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History

22-Apr-2024 New option /NoExec for LA.IMPORT.TARMAC command.

25-Mar-2024 New option /COVerableItems for List.EXPORT.auto and List.EXPORT.Mix commands.

23-Feb-2024 New command LA.IMPORT.TARMAC.
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LA

LA     Logic analyzer

The trace method LA is used for remote control of logic analyzer systems.

For selecting and configuring the trace method LA, use the TRACE32 command line or a PRACTICE script 
(*.cmm) or the LA.state window [A].

Alternatively, use the Trace.state window: click the option LA or execute the command Trace.METHOD LA 
in order to select the trace method LA [B].

The chapter “LA-specific Trace Commands”, page 8 describes the LA-specific configuration commands. 
While the chapter “Generic LA Trace Commands”, page 20 lists the LA trace analysis and display 
commands, which are shared with other TRACE32 trace methods.

See also

■  Trace.METHOD 
 

▲  ’Generic LA Trace Commands’  in ’General Commands Reference Guide L’
▲  ’Release Information’  in ’Legacy Release History’

A

B
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LA-specific Trace Commands      

LA.IMPORT     Import trace information
[Example]

The LA.IMPORT command group is used to load trace data from a file into TRACE32 and to analyze it just 
like data recorded with a TRACE32 trace tool.

The trace data can be obtained by the application software itself or by another tool or by TRACE32 in a 
previous debug session in which the processing could not be performed for some reasons.

Trace data successfully obtained and analyzed by TRACE32 can be stored by <trace>.SAVE and re-viewed 
by using the <trace>.LOAD command. This is the more convenient way because <trace>.SAVE stores a lot 
of additional information used for the analysis. LA.IMPORT imports only the trace raw data. For proper 
processing you need to inform the debugger about all the trace-relevant circumstances.

All kind of trace postprocessing is only possible with the trace method LA (Logic Analyzer). Therefore you 
need to use LA.IMPORT and LA.* command group for all analysis commands or better switch the trace 
method to LA (Trace.METHOD LA) and use the command group Trace.* for all further operations.

LA.IMPORT supports different kinds of trace data and formats. Therefore different commands are provided. 

Most trace data is stored in the file in the timely order the data had been generated. 

An exception is the on-chip trace buffer, which is typically used as a circular ring buffer overwriting the trace 
data all the time until the point of interest is reached. 

Import

LA.IMPORT.<format>

        Records in trace file

0 (oldest record)        
1                         
.
.
.
999 (newest record)                       

Records in LA.List window

Save

File from an external source

Display

LA.List

0 (oldest record)        
1                         
.
.
.
999 (newest record)                       
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If this buffer is saved into a file, you need to know the wrap pointer for being able to get the data in a timely 
order. LA.IMPORT.WRAP and LA.IMPORT.GUESSWRAP will deal with this concern.

 

For post processing trace data loaded by LA.IMPORT you need to take the following steps:
 

1. Start TRACE32 to run as simulator (config.t32 -> PBI=SIM). You neither need a debugger 
hardware nor a target. You can run TRACE32 as debugger as well, but for the postprocessing 
this is not needed. 

2. Adjust all trace relevant settings like for a real target by running the start-up script you used for 
generating the trace data. For postprocessing an ETMv4 even further setups might be needed 
which normally the debugger would read out from the ETM module (ETM.COND, ETM.INSTPO, 
ETM.QE).

If the start-up script is not available, then try this:

- At best selecting the chip you are debugging (SYStem.CPU ...) is sufficient. 

- For trace data coming from a ARM CoreSight system, all commands describing the trace 
system on the chip are required (SYStem.CONFIG ...). 

- Further all settings for the trace sources done at recording time are needed (e.g. ETM. ...).  

3. Load your target application (Data.LOAD ...).

4. Import the trace raw data (LA.IMPORT. ...).

5. Now you can use all trace display and analysis functions, e.g.

LA.List TP TPC TPINFO DEFault List.NoDummy.OFF ; with diagnostics

Import

LA.IMPORT.ETB

0                         
1                         
.
.
.
996 (newest record)                       

Records in LA.List window
-3 (oldest record)                        
-2                        
-1                       

Save

e.g. by external tool

Display

LA.List

Re-order

LA.IMPORT.WRAP

Process:

Circular 
Ring 
Buffer

997 (oldest record)      
998                      
999                      

        Records in trace file
0                        
1                        
.
.
.
996 (newest record)      

Wrap pointer

Result:

R
e-

or
de

r
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Example:

See also

■  LA.IMPORT.CoreByteStream ■  LA.IMPORT.cycles 
■  LA.IMPORT.ELA ■  LA.IMPORT.ETB 
■  LA.IMPORT.GUESSWRAP ■  LA.IMPORT.StartInvalid 
■  LA.IMPORT.StartValid ■  LA.IMPORT.STP 
■  LA.IMPORT.STPByteStream ■  LA.IMPORT.TARMAC 
■  LA.IMPORT.TraceFile ■  LA.IMPORT.TracePort 
■  LA.IMPORT.UltraSOC ■  LA.IMPORT.VCD 
■  LA.IMPORT.WRAP ■  <trace>.EXPORT 

LA.IMPORT.CoreByteStream     Import pure single core trace data

Imports pure single core trace data (e.g. for unwrapped single core trace data or x86 IPT traces).

See also

■  LA.IMPORT 

SYStem.CPU CortexA15

SYStem.CONFIG COREDEBUG.Base 0x82010000
SYStem.CONFIG.ETM.Base 0x8201c000
SYStem.CONFIG.FUNNEL.Base 0x80040000
SYStem.CONFIG.FUNNEL.ATBSource ETM 0
SYStem.CONFIG.ETB.Base 0x80010000

ETM.PortMode.Wrapped
ETM.TraceID 0x55

SYStem.Up

Data.LOAD.Elf myfile.elf

Trace.METHOD.LA
Trace.IMPORT.ETB mydata.bin
Trace.IMPORT.GUESSWRAP

Trace.List TP TPC TPINFO DEFault List.NoDummy.OFF

Format: LA.IMPORT.CoreByteStream <file> 
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LA.IMPORT.cycles     Import bus trace data

Re-imports a file that has been exported with <trace>.EXPORT.cycles. This bus trace data comes from 
capturing the fetched instructions and data accesses done on an external bus to figure out the program 
behavior. It works only if no cache is used and if the bus accesses can be captured. This command can be 
used to import traces from external tools or simulators.

