LAUTERBACH A

General Commands Reference
Guide L

General Commands Reference Guide L

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
€= 1= = T 0T 1313 =T [- r—~
General Commands Reference GUIAE Loocceeriirrcecerresssccerrsssssmessssssssse s sssssssssssessssmssneesss 1
L 1= (o 6
LA it er e sEr e eesREEEEAASaaEEEEEARSREEEESAEAREEEESNESREEENRERSREEEENSESRRREERSRESRRRRERRERRRRRRES 7
LA Logic analyzer 7
LA-specific Trace COMMANUSccccceerriissmmmmmmissmnsinssssssssssssssssssssasssmnsssssssmsssssssssnnsssssssnnnnnsnas 8
LA.IMPORT Import trace information 8
LA.IMPORT.CoreByteStream Import pure single core trace data 10
LA.IMPORT.cycles Import bus trace data 11
LA.IMPORT.ELA Import ELA trace data 11
LA.IMPORT.ETB Import on-chip trace data 11
LA.IMPORT.GUESSWRAP Guess wrap pointer 13
LA.IMPORT.StartInvalid Set start of trace as invalid 13
LA.IMPORT.StartValid Set start of trace as valid 14
LA.IMPORT.STP Import STP recording from file (nibble) 14
LA.IMPORT.STPByteStream Import STP recording from file (byte) 15
LA.IMPORT.TARMAC Import TARMAC trace file 15
LA.IMPORT.TraceFile Import trace data where processing has failed 16
LA.IMPORT.TracePort Import off-chip trace data 16
LA.IMPORT.UltraSOC Import raw UltraSOC flow trace data 17
LA.IMPORT.VCD Import recorded signals in VCD file format 17
LA.IMPORT.WRAP Define wrap pointer 18
LA.Mode Set the trace operation mode 19
Generic LA Trace COMMANAScccccmmmmmiriimiissssssssssmsmmssnsssessssssssssssmmsssssssssesssssssssssnmmnmsssnssnns 20
LA.ACCESS Define access path to program code for trace decoding 20
LA.Arm Arm the trace 20
LA.AutoArm Arm automatically 20
LA.Autolnit Automatic initialization 20
LA.BookMark Set a bookmark in trace listing 20
LA.Chart Display trace contents graphically 20
LA.CLOCK Clock to calculate time out of cycle count information 21
LA.ComPare Compare trace contents 21
LA.ComPareCODE Compare trace with memory 21
©1989-2024 Lauterbach General Commands Reference Guide L 2

LA.DISable Disable the trace 21
LA.DRAW Plot trace data against time 21
LA.EXPORT Export trace data for processing in other applications 21
LA.FILE Load a file into the file trace buffer 21
LA.Find Find specified entry in trace 21
LA.FindAll Find all specified entries in trace 22
LA.FindChange Search for changes in trace flow 22
LA.FLOWPROCESS Process flowtrace 22
LA.FLOWSTART Restart flowtrace processing 22
LA.GOTO Move cursor to specified trace record 22
LA.Init Initialize trace 22
LA.List List trace contents 22
LA.ListNesting Analyze function nesting 23
LA.ListVar List variable recorded to trace 23
LA.LOAD Load trace file for offline processing 23
LA.OFF Switch off 23
LA.PROfileChart Profile charts 23
LA.PROfileSTATistic Statistical analysis in a table versus time 23
LA.PROTOcol Protocol analysis 23
LA.PROTOcol.Chart Graphic display for user-defined protocol 24
LA.PROTOcol.Draw Graphic display for user-defined protocol 24
LA.PROTOcol.EXPORT Export trace buffer for user-defined protocol 24
LA.PROTOcol.Find Find in trace buffer for user-defined protocol 24
LA.PROTOcol.list Display trace buffer for user-defined protocol 24
LA.PROTOcol.PROfileChart Profile chart for user-defined protocol 24
LA.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol 24
LA.PROTOcol.STATistic Display statistics for user-defined protocol 25
LA.REF Set reference point for time measurement 25
LA.RESet Reset command 25
LA.SAVE Save trace for postprocessing in TRACE32 25
LA.SelfArm Automatic restart of trace recording 25
LA.SIZE Define buffer size 25
LA.SnapShot Restart trace capturing once 25
LA.state Display trace configuration window 25
LA.STATistic Statistic analysis 26
LA.Timing Waveform of trace buffer 26
LA.TRACK Set tracking record 26
LA.View Display single record 26
LA.ZERO Align timestamps of trace and timing analyzers 26
0 27
List Display modes for programs 27
List.auto Display program listing 28
List.Asm Display disassembler 36
©1989-2024 Lauterbach General Commands Reference Guide L 3

