/ORTI” (rtos_orti.pdf) for more information.

On TriCore AURIX there’s a solution available for the Vector AUTOSAR tools that uses an automated
instrumentation to trace runnables on all cores with minimum overhead. See
~~/demo/env/vector/rte_profiling.

Otherwise, all functions that start an AUTOSAR “Runnable” have to be marked with the command
sYmbol.MARKER.Create RUNNABLESTARTPLUSSTOP. Please refer to “Trace Export for Third-Party
Timing Tools” (app_timing_tools.pdf) for more information.

Format: <trace>.PROfileSTATistic.PsYmbol /Filter Address <address> [/<option>]

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

<option> Refer to <trace>.PROfileSTATistic for information about the available
options.

; display a profile statistic of all function that accessed mstatic1
Trace.PROfileSTATistic.PsYmbol /Filter sYmbol mstatic1

Format: <trace>.PROfileSTATistic.RUNNABLE [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

<option> Refer to <trace>.PROfileSTATistic for information about the available
options.
General Commands Reference Guide T | 333©1989-2024 Lauterbach

See also

■ BMC.PROfileSTATistic.RUNNABLE

<trace>.PROfileSTATistic.sYmbol Statistical analysis for symbols

Shows the results of numerical interval analysis in tabular format for different debug symbols.

See also

■ BMC.PROfileSTATistic.sYmbol

Format: <trace>.PROfileSTATistic.sYmbol [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

<option> Refer to <trace>.PROfileSTATistic for information about the available
options.
General Commands Reference Guide T | 334©1989-2024 Lauterbach

<trace>.PROfileSTATistic.TASK Statistical analysis for tasks

Shows the results of numerical interval analysis in tabular format for OS tasks. This command requires OS-
ware tracing.

See also

■ BMC.PROfileSTATistic.TASK

▲ ’CPU Load Measurement’ in ’Application Note Profiling on AUTOSAR CP with ARTI’

<trace>.PROfileSTATistic.TASKINFO Context ID special messages

Displays a profile statistic of special messages written to the Context ID register for ETM trace. The range of
special values has to be reserved with the ETM.ReserveContextID command. These special values are
then not interpreted for task switch or memory space switch detection.

Format: <trace>.PROfileSTATistic.TASK [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

<option> Refer to <trace>.PROfileSTATistic for information about the available
options.

Format: <trace>.PROfileSTATistic.TASKINFO [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]
General Commands Reference Guide T | 335©1989-2024 Lauterbach

This can be used for cores without data trace to pass data by the target application to the trace tool by writing
to the ContextID register.

See also

■ BMC.PROfileSTATistic.TASKINFO

<trace>.PROfileSTATistic.TASKINTR Statistical analysis for ISR2 (ORTI)

Shows the results of numerical interval analysis in tabular format for ORTI based ISR2. This feature can only
be used if ISR2 can be traced based on the information provided by the ORTI file.

See also

■ BMC.PROfileSTATistic.TASKINTR

▲ ’Trace Features’ in ’OS Awareness Manual OSEK/ORTI’

Format: <trace>.PROfileSTATistic.TASKINTR [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

<option> Refer to <trace>.PROfileSTATistic for information about the available
options.
General Commands Reference Guide T | 336©1989-2024 Lauterbach

<trace>.PROfileSTATistic.TASKKernel Stat. analysis with kernel markers

Numerical interval analysis in tabular format for results of Trace.STATistic.TASKKernel. This command
requires OS-ware tracing.

See also

■ BMC.PROfileSTATistic.TASKKernel

<trace>.PROfileSTATistic.TASKORINTERRUPT Interrupts and tasks

Numerical interval analysis in tabular format for tasks and interrupts. This command requires OS-ware
tracing.

See also

■ BMC.PROfileSTATistic.TASKORINTERRUPT

Format: <trace>.PROfileSTATistic.TASKKernel [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

<option> Refer to <trace>.PROfileSTATistic for information about the available
options.

Format: <trace>.PROfileSTATistic.TASKORNTERRUPT [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

<option> Refer to <trace>.PROfileSTATistic for information about the available
options.
General Commands Reference Guide T | 337©1989-2024 Lauterbach

<trace>.PROfileSTATistic.TASKSRV Analysis of OS service routines

The time spent in OS service routines and different tasks is displayed in tabular format. This feature is only
available if an OSEK/ORTI system is used and if the OS Awareness is configured with the TASK.ORTI
command. Please refer to “OS Awareness Manual OSEK/ORTI” (rtos_orti.pdf) for more information.

See also

■ BMC.PROfileSTATistic.TASKSRV

<trace>.PROfileSTATistic.TASKVSINTERRUPT Interrupted tasks

Numerical interval analysis in tabular format for tasks that were interrupted by interrupt service routines. This
command requires OS-ware tracing.

See also

■ BMC.PROfileSTATistic ■ ETA.PROfileSTATistic ■ MIPS.PROfileSTATistic

Format: <trace>.PROfileSTATistic.TASKSRV [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

<option> Refer to <trace>.PROfileSTATistic for information about the available
options.

Format: <trace>.PROfileSTATistic.TASKVSINTERRUPT [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<trace_area> For parameter descriptions and, see Parameters under <trace>.Chart.

<option> Refer to <trace>.PROfileSTATistic for information about the available
options.
General Commands Reference Guide T | 338©1989-2024 Lauterbach

<trace>.PROTOcol Protocol analysis

See also

■ <trace>.PROTOcol.Chart ■ <trace>.PROTOcol.Draw
■ <trace>.PROTOcol.EXPORT ■ <trace>.PROTOcol.Find
■ <trace>.PROTOcol.list ■ <trace>.PROTOcol.PROfileChart
■ <trace>.PROTOcol.PROfileSTATistic ■ <trace>.PROTOcol.STATistic
■ <trace>.PROTOcol.Chart ■ <trace>.PROTOcol.Draw
■ <trace>.PROTOcol.EXPORT ■ <trace>.PROTOcol.Find
■ <trace>.PROTOcol.list ■ <trace>.PROTOcol.PROfileChart
■ <trace>.PROTOcol.PROfileSTATistic ■ <trace>.PROTOcol.STATistic
■ IProbe.state

<trace>.PROTOcol.Chart Graphic display for user-defined protocol

Options:

Format: <trace>.PROTOcol.Chart <protocol> <parlist> [<items> …] [/<option>]

<protocol>: JTAG | CAN | USB | I2C | I2S | ASYNC | SWDP | SPI | PROBEUSB

<option>: FILE
Track
RecScale
TimeScale
TimeZero
TimeREF
Filter

<items>: %<format>
<line>
DEFault | ALL
TIme.Back | TIme.Fore | TIme.REF
TIme.Zero | TIme.Trigger
SyncClock
SPARE

<parlist> Refer to “Protocol specific Options”, page 351.

FILE Display trace memory contents loaded with the command Trace.FILE.

Track Track other trace list window (tracks to record number or time)
General Commands Reference Guide T | 339©1989-2024 Lauterbach

Items:

Example: Display the user-defined protocol “proto1” on line x.0

See also

■ <trace>.PROTOcol

RecScale Record Scaling

TimeScale Timed Scaling

Filter

TIme.REF Time marker, relative to reference point

TIme.Trigger Time marker, relative to trigger point

TIme.Zero Time marker, relative to global reference

SyncClock Synchronous clock event

PP::Analyzer.PROTOcol.Chart proto1 x.0
General Commands Reference Guide T | 340©1989-2024 Lauterbach

<trace>.PROTOcol.Draw Graphic display for user-defined protocol

Options:

Items:

Format: <trace>.PROTOcol.Draw <protocol> <parlist> [<items> …] [/<option>]

<protocol>: JTAG | CAN | USB | I2C | I2S | ASYNC | SWDP | SPI | PROBEUSB

<option>: FILE
Track
RecScale
TimeScale
TimeZero
TimeREF
Filter

<items>: %<format>
<line>
DEFault | ALL
TIme.Back | TIme.Fore | TIme.REF
TIme.Zero | TIme.Trigger
SyncClock
SPARE

<parlist> Refer to “Protocol specific Options”, page 351.

FILE Display trace memory contents loaded with the command Trace.FILE.

Track Track other trace list window
(tracks to record number or time)

RecScale Record Scaling

TimeScale Timed Scaling

Filter Filter the described item.

TIme.REF Time marker, relative to reference point

TIme.Trigger Time marker, relative to trigger point
General Commands Reference Guide T | 341©1989-2024 Lauterbach

Example: Display the user-defined protocol “proto1” on line x.0

See also

■ <trace>.PROTOcol

<trace>.PROTOcol.EXPORT Export trace buffer for user-defined protocol

Example: Export the user-defined protocol “proto1” on line x.0 to test.lst

See also

■ <trace>.PROTOcol

TIme.Zero Time marker, relative to global reference

SyncClock Synchronous clock event

PP::Analyzer.PROTOcol.Draw proto1 x.0

Format: <trace>.PROTOcol.EXPORT <protocol> <parlist> <file> [<range> …]

<protocol>: JTAG | CAN | USB | I2C | I2S | ASYNC | SWDP | SPI | PROBEUSB

<parlist> Refer to “Protocol specific Options”, page 351.

PP::Analyzer.PROTOcol.EXPORT proto1 x.0 test.lst
General Commands Reference Guide T | 342©1989-2024 Lauterbach

<trace>.PROTOcol.Find Find in trace buffer for user-defined protocol

Options:

Example: Find in the user-defined protocol “proto1” on line x.0

See also

■ <trace>.PROTOcol ■ <trace>.PROTOcol.list ■ <trace>.PROTOcol

Format: <trace>.PROTOcol.Find <protocol> <parlist> [<items> …] [/<option>]

<protocol>: JTAG | CAN | USB | I2C | I2S | ASYNC | SWDP | SPI | PROBEUSB

<option>: FILE
Back
NoFind

<parlist> Refer to “Protocol specific Options”, page 351.

FILE Display trace memory contents loaded with the command Trace.FILE.

Back Search back

NoFind

PP::Analyzer.PROTOcol.Find proto1 x.0
General Commands Reference Guide T | 343©1989-2024 Lauterbach

<trace>.PROTOcol.list Display trace buffer for user-defined protocol

Options:

Formats:

Format: <trace>.PROTOcol.list <protocol> <parlist> [<items> …] [/<option>]

<protocol>: JTAG | CAN | USB | I2C | I2S | ASYNC | SWDP | SPI | PROBEUSB

<option>: FILE
Track

<items>: %<format>
<line>
DEFault | ALL
TIme.Back | TIme.Fore | TIme.REF
TIme.Zero | TIme.Trigger
SyncClock
SPARE

<format>: Hex | Decimal | BINary | Ascii
Timing | HighLow
LEN <size>
TimeAuto | TimeFixed

<parlist> Refer to “Protocol specific Options”, page 351.

FILE Display trace memory contents loaded with the command Trace.FILE.

Track Track other trace list window
(tracks to record number or time)

Timing Display single bits as vertical timing

HighLow Display single bits as HIGH/LOW value

Hex Display single bytes in hex values

Decimal Display single bytes in decimal values

BINary Display single bytes in binary values

Ascii Display single bytes as ascii characters
General Commands Reference Guide T | 344©1989-2024 Lauterbach

Items:

Example: Displays the user-defined protocol “proto1” on line x.0

LEN <size> Specify the width of non numeric fields (e.g. symbols)

TimeAuto The unit of time is selected automatically.

TimeFixed The displayed unit of time is fixed.

DEFault Default selections (see list below)

ALL Select all recorded data (superset of DEFault)

TIme Time marker (default Time.Fore)

TIme.Back Time marker, relative time to previous record

TIme.Fore Time marker, relative time to next record

TIme.REF Time marker, relative to reference point

TIme.Trigger Time marker, relative to trigger point

TIme.Zero Time marker, relative to global reference

SyncClock Synchronous clock event

SPARE Displays an empty block

PP::Analyzer.PROTOcol.list proto1 x.0
General Commands Reference Guide T | 345©1989-2024 Lauterbach

See also

■ <trace>.PROTOcol ■ <trace>.PROTOcol.Find
■ <trace>.PROTOcol.STATistic ■ <trace>.REF
■ <trace>.PROTOcol

▲ ’Release Information’ in ’Legacy Release History’

; JTAG <tck> <tms> <tdi> <tdo> <trst> <initstate>
; when the sampling is started the JTAG state machine is in state
; run-test/idle

Trace.PROTOcol.list JTAG X.8 X.9 X.4 X.12 X.14 run-test/idle

; CAN <canline> <...> (see "Options for CAN" for details)

Trace.PROTOcol.list CAN X.7 NominalFrequency 1.0MHz DEFault

; USB <+signal> <-signal>

Trace.PROTOcol.list USB X.17 X.18

; I2C <scl> <sda>

Trace.PROTOcol.list I2C X.22 X.23

; asynchronous communication interface
; ASYNC <asyline> <frequency> +|- <parity> <length> <stopbit>

Trace.PROTOcol.list ASYNC X.6 3600. + EVEN 7 1STOP STRING
Trace.PROTOcol.list ASYNC X.5 2400. - NONE 5 2STOP CHAR

; special protocols
; TRACE32 offers a API that allows to use special, customer specific
; protocols

Trace.PROTOcol.list protojtag.dll X.4 X.12 X.14

; examples for special protocols are provided under ~~/demo/proto
General Commands Reference Guide T | 346©1989-2024 Lauterbach

<trace>.PROTOcol.PROfileChart Profile chart for user-defined protocol

Options:

Format: <trace>.PROTOcol.PROfileChart <protocol> <parlist> [<items> …]
 [/<option>]

<protocol>: JTAG | CAN | USB | I2C | I2S | ASYNC | SWDP | SPI | PROBEUSB

<option>: FILE
Track
RecScale
TimeScale
TimeZero
TimeREF
Filter

<items>: %<format>
<line>
DEFault | ALL
TIme.Back | TIme.Fore | TIme.REF
TIme.Zero | TIme.Trigger
SyncClock
SPARE

<parlist> Refer to “Protocol specific Options”, page 351.

FILE Display trace memory contents loaded with the command Trace.FILE.

Track Track other trace list window (tracks to record number or time)

RecScale Record Scaling

TimeScale Timed Scaling

Filter
General Commands Reference Guide T | 347©1989-2024 Lauterbach

Items:

See also

■ <trace>.PROTOcol

<trace>.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol

Options:

TIme.REF Time marker, relative to reference point

TIme.Trigger Time marker, relative to trigger point

TIme.Zero Time marker, relative to global reference

SyncClock Synchronous clock event

Format: <trace>.PROTOcol.PROfileSTATistic <protocol> <parlist> [<items> …]
 [/<option>]

<protocol>: JTAG | CAN | USB | I2C | I2S | ASYNC | SWDP | SPI | PROBEUSB

<option>: FILE
Track
RecScale
TimeScale
TimeZero
TimeREF
Filter

<items>: %<format>
<line>
DEFault | ALL
TIme.Back | TIme.Fore | TIme.REF
TIme.Zero | TIme.Trigger
SyncClock
SPARE

<parlist> Refer to “Protocol specific Options”, page 351.

FILE Display trace memory contents loaded with the command Trace.FILE.
General Commands Reference Guide T | 348©1989-2024 Lauterbach

Items:

See also

■ <trace>.PROTOcol

Track Track other trace list window (tracks to record number or time)

RecScale Record Scaling

TimeScale Timed Scaling

Filter

TIme.REF Time marker, relative to reference point

TIme.Trigger Time marker, relative to trigger point

TIme.Zero Time marker, relative to global reference

SyncClock Synchronous clock event
General Commands Reference Guide T | 349©1989-2024 Lauterbach

<trace>.PROTOcol.STATistic Display statistics for user-defined protocol

Options:

Example: Display statistics in the user-defined protocol “proto1” on line x.0

See also

■ <trace>.PROTOcol ■ <trace>.PROTOcol.list ■ <trace>.PROTOcol

Format: <trace>.PROTOcol.STATistic <protocol> <parlist> [<items> …] [/<option>]

<protocol>: JTAG | CAN | USB | I2C | I2S | ASYNC | SWDP | SPI | PROBEUSB

<option>: FILE
BEFORE
AFTER
List
Filter
Accumulate
INCremental
FULL

<items>: %<format>
<line>
DEFault | ALL
TIme.Back | TIme.Fore | TIme.REF
TIme.Zero | TIme.Trigger
SyncClock
SPARE

<format>: Hex | Decimal | BINary | Ascii
Timing | HighLow
LEN <size>
TimeAuto | TimeFixed

<parlist> Refer to “Protocol specific Options”, page 351.

FILE Display trace memory contents loaded with the command Trace.FILE.

Track Track other trace list window
(tracks to record number or time)

PP::Analyzer.PROTOcol.STATistic proto1 x.0
General Commands Reference Guide T | 350©1989-2024 Lauterbach

Protocol specific Options

Options for ASYNC

<parlist>: <signal> [<baudrate> [<polarity> [<parity> [<bits> [<stopbits> [<disp>]]]]]]

<baudrate>: 1. … 1000000.

<polarity>: + | -

<parity>: NONE | ODD | EVEN

<bits>: 5 | 6 | 7 | 8

<stopbits>: 1STOP | 2STOP

<disp>: CHAR | STRING
General Commands Reference Guide T | 351©1989-2024 Lauterbach

Options for CAN

CAN decoder for buses compliant with ISO 11898-1:2015 (CAN-FD). To record CAN, the probe must be
connected to the RX line of a CAN transceiver. Do not connect the probe directly to the CAN lines.

<parlist>: <signal> [<setting> …]

<setting>: NominalFrequency <frequency>
DataFrequency <frequency>
NominalTiming <tq> <PropSeg> <PhaseSeg1> <PhaseSeg2> <SJW>
DataTiming <tq> <PropSeg> <PhaseSeg1> <PhaseSeg2> <SJW>
Filter <name> <frameType> <id> <byteOffset> <size> <endian> <format>
DRAWRange <min> <max>
Level <level>

<frequency>: <frequency, e. g. 1MHz>

<tq>: <time, e. g. 0.1us>

<PropSeg>:
<PhaseSeg1>
<PhaseSeg2>
<SJW>:
<id>:
<byteOffset>:
<min>:
<max>:

<integer>
<integer>
<integer>
<integer>
<integer>
<integer>
<integer>
<integer>

<id>: <string>

<frameType>: Base | Extended

<size>: Byte | Word | Long | Quad | TByte | PByte | HByte | SByte

<endian>: LE | BE

<format>: Decimal | DecimalU | Hex

<level>: PCS | BITS | FIELDS | FRAMES | FILTERS
General Commands Reference Guide T | 352©1989-2024 Lauterbach

Most <setting>s are optional with the following constraints:

• Either NominalFrequency or NominalTiming must always be specified.

• For the <trace>.PROTOcol.Draw command, at least one Filter must be specified.

NominalFrequency
DataFrequency

Specify the baud rate.
This sets up a sample point at 70 % of a period; use these commands if
you do not know or care about the exact timing parameters of the CAN
bus.

NominalTiming
DataTiming

Specify the exact timing parameters as defined in the CAN specification.
For <tq>, specify the effective time of a time quantum derived from the
base clock and the baud rate prescaler. Prefer to use this family of
options over the Frequency options, at least for CAN-FD buses.

Filter Add a filter to decode fixed-format frames.
For every data frame with matching type (i. e. base or extended) and ID,
extract the specified data. The number of filters is limited only by the
maximum length of a PRACTICE command. The <name> is only used to
identify the filter in the List and EXPORT commands.

DrawRange Specify upper/lower bounds for Draw window.
This setting is only relevant for the <trace>.PROTOcol.Draw command. If
not given, this option is automatically chosen to encompass the full range
of all defined filters. Note that the draw range is limited to either signed or
unsigned 32-bit integers.

Level Specify the display level.
For the <trace>.PROTOcol.list command, this is the default level and can
be changed with the More and Less buttons. For the
<trace>.PROTOcol.EXPORT command, only FRAMES and FILTERS are
valid.
The available levels are as follows:

• PCS: Phases of the Physical Coding Sub-layer

• BITS: Decoded bits of the protocol

• FIELDS: Decoded fields of the protocol

• FRAMES: Complete CAN frames

• FILTERS: Data extracted with the Filter setting

NOTE: Prior to R.2020.09, TRACE32 included a CAN decoder that was not compatible
with CAN-FD. This old decoder had a different command line syntax. To use the
old decoder, type <trace>.PROTOcol.<sub_cmd> CANLEGACY <...>.
General Commands Reference Guide T | 353©1989-2024 Lauterbach

Options for I2C

If not specified, the default glitch filter is 50 ns.

Options for I2S

<parlist>: <scl> <sda> [<glitch_ns>]
(All commands except <trace>.PROTOcol.FIND)
<scl> <sda> <data> [<glitch_ns>]
(<trace>.PROTOcol.FIND)

<sck>:
<sda>:

<signal>
<signal>

<glitch_ns>:
<data>:

<integer>
<integer>

<parlist>: <sck> <sd> <ws> [<glitch_ns>]
(All commands except <trace>.PROTOcol.FIND)
<sck> <sd> <ws> <data> [<glitch_ns>]
(<trace>.PROTOcol.FIND)

<sck>:
<sd>:
<ws>:

<signal>
<signal>
<signal>

<glitch_ns>:
<data>:

<integer>
<integer>
General Commands Reference Guide T | 354©1989-2024 Lauterbach

Options for JTAG

<parlist>: <tck> <tms> <tdi> <tdo> [<trst>] [<initial_state>]

<tck>:
<tms>:
<tdi>:
<tdo>:
<trst>:

<signal>

<initial_
state>:

Exit2-DR
Exit1-DR
Shift-DR
Pause-DR
Select-IR-scan
Update-DR
Capture-DR
Select-DR-scan
Exit2-IR
Exit1-IR
Shift-IR
Pause-IR
Run-Test/Idle
Update-IR
Capture-IR
Test-Logic-Reset
General Commands Reference Guide T | 355©1989-2024 Lauterbach

Options for USB

<parlist>: <+signal> <-signal> [<state>]

<+signal>:
<-signal>:

<signal>
<signal>

<state>: BUSRESET
GAP
SYNC
EOP
ERRORS
SOF
#SETUP
#PRE
#IN
#OUT
#ACK
#NACK
#STALL
#DATA0
#DATA1
#OTHER
General Commands Reference Guide T | 356©1989-2024 Lauterbach

<trace>.REF Set reference point for time measurement

Sets the reference point for time measurements using the TIme.REF column of the Trace.List window. The
default reference point is always the last record in trace memory. The reference point can also be set via
context menu entry Set Ref in Trace.List, Trace.Chart, Trace.Timing etc. windows.

Examples:

See also

■ <trace>.GOTO ■ <trace>.PROTOcol.list ■ <trace>.Timing ■ <trace>.View
■ IProbe.state ■ RunTime ■ RunTime.state ❏ Analyzer.REF()

<trace>.RESet Reset command

Resets the trace unit to its default settings.

See also

■ IProbe.state ■ RunTime ■ RunTime.state

Format: <trace>.REF [<time> | <record> | "<trace_bookmark>"]

<option>: FILE

<time> Sets the reference point to the global ZERO point. If the time for each trace
event is calculated based on timestamps generated by the processor, the
global ZERO point is at the start of the trace recording currently stored in the
trace buffer. If the time for each trace event is based on timestamps generated
by the trace module, the global ZERO point is set to the start of the first debug
session after the start of TRACE32 PowerView.

<record> Sets the reference point to the time index of the specified record number.

<trace_bookmark> Sets the reference point to the time index of the specified bookmark
location. You can create trace bookmarks with the <trace>.BookMark
command.

Trace.REF +2000. ; set reference to record +2000

Trace.REF 100us ; set ref. point to absolute time

Trace.REF "MyRef" ; set ref. point to bookmark "MyRef"

Format: <trace>.RESet
General Commands Reference Guide T | 357©1989-2024 Lauterbach

<trace>.SAVE Save trace for postprocessing in TRACE32
[Parameters] [Options] [Examples]

The trace memory contents are stored to the selected file. What is actually saved to the file depends on the
Trace.Mode:

• Trace.Mode FlowTrace: Trace raw data plus decompressed addresses, data and op-codes are
saved.

If the program and data flow is output by the CPU in a compressed format, it is decompressed before
saving it to a file for postprocessing. By reading the source code information the addresses, data
value and op-codes are decompressed.

• All other settings for Trace.Mode: Only the trace raw data are saved into <file> if the information
from the external busses, ports etc. are recorded to the trace buffer.

Parameters

Format: <trace>.SAVE <file> [<trace_area>] [{/<options>}]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FlowTrace
BusTrace
ZIP
PACK
NoCompress

<file> The default extension of the file name is *.ad.

For some TRACE32 devices additional setting are saved to <file>:
• PowerProbe (Trace.METHOD Probe)

All Probe settings and all NAME settings are saved to <file>.
• PowerIntegrator (Trace.METHOD Integrator)

All Integrator settings and all NAME settings are saved to <file>.
General Commands Reference Guide T | 358©1989-2024 Lauterbach

Options

<trace_area>

<trace_bookmark> Specify two <trace_bookmarks> to define the <trace_area> you want to
save to the file.
• If you specify only one <trace_bookmark>, then the <trace_area>

ranges from that bookmark up to the end of the trace recording.
See example.

<record_range> You need to specify two record numbers to define the <trace_area> you
want to save to the file.
See example.

<record> Specify two record numbers to define the <trace_area> that you want to
save to the file.
• If you specify only one <record>, then the <trace_area> ranges

from that record number up to the end of the trace recording.
See example.

<time_range> You need to specify two absolute timestamps that are based on the zero
time to define the <trace_area> you want to save to file.
See example.

<time> Specify two absolute timestamps that are based on the zero time to
define the <trace_area> you want to save to the file.
• If you specify only one absolute timestamp, then the <trace_area>

ranges from that timestamp up to the end of the trace recording.

FlowTrace Obsolete.

BusTrace Save only the trace raw data, if a flow trace is used. This option is helping
if a decompression of the program and data trace information is not
possible.

PACK Save the trace contents is a compact way. PACK is less effective and
slower then ZIP. It is only recommended if the option ZIP is not available.

ZIP Save the trace contents is a compact way.

NoCompress Obsolete.
General Commands Reference Guide T | 359©1989-2024 Lauterbach

Example for <trace_bookmark>
[Parameter Descr.]

Example for <record_range>
[Parameter Descr.]

Example for <record> <record2>
[Parameter Descr.]

Example for <time_range>
[Parameter Descr.]

Trace.List ; display trace listing

Trace.BookMark "First" -123366. ; mark the trace record -123366.
; with the bookmark "First"

Trace.BookMark "Last" -36675. ; mark the trace record -36675.
; with the bookmark "Last"

BookMark.List ; list all bookmarks

Trace.SAVE testb "First" "Last" ; save trace contents between
; bookmarks "First" and "Last"
; to the file testb

; display trace listing
Trace.List

; save trace contents between record -107032. and record -21243.
; to the file testr
Trace.SAVE testr (-107032.)--(-21243.)

Trace.List ; display trace listing

Trace.SAVE testv -107032. -21243. ; save trace contents between
; record -107032. and record
; -21243.to the file testv

; display trace listing
Trace.List TIme.ZERO DEFault

; save trace contents between the point of time 4.us and the point of
; time 1.952ms to the file testt
Trace.SAVE testt 4.us--1.952ms
General Commands Reference Guide T | 360©1989-2024 Lauterbach

More Examples

See also

■ <trace>.EXPORT ■ <trace>.LOAD ■ <trace>.STREAMSAVE ■ IProbe.state
■ RunTime ■ RunTime.state

▲ ’Release Information’ in ’Legacy Release History’

Trace.SAVE test4 ; save trace contents to the file
; test4

QUIT ; end TRACE32

; off-line postprocessing of the
; trace contents e.g. with a
; TRACE32 Instruction Set Simulator

Trace.LOAD test4 ; load the saved trace contents

Data.LOAD.Elf demo.elf /NoCODE ; load the symbol information if
; you like to have HLL information
; for the trace analysis

Trace.List ; display the loaded trace contents
; as trace listing

Trace.STATistic.Func ; perform a function run-time
; analysis on the loaded trace
; contents
;
; HLL information is required

; save trace contents to the file test4
Trace.SAVE test4

;…

; use saved trace contents as reference

; load the saved trace contents
Trace.FILE test4

; display the trace contents loaded from the file test4.ad as trace
; listing
Trace.List /FILE

; compare the current trace contents with the trace contents loaded from
; test4.ad with regards to the addresses
Trace.ComPare (-27093.)--(-8986.) Address /FILE
General Commands Reference Guide T | 361©1989-2024 Lauterbach

<trace>.SelfArm Automatic restart of trace recording

Trace.SelfArm ON automatically restarts the trace recording. There are mainly two use cases for this
command.

Snapshot without stopping the program execution

If stopping the program execution it not advisable, but you are interested in the target state at a specific point
of the program execution, proceed as follows:

1. Display the information of interest on the screen.

Please make sure to display only information that can be updated while the program execution is
running.

2. Use a trigger to specify your point of interest.

3. Activate the self-arm mode.

Whenever the trace recording is stopped by the trigger, all information displayed by TRACE32 is updated
before the trace recording is automatically restarted.

Format: <trace>.SelfArm [ON | OFF]
<trace>.AutoTEST [ON | OFF] (deprecated)
General Commands Reference Guide T | 362©1989-2024 Lauterbach

Example for ARM11:

Automated run-time analysis

To automate an incremental run-time analysis, proceed as follows:

1. Prepare the run-time analysis and open a run-time analysis window.

2. Switch the trace to Leash mode.

3. Activate the self-arm mode.

Whenever the trace recording/program execution is stopped because the trace buffer is full, the current trace
contents is analyzed and the analysis window is updated correspondingly. Afterwards the program execution
is restarted.

Data.LOAD.Elf armla.Elf /PlusVM ; load source code to virtual
; memory within TRACE32 in order to
; enable the trace display while
; program execution is running

Trace.List ; display the information of
; interest

Break.Set sieve /TraceTrigger ; specify the trigger point

Trace.Mode AutoInit ON ; clear the trace buffer and
; re-activate the trigger
; before the trace recording
; is automatically restarted

Trace.Mode SelfArm ON ; activate the self-arm mode

Go

;…

Trace.Mode SelfArm OFF ; stop automatic restarting of
; trace recording
General Commands Reference Guide T | 363©1989-2024 Lauterbach

Example:

See also

■ <trace>.SnapShot ■ IProbe.state

Trace.STATistic.Func /ACCUMULATE ; open a window that performs a
; continuous nested function
; run-time analysis

Trace.Mode Leash ; switch the trace to Leash mode

Trace.Mode AutoInit ON ; clear the trace buffer
; before the trace recording
; is automatically restarted

Trace.Mode SelfArm ON ; activate the self-arm mode

Go

;…

Trace.Mode SelfArm OFF ; stop automatic restarting of
; trace recording
General Commands Reference Guide T | 364©1989-2024 Lauterbach

<trace>.ShowFocus Display data eye for AUTOFOCUS preprocessor

The Trace.ShowFocus command displays the data eyes as they are “seen” by a preprocessor with
AUTOFOCUS technology resulting from the following commands:

• Trace.AutoFocus

• Trace.TestFocus

Description of Buttons in the Trace.ShowFocus Window

Format: <trace>.ShowFocus

Setup … Open Trace.state window to configure the trace.

Scan Perform a Trace.TestFocus scan.

Scan+ Perform a Trace.TestFocus /Accumulate scan.

AutoFocus Perform a Trace.AutoFocus scan.

Data Open a Trace.ShowFocusEye window.

Clock Open a Trace.ShowFocusClockEye window.

Store … Save the current AUTOFOCUS configuration to a file
(STOre <file> AnalyzerFocus).

Load … Load an AUTOFOCUS configuration from a file
(DO <file>).

Move all sampling points 1 * <time_clock> to the left.