See also

■  LA.IMPORT 
 

▲  ’Release Information’  in ’Legacy Release History’

LA.IMPORT.ELA     Import ELA trace data

Imports a pure binary trace data file obtained from an ARM CoreSight Embedded Logic Analyzer 
(ELA).

See also

■  LA.IMPORT 

LA.IMPORT.ETB     Import on-chip trace data

Imports a pure binary trace data file obtained from an on-chip trace buffer like ARM CoreSight ETB, 
ETF, ETR.

You additionally need to use LA.IMPORT.WRAP or LA.IMPORT.GUESSWRAP if the following conditions 
apply:

• The on-chip trace buffer was used as a circular ring buffer.

• The on-chip trace data was stored as is, it was not read out in the timely order starting from the write 
pointer position.

Format: LA.IMPORT.cycles <file>

Format: LA.IMPORT.ELA <file>

Format: LA.IMPORT.ETB <file>
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LA.Mode FlowTrace will automatically be set when using this command.

See also

■  LA.IMPORT 
 

▲  ’Release Information’  in ’Legacy Release History’
General Commands Reference Guide L     |    12©1989-2024   Lauterbach                                                        



LA.IMPORT.GUESSWRAP     Guess wrap pointer

Reformats external trace data loaded to TRACE32 in a timely order. The external trace data of a circular ring 
buffer is loaded to TRACE32 using LA.IMPORT.ETB. The command LA.IMPORT.GUESSWRAP scans 
the loaded trace data and guesses where the wrap pointer might have been.

Optionally, you can pass a record number where the search for the wrap pointer shall start. Without a 
parameter it starts from the beginning.

Use LA.IMPORT.WRAP if you know where the wrap pointer is.

See the figures in the introduction to <trace>.IMPORT.

See also

■  LA.IMPORT ■  LA.IMPORT.WRAP 

LA.IMPORT.StartInvalid     Set start of trace as invalid

Reverts the setting done with LA.IMPORT.StartValid.

See also

■  LA.IMPORT 

Format: LA.IMPORT.GUESSWRAP [<record_number>]

Format: LA.IMPORT.StartInvalid
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LA.IMPORT.StartValid     Set start of trace as valid

This command informs the debugger that the start of the loaded trace is valid and that it should not wait for 
Sync packets.

See also

■  LA.IMPORT 

LA.IMPORT.STP     Import STP recording from file (nibble)

Imports an STP trace from <file> to process it within TRACE32. One trace record is generated per nibble.

In order to unwrap the trace information for processing, TRACE32 needs to know the following information: 
STM base address and the STP protocol version.

If TRACE32 is aware of the chip characteristic, setting up the chip is sufficient. 

Example: 

Format: LA.IMPORT.StartValid [<address1> <address2> …]

<address1> 
<address2> …

The trace is set as valid starting from the given address. On SMP 
systems, the first address corresponds to the first core, the second to the 
second core... 

Format: LA.IMPORT.STP <file>

SYStem.CPU OMAP4430APP1

LA.IMPORT.STP my_recording.stp

STMLA.List
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Otherwise the following setup has to be done. 

See also

■  LA.IMPORT 

LA.IMPORT.STPByteStream     Import STP recording from file (byte)

Same as LA.IMPORT.STP, but one trace record is generated per byte.

See also

■  LA.IMPORT 
 

▲  ’Release Information’  in ’Legacy Release History’

LA.IMPORT.TARMAC     Import TARMAC trace file
[build 165454 - DVD 02/2024]

Imports a trace data file in Tarmac format.

See also

■  LA.IMPORT 

SYStem.CONFIG.STM.Base DAP:0xd4161000 ; any base address != 0x0 is
; fine

SYStem.CONFIG.STM.Mode STPv2 ; specify the STP protocol
; version

LA.IMPORT.STP my_recording.stp

STMLA.List

Format: LA.IMPORT.STPByteStream <file>

Format: LA.IMPORT.TARMAC <file> [/<option>]

<option>: NoExec

NoExec Allows the import process to ignore the execution state information 
(exec/notexec) from the file.
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LA.IMPORT.TraceFile     Import trace data where processing has failed

Re-imports trace data stored by <trace>.SAVE for re-processing. This is useful if processing was not 
possible when the trace recording was made. For example if you had no access to the target code at 
that moment.

Only the trace raw data will be extracted from the saved (*.ad) file.

LA.Mode FlowTrace will automatically be set when using this command.

See also

■  LA.IMPORT 
 

▲  ’Release Information’  in ’Legacy Release History’

LA.IMPORT.TracePort     Import off-chip trace data

Imports a pure binary trace data file from an external trace port like an ARM CoreSight TPIU. Unlike 
on-chip trace data, off-chip trace data includes synchronization packages and depend on the port size 
of the trace port.

LA.Mode FlowTrace will automatically be set when using this command.

See also

■  LA.IMPORT 
 

▲  ’Release Information’  in ’Legacy Release History’

Format: LA.IMPORT.TraceFile <file>

Format: LA.IMPORT.TracePort <file>
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LA.IMPORT.UltraSOC     Import raw UltraSOC flow trace data

This command allows to load raw UltraSOC flow trace data.

See also

■  LA.IMPORT 

LA.IMPORT.VCD     Import recorded signals in VCD file format

Imports a VCD (Value Change Dump) file, which is an industrial standard format for waveforms (not for 
program trace). It is used for visualizing and analyzing the captured signals in the <trace>.Timing 
window.

See also

■  LA.IMPORT 

Format: LA.IMPORT.UltraSOC <file>

Format: LA.IMPORT.VCD <file>
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LA.IMPORT.WRAP     Define wrap pointer

Reformats external trace data loaded to TRACE32 in a timely order. The external trace data of a circular ring 
buffer is loaded to TRACE32 using LA.IMPORT.ETB.  

Use LA.IMPORT.GUESSWRAP if you do not know where the wrap pointer is.

See the figures in the introduction to LA.IMPORT.