List. EXPORT Export a listing to an XML file 37
List. EXPORT.Asm Export disassembler listing 37
List. EXPORT.auto Export source and disassembiler listing 38
List. EXPORT.HII Export source listing 38
List. EXPORT.Mix Export source and disassembiler listing 39
List.HII Display source 41
List.Java Display Java byte code 42
List.Mix Disassembler and source 44
10 T] = = 45
LOGGER Trace method LOGGER, recording and analysis commands 45
LOGGER-specific Trace COMMANAScccceceiirsmriisssmsssmssisssssssssssssasssssssssssssssssnsssssasssssasssas 46
LOGGER.ADDRESS Software trace address 46
LOGGER.Mode Set LOGGER operation mode 46
LOGGER.TimeStamp Configure timestamp usage of LOGGER trace 47
Generic LOGGER Trace COMMANAS ccccceerriissmmmmmmsssmssnssssssmsssssssssssssssssmsssssssssmsssssssssmssns 48
LOGGER.ACCESS Define access path to program code for trace decoding 48
LOGGER.Arm Arm the trace 48
LOGGER.AutoArm Arm automatically 48
LOGGER:.Autolnit Automatic initialization 48
LOGGER.BookMark Set a bookmark in trace listing 48
LOGGER.BookMarkToggle Toggles a single trace bookmark 48
LOGGER.Chart Display trace contents graphically 49
LOGGER.ComPare Compare trace contents 49
LOGGER.DISable Disable the trace 49
LOGGER.DRAW Plot trace data against time 49
LOGGER.EXPORT Export trace data for processing in other applications 49
LOGGER.FILE Load a file into the file trace buffer 49
LOGGER.Find Find specified entry in trace 49
LOGGER:.FindAll Find all specified entries in trace 49
LOGGER.FindChange Search for changes in trace flow 50
LOGGER.FLOWPROCESS Process flowtrace 50
LOGGER.FLOWSTART Restart flowtrace processing 50
LOGGER.GOTO Move cursor to specified trace record 50
LOGGER.Init Initialize trace 50
LOGGER.List List trace contents 50
LOGGER.ListNesting Analyze function nesting 50
LOGGER:.ListVar List variable recorded to trace 51
LOGGER.LOAD Load trace file for offline processing 51
LOGGER.OFF Switch off 51
LOGGER.PROfileChart Profile charts 51
LOGGER.PROfileSTATistic Statistical analysis in a table versus time 51
LOGGER.PROTOcol Protocol analysis 51
©1989-2024 Lauterbach General Commands Reference Guide L 4

LOGGER.PROTOcol.Chart Graphic display for user-defined protocol 51
LOGGER.PROTOcol.Draw Graphic display for user-defined protocol 52
LOGGER.PROTOcol.EXPORT Export trace buffer for user-defined protocol 52
LOGGER.PROTOcol.Find Find in trace buffer for user-defined protocol 52
LOGGER.PROTOcol.list Display trace buffer for user-defined protocol 52
LOGGER.PROTOcol.PROfileChart Profile chart for user-defined protocol 52
LOGGER.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol 52
LOGGER.PROTOcol.STATistic Display statistics for user-defined protocol 52
LOGGER.REF Set reference point for time measurement 53
LOGGER.RESet Reset command 53
LOGGER.SAVE Save trace for postprocessing in TRACE32 53
LOGGER.SelfArm Automatic restart of trace recording 53
LOGGER.SIZE Define buffer size 53
LOGGER.SnapShot Restart trace capturing once 53
LOGGER:.state Display trace configuration window 53
LOGGER.STATistic Statistic analysis 53
LOGGER.Timing Waveform of trace buffer 54
LOGGER.TRACK Set tracking record 54
LOGGER.View Display single record 54
LOGGER.ZERO Align timestamps of trace and timing analyzers 54
I 55
LUA Support for the Lua script language 55
LUA.Data.Loadinput Load content from a file into the input buffer 55
LUA.Data.Saveoutput Save output buffer into a binary file 56
LUA.Data.SET Modify the Lua input buffer 56
LUA.Data.Showlnput Show current content of the input buffer 57
LUA.Data.ShowOutput Show current content of the output buffer 57
LUA.Program.List List the current Lua scripts 57
LUA.Program.LOAD Load a Lua script to debugger 58
LUA.Program.RESet Reset the Lua context 58
LUA.Program.RUN Execute a Lua script 58
LUA.Program.UNLOAD Remove a Lua script from the debugger 59
©1989-2024 Lauterbach General Commands Reference Guide L 5

General Commands Reference Guide L

Version 06-Jun-2024

History

22-Apr-2024 New option /INoExec for LA.IMPORT.TARMAC command.
25-Mar-2024 New option /COVerableltems for List. EXPORT.auto and List. EXPORT.Mix commands.