Move all sampling points 1 * <time_clock> to the right.
General Commands Reference Guide T | 365©1989-2024 Lauterbach

Description of the Trace.ShowFocus Window

In the Trace.ShowFocus window the data eyes are white, whereas setup violations are marked as follows:

The x-axis of the Trace.ShowFocus window corresponds to the time axis, whereas the y-axis corresponds
to the data channels of the ETM trace port. In the example above we have an 8-bit ETMv1.x architecture
with the channels TRACESYNC (TS), PIPESTAT (PS[3:0]) and TRACEPKT (TP[7:0]).

Setup violation on
the rising edge

High red line

Setup violation on
the falling edge

Low red line

Setup violation on
both edges

Grey bar

Zero delay

Sampling points (red lines)

time axis

Data channel
delay

Clock period

Data channel
name

in [ns]

Setup violations on
falling, rising, both edges

Data eyes
General Commands Reference Guide T | 366©1989-2024 Lauterbach

A preprocessor with AUTOFOCUS technology has programmable delays for the clock channel as well as
all data channels. With that in mind the x-axis (time-axis) has the following meaning:

In the example above there is a channel to channel skew of more than 1 ns that has been compensated by
choosing individual sampling points for each data channel. The time resolution for clock and data channel
adjustment is not necessarily the same. In the example the time resolution for data channel adjustment is
relatively coarse (500-600 ps), whereas the clock channel can be adjusted in fine delay steps (78 ps). The
actual values are functions of voltage, temperature and process. However they are measured for each
Trace.AutoFocus or Trace.TestFocus execution, so the numbers displayed in the Trace.ShowFocus
window do have a physical meaning (time unit is ns).

The example shows the Trace.ShowFocus window as it might appear when using the LA-7991 OTP (see
Preprocessor for ARM-ETM AutoFocus for details). For the re-programmable version both clock and data
delays are typically 270 ps and the Trace.ShowFocus window for the same application might look like this:

See also

■ <trace>.TestFocus ■ <trace>.TestFocusClockEye
■ <trace>.ShowFocusClockEye ■ <trace>.ShowFocusEye
■ <trace>.TestFocus ■ <trace>.TestFocusEye

▲ ’Installation’ in ’AutoFocus User’s Guide’
▲ ’Installation’ in ’Arm ETM Trace’

Data delay greater
than clock delay

Negative value

Both clock and data
delay are zero

Zero

Clock delay greater
than data delay

Positive value

NOTE: The NEXUS AutoFocus adapter does not support this feature.

Trace.ShowFocus as it
appears for a
re-programmable LA-7991
General Commands Reference Guide T | 367©1989-2024 Lauterbach

<trace>.ShowFocusClockEye Display clock eye

The command Trace.ShowFocusClockEye displays a graph reflecting the clock waveform. Basically it
shows data eyes from a different point of view.

The result of the command Trace.ShowFocusClockEye shows a single ETM channel or all ETM
channels superimposed. Further are:

• X-axis: time range [ns]

• Y-axis: voltage range [V]

Color Legend

Format: <trace>.ShowFocusClockEye [<channel>]

<channel>: TS | PS[0…2] | TP[0…32] (ETM V1.x)
TCTL | TP[0…32] (ETM V3.x)

White area Data eye.

Green area Setup violation on the rising edge.

Red area Setup violation on the falling edge.

Superimposed area
(green and red)

Setup violation on both edges.
General Commands Reference Guide T | 368©1989-2024 Lauterbach

Description of Buttons in the <trace>.ShowFocusClockEye Window

Examples

See also

■ <trace>.ShowFocus ■ <trace>.ShowFocusEye ■ <trace>.TestFocusEye ■ <trace>.TestFocus
■ <trace>.TestFocusClockEye

▲ ’Diagnosis’ in ’AutoFocus User’s Guide’
▲ ’Diagnosis’ in ’Arm ETM Trace’

Setup … Open Trace.state window to configure the trace.

Scan Perform a Trace.TestFocusEye scan.

Scan+ Perform a Trace.TestFocusEye /Accumulate scan.

AutoFocus Perform a Trace.AutoFocus.

Digital Open a Trace.ShowFocus window scan.

Channel (previous) Display Trace.ShowFocusClockEye for a single trace line (previous).

Channel (next) Display Trace.ShowFocusClockEye for a single trace line (next).

Move all sampling points 1 * <time_clock> to the left.

Move all sampling points 1 * <time_clock> to the right.

Trace.ShowFocusEye ; Display data eye with
; all trace channels superimposed

Trace.ShowFocusEye PS2 ; Display data eye for the
; trace channel PS2

NOTE: The NEXUS AutoFocus adapter does not support this feature.
General Commands Reference Guide T | 369©1989-2024 Lauterbach

<trace>.ShowFocusEye Display data eye
[Color Legend] [Buttons] [Example]

The command Trace.ShowFocusEye displays the data eye as it is ’seen’ by a preprocessor with
AUTOFOCUS technology or PowerTrace Serial resulting from the command Trace.TestFocusEye.

The result of the command Trace.ShowFocusEye shows a single trace channel or all trace channels
superimposed. The unit of the axis differs for AUTOFOCUS:

• X-axis: time range [ns] or [UI]

• Y-axis: voltage range [V] or [percentage]

and PowerTrace Serial technology:

• X-axis: time range [UI]

• Y-axis: voltage range [percentage of eye height]

Format: <trace>.ShowFocusEye [<channel>]

<channel>: TS | PS[0…2] | TP[0…32] (ETM V1.x)
TCTL | TP[0…32] (ETM V3.x)
LANE[0...n] (only with serial preprocessor or PowerTrace Serial)
General Commands Reference Guide T | 370©1989-2024 Lauterbach

Color Legend for AUTOFOCUS

[Back to Top]

Color Legend for PowerTrace Serial

[Back to Top]

White area Stable data.

Green area Setup violation on the rising edge.

Red area Setup violation on the falling edge.

Superimposed area
(green and red)

Setup violation on both edges.

White area Stable data eye.

Black areas Unstable data.

White area Stable data eye.

Grey/Black areas Unstable data.

Dark Blue area Stable data eye.

Blue/Green/Orange/
Yellow/Red areas

Unstable data.
General Commands Reference Guide T | 371©1989-2024 Lauterbach

Descriptions of Buttons in the <trace>.ShowFocusEye Window:

[Back to Top]

Examples

[Back to Top]

See also

■ <trace>.TestFocus ■ <trace>.TestFocusClockEye
■ <trace>.ShowFocus ■ <trace>.ShowFocusClockEye
■ <trace>.TestFocusEye

Setup … Open Trace.state window to configure the trace.

Scan Perform a Trace.TestFocusEye scan.

Scan+ Perform a Trace.TestFocusEye /Accumulate scan.

AutoFocus Perform a Trace.AutoFocus scan.

Digital Open a Trace.ShowFocus window.

Channel (previous) Display Trace.ShowFocusEye for a single trace line (previous).

Channel (next) Display Trace.ShowFocusEye for a single trace line (next).

Move all sampling points 1 * <time_clock> to the left.

Move all sampling points 1 * <time_clock> to the right.

Trace.ShowFocusEye ; Display data eye with
; all trace channels superimposed

Trace.ShowFocusEye PS2 ; Display data eye for the
; trace channel PS2

NOTE: The NEXUS AutoFocus preprocessor does not support this feature.
General Commands Reference Guide T | 372©1989-2024 Lauterbach

<trace>.SIZE Define buffer size

Sets the <size> of trace memory which is used for trace recording. If the command is called with size zero,
the trace size will be set to its maximum size. If the configured trace size is larger that the maximum size
allowed by the used trace method, then the maximum size is set or an error message is returned.

Reducing the size used for trace recording helps to reduce time needed for trace data download and trace
analysis (statistical analysis, trace chart display etc, searching for an event in the trace), because of the
smaller amount of recorded data. There is no other benefit besides that.

See also

■ RunTime ■ RunTime.state ❏ Analyzer.RECORDS() ❏ Analyzer.SIZE()

▲ ’Release Information’ in ’Legacy Release History’

<trace>.SnapShot Restart trace capturing once

Restart the trace capturing. Effectively the same as executing the commands Trace.OFF, Trace.Init and
Trace.Arm.

Most often used to restart the trace recording:

• After the trace capturing was stopped by a trigger (e.g. by a TraceTrigger breakpoint).

• When the trace works in Stack mode and trace capturing was stopped because the trace buffer
was full.

See also

■ IProbe.state ■ <trace>.SelfArm

Format: <trace>.SIZE [<size>]

Format: <trace>.SnapShot
<trace>.TEST (deprecated)
General Commands Reference Guide T | 373©1989-2024 Lauterbach

<trace>.SPY Adaptive stream and analysis

Trace.SPY allows display intermediate trace analysis results while streaming (see <trace>.Mode
STREAM). If the average data rate at the trace port is high, the analysis time is reduced, and vise versa.

The Trace.SPY command requires that trace decoding is possible while the program execution is running.
This is possible, if the core architecture in use provides run-time access to memory or if the object code is
loaded to the TRACE32 virtual memory. It is recommended to load the object code to the TRACE32 Virtual
Memory in any case, because the trace analysis is then faster.

The Trace.SPY command only works if the trace is currently in Arm mode.

Example:

Format: <trace>.SPY

;…

Data.LOAD.Elf demo.elf /VM ; copy object code to TRACE32
; Virtual Memory

Analyzer.Mode STREAM ; select trace mode STREAM

Go ; start the program execution

;…

IF Analyzer.STATE()!=1
 PRINT "No switch to SPY mode possible“

Trace.SPY ; enable analysis of streaming file

Trace.List

Trace.Arm ; switch back to standard recording

;…
General Commands Reference Guide T | 374©1989-2024 Lauterbach

See also

■ IProbe.state ■ Trace
General Commands Reference Guide T | 375©1989-2024 Lauterbach

<trace>.state Display trace configuration window

Displays the trace configuration window. The trace methods are displayed at the top of the window. The
configuration options below the trace methods adjust to the currently selected trace method, compare
screenshot on the left with the screenshot on the right.

See also

■ Trace.METHOD ■ FDX.CLEAR ■ FDX.CLOSE ■ FDX.DISableChannel
■ FDX.ENableChannel ■ FDX.InChannel ■ FDX.METHOD ■ FDX.Out
■ FDX.OutChannel ■ FDX.PipeREAD ■ FDX.PipeWRITE ■ FDX.Rate
■ FDX.READ ■ FDX.TImestamp ■ FDX.TraceChannel ■ FDX.WRITE

Format: <trace>.state

A After you have selected the desired trace method (Trace.METHOD), you can work with the commands
that start with Trace. This principle is illustrated in the two PRACTICE script snippets below.

B For descriptions of the commands in the Trace.state window, please refer to the <trace>.*
commands in this chapter. Example: For information about OFF, see <trace>.OFF.

Trace.METHOD Analyzer ;Select the trace method, here Analyzer

Trace.List ;The trace listing now refers to the
 ;method Analyzer

Trace.METHOD SNOOPer ;Select the trace method, here SNOOPer

Trace.List ;The trace listing now refers to the method SNOOPer

A’

A

B

General Commands Reference Guide T | 376©1989-2024 Lauterbach

▲ ’Trace Functions’ in ’General Function Reference’
▲ ’Release Information’ in ’Legacy Release History’
General Commands Reference Guide T | 377©1989-2024 Lauterbach

<trace>.STATistic Statistic analysis

The <trace>.STATistic commands can be used for statistical analysis based on the information sampled to
the trace buffer.

In contrast to the performance analyzer (PERF commands), the statistical analysis commands provide a
higher precision and much more information about the analyzed item, but since the size of the trace buffer is
limited, the observation time is limited. Statistic evaluations can be made after the trace memory stops
sampling.

Example for TRACE32-ICD and TRACE32-PowerTrace:
IIf no selective tracing is possible, use the option /Filter to filter out the event of interest.

If selective tracing is possible, use the /TraceEnable filter to extend the observation time:

Go
Break
Trace.STATistic.DistriB Data.B /Filter Address Var.RANGE(flags[3])

Break.Set InterruptEntry /Program /TraceEnable
Go
Break
Trace.STATistic.DIStance /Filter Address InterruptEntry
General Commands Reference Guide T | 378©1989-2024 Lauterbach

Parameters

List items

The <list_items> can be arranged by pushing the Config button in the <trace>.STATistic window.

The table below include a description of the List items. Please note that not all List items are available for
all <trace>.STATistic commands.

DEFault Default trace statistics display.

NAME Event name.

GROUP Group name assigned by GROUP commands.

TASK Task name for event.

Total Total time within the event.

TIme Total time the event was true.
For function nesting analysis, the time spent in interrupt routines is by
default taken out of the measurement.

TotalRatio Ratio of time spent within the event over the complete measurement
time. If nesting analysis is used (e.g. <trace>.STATistic.Func), then
called subroutines are included.

TotalBAR.log,
TotalBAR.LINear

Graphical display of the ratio (linear or logarithmic).

Count Number of occurrences of the event.

MIN, MAX Minimum and maximum time the event was true.

AVeRage Average time the event was true.
General Commands Reference Guide T | 379©1989-2024 Lauterbach

Internal Time spent within the event.

IAVeRage Average time spent in the event.

IMIN, IMAX Shortest/longest time spent in the event.

InternalRatio Ratio of time spent in the event.

InternalBAR.log,
Internal.LINear

Graphical display of the ratio (linear or logarithmic) spent in the event.

External Time spent within sub functions.

EAVeRage Average time spent within sub functions.

EMIN, EMAX Shortest/longest time spent within sub functions.

ExternalTASK Total time in other tasks.

ExternalTASKMAX Max time one function pass was interrupted by other tasks.

INTRCount Number of interrupts that occurred during the function run-time.

TASKCount Number of other tasks that interrupted the function.

Ratio, BAR.log,
BAR.LINear

Ratio of time spent in events to total measurement time in percent and as
graphical bars.

CountRatio,
CountBAR.log,
CountBAR.LINear

Ratio of count to total count in percent and as graphical bars.

TotalMIN, TotalMAX Shortest/longest time period in the task.

RatioMIN,
RatioMAX

 Shortest/highest ratio in the task.

CountMIN,
CountMAX

 Shortest/highest ratio in the task.

CORE Core number.
General Commands Reference Guide T | 380©1989-2024 Lauterbach

Format

DEFault Default format.

LEN <size> Specifies the width of non numeric fields (e.g. symbols)

TimeAuto Adapt the time display. (default)

TImeFixed Display all time information in seconds.
General Commands Reference Guide T | 381©1989-2024 Lauterbach

Options

This section describes the options of the <trace>.STATistic command group. Not all options are supported
by all <trace>.STATistic commands.

JoinCORE
(default)

Analysis is performed for all cores. The core information is discarded.

SplitCORE Same as JoinCORE.

MergeCORE Same as JoinCORE.

CORE <number> Analysis is performed for the specified core.

TASK [!] <task> Analysis is performed for the specified task only or excluding the task.
See also “What to know about the Task Parameters”
(general_ref_t.pdf).

SplitTASK Splits up the results for different tasks.

MergeTASK Trace information is analyzed independently for each task. The trace
statistics summarizes these results to a single result.

INLINE Treat inline functions as separate functions (default).

NoINLINE Discard inline functions from the results.

LABEL Include all symbols in the results.

NoLABEL Only include functions in the results.

FILE Displays trace memory contents loaded with Trace.FILE.

FlowTrace The trace works as flow trace. This option is usually not required.

BusTrace The trace works as a bus trace. This option is for diagnosis only and
usually not required.

ACCUMULATE By default only the current trace contents is analyzed by the statistic
functions. The option /ACCUMULATE allows to add the current trace
contents to the already displayed results.
General Commands Reference Guide T | 382©1989-2024 Lauterbach

INCremental Intermediate results are displayed while the TRACE32 software analyses
the trace contents (default).

FULL The result is displayed after the TRACE32 software finished the analysis.

Track Track the Trace.STATistic window with other trace list windows (tracking
to record number or time possible).

NoMerge (For diagnosis purpose only).

Address … Perform statistic on specified addresses, assign statistic information for
all other functions to (other).

Filter <item> Filter the described item. The recorded trace information is first filtered and
then analyzed.

InterVal Divide the time period recorded by the trace (total) into time slices and
analyze the time slices, see Interval Analysis.

Number Define the number of classes.

LOG Display the bars in the result display in a logarithmic format (default).

LINear Display the bars in the result display in a linear format.

BEFORE Display the time before the event. That means how long the previous
state lasted until the listed state was reached.

AFTER Display the time after the event. That means how long the state lasted
after it was reached (default).

List <list_items> Specify the result that should be displayed in the window. Refer to List
items.

/Sort <item> Sorting the analysis result. Refer to Sorting.

INTR The time spent in interrupts is included to the measurement like a
function call.

CLOCKS The measurement results display the number of clocks instead of time
information.
General Commands Reference Guide T | 383©1989-2024 Lauterbach

InterVal Analysis

The InterVal option allows to divide the time period recorded by the trace (total) into time slices. Additional
analysis details can be displayed for these time slices.

CountFirst
(default)

Count the occurrence of the start address of a program symbol region or
of a function.

CountChange Count how often the address range of a program symbol region or of a
function was entered.

CountALL Count all executed instructions.

IncludeOWN,
IncludeTASK,
IncludeINTR

Refer to the Analysis Options.

ARTIAP Option for AUTOSAR Real-Time Interface on Adaptive Platform trace
decoding. Decode MIPI STP (System Trace Protocol) format trace which
is defined in ARTI Trace Driver on AUTOSAR Adaptive Platform.

Trace.STATistic.TASK /InterVal <time> | <event>

; divide trace into 10.ms time slices
Trace.STATistic.TASK /InterVal 10.ms

; divide trace in time slices, a new time slice is started when the
; function Funccpu0_generateData is entered
Trace.STATistic.TASK /InterVal sYmbol Funccpu0_generateData
General Commands Reference Guide T | 384©1989-2024 Lauterbach

Sorting

The sorting can also be arranged by pushing the Config button in the Trace.STATistic.Func window.

See also Trace.STATistic.Sort.

See also

■ <trace>.Chart ■ <trace>.PROfileChart
■ <trace>.PROfileSTATistic ■ <trace>.STATistic.Address
■ <trace>.STATistic.AddressDIStance ■ <trace>.STATistic.AddressDURation
■ <trace>.STATistic.AddressGROUP ■ <trace>.STATistic.ChildTREE
■ <trace>.STATistic.COLOR ■ <trace>.STATistic.CYcle
■ <trace>.STATistic.DatasYmbol ■ <trace>.STATistic.DIStance
■ <trace>.STATistic.DistriB ■ <trace>.STATistic.DURation
■ <trace>.STATistic.FIRST ■ <trace>.STATistic.Func

/Sort <item> Sorting the Analysis Result

OFF Sorting by program flow (default)

Nesting Sorting by nesting

Address Sorting by addresses

sYmbol Sorting by names

TotalRatio/Ratio Sorting by TotalRatio

Count Sorting by Count

Window
Global

(ineffectual)

If All Windows is selected, the selected sorting method is applied to all
Trace.STATistic and Trace.Chart windows.
General Commands Reference Guide T | 385©1989-2024 Lauterbach

■ <trace>.STATistic.FuncDURation ■ <trace>.STATistic.FuncDURationInternal
■ <trace>.STATistic.GROUP ■ <trace>.STATistic.Ignore
■ <trace>.STATistic.INTERRUPT ■ <trace>.STATistic.InterruptIsFunction
■ <trace>.STATistic.InterruptIsKernel ■ <trace>.STATistic.InterruptIsKernelFunction
■ <trace>.STATistic.InterruptIsTaskswitch ■ <trace>.STATistic.INTERRUPTTREE
■ <trace>.STATistic.LAST ■ <trace>.STATistic.Line
■ <trace>.STATistic.LINKage ■ <trace>.STATistic.Measure
■ <trace>.STATistic.MODULE ■ <trace>.STATistic.PAddress
■ <trace>.STATistic.ParentTREE ■ <trace>.STATistic.PROCESS
■ <trace>.STATistic.PROGRAM ■ <trace>.STATistic.PsYmbol
■ <trace>.STATistic.RUNNABLE ■ <trace>.STATistic.RUNNABLEDURation
■ <trace>.STATistic.Sort ■ <trace>.STATistic.sYmbol
■ <trace>.STATistic.TASK ■ <trace>.STATistic.TASKFunc
■ <trace>.STATistic.TASKINFO ■ <trace>.STATistic.TASKINTR
■ <trace>.STATistic.TASKKernel ■ <trace>.STATistic.TASKLOCK
■ <trace>.STATistic.TASKORINTERRUPT ■ <trace>.STATistic.TASKORINTRState
■ <trace>.STATistic.TASKSRV ■ <trace>.STATistic.TASKState
■ <trace>.STATistic.TASKStateDURation ■ <trace>.STATistic.TASKTREE
■ <trace>.STATistic.TASKVSINTERRUPT ■ <trace>.STATistic.TASKVSINTR
■ <trace>.STATistic.TREE ■ <trace>.STATistic.Use
■ <trace>.STATistic.Var ■ BMC.STATistic
■ EVENTS.STATistic ■ IProbe.state
■ RunTime ■ RunTime.state

▲ ’Release Information’ in ’Legacy Release History’
General Commands Reference Guide T | 386©1989-2024 Lauterbach

<trace>.STATistic.Address Time between up to 8 program events

Displays the time interval between up to 8 program events.

Analysis background:

Examples:

See also

■ <trace>.STATistic

▲ ’Release Information’ in ’Legacy Release History’

Format: <trace>.STATistic.Address <address1> [<address2> …] [/<option>]

<option>: FILE | FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
TASK <task> | SplitTASK | MergeTASK
BEFORE | AFTER
CountChange | CountFirst | CountAll
List <item>
InterVal <time>
Filter <filter>
Address <address | range>
ACCUMULATE
INCremental | FULL
CLOCKS
Sort <item>
Track

<option> Refer to <trace>.STATistic for a description of the <trace>.STATistic
options.

Trace.STATistic.Address sieve func1 func2

Trace.STATistic.Address 0x125c 0x1264 0x1274 0x1290 0x12ac 0x12b8 0x12d8

address1

address2

address2

address3

address1

address1

address2
General Commands Reference Guide T | 387©1989-2024 Lauterbach

<trace>.STATistic.AddressDIStance Time interval for single program event

Displays the time interval for a single program event. Without parameter the assignment of classes (16) is
done automatically. With arguments the classes can be set up manually.

The following 2 commands are equivalents:

The parameter <timemin> allows to specify the time for the first result class, the parameter <increment>
allows to specify the increment for the next result class.

See also

■ <trace>.STATistic ■ <trace>.STATistic.DIStance

▲ ’Release Information’ in ’Legacy Release History’

Format: <trace>.STATistic.AddressDIStance <address> [<timemin>] [<increment>]
 [/<option>]

<option>: FILE | FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
ACCUMULATE
INCremental | FULL
Number <record>
LOG | LINear

<address> Program event.

<timemin> Allows to specify the time for the first result class.

<increment> Allows to specify the increment for the next result class.

<option> Refer to <trace>.STATistic for a description of the <trace>.STATistic
options.

Trace.STATistic.AddressDIStance InterruptEntry

Trace.STATistic.DIStance /Filter Address InterruptEntry

Trace.STATistic.AddressDIStance InterruptEntry 15.0us 1.0us
General Commands Reference Guide T | 388©1989-2024 Lauterbach

<trace>.STATistic.AddressDURation Time between two program events

The statistic distribution between two program events is analyzed. This command can be used to analyze
the run-time of a single function or interrupt response times.

Format: <trace>.STATistic.AddressDURation <address1> <address2>
 [<timemin>] [<increment>] [/<option>]

<option>: FILE | FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
ACCUMULATE
INCremental | FULL
Number <record>
LOG | LINear

<address1>
<address2>

Program events.

<timemin> Allows to specify the time for the first result class.

<increment> Allows to specify the increment for the next result class.

<option> Refer to <trace>.STATistic for a description of the <trace>.STATistic
options.

; Analyze the run-time of a single function
; func9: start address of the function
; sYmbol.EXIT(func9): Exit address of the given function
Trace.STATistic.AddressDURation func9 sYmbol.EXIT(func9)
General Commands Reference Guide T | 389©1989-2024 Lauterbach

By default TRACE32 PowerView builds 16 result classes. For a graphical display of the results, use the
command Trace.PROfileChart.DURation.

The <option> Number allows a user-defined number of result classes.

The parameter <timemin> allows to specify the time for the first result class, the parameter <increment>
allows to specify the increment for the next result class.

Trace filter allow a more effective usage of the trace memory:

See also

■ <trace>.STATistic

▲ ’Release Information’ in ’Legacy Release History’

Trace.STATistic.AddressDURation func9 sYmbol.EXIT(func9) /Number 6.

Trace.STATistic.AddressDURation func9 sYmbol.EXIT(func9) 15.us 1.us

Trace.Mode Leash

Break.Set func9 /Program /TraceEnable

Break.Set sYmbol.EXIT(func9) /Program /TraceEnable

Go

WAIT !STATE.RUN()

Trace.STATistic.AddressDURation func9 sYmbol.EXIT(func9)
General Commands Reference Guide T | 390©1989-2024 Lauterbach

<trace>.STATistic.AddressGROUP Address group run-time analysis

The time for accessed address groups and the number of accesses is calculated (flat statistic). The results
include groups for both program and data addresses.

Format: <trace>.STATistic.AddressGROUP [%<format>] [<list_item> …] [/<option>]

<format>: DEFault | LEN | TimeAuto | TimeFixed

<list_item>: DEFault | ALL
NAME | GROUP | CORE
Total | TotalMIN | TotalMAX
Ratio | RatioMIN | RatioMAX
BAR[.log | .LINear]
Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

<option>: FILE | FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
TASK <task> | SplitTASK | MergeTASK
BEFORE | AFTER
CountChange | CountFirst | CountAll
InterVal <time>
Filter <filter>
Address <address | range>
ACCUMULATE
INCremental | FULL
CLOCKS
Sort <item>
Track

<format>,
<list_item>

Refer to Parameters under <trace>.STATistic.

<option> Refer to Options under <trace>.STATistic.
General Commands Reference Guide T | 391©1989-2024 Lauterbach

Example:

See also

■ <trace>.STATistic ■ <trace>.STATistic.GROUP

▲ ’Release Information’ in ’Legacy Release History’

GROUP.Create "DATA1" 0x6800--0x68FF /RED

GROUP.Create "DATA2" 0x6700--0x67FF /GREEN

Trace.STATistic.AddressGROUP
General Commands Reference Guide T | 392©1989-2024 Lauterbach

<trace>.STATistic.ChildTREE Show callee context of a function

Show call tree and run-time of all functions called by the specified function. The function is specified by
its start <address>.

Format: <trace>.STATistic.ChildTREE <address> [%<format>] [<list_item> …]
 [/<option>]

<format>: DEFault | LEN | TimeAuto | TimeFixed

<list_item>: DEFault | ALL
TREE | LEVEL | GROUP | TASK
Total | TotalRatio | TotalBAR
Count | MIN | MAX | AVeRage
Internal | IAVeRage | IMIN | IMAX | InternalRatio | InternalBAR
External | EAVeRage | EMAX | ExternalINTR | ExternalINTRMAX
INTRCount | ExternalTASK | ExternalTASKMAX | TASKCount

<option>: FILE | FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
TASK <task> | SplitTASK | MergeTASK
IncludeOwn | IncludeTASK | IncludeINTR
INTRROOT | INTRTASK
Filter <filter>
Address <address | range>
ACCUMULATE
INCremental | FULL
CLOCKS
NoMerge
Sort <item>
Track

<format>,
<list_item>

Refer to Parameters under <trace>.STATistic.

<option> Refer to Options under <trace>.STATistic.
General Commands Reference Guide T | 393©1989-2024 Lauterbach

Example:

See also

■ <trace>.STATistic ■ <trace>.STATistic.ParentTREE
■ BMC.STATistic.ChildTREE

▲ ’Release Information’ in ’Legacy Release History’

<trace>.STATistic.COLOR Assign colors to function for colored graphics

See also

■ <trace>.STATistic

▲ ’PowerView - Screen Display’ in ’PowerView User’s Guide’

Trace.STATistic.ChildTREE master_selection

Format: <trace>.STATistic.COLOR FixedColors | AlternatingColors

FixedColors
(default)

Colors are assigned fixed to functions.

AlternatingColors Colors are assigned by the recording order of the functions for each
measurement.
General Commands Reference Guide T | 394©1989-2024 Lauterbach

<trace>.STATistic.CYcle Analyze cycle types

Performs a statistical analysis of the cycle types.

Example based on CoreSight ETMv3 for a Cortex-R4:

Format: <trace>.STATistic.CYcle [<time_range>] [/<option>]

<option>: FILE
CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
INCremental | FULL
IdleThreshold <clocks>
TASK <task>
ACCUMULATE

<option> Refer to <trace>.STATistic for a description of the <trace>.STATistic
options.

ETM.DataTrace ON
ETM.CycleAccurate ON
Trace.CLOCK 450.MHz

; full data trace
; cycle accurate tracing
; inform TRACE32 about the core
; clock
General Commands Reference Guide T | 395©1989-2024 Lauterbach

survey

records Number of records in the trace

time Time period recorded by the trace

clocks Number of clock cycles recorded by the trace

instr Number of instructions

instr/second Instructions executed per second

cpi Average clocks per instruction
(clocks/instr)

details

flow fetch Number of cycles for instruction fetching

flow read Number of cycles that performed a read access

flow write Number of cycles the performed a write access

bus fetch Number of fetch cycles

bus read Number of data read cycles

bus write Number of data write cycles

instr Number of executed/not executed instruction

slot instr Number of instructions executed in a branch delay slot

cond instr pass Number of conditional instructions that passed (taken branch instructions
not included)

cond instr fail Number of conditional instructions that failed (failed branch instructions
not included)

load instr Number of load instructions

store instr Number of store instructions

load/store instr Number of instructions that do a load and a store

uncond branch Unconditional branch instructions
General Commands Reference Guide T | 396©1989-2024 Lauterbach

See also

■ <trace>.STATistic

▲ ’Release Information’ in ’Legacy Release History’

cond branch Conditional branch instructions

uncond dir Number of unconditional direct branches taken

uncond indir Number of unconditional indirect branches taken

cond not taken Number of failed conditional branch instructions

cond dir taken Number of taken direct conditional branches

cond indir taken Number of taken indirect conditional branches

traps Number of traps

interrupts Number of interrupts

idles Number of “wait for interrupt” (coprocessor instruction or WFI instruction)
or number of times that 1000. clock cycles passed without a broadcast of
trace information.

The option IdleThreshold allows to modify the number of clock cycles
that need to pass for a idle detection.

fifofulls Number of trace FIFO overflows (FIFOFULL)

trace gaps Number of trace gaps (filtered trace information)

stopped Number of debug stops

event ... Number of trace events (architecture specific)

details
General Commands Reference Guide T | 397©1989-2024 Lauterbach

<trace>.STATistic.DatasYmbol Analyze pointer contents numerically

The command Trace.STATistic.DatasYmbol analyzes the contents of a pointer numerically.

Format: <trace>.STATistic.DatasYmbol [%<format>] [<list_item> …] [/<option>]

<format>: DEFault | LEN | TimeAuto | TimeFixed

<list_item>: DEFault | ALL
NAME | GROUP | CORE
Total | TotalMIN | TotalMAX
Ratio | RatioMIN | RatioMAX
BAR[.log | .LINear]
Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

<option>: FILE
FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
TASK <task> | SplitTASK | MergeTASK
LABEL | NoLABEL | INLINE | NoINLINE
BEFORE | AFTER
CountChange | CountFirst | CountAll
InterVal <time>
Filter <filter>
ACCUMULATE
INCremental | FULL
CLOCKS
Sort <item>
Track

<format>,
<list_item>

Refer to Parameters under <trace>.STATistic.

<option> Refer to Options under <trace>.STATistic.
General Commands Reference Guide T | 398©1989-2024 Lauterbach

If a full program and data trace is analyzed, the following command is recommended:

A more effective usage of the trace memory is possible, if only write accesses to the pointer are recorded in
the trace.