See also

■  LA.IMPORT ■  LA.IMPORT.GUESSWRAP 

Format: LA.IMPORT.WRAP <record_number> 

<record_number> You pass the <record_number> of the first trace record in time (wrap 
pointer). This is the write pointer location of a circular ring buffer the moment 
the data has been stored.

NOTE: On a CoreSight trace, the write pointer points to a 32-bit value. You need to multiply 
this value by 4 because each CoreSight trace record is 8 bit in size.
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LA.Mode     Set the trace operation mode

Selects the trace operation mode.

See also

■  <trace>.Mode 

Format: LA.Mode [<mode>]

<mode>: Fifo
Stack
FlowTrace

Fifo If the trace is full, new records will overwrite older records. The trace 
records always the last cycles before the break.

Stack If the trace is full recording will be stopped. The trace always records the 
first cycles after starting the trace.

FlowTrace FlowTrace mode.
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Generic LA Trace Commands  

LA.ACCESS     Define access path to program code for trace decoding

See command  <trace>.ACCESS in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 
131).

LA.Arm     Arm the trace

See command  <trace>.Arm in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 134).

LA.AutoArm     Arm automatically

See command  <trace>.AutoArm in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 
135).

LA.AutoInit     Automatic initialization

See command  <trace>.AutoInit in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 140).

LA.BookMark     Set a bookmark in trace listing

See command  <trace>.BookMark in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 
140).

LA.Chart     Display trace contents graphically

See command  <trace>.Chart in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 144).
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LA.CLOCK     Clock to calculate time out of cycle count information

See command  <trace>.CLOCK in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 191).

LA.ComPare     Compare trace contents

See command  <trace>.ComPare in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 
192).

LA.ComPareCODE     Compare trace with memory

See command  <trace>.ComPareCODE in 'General Commands Reference Guide T'  (general_ref_t.pdf, 
page 194).

LA.DISable     Disable the trace

See command  <trace>.DISable in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 197).

LA.DRAW     Plot trace data against time

See command  <trace>.DRAW in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 201).

LA.EXPORT     Export trace data for processing in other applications

See command  <trace>.EXPORT in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 
212).

LA.FILE     Load a file into the file trace buffer

See command  <trace>.FILE in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 233).

LA.Find     Find specified entry in trace

See command  <trace>.Find in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 235).
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LA.FindAll     Find all specified entries in trace

See command  <trace>.FindAll in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 237).

LA.FindChange     Search for changes in trace flow

See command  <trace>.FindChange in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 
238).

LA.FLOWPROCESS     Process flowtrace

See command  <trace>.FLOWPROCESS in 'General Commands Reference Guide T'  (general_ref_t.pdf, 
page 241).

LA.FLOWSTART     Restart flowtrace processing

See command  <trace>.FLOWSTART in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 
241).

LA.GOTO     Move cursor to specified trace record

See command  <trace>.GOTO in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 244).

LA.Init     Initialize trace

See command  <trace>.Init in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 246).

LA.List     List trace contents

See command  <trace>.List in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 248).
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LA.ListNesting     Analyze function nesting

See command  <trace>.ListNesting in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 
263).

LA.ListVar     List variable recorded to trace

See command  <trace>.ListVar in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 266).

LA.LOAD     Load trace file for offline processing

See command  <trace>.LOAD in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 270).

LA.OFF     Switch off

See command  <trace>.OFF in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 278).

LA.PROfileChart     Profile charts

See command  <trace>.PROfileChart in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 
283).

LA.PROfileSTATistic     Statistical analysis in a table versus time

See command  <trace>.PROfileSTATistic in 'General Commands Reference Guide T'  (general_ref_t.pdf, 
page 322).

LA.PROTOcol     Protocol analysis

See command  <trace>.PROTOcol in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 
339).
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LA.PROTOcol.Chart     Graphic display for user-defined protocol

See command  <trace>.PROTOcol.Chart in 'General Commands Reference Guide T'  (general_ref_t.pdf, 
page 339).

LA.PROTOcol.Draw     Graphic display for user-defined protocol

See command  <trace>.PROTOcol.Draw in 'General Commands Reference Guide T'  (general_ref_t.pdf, 
page 341).

LA.PROTOcol.EXPORT     Export trace buffer for user-defined protocol

See command  <trace>.PROTOcol.EXPORT in 'General Commands Reference Guide T'  
(general_ref_t.pdf, page 342).

LA.PROTOcol.Find     Find in trace buffer for user-defined protocol

See command  <trace>.PROTOcol.Find in 'General Commands Reference Guide T'  (general_ref_t.pdf, 
page 343).

LA.PROTOcol.list     Display trace buffer for user-defined protocol

See command  <trace>.PROTOcol.list in 'General Commands Reference Guide T'  (general_ref_t.pdf, 
page 344).

LA.PROTOcol.PROfileChart     Profile chart for user-defined protocol

See command  <trace>.PROTOcol.PROfileChart in 'General Commands Reference Guide T'  
(general_ref_t.pdf, page 347).

LA.PROTOcol.PROfileSTATistic     Profile chart for user-defined protocol

See command  <trace>.PROTOcol.PROfileSTATistic in 'General Commands Reference Guide T'  
(general_ref_t.pdf, page 348).
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LA.PROTOcol.STATistic     Display statistics for user-defined protocol

See command  <trace>.PROTOcol.STATistic in 'General Commands Reference Guide T'  
(general_ref_t.pdf, page 350).

LA.REF     Set reference point for time measurement

See command  <trace>.REF in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 357).

LA.RESet     Reset command

See command  <trace>.RESet in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 357).

LA.SAVE     Save trace for postprocessing in TRACE32

See command  <trace>.SAVE in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 358).

LA.SelfArm     Automatic restart of trace recording

See command  <trace>.SelfArm in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 
362).

LA.SIZE     Define buffer size

See command  <trace>.SIZE in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 373).

LA.SnapShot     Restart trace capturing once

See command  <trace>.SnapShot in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 
373).

LA.state     Display trace configuration window

See command  <trace>.state in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 376).
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LA.STATistic     Statistic analysis

See command  <trace>.STATistic in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 
378).

LA.Timing     Waveform of trace buffer

See command  <trace>.Timing in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 499).

LA.TRACK     Set tracking record

See command  <trace>.TRACK in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 502).

LA.View     Display single record

See command  <trace>.View in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 504).

LA.ZERO     Align timestamps of trace and timing analyzers

See command  <trace>.ZERO in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 505).
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List

List     Display modes for programs

The List command group displays a program listing:

• Source code and object code in the List.Mix window

• Object code only in the List.Asm window

• Source code only in the List.Hll window

• Java byte code in the List.Java window

In addition, the program listing can be exported with List.EXPORT.

See also

■  List.Asm ■  List.auto ■  List.EXPORT ■  List.Hll 
■  List.Java ■  List.Mix ■  Data.dump ■  Data.LOAD 
■  Go ■  SETUP.DIS ■  SETUP.LISTCLICK ■  SETUP.sYmbol 
■  SETUP.TIMEOUT ■  Step ■  WinOverlay ❏  ADDRESS.isPHYSICAL() 
❏  ADDRESS.OFFSET() ❏  ADDRESS.SEGMENT() ❏  ADDRESS.STRACCESS() ❏  ADDRESS.WIDTH() 
❏  sYmbol.END() ❏  sYmbol.EXIT() 
 

▲  ’Release Information’  in ’Legacy Release History’
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List.auto     Display program listing
[Options] [Examples]

The display format (assembler, mixed or HLL) of the List.auto window is selected dynamically, depending 
on the current debug mode. You can change the debug mode by clicking the Mode button in the toolbar of a 
List.* window or by using the Mode command.

If no address is specified, the window tracks the value of the program counter (PC). The window is only 
scrolled, if the bar moves outside of a predefined subwindow. The display format may be specified with the 
SETUP.DIS command.

Format: List.auto [<address> | <range>] [/<option>]
Data.List (deprecated)

<option>: Mark <break>
Flag <flag>   (EF)
DIVERGE
COVerage
CACHE
Track
TOrder | SOrder
ISTAT [<parameter>]

<flag>: Read | Write | NoRead | NoWrite

<break>: Program | Hll | Spot | Read | Write | Alpha | Beta | Charly | Delta | Echo

<parameter>: DEFault | ALL | CLOCKS | TCLOCKS | SAMPLES | COVerage
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If the source listing is displayed in HLL mode, some code lines may be marked with a tree button. This tree 
button indicates that the compiler generated assembler code at more than one address location for this 
source code line. This is very common for for-while loops as well as for code compiled with a high 
optimization level.

If you want to inspect this in detail, the following commands might be helpful:   

Data.ListHll ; display the source code in HLL
; mode (source order)

Data.ListMix /Track ; display the source code in Mixed
; mode (target line order)

tree button

Assembler code at two address locations is generated for the HLL line number 683--684
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If you push the tree button to get detailed information, a duplicate of the original HLL line is generated for 
each assembler code address location. 

If you now select one of the duplicates, the cursor in the Data.ListMix window points automatically to the 
corresponding assembler code. This feature is enabled by the /Track option.

Shaded lines indicate that the source information is not on disk or in the wrong directory. See command 
sYmbol.SPATH. For an example of shaded lines in a List window, see screenshot in List.Mix. 
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Options of the List.* Commands
[Back]

Mark The Mark option highlights individual lines, depending on the breakpoint 
type.

MarkPC The MarkPC option highlights all HLL source lines belonging to the 
current PC.
See example.

Flag Mark a line with specific flag memory contents, e.g. Read

DIVERGE This option is mainly intended for internal diagnostic purposes: It 
attaches tags to executed and not executed ASM and HLL lines. The tags 
are displayed in the scale area of the List.* windows. You can open the 
scale area by dragging the slider control to the right.
• For information about the tags, see example.
• See also Step.Diverge.

COVerage Displays trace based code coverage information. The COVerage option 
highlights all code lines that have not been fully covered. For more 
information, see COVerage.

CACHE Displays cache hit information and marks currently cached code.

Track Tracks the window to the reference position of other windows. The 
window tries first to track to the PROGRAM reference, and if this 
reference is not valid, it tracks to the DATA reference.

TOrder List source lines in target line order. This is the default for assembly and 
mixed mode displays.

SOrder List source lines in source line order. This is the default for source level 
displays.

ISTAT [<parameter>] Display source listing together with the information provided by the 
instruction trace database (ISTATistic.ListFunc).
Instructions that have not been executed are highlighted in yellow.
• For a description of the <parameters>, see table below.
• ISTAT used without parameter, see example.
• ISTAT used with the COVerage parameter, see example.
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Parameters for the ISTAT Option

[Back]

Examples

Example for the ISTAT option - without <parameter>

[Back]

DEFault Display the default information provided by the ISTAT database.

ALL Display all information provided by the ISTAT database.

CLOCK Display the clock and CPI information provided by the ISTAT database.

TCLOCK (only for special purposes)

SAMPLES Display recorded samples, time and ratio.

COVerage Display the code coverage information provided by the ISTAT database.

Data.ListAsm func13 /ISTAT ; list instruction run-time
; statistic

count Total number of instruction executions

clocks Total number of clocks for the instruction

cpi Average clocks per instruction
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Example for the ISTAT option - with the COVerage <parameter> 

[Back]

If exec or/and notexec is 0 for an instruction with condition, the instruction is bold-printed on a yellow 
background. All other instruction are bold-printed on a yellow background if they were not executed.