See also

■ <trace>.STATistic

▲ ’Release Information’ in ’Legacy Release History’

; analyze the contents of the pointer vpchar numerically
Trace.STATistic.DatasYmbol /Filter Address vpchar

; set a filter to record only write cycles to the pointer vpchar to the
; trace
Var.Break.Set vpchar /Write /TraceEnable

;…

; analyze the contents of the pointer
Trace.STATistic.DatasYmbol

; analyze the contents of the pointer, sort the result by symbol names
Trace.STATistic.DatasYmbol /Sort sYmbol
General Commands Reference Guide T | 399©1989-2024 Lauterbach

<trace>.STATistic.DIStance Time interval for a single event

Displays the time interval for a single event. Without parameter the assignment of classes (16) is done
automatically. With arguments the classes can be set up manually.

See also

■ <trace>.STATistic ■ <trace>.STATistic.AddressDIStance

▲ ’Jitter Measurement’ in ’Application Note Profiling on AUTOSAR CP with ARTI’
▲ ’Release Information’ in ’Legacy Release History’

Format: <trace>.STATistic.DIStance [<timemin>] [<increment>] [/<option>]

<option>: FILE | FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
Filter <filter>
ACCUMULATE | INCremental | FULL | LOG | LINear

<timemin> Allows to specify the time for the first result class.

<increment> Allows to specify the increment for the next result class.

<option> Refer to <trace>.STATistic for a description of the <trace>.STATistic
options.

Trace.SAVE measure1
Trace.FILE measure1
Trace.STATistic.DIStance /FILE

; add the current trace contents to already displayed results
Trace.STATistic.DIStance /ACCUMULATE

; Define 10 classes
Trace.STATistic.DIStance /Number 10.
General Commands Reference Guide T | 400©1989-2024 Lauterbach

<trace>.STATistic.DistriB Distribution analysis

The statistic distribution of any data is displayed if <item> is specified. Displayed are the number of
occurrences and the time after the events, i.e. the time an event is assumed to be valid. Without <item> the
statistic is based on symbolic addresses.

See also

■ <trace>.STATistic ■ BMC.STATistic.DistriB

▲ ’Release Information’ in ’Legacy Release History’

Format: <trace>.STATistic.DistriB [%<format>] [<items> …] [/<option>]

<format>: DEFault | LEN | TimeAuto | TimeFixed

<list_item>: DEFault | ALL | <cpu> | <signals> | Port[.<subitem>] | MARK[.<marker>] |
ENERGY.Abs | POWER[.OFF] | SAMPLE[.OFF] | SPARE[.OFF] |
LOW | HIGH | FINDINDEX

<options>: FILE
FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
TASK <task> | SplitTASK | MergeTASK
LABEL | NoLABEL | INLINE | NoINLINE
BEFORE | AFTER
CountChange | CountFirst | CountAll
List [<list_item> …]
InterVal <time>
Filter <filter>
Address <address | range>
ACCUMULATE
INCremental | FULL
CLOCKS
Sort <item>
Track

<format> Refer to Parameters under <trace>.STATistic.

<option> Refer to Options under <trace>.STATistic.
General Commands Reference Guide T | 401©1989-2024 Lauterbach

<trace>.STATistic.DURation Time between two events

Analyzes the statistic distribution between two events. To determine the time interval between two
instructions (addresses) Trace.STATistic.AddressDURation is more suitable.

Example: This example analyzes how long it takes when the contents of a variable changes from 0x0 to
0x1.

Format: <trace>.STATistic.DURation [<timemin>] [<increment>] [/<option>]

<option>: FILE
FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
ATOA | ATOB | ATOC | ATOD
BTOA | BTOB | BTOC | BTOD
CTOA | CTOB | CTOC | CTOD
DTOA | DTOB | DTOC | DTOD
FilterA <filter> | FilterB <filter>
ACCUMULATE
INCremental | FULL
Number | LOG | LINear

<timemin> Allows to specify the time for the first result class.

<increment> Allows to specify the increment for the next result class.

ATOA Display the time interval from A to A.

BTOA Display the time interval from B to A.

BTOB Display the time interval from B to B.

…

FilterA <item> Specify the first event.

FilterB <item> Specify the second event.

Other options Refer to <trace>.STATistic for a description of the <trace>.STATistic
options.

Var.Break.Set flags /Write /TraceEnable

Trace.STATistic.DURation /FilterA Data 0x0 /FilterB Data 0x1
General Commands Reference Guide T | 402©1989-2024 Lauterbach

In order to use the command Trace.STATistic.DURation:

• Check if both events are exported by a trace packet. Information reconstructed by TRACE32 is
not analyzed.

• Alternatively use a TraceEnable breakpoint export the event as a trace packet.

The options FilterA and FilterB provide you with the means to describe your event.

See also

■ <trace>.STATistic
General Commands Reference Guide T | 403©1989-2024 Lauterbach

<trace>.STATistic.FIRST Start point for statistic analysis

The Trace.STATistic commands analyze the complete trace contents by default. The command
Trace.STATistic.FIRST allows to freely select a start point for the statistic analysis.

Example for <value>:

Format: <trace>.STATistic.FIRST <value> | <time> | <string>

Trace.List ; display trace listing

Trace.STATistic.FIRST -123366. ; select trace record -123366.
; as start point for the trace
; analysis

Trace.STATistic.LAST -36675. ; select trace record -36675.
; as end point for the trace
; analysis

Trace.STATistic.Func ; perform a function run-time
; analysis
General Commands Reference Guide T | 404©1989-2024 Lauterbach

Example for <time>:

See also

■ <trace>.STATistic ■ <trace>.STATistic.LAST

▲ ’Release Information’ in ’Legacy Release History’

Trace.List TIme.ZERO DEFault ; display trace listing

Trace.STATistic.FIRST 0.3us ; select trace record with time
; stamp 0.3 µs (zero time)
; as start point for the trace
; analysis

Trace.STATistic.Func ; perform a function run-time
; analysis between the specified
; start point and the end of the
; trace buffer
General Commands Reference Guide T | 405©1989-2024 Lauterbach

<trace>.STATistic.Func Nesting function runtime analysis

Analyzes the function nesting and calculates the time spent in functions and the number of function calls.

Format: <trace>.STATistic.Func [%<format>] [<list_items> …] [/<option>]

<format>: DEFault | LEN | TimeAuto | TimeFixed

<list_item>: DEFault | ALL
NAME | GROUP | TASK
Total | TotalRatio | TotalBAR
Count | MIN | MAX | AVeRage
Internal | IAVeRage | IMIN | IMAX | InternalRatio | InternalBAR
External | EAVeRage | EMAX | ExternalINTR | ExternalINTRMAX
INTRCount | ExternalTASK | ExternalTASKMAX | TASKCount

<option>: FILE | FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
TASK <task> | SplitTASK | MergeTASK
IncludeOwn | IncludeTASK | IncludeINTR
INTRROOT | INTRTASK
Filter <filter>
Address <address | range>
ACCUMULATE
INCremental | FULL
CLOCKS
NoMerge
Sort <item>
Track

<format>,
<list_item>

Refer to Parameters under <trace>.STATistic.

<option> Refer to Options under <trace>.STATistic.
General Commands Reference Guide T | 406©1989-2024 Lauterbach

Considerations

The trace can be tested for FIFOFULLs as follows:

If it is not possible to eliminate the FIFOFULLs, it is recommended to use the command
Trace.STATistic.sYmbol.

Analysis of the Function Nesting

In order to prepare the results for the command Trace.STATistic.Func, TRACE32 post-processes the
program flow recorded by the PowerTrace to find:

• Function entries

The execution of the first instruction of an HLL function is regarded as function entry.

Additional identifications for function entries are implemented depending on the processor
architecture and the used compiler.

• Function exits

A RETURN instruction within an HLL function is regarded as function exit.

Additional identifications for function exits are implemented depending on the processor
architecture and the used compiler.

• Entries to interrupt service routines (asynchronous)

If an interrupt was identified, the following entry to an HLL function is regarded as entry to the
interrupt service routine.

Interrupts are identified as follows:

- The trace port broadcasts the occurance of an interrupt (e.g. PPC4xx).

- An entry to the vector table is detected and the vector address indicates an
asynchronous/hardware interrupt (e.g. ARM9).

- If the vector table base address is configurable the usage of the command
SYStem.Option.VECTORS might be necessary (e.g. MPC5xxx).

If an interrupt is detected in the trace, it is marked as in the screenshot below.

Please be aware that any gap in the trace recording (FIFOFULL) might result in
a incorrect analysis results.

; Process the complete trace contents
Trace.FLOWPROCESS

IF Analyzer.FLOW.FIFOFULL()!=0
PRINT "Trace.STATistic.Func not possible due to FIFOFULL errors."
General Commands Reference Guide T | 407©1989-2024 Lauterbach

• Exits of interrupt service routines

A RETURN / RETURN FROM INTERRUPT within the HLL interrupt service routine is regarded
as exit of the interrupt service routine.

• Entries to TRAP handlers (synchronous)

If an entry to the vector table was identified and if the vector address indicates a synchronous
interrupt/trap the following entry to an HLL function is regarded as entry to the trap handler.

If a TRAP is detected in the trace, it is marked as in the screenshot below.

• Exits of TRAP handlers

A RETURN / RETURN FROM INTERRUPT within the HLL trap handler is regarded as exit of the
trap handler.
General Commands Reference Guide T | 408©1989-2024 Lauterbach

Interpretation of the Result

Some additional explanations with regards to the function name (column range):

• (root): is the root of the analyzed function nesting.

• HLL interrupt service routines: HLL interrupt service routines are indicated in the analysis as
shown below:

• HLL trap handler: HLL trap handler are indicated in the analysis as shown below:

If Trace.STATistic.TASKFunc was performed instead of Trace.STATistic.Func, because TRACE32
detected an RTOS, the following function names will appear:

• <function>@<task_name>: The name of the task in which the function is called is appended to
the function name.

• (root)@<task_name>: is the root of the analyzed function nesting for the task <task_name>.

• (root)@(root): program section where no task-assignment is possible (e.g. measurement started
within a task) are summarized here.

Number of analyzed
functions

Total measurement
time

Total time in interrupt
service routines over
the total measurement
time
General Commands Reference Guide T | 409©1989-2024 Lauterbach

The following description of the <list_item> that provide the analysis results is kept quite general. An
accurate description is given together with the Analysis Options.

If function entries or exits are missing, this is display in the following format:

<times within the function>. (<number of missing function entries>/<number of missing function exits>).

Interpretation examples:

1. 950. (0/1): 950. times within the function, 1 function exit is missing.

2. 9. (1/0): 9. times within the function, 1 function entry is missing.

3. 11. (1/1): 11. times within the function, 1 function entry and 1 function exit is missing.

4. 9. (0/3): 9. times within the function, 3 function exits missing.

<list_item> Default Display

Total The total time within the function.

MIN The shortest measured time it took to execute the function. The time
includes the execution times of all sub-function calls. The time used for
interrupt requests is not included, unless the window is opened with option
IncludeINTR.

If the function was never executed completely, the MIN time is not
displayed.

MAX The longest measured time it took to execute the function. The time
includes the execution times of all subfunction calls. The time used for
interrupt requests is not included, unless the window is opened with option
IncludeINTR.

AVeRage The average time it took to execute the function. The time includes the
execution times of all subfunction calls.
The time used for interrupt requests is not included, unless the window is
opened with option IncludeINTR

Count Number of calls of the function.

If a function is never completely executed, no number of calls is displayed.

If the number of missing function entries or exits is higher the 1. the analysis
performed by the command Trace.STATistic.Func might fail due to nesting
problems. A detailed view to the trace contents is recommended.

In some cases a further treatment of the trace contents might help. For more
information refer to Adjusting the Measurement.
General Commands Reference Guide T | 410©1989-2024 Lauterbach

<list_item> Time only in Function

Internal Total time between function entry and exit without called sub-functions,
TRAP handlers, interrupt service routines, other tasks …

IAVeRage Average time between function entry and exit without called sub-
functions, TRAP handlers, interrupt service routines, other tasks …

IMIN Shortest between function entry and exit without called sub-functions,
TRAP handlers, interrupt service routines, other tasks …

IMAX Longest time spent in the function between function entry and exit
without called sub-functions, TRAP handlers, interrupt service routines,
other tasks …

InternalRatio <internal_time_of_function>/<total_measurement_time> as a numeric
value.

InternalBAR <internal_time_of_function>/<total_measurement_time> graphically.

<list_item> Time in Sub-Functions

External Total time spent within called sub-functions, TRAP handlers, interrupt
service routines, other tasks …

EAVeRage Average time spent within called sub-functions, TRAP handlers, interrupt
service routines, other tasks …

EMIN Shortest time spent within called sub-functions, TRAP handlers, interrupt
service routines, other tasks …

EMAX Longest time spent within called sub-functions, TRAP handlers, interrupt
service routines, other tasks …

<list_item> Interrupt Times

INTR Total time the function was interrupted.

INTRMAX Max. time 1 function pass was interrupted.

INTRCount Number of interrupts that occurred during the function run-time.
General Commands Reference Guide T | 411©1989-2024 Lauterbach

<list_item> Time in Other Tasks (Trace.STATistic.TASKFunc only)

ExternalTASK Total time in other tasks.

ExternalTASKMAX Max. time 1 function pass was interrupted by other tasks.

TASKCount Number of other tasks that interrupted the function.

<list_item> Total Time Ratio

TOTALRatio <total_time_of_function>/<total_measurement_time> as a numeric
value.

InternalBar <total_time_of_function>/<total_measurement_time> graphically.
General Commands Reference Guide T | 412©1989-2024 Lauterbach

Analysis Options

<option> Configuration of the Analysis

(default) Function run-times are calculated without interrupts.

Entry to func1

func2

TRAP1

func3

interrupt 1

Exit of func1

To
ta

l o
f

(r
o

o
t)

Start of measurement

End of measurement

To
ta

l o
f

fu
n

c1

In
te

rn
al

 o
f

fu
n

c1

E
xt

er
n

al
 o

f
fu

n
c1

IN
T

R
 o

f
fu

n
c1

Entry to func1

Exit of func1

Exit of func1

Entry to func1
General Commands Reference Guide T | 413©1989-2024 Lauterbach

<option> Configuration of the Analysis

IncludeINTR Function run-times include times in interrupts. In other words, interrupts
are treated as sub-functions.

Entry to func1

func2

TRAP1

func3

interrupt 1

Exit of func1

To
ta

l o
f

(r
o

o
t)

Start of measurement

End of measurement

To
ta

l o
f

fu
n

c1

In
te

rn
al

 o
f

fu
n

c1

E
xt

er
n

al
 o

f
fu

n
c1

IN
T

R
 o

f
fu

n
c1

Entry to func1

Exit of func1

Exit of func1

Entry to func1
General Commands Reference Guide T | 414©1989-2024 Lauterbach

<option> Configuration of the Analysis (RTOS)

IncludeOWN +

INTRROOT

Function run-times without interrupts and without times in other tasks
(default).
Interrupts are assigned to (root)@(root)

Entry to func1 in TASK1

func2 in TASK1

TASK2

func2 in TASK1

func3 in TASK1

TRAP1 in TASK1

func4 in TASK1

TASK3

func4 in TASK1

interrupt1 in TASK1

Exit of func1 in TASK1

To
ta

l o
f

(r
o

o
t)

@
ro

o
t

Start of measurement

First entry to TASK1

Last exit of TASK1

To
ta

l o
f

(r
o

o
t)

@
TA

S
K

1

In
te

rn
al

 o
f

fu
n

c1
@

TA
S

K
1

E
xt

er
n

al
 o

f
fu

n
c1

@
TA

S
K

1

IN
T

R
 o

f
fu

n
c1

@
TA

S
K

1

E
xt

er
n

al
TA

S
K

 o
f

fu
n

c1
@

TA
S

K
1

First task switch recorded to trace

To
ta

l o
f

fu
n

c1
@

TA
S

K
1

Entry to func1 in TASK1

Exit of func1 in TASK1
General Commands Reference Guide T | 415©1989-2024 Lauterbach

<option> Configuration of the Analysis (RTOS)

IncludeTASK +

INTRROOT

Function run-times without interrupts but with times in other tasks.

Interrupts are assigned to (root)@(root)

Entry to func1 in TASK1

func2 in TASK1

TASK2

func2 in TASK1

func3 in TASK1

TRAP1 in TASK1

func4 in TASK1

TASK3

func4 in TASK1

interrupt1 in TASK1

Exit to func1 in TASK1

To
ta

l o
f

(r
o

o
t)

@
ro

o
t

Start of measurement

First entry to TASK1

Last exit of TASK1

To
ta

l o
f

(r
o

o
t)

@
TA

S
K

1

In
te

rn
al

 o
f

fu
n

c1
@

TA
S

K
1

E
xt

er
n

al
 o

f
fu

n
c1

@
TA

S
K

1

IN
T

R
 o

f
fu

n
c1

@
TA

S
K

1

E
xt

er
n

al
TA

S
K

 o
f

fu
n

c1
@

TA
S

K
1

First task switch recorded to trace

To
ta

l o
f

fu
n

c1
@

TA
S

K
1

Entry to func1 in TASK1

Exit of func1 in TASK1
General Commands Reference Guide T | 416©1989-2024 Lauterbach

<option> Configuration of the Analysis (RTOS)

IncludeOWN +

INTRTASK

Function run-times without interrupts and without times in other tasks
(default).
Interrupts are assigned to (root)@<task_name>

Entry to func1 in TASK1

func2 in TASK1

TASK2

func2 in TASK1

func3 in TASK1

TRAP1 in TASK1

func4 in TASK1

TASK3

func4 in TASK1

interrupt1 in TASK1

Exit to func1 in TASK1

To
ta

l o
f

(r
o

o
t)

@
ro

o
t

Start of measurement

First entry to TASK1

Last exit of TASK1

To
ta

l o
f

(r
o

o
t)

@
TA

S
K

1

In
te

rn
al

 o
f

fu
n

c1
@

TA
S

K
1

IN
T

R
 o

f
fu

n
c1

@
TA

S
K

1

E
xt

er
n

al
TA

S
K

 o
f

fu
n

c1
@

TA
S

K
1

First task switch recorded to trace

To
ta

l o
f

fu
n

c1
@

TA
S

K
1

E
xt

er
n

al
 o

f
fu

n
c1

@
TA

S
K

1

Entry to func1 in TASK1

Exit of func1 in TASK1
General Commands Reference Guide T | 417©1989-2024 Lauterbach

Adjusting the Measurement

• Trace.STATistic.FIRST/ Trace.STATistic.LAST

The Trace.STATistic commands analyze the complete trace contents by default. The command
Trace.STATistic.FIRST allows to freely select the start point for the statistic analysis; the
command Trace.STATistic.LAST allows to freely select the end point for the statistic analysis.

• sYmbol.MARKER.Create FENTRY / FEXIT

If the function nesting analysis can’t identify code sections as HLL functions (e.g. assembler
function, unusual function exits) these code sections can be marked manually as functions by
using the marker FENTRY and FEXIT.

Example 1:

Since func3 is the HLL function executed after an interrupt occurred, it is regarded as interrupt
service routine.

Since ass_int is now marked as a function, it is correctly identified as interrupt service routine.

; mark the entry of the assembler function ass_int as function entry
sYmbol.MARKER.Create FENTRY ass_int

; mark the exit of the assembler function ass_int as function exit
sYmbol.MARKER.Create FEXIT ass_int+0x15F

; list the marker
sYmbol.MARKER.list

Entry to func1

func2

ass_int as assembler routine

func3

IN
T

R
In

te
rn

al
 o

f
fu

n
c2

Entry to func1

func2

ass_int as assembler routine

func3

IN
T

R FENTRY

FEXIT

In
te

rn
al

 o
f

fu
n

c2
General Commands Reference Guide T | 418©1989-2024 Lauterbach

Example 2:

Since interrupt1 is the HLL function executed after an interrupt occurred, it is regarded as
interrupt service routine. The assembler code from ass_int is added to the time in func2.

Since ass_int is now marked as function, it is correctly identified as interrupt service routine. interrupt1
is a sub-function called by ass_int now.

Entry to func1

func2

IN
T

R

ass_int (assembler part of the interrupt service routine)

In
te

rn
al

 o
f

fu
n

c2

ass_int (assembler part of the interrupt service routine)

interrupt1

Entry to func1

func2

IN
T

R
In

te
rn

al
 o

f
fu

n
c2

FENTRY

FEXIT

ass_int (Assembler part of the interrupt service routine)

ass_int (Assembler part of the interrupt service routine)

interrupt1
General Commands Reference Guide T | 419©1989-2024 Lauterbach

• sYmbol.MARKER.Create KENTRY / KEXIT

If the KERNEL is using special methods to call/end KERNEL functions, this might annoy the
function nesting analysis. In such a case it is recommended to exclude the KERNEL from the
function nesting by using the markers KENTRY/KEXIT.

Example:

The KERNEL is manipulating the return address on the stack in order to return quickly into
TASK1. This behavior will annoy the function nesting analysis.

The usage of the markers KENTRY/KEXIT excluded the KERNEL from the function nesting in
order to get a correct function nesting.

Entry to func1 in TASK1

func2 in TASK1

KERNEL prologue

kfunca in KERNEL

KERNEL epilogue

kfuncb in KERNEL

func2 in TASK1

Entry to func1 in TASK1

func2 in TASK1
KENTRY

KEXIT
func2 in TASK1

KERNEL is excluded from the function nesting

KERNEL prologue

K
E

R
N

E
L

 p
ro

lo
g

u
e@

TA
S

K
1

General Commands Reference Guide T | 420©1989-2024 Lauterbach

Advanced example for RTOS RTXC on a StarCore CPU:

See also

■ <trace>.STATistic ■ BMC.STATistic.Func ■ CTS.STATistic.Func

▲ ’Release Information’ in ’Legacy Release History’
▲ ’Function Run-Times Analysis’ in ’Training Arm CoreSight ETM Tracing’
▲ ’Function Run-Times Analysis - SMP Instance’ in ’Training Nexus Tracing’

; mark all interrupt service routines as kernel entries
sYmbol.ForEach "sYmbol.NEW.MARKER KENTRY *" "_isr_*"

; mark all RTE instructions in the specified program range as kernel exit
Data.Find P:RTXCProlog--P:RTXCProlog_end %Word 0x9f73
WHILE FOUND()
(

sYmbol.MARKER.Create KEXIT P:TRACK.ADDRESS()
Data.Find

)

sYmbol.MARKER.list
General Commands Reference Guide T | 421©1989-2024 Lauterbach

<trace>.STATistic.FuncDURation Statistic analysis of single function

Analyzes the function runtime between function entry and exit.

• The time spent in called subroutines is included.

• The time spent in called interrupt service routine and other tasks is excluded.

See also

■ <trace>.STATistic.FuncDURationInternal ■ <trace>.STATistic

▲ ’Release Information’ in ’Legacy Release History’
▲ ’Function Run-Times Analysis - SMP Instance’ in ’Training Nexus Tracing’

Format: <trace>.STATistic.FuncDURation <function_name | address> [/<option>]

<option>: FILE | FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
TASK <task> | SplitTASK | MergeTASK
MACHINE <machine_magic> | <machine_id> | <machine_name>
IncludeOwn | IncludeTASK | IncludeINTR
INTRROOT | INTRTASK
Number <record>
Filter <filter>
Address <address | range>
ACCUMULATE | INCremental | FULL | CLOCKS | NoMerge
LOG | LINear
General Commands Reference Guide T | 422©1989-2024 Lauterbach

<trace>.STATistic.FuncDURationInternal Statistic analysis of single func.

Analyzes the function runtime between function entry and exit. The time spent in called subroutines, traps,
interrupt service routine and other tasks is excluded.

See also

■ <trace>.STATistic.FuncDURation ■ <trace>.STATistic

▲ ’Release Information’ in ’Legacy Release History’

Format: <trace>.STATistic.FuncDURationInternal <function_name | address>
General Commands Reference Guide T | 423©1989-2024 Lauterbach

<trace>.STATistic.GROUP Group run-time analysis

The time spent in groups and the number of calls is calculated (flat statistic). The results only include groups
within the program range. Groups for data addresses are not included.

Example:

See also

■ <trace>.STATistic ■ <trace>.STATistic.AddressGROUP
■ BMC.STATistic.GROUP ■ CTS.STATistic.GROUP
■ GROUP.Create

Format: <trace>.STATistic.GROUP [%<format>] [<list_item> …] [/<option>]

<format>: DEFault | LEN | TimeAuto | TimeFixed

<list_item>: DEFault | ALL | NAME | GROUP | CORE | BAR[.log | .LINear]
Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

<option>: FILE | FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
TASK <task> | SplitTASK | MergeTASK
BEFORE | AFTER
CountChange | CountFirst | CountAll
InterVal <time> | Filter <filter> | Sort <item> | Address <address | range>
ACCUMULATE | INCremental | FULL | CLOCKS | Track

<format>,
<list_item>

Refer to Parameters under <trace>.STATistic.

<option> Refer to Options under <trace>.STATistic.

GROUP.Create "INPUT" \jquant2 \jquant1 \jidctred \jdinput /AQUA
GROUP.Create "JPEG" \jdapimin \jdcolor \jddctmgr \jdcoefct /NAVY
Trace.STATistic.GROUP
General Commands Reference Guide T | 424©1989-2024 Lauterbach

▲ ’Release Information’ in ’Legacy Release History’
General Commands Reference Guide T | 425©1989-2024 Lauterbach

<trace>.STATistic.Ignore Ignore false records in statistic

The specified record(s) are ignored in the statistic analysis. This command can be used, when single
records (caused by prefetch etc.) confuse the statistic analysis.

See also

■ <trace>.STATistic

Format: <trace>.STATistic.Ignore [<record> | <range>] [/<options>]

<option>: FILE

FILE Displays trace memory contents loaded with Trace.FILE.
General Commands Reference Guide T | 426©1989-2024 Lauterbach

<trace>.STATistic.INTERRUPT Interrupt statistic

Analyzes the function nesting and calculates the time spent in interrupts and the number of interrupt calls.

See also

■ <trace>.STATistic ■ CTS.STATistic.INTERRUPT

▲ ’Release Information’ in ’Legacy Release History’

Format: <trace>.STATistic.INTERRUPT [%<format>] [<list_item> …] [/<option>]

<format>: DEFault | LEN | TimeAuto | TimeFixed

<list_item>: DEFault | ALL
NAME | GROUP | TASK
Total | TotalRatio | TotalBAR
Count | MIN | MAX | AVeRage
Internal | IAVeRage | IMIN | IMAX | InternalRatio | InternalBAR
External | EAVeRage | EMAX | ExternalINTR | ExternalINTRMAX
INTRCount | ExternalTASK | ExternalTASKMAX | TASKCount

<option>: FILE | FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
InterVal <time>
Filter <filter>
Address <address | range>
ACCUMULATE
INCremental | FULL
CLOCKS
NoMerge
Sort <item>
Track

<format>,
<list_item>

Refer to Parameters under <trace>.STATistic.

<option> Refer to Options under <trace>.STATistic.
General Commands Reference Guide T | 427©1989-2024 Lauterbach

<trace>.STATistic.InterruptIsFunction Statistics interrupt processing

In order to calculate the results for the nesting function run-time analysis the trace recording is post-
processed. One important issue in this processing is the identification of interrupt entries and exits.

TRACE32 provides two methods to identify interrupt entries and exits:

• Default: Trace.STATistic.InterruptIsFunction OFF

• Recommended: Trace.STATistic.InterruptIsFunction ON

Trace.STATistic.InterruptIsFunction OFF

The screenshot below shows the function nesting for the interrupt.

1. The first HLL function called after the indirect branch to the Interrupt Vector Table is regarded as
interrupt service routine (here OSInterruptDispatcher1).

2. The return from interrupt is regarded as the exit of this function (here OSInterruptDispatcher1).

Please be also aware that some trace port protocols require special setups for the Interrupt Vector Table. For
details, please refer to your Processor Architecture Manual.

Format: <trace>.STATistic.InterruptIsFunction ON | OFF

Indirect branch
to Interrupt

Vector Table
Return from

interrupt

Entry to
interrupt service
routine

instruction
General Commands Reference Guide T | 428©1989-2024 Lauterbach

Trace.STATistic.InterruptIsFunction ON

1. Interrupt entry is the point in the trace recording at which the indirect branch to the Interrupt
Vector Table occurs.

2. Interrupt exit is the point in the trace recording at which the return from interrupt is executed.

TRACE32 handles the time between interrupt entry and exit as a function. The name given to this function is
the label of the interrupt vector address.

Please be aware that method only works if interrupts are exit by regular return from interrupt.

Please be also aware that some trace port protocols require special setups for the Interrupt Vector Table. For
details, please refer to your Processor Architecture Manual.

See also

■ <trace>.STATistic

Indirect branch
to Interrupt
Vector Table

Return from
interrupt
General Commands Reference Guide T | 429©1989-2024 Lauterbach

<trace>.STATistic.InterruptIsKernel Statistics interrupt processing

Same as <trace>.STATistic.InterruptIsFunction, however no function nesting analysis is performed inside
interrupts.

See also

■ <trace>.STATistic

<trace>.STATistic.InterruptIsKernelFunction Statistics interrupt processing

Same as <trace>.STATistic.InterruptIsFunction. The interrupt address ranges are additionally considered
as KERNEL in TASKKernel analysis, e.g. using <trace>.STATistic.TASKKernel.

See also

■ <trace>.STATistic

<trace>.STATistic.InterruptIsTaskswitch Statistics interrupt processing

Default: OFF.

When set to ON, this command delays a task switch that occurs within an interrupt after the return from
interrupt instruction. The interrupt will be then assigned to the task that has been execution before the task
switch. This can also be achieved using the command sYmbol.MARKER.Create TASKSWITCH.

The command only affects trace windows that analyze the program flow or task switches.

See also

■ <trace>.STATistic

Format: <trace>.STATistic.InterruptIsKernel ON | OFF

Format: <trace>.STATistic.InterruptIsKernelFunction ON | OFF

Format: <trace>.STATistic.InterruptIsTaskswitch ON | OFF
General Commands Reference Guide T | 430©1989-2024 Lauterbach

<trace>.STATistic.INTERRUPTTREE Display interrupt nesting

The results of this command shows a graphical tree of the interrupt nesting.

Format: <trace>.STATistic.INTERRUPTTREE [%<format>] [<list_item> …] [/<option>]

<format>: DEFault | LEN | TimeAuto | TimeFixed

<list_item>: DEFault | ALL
NAME | GROUP | TASK
Total | TotalRatio | TotalBAR
Count | MIN | MAX | AVeRage
Internal | IAVeRage | IMIN | IMAX | InternalRatio | InternalBAR
External | EAVeRage | EMAX | ExternalINTR | ExternalINTRMAX
INTRCount | ExternalTASK | ExternalTASKMAX | TASKCount

<option>: FILE | FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
InterVal <time>
Filter <filter>
Address <address | range>
ACCUMULATE
INCremental | FULL
CLOCKS
NoMerge
Sort <item>
THreshold <float>
Track

<format>,
<list_item>

Refer to Parameters under <trace>.STATistic.

<option> Refer to Options under <trace>.STATistic.
General Commands Reference Guide T | 431©1989-2024 Lauterbach

See also

■ <trace>.STATistic ■ CTS.STATistic.INTERRUPTTREE
General Commands Reference Guide T | 432©1989-2024 Lauterbach

<trace>.STATistic.LAST End point for statistic analysis

The Trace.STATistic commands analyze the complete trace contents by default. The command
Trace.STATistic.LAST allows to freely select an end point for the statistic analysis.