List func11 /ISTAT COVerage ; list instruction coverage

exec conditional instructions: number of times the instruction was executed 
because the condition was true.

other instructions: number of times the instruction was executed

notexec conditional instructions: number of times the instruction wasn’t 
executed because the condition was false.

coverage Instruction coverage

Data.List ; display source listing around the
; current PC

Data.List /Mark Program

Data.List /Mark

; display source listing, bold print 
; all instructions / HLL lines on a
; yellow background if a program
; breakpoint is set

; remove bold printing on yellow
; background
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Example for the DIVERGE option

[Back]
     

Data.List /Track ; track the window to a reference, e.g. 
; analyzer

Data.List Register(a0) ; follow the register A0 of the CPU

PRINT Data.Long(d:0x200) ; prints the memory contents of addresses
; D:0x200..0x203
; Do not mix up the command Data.List
; with the function Data.Long()

; Short form of the command is D.L
; Short form of the function is D.L()

Tags in the columns s, state, and i

h Line in HLL mode (Mode.Hll).

a Address in ASM mode (Mode.Asm).

stop Reached by a breakpoint. 

done An executed line or address.

hit A reached line or address that has not yet been executed, e.g. in a linear code 
sequence.

target This line or address is a possible target of the next Step.Diverge. Once reached, target 
is replaced with hit.

i Indirect branch instruction.
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Example for the MarkPC option

[Back]   

See also

■  List ■  List.Asm ■  List.EXPORT ■  List.Hll 
■  List.Java ■  List.Mix ■  SETUP.DIS ■  SETUP.LISTCLICK 
■  SETUP.sYmbol ■  SETUP.TIMEOUT ❏  ADDRESS.isPHYSICAL() ❏  ADDRESS.OFFSET() 
❏  ADDRESS.SEGMENT() ❏  ADDRESS.STRACCESS() ❏  ADDRESS.WIDTH() ❏  sYmbol.END() 
❏  sYmbol.EXIT() 
 

▲  ’Release Information’  in ’Legacy Release History’

Register.Set PC main     ; set the Program Counter to the label main
List.auto main /MarkPC   ; highlight all instructions related to the
                         ; current HLL line

MarkPC
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List.Asm     Display disassembler

Displays the program in disassembled format. The functionality is the same as the Data.List command.
   

See also

■  List ■  List.auto ■  List.Hll ■  List.Java 
■  List.Mix ■  Mode ❏  DEBUGMODE() 

Format: List.Asm [<address>] [/<option>] 
Data.ListAsm (deprecated)

<option>: Mark <break>
Flag <flag>   (EF)
COVerage
CACHE
Track
MarkPC

TOrder | SOrder
IgnoreSymbols

<option> For a description of the options, see List.auto command.

IgnoreSymbols Let the disassembler ignore any symbols for deciding at which byte of the 
machine code the disassembling should start. This option does normally 
only make sense on architectures with different instruction lengths.
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List.EXPORT     Export a listing to an XML file

Using the List.EXPORT command group, you can export a source or disassembler listing or both listings to 
an XML file.

In addition, TRACE32 provides an XSL transformation template for formatting the XML file. The formatting is 
automatically applied to the XML file when it is opened in an external browser window. Prerequisite: The 
XSL file is placed in the same folder as the XML file. 

For demo scripts, see List.EXPORT.Mix. 

See also

■  List.EXPORT.Asm ■  List.EXPORT.auto ■  List.EXPORT.Hll ■  List.EXPORT.Mix 
■  List ■  List.auto ■  COVerage.EXPORT ■  ISTATistic.EXPORT 

List.EXPORT.Asm     Export disassembler listing

Creates an XML file containing the disassembler listing. For an example and a description of the options, 
see List.EXPORT.Mix.

See also

■  List.EXPORT 

Format: List.EXPORT.Asm <file> <range> [/<option>]
Data.ListEXPORTAsm (as an alternative)

<option>: COVerage | ISTATistic Append | NoData 
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List.EXPORT.auto     Export source and disassembler listing

Creates an XML file containing the source listing and the disassembler listing - same as List.EXPORT.Mix. 
For an example and a description of the options, see List.EXPORT.Mix.

See also

■  List.EXPORT 

List.EXPORT.Hll     Export source listing

Creates an XML file containing just the source listing. For an example and a description of the options, see 
List.EXPORT.Mix.

See also

■  List.EXPORT 

Format: List.EXPORT.auto <file> <range> [/<option>]
Data.ListEXPORT (as an alternative)

<option>: COVerage | ISTATistic | TOrder | SOrder Append | NoData | COVerableItems

Format: List.EXPORT.Hll <file> <range> [/<option>]
Data.ListEXPORTHll (as an alternative)

<option>: COVerage | ISTATistic | Append | NoData
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List.EXPORT.Mix     Export source and disassembler listing
[Example]

Creates an XML file containing the source listing and the disassembler listing.   

Format: List.EXPORT.Mix <file> <range> [/<option>] 
Data.ListEXPORTMix (as an alternative)

<option>: COVerage | ISTATistic | SOrder | TOrder | Append | NoData | COVerableItems

<file> Name of the XML file that stores a listing of the source and disassembler 
code. The file extension *.xml can be omitted.

<range> Address filter for exporting the specified range.

Append Appends the listing to an existing XML file - without overwriting the 
current file contents.

COVerage Listing additionally contains code coverage information.

COVerableItems Exports only coverage results for measurable source lines.

ISTATistic Listing additionally contains information provided by the ISTATistics 
module.

NoData Excludes data-only sections from the XML output.

SOrder Export the source code lines in source order.

TOrder Export the source code lines in target order (default).
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Example 1: The prerequisites for the following example are that the debug symbols have already been 
loaded, the address bookmarks have been created, and trace data has been recorded.

The tildes ~~ expand to your TRACE32 system directory, by default c:\t32.

Example 2: A more complex demo script is included in your TRACE32 installation. To access the script, run 
this command:
B::CD.PSTEP ~~/demo/coverage/example.cmm 

See also

■  List.EXPORT 

COVerage.ADD                 ;update the coverage database
Data.List /COVerage /Track   ;display source listing
COVerage.ListFunc            ;display coverage for HLL functions

;export all bookmarks
BookMark.EXPORT "~~/list.xml"

;export the source listing of the functions “main” and “sieve”
List.EXPORT.Mix "~~/list.xml"  main   /COVerage  /Append
List.EXPORT.Mix "~~/list.xml"  sieve  /COVerage  /Append

;for demo purposes: let's open the unformatted result in TRACE32
EDIT "~~/list.xml"

;place the transformation template in the same folder as the XML file
COPY "~~/demo/coverage/single_file_report/t32transform.xsl" \
     "~~/t32transform.xsl"

;you can now open the formatted result in an external browser window
OS.Command start iexplore.exe "file:///C:/t32/list.xml"
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List.Hll     Display source

Displays the program in source format. The functionality is the same as the Data.List command. If the 
starting address in not an HLL (High Level Language) line, assembler code is displayed to the next HLL line 
found in the code segment. 