Example for <value>:

Format: <trace>.STATistic.LAST <value> | <time> | <string>

Trace.List ; display trace listing

Trace.STATistic.FIRST -123366. ; select trace record -123366.
; as start point for the trace
; analysis

Trace.STATistic.LAST -36675. ; select trace record -36675.
; as end point for the trace
; analysis

Trace.STATistic.Func ; perform a function run-time
; analysis
General Commands Reference Guide T | 433©1989-2024 Lauterbach

Example for <time>:

See also

■ <trace>.STATistic ■ <trace>.STATistic.FIRST

▲ ’Release Information’ in ’Legacy Release History’

Trace.List TIme.ZERO DEFault ; display trace listing

Trace.STATistic.LAST 468.2us ; select trace record with timestamp
; 468.2 µs (zero time) as end point for
; the trace analysis

Trace.STATistic.Func ; perform a function run-time analysis
; from the beginning of the trace buffer
; to the specified end point
General Commands Reference Guide T | 434©1989-2024 Lauterbach

<trace>.STATistic.Line High-level source code line analysis

Analyzes the time spent in high-level source code lines.

See also

■ <trace>.STATistic

▲ ’Release Information’ in ’Legacy Release History’

Format: <trace>.STATistic.Line [%<format>] [<list_item> …] [/<option>]

<format>: DEFault | LEN | TimeAuto | TimeFixed

<list_item>: DEFault | ALL | NAME | GROUP | CORE | BAR[.log | .LINear]
Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

<options>: FILE | FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
TASK <task> | SplitTASK | MergeTASK
BEFORE | AFTER
CountChange | CountFirst | CountAll
InterVal <time> | Filter <filter> | Address <address | range>
ACCUMULATE | INCremental | FULL
CLOCKS
Sort <item>
Track

<format>,
<list_item>

Refer to Parameters under <trace>.STATistic.

<option> Refer to Options under <trace>.STATistic.
General Commands Reference Guide T | 435©1989-2024 Lauterbach

<trace>.STATistic.LINKage Per caller statistic of function

Performs a function run-time statistic for a single function itemized by its callers. The procedure for recording
the data is the same as for the <trace>.STATistic.Func command.

Format: <trace>.STATistic.LINKage <address> [%<format>] [<items> …] [/<option>]

<format>: DEFault | LEN | TimeAuto | TimeFixed

<list_item>: DEFault | ALL
NAME | GROUP | TASK
Total | TotalRatio | TotalBAR
Count | MIN | MAX | AVeRage
Internal | IAVeRage | IMIN | IMAX | InternalRatio | InternalBAR
External | EAVeRage | EMAX | ExternalINTR | ExternalINTRMAX
INTRCount | ExternalTASK | ExternalTASKMAX | TASKCount

<option>: FILE | FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
TASK <task> | SplitTASK | MergeTASK
IncludeOwn | IncludeTASK | IncludeINTR
INTRROOT | INTRTASK
Filter <filter>
Address <address | range>
ACCUMULATE
INCremental | FULL
CLOCKS
NoMerge
Sort <item>
Track

<address> Has to be the function entry address.

<format>,
<list_item>

Refer to Parameters under <trace>.STATistic.

<option> Refer to Options under <trace>.STATistic.
General Commands Reference Guide T | 436©1989-2024 Lauterbach

Example:

The function alloc_small was called by the listed 20. functions. The dependency between the run-time of the
function allow_small and its callers is analyzed.

See also

■ <trace>.STATistic ■ BMC.STATistic.LINKage ■ CTS.STATistic.LINKage

▲ ’Release Information’ in ’Legacy Release History’

Trace.STATistic.LINKage alloc_small
General Commands Reference Guide T | 437©1989-2024 Lauterbach

<trace>.STATistic.Measure Analyze the performance of a single signal

This command allows to analyze the performance of a single signal. It is mainly used with PowerProbe or
PowerIntegrator.

Typical application for the <trace>.STATistic.Measure:

• to check the best threshold level for a symmetric signal (e.g. a symmetric clock signal).

• to detect spikes (e.g. a signal has a defined period of 10.ns, detect if there is any much smaller
period).

Example:

Format: <trace>.STATistic.Measure [%<format>] [<list_items> …] [/<option>]

<format>: DEFault | LEN | TimeAuto | TimeFixed

<list_item>: DEFault | ALL | <cpu> | <signals> | Port[.<subitem>] | MARK[.<marker>]
LOW | HIGH

<option>: FILE | ACCUMULATE | INCremental | FULL
CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)

<format>,
<list_item>

Refer to Parameters under <trace>.STATistic.

<option> Refer to Options under <trace>.STATistic.

Trace.STATistic.Measure i.ADD8 ; analyze address line i.ADD8

; analyze the data line i.DAT6, start the analysis at record number
; -5000. and finish the analysis at record number -4000.
Trace.STATistic.Measure (-5000.)--(-4000.) i.DAT6
General Commands Reference Guide T | 438©1989-2024 Lauterbach

Description of the window elements:

The analysis can also be activated by selecting the signal in the Trace.Timing display and by using the pull-
down menu provided via the right mouse button.

It is also possible to analyze only the selected part of the complete recording time.

recs The number of records that are analyzed.

time The time that is analyzed.

lead The time from the beginning of the analysis until the first edge.

tail The time from the last edge until the end of the analysis.

The number of low states.

The number of high states
General Commands Reference Guide T | 439©1989-2024 Lauterbach

See also

■ <trace>.STATistic

▲ ’Release Information’ in ’Legacy Release History’

<trace>.STATistic.MODULE Code execution broken down by module

Shows a statistical analysis of the code execution broken down by symbol module. The list of loaded
modules can be displayed with sYmbol.List.Module.

See also

■ <trace>.STATistic ■ <trace>.STATistic.PROGRAM
■ BMC.STATistic.MODULE ■ CTS.STATistic.MODULE

▲ ’Release Information’ in ’Legacy Release History’

Format: <trace>.STATistic.MODULE [%<format>] [<list_items> …] [/<option>]

<format>: DEFault | LEN | TimeAuto | TimeFixed

<list_item>: DEFault | ALL | NAME | GROUP | CORE | BAR[.log | .LINear]
Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

<option>: FILE | FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
TASK <task> | SplitTASK | MergeTASK
BEFORE | AFTER
CountChange | CountFirst | CountAll
InterVal <time>
Filter <filter>
Address <address | range>
ACCUMULATE
INCremental | FULL
CLOCKS
Sort <item>
Track

<format>,
<list_item>

Refer to Parameters under <trace>.STATistic.

<option> Refer to Options under <trace>.STATistic.
General Commands Reference Guide T | 440©1989-2024 Lauterbach

<trace>.STATistic.PAddress Which instructions accessed data address

The command provides a statistic about the instructions that accessed the data addresses. This command
is generally used with the /Filter Address option.

Example:

See also

■ <trace>.STATistic

▲ ’Release Information’ in ’Legacy Release History’

Format: <trace>.STATistic.PAddress [%<format>] [<list_items> …] [/<option>]

<format>: DEFault | LEN | TimeAuto | TimeFixed

<list_item>: DEFault | ALL | NAME | GROUP | CORE | BAR[.log | .LINear]
Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

<option>: FILE | FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
TASK <task> | SplitTASK | MergeTASK
BEFORE | AFTER
CountChange | CountFirst | CountAll
InterVal <time> | Filter <filter> | Address <address | range> | Sort <item>
ACCUMULATE | INCremental | FULL | CLOCKS
Track

<format>,
<list_item>

Refer to Parameters under <trace>.STATistic.

<option> Refer to Options under <trace>.STATistic.

Trace.STATistic.PAddress /Filter Address mstatic1
General Commands Reference Guide T | 441©1989-2024 Lauterbach

<trace>.STATistic.ParentTREE Show the call context of a function

Show call tree and run-time of all callers of the specified function. The function is specified by its start
<address>.

Format: <trace>.STATistic.ParentTREE <address> [%<format>] [<list_items> …]
 [/<option>]

<format>: DEFault | LEN | TimeAuto | TimeFixed

<list_item>: DEFault | ALL
TREE | LEVEL | GROUP | TASK
Total | TotalRatio | TotalBAR
Count | MIN | MAX | AVeRage
Internal | IAVeRage | IMIN | IMAX | InternalRatio | InternalBAR
External | EAVeRage | EMAX | ExternalINTR | ExternalINTRMAX
INTRCount | ExternalTASK | ExternalTASKMAX | TASKCount

<option>: FILE | FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
TASK <task> | SplitTASK | MergeTASK
IncludeOwn | IncludeTASK | IncludeINTR
INTRROOT | INTRTASK
Filter <filter>
Address <address | range>
ACCUMULATE
INCremental | FULL
CLOCKS
NoMerge
Sort <item>
Track

<format>,
<list_item>

Refer to Parameters under <trace>.STATistic.

<option> Refer to Options under <trace>.STATistic.
General Commands Reference Guide T | 442©1989-2024 Lauterbach

Example:

See also

■ <trace>.STATistic ■ <trace>.STATistic.ChildTREE
■ BMC.STATistic.ParentTREE ■ CTS.STATistic.ParentTREE

▲ ’Release Information’ in ’Legacy Release History’

Trace.STATistic.ParentTREE alloc_small
General Commands Reference Guide T | 443©1989-2024 Lauterbach

<trace>.STATistic.PROCESS Re-process statistics

Starts re-processing of statistic and chart windows.

See also

■ <trace>.STATistic

Format: <trace>.STATistic.PROCESS [/<option>]

<option>: ARTIAP

ARTIAP Option for AUTOSAR Real-Time Interface on Adaptive Platform trace
decoding. Decode MIPI STP (System Trace Protocol) format trace which is
defined in ARTI Trace Driver on AUTOSAR Adaptive Platform.
It can be used to process ARTIAP trace without executing
<trace>.Chart.TASK/TASKState or <trace>.STATistic.TASK/TASKState
related commands.
General Commands Reference Guide T | 444©1989-2024 Lauterbach

<trace>.STATistic.PROGRAM Code execution broken down by program

Shows a statistical analysis of the code execution broken down by loaded object files (program). The loaded
programs can be displayed with the command sYmbol.Browse *.

See also

■ <trace>.STATistic ■ <trace>.STATistic.MODULE ■ BMC.STATistic.PROGRAM ■ CTS.STATistic.PROGRAM

▲ ’Release Information’ in ’Legacy Release History’

Format: <trace>.STATistic.PROGRAM [%<format>] [<list_items> …] [/<option>]

<format>: DEFault | LEN | TimeAuto | TimeFixed

<list_item>: DEFault | ALL | NAME | GROUP | CORE | BAR[.log | .LINear]
Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

<option>: FILE | FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
TASK <task> | SplitTASK | MergeTASK
BEFORE | AFTER
CountChange | CountFirst | CountAll
InterVal <time> | Filter <filter> | Address <address | range>
ACCUMULATE | INCremental | FULL | CLOCKS
Sort <item> | Track

<format>,
<list_item>

Refer to Parameters under <trace>.STATistic.

<option> Refer to Options under <trace>.STATistic.
General Commands Reference Guide T | 445©1989-2024 Lauterbach

<trace>.STATistic.PsYmbol Shows which functions accessed data address

The command provides a statistic about the functions that accessed the data addresses. This command is
generally used with the /Filter Address option.

Format: <trace>.STATistic.PsYmbol [%<format>] [<list_items> …] [/<option>]

<format>: DEFault | LEN | TimeAuto | TimeFixed

<list_item>: DEFault | ALL | NAME | GROUP | CORE | BAR[.log | .LINear]
Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

<option>: FILE | FlowTrace | BusTrace
CORE <number> | SplitCORE | MergeCORE | JoinCORE (SMP tracing only)
TASK <task> | SplitTASK | MergeTASK
BEFORE | AFTER
CountChange | CountFirst | CountAll
InterVal <time>
Filter <filter>
Address <address | range>
ACCUMULATE
INCremental | FULL
CLOCKS
Sort <item>
Track

<format>,
<list_item>

Refer to Parameters under <trace>.STATistic.

<option> Refer to Options under <trace>.STATistic.

Trace.STATistic.PsYmbol /Filter sYmbol mstatic1

Trace.STATistic.PsYmbol /Filter sYmbol mstatic1 CYcle Write
General Commands Reference Guide T | 446©1989-2024 Lauterbach

Preconditions:

• Has to be implemented for the processor architecture in use.

• Data access has to be clearly assignable to an instruction.

If TRACE32 was able to clearly assign the data access to an instruction can be checked as follows:

A red cycle type indicates that a clear assignment was not possible.

Both columns are empty if no clear assignment is possible.

See also

■ <trace>.STATistic

▲ ’Release Information’ in ’Legacy Release History’

Trace.FindAll sYmbol mstatic1

; PAddress: address of instruction that performed the data access
; PsYmbol: symbolic address of instruction that performed the data access
Trace.List PAddress PsYmbol DEFault
General Commands Reference Guide T | 447©1989-2024 Lauterbach

<trace>.STATistic.RUNNABLE Runnable runtime analysis

Analyzes the function nesting and calculates the time spent in AUTOSAR Runnables and the number of
Runnable calls.

On TriCore AURIX there’s a solution available for the Vector AUTOSAR tools that uses an automated
instrumentation to trace runnables on all cores with minimum overhead. See
~~/demo/env/vector/rte_profiling.

Otherwise, all functions that start an AUTOSAR “Runnable” have to be marked with the command
sYmbol.MARKER.Create RUNNABLESTARTPLUSSTOP. Please refer to “Trace Export for Third-Party
Timing Tools” (app_timing_tools.pdf) for more information.

See also

■ <trace>.STATistic ■ CTS.STATistic.RUNNABLE ■ TASK.Create.RUNNABLE ■ TASK.List.RUNNABLES

▲ ’Runnable Runtime Analysis’ in ’Application Note Profiling on AUTOSAR CP with ARTI’

Format: <trace>.STATistic.RUNNABLE [%<format>] [<list_items> ...] [/<option>]

<format>: DEFault | LEN | TimeAuto | TimeFixed

<list_item>: DEFault | ALL | NAME | GROUP | CORE | BAR[.log | .LINear]
Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

<option>: FILE
FlowTrace | BusTrace
TASK <task> | SplitTASK | MergeTASK
CORE <item> | SplitCORE | MergeCORE
IncludeOwn | IncludeTASK | IncludeINTR
InterVal <time>
Filter <item>
Address <address | range>
INCremental | FULL
ACCUMULATE
CLOCKS
NoMerge
Sort <item>
Track

<format>,
<list_item>

Refer to Parameters under <trace>.STATistic.

<option> Refer to Options under <trace>.STATistic.
General Commands Reference Guide T | 448©1989-2024 Lauterbach

<trace>.STATistic.RUNNABLEDURation Runnable duration analysis
[build 139722 - DVD 02/2022]

Analyzes the time spent in AUTOSAR Runnables. This is currently limited to runnable analysis based on
regular function tracing.

See also

■ <trace>.STATistic

▲ ’Runnable Runtime Analysis’ in ’Application Note Profiling on AUTOSAR CP with ARTI’

Format: <trace>.STATistic.RUNNABLE <address | name> [/<option>]

<option>: FILE
FlowTrace | BusTrace
TASK <task> | SplitTASK | MergeTASK
CORE <item> | SplitCORE | MergeCORE
IncludeOwn | IncludeTASK | IncludeINTR
InterVal <time> |
Filter <item>
Address <address | range>
INCremental | FULL
ACCUMULATE
CLOCKS
NoMerge
Number <record>
LOG | LINear

<option> Refer to Options under <trace>.STATistic.
General Commands Reference Guide T | 449©1989-2024 Lauterbach

<trace>.STATistic.Sort Specify sorting criteria for statistic commands

Specify sorting criterion for the results of the command groups <trace>.STATistic and <trace>.Chart.

After item <sort>, a list of whitespace separated filters can be specified. The items that match any of the
filters are shown first, then the rest if the items is shown according to the selected criterion. The filters can
include wildcards (* and ?).

If the command is entered without parameters, a Trace.STATistic.Sort dialog is displayed.

The sorting criterion specified by Trace.STATistic.Sort applies to all <trace>.STATistic and <trace>.Chart
analysis windows (check box All Windows ON).

Format: <trace>.STATistic.Sort [<sort_visible>] [<sort_core>] [<sort> [<filters>]]

<sort_
visible>:

Window | Global

<sort_core>: CoreTogether | CoreSeparated (SMP systems only)

<sort>: OFF
Address | sYmbol [<wildcard_list …>] | GROUP
Nesting | InternalRatio | TotalRatio
Ratio
Count
TotalMAX | RatioMAX
General Commands Reference Guide T | 450©1989-2024 Lauterbach

To specify the sorting criterium for an individual statistic window use the Config button of this statistic
window or use the /Sort option when you enter the command.

Default Sorting Criterion

OFF is the default mode for most statistic windows. OFF means that the analyzed items are displayed in
their recording order.

Statistic windows that are focused on the program’s call hierarchy e.g Trace.STATistic.TREE use Nesting
as default mode.

Trace.Chart.sYmbol /Sort TotalRatio ; sort the time chart by the
; criterion TotalRatio
General Commands Reference Guide T | 451©1989-2024 Lauterbach

Window vs. Global

Global (default) The sorting criterion is strictly maintained.

Window The sorting criterion is applied. The analyzed items active in the
displayed time interval are displayed first, followed by the non-active
items.

Window might be useful if you scroll horizontally.

Trace.Chart.sYmbol /Sort Window sYmbol
General Commands Reference Guide T | 452©1989-2024 Lauterbach

CoreTogether vs. CoreSeparated (SMP Systems only)

CoreTogether
(default)

The analyzed items are displayed per core. Additional sorting criteria
apply to this per core order.

CoreSeparately The core information has no impact on the sorting order.

Trace.Chart.sYmbol /ZoomTrack /Sort CoreTogether sYmbol

Trace.Chart.sYmbol /ZoomTrack /Sort CoreSeparated sYmbol
General Commands Reference Guide T | 453©1989-2024 Lauterbach

Standard Sorting Criteria

Example for sort criterion sYmbol [<filters>].

Address Sort result by address

sYmbol [<filters>] Sort result alphabetically by symbol names

GROUP Sort result by their grouping

Count Sort analyzed items by their occurrence

; display items starting with string "SPI" first, then items starting
; with string "SUP" then rest

Trace.STATistic.Sort sYmbol Spi* SUP*

Trace.Chart.sYmbol
General Commands Reference Guide T | 454©1989-2024 Lauterbach

Example for sort criterion GROUP.

GROUP.List

Trace.STATistic.Sort GROUP

Trace.Chart.sYmbol

GROUP my_code

GROUP toms_code

GROUP ralfs_code

GROUP other
General Commands Reference Guide T | 455©1989-2024 Lauterbach

Sorting Criteria for the Nesting Analysis

Example for criterion Nesting.

Nesting Calling functions are displayed atop of called function.

InternalRatio Sort result be internal ratio.

InternalRatio: <time_in_function>/<total_measurement_time> as a
numeric value.

TotalRatio Sort result by total ratio.

InternalRatio: <total_time_of_function>/<total_measurement_time> as a
numeric value, <total_time_of_function> includes called subfunctions
and traps.

Trace.Chart.Func /ZoomTrack /Sort Nesting
General Commands Reference Guide T | 456©1989-2024 Lauterbach

Sorting Criteria for the Flat Analysis

See also

■ <trace>.STATistic

▲ ’Release Information’ in ’Legacy Release History’

Ratio Sort analyzed items by their ratio.

TotalMAX Flat analysis with InterVal option only.

Sort analyzed items by maximal total time per specified interval.

RatioMAX Flat analysis with InterVal option only.

Sort analyzed items by maximal ratio per specified interval.

Trace.STATistic.sYmbol /InterVal 10.ms /Sort RatioMAX
General Commands Reference Guide T | 457©1989-2024 Lauterbach

<trace>.STATistic.sYmbol Flat run-time analysis

The execution time in different symbol regions is displayed. Displayed are the number of entries into the
range and the time spent in the range.

Format: <trace>.STATistic.sYmbol [%<format>] [<list_item> …] [/<option>]

<format>: DEFault | LEN | TimeAuto | TimeFixed

<list_item>: DEFault | ALL | NAME | GROUP | CORE | BAR[.log | .LINear]
Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

<list_item>: DEFault | ALL
Total | MIN | MAX | AVeRage | TotalMIN | TotalMAX
Ratio | RatioMIN | RatioMAX
Count | CountRatio | CountBAR | CountMIN | CountMAX
NAME | CountRatio | CountBAR
CountChange | CountFirst | CountALL

<options>: FILE | FlowTrace | BusTrace
TASK <task> | SplitTASK | MergeTASK
CORE <item> | SplitCORE | MergeCORE
LABEL | NoLABEL | INLINE | NoINLINE
BEFORE | AFTER
CountChange | CountFirst | CountAll
InterVal <time> | Filter <item> | Sort <item> | Track
Address <function1>||<function2> …
Address <function_m>--<function_n>ACCUMULATE
INCremental | FULL | CLOCKS

<format>,
<list_item>

Refer to Parameters under <trace>.STATistic.

<option> Refer to Options under <trace>.STATistic.
General Commands Reference Guide T | 458©1989-2024 Lauterbach

Example: filter the specified functions out of the trace stream and then analyze the filtered trace information

Trace.STATistic.sYmbol /Filter Address main||func2||func10||func26

func26

main
func2

main

func10

main

func26

Recording (filtered functions are displayed in black)

Analysis result

(other)

main main

func11
func10

main

func2b

init

func2 func2

func12

func10
General Commands Reference Guide T | 459©1989-2024 Lauterbach

Example: Perform statistic on specified functions, assign statistic information for all other functions to (other)

See also

■ <trace>.Chart.sYmbol ■ <trace>.STATistic ■ BMC.STATistic.sYmbol ■ CTS.STATistic.sYmbol

▲ ’Release Information’ in ’Legacy Release History’
▲ ’Function Run-Times Analysis - SMP Instance’ in ’Training Nexus Tracing’

Trace.STATistic.sYmbol /Address func2||func10||sfpDoubleNormalize
Trace.STATistic.sYmbol /Address func2--func7
General Commands Reference Guide T | 460©1989-2024 Lauterbach

<trace>.STATistic.TASK Task activity statistic

Task run-times are analyzed. “OS-aware Tracing” (trace32_concepts.pdf) has to be enabled in order to
use this command.

Format: <trace>.STATistic.TASK [%<format>] [<list_items> …] [/<option>]

<format>: DEFault | LEN | TimeAuto | TimeFixed

<list_item>: DEFault | ALL | NAME | GROUP | CORE | BAR[.log | .LINear]
Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

<option>: FILE | FlowTrace | BusTrace
CORE <n> | SplitCORE (default) | MergeCORE | JoinCORE
InterVal | Filter <item> | Sort <item> | Track
ACCUMULATE | INCremental | FULL | CLOCKS
ARTIAP

<format>,
<list_item>

Refer to Parameters under <trace>.STATistic.

<option> Refer to Options under <trace>.STATistic.

Survey

tasks Number of recorded tasks.

total Time period recorded by trace.
General Commands Reference Guide T | 461©1989-2024 Lauterbach

Task details

column <list_item> description

range Task name

(unknown): TRACE32 assigns all trace information
generated before the first task information to the
(unknown) task.

total Total Time period in the task during the recorded time period.

min, max, avr MIN Shortest, longest and average time in task.

count Count Number of time in task.

ratio Ratio Ratio of time in the task with regards to the total time
period recorded.

(graphical bar) BAR.LOG Ratio of time in the task with regards to the total time
period recorded graphically.

group GROUP Display of group name assigned by command
GROUP.CreateTASK.

Survey (InterVal option)

tasks Number of recorded tasks.

total Time period recorded by trace.

intervals Number of intervals.

min, max, avr Shortest, longest and average interval length.
General Commands Reference Guide T | 462©1989-2024 Lauterbach

See also

■ <trace>.STATistic ■ <trace>.STATistic.TASKFunc
■ BMC.STATistic.TASK ■ CTS.STATistic.TASK

▲ ’CPU Load Measurement’ in ’Application Note Profiling on AUTOSAR CP with ARTI’
▲ ’Release Information’ in ’Legacy Release History’
▲ ’OS-Aware Tracing’ in ’Training Arm CoreSight ETM Tracing’
▲ ’OS-Aware Tracing - Single Core’ in ’Training Nexus Tracing’
▲ ’OS-Aware Tracing - SMP Systems’ in ’Training Nexus Tracing’

Task details (InterVal option)

column item description

totalmax TotalMAX Longest time period in the task within an interval.

ratiomax RatioMAX Highest ratio of time in the task within an interval.

countmax CountMAX Highest number of time in the task within an interval

totalmin TotalMIN Shortest time period in the task within an interval.

ratiomin RatioMIN Shortest ratio of time in the task within an interval.

countmin CountMIN Shortest number of time in the task within an interval
General Commands Reference Guide T | 463©1989-2024 Lauterbach

<trace>.STATistic.TASKFunc Task related function run-time analysis

For details, refer to <trace>.STATistic.Func.

See also

■ <trace>.STATistic.TASK ■ <trace>.STATistic

▲ ’Release Information’ in ’Legacy Release History’

<trace>.STATistic.TASKINFO Context ID special messages

Displays a run-time statistic of special messages written to the Context ID register for ETM trace. The range
of special values has to be reserved with the ETM.ReserveContextID command. These special values are
then not interpreted for task switch or memory space switch detection. This can be used for cores without
data trace to pass data by the target application to the trace tool by writing to the ContextID register.

See also

■ <trace>.STATistic ■ BMC.STATistic.TASKINFO ■ CTS.STATistic.TASKINFO

Format: <trace>.STATistic.TASKFunc [%<format>] [<list_items> …] [/<option>]
 (legacy)

Format: <trace>.STATistic.TASKINFO [%<format>] [<list_item> …] [/<option>]

<format>: DEFault | LEN | TimeAuto | TimeFixed

<list_item>: DEFault | ALL | NAME | GROUP | CORE | BAR[.log | .LINear]
Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

<option>: FILE | FlowTrace | BusTrace
CORE <n> | SplitCORE (default) | MergeCORE | JoinCORE
InterVal <time> | <event> | Filter <item> | Sort <item>
ACCUMULATE | INCremental | FULL | CLOCKS | Track

<format>,
<list_item>

Refer to Parameters under <trace>.STATistic.

<option> Refer to Options under <trace>.STATistic.
General Commands Reference Guide T | 464©1989-2024 Lauterbach

<trace>.STATistic.TASKINTR ISR2 statistic (ORTI)

Displays an ORTI based ISR2 run-time statistic. This feature can only be used if the ISR2 can be traced
based on the information provided by the ORTI file.

See also

■ <trace>.STATistic ■ BMC.STATistic.TASKINTR ■ CTS.STATistic.TASKINTR

▲ ’ISR2 Runtime Analysis’ in ’Application Note Profiling on AUTOSAR CP with ARTI’
▲ ’Trace Features’ in ’OS Awareness Manual OSEK/ORTI’

Format: <trace>.STATistic.TASKINTR [%<format>] [<list_item> …] [/<option>]

<format>: DEFault | LEN | TimeAuto | TimeFixed

<list_item>: DEFault | ALL | NAME | GROUP | CORE | BAR[.log | .LINear]
Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

<option>: FILE | FlowTrace | BusTrace
CORE <n> | SplitCORE (default) | MergeCORE | JoinCORE
InterVal <time> | <event> | Filter <item> | Sort <item>
ACCUMULATE | INCremental | FULL | CLOCKS | Track

<format>,
<list_item>

Refer to Parameters under <trace>.STATistic.

<option> Refer to Options under <trace>.STATistic.
General Commands Reference Guide T | 465©1989-2024 Lauterbach

<trace>.STATistic.TASKKernel Task analysis with kernel markers (flat)

The command Trace.STATistic.TASKKernel refines the command Trace.STATistic.TASK for RTOS
systems that don´t assign a task ID to the kernel. In such a case no task run-time is calculated for the kernel
if the command Trace.STATistic.TASK is used.

If the TRACE32 TASK awareness was configured, TRACE32 implies that the kernel writes the identifier of
the current task to the address TASK.CONFIG(magic).

Format: <trace>.STATistic.TASKKernel [%<format>] [<list_items> …] [/<option>]

<format>: DEFault | LEN | TimeAuto | TimeFixed

<list_item>: DEFault | ALL | NAME | GROUP | CORE | BAR[.log | .LINear]
Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

<option>: FILE | FlowTrace | BusTrace
CORE <n> | SplitCORE (default) | MergeCORE | JoinCORE
InterVal <time> | <event> | Filter <item> | Sort <item>
ACCUMULATE | INCremental | FULL | CLOCKS | Track

<format>,
<list_item>

Refer to Parameters under <trace>.STATistic.

<option> Refer to Options under <trace>.STATistic.

PRINT TASK.CONFIG(magic)
General Commands Reference Guide T | 466©1989-2024 Lauterbach

Measurement performed by Trace.STATistic.TASK (no task ID for the kernel):

Measurement performed by Trace.STATistic.TASKKernel (KENTRY/KEXIT marker):

The refined measurement of Trace.STATistic.TASKKernel requires that the kernel entries and kernel exits
are marked by the command sYmbol.MARKER.Create.

sYmbol.MARKER.Create KENTRY os_prologue ; mark the address os_prologue
; as kernel entry point

sYmbol.MARKER.Create KEXIT os_epilogue ; mark the address os_epilogue
; as kernel exit point

sYmbol.MARKER.list ; list all markers

Timer_Task

Kernel

RR_Task

Point in time where the kernel write the task ID of
task RR_Task to the address TASK.CONFIG(magic)

Time in task Timer_Task
calculated by Trace.STATistic.TASK

Time in task RR_Task
calculated by Trace.STATistic.TASK

Timer_Task

Kernel

RR_Task

Point in time where the kernel write the task ID of
task RR_Task to the address TASK.CONFIG(magic)

Time in task Timer_Task calculated
by Trace.STATistic.TASKKernel

Time in kernel calculated
by Trace.STATistic.TASKKernel

Time in task RR_Task calculated
by Trace.STATistic.TASKKernel

K
E

N
T

R
Y

 m
ar

ke
r

K
E

X
IT

 m
ar

ke
r

General Commands Reference Guide T | 467©1989-2024 Lauterbach

Advanced example for RTOS RTXC on a StarCore CPU:

If the processor allows to restrict the trace information output to the program flow and specific write
accesses, it is recommended to restrict the output to the program flow plus write cycles to
task.config(magic), since more information can be recorded into the trace buffer.

See also

■ <trace>.STATistic ■ BMC.STATistic.TASKKernel ■ CTS.STATistic.TASKKernel

▲ ’Release Information’ in ’Legacy Release History’

; mark all interrupt service routines as kernel entries
sYmbol.ForEach "sYmbol.MARKER.Create KENTRY *" "_isr_*"

; mark all RTE instructions in the specified program range as kernel exit
Data.Find P:RTXCProlog--P:RTXCProlog_end %Word 0x9f73
WHILE FOUND()
(

sYmbol.MARKER.Create KEXIT P:TRACK.ADDRESS()
Data.Find

)

sYmbol.MARKER.list

Break.Set TASK.CONFIG(magic) /Write /TraceData

Go

Break

Trace.STATistic.TASKKernel
General Commands Reference Guide T | 468©1989-2024 Lauterbach

<trace>.STATistic.TASKLOCK Analyze lock accesses from tasks

Analyzes lock accesses from tasks.

See also

■ <trace>.STATistic

▲ ’Release Information’ in ’Legacy Release History’

Format: <trace>.STATistic.TASKLOCK <address> | <name> [/<option>]

<option>: FILE
FlowTrace | BusTrace
List <item>
Filter <item>
ACCUMULATE
INCremental | FULL
CLOCKS
Sort <item>

<option> Refer to <trace>.STATistic for a description of the <trace>.STATistic
options.
General Commands Reference Guide T | 469©1989-2024 Lauterbach

<trace>.STATistic.TASKORINTERRUPT Statistic of interrupts and tasks

Analyzes Task and interrupt run-times in one single window.

See also

■ <trace>.STATistic ■ BMC.STATistic.TASKORINTERRUPT
■ CTS.STATistic.TASKORINTERRUPT

▲ ’Release Information’ in ’Legacy Release History’

Format: <trace>.STATistic.TASKORINTERRUPT %<format>] [<list_items> …]
 [/<option>

<format>: DEFault | LEN | TimeAuto | TimeFixed

<list_item>: DEFault | ALL | NAME | GROUP | CORE | BAR[.log | .LINear]
Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

<option>: FILE | FlowTrace | BusTrace
CORE <n> | SplitCORE (default) | MergeCORE | JoinCORE
InterVal <time> | <event> | Filter <item> | Sort <item>
ACCUMULATE | INCremental | FULL | CLOCKS | Track

<format>,
<list_item>

Refer to Parameters under <trace>.STATistic.