Shaded lines indicate that the source information is not on disk or in the wrong directory. See command 
sYmbol.SPATH.

See also

■  List ■  List.Asm ■  List.auto ■  List.Java 
■  List.Mix ■  Mode ❏  DEBUGMODE() 

Format: List.Hll [<address>] [/<option>] 
Data.ListHll (as an alternative)

<option>: Mark <break>
Flag <flag>   (EF)
COVerage
CACHE
Track
MarkPC
TOrder | SOrder

<option> For a description of the options, see List.auto.

Program counter 
(PC)

Shaded lines
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List.Java     Display Java byte code
[Example]

Displays the program in Java byte code format. The functionality is the same as the Data.List command. 

This command is NOT required when an address range is specified as Java byte code area with the Java 
byte code debugger or when the processor implements a special byte code mode (e.g. ARM Jazelle).   

Format: List.Java [<address>] [/<option>] 
Data.ListJava (as an alternative)

<option>: Mark <break>
Flag <flag>(EF)
COVerage
CACHE
Track
TOrder | SOrder

<option> For a description of the options, see List.auto.
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Android is used in this example:     

See also

■  List ■  List.Asm ■  List.auto ■  List.Hll 
■  List.Mix 

;list all running tasks by magic number, task name, task ID, etc.
TASK.List.tasks

;change view to a task by specifying the magic number, task name or ID 
Frame.TASK 0xEFD29700

;display a source listing at this address for the task specified above
List.Java J:0x0690:0x583A3D14

;alternatively, use the label to display the same source listing.
List.Java `<clinit>()`         ;enclose the label in backticks `...`

Java file name:
Click to open the 
symbol browser.

Access class J for Java

Thread ID

Address
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List.Mix     Disassembler and source

The code is displayed in HLL (High Level Language) and additionally disassembled from the memory. The 
functionality is the same as the Data.List command. 

Shaded lines indicate that the source information is not on disk or in the wrong directory. See the command 
sYmbol.SPATH.

See also

■  List ■  List.Asm ■  List.auto ■  List.Hll 
■  List.Java ■  Mode ❏  DEBUGMODE() 

Format: List.Mix [<address>] [/<option>] 
Data.ListMix (as an alternative)

<option>: Mark <break>
Flag <flag>   (EF)
COVerage
CACHE
Track
MarkPC
TOrder | SOrder

<option> For a description of the options, see List.auto command.

Program counter 
(PC)

Shaded lines
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LOGGER

LOGGER     Trace method LOGGER, recording and analysis commands

LOGGER is a software trace method where the target application writes the required trace information to the 
a reserved buffer on the target RAM. TRACE32 loads then the trace information from the target RAM for 
display and processing.

Please refer to the “Application Note for the LOGGER Trace” (app_logger.pdf) for more information.

For selecting and configuring the trace method LOGGER, use the TRACE32 command line or a PRACTICE 
script (*.cmm) or the LOGGER.state window [A].

Alternatively, use the Trace.state window: click the option LOGGER or execute the command 
Trace.METHOD Analyzer in order to select the trace method LOGGER [B].

The chapter “LOGGER-specific Trace Commands”, page 46 describes the LOGGER-specific 
configuration commands. While the chapter “Generic LOGGER Trace Commands”, page 48 lists the 
LOGGER trace analysis and display commands, which are shared with other TRACE32 trace methods.

See also

■  FDX ■  Trace.METHOD 

A

B
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LOGGER-specific Trace Commands 

LOGGER.ADDRESS     Software trace address

Defines the address of the logger trace control block in target memory.

LOGGER.Mode     Set LOGGER operation mode

Selects the trace operation mode.

See also

■  <trace>.Mode 

Format: LOGGER.ADDRESS [<address>]

Format: LOGGER.Mode [<mode>]

<mode>: Fifo | Stack

Create
runtimE
64bit

FlowTrace

Fifo If the trace is full, new records will overwrite older records. The trace 
records always the last cycles before the break.

Stack If the trace is full recording will be stopped. The trace always records the 
first cycles after starting the trace.

Create Create LOGGER software trace control block by debugger.

runtimE Dualport access.

64Bit LOGGER mode for 64-bit traces.

FlowTrace Special mode where the LOGGEr is used to sample the program flow. 
The LOGGER trace listing reconstructs the program flow based on the 
sampled information. Only supported for PowerPC and SH4.
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LOGGER.TimeStamp     Configure timestamp usage of LOGGER trace

Configure timestamps for the LOGGER trace. The LOGGER trace record format includes a timestamp field 
for up to 48 bit timestamps. The direction and rate information passed by this command is required to 
convert the timestamp into the time in seconds.

Example: The timestamp used by the LOGGER target code increments at a rate of 16 million per second 
(16 MHz):

Format: LOGGER.TimeStamp OFF | Up | Down | Rate <rate>

OFF 
(default)

Disable timestamps. Use this setting if the LOGGER target code does 
not store timestamps in the LOGGER trace records. When this setting is 
used, the x-direction in chart views is the record number axis instead of 
the time axis.

Up Enable timestamp counter, counting upwards. Use this setting if the 
LOGGER target code stores timestamps in the LOGGER trace records 
and if the timestamp increments with each timer tick.

Down Enable timestamp counter, counting downwards. Use this setting if the 
LOGGER target code stores timestamps in the LOGGER trace records 
and if the timestamp decrements with each timer tick.

Rate <rate> Frequency of the timestamp in ticks per second.

AllCycles
[ON | OFF]
SH only

Set timestamp generation frequency.
• OFF (default): Generate a single timestamp for 6 trace cycles.
• ON: Generate dedicated timestamps for all trace cycles.

LOGGER.TimeStamp Up
LOGGER.TimeStamp Rate 16000000.
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Generic LOGGER Trace Commands 

LOGGER.ACCESS     Define access path to program code for trace decoding

See command  <trace>.ACCESS in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 
131).

LOGGER.Arm     Arm the trace

See command  <trace>.Arm in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 134).

LOGGER.AutoArm     Arm automatically

See command  <trace>.AutoArm in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 
135).