<option> Refer to Options under <trace>.STATistic.
General Commands Reference Guide T | 470©1989-2024 Lauterbach

<trace>.STATistic.TASKORINTRState Task and ISR2 statistic analysis

The time tasks and interrupt spent in different states is measured.

Description of the states:

Format: <trace>.STATistic.TASKORINTRState [%<format>] [<items> …] [/<option>]

<format>: DEFault | LEN | TimeAuto | TimeFixed

<list_items>: DEFault | DefaultByItem | ALL | ALLByItem
<state>[.<state_item>]
TIme [.<state>] | MAX [.<state>]| MIN [.<state>] | AVeRage [.<state>]
Count [.<state>] | Total [.<state>]
Count | Ratio | BAR.log | BAR.LINear

<state>: UND | RUN | RDY | WAIT | REL | ACT | SUSP | INTR

<state_item>: all | Total | MIN | MAX | AVeRage | Count | Ratio | BAR

<option>: FILE | FlowTrace | BusTrace
CORE <n> | SplitCORE (default) | MergeCORE | JoinCORE
InterVal <time> | <event> | Filter <item> | Sort <item>
ACCUMULATE | INCremental | FULL | CLOCKS
Track

<format>,
<list_item>

Refer to Parameters under <trace>.STATistic.

<option> Refer to Options under <trace>.STATistic.

UND Undefined

RUN Running

RDY Ready

WAIT waiting

REL Released

ACT Activated
General Commands Reference Guide T | 471©1989-2024 Lauterbach

Before using this function the task and interrupt state transitions must be sampled by the trace. This feature
is highly dependent on the used RTOS kernel, and needs the TASK to be configured. Please see kernel
specific “OS Awareness Manuals” manuals for more information.

Please refer for more information to <trace>.STATistic.TASKState.

See also

■ <trace>.STATistic

▲ ’ISR2 Runtime Analysis’ in ’Application Note Profiling on AUTOSAR CP with ARTI’
▲ ’Release Information’ in ’Legacy Release History’

<trace>.STATistic.TASKSRV Analysis of time in OS service routines

The time spent in OS service routines and the number of calls is measured.

SUSP Suspended

INTR Interrupted

Format: <trace>.STATistic.TASKSRV [%<format>] [<items> …] [/<option>]

<format>: DEFault | LEN | TimeAuto | TimeFixed

<list_item>: DEFault | ALL | NAME | GROUP | CORE | BAR[.log | .LINear]
Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

<option>: FILE | FlowTrace | BusTrace
CORE <n> | SplitCORE (default) | MergeCORE | JoinCORE
InterVal <time> | <event> | Filter <item> | Sort <item>
ACCUMULATE | INCremental | FULL | CLOCKS | Track

<format>,
<list_item>

Refer to Parameters under <trace>.STATistic.

<option> Refer to Options under <trace>.STATistic.
General Commands Reference Guide T | 472©1989-2024 Lauterbach

This feature is only available, if an OSEK/ORTI system is used, and if the OS Awareness is configured with
the TASK.ORTI command.

See also

■ <trace>.STATistic ■ BMC.STATistic.TASKSRV ■ CTS.STATistic.TASKSRV

▲ ’Release Information’ in ’Legacy Release History’
General Commands Reference Guide T | 473©1989-2024 Lauterbach

<trace>.STATistic.TASKState Performance analysis

The time tasks spent in different states is measured. Before using this function the task state transitions must
be sampled by the trace. This feature is highly dependent on the used RTOS kernel, and needs the TASK to
be configured. Please see kernel specific “OS Awareness Manuals” manuals for more information.

Format: <trace>.STATistic.TASKState [%<format>] [<items> …] [/<option>]

<format>: DEFault | LEN | TimeAuto | TimeFixed

<list_items>: DEFault | DefaultByItem | ALL | ALLByItem
<state>[.<state_item>]
TIme [.<state>] | MAX [.<state>]| MIN [.<state>] | AVeRage [.<state>]
Count [.<state>] | Total [.<state>]
Count | Ratio | BAR.log | BAR.LINear
ARTI | ALLARTI

<state>: UND | WAIT | REL

<state>:
TRACE32
default

RUN | RDY | ACT | SUSP | INTR | LIFE | PER

<state>:
TRACE32
ARTI

IPT | CET | GET | RT | DT | PER | ST | NST | PRE

<state_item>: all | Total | MIN | MAX | AVeRage | Count | Ratio | BAR

<option>: FILE | FlowTrace | BusTrace
CORE <n> | SplitCORE (default) | MergeCORE | JoinCORE
InterVal <time> | <event> | Filter <item> | Sort <item>
ACCUMULATE | INCremental | FULL | CLOCKS
MACHINE <machine_magic> | <machine_id> | <machine_name>
Track
ARTIAP

<format> Refer to Parameters under <trace>.STATistic.

<option> Refer to Options under <trace>.STATistic.
General Commands Reference Guide T | 474©1989-2024 Lauterbach

ratio% Percentage of CPU usage consumed by the task
General Commands Reference Guide T | 475©1989-2024 Lauterbach

List items

State

TRACE32 default states

Initially, not all items with their derived states are displayed, however it is possible to extend the window
columns by opening the “config” menu and moving the entry from available to selected.

TIme[.<state>] The total time the task was in this state.

MAX[.<state>] The maximum time the task was in this state.

AVeRage[.<state>] The average time the task was in this state.
NOTE: This value can be wrong if intermediate states exist.

Count[.<state>] The number of times a state was entered.
NOTE: This value can be wrong if intermediate states exist.

Ratio The ratio of CPU runtime consumed by this task.

BAR.log, BAR.LIN Graphical display of ratio column.

ARTI Shows ARTI timing metrics.

ALLARTI Shows all ARTI timing metrics.

UND UNDefined Shows the time spent by the task in an unknown state.

WAIT WAITing Shows the waiting time spent by the task.

REL RELeased Shows the time spent by the task in released state.

ACT ACTivated Shows the time spent by the task from activation to start.

INTR INTeRrupted Shows the time elapsed from an interruption until the task is
resumed.

LIFE alive Shows the time spent by the task from activation to
termination.

PER PERiod Shows the time spent by the task from start to start.

RDY ReaDy Shows the time spent by the task remaining in the ready
state, from which it was pre-empted by one or more higher
priority tasks.
General Commands Reference Guide T | 476©1989-2024 Lauterbach

TRACE32 ARTI states

AUTOSAR defines its own set of timing parameters, therefore we provide separate states for ARTI to align it.
These states will be displayed using either the /ARTI or /ALLARTI options.

See also “Trace.STATistic.TASKState” in Application Note Profiling on AUTOSAR CP with ARTI, page 26
(app_autosar_cp_arti.pdf).

See also

■ <trace>.STATistic

▲ ’Release Information’ in ’Legacy Release History’
▲ ’Task Runtime Analysis’ in ’Application Note Profiling on AUTOSAR CP with ARTI’

RUN RUNning Shows the execution time spent by the task without taking
account of preemption or waiting periods.

SUSP SUSPended Shows the time spent by the task from termination to
activation.

CET Core Execution Time Same as RUN.

DT Delay Time Same as PER.

GET Gross Execution
Time

Shows the execution time spent by the task, including all
preemptions and waiting time.
It also reflects the LIFE time minus the ACT time.

IPT Initial Pendig Time Same as ACT.

NST Net Slack Time Shows the “potential additional” run-time of the task: the ST
minus all CET blocks of any task or ISRs with higher priority
during the ST.

PER PERiod Shows the time spent by the task from activation to
activation (period not as measured but as configured).

PRE PREempted Same as RDY.

RT Response Time Same as LIFE.

ST Slack Time Same as SUSP.
General Commands Reference Guide T | 477©1989-2024 Lauterbach

<trace>.STATistic.TASKStateDURation Task state runtime analysis
[build 135081 - DVD 09/2021]

Analyzes the time tasks spent in certain states

Possible <state> are: UNDefined, RUNning, ReaDY, WAITing, SUSPended, RELeased, ACTivated,
INTeRrupted.

See also

■ <trace>.STATistic

▲ ’Task Runtime Analysis’ in ’Application Note Profiling on AUTOSAR CP with ARTI’

Format: <trace>.STATistic.TASKStateDURation [<state> …] [/<option>]

<state>: UND | RUN | RDY | WAIT | REL | ACT | SUSP | INTR

<option>: FILE | FlowTrace | BusTrace
CORE <n> | SplitCORE (default) | MergeCORE | JoinCORE
ACCUMULATE | INCremental | FULL | CLOCKS
MACHINE <machine_magic> | <machine_id> | <machine_name>
Number <record>
FLAT | LOG | LINear

<option> Refer to Options under <trace>.STATistic.
General Commands Reference Guide T | 478©1989-2024 Lauterbach

<trace>.STATistic.TASKTREE Tree display of task specific functions

The results of this command shows a graphical tree of the function nesting.

See also

■ <trace>.STATistic.TREE ■ <trace>.STATistic

▲ ’Release Information’ in ’Legacy Release History’

Format: <trace>.STATistic.TASKTREE [%<format>] [<list_items> …] [/<option>]

<format>: DEFault | LEN | TimeAuto | TimeFixed

<list_item>: DEFault | ALL | TREE | LEVEL | GROUP | TASK
Total | TotalRatio | TotalBAR | Count | MIN | MAX | AVeRage
Internal | IAVeRage | IMIN | IMAX | InternalRatio | InternalBAR
External | EAVeRage | EMAX | ExternalINTR | ExternalINTRMAX
INTRCount | ExternalTASK | ExternalTASKMAX | TASKCount

<option>: FILE | FlowTrace | BusTrace
CORE <n> | SplitCORE (default) | MergeCORE | JoinCORE
TASK <task> | SplitTASK | MergeTASK
IncludeOwn | IncludeTASK | IncludeINTR
INTRROOT | INTRTASK
InterVal <time | event> | Address <address | range> | Filter <item>
ACCUMULATE | INCremental | FULL | CLOCKS
NoMerge | Sort <item> | THreshold <float> | Track

<format>,
<list_item>

Refer to Parameters under <trace>.STATistic.

<option> Refer to Options under <trace>.STATistic.
General Commands Reference Guide T | 479©1989-2024 Lauterbach

<trace>.STATistic.TASKVSINTERRUPT Statistic of interrupts, task-related

Displays a runtime statistic of tasks that were interrupted by interrupt service routines.

See also

■ <trace>.STATistic ■ BMC.STATistic
■ CTS.STATistic.TASKVSINTERRUPT ■ MIPS.STATistic

▲ ’Release Information’ in ’Legacy Release History’

Format: <trace>.STATistic.TASKVSINTERRUPT [%<format>] [<items> …] [/<option>]

<format>: DEFault | LEN | TimeAuto | TimeFixed

<list_item>: DEFault | ALL | NAME | GROUP | CORE | BAR[.log | .LINear]
Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

<option>: FILE
FlowTrace | BusTrace
CORE <n> | SplitCORE (default) | MergeCORE | JoinCORE
InterVal <time> | <event>
Filter <item>
Address <address> | <range>
ACCUMULATE
INCremental | FULL
CLOCKS
NoMerge
Sort <item>
Track

<format>,
<list_item>

Refer to Parameters under <trace>.STATistic.

<option> Refer to Options under <trace>.STATistic.
General Commands Reference Guide T | 480©1989-2024 Lauterbach

<trace>.STATistic.TASKVSINTR ISR2 statistic (ORTI), task related

Displays an ORTI based ISR2 runtime statistic against task runtimes. This feature can only be used if the
ISR2 can be traced based on the information provided by the ORTI file.

See also

■ <trace>.STATistic

▲ ’Trace Features’ in ’OS Awareness Manual OSEK/ORTI’

Format: <trace>.STATistic.TASKVSINTR [%<format>] [<items> …] [/<option>]

<format>: DEFault | LEN | TimeAuto | TimeFixed

<list_item>: DEFault | ALL | NAME | GROUP | CORE | BAR[.log | .LINear]
Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

<option>: FILE
FlowTrace | BusTrace
CORE <n> | SplitCORE (default) | MergeCORE | JoinCORE
InterVal <time> | <event>
Filter <item>
Address <address> | <range>
ACCUMULATE
INCremental | FULL
CLOCKS
NoMerge
Sort <item>
Track

<format>,
<list_item>

Refer to Parameters under <trace>.STATistic.

<option> Refer to Options under <trace>.STATistic.
General Commands Reference Guide T | 481©1989-2024 Lauterbach

<trace>.STATistic.TREE Tree display of nesting function run-time analysis

The results of this command shows a graphical tree of the function nesting.

Format: <trace>.STATistic.TREE [%<format>] [{<list_items>}] [/<option>]

<format>: DEFault | LEN | TimeAuto | TimeFixed

<list_item>: DEFault | ALL | TREE | LEVEL | GROUP | TASK
Total | TotalRatio | TotalBAR | Count | MIN | MAX | AVeRage
Internal | IAVeRage | IMIN | IMAX | InternalRatio | InternalBAR
External | EAVeRage | EMAX | ExternalINTR | ExternalINTRMAX
INTRCount | ExternalTASK | ExternalTASKMAX | TASKCount

<option>: FILE
FlowTrace | BusTrace
CORE <n> | SplitCORE (default) | MergeCORE | JoinCORE
TASK <task> | SplitTASK | MergeTASK
IncludeOwn | IncludeTASK | IncludeINTR
INTRROOT | INTRTASK
Address <address> | <range>
Filter <item>
ACCUMULATE
INCremental | FULL
CLOCKS
NoMerge
Sort <item>
THreshold <float>
Track

<format>,
<list_item>

Refer to Parameters under <trace>.STATistic.

<option> Refer to Options under <trace>.STATistic.
General Commands Reference Guide T | 482©1989-2024 Lauterbach

See also

■ <trace>.STATistic ■ <trace>.STATistic.TASKTREE
■ BMC.STATistic.TREE ■ CTS.STATistic.ChildTREE
■ CTS.STATistic.TREE

▲ ’Release Information’ in ’Legacy Release History’

<trace>.STATistic.Use Use records

The specified record(s) are used for performance and nesting analysis. This command can be used, when
some records should be used, which are ignored due to the <trace>.STATistic.Ignore.

See also

■ <trace>.STATistic

Format: <trace>.STATistic.Use [<trace_area>] [/<options>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

<option>: FILE

<option> Refer to <trace>.STATistic for a description of the <trace>.STATistic
options.
General Commands Reference Guide T | 483©1989-2024 Lauterbach

<trace>.STATistic.Var Statistic of variable accesses

The command provides a graphical chart of variable accesses.

Example:

See also

■ <trace>.STATistic

▲ ’Release Information’ in ’Legacy Release History’

Format: <trace>.STATistic.Var [%<format>] [{<list_items>}] [/<option>]

<format>: DEFault | LEN | TimeAuto | TimeFixed

<list_item>: DEFault | ALL | NAME | GROUP | CORE | BAR[.log | .LINear]
Count | CountRatio | CountBAR | CountMIN | CountMAX
MIN | MAX | AVeRage

<option>: FILE
FlowTrace | BusTrace
CORE <n> | SplitCORE (default) | MergeCORE | JoinCORE
TASK <task> | SplitTASK | MergeTASK
BEFORE | AFTER
CountChange | CountFirst | CountALL
Address <address> | <range>
Filter <item>
ACCUMULATE
INCremental | FULL
CLOCKS
Sort <item>
Track

<format>,
<list_item>

Refer to Parameters under <trace>.STATistic.

<option> Refer to Options under <trace>.STATistic.

; Display a statistic of all variable accesses:
Trace.STATistic.Var /Filter sYmbol mstatic1 /Filter CYcle Write

; Display a statistic of write accesses to the mstatic1 variable
Trace.STATistic.Var /Filter sYmbol mstatic1 /Filter CYcle Write
General Commands Reference Guide T | 484©1989-2024 Lauterbach

<trace>.STREAMCompression Select compression mode for streaming

Example:

See also

■ <trace>.STREAMFileLimit ■ <trace>.STREAMSAVE ■ <trace>.Mode ■ IProbe.state

Format: <trace>.STREAMCompression OFF | LOW | MID | HIGH

LOW
(default)

• Trace information is streamed compressed to the host computer.
• Trace information is saved to file as received.

MID • Trace information is streamed compressed to the host computer.
• Trace information is zipped before it is saved to file.

HIGH • Trace information is streamed compressed to the host computer.
• Trace information is zipped very compactly before it is saved to file.

OFF
(for diagnostic
purposes only)

• Trace information is streamed un-compressed to the host com-
puter.

• Trace information is saved un-compressed to file.

Trace.STREAMCompression LOW

Trace.Mode STREAM
General Commands Reference Guide T | 485©1989-2024 Lauterbach

<trace>.STREAMFILE Specify temporary streaming file path

Set the path and file name for the temporary streaming file e.g. a high-capacity or high-speed drive
dedicated for this use case.

TRACE32 automatically creates a streaming file which is placed into the TRACE32 temp directory
(OS.PresentTemporaryDirectory()) by default and is named <trace32_instance_id>streama.t32
(OS.ID()).

Example:

See also

■ <trace>.STREAMFileLimit ■ <trace>.Mode ■ IProbe.state ■ Onchip.Mode

Format: <trace>.STREAMFILE <file>

Trace.STREAMFILE "d:\temp\mystream.t32" ; specify the location for
; your streaming file

Trace.Mode STREAM ; select the trace mode STREAM

NOTE: The file limit of the streaming file must be set before starting streaming. Later
changes are not taken into account.
General Commands Reference Guide T | 486©1989-2024 Lauterbach

<trace>.STREAMFileLimit Set size limit for streaming file

Sets the maximum size allowed for a streaming file. If the maximum size is exceeded, the trace recording is
stopped and the warning "Streaming trace terminated" is displayed.

The limit value is given in bytes and can have a positive or negative sign:

• Positive value: The maximum size of the streaming file in bytes

• Negative value: Specifies the amount of space to leave on the disk before stopping streaming.
The maximum file size is calculated based on the amount of available disk space at the time of
starting streaming.

The default setting is -1.000.000.000 i.e. stops trace recording when less than a GB of space is left on the
storage medium.

See also

■ <trace>.STREAMFILE ■ <trace>.STREAMCompression
■ <trace>.Mode ■ IProbe.state
■ Onchip.Mode

Format: <trace>.STREAMFileLimit <+/- limit_in _bytes>

NOTE: The maximum size of the streaming file must be set before starting streaming.
Later changes are not taken into account.
General Commands Reference Guide T | 487©1989-2024 Lauterbach

<trace>.STREAMLOAD Load streaming file from disk

Load a streaming file that was saved with the command Trace.STREAMSAVE to TRACE32.

In order to display trace information the target state at the recording time has to be reconstructed within
TRACE32. This can be complex, especially if target software with an operating system that uses dynamic
memory management to handle processes/tasks (e.g. Linux) is used.

Example 1: Reconstruction of the target state at the recording time for a bare metal Cortex-R4 application.

Format: <trace>.STREAMLOAD <file>

A After loading the trace data from the streaming file, the STREAMLOAD label in the bottom-left corner
indicates that the contents of a loaded streaming file are being displayed.

; specify the target CPU
SYSTEM.CPU TMS570PSFC61
SYStem.Option.BigEndian ON
SYStem.Up
; specify ETM settings that were used at the time of recording
ETM.PortSize 16.
ETM.PortMode Bypass
ETM.DataTrace OFF
ETM.ContextID OFF
ETM.ON
; load source code and debug information
Data.LOAD.Elf demo.axf
; load saved streaming file
Trace.STREAMLOAD C:\T32_ARM\r4_max.sad
Trace.List

A

General Commands Reference Guide T | 488©1989-2024 Lauterbach

Example 2: Reconstruction of the target state at the recording time for NEXUS Power Architecture:

See also

■ <trace>.Mode ■ <trace>.STREAMSAVE

▲ ’Release Information’ in ’Legacy Release History’

; specify the target CPU
SYStem.CPU MPC5646C
; specify the NEXUS settings that were used at the time of recording
NEXUS.PortSize MDO12
NEXUS.PortMode 1/2
NEXUS.BTM ON
NEXUS.HTM ON
NEXUS.PTCM BL_HTM ON
NEXUS.ON
SYStem.Up
; mapping logical to physical address is 1:1
; load source code and debug information
Data.LOAD.Elf im02_bf1x.elf
; load the OS Awareness
TASK.ORTI im02_bf1x.ort
; load saved streaming file
Trace.STREAMLOAD my_stream
Trace.List
General Commands Reference Guide T | 489©1989-2024 Lauterbach

<trace>.STREAMSAVE Save streaming file to disk

Save the streaming file to a permanent file. Use Trace.STREAMLOAD to load this file for analysis.

The contents of the streaming file are in a proprietary format and not intended for use in external
applications.

See also

■ <trace>.STREAMCompression ■ <trace>.STREAMLOAD
■ <trace>.Mode ■ <trace>.SAVE

▲ ’Release Information’ in ’Legacy Release History’

<trace>.TCount Set trigger counter

Sets the number of trigger events that will be ignored by the trace or logic analyzer, before a trigger event
ends the recording (state: break). A counter value zero means that the recording stops immediately after the
first trigger. A value of 1 halts the recording at the second trigger event, and so on.

See also

■ IProbe.state

Format: <trace>.STREAMSAVE <file>

<file> The default extension for the streaming file is *.sad.

Format: Integrator.TCount [<value>]

<value>: 0. … 16777215.

Trigger Signal

Trigger Counter = 0 Trigger Counter = 1
Trigger
Counter = 2
General Commands Reference Guide T | 490©1989-2024 Lauterbach

<trace>.TDelay Trigger delay

Selects the delay time between trigger point and break (end of recording). Use this command in order to
record events that occurred after the trigger point.

The trigger delay may also be defined in percent of the trace buffer size. The delay can be larger (up to 10x)
than the total trace buffer size. Logic analyzers also support setting a delay time.

Selects the delay time between trigger point and break of the port analyzer. The time can be larger than the
time for a full sample of the analyzer. The trigger delay time may be defined in percent relating to the total
trace time.

Format: <trace>.TDelay <time> | <cycles> | <percent>%
ETM.TDelay <value> (deprecated)

<time>: 0 … 200.s

<percent>: 0 … 1000%

<cycles>: 0 … 4000000000.

Analyzer.TDelay 40% ; trigger delay is 40% of trace depth.

ARM Pretrigg.Delay Trigger point TDelay time Break

Trigger system active

Sampling
General Commands Reference Guide T | 491©1989-2024 Lauterbach

With a mouse click to the corresponding area in the port analyzer state window this command can be
executed too.

See also

■ IProbe.state

Port.TDelay 10.ms ; the trigger delay is 10 ms

Port.TDelay 50% ; the trigger point is in the mid of the trace
; memory

Port.TDelay 99% ; the trigger point is at the beginning to the trace
; memory

Port.TDelay 200. ; the trigger point 200 record before end of trace

Trigger
delay

0% Trigger point
Trace

25% Trigger point
Trace

50% Trigger point
Trace

75% Trigger point
Trace

100% Trigger point
Trace

200% Trigger point
Trace
General Commands Reference Guide T | 492©1989-2024 Lauterbach

<trace>.TERMination Use trace line termination of preprocessor

By default the trace line termination of the preprocessor is used during a trace capture. Undefinable
FLOWERRORs may occur if the output drivers of the CPU are not strong enough. In this case it is
recommended to switch the trace line termination OFF.

Format: <trace>.TERMination ON | OFF
General Commands Reference Guide T | 493©1989-2024 Lauterbach

<trace>.TestFocus Test trace port recording

The command Trace.TestFocus tests the recording at a high-speed trace port.

The command Trace.TestFocus can be used if:

• The program execution is stopped.

To test the trace port, the test pattern generator of the trace port is used if available. Otherwise, a test
program is loaded and started by TRACE32.

• The program execution and the trace recording is running.

Testing the trace port while the application program is running might be helpful to detect trace
port problems caused by the application program.

The trace data from the application program are used to test the trace port. Here a reduced test
scenario is processed that checks the correctness of the program flow recording and for short-
circuits between the trace port lines. This test requires that the program code is loaded to the
virtual memory.

• The program execution is running and the trace recording is stopped.

To test the trace port, the test pattern generator of the trace port is used if available. Otherwise, the
trace data from the application program are used.

If a test program is used, TRACE32 attempts to load the test program to the memory addressed by the PC
or the stack pointer. It is also possible to define an <address_range> for the test program.

If TRACE32 is unable to load the test program the following error message is displayed:
“Don‘t know where to execute the test code”.

Format: <trace>.TestFocus [<address_range>] [/<option>]

<option>: Accumulate
Config
KEEP
ALTERNATE
NoTraceControl

Data.LOAD.Elf arm.elf /PlusVM ; Load the application code
; to the target memories and
; to the virtual memory of
; TRACE32

Trace.TestFocus ; start trace port test

Trace.AutoFocus 0x24000000++0xfff ; start the test and load
; test program to address
; 0x24000000
General Commands Reference Guide T | 494©1989-2024 Lauterbach

By default, the original RAM content is restored after the trace port test and the trace recording is deleted.

The result of the command Trace.TestFocus can be processed in a PRACTICE script as follows:

Accumulate If the application program varies the CPU clock frequency, this affects
also the trace port. In such a case it is recommended to overlay the test
results for all relevant CPU clock frequencies by using the option
/Accumulate.

Config Allows to define a RAM address range for the download of the test
program.

KEEP After a trace port test the trace is cleared and any loaded test program is
removed from the target RAM.

With the option /KEEP, the test trace is not cleared and can be viewed
with the Trace.List command. If a test program was loaded by TRACE32,
it also remains in the target RAM.

ALTERNATE If the trace port provides a test pattern generator, it is always used for the
test. The option /ALTERNATE forces TRACE32 to use its own test
program.

NoTraceControl Informs the TRACE32 software that the trace control signal is not
available on the trace connector.

; advise the command Trace.TestFocus to download the test program
; always to the address range 0x24000000++0xfff
Trace.TestFocus 0x24000000++0xfff /Config

Trace.TestFocus

IF FOUND()
 PRINT %ERROR "Trace port test failed"

ELSE
 PRINT "Trace port recording ok"
General Commands Reference Guide T | 495©1989-2024 Lauterbach

Preprocessor with AutoFocus Technology

The Trace.TestFocus command calls the data eye finder for the current hardware configuration of a
preprocessor with AUTOFOCUS technology and verifies the correctness of traced test data. In contrast to
Trace.AutoFocus, the preprocessor configuration remains unchanged.

A complete trace port test executes the following steps:

1. The data eye finder is called. The source for the trace data for the test are the trace port’s pattern
generator, a test program or the application program.

2. When the eye finder is done, the test is started once again to verify the correctness of the trace
recording.

3. The data eyes resulting from the <trace>.TestFocus command can be viewed in the
<trace>.ShowFocus window.

See also

■ <trace>.TestFocusClockEye ■ <trace>.ShowFocus
■ <trace>.ShowFocusClockEye ■ <trace>.ShowFocusEye
■ <trace>.TestFocusEye ❏ AUTOFOCUS.FREQUENCY()
❏ AUTOFOCUS.OK()

▲ ’Release Information’ in ’Legacy Release History’

<trace>.TestFocusClockEye Scan clock eye

Scans the clock eye. To view the result, use the command Trace.ShowFocusClockEye.

See also

■ <trace>.TestFocus ■ <trace>.ShowFocus
■ <trace>.ShowFocusClockEye ■ <trace>.ShowFocusEye
■ <trace>.TestFocusEye

Format: <trace>.TestFocusClockEye [<address_range>] [/<option>]

<option>: Accumulate | Config | KEEP | ALTERNATE | Utilisation | NoTraceControl

NOTE: The NEXUS AutoFocus adapter does not support this feature.

<option> For a description of the options, see Trace.TestFocus.
General Commands Reference Guide T | 496©1989-2024 Lauterbach

<trace>.TestFocusEye Check signal integrity

Scans the data eye to determine the integrity of the electrical trace signals.

The command Trace.TestFocusEye starts an eye finder to test the quality of the trace signals, if a
preprocessor with AUTOFOCUS technology is used. The test result can be displayed with the command
Trace.ShowFocusEye. If the result shows that an individual trace signal has a significantly smaller data eye
than other signals, the hardware layout should be checked to see if this signal shows any unusual features.

The test procedure and the options used by the command Trace.TestFocusEye are similar to the
command Trace.TestFocus.

The command Trace.TestFocusEye can also be used with PowerTrace Serial. For this tool no additional
parameters (e.g. <address_range>) or options are available.

See also

■ <trace>.TestFocus ■ <trace>.TestFocusClockEye
■ <trace>.ShowFocus ■ <trace>.ShowFocusClockEye
■ <trace>.ShowFocusEye

▲ ’Release Information’ in ’Legacy Release History’

<trace>.TestUtilization Tests trace port utilization

Tests trace port utilization. The result is printed to the AREA window. This command is supported for the
trace methods Analyzer, CAnalyzer and Onchip.

This command is only supported for ETM trace.

Format: <trace>.TestFocusEye [<address_range>] [/<option>]

<option>: Accumulate
Config
KEEP
ALTERNATE
NoTraceControl

<option> For a description of the options, see Trace.TestFocus.

Format: <trace>.TestUtilization [/<option>]

<option>: KEEP | CONTENTS
General Commands Reference Guide T | 497©1989-2024 Lauterbach

<trace>.THreshold Optimize threshold for trace lines

The command Trace.THreshold can be used to optimize the threshold level for the trace lines sampled via
a TRACE32-Preprocessor (e.g. ARM-ETM, OCDS Level 2, AUD …). The optimization of the threshold level
should result in less errors in the trace recording.

Enhanced parameters for the Preprocessor for ARM-ETM with AUTOFOCUS:

<clock> <data>

For the Preprocessor for ARM-ETM with AUTOFOCUS different threshold levels can be defined for the
clock and the data lines

Format 1: <trace>.THreshold VCC | CLOCK | <level>
(Preprocessor for ARM-ETM with AUTOFOCUS only)

Format 2: <trace>.THreshold <clock> <data>

VCC The preprocessor and the TRACE32 software measure the VCC of the
target. 1/2 VCC is then automatically used as the threshold level for the trace
lines. The result is also displayed in the THreshold field of the <trace>.state
window.

CLOCK The threshold level is changed until the duty cycle of the trace clock reaches
a ratio of 1:1. This setting is only recommended if the trace clock has a duty
cycle of 1:1. The result is displayed in the THreshold field of the
<trace>.state window.

<level> The threshold level can be entered directly.

Trace.THreshold VCC

Trace.THreshold CLOCK

Trace.THreshold 1.6 ; the unit is Volt

Trace.THreshold 0.86 0.79 ; the unit is Volt
General Commands Reference Guide T | 498©1989-2024 Lauterbach

<trace>.Timing Waveform of trace buffer

Displays the trace memory contents like command <trace>.List, but in form of a timing display. As a default
the external trigger channels are displayed.

Format: <trace>.Timing [<record_range>] [{<items>}] [/<options>]

<option>: FILE
Track
RecScale
TimeScale
TimeZero
TimeREF

FILE Display trace memory contents loaded with Trace.FILE.

Track The cursor in the <trace>.Timing window follows the cursor movement
in other trace windows. Default is a time tracking. If no time information is
available tracking to record number is performed.
The zoom factor of the <trace>.Timing window is retained, even if the
trace content changes.

RecScale Display trace in fixed record raster. This is the default.

TimeScale Display trace as true time display, time relative to the trigger point.

TimeZero Display trace as true time display, time relative to zero.

TimeREF Display trace as true time display, time relative to the reference point.
General Commands Reference Guide T | 499©1989-2024 Lauterbach

Examples:

See also

■ <trace>.List ■ <trace>.REF
■ <trace>.View ■ IProbe.state
■ RunTime ■ RunTime.state
❏ Analyzer.RECORD.ADDRESS() ❏ Analyzer.RECORD.DATA()
❏ Analyzer.RECORD.OFFSET() ❏ Analyzer.RECORDS()
❏ Analyzer.REF()

▲ ’Release Information’ in ’Legacy Release History’

Buttons

Zoom In T Zooms in Trace by a factor of 2.

Zoom Out T Zooms out Trace by a factor of 2.

Zoom Full T Display the complete trace buffer in the window.

Goto … Open an <trace>.GOTO dialog box.

Find … Open an <trace>.Find dialog box.

Set Ref Set an analyzer reference point to the current record.

Set Zero Set the global time reference to the current record.

View Display all information about the current record (<trace>.View).

List Open an <trace>.List window.

; Open Port Analyzer timing window in standard display format
E::Port.Timing

; Open Port Analyzer timing window and display last file loaded with
; " Port.FILE <file>"
E::Port.Timing /FILE

; Open Port Analyzer timing window starting at record -100. in standard
; display format
E::Port.Timing -100. DEFault
General Commands Reference Guide T | 500©1989-2024 Lauterbach

<trace>.TMode Select trigger mode

Selects the trigger condition, edge or level trigger and the corresponding line polarity. The edge trigger is
asynchronous and needs a minimum pulse width of 20 ns.

Example:

<trace>.TraceCONNECT Select on-chip peripheral sink

Default: AUTO.

Selects the on-chip peripheral used as trace sink on the SoC.

Example: The two ETFs of an ARM CoreSight based SoC are selected as trace sink.

Format: <trace>.TMode [High | Low | Rising | Falling]

E::Port.TMode Rising
E::Port.TSELect Port
E::Port.SELect Port.00
E::Port.TDelay 100.us

; trigger on the rising edge of P.00
; sample till 100.us after trigger

Format: <trace>.TraceCONNECT <component>
<trace>.TraceCONNECT NONE
<trace>.TraceCONNECT AUTO

;note that the two approaches to select the first ETF are equivalent:
Onchip.TraceCONNECT ETF1 ; selects the ETF1 as onchip-trace sink
 ;or
Trace.METHOD Onchip
Trace.TraceCONNECT ETF1 ; selects the ETF1 as onchip-trace sink

;note that the two approaches to select the second ETF are equivalent:
Onchip.TraceCONNECT ETF2 ; selects the ETF2 as onchip-trace sink
 ;or
Trace.METHOD Onchip
Trace.TraceCONNECT ETF2 ; selects the ETF2 as onchip-trace sink
General Commands Reference Guide T | 501©1989-2024 Lauterbach

<trace>.TRACK Set tracking record

Sets the tracking record to the specified trace bookmark, time, or record number. The blue cursor moves to
the specified destination in all Trace.* windows opened with the /Track option. All other Trace.* windows
opened without the /Track option do not respond to the <trace>.TRACK command.

Example:

See also

■ RunTime ■ RunTime.state ■ <trace>.GOTO ■ BookMark
■ IProbe.state ❏ TRACK.ADDRESS() ❏ TRACK.RECORD() ❏ TRACK.TIME()

<trace>.TRIGGER Trigger the trace

Forces a manual trigger.

See also

■ Trace

Format: <trace>.TRACK <time> | <record> | "<trace_bookmark>"

;set the tracking record to the record -12000.
Trace.TRACK -12000.

;without /Track: this window does not respond to the Trace.TRACK command
Trace.List %TimeFixed TIme.ZERO DEFault

;with /Track: this window responds to the Trace.TRACK command, i.e. the
;blue cursor selects the tracking record -12000.
Trace.List %TimeFixed TIme.ZERO DEFault /Track

;display only selected trace information about the record currently
;selected in the Trace.List ... /Track window
Trace.View %TimeFixed TIme.ZERO DEFault /Track

Format: <trace>.TRIGGER
General Commands Reference Guide T | 502©1989-2024 Lauterbach

<trace>.TSELect Select trigger source

Selects the trigger source for the port analyzer.

See also

■ Trace

Format: <trace>.TSELect [<source>]

<source>: BusA [ON | OFF]
EXT [ON | OFF]

BusA Trigger lines on the trigger bus. This lines may be controlled by the state
analyzer, by the timing analyzer or the pattern generator.

EXT ON | OFF The external trigger input on the ETM connector is turned off by default.
Analyzer.TSELect EXT can enable or disable the trigger source.
General Commands Reference Guide T | 503©1989-2024 Lauterbach

<trace>.View Display single record

Displays a single record in a more detailed format. The syntax of the channel definitions is the same as for
the <trace>.List command. Without arguments all channels are displayed.

Example 1:

Example 2:

See also

■ <trace>.List ■ <trace>.REF
■ <trace>.Timing ■ IProbe.state
■ RunTime ■ RunTime.state
❏ Analyzer.RECORD.ADDRESS() ❏ Analyzer.RECORD.DATA()
❏ Analyzer.RECORD.OFFSET() ❏ Analyzer.RECORDS()
❏ Analyzer.REF() ❏ Analyzer.SIZE()

▲ ’Release Information’ in ’Legacy Release History’

Format: <trace>.View [<record>] [<channels>] [/<options>]

<option>: FILE
Track

;display all information about a specific record, here record -12000.
Trace.View -12000.

;display only selected trace information about a specific record
Trace.View -12000. TIme.ZERO DEFault CORE

;open a Trace.List window with all records. Display the ti.zero column
;as the first column, followed by the DEFault columns
Trace.List TIme.ZERO DEFault /Track

;display only selected trace information about the record currently
;selected in the Trace.List window
Trace.View TIme.Zero DEFault CORE /Track
General Commands Reference Guide T | 504©1989-2024 Lauterbach

<trace>.ZERO Align timestamps of trace and timing analyzers

Use this command to align the zero time point for trace and timing analyzer sources with time bases of
different origin.

The table below shows the different sources for time information. As the different sources are not related,
they all have an individual zero time point.

Due to the different zero time points of the various data sources, it is required to align the zero time
points, before trace or timing recordings can be observed in a correlated manner. This is usually
achieved by locating a common event in the different sources and selecting this event as common zero
time point.

See also

■ IProbe.state ■ RunTime ■ RunTime.state

Format: <trace>.ZERO [<time> | <record> | "<trace_bookmark>"]

<time> Moves the ZERO point by specified time.

<record> Sets the ZERO point to the time index of the specified record number.

<bookmark> Sets the ZERO point to the time index of the specified bookmark location.
You can create trace bookmarks with the <trace>.BookMark command.

no parameter Reset zero time point back to initial location.

Timestamp Trace data source Original zero time point

Timestamps
generated by
TRACE32 hardware

Analyzer (no processor
generated timestamps)
PowerProbe, Integrator,
IProbe, etc.

Permanently set to beginning of first
debug session or trace recording after
starting up TRACE32 PowerView.
All trace data sources using TRACE32
hardware generated timestamps have a
common zero time point.

Timestamps
generated by target
processor

Onchip Trace
Analyzer Trace (with
processor generated
timestamps enabled)

Depends on CPU architecture and trace
protocol.
Starting a new trace recording usually
moves the zero time point to a new
location.

Timestamps loaded
from files.

Trace.LOAD <file> /FILE Same as in original recording
General Commands Reference Guide T | 505©1989-2024 Lauterbach

TRACEPORT

TRACEPORT Configure trace hardware

Using the TRACEPORT command group, you can configure the communication between the target trace
port and the TRACE32 PowerTrace tool. Logically the TRACEPORT command group is located between
the physical pins of the target platform and the TRACE32 trace input stage (preprocessor), see illustration
below.

For trace port configuration, use the TRACE32 command line, a PRACTICE script (*.cmm), or the
TRACEPORT.state window.

See also

■ TRACEPORT.EndsKiP ■ TRACEPORT.LaneCount
■ TRACEPORT.LanePolarity ■ TRACEPORT.LaneSpeed
■ TRACEPORT.MsgBItEndian ■ TRACEPORT.MsgBYteEndian
■ TRACEPORT.MsgLOngEndian ■ TRACEPORT.MsgWOrdEndian
■ TRACEPORT.OSCFrequency ■ TRACEPORT.PinReMap
■ TRACEPORT.RefCLocK ■ TRACEPORT.RESet

TRACEPORT

Trace
source

1

Target
(Example)

TRACE32 PowerView
(GUI)

Trace
source

2

TRACE32
PowerTrace tool with preprocessor

Trace
routing

Communication
General Commands Reference Guide T | 506©1989-2024 Lauterbach

■ TRACEPORT.StartsKiP ■ TRACEPORT.state
■ SYStem.CONFIG.TRACEPORT

▲ ’TRACEPORT Function’ in ’General Function Reference’
▲ ’Trace Port Utilization’ in ’PowerTrace Serial User’s Guide’

TRACEPORT.EndsKiP Define number of bytes skipped at the end of frame
For serial trace ports (AURORA) only

Allows to cut off data bytes at the end of each data packet or data frame. Depending on the target
configuration, the last bytes of a frame contain CRC information, which is not used by TRACE32. With the
command TRACEPORT.EndsKiP it is possible to remove the unused bytes.

See also

■ TRACEPORT ■ TRACEPORT.state

Format: TRACEPORT.EndsKiP [<option>]

<option>: AUTO | 0 | 2 | 8

AUTO TRACE32 defines the number of bytes to be cut.

0 Don’t cut any bytes.

2 Cut 2 bytes at the end of each frame.

8 Cut 8 bytes at the end of each frame.
General Commands Reference Guide T | 507©1989-2024 Lauterbach

TRACEPORT.LaneCount Select port size of the trace port
For serial trace ports (AURORA/PCIe) only

Specifies the number of used lanes for the trace port. The number must match the target configuration, else
the trace link between the target and the TRACE32 hardware cannot be established.

See also

■ TRACEPORT ■ TRACEPORT.state ❏ TRACEPORT.LaneCount()

TRACEPORT.LanePolarity Set polarity for each lane of the trace port
For serial trace ports (AURORA) only

Allows to change the polarity for each lane separately. This is necessary when the p/n-signals of a lane are
crossed due to e.g. layout reasons.

Format: TRACEPORT.LaneCount <size>

<size>: AUTO | 1Lane | 2Lane | 3Lane | 4Lane | 5Lane | 6Lane | 7Lane | 8Lane

AUTO TRACE32 defines the lane count.

1Lane, 2Lane,
3Lane, 4Lane,
5Lane, 6Lane,
7Lane, 8Lane

Number of used lanes.
In case of PCIe the lane setup will be done automatically.

Format: TRACEPORT.LanePolarity <value>

<value>: AUTO | <bit mask>

AUTO TRACE32 defines the value.

0y… Polarity defined by user bit mask depending on the lane count.
General Commands Reference Guide T | 508©1989-2024 Lauterbach

Example:

See also

■ TRACEPORT ■ TRACEPORT.state

TRACEPORT.LaneSpeed Inform debugger about trace port rate
For serial trace ports (AURORA/PCIe) only

Informs the debugger about the lane <data_rate>. The data rate must match the configuration on the target
side, else the link between the target and the TRACE32 hardware (Aurora trace channel) cannot be
established.

Remember that not all TRACE32 PowerTrace tools support all data rates.
Contact support@lauterbach.com if a lane speed is not supported.

TRACEPORT.LaneCount 4Lane
TRACEPORT.LanePolarity 0y0101 ; polarity changed for Lane 0 and 2

TRACEPORT.LaneCount 2Lane
TRACEPORT.LanePolarity 0y11 ; polarity changed for Lane 0 and 1

Format: TRACEPORT.LaneSpeed <data_rate>

<data_rate>:
For AURORA only

AUTO | 625Mbps | 750Mbps | 850Mbps | 931Mbps | 1000Mbps | 1040Mbps |
1250Mbps | 1500Mbps | 1563Mbps | 1700Mbps | 1862Mbps | 2000Mbps
2079Mbps | 2500Mbps | 3000Mbps | 3125Mbps | 3400Mbps | 3724Mbps |
4000Mbps | 4158Mbps | 4250Mbps | 5000Mbps | 6000Mbps | 6250Mbps |
6800Mbps | 7448Mbps | 8000Mbps | 10000Mbps | 1075Mbps | 12000Mbps |
12500Mbps | 2150Mbps | 2340Mbps | 4300Mpbs

<data_rate>:
For PCIe only

GEN1 | GEN2 | GEN3

AUTO TRACE32 defines the value.

625Mbps, … Data rate in megabits per second.

GEN1, … Limits the data rate of the PCIe link to 2500Mbps (GEN1), 5000Mbps
(GEN2) or 8000Mbps (GEN3).
General Commands Reference Guide T | 509©1989-2024 Lauterbach

Example:

See also

■ TRACEPORT ■ TRACEPORT.state

TRACEPORT.MsgBItEndian Change bit-order within each byte
For serial trace ports (AURORA) only

Allows you to change the bit order of the payload data if the bit order used by the target differs from the
default bit order. This might be necessary in case of bus connection errors on the target side between the
Aurora logic and the trace source.

See also

■ TRACEPORT ■ TRACEPORT.state

TRACEPORT.LaneSpeed 3125Mbps
TRACEPORT.LaneSpeed 3125M ; M is the short form of Mbps

Format: TRACEPORT.MsgBItEndian [<option>]

<option>: AUTO | LittleEndian | BigEndian

AUTO TRACE32 defines the value.

LittleEndian Bit order is normal ([31-24],[23-16],[15-8],[7-0]).

BigEndian Bit order is reversed ([24-31],[16-23],[8-15],[0-7]).
General Commands Reference Guide T | 510©1989-2024 Lauterbach

TRACEPORT.MsgBYteEndian Change byte-order within each word
For serial trace ports (AURORA) only

Allows you to change the byte order of the payload data if the byte order used by the target differs from the
default bit order. This might be necessary in case of bus connection errors on the target side between the
Aurora logic and the trace source.

See also

■ TRACEPORT ■ TRACEPORT.state

TRACEPORT.MsgLOngEndian Change dword-order within each qword
For serial trace ports (AURORA) only

Allows you to change the byte order of the payload data if the byte order used by the target differs from the
default bit order. This might be necessary in case of bus connection errors on the target side between the
Aurora logic and the trace source.

See also

■ TRACEPORT ■ TRACEPORT.state

Format: TRACEPORT.MsgBYteEndian [<option>]

<option>: AUTO | LittleEndian | BigEndian

AUTO TRACE32 defines the value.

LittleEndian Byte order is normal ([31-24],[23-16],[15-8],[7-0]).

BigEndian Byte order is reversed ([23-16],[31-24],[7-0],[15-8]).

Format: TRACEPORT.MsgLOngEndian [<option>]

<option>: AUTO | LittleEndian | BigEndian

AUTO TRACE32 defines the value.

LittleEndian Double-word order is normal ([63-32],[31-0]).

BigEndian Double-word order is reversed ([31-0],[63-32]).
General Commands Reference Guide T | 511©1989-2024 Lauterbach

TRACEPORT.MsgWOrdEndian Change word-order within each dword
For serial trace ports (AURORA) only

Allows you to change the byte order of the payload data if the byte order used by the target differs from the
default bit order. This might be necessary in case of bus connection errors on the target side between the
Aurora logic and the trace source.

See also

■ TRACEPORT ■ TRACEPORT.state

TRACEPORT.OSCFrequency Set OSC clock frequency
For serial trace ports (AURORA) only

Allows you to set the OSC clock frequency. To become active it is required to select reference clock source
OSC. Please refer to TRACEPORT.RefCLocK.

See also

■ TRACEPORT ■ TRACEPORT.state

Format: TRACEPORT.MsgWOrdEndian [<option>]

<option>: AUTO | LittleEndian | BigEndian

AUTO TRACE32 defines the value.

LittleEndian Word order is normal ([31-16],[15-0]).

BigEndian Word order is reversed ([15-0],[31-16]).

Format: TRACEPORT.OSCFrequency <value>

<value>: AUTO | <frequency in kHz>
General Commands Reference Guide T | 512©1989-2024 Lauterbach

TRACEPORT.PinReMap Adapt the lane order of the trace port
For serial trace ports (AURORA) only

Adapts the lane order of the trace port to the lane order of your target. You need the
TRACEPORT.PinReMap command only in rare cases where the lane orders of trace port and target
actually differ from each other.

Example:

See also

■ TRACEPORT ■ TRACEPORT.state

Format: TRACEPORT.PinReMap <source_lane> <destination_lane> | <option>

<source_
lane>:

0 | 1 | … | <n>

<destination_
lane>:

AUTO | 0 | 1 | … | <n>

<option>: RESET

AUTO TRACE32 defines the values.

RESET Sets all values to AUTO again.

<source_lane> Number of the target lane which needs to be remapped.

<destination_lane> Number of the TRACE32 tool lane which will get the new <source_lane>.
Number <n> is TRACE32 tool dependent; e.g. for PowerTrace Serial <n>
can be 5 or 7 depending on the used tool connector.

TRACEPORT.state /PinReMap ;optionally, open the TRACEPORT.state window
TRACEPORT.LaneCount 6Lane ;the number of used lanes for the trace port
TRACEPORT.PinReMap 4. 5. ;map source lane 4. to destination lane 5.
TRACEPORT.PinReMap 5. 4. ;map source lane 5. to destination lane 4.
General Commands Reference Guide T | 513©1989-2024 Lauterbach

TRACEPORT.RefCLocK Set up reference clock for trace port
For serial trace ports (AURORA) only

Defines the reference clock frequency the serial trace hardware outputs to the target. The availability of
parameters and the default values depend on the architecture:

• PowerPC: not configurable

• TriCore: not configurable

• RH850: not configurable

• ARM: configurable

See also

■ TRACEPORT ■ TRACEPORT.state

TRACEPORT.RESet Reset trace port configuration

Resets the trace port configuration to its default values (AUTO).

See also

■ TRACEPORT ■ TRACEPORT.state

Format: TRACEPORT.RefCLocK [<option>]

<option>: AUTO | OFF | OSC | 1/1 | 1/2 | 1/10 | 2/25 | 1/20 | 1/25 | 1/30 | 1/34 | 1/40 | 1/50

AUTO (default) TRACE32 defines the value.

OFF TRACE32 does not send any reference clock to the target.

OSC An asynchronous oscillator will be enabled. Its frequency is
programmable. Refer to TRACEPORT.OSCFrequency.

1/<x> A synchronous clock source will be enabled. Its dividers generate a
reference clock as a fraction of the bit clock (lane speed), e.g.
100MHz at 5Gbps with divider 1/50. Once a divider is selected, the
reference clock will automatically change with the lane speed.

Format: TRACEPORT.RESet
General Commands Reference Guide T | 514©1989-2024 Lauterbach

TRACEPORT.StartsKiP Define number of bytes skipped at the start of frame

Allows to cut off leading bytes of each data packet or data frame. Only a few targets requires this due to
protocol irregularities.

See also

■ TRACEPORT ■ TRACEPORT.state

Format: TRACEPORT.StartsKiP [<option>]

<option>: AUTO | 0 | 1

AUTO (default) TRACE32 defines the value.

0 No data byte will be cut off.

1 The first data byte of each data frame will be cut off.
General Commands Reference Guide T | 515©1989-2024 Lauterbach

TRACEPORT.state Display trace port configuration window

Displays the TRACEPORT.state window, where you can configure the communication between the target
trace port and the TRACE32 PowerTrace tool.

See also

■ TRACEPORT ■ TRACEPORT.EndsKiP
■ TRACEPORT.LaneCount ■ TRACEPORT.LanePolarity
■ TRACEPORT.LaneSpeed ■ TRACEPORT.MsgBItEndian
■ TRACEPORT.MsgBYteEndian ■ TRACEPORT.MsgLOngEndian
■ TRACEPORT.MsgWOrdEndian ■ TRACEPORT.OSCFrequency
■ TRACEPORT.PinReMap ■ TRACEPORT.RefCLocK
■ TRACEPORT.RESet ■ TRACEPORT.StartsKiP

Format: TRACEPORT.state [/<gui_option>]

<gui_option>: ADVanced
PinReMap

A For descriptions of the commands in the TRACEPORT.state window, please refer to the
TRACEPORT.* commands in this chapter.
Example: For information about the RESet button, see TRACEPORT.RESet.

B Click advanced and pin mapping to display more configuration options in the window.

ADVanced Extends the list of options in the configuration section.

PinReMap Displays the PinReMap section. For an example, see
TRACEPORT.PinReMap.

A

B

General Commands Reference Guide T | 516©1989-2024 Lauterbach

TRANSlation

TRANSlation Debugger address translation

See also

■ TRANSlation.AutoEnable ■ TRANSlation.AutoSCAN ■ TRANSlation.CacheFlush ■ TRANSlation.CLEANUP
■ TRANSlation.COMMON ■ TRANSlation.Create ■ TRANSlation.CreateID ■ TRANSlation.CreateTab
■ TRANSlation.Delete ■ TRANSlation.DeleteID ■ TRANSlation.List ■ TRANSlation.ListID
■ TRANSlation.NoProtect ■ TRANSlation.OFF ■ TRANSlation.ON ■ TRANSlation.PAGER
■ TRANSlation.Protect ■ TRANSlation.RESet ■ TRANSlation.SCANall ■ TRANSlation.ScanID
■ TRANSlation.SHADOW ■ TRANSlation.state ■ TRANSlation.TableWalk ■ TRANSlation.TlbAutoScan
■ TRANSlation.TRANSparent ■ MMU ■ MMU.FORMAT ❏ TRANS.ENABLE()
❏ TRANS.INTERMEDIATE() ❏ TRANS.INTERMEDIATEEX() ❏ TRANS.LINEAR() ❏ TRANS.LINEAREX()
❏ TRANS.LOGICAL() ❏ TRANS.PHYSICAL() ❏ TRANS.PHYSICALEX() ❏ TRANS.TABLEWALK()

▲ ’TRANS Functions (Debugger Address Translation)’ in ’General Function Reference’
▲ ’Release Information’ in ’Legacy Release History’

Overview TRANSlation

What is the difference between the command groups...?

The TRANSlation commands are used for the following purposes:

• To debug an OS that runs several processes at the same logical addresses (e.g. Linux, PikeOS,
etc.).

• To allow a transparent display of hardware translation tables and OS-based translation tables.

• To provide the user with unrestricted access to the target memory using either logical or physical
addresses.

NOTE: Formerly, the MMU command group was used for address translation inside the
debugger. With the wide-spread adoption of hardware MMUs, it was necessary
to rename this command group to TRANSlation to avoid confusion with
hardware MMUs.

TRANSlation MMU

Configures and controls the TRACE32 internal
debugger address translation.
This feature is used to mimic the translations
within the real hardware MMU so that the
debugger can access code and data of any OS
process at any time.

Lets you access and view the real hardware
MMU.
General Commands Reference Guide T | 517©1989-2024 Lauterbach

MMU Tables

To apply the MMU commands properly, it is important to differentiate between the following MMU table
types:

1. The hardware MMU table

The hardware MMU usually consists of registers and/or dedicated memory areas and is held in the
CPU. It holds the translation tables that are used by the CPU to translate the logical addresses used
by the CPU into the physical addresses required for memory accesses.

In OSs like Linux, PikeOS, etc. each process has its own address space. Usually all processes start
at the logical address 0x0. The result is that, while a process is running, the process has only access
to its own address space and to the address space of the kernel.

The hardware MMU is programmed by the scheduler for this view. If, for example, process 2 is
running, the hardware MMU provides only translation tables for process 2 and the kernel.

- If the OS uses demand paging, the hardware MMU table is extended at each page fault.

- At each process switch the hardware MMU is reprogrammed so that the logical address
space of the current process can be translated to the physical address area.

2. The software/OS MMU table

If an OS like Linux, PikeOS etc. is used, the OS maintains the translation tables for all processes,
because the OS is responsible for the reprogramming of the hardware MMU on a process switch.

The hardware MMU is usually only a subset of the OS MMU tables.

3. The debugger MMU table

If an OS that runs several processes at the same logical addresses (e.g. Linux) is used, the hardware
MMU in the CPU only holds translation tables that allow the debugger memory accesses to the
code/data of the kernel and the currently running process.

Logical addresses

Kernel

Process 1

Physical addresses

Kernel

Process 2

Process 3

Process 3

Process 2

Process 1
General Commands Reference Guide T | 518©1989-2024 Lauterbach

The debugger can access code/data from a not currently running process only with the help of the
OS MMU tables. Based on the information held in the translation tables of the OS MMU, the
debugger can translate any logical address to a physical address and that way perform a memory
access without changing the hardware MMU. If demand paging is used, the OS MMU table contains
the translation from the logical to the physical address only if the page was loaded before.

Reading the OS MMU tables on every memory access in quite time consuming. Therefore the
debugger can scan the OS MMU tables once and re-use the scan for all following accesses.

The OS MMU table is scanned into the so-called debugger MMU. The debugger MMU provides also
the flexibility to add user-defined entries.

Please be aware that as soon as the debugger MMU is active, all
memory accesses performed by the debugger use only the information of
the debugger MMU.
Please be aware that the OS MMU tables have to be scanned again if the
OS has added or removed entries from these tables while running.
General Commands Reference Guide T | 519©1989-2024 Lauterbach

TRANSlation.AutoEnable Auto-enable debugger MMU translation

Auto-enable the debugger address translation if the CPU’s hardware MMU is enabled. When the hardware
MMU is on, the debugger also performs translations. When the hardware MMU is off, the debugger performs
no translation and treats all logical addresses as physical addresses. The state of the hardware MMU is read
from the CPU-specific MMU-enable bit in a system control register. This command is only available for
certain CPUs.

See also

■ TRANSlation ■ TRANSlation.List ■ TRANSlation.OFF ■ TRANSlation.ON

TRANSlation.AutoSCAN Autoscan feature for debugger MMU

If the operating system adds or removes entries from its page table while running those changes are not
performed within the debugger MMU. Trying to access those newly created logical addresses with the
debugger may cause an error. If TRANSlation.AutoSCAN is set to ON the translation tables hold by the
operating system are automatically scanned into the debugger MMU, if the debugger fails to access a logical
address.

See also

■ TRANSlation ■ TRANSlation.List

Format: TRANSlation.AutoEnable

Format: TRANSlation.AutoSCAN ON | OFF

TRANSlation.AutoSCAN scans only pages that are already present.
Depending on the JTAG speed of the processor and on the number of
processes in the system scanning the translation tables can take some
time. In this cases autoscanning may be more disturbing than helping.
General Commands Reference Guide T | 520©1989-2024 Lauterbach

TRANSlation.CacheFlush Flush TRACE32 address translation cache

Successful MMU address translations are cached internally by TRACE32. This speeds up recurring
accesses to a logical address in debug mode - mostly when the OS Awareness is enabled. Caching is most
beneficial for translations done via an MMU table walk as this generates many memory accesses while
parsing the OS page table.

TRANSlation.CacheFlush flushes the TRACE32 internal address translation caches, so a new readout of
the OS page table is enforced for the next memory access. This can be useful when modifying page table
content or debugging MMU table walks.

See also

■ TRANSlation ■ TRANSlation.List ■ TRANSlation.TableWalk

TRANSlation.CLEANUP Clean up MMU table

Removes multiple translations for one physical address, directly joining translations and double translations.

See also

■ TRANSlation ■ TRANSlation.List

Format: TRANSlation.CacheFlush [ALL]

ALL Additionally invalidates the complete register set cached by the
debugger, including all cached MMU registers. Upon the next MMU page
table walk, the registers will be re-read from the target.

Format: TRANSlation.CLEANUP
MMU.CLEANUP (deprecated)
General Commands Reference Guide T | 521©1989-2024 Lauterbach

TRANSlation.COMMON Common address ranges for kernel and tasks
[Example]

Defines one or more mappings of logical address ranges that are shared by the kernel and the tasks.

When the address of a memory access falls into a common address range, TRACE32 uses the kernel
address translation (and not the task page table of the current process). Internally, TRACE32 always uses
space ID 0x0000 to find the translation of a common address.

This allows to apply the kernel address translation to modules or libraries that are called by a user process in
the context of the currently running task.

Format: TRANSlation.COMMON <logical_range> [{<logical_range>}]
MMU.COMMON (deprecated)

A Space ID of the kernel = 0x0000

B Space IDs of the tasks  0x0000
TRACE32 assigns space IDs if SYStem.Option.MMUSPACES is set to ON

C Common logical address ranges are flagged as “COMMON” in the TRANSlation.List window, which
displays the mappings between logical and physical address ranges.

<logical_range> You can specify up to 10 common ranges in one line. For an example with two
common address ranges, see below.
Overlapping common address ranges are merged automatically.

NOTE: Executing the TRANSlation.COMMON command again discards all previously
existing common address ranges.
Use TRANSlation.COMMON.ADD to add further common address ranges
without discarding existing common address ranges.

A

B
C

General Commands Reference Guide T | 522©1989-2024 Lauterbach

Example:

See also

■ TRANSlation.COMMON.ADD ■ TRANSlation.COMMON.CLEAR
■ TRANSlation ■ TRANSlation.List
■ MMU.FORMAT

▲ ’Release Information’ in ’Legacy Release History’

;Enable the space IDs to display them in the TRANSlation.List window
SYStem.Option.MMUSPACES ON

TRANSlation.List ;Open the Translation.List window

;Create some translation entries for a particular debug session
TRANSlation.Create 0x0:0x00000000++0xffff 0x10000
TRANSlation.Create 0x123:0x00000000++0xffff 0x101000
TRANSlation.Create 0x042:0x00000000++0xffff 0x102000

;Define two common logical address ranges:
; <logical_range_1> <logical_range_2>
TRANSlation.COMMON 0x80004020--0x800041ff 0x80004700--0x800049ff

;Alternatively, you can define the common ranges as follows:
;TRANSlation.COMMON 0x80004020--0x800041ff ;define the first range
;TRANSlation.COMMON.ADD 0x80004700--0x800049ff ;add the second range
General Commands Reference Guide T | 523©1989-2024 Lauterbach

TRANSlation.COMMON.ADD Add another common address range

Adds another mapping for a common logical address range that is shared by the kernel and the tasks.

Example:

See also

■ TRANSlation.COMMON ■ TRANSlation.COMMON.CLEAR

TRANSlation.COMMON.CLEAR Clear all common logical address ranges

Clears only those logical address ranges that are flagged as “COMMON” in the TRANSlation.List window.

See also

■ TRANSlation.COMMON ■ TRANSlation.COMMON.ADD

Format: TRANSlation.COMMON.ADD <logical_range>

NOTE: Use TRANSlation.COMMON.ADD to add further common address ranges without
discarding existing common address ranges.
Executing TRANSlation.COMMON again discards all previously existing common
address ranges.

;Define the first common logical address range
TRANSlation.COMMON 0x80000200--0x800007ff

;Add two additional ranges
TRANSlation.COMMON.ADD 0x80004020--0x800041ff
TRANSlation.COMMON.ADD 0x80004700--0x800049ff

Format: TRANSlation.COMMON.CLEAR
General Commands Reference Guide T | 524©1989-2024 Lauterbach

TRANSlation.Create Create translation

The defined translation can either be function code specific or generic for all function codes (except I/O). The
physical address or range is not allowed on probes with fixed MMU translation (e.g. 80186,Z180).

Example: Translation for 68030 TRANSlation

See also

■ TRANSlation ■ TRANSlation.List ■ TRANSlation.TlbAutoScan ■ MMU.FORMAT
■ MMU.SCAN

▲ ’Arm Specific Implementations’ in ’Arm Debugger’
▲ ’Arm Specific Implementations’ in ’Armv8 and Armv9 Debugger’

Format: TRANSlation.Create <logical_range> [<physical_range>] [/<option>]
MMU.Create (deprecated)

<option>: More
Logical
Physical

More The More option suppresses the generation of the MMU tables. This speeds
up the entry of large translation tables with PRACTICE scripts (*.cmm). The
last translation command should not have a More option, otherwise the
translations are not accessible.

Logical
Physical

The Logical and Physical options create translations that work only in one
direction. This allows to create multiple logical addresses that map to the
same physical address and still having a well-defined logical address for the
reverse translation.