LOGGER.AutoInit     Automatic initialization

See command  <trace>.AutoInit in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 140).

LOGGER.BookMark     Set a bookmark in trace listing

See command  <trace>.BookMark in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 
140).

LOGGER.BookMarkToggle     Toggles a single trace bookmark

See command  <trace>.BookMarkToggle in 'General Commands Reference Guide T'  (general_ref_t.pdf, 
page 143).
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LOGGER.Chart     Display trace contents graphically

See command  <trace>.Chart in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 144).

LOGGER.ComPare     Compare trace contents

See command  <trace>.ComPare in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 
192).

LOGGER.DISable     Disable the trace

See command  <trace>.DISable in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 197).

LOGGER.DRAW     Plot trace data against time

See command  <trace>.DRAW in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 201).

LOGGER.EXPORT     Export trace data for processing in other applications

See command  <trace>.EXPORT in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 
212).

LOGGER.FILE     Load a file into the file trace buffer

See command  <trace>.FILE in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 233).

LOGGER.Find     Find specified entry in trace

See command  <trace>.Find in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 235).

LOGGER.FindAll     Find all specified entries in trace

See command  <trace>.FindAll in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 237).
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LOGGER.FindChange     Search for changes in trace flow

See command  <trace>.FindChange in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 
238).

LOGGER.FLOWPROCESS     Process flowtrace

See command  <trace>.FLOWPROCESS in 'General Commands Reference Guide T'  (general_ref_t.pdf, 
page 241).

LOGGER.FLOWSTART     Restart flowtrace processing

See command  <trace>.FLOWSTART in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 
241).

LOGGER.GOTO     Move cursor to specified trace record

See command  <trace>.GOTO in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 244).

LOGGER.Init     Initialize trace

See command  <trace>.Init in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 246).

LOGGER.List     List trace contents

See command  <trace>.List in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 248).

LOGGER.ListNesting     Analyze function nesting

See command  <trace>.ListNesting in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 
263).
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LOGGER.ListVar     List variable recorded to trace

See command  <trace>.ListVar in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 266).

LOGGER.LOAD     Load trace file for offline processing

See command  <trace>.LOAD in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 270).

LOGGER.OFF     Switch off

See command  <trace>.OFF in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 278).

LOGGER.PROfileChart     Profile charts

See command  <trace>.PROfileChart in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 
283).

LOGGER.PROfileSTATistic     Statistical analysis in a table versus time

See command  <trace>.PROfileSTATistic in 'General Commands Reference Guide T'  (general_ref_t.pdf, 
page 322).

LOGGER.PROTOcol     Protocol analysis

See command  <trace>.PROTOcol in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 
339).

LOGGER.PROTOcol.Chart     Graphic display for user-defined protocol

See command  <trace>.PROTOcol.Chart in 'General Commands Reference Guide T'  (general_ref_t.pdf, 
page 339).
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LOGGER.PROTOcol.Draw     Graphic display for user-defined protocol

See command  <trace>.PROTOcol.Draw in 'General Commands Reference Guide T'  (general_ref_t.pdf, 
page 341).

LOGGER.PROTOcol.EXPORT     Export trace buffer for user-defined protocol

See command  <trace>.PROTOcol.EXPORT in 'General Commands Reference Guide T'  
(general_ref_t.pdf, page 342).

LOGGER.PROTOcol.Find     Find in trace buffer for user-defined protocol

See command  <trace>.PROTOcol.Find in 'General Commands Reference Guide T'  (general_ref_t.pdf, 
page 343).

LOGGER.PROTOcol.list     Display trace buffer for user-defined protocol

See command  <trace>.PROTOcol.list in 'General Commands Reference Guide T'  (general_ref_t.pdf, 
page 344).

LOGGER.PROTOcol.PROfileChart     Profile chart for user-defined protocol

See command  <trace>.PROTOcol.PROfileChart in 'General Commands Reference Guide T'  
(general_ref_t.pdf, page 347).

LOGGER.PROTOcol.PROfileSTATistic     Profile chart for user-defined 
protocol

See command  <trace>.PROTOcol.PROfileSTATistic in 'General Commands Reference Guide T'  
(general_ref_t.pdf, page 348).

LOGGER.PROTOcol.STATistic     Display statistics for user-defined protocol

See command  <trace>.PROTOcol.STATistic in 'General Commands Reference Guide T'  
(general_ref_t.pdf, page 350).
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LOGGER.REF     Set reference point for time measurement

See command  <trace>.REF in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 357).

LOGGER.RESet     Reset command

See command  <trace>.RESet in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 357).

LOGGER.SAVE     Save trace for postprocessing in TRACE32

See command  <trace>.SAVE in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 358).

LOGGER.SelfArm     Automatic restart of trace recording

See command  <trace>.SelfArm in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 
362).

LOGGER.SIZE     Define buffer size

See command  <trace>.SIZE in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 373).

LOGGER.SnapShot     Restart trace capturing once

See command  <trace>.SnapShot in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 
373).

LOGGER.state     Display trace configuration window

See command  <trace>.state in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 376).

LOGGER.STATistic     Statistic analysis

See command  <trace>.STATistic in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 
378).
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LOGGER.Timing     Waveform of trace buffer

See command  <trace>.Timing in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 499).

LOGGER.TRACK     Set tracking record

See command  <trace>.TRACK in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 502).

LOGGER.View     Display single record

See command  <trace>.View in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 504).

LOGGER.ZERO     Align timestamps of trace and timing analyzers

See command  <trace>.ZERO in 'General Commands Reference Guide T'  (general_ref_t.pdf, page 505).
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LUA

LUA     Support for the Lua script language

The TRACE32 Lua API allows the user to load and execute Lua scripts directly in the debugger. This feature 
can be used to accelerate execution of certain debug commands by avoiding the interaction between the 
TRACE32 host software and the debug driver. A Lua interpreter is built into the debug box, supporting the 
complete Lua language. Please refer to the official website of Lua www.lua.org for documentation.

In addition to the standard language elements, Lauterbach extended Lua with a set of TRACE32 specific 
libraries. This allows you to, for example, use the JTAG shift functions directly in the Lua script. For a 
description of the TRACE32 specific libraries, refer to “TRACE32 Lua Library” (lua_library.pdf).