TRANSlation.Create 0x1000--0x1fff a:0x20000--0x20fff /More
TRANSlation.Create sd:0x2000--0x2fff asd:0x0--0x0fff /More
TRANSlation.Create ud:0x2000--0x2fff aud:0x1000--0x1fff /More
TRANSlation.Create sp:0x2000--0x2fff asp:0x2000--0x2fff /More
TRANSlation.Create up:0x2000--0x2fff aup:0x3000--0x3fff
General Commands Reference Guide T | 525©1989-2024 Lauterbach

TRANSlation.CreateID Add entry to MMU space ID table

See also

■ TRANSlation ■ TRANSlation.DeleteID ■ TRANSlation.List ■ TRANSlation.ListID
■ TRANSlation.ScanID

TRANSlation.CreateTab Create multiple translations

Same as TRANSlation.Create, but creates multiple translations with one command. The first range defines
the logical range for the created translations. The increment parameter is the offset added to the logical
address to generate the next address. The other parameters are interpreted like the TRANSlation.Create
command.

Example:

See also

■ TRANSlation ■ TRANSlation.List

Format: TRANSlation.CreateID <space_id>:0x0 <base_address>

<space_id> Space ID to be added.

<base_address> Physical base address of task page table associated with <space_id>.

Format: TRANSlation.CreateTab <logical_range> <increment> <logical_range>
 [<physical_range>] [/<option>]
MMU.CreateTab (deprecated)

<option>: More
Logical
Physical

; Translation for COMMON area from 0x08000--0x0ffff
TRANSlation.CreateTab 0x0--0x0fffff 0x10000 0x08000--0x0ffff 0x08000--
0x0ffff

; Translation for 16 BANKS
TRANSlation.CreateTab 0x0--0x0fffff 0x10000 0x0--0x7fff
General Commands Reference Guide T | 526©1989-2024 Lauterbach

TRANSlation.Delete Delete translation

The defined translation is removed from the list; see TRANSlation.List. Use TRANSlation.Delete without
parameter to clear the whole static translation list and the command TRANSlation.RESet to reset all
TRANSlation and MMU settings.

Example:

See also

■ TRANSlation ■ TRANSlation.List

TRANSlation.DeleteID Remove entry from MMU space ID table

See also

■ TRANSlation ■ TRANSlation.CreateID ■ TRANSlation.List ■ TRANSlation.ListID
■ TRANSlation.ScanID

Format: TRANSlation.Delete <logical_range>
MMU.Delete (deprecated)

TRANSlation.Delete 0x1000--0x1fff

Format: TRANSlation.DeleteID <space_id>:0x0

<space_id> Space ID to be removed.
General Commands Reference Guide T | 527©1989-2024 Lauterbach

TRANSlation.List List MMU translation table

Displays the list of static address translations created with the commands TRANSlation.Create or
MMU.SCAN

The static MMU translation table of TRACE32 contains relations between logical address spaces and
physical address spaces. This table is consulted when the debugger address translation is enabled with
TRANSlation.ON and a logical address must be converted into a physical address. In some cases this table
is also used for reverse translating a physical address into its logical counterpart.

See also

■ TRANSlation.ListID ■ TRANSlation ■ TRANSlation.AutoEnable ■ TRANSlation.AutoSCAN
■ TRANSlation.CacheFlush ■ TRANSlation.CLEANUP ■ TRANSlation.COMMON ■ TRANSlation.Create
■ TRANSlation.CreateID ■ TRANSlation.CreateTab ■ TRANSlation.Delete ■ TRANSlation.DeleteID
■ TRANSlation.NoProtect ■ TRANSlation.OFF ■ TRANSlation.ON ■ TRANSlation.PAGER
■ TRANSlation.Protect ■ TRANSlation.RESet ■ TRANSlation.SCANall ■ TRANSlation.ScanID
■ TRANSlation.SHADOW ■ TRANSlation.state ■ TRANSlation.TableWalk ■ TRANSlation.TlbAutoScan
■ TRANSlation.TRANSparent ■ MMU.FORMAT ■ MMU.SCAN ❏ MMU.DEFAULTPT()
❏ MMU.FORMAT()

▲ ’Release Information’ in ’Legacy Release History’

Format: TRANSlation.List [/Logical | /Physical]
MMU.List (deprecated)

A Space ID of the kernel = 0x0000

B Space IDs of the tasks  0x0000
TRACE32 assigns space IDs if SYStem.Option.MMUSPACES is set to ON

C The default logical-to-physical address translation, which is used for fast memory accesses into the
kernel address range.
The default address translation is specified with the command MMU.FORMAT.

D Common address ranges are created with the commands TRANSlation.COMMON or
TRANSlation.COMMON.ADD

Logical Sorts logical addresses in ascending order.

Physical Sorts physical addresses in ascending order.

A

B

C

D

General Commands Reference Guide T | 528©1989-2024 Lauterbach

TRANSlation.ListID List MMU space ID table

The table is used to translate MMU root pointer contents into a memory space ID. Memory space IDs may
also be obtained from the OS Awareness without the use of this table.

See also

■ TRANSlation.List ■ TRANSlation ■ TRANSlation.CreateID ■ TRANSlation.DeleteID

TRANSlation.NoProtect Unprotect memory

Removes the protection for the specified logical address range. As a result, the debugger can access this
range. See TRANSlation.Protect.ADD.

Example:

See also

■ TRANSlation ■ TRANSlation.List ■ TRANSlation.Protect ■ TRANSlation.Protect.ADD

Format: TRANSlation.ListID

Format: TRANSlation.NoProtect <logical_range>
MMU.NoProtect (deprecated)

TRANSlation.Protect.ADD 0x100000--0x1fffff ;no access here
TRANSlation.Protect.ADD 0x280000--0x0fff000 ;no access here
TRANSlation.Protect.ADD 0x1000000--0x0ffffffff ;no access here

TRANSlation.ON
TRANSlation.List ;display overview of protected memory ranges

;your code

;remove this logical address range from the list of protected memory
;ranges
TRANSlation.NoProtect 0x1000000--0x0ffffffff
General Commands Reference Guide T | 529©1989-2024 Lauterbach

TRANSlation.OFF Deactivate debugger address translation

Deactivates the TRACE32 internal debugger address translation.

Logical addresses used by the debugger are directly sent to the target CPU without translation. Also, the
protection of address ranges which have been declared as protected is disabled.

See also

■ TRANSlation.ON ■ TRANSlation ■ TRANSlation.AutoEnable ■ TRANSlation.List

TRANSlation.ON Activate debugger address translation

Activates the TRACE32 internal debugger address translation. For Intel® architecture debuggers, the
address translation is enabled by default. For all other architectures, the default is TRANSlation.OFF.

With TRANSlation.ON, the following features are enabled:

• Logical addresses are translated to physical addresses. The address translation is based on the
following translation tables:

- The static address translation list (see TRANSlation.List)

- Intel® architectures only: the segment translation for boot mode, real mode and protected
mode (see MMU.view, MMU.DUMP.GDT, MMU.DUMP.LDT and
SYStem.Option.MEMoryMODEL)

- MIPS architectures only: the EVA or fixed mapping KSEG0/1 translations are done.

- OS page tables if the TRACE32 table walk is enabled (see TRANSlation.TableWalk and
MMU.FORMAT).

- For some architectures, TLBs can be evaluated. This feature is also enabled with
TRANSlation.TableWalk and MMU.FORMAT.

• Address ranges declared as protected are no longer accessible to the debugger (see
TRANSlation.Protect).

Format: TRANSlation.OFF
MMU.OFF (deprecated)

Format: TRANSlation.ON
MMU.ON (deprecated)
General Commands Reference Guide T | 530©1989-2024 Lauterbach

For an overview of the state of the debugger address translation, see TRANSlation.state.

See also

■ TRANSlation.OFF ■ TRANSlation ■ TRANSlation.AutoEnable ■ TRANSlation.List
❏ TRANS.ENABLE()

TRANSlation.PAGER Allow paged breakpoints for Linux

The TRACE32 software and a suitable Linux patch enable a software breakpoint to be set for program code
that has not yet been loaded.

Details on the Linux patch can be found in the directory ~~/demo/arm/kernel/linux/etc/t32pager

See also

■ TRANSlation ■ TRANSlation.List

Format: TRANSlation.PAGER ON <address> | OFF
MMU.Protect (deprecated)
General Commands Reference Guide T | 531©1989-2024 Lauterbach

TRANSlation.Protect Protect memory

Using the TRANSlation.Protect command group, you can protect the entire logical address range or
individual logical address ranges from debugger access. This can be useful if an access would otherwise
cause a fatal hardware error or cause the debugger to go down.

What is the difference between...?

See also

■ TRANSlation.Protect.ADD ■ TRANSlation.Protect.OFF ■ TRANSlation.Protect.ON ■ TRANSlation
■ TRANSlation.List ■ TRANSlation.NoProtect

TRANSlation.Protect.ADD Add range to protected memory ranges
[Example]

Protects the specified logical address range from debugger access.

TRANSlation.Protect.ON TRANSlation.Protect.ADD

• Protects the entire logical address range
from debugger access.

• However, you can allow debugger access
to individual logical address ranges by
specifying them with TRANSlation.Create
<logical_range>.

• Protects individual logical address ranges
from debugger access.

• TRANSlation.Protect must not be set to
ON.

Format: TRANSlation.Protect.ADD <logical_range>

NOTE: Use MAP.DenyAccess to protect physical address ranges from debugger
access.
Use TRANSlation.Protect.ADD to protect logical address ranges from
debugger access.
General Commands Reference Guide T | 532©1989-2024 Lauterbach

Example:

See also

■ TRANSlation.Protect ■ TRANSlation.NoProtect ■ MAP.DenyAccess

TRANSlation.Protect.OFF Switch protection of target memory off

Re-allows debugger access to the entire logical address range. See TRANSlation.Protect.ON.

See also

■ TRANSlation.Protect

;[A] allow debugger access to the logical address ranges 0x0--0x103F
; and 0x1070--0xFFFFFFFF, i.e. almost the entire logical range, ...

;[B] ...but protect this logical address range from debugger access
TRANSlation.Protect.ADD 0x1040--0x106F

TRANSlation.ON

;display overview of protected memory range(s)
TRANSlation.List

;let’s open this window for demo purposes to visualize the result
Data.dump 0x1020 /NoAscii

Format: TRANSlation.Protect.OFF

B

A

A

General Commands Reference Guide T | 533©1989-2024 Lauterbach

TRANSlation.Protect.ON Protect entire target memory

Protects the entire logical address range from debugger access, provided the address translation is enabled
with TRANSlation.ON.

Example:

See also

■ TRANSlation.Protect

Format: TRANSlation.Protect.ON

TRANSlation.ON

;protect entire logical address range from debugger access (see red [A])
TRANSlation.Protect.ON

;but allow debugger access to this logical address range (see green [B]
TRANSlation.Create 0x1040--0x106F

;display overview of static translations
TRANSlation.List

;let’s open this window for demo purposes to visualize the result
Data.dump 0x1020 /NoAscii

B

A

A

General Commands Reference Guide T | 534©1989-2024 Lauterbach

TRANSlation.RESet Reset MMU configuration

The translation table is cleared and all setups are set to the defaults.

See also

■ TRANSlation ■ TRANSlation.List

TRANSlation.SCANall Scan MMU tables

Scans all page translation tables known to the debugger into the static translation list. That is, this command
is a repeated call of the MMU.SCAN command for all known page tables of an architecture known to the
debugger.

See also

■ TRANSlation ■ TRANSlation.List ■ MMU.SCAN

Format: TRANSlation.RESet
MMU.RESet (deprecated)

Format: TRANSlation.SCANall [/<option>]
MMU.SCAN ALL (as an alias)
MMU.SCANALL (deprecated)

<option>: Clear

Clear Clears the list of static translations before reading it from all page
translation tables.
General Commands Reference Guide T | 535©1989-2024 Lauterbach

TRANSlation.ScanID Scan MMU address space tables from kernel

Scans the translation information from the kernel into the MMU space ID table. The operation is target and
kernel dependent.

See also

■ TRANSlation ■ TRANSlation.CreateID ■ TRANSlation.DeleteID ■ TRANSlation.List

TRANSlation.SHADOW Enable shadow access to target memory

Use VM: for data access, if the address translation on the target failed.

The debugger first tries to resolve a logical address with the standard address translation, and then
accesses the target to read the requested data. If the translation fails (due to missing table entries, or due to
an access error), and if TRANSlation.SHADOW is ON, the debugger uses the data within VM: at the
requested address.

The debugger provides a “virtual memory” (access class VM:) that is not accessible from the CPU, but only
by the debugger (stored within the host). The idea is to have a (partial) copy of the target memory in the host
for unlimited access.

VM: usually is a “virtual physical memory”. The debugger does an address translation (logical -> physical),
then accesses VM: with the physical address. I.e. VM: maps a physical memory.

If TRANSlation.SHADOW and SYStem.Option.MMUSPACES is ON, VM: is used as several logical
addressed memory areas, separated by the space ID. No address translation is done, instead the debugger
directly accesses the memory in VM: with space ID:address. I.e. VM: maps several logical memory areas. In
complex OS target systems (e.g. Linux), you may load the code of several processes into VM: to have
access to the code, even if the target does currently not allow memory access.

See also

■ TRANSlation ■ TRANSlation.List

Format: TRANSlation.ScanID

Format: TRANSlation.SHADOW [ON | OFF | ANY]
General Commands Reference Guide T | 536©1989-2024 Lauterbach

TRANSlation.state Overview of translation settings

Opens the TRANSlation.state window.

Description of Columns in the TRANSlation.state Window

See also

■ TRANSlation ■ TRANSlation.List

Format: TRANSlation.state

A The header displays an overview of all settings affecting the debugger address translation:

- Address translation: ON, OFF = TRANSlation.ON or TRANSlation.OFF

- MMU protection: ON, OFF = TRANSlation.Protect.ON or TRANSlation.Protect.OFF

- Table walk: ON, OFF = TRANSlation.TableWalk [ON | OFF]

- MMU spaces: ON, OFF = SYStem.Option.MMUSPACES [ON | OFF]

- Zone spaces: ON, OFF = SYStem.Option.ZoneSPACES [ON | OFF]

- Machine spaces: ON, OFF = SYStem.Option.MACHINESPACES [ON | OFF]

- Architecture-specific settings (here LPAE)

B The columns below the header list the settings configured with the MMU.FORMAT command.

Zone For information about zones, refer to the glossary.

MMU format The MMU formats for each zone.

Default page table The start addresses of the default page tables for all active zones.

A

B

General Commands Reference Guide T | 537©1989-2024 Lauterbach

TRANSlation.TableWalk Automatic MMU page table walk

Configures the debugger to perform an MMU page table walk (short: table walk). If enabled, the debugger
will try the following steps upon a logical-to-physical address translation request:

1. Look up the logical address in the debugger’s static address translation table (see TRANSla-
tion.List and TRANSlation.Create for details about the static address translation table).

2. If the address lookup in the static address translation table fails, walk through the software/OS
MMU tables to find a valid logical-to-physical translation.

3. For Intel® architecture debuggers, the boot mode, real mode, or protected mode segment
translation is done before the page table walk is performed.

4. For MIPS architectures only: the EVA or fixed mapping KSEG0/1 translations are done before the
page table walk is performed.

Valid address translations found are cached by TRACE32. When debug mode is left, i.e. at a Go or Step,
the cached translations are flushed because page table contents may change when the target continues
execution.

Format: TRANSlation.TableWalk [ON | OFF]

ON Configure TRACE32 to use the automatic MMU table walk.
Only physical addresses are sent to the target.

NOTE for expert users:
For some architectures, although a valid translation is available,
TRACE32 sends logical addresses in certain situations in order to ensure
cache coherency.
This behavior can be controlled with the architecture-specific command
SYStem.Option.MMUPhysLogMemaccess.

OFF Configure TRACE32 to not use the automatic MMU table walk.

NOTE: Page tables are dynamic structures and are frequently modified by the OS.

The MMU page table walk of the debugger dynamically parses the page tables
on demand for every debugger address translation. The table walk ensures that
the debugger address translations correspond to the current OS address
translations.
General Commands Reference Guide T | 538©1989-2024 Lauterbach

If no valid translation could be found for a logical address in any available translation table, then the error
handling depends on whether TRANSlation.TableWalk is set to OFF or ON:

See also

■ TRANSlation ■ TRANSlation.CacheFlush ■ TRANSlation.List ■ MMU.FORMAT
❏ TRANS.TABLEWALK()

▲ ’Arm Specific Implementations’ in ’Arm Debugger’
▲ ’Arm Specific Implementations’ in ’Armv8 and Armv9 Debugger’
▲ ’Release Information’ in ’Legacy Release History’

TRANSlation.TlbAutoScan Allow automatic TLB scans during table walk

Enable automatic scan of the TLBs for missing kernel address translations during MMU table walks. Ignore
TLB entries with logical addresses outside the specified <logical_range>.

Some OS specify logical base addresses for kernel or task page tables. The table walk algorithm must
translate them to physical addresses before the page table can be parsed. If there is no suitable user-
defined default translation (MMU.FORMAT) or debugger MMU table (TRANSlation.List) entry,
TRANSlation.TlbAutoScan will search the target MMU TLBs for a suitable translation that has been set
up and used by the OS itself. If a suitable translation is found, it is copied into the debugger MMU table.
This automatism can prevent debugger memory access failures caused by incomplete MMU setup
scripts.

OFF No error will be produced by TRACE32.
The logical address will be sent to the target CPU without translation.

ON A “MMU translation failed” error will be produced by TRACE32. Scripts
will stop upon a failing translation. This mimics the behavior of the target
MMU, where a failing translation causes an exception.

Format: TRANSlation.TlbAutoScan [ON | OFF] [<logical_range> [<logical_range>]]

NOTE: This command is not available for all architectures

NOTE: Only TLB entries in the kernel address range must be auto-extracted from TLBs. If
you specify the typical kernel address range(s) for your target’s OS in
<logical_range>, TRANSlation.TlbAutoScan will ignore dynamic TLB entries
used for user processes.
General Commands Reference Guide T | 539©1989-2024 Lauterbach

Place the TRANSlation.TlbAutoScan command into the MMU section of your PRACTICE script preparing
the debugger for OS Awareness as in this example:

See also

■ TRANSlation ■ TRANSlation.Create ■ TRANSlation.List ■ MMU.DUMP
■ MMU.FORMAT ■ MMU.SCAN

;***
; example MMU setup section for Linux awareness
; - “TRANSlation.TlbAutoScan ON” replaces the explicit
; default translation in MMU.FORMAT and fixed kernel
; address translations in TRANSlation.Create.
;***

PRINT "Initializing debugger MMU..."
MMU.FORMAT LINUX swapper_pg_dir
TRANSlation.COMMON 0xC0000000--0xFFFFFFFF

; this translation will be auto-extracted by TlbAutoScan from the TLB
; TRANSlation.Create 0xC0000000--0xCFFFFFFF 0x0

; enable TlbAutoScan - TLB entries in 0x80000000--0xFFFFFFF are kernel
; addresses here and ok to be auto-extracted
TRANSlation.TlbAutoScan ON 0xC0000000--0xFFFFFFF

TRANSlation.TableWalk ON
TRANSlation.ON
General Commands Reference Guide T | 540©1989-2024 Lauterbach

TRANSlation.TRANSparent Transparent banking area

A debugger access to a logical address within <logical_range> will not be translated to a physical address,
even if a page table translation for it is defined. Instead, this access will use the logical address.

Example

In a banked memory system, we want the debugger to see the current memory bank (selected by the CPU’s
BNK register) for memory accesses within <logical_range>. The following example shows a PRACTICE
script for such a setup for a CPU with 16-bit logical addresses:

Any access within 0x0..0xffff is defined as transparent and will thus not be translated to a physical address
by the debugger. Instead, such an access will be carried out with the logical address, so the CPU’s “current
bank” register will decide which data is seen. That is, examining a variable pointing to a certain logical
address somewhere within 0x0..0xffff with bank 1 being active, will show the data stored in bank 1.

We want to make sure that symbols belonging to code or data loaded into a certain bank are always tied to
the correct bank. Addresses in 0x0..0xffff may show any bank, depending on the BNK register. So we first
define fixed translation windows of 0x1000000..0x100ffff to bank 0 and 0x1010000..0x101ffff to bank 1. Note
that those address windows exist only for the debugger.

Now we load code (assuming bank 0 being selected by register BNK) into memory. Finally, we shift the
symbols belonging to the code into the address window belonging to bank 0, i.e. we add an offset of
0x1000000 after loading. Now we have a clear assignment between the symbols and the data in bank 0,
while debugger accesses to logical addresses in 0x0..0xffff still see the data the CPU sees currently.

See also

■ TRANSlation ■ TRANSlation.List

Format: TRANSlation.TRANSparent <logical_range>
MMU.TRANS <logical_range> (deprecated)
MMU.TRANSparent <logical_range> (deprecated)

sYmbol.RESet
TRANSlation.RESet
; define fixed translation window into bank 0
TRANSlation.Create 0x1000000--0x100ffff A:0x00000--0x0ffff
; define fixed translation window into bank 1
TRANSlation.Create 0x1010000--0x101ffff A:0x10000--0x1ffff
; define transparent address window (no translation in this range)
TRANSlation.TRANSparent 0x0--0xffff
TRANSlation.ON
; load code into current bank, somewhere in 0x0--0xffff
Data.LOAD.Ubrof example.dbg
; shift symbols to logical addresses at 1000000
sYmbol.RELOCate C:0x1000000
General Commands Reference Guide T | 541©1989-2024 Lauterbach

TrBus

TrBus Trigger bus

See also

■ TrBus.Arm ■ TrBus.Connect ■ TrBus.Mode ■ TrBus.OFF
■ TrBus.Out ■ TrBus.RESet ■ TrBus.Set ■ TrBus.state
■ TrBus.Trigger

Overview TrBus

The TrBus command group allows:

• To generate a trigger pulse that can be used to trigger an external device e.g. a Logic Analyzer.

• To connect an incoming trigger signal to TRACE32-ICD.

In both cases the TRIG connector is used. The TRIG connector has the following characteristics on the
different TRACE32 tools:

TRACE32 tool Output voltage Input voltage Comment

PowerDebug X50 4.4V 3.3V Input: 5V tolerant,

10K pull-up/down*

PowerDebug E40 4.4V 3.3V Input: 5V tolerant,

10K pull-up/down*

PowerDebug PRO 4.4V 3.3V Input: 5V tolerant,

10K pull-up/down*

µTrace (MicroTrace) for
Cortex-M

3.3V 3.3V Input: 5V tolerant,

10K pull-up/down*

PowerDebug Module
USB 3.0

4.4V 3.3V Input: 5V tolerant,

10K pull-up/down*

PowerDebug II Ethernet 5.0V 3.3V Input: 5V tolerant,

10K pull-up/down*

PowerDebug Module
Ethernet /
PowerTrace Ethernet

3.3V 3.3V Input: 5V tolerant,

10K pull-up/down*
General Commands Reference Guide T | 542©1989-2024 Lauterbach

* Pull-up/down selected automatically depending on low-active or high-active settings.

An external trigger pulse of at least 100ns can be generated when:

• The program execution is stopped.

• A trigger is generated for the trace (not available on all CPUs, depends on the implementation of
the trace trigger feature).

• The sampling to the trace buffer is stopped ((not available on all CPUs, depends on the
implementation of the trace trigger feature).

• A breakpoint with the Action BusTrigger is used (not available on all CPUs).

An incoming trigger signal can be used:

• To stop the program execution.

• To generate a trigger for the trace (not available on all CPUs, depends on the implementation of
the trace trigger feature).

The sources for the external trigger pulse and the targets for the incoming trigger signal are connected to the
trigger bus.

Power Debug Module
USB 2.0

3.3V 3.3V Input: 5V tolerant,

10K pull-up/down*

PODBUS Ethernet
Controller

3.3V 3.3V Input: 5V tolerant,

10K pull-up/down*

Power Debug Module
USB 1.x

3.3V 3.3V Input: 5V tolerant,

10K pull-up/down*

TRACE32 tool Output voltage Input voltage Comment
General Commands Reference Guide T | 543©1989-2024 Lauterbach

Trigger Bus on the PowerTrace

The following picture shows the Trigger Bus on the PowerTrace as an example.

Example: Generate a trigger for the trace at a falling edge of the incoming trigger signal.

TrBus.Arm ; Switch the trigger bus ON

TrBus.Connect In ; Configure the TRIGGER connector as input

TrBus.Mode.Falling ; define that the trigger target should react
; on the falling edge of the incoming trigger
; signal

TrBus.Set ATrigger ON ; generate a trigger for the trace (trigger
; target) on the falling edge of the external
; trigger signal
; a trigger for the trace can stop the
; sampling to the trace directly or it can be
; delayed by the command Analyzer.TDelay

TrBus.Set Break OFF
TrBus.Out Break OFF
TrBus.Out ABreak OFF
TrBus.Out ATrigger OFF

; switch all other sources and targets to OFF

PowerTrace

Debugger Trace

Break
Set (from Bus)

ATrigger
Set (from Bus)

Break
Out (to Bus)

ATrigger
Out (to Bus)

ABreak
Out (to Bus)

Trigger Bus

Connect Out

Connect In
General Commands Reference Guide T | 544©1989-2024 Lauterbach

Interaction Between Independent PODBUS Devices

If several independent PODBUS devices are plugged together, they share the same trigger bus. Example
configurations are:

• A POWER DEBUG II and a POWER TRACE II / POWER TRACE III

• A POWER DEBUG INTERFACE / USB and a POWERPROBE

• A POWERTRACE / ETHERNET and a POWERINTERGRATOR

• Several POWER DEBUG INTERFACEs that form a multi-processor debugging environment.

The common trigger bus allows a synchronization between the PODBUS devices.

POWER TRACE IIPODBUS IN

POWER

SELECT

RECORD

RUNNING

POWER
7-9V

LAUTERBACH

POWER DEBUG IIPODBUS SYNC

TRIG

POWER
7-9 V

U
S

B
LAUTERBACHPODBUS OUT

POWER

SELECT

RUNNING

LINK

ACTIVITY

E
T

H
E

R
N

E
T

General Commands Reference Guide T | 545©1989-2024 Lauterbach

Example: A soon as the POWERPROBE is stopped by a trigger, the program execution should be stopped
via the connected POWER DEBUG INTERFACE:

The trigger bus also allows to stop the processors in a multi-processor configuration synchronously.
Precondition is that the JTAG/OCDS/BDM … connector provides:

• A signal which indicates that the program execution was stopped (stop indication).

• A signal that allows to stop the program execution immediately (stop request).

After the configuration for the synchronous start and stop by the SYnch command is done, you can
configure the stop synchronization per hardware by the TrBus commands.

;PowerProbe

;…
PP:Analyzer.TOut BUSA ON

; definition of the trigger condition
; generate a trigger for the trigger bus
; when the defined trigger event occurs

;Debugger

TrBus.Arm
TrBus.Connect Out
TrBus.Set Break ON

; switch the trigger bus ON
; Configure the TRIGGER connector as output
; allow any trigger from the trigger bus to
; stop the program execution

Multicore chip sets provide normally internal (chip specific) trigger connections.
General Commands Reference Guide T | 546©1989-2024 Lauterbach

Example: Configure the stop synchronization per hardware for the TRICORE OCDS connector:

TrBus.Arm Arm the trigger bus

Arms the trigger bus.

See also

■ TrBus ■ TrBus.state

TrBus.Arm ; Switch the trigger bus ON

TrBus.Connect Out ; Configure the TRIGGER connector as output

TrBus.Set Break ON
TrBus.Out Break ON

; Connect Break to stop request
; Connect Break to stop indication

Format: TrBus.Arm

1 

 

 

 

 

 

 

 

1 

 

 

 

 

 

 

 

OCDS connector 1 OCDS connector 2

/BRK_IN
(Stop request)

/BRK_IN
(Stop request)

/BRK_OUT
(Stop indication)

/BRK_OUT
(Stop indication)

Trigger Bus

Break
Set (from Bus)

Break
Set (from Bus)

Break
Out (to Bus)

Break
Out (to Bus)
General Commands Reference Guide T | 547©1989-2024 Lauterbach

TrBus.Connect Configure TRIGGER as input or output

The TRIGGER connector should work as:

• Input for an incoming trigger signal.

• Output for the generation of an external trigger signal.

See also

■ TrBus ■ TrBus.state

TrBus.Mode Define polarity/edge for the trigger signal

If TrBus.Connect Out is set a Low or High pulse is generated on TRIGGER (at least 100 ns) as soon as the
defined source becomes active.

If TrBus.Connect In is set, the defined target can react on a Low/High pulse or Falling/Rising edge of the
incoming trigger signal.

See also

■ TrBus ■ TrBus.state

TrBus.OFF Switch trigger bus off

Switches the trigger bus off.

See also

■ TrBus ■ TrBus.state

Format: TrBus.Connect In | Out

Format: TrBus.Mode Low | High | Falling | Rising

Format: TrBus.OFF
General Commands Reference Guide T | 548©1989-2024 Lauterbach

TrBus.Out Define source for the external trigger pulse

Defines the source for the external trigger pulse.

See also

■ TrBus ■ TrBus.state

▲ ’Release Information’ in ’Legacy Release History’

TrBus.RESet Reset setting for trigger bus

Resets the settings for the trigger bus.

See also

■ TrBus ■ TrBus.state

Format: TrBus.Out Break | ABreak | ATrigger [ON | OFF]

Break Generate an external trigger pulse when the program execution is
stopped.

ABreak Generate an external trigger pulse when the sampling to the trace buffer
is stopped.

ATrigger Generate an external trigger pulse when a trigger is generated for the
trace. A trigger for the trace can be used to stop the sampling to the trace
buffer after a specified delay Analyzer.TDelay.

Format: TrBus.RESet
General Commands Reference Guide T | 549©1989-2024 Lauterbach

TrBus.Set Define the target for the incoming trigger

Selects the target for the incoming trigger signal.

See also

■ TrBus ■ TrBus.state

TrBus.state Display settings for the trigger bus

Displays all settings for the trigger bus.

See also

■ TrBus ■ TrBus.Arm ■ TrBus.Connect ■ TrBus.Mode
■ TrBus.OFF ■ TrBus.Out ■ TrBus.RESet ■ TrBus.Set
■ TrBus.Trigger

TrBus.Trigger Stimulate a trigger on the trigger bus

Stimulates a trigger on the trigger bus.

See also

■ TrBus ■ TrBus.state

Format: TrBus.Set Break | ATrigger [ON | OFF]

Break Stop the program execution as soon as the external trigger signal
becomes active.

ATrigger Generate a trigger for the trace as soon as the external trigger signal
becomes active. A trigger for the trace can be used to stop the sampling
to the trace buffer directly or after a specified delay Analyzer.TDelay.

Format: TrBus.state
TrBus.view (deprecated)

Format: TrBus.Trigger
General Commands Reference Guide T | 550©1989-2024 Lauterbach

TrOnchip

The TrOnchip command group provides low-level access to the on-chip debug register.

TrOnchip Onchip triggers

See also

■ TrOnchip.RESet ■ TrOnchip.state

▲ ’CPU specific TrOnchip Commands’ in ’CPU32/ColdFire Debugger and Trace’
▲ ’Arm Specific TrOnchip Commands’ in ’Arm Debugger’
▲ ’Arm specific TrOnchip Commands’ in ’Armv8 and Armv9 Debugger’
▲ ’CPU specific TrOnchip Commands’ in ’RH850 Debugger and Trace’
▲ ’Nexus specific TrOnchip Commands’ in ’RH850 Debugger and Trace’
▲ ’TrOnchip’ in ’StarCore Debugger and Trace’
▲ ’CPU specific TrOnchip Commands’ in ’TriCore Debugger and Trace’
▲ ’CPU specific TrOnchip Commands - Onchip Triggers’ in ’Intel® x86/x64 Debugger’
▲ ’Release Information’ in ’Legacy Release History’

TrOnchip.RESet Reset settings to defaults

Set on-chip trigger system to initial state.

See also

■ TrOnchip ■ TrOnchip.state

▲ ’CPU specific TrOnchip Commands’ in ’Xtensa Debugger and Trace’
▲ ’CPU specific TrOnchip Commands’ in ’Simulator for XTENSA’

TrOnchip.state Display onchip trigger window

Displays a window with the state of the on-chip trigger setting.

See also

■ TrOnchip ■ TrOnchip.RESet

Format: TrOnchip.RESet

Format: TrOnchip.state
General Commands Reference Guide T | 551©1989-2024 Lauterbach

▲ ’TrOnchip Commands’ in ’CEVA-Oak/Teak/TeakLite Debugger and Trace’
▲ ’Release Information’ in ’Legacy Release History’
General Commands Reference Guide T | 552©1989-2024 Lauterbach

TrPOD

TrPOD Trigger probe

See also

■ TrPOD.Clock ■ TrPOD.ClockPOL ■ TrPOD.Data ■ TrPOD.DataPOL
■ TrPOD.Mode ■ TrPOD.OFF ■ TrPOD.ON ■ TrPOD.RESet
■ TrPOD.state ■ TrPOD.Time

TrPOD.Clock Defines data mask

The clock mask is defined. Every input line can be high or low or don’t care.

See also

■ TrPOD ■ TrPOD.state

TrPOD.ClockPOL Defines data polarity

The clock polarity can be set to true or false.

See also

■ TrPOD ■ TrPOD.state

NOTE: The Trigger Probe for PODBUS is out of production.

Format: TrPOD.Clock [<mask>]

Format: TrPOD.ClockPOL [<polarity>]

<polarity>: + | -
General Commands Reference Guide T | 553©1989-2024 Lauterbach

TrPOD.Data Defines data mask

The data mask is defined. Every input line can be high or low or don’t care.

See also

■ TrPOD ■ TrPOD.state

TrPOD.DataPOL Defines data polarity

The data polarity can be set to true or false.

See also

■ TrPOD ■ TrPOD.state

Format: TrPOD.Data [<mask>]

Format: TrPOD.DataPOL [<polarity>]

<polarity>: + | -
General Commands Reference Guide T | 554©1989-2024 Lauterbach

TrPOD.Mode Defines data polarity

The state display shows all the settings of the trigger probe and the level of the input pins.

See also

■ TrPOD ■ TrPOD.state

Format: TrPOD.Mode [<mode>]

<mode>: DATA
CLOCK
SYNC
LONGER
SHORTER
GLITCH
GLITCH+
GLITCH-

DATA Asynchronous trigger on inputs with data comparator

CLOCK Asynchronous trigger on inputs with clock comparator

SYNC Synchronous trigger

LONGER Pulse width trigger when pulse exceeds time

SHORTER Pulse width trigger when pulse width below time limit

GLITCH Glitch trigger on both edges

GLITCH+ Glitch trigger on positive glitch

GLITCH- Glitch trigger on negative glitch
General Commands Reference Guide T | 555©1989-2024 Lauterbach

TrPOD.OFF Switch off

The trigger probe is disabled.

See also

■ TrPOD ■ TrPOD.state

TrPOD.ON Switch on

The trigger probe is enabled.

See also

■ TrPOD ■ TrPOD.state

TrPOD.RESet Reset command

The trigger probe is initialized to the default setup condition

See also

■ TrPOD ■ TrPOD.state

Format: TrPOD.OFF

Format: TrPOD.ON

Format: TrPOD.RESet
General Commands Reference Guide T | 556©1989-2024 Lauterbach

TrPOD.state State display

Using this command the operating mode of the analyzer may be selected. During operation this command
displays the current state of the analyzer.

See also

■ TrPOD ■ TrPOD.Clock ■ TrPOD.ClockPOL ■ TrPOD.Data
■ TrPOD.DataPOL ■ TrPOD.Mode ■ TrPOD.OFF ■ TrPOD.ON
■ TrPOD.RESet ■ TrPOD.Time

▲ ’Release Information’ in ’Legacy Release History’

TrPOD.Time Defines the time for the pulse width trigger

The time limit for the pulse width detection can be set between 20 ns and 6 ms.

See also

■ TrPOD ■ TrPOD.state

Format: TrPOD.state

Format: TrPOD.Time [<time>]
General Commands Reference Guide T | 557©1989-2024 Lauterbach

	General Commands Reference Guide T
	History
	TargetSystem
	TargetSystem TRACE32 PowerView instances
	TargetSystem.NewInstance Start new TRACE32 PowerView instance
	TargetSystem.state Show overview of multicore system

	TASK
	TASK OS Awareness for TRACE32
	Overview TASK
	TASK.ACCESS Control memory access
	TASK.ATTACH Attach to a running process
	TASK.Break Stop the execution of a single task or thread
	TASK.CACHEFLUSH Reread task list
	TASK.CONFIG Configure OS Awareness
	TASK.COPYDOWN Copy file from host into target
	TASK.COPYUP Copy file from target into host
	TASK.Create Create task
	TASK.Create.MACHINE Define a manual machine
	TASK.Create.RUNNABLE Define an AUTOSAR runnable
	TASK.Create.SPACE Define a manual MMU space
	TASK.Create.task Define a manual task
	TASK.CreateExtraID Create a virtual task
	TASK.CreateID Create virtual task
	TASK.DELete Delete file from target
	TASK.DeleteID Delete virtual task
	TASK.DETACH Detach from task
	TASK.Go Start the execution of a single task or thread
	TASK.INSTALL Deprecated
	TASK.KILL End task
	TASK.List Information about tasks
	TASK.List.MACHINES List machines
	TASK.List.RUNNABLES List AUTOSAR runnables
	TASK.List.SPACES List MMU spaces
	TASK.List.tasks List all running tasks
	TASK.List.TREE Display tasks in a tree structure
	TASK.ListID List virtual tasks
	TASK.NAME Translation of task magic number to task name
	TASK.NAME.DELete Delete a task name table entry
	TASK.NAME.RESet Reset task name table
	TASK.NAME.Set Set a task name table entry
	TASK.NAME.view Show task name translation table
	TASK.ORTI AUTOSAR/OSEK support
	TASK.ORTI.CPU Set OSEK SMP CPU number
	TASK.ORTI.load Configure OS Awareness for OSEK/ORTI
	TASK.ORTI.NOSTACK Exclude an ORTI task from stack evaluation
	TASK.ORTI.SPLITSTACK Split stack analysis of idle ORTI task to cores
	TASK.RELOAD Reread task list
	TASK.RESet Reset OS Awareness
	TASK.RUN Load task
	TASK.select Display context of specified task
	TASK.SETDIR Set the awareness directory
	TASK.STacK Stack usage coverage
	TASK.STacK.ADD Add stack space coverage
	TASK.STacK.DIRection Define stack growth direction
	TASK.STacK.Init Initialize unused stack space
	TASK.STacK.PATtern Define stack check pattern
	TASK.STacK.PATternGAP Define check pattern gap
	TASK.STacK.ReMove Remove stack space coverage
	TASK.STacK.RESet Reset stack coverage
	TASK.STacK.view Open stack space coverage

	TCB
	TCB Trace control block
	TCB.AllBranches Broadcast all branches
	TCB.CPU Broadcast information for specified CPU only
	TCB.CycleAccurate Cycle accurate tracing
	TCB.DataTrace Broadcast specified address and data information
	TCB.EX Broadcast exception level information
	TCB.FCR Broadcast function call-return information
	TCB.IM Broadcast instruction cache miss information
	TCB.InstructionCompletionSizeBits Specify size of completion message
	TCB.KE Broadcast kernel mode information
	TCB.LSM Broadcast load store data cache information
	TCB.OFF Switch TCB off
	TCB.ON Switch TCB on
	TCB.PCTrace Broadcast program counter trace
	TCB.PortMode Specify trace clock ratio
	TCB.PortWidth Specify trace port width
	TCB.Register Display TCB control register
	TCB.RESet Reset TCB setup to default
	TCB.SourceSizeBits Specify number of bit for core information in trace
	TCB.SRC Control selective trace
	TCB.STALL Stall CPU for complete trace
	TCB.state Display TCB setup
	TCB.SV Broadcast supervisor mode information
	TCB.SyncPeriod Specify TCB sync period
	TCB.TC Broadcast information for specified HW thread
	TCB.ThreadSizeBits Specify number of bit for thread information in trace
	TCB.Type Specify TCB type
	TCB.UM Broadcast user mode information
	TCB.Version Specify trace cell version

	TERM
	TERM Terminal emulation
	Overview TERM
	Interface Routines
	Interface Routines (EPROM Simulator)
	Interface Routines (Single Character Modes)
	Interface Routines (Buffered Modes)
	Interface Routines (Serial Line Debugger)
	Interface Routines (Special Hardware, JTAG)

	Functions
	Fast Data Write
	Interface Routines

	TERM.CLEAR Clear terminal window
	TERM.CLOSE Close files
	TERM.CMDLINE Specify a command line
	TERM.GATE Terminal with virtual hosting
	TERM.HARDCOPY Print terminal window contents
	TERM.HEAPINFO Define memory heap parameters
	TERM.LocalEcho Enables/disables local echo for new terminal windows
	TERM.METHOD Select terminal protocol
	TERM.METHOD2 Select additional terminal protocol
	TERM.Mode Define terminal type
	TERM.Out Send data to virtual terminal
	TERM.OutBREAK Send serial break
	TERM.PIPE Connect terminal to named pipe
	TERM.PipeREAD Connect terminal input to named pipe
	TERM.PipeWRITE Connect terminal output to named pipe
	TERM.PULSE Enable pulse generator for transfers
	TERM.READ Get terminal input from file
	TERM.RESet Reset terminal parameters
	TERM.SCROLL Enable automatic scrolling for terminal window
	TERM.SIZE Define size of terminal window
	TERM.STDIN Get terminal input from file
	TERM.TCP Route terminal input/output to TCP port
	TERM.TELNET Open TELNET terminal window
	TERM.TRIGGER Trigger on string in terminal window
	TERM.view Terminal display
	TERM.WRITE Write terminal output to file

	TPIU
	TPIU Trace Port Interface Unit (TPIU)
	Overview TPIU
	TPIU.CLEAR Re-write the TPIU registers
	TPIU.IGNOREZEROS Workaround for a special chip
	TPIU.NOFLUSH Workaround for a chip bug affecting TPIU flush
	TPIU.PortClock Inform debugger about HSSTP trace frequency
	TPIU.PortMode Select the operation mode of the TPIU
	TPIU.PortSize Select interface type and port size of the TPIU
	TPIU.RefClock Set up reference clock for HSSTP
	TPIU.Register Display TPIU registers
	TPIU.RESet Reset TPIU settings
	TPIU.state Display TPIU configuration window
	TPIU.SWVPrescaler Set up SWV prescaler
	TPIU.SWVZEROS Workaround for a chip bug
	TPIU.SyncPeriod Set period of sync packet injection

	TPU
	TPU.BASE Base address
	TPU.Break Break TPU
	TPU.Dump Memory display
	TPU.Go Start TPU
	TPU.List View microcode
	TPU.ListEntry Table display
	TPU.Register.ALL Register operation mode
	TPU.Register.NEWSTEP New debugging mode
	TPU.Register.Set Register modification
	TPU.Register.view Register display
	TPU.RESet Disable TPU debugger
	TPU.SCAN Scannig TPU
	TPU.SELect Select TPU for debugging
	TPU.Step Single step TPU
	TPU.view View TPU channels

	Trace
	Trace Trace configuration and display
	Overview Trace
	About the Command Placeholder <trace>
	What to know about the TRACE32 default settings for Trace.METHOD
	Types of Replacements for <trace>
	Replacing <trace> with a Trace Method - Examples
	Replacing <trace> with a Trace Evaluation - Example
	Replacing <trace> with RTS for Real-time Profiling - Example
	Replacing <trace> with Trace Source and Trace Method - Examples
	How to access the trace sources in TRACE32
	List of <trace> Command Groups consisting of <trace_source><trace_method>
	Related Trace Command Groups

	<trace>.ACCESS Define access path to program code for trace decoding
	<trace>.Arm Arm the trace
	<trace>.AutoArm Arm automatically
	<trace>.AutoFocus Calibrate AUTOFOCUS preprocessor
	Preprocessor with AUTOFOCUS Technology

	<trace>.AutoInit Automatic initialization
	<trace>.AutoStart Automatic start
	<trace>.BookMark Set a bookmark in trace listing
	<trace>.BookMarkToggle Toggles a single trace bookmark
	<trace>.Chart Display trace contents graphically
	Parameters
	Options
	Drag and Drop

	<trace>.Chart.Address Time between program events as a chart
	<trace>.Chart.AddressGROUP Address group time chart
	<trace>.Chart.ChildTREE Display callee context of a function as chart
	<trace>.Chart.DatasYmbol Analyze pointer contents graphically
	<trace>.Chart.DistriB Distribution display graphically
	<trace>.Chart.Func Function activity chart
	<trace>.Chart.GROUP Group activity chart
	<trace>.Chart.INTERRUPT Display interrupt chart
	<trace>.Chart.INTERRUPTTREE Display interrupt nesting
	<trace>.Chart.Line Graphical HLL lines analysis
	<trace>.Chart.MODULE Code execution brocken down by module as chart
	<trace>.Chart.Nesting Show function nesting at cursor position
	<trace>.Chart.PAddress Which instructions accessed data address
	<trace>.Chart.PROGRAM Code execution broken down by program
	<trace>.Chart.PsYmbol Shows which functions accessed data address
	<trace>.Chart.RUNNABLE Runnable activity chart
	<trace>.Chart.sYmbol Symbol analysis
	<trace>.Chart.TASK Task activity chart
	<trace>.Chart.TASKFunc Task related function run-time analysis (legacy)
	<trace>.Chart.TASKINFO Context ID special messages
	<trace>.Chart.TASKINTR Display ISR2 time chart (ORTI)
	<trace>.Chart.TASKKernel Task run-time chart with kernel markers (flat)
	<trace>.Chart.TASKORINTERRUPT Task and interrupt activity chart
	<trace>.Chart.TASKORINTRState Task and ISR2 state analysis
	<trace>.Chart.TASKSRV Service routine run-time analysis
	<trace>.Chart.TASKState Task state analysis
	<trace>.Chart.TASKVSINTERRUPT Time chart of interrupted tasks
	<trace>.Chart.TASKVSINTR Time chart of task-related interrupts
	<trace>.Chart.TREE Display function chart as tree view
	<trace>.Chart.Var Variable chart
	<trace>.Chart.VarState Variable activity chart
	<trace>.CLOCK Clock to calculate time out of cycle count information
	<trace>.ComPare Compare trace contents
	<trace>.ComPareCODE Compare trace with memory
	<trace>.CustomTrace Custom trace
	<trace>.CustomTrace.<label>.COMMAND Send command to specific DLL
	<trace>.CustomTrace.<label>.ListString Display ASCII strings
	<trace>.CustomTrace.<label>.UNLOAD Unload a single DLL
	<trace>.CustomTraceLoad Load a DLL for trace analysis/Unload all DLLs
	<trace>.DISable Disable the trace
	<trace>.DisConfig Trace disassembler configuration
	<trace>.DisConfig.CYcle Trace disassemble setting
	<trace>.DisConfig.FlowMode Enable FlowTrace analysis
	<trace>.DisConfig.RESet Reset trace disassemble setting
	<trace>.DRAW Plot trace data against time
	Keywords for <format>
	Keywords for <width>
	General Options
	Draw Options

	<trace>.DRAW.channel Plot no-data values against time
	<trace>.DRAW.Data Plot data values against time
	<trace>.DRAW.Var Plot variable values against time
	<trace>.EXPORT Export trace data for processing in other applications
	<trace>.EXPORT.ARTI Export trace data as ARTI for CP
	<trace>.EXPORT.ARTIAP Export trace data as ARTI for AP
	<trace>.EXPORT.Ascii Export trace data as ASCII
	<trace>.EXPORT.Bin Export trace data as binary file
	<trace>.EXPORT.BRANCHFLOW Export branch events from trace data
	<trace>.EXPORT.CSVFunc Export the function nesting to a CSV file
	<trace>.EXPORT.cycles Export trace data
	<trace>.EXPORT.Func Export function nesting
	<trace>.EXPORT.MDF Export trace data as MDF
	<trace>.EXPORT.MTV Export in MCDS Trace Viewer format
	<trace>.EXPORT.TASK Export task switches
	<trace>.EXPORT.TASKEVENTS Export task event to CSV
	<trace>.EXPORT.TracePort Export trace packets as recorded at trace port
	<trace>.EXPORT.VCD Export trace data in VCD format
	<trace>.EXPORT.VERILOG Export trace data in VERILOG format
	<trace>.EXPORT.VHDL Export trace data in VHDL format
	<trace>.ExtractCODE Extract code from trace
	<trace>.FILE Load a file into the file trace buffer
	<trace>.Find Find specified entry in trace
	<trace>.FindAll Find all specified entries in trace
	<trace>.FindChange Search for changes in trace flow
	<trace>.FindProgram Advanced trace search
	<trace>.FindReProgram Activate advanced existing trace search program
	<trace>.FindViewProgram State of advanced trace search programming
	<trace>.FLOWPROCESS Process flowtrace
	<trace>.FLOWSTART Restart flowtrace processing
	<trace>.Get Display input level
	<trace>.GOTO Move cursor to specified trace record
	<trace>.Init Initialize trace
	<trace>.JOINFILE Concatenate several trace recordings
	<trace>.List List trace contents
	<trace>.ListNesting Analyze function nesting
	<trace>.ListVar List variable recorded to trace
	<trace>.LOAD Load trace file for offline processing
	<trace>.MERGEFILE Combine two trace files into one
	Trace.METHOD Select trace method
	<trace>.Mode Set the trace operation mode
	<trace>.OFF Switch off
	<trace>.PipeWRITE Connect to a named pipe to stream trace data
	<trace>.PlatformCLOCK Set clock for platform traces
	<trace>.PortFilter Specify utilization of trace memory
	<trace>.PortSize Set external port size
	<trace>.PortType Specify trace interface
	<trace>.PROfile Rolling live plots of trace data
	<trace>.PROfile.channel Display profile of signal probe channels
	<trace>.PROfile.CTU Display complex trigger unit counter profile
	<trace>.PROfileChart Profile charts
	Options

	<trace>.PROfileChart.Address Address profile chart
	<trace>.PROfileChart.AddressGROUP Address group time chart
	<trace>.PROfileChart.AddressRate Address rate profile chart
	<trace>.PROfileChart.COUNTER Display a profile chart
	<trace>.PROfileChart.DatasYmbol Analyze pointer contents graphically
	<trace>.PROfileChart.DIStance Time interval for a single event
	<trace>.PROfileChart.DistriB Distribution display in time slices
	<trace>.PROfileChart.DURation Time between two events
	<trace>.PROfileChart.GROUP Group profile chart
	<trace>.PROfileChart.INTERRUPT Display interrupt profile chart
	<trace>.PROfileChart.Line HLL-line profile chart
	<trace>.PROfileChart.MODULE Module profile chart
	<trace>.PROfileChart.PAddress Which instructions accessed data address
	<trace>.PROfileChart.PROGRAM Program profile chart
	<trace>.PROfileChart.PsYmbol Which functions accessed data address
	<trace>.PROfileChart.Rate Event frequency
	<trace>.PROfileChart.RUNNABLE Runnable profile chart
	<trace>.PROfileChart.sYmbol Dynamic program behavior graphically (flat)
	<trace>.PROfileChart.TASK Dynamic task behavior graphically (flat)
	<trace>.PROfileChart.TASKINFO Context ID special messages
	<trace>.PROfileChart.TASKINTR ISR2 profile chart (ORTI)
	<trace>.PROfileChart.TASKKernel Task profile chart with kernel markers
	<trace>.PROfileChart.TASKORINTERRUPT Task and interrupt profile chart
	<trace>.PROfileChart.TASKSRV Profile chart of OS service routines
	<trace>.PROfileChart.TASKVSINTERRUPT Interrupted tasks
	<trace>.PROfileChart.TASKVSINTR Profile chart for task-related interrupts
	<trace>.PROfileChart.Var Variable profile chart
	<trace>.PROfileSTATistic Statistical analysis in a table versus time
	Options

	<trace>.PROfileSTATistic.Address Statistical analysis for addresses
	<trace>.PROfileSTATistic.AddressGROUP Stat. for address groups
	<trace>.PROfileSTATistic.COUNTER Statistical analysis for counter
	<trace>.PROfileSTATistic.DatasYmbol Statistic analysis for pointer content
	<trace>.PROfileSTATistic.DistriB Distribution statistical analysis
	<trace>.PROfileSTATistic.GROUP Statistical analysis for groups
	<trace>.PROfileSTATistic.INTERRUPT Statistical analysis for interrupts
	<trace>.PROfileSTATistic.Line Statistical analysis for HLL lines
	<trace>.PROfileSTATistic.MODULE Statistical analysis for modules
	<trace>.PROfileSTATistic.PAddress Which instr. accessed data address
	<trace>.PROfileSTATistic.PROGRAM Statistical analysis for programs
	<trace>.PROfileSTATistic.PsYmbol Which functions accessed data address
	<trace>.PROfileSTATistic.RUNNABLE Statistical analysis for runnables
	<trace>.PROfileSTATistic.sYmbol Statistical analysis for symbols
	<trace>.PROfileSTATistic.TASK Statistical analysis for tasks
	<trace>.PROfileSTATistic.TASKINFO Context ID special messages
	<trace>.PROfileSTATistic.TASKINTR Statistical analysis for ISR2 (ORTI)
	<trace>.PROfileSTATistic.TASKKernel Stat. analysis with kernel markers
	<trace>.PROfileSTATistic.TASKORINTERRUPT Interrupts and tasks
	<trace>.PROfileSTATistic.TASKSRV Analysis of OS service routines
	<trace>.PROfileSTATistic.TASKVSINTERRUPT Interrupted tasks
	<trace>.PROTOcol Protocol analysis
	<trace>.PROTOcol.Chart Graphic display for user-defined protocol
	<trace>.PROTOcol.Draw Graphic display for user-defined protocol
	<trace>.PROTOcol.EXPORT Export trace buffer for user-defined protocol
	<trace>.PROTOcol.Find Find in trace buffer for user-defined protocol
	<trace>.PROTOcol.list Display trace buffer for user-defined protocol
	<trace>.PROTOcol.PROfileChart Profile chart for user-defined protocol
	<trace>.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol
	<trace>.PROTOcol.STATistic Display statistics for user-defined protocol
	Protocol specific Options
	Options for ASYNC
	Options for CAN
	Options for I2C
	Options for I2S
	Options for JTAG
	Options for USB

	<trace>.REF Set reference point for time measurement
	<trace>.RESet Reset command
	<trace>.SAVE Save trace for postprocessing in TRACE32
	Parameters
	Options

	<trace>.SelfArm Automatic restart of trace recording
	<trace>.ShowFocus Display data eye for AUTOFOCUS preprocessor
	<trace>.ShowFocusClockEye Display clock eye
	<trace>.ShowFocusEye Display data eye
	<trace>.SIZE Define buffer size
	<trace>.SnapShot Restart trace capturing once
	<trace>.SPY Adaptive stream and analysis
	<trace>.state Display trace configuration window
	<trace>.STATistic Statistic analysis
	Parameters
	List items
	Format

	Options

	<trace>.STATistic.Address Time between up to 8 program events
	<trace>.STATistic.AddressDIStance Time interval for single program event
	<trace>.STATistic.AddressDURation Time between two program events
	<trace>.STATistic.AddressGROUP Address group run-time analysis
	<trace>.STATistic.ChildTREE Show callee context of a function
	<trace>.STATistic.COLOR Assign colors to function for colored graphics
	<trace>.STATistic.CYcle Analyze cycle types
	<trace>.STATistic.DatasYmbol Analyze pointer contents numerically
	<trace>.STATistic.DIStance Time interval for a single event
	<trace>.STATistic.DistriB Distribution analysis
	<trace>.STATistic.DURation Time between two events
	<trace>.STATistic.FIRST Start point for statistic analysis
	<trace>.STATistic.Func Nesting function runtime analysis
	<trace>.STATistic.FuncDURation Statistic analysis of single function
	<trace>.STATistic.FuncDURationInternal Statistic analysis of single func.
	<trace>.STATistic.GROUP Group run-time analysis
	<trace>.STATistic.Ignore Ignore false records in statistic
	<trace>.STATistic.INTERRUPT Interrupt statistic
	<trace>.STATistic.InterruptIsFunction Statistics interrupt processing
	<trace>.STATistic.InterruptIsKernel Statistics interrupt processing
	<trace>.STATistic.InterruptIsKernelFunction Statistics interrupt processing
	<trace>.STATistic.InterruptIsTaskswitch Statistics interrupt processing
	<trace>.STATistic.INTERRUPTTREE Display interrupt nesting
	<trace>.STATistic.LAST End point for statistic analysis
	<trace>.STATistic.Line High-level source code line analysis
	<trace>.STATistic.LINKage Per caller statistic of function
	<trace>.STATistic.Measure Analyze the performance of a single signal
	<trace>.STATistic.MODULE Code execution broken down by module
	<trace>.STATistic.PAddress Which instructions accessed data address
	<trace>.STATistic.ParentTREE Show the call context of a function
	<trace>.STATistic.PROCESS Re-process statistics
	<trace>.STATistic.PROGRAM Code execution broken down by program
	<trace>.STATistic.PsYmbol Shows which functions accessed data address
	<trace>.STATistic.RUNNABLE Runnable runtime analysis
	<trace>.STATistic.RUNNABLEDURation Runnable duration analysis
	<trace>.STATistic.Sort Specify sorting criteria for statistic commands
	<trace>.STATistic.sYmbol Flat run-time analysis
	<trace>.STATistic.TASK Task activity statistic
	<trace>.STATistic.TASKFunc Task related function run-time analysis
	<trace>.STATistic.TASKINFO Context ID special messages
	<trace>.STATistic.TASKINTR ISR2 statistic (ORTI)
	<trace>.STATistic.TASKKernel Task analysis with kernel markers (flat)
	<trace>.STATistic.TASKLOCK Analyze lock accesses from tasks
	<trace>.STATistic.TASKORINTERRUPT Statistic of interrupts and tasks
	<trace>.STATistic.TASKORINTRState Task and ISR2 statistic analysis
	<trace>.STATistic.TASKSRV Analysis of time in OS service routines
	<trace>.STATistic.TASKState Performance analysis
	<trace>.STATistic.TASKStateDURation Task state runtime analysis
	<trace>.STATistic.TASKTREE Tree display of task specific functions
	<trace>.STATistic.TASKVSINTERRUPT Statistic of interrupts, task-related
	<trace>.STATistic.TASKVSINTR ISR2 statistic (ORTI), task related
	<trace>.STATistic.TREE Tree display of nesting function run-time analysis
	<trace>.STATistic.Use Use records
	<trace>.STATistic.Var Statistic of variable accesses
	<trace>.STREAMCompression Select compression mode for streaming
	<trace>.STREAMFILE Specify temporary streaming file path
	<trace>.STREAMFileLimit Set size limit for streaming file
	<trace>.STREAMLOAD Load streaming file from disk
	<trace>.STREAMSAVE Save streaming file to disk
	<trace>.TCount Set trigger counter
	<trace>.TDelay Trigger delay
	<trace>.TERMination Use trace line termination of preprocessor
	<trace>.TestFocus Test trace port recording
	<trace>.TestFocusClockEye Scan clock eye
	<trace>.TestFocusEye Check signal integrity
	<trace>.TestUtilization Tests trace port utilization
	<trace>.THreshold Optimize threshold for trace lines
	<trace>.Timing Waveform of trace buffer
	<trace>.TMode Select trigger mode
	<trace>.TraceCONNECT Select on-chip peripheral sink
	<trace>.TRACK Set tracking record
	<trace>.TRIGGER Trigger the trace
	<trace>.TSELect Select trigger source
	<trace>.View Display single record
	<trace>.ZERO Align timestamps of trace and timing analyzers

	TRACEPORT
	TRACEPORT Configure trace hardware
	TRACEPORT.EndsKiP Define number of bytes skipped at the end of frame
	TRACEPORT.LaneCount Select port size of the trace port
	TRACEPORT.LanePolarity Set polarity for each lane of the trace port
	TRACEPORT.LaneSpeed Inform debugger about trace port rate
	TRACEPORT.MsgBItEndian Change bit-order within each byte
	TRACEPORT.MsgBYteEndian Change byte-order within each word
	TRACEPORT.MsgLOngEndian Change dword-order within each qword
	TRACEPORT.MsgWOrdEndian Change word-order within each dword
	TRACEPORT.OSCFrequency Set OSC clock frequency
	TRACEPORT.PinReMap Adapt the lane order of the trace port
	TRACEPORT.RefCLocK Set up reference clock for trace port
	TRACEPORT.RESet Reset trace port configuration
	TRACEPORT.StartsKiP Define number of bytes skipped at the start of frame
	TRACEPORT.state Display trace port configuration window

	TRANSlation
	TRANSlation Debugger address translation
	Overview TRANSlation
	TRANSlation.AutoEnable Auto-enable debugger MMU translation
	TRANSlation.AutoSCAN Autoscan feature for debugger MMU
	TRANSlation.CacheFlush Flush TRACE32 address translation cache
	TRANSlation.CLEANUP Clean up MMU table
	TRANSlation.COMMON Common address ranges for kernel and tasks
	TRANSlation.COMMON.ADD Add another common address range
	TRANSlation.COMMON.CLEAR Clear all common logical address ranges
	TRANSlation.Create Create translation
	TRANSlation.CreateID Add entry to MMU space ID table
	TRANSlation.CreateTab Create multiple translations
	TRANSlation.Delete Delete translation
	TRANSlation.DeleteID Remove entry from MMU space ID table
	TRANSlation.List List MMU translation table
	TRANSlation.ListID List MMU space ID table
	TRANSlation.NoProtect Unprotect memory
	TRANSlation.OFF Deactivate debugger address translation
	TRANSlation.ON Activate debugger address translation
	TRANSlation.PAGER Allow paged breakpoints for Linux
	TRANSlation.Protect Protect memory
	TRANSlation.Protect.ADD Add range to protected memory ranges
	TRANSlation.Protect.OFF Switch protection of target memory off
	TRANSlation.Protect.ON Protect entire target memory
	TRANSlation.RESet Reset MMU configuration
	TRANSlation.SCANall Scan MMU tables
	TRANSlation.ScanID Scan MMU address space tables from kernel
	TRANSlation.SHADOW Enable shadow access to target memory
	TRANSlation.state Overview of translation settings
	TRANSlation.TableWalk Automatic MMU page table walk
	TRANSlation.TlbAutoScan Allow automatic TLB scans during table walk
	TRANSlation.TRANSparent Transparent banking area

	TrBus
	TrBus Trigger bus
	Overview TrBus
	Trigger Bus on the PowerTrace
	Interaction Between Independent PODBUS Devices

	TrBus.Arm Arm the trigger bus
	TrBus.Connect Configure TRIGGER as input or output
	TrBus.Mode Define polarity/edge for the trigger signal
	TrBus.OFF Switch trigger bus off
	TrBus.Out Define source for the external trigger pulse
	TrBus.RESet Reset setting for trigger bus
	TrBus.Set Define the target for the incoming trigger
	TrBus.state Display settings for the trigger bus
	TrBus.Trigger Stimulate a trigger on the trigger bus

	TrOnchip
	TrOnchip Onchip triggers
	TrOnchip.RESet Reset settings to defaults
	TrOnchip.state Display onchip trigger window

	TrPOD
	TrPOD Trigger probe
	TrPOD.Clock Defines data mask
	TrPOD.ClockPOL Defines data polarity
	TrPOD.Data Defines data mask
	TrPOD.DataPOL Defines data polarity
	TrPOD.Mode Defines data polarity
	TrPOD.OFF Switch off
	TrPOD.ON Switch on
	TrPOD.RESet Reset command
	TrPOD.state State display
	TrPOD.Time Defines the time for the pulse width trigger