The TRACE32 host software maintains an input buffer with size 0x1000 bytes to store input parameters for 
the Lua script. While sending the command to execute a certain Lua script, TRACE32 also packs and sends 
the input buffer to the debugger. Use LUA.Data.SET to manipulate the input buffer and 
LUA.Data.ShowInput to view the current content in the input buffer. Loading the input buffer from a binary 
file is also supported. From within the Lua scripts, the data in the input buffer can be retrieved using functions 
from the “TRACE32 Lua Library” (lua_library.pdf). 

When executing a Lua script, the TRACE32 host software blocks until it returns. Inside the Lua script, 
functions from the “TRACE32 Lua Library” (lua_library.pdf) can be used to store output data into an output 
buffer (again 0x1000 bytes). The output buffer will be automatically sent back to the TRACE32. Use 
LUA.Data.ShowOutput to view the output data. It is also supported to save the output buffer into a binary 
file.

The Lua API can be used both as TRACE32 commands and through the remote C API. The LUA command 
group is described in the following sections and the C API is introduced in chapter Remote Lua API.

LUA.Data.Loadinput     Load content from a file into the input buffer

Load content from a binary file into the input buffer. Use LUA.Data.ShowInput to check the current content 
of the input buffer.   

Format: LUA.Data.Loadinput <file> [/<load_option>] 

Offset
<offset>

Starting position in the binary file to be loaded into the input buffer

Length
<length>

Number of bytes to be loaded into the input buffer
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LUA.Data.Saveoutput     Save output buffer into a binary file

Save content of the output buffer into a file. Use LUA.Data.ShowOutput to check the current content of the 
output buffer.   

LUA.Data.SET     Modify the Lua input buffer

Writes byte-wise data to the input buffer. Use LUA.Data.ShowInput to view the current content of the input 
buffer. The input buffer will be sent to the debugger upon executing a LUA.Program.RUN command.  

Format: LUA.Data.Saveoutput <file> [/<save_option>] 

Append Append data to the end of the output file.

Format: LUA.Data.SET <index>  %<format> <value>

<format>: Byte | Word | Long | Quad | TByte | HByte | PByte | SByte    
BE | LE

<index> The byte position of the input buffer to be written.

Byte, Word, … Data size.
• Byte (8-bit accesses) Word (16-bit accesses)
• TByte (24-bit accesses) Long (32-bit accesses)
• PByte (40-bit accesses) HByte (48-bit accesses)
• SByte (56-bit accesses) Quad (64-bit accesses)
•

BE, LE Define byte endianness: big endian or little endian.

<value> The value to be written to the buffer.
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LUA.Data.ShowInput     Show current content of the input buffer

Displays the current content of the input buffer in the AREA window.

LUA.Data.ShowOutput     Show current content of the output buffer

Displays the current content of the output buffer in the AREA window.The output buffer contains the return 
values from the Lua script. Inside the Lua script, functions from the “TRACE32 Lua Library” 
(lua_library.pdf) can be used to write to the output buffer.

LUA.Program.List     List the current Lua scripts

Lists the Lua scripts that have been loaded into the debugger. The output is redirected to the AREA window 
and has the following format: <id> : <label>, <attribute>, <file>. See example.  

Format: LUA.Data.ShowInput

Format: LUA.Data.ShowOutput

Format: LUA.Program.List 

ID An auto-generated sequential index of the current Lua scripts. Note that the 
ID of a certain script may change after loading/unloading another script.

label A unique string to identify a Lua script.

attribute EXE: an executable script.
LIB: a library script.
See LUA.Program.LOAD for more details.

filename Path to the Lua file.
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LUA.Program.LOAD     Load a Lua script to debugger

Loads the Lua script to the debugger without executing it. The script is uniquely identified by its label. See 
example here.  

LUA.Program.RESet     Reset the Lua context

Resets the Lua context, unloads all scripts from the debugger and clears all input and output buffers.

LUA.Program.RUN     Execute a Lua script

Executes the Lua script with given index or label. Use LUA.Program.List to check IDs and labels of the Lua 
scripts that are currently available in the debugger.

See example.

Format: LUA.Program.LOAD <file> [<label>] [/<options>]

<option>: Program | Library

<file> Path and file name of the Lua script to be loaded.

<label> A unique string to identify the Lua script. If not specified, a default label will 
be generated.

Program The Lua script is loaded as an executable script. This is the default 
option.

Library The Lua script is loaded as a library script. The Lua functions in a library 
script will be made available to all other Lua scripts. Although marked as 
a library, the script itself can still be executed normally. However, we 
recommend to develop separate Lua scripts for libraries and executables.

Format: LUA.Program.RESet

Format: LUA.Program.RUN <id> | <label>
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LUA.Program.UNLOAD     Remove a Lua script from the debugger

Removes a Lua script from the debugger. Use LUA.Program.List to see the scripts currently loaded. 

Format: LUA.Program.UNLOAD <id> | <label>
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Example

; load the Lua script lib.lua as a library
LUA.Program.LOAD c:\lua\lib.lua "mylib" /Library
; load the Lua script jtag.lua as an executable
; use default option "/Program" and default label
LUA.Program.LOAD c:\lua\jtag.lua 

; see the current list of Lua scripts
LUA.Program.List
; you should see the following:
; 0 : mylib, LIB, C:\lua\lib.lua
; 1 : jtag.lua, EXE, C:\lua\jtag.lua

; set input parameter
LUA.Data.SET 0x0 %l 0x12345678
LUA.Data.ShowInput

; execute the Lua script jtag.lua using its index
LUA.Program.RUN 1
; execute the Lua script jtag.lua using its label
LUA.Program.RUN "jtag.lua"

; view the output buffer
LUA.Data.ShowOutput

; remove a Lua script
LUA.Program.UNLOAD 0
; Note that now the Lua script with index 0 (lib.lua) is removed
; and the indexing has changed
LUA.Program.List
; now you should see the following
; 0 : jtag.lua, EXE, C:\lua\jtag.lua
; the Lua script jtag.lua now has the index 0
LUA.Program.UNLOAD "jtag.lua"

; clear the context
LUA.Program.RESet
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