23-Feb-2024 New command LA.IMPORT.TARMAC.

©1989-2024 Lauterbach General Commands Reference GuideL | 6

LA

LA

Logic analyzer

The trace method LA is used for remote control of logic analyzer systems.

For selecting and configuring the trace method LA, use the TRACE32 command line or a PRACTICE script

(*.cmm) or the LA.state window [A].

Alternatively, use the Trace.state window: click the option LA or execute the command Trace.METHOD LA
in order to select the trace method LA [B].

state

@® DISable
O oFF

O Arm

O trigger
O break

commands
@ Init
& SnapShot

AutoArm
[AutoInit

& Bu:LA.state j@

used

SIZE

Mode
@ Fifo
O stack

& B:Trace.state EI@
METHOD
Onchip O Analyzer () CAnalyzer (_HAnalyzer (_Integrator (! Probe IProbe @ 1A
OarT OLoGGER O snOOPer O FDX (O NONE
[5]
state used
@® DISable
OoFF
O Arm SIZE
O trigger
O break
Mode
commands @ Fifo
@ Init O stack
& SnapShot
i List
AutoArm
[Autolnit

The chapter “LA-specific Trace Commands”, page 8 describes the LA-specific configuration commands.
While the chapter “Generic LA Trace Commands”, page 20 lists the LA trace analysis and display
commands, which are shared with other TRACES32 trace methods.

See also

B Trace. METHOD

A ’Generic LA Trace Commands’ in 'General Commands Reference Guide L
A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach

General Commands Reference Guide L

7

LA-specific Trace Commands

LA.IMPORT Import trace information

[Example]

The LA.IMPORT command group is used to load trace data from a file into TRACE32 and to analyze it just
like data recorded with a TRACES32 trace tool.

The trace data can be obtained by the application software itself or by another tool or by TRACE32 in a
previous debug session in which the processing could not be performed for some reasons.

Trace data successfully obtained and analyzed by TRACES32 can be stored by <trace>.SAVE and re-viewed
by using the <trace>.LOAD command. This is the more convenient way because <trace>.SAVE stores a lot
of additional information used for the analysis. LA.IMPORT imports only the trace raw data. For proper
processing you need to inform the debugger about all the trace-relevant circumstances.

All kind of trace postprocessing is only possible with the trace method LA (Logic Analyzer). Therefore you
need to use LA.IMPORT and LA.* command group for all analysis commands or better switch the trace
method to LA (Trace.METHOD LA) and use the command group Trace.* for all further operations.

LA.IMPORT supports different kinds of trace data and formats. Therefore different commands are provided.

Most trace data is stored in the file in the timely order the data had been generated.

Save Import Display
File from an external source LA.IMPORT.<format> LA.List
Records in trace file Records in LA.List window
0 (oldest record) O :O (oldest record)
1 [1
999 (newest record) O H>999 (newest record)

An exception is the on-chip trace buffer, which is typically used as a circular ring buffer overwriting the trace
data all the time until the point of interest is reached.

©1989-2024 Lauterbach General Commands Reference GuideL | 8

If this buffer is saved into a file, you need to know the wrap pointer for being able to get the data in a timely
order. LA.IMPORT.WRAP and LA.IMPORT.GUESSWRAP will deal with this concern.

Process:

oy .
-Circular Save Import Re-order Display
*Ring @
*Buffer e.g. by external tool LA.IMPORT.ETB LA.IMPORT.WRAP LA.List

Result:

- n N
U4 A

" ' Records in trace file Records in LA.List window

P 0 -3 (oldest record)

] 1 -2

]
¥ -1
[] 5 LRI IR BRI R R R
i °
[] . o
! 996 (newest record) o 0
. o 1

' Wrap pointer

N 997 (oldest record) ®

|} 998 [.

‘\ 999 O 996 (newest record)
A]
~ L 4

For post processing trace data loaded by LA.IMPORT you need to take the following steps:

1. Start TRACE32 to run as simulator (config.t32 -> PBI=SIM). You neither need a debugger
hardware nor a target. You can run TRACES32 as debugger as well, but for the postprocessing

this is not needed.

2. Adjust all trace relevant settings like for a real target by running the start-up script you used for
generating the trace data. For postprocessing an ETMv4 even further setups might be needed
which normally the debugger would read out from the ETM module (ETM.COND, ETM.INSTPO,

ETM.QE).
If the start-up script is not available, then try this:
- At best selecting the chip you are debugging (SYStem.CPU ...) is sufficient.

- For trace data coming from a ARM CoreSight system, all commands describing the trace
system on the chip are required (SYStem.CONFIG ...).

- Further all settings for the trace sources done at recording time are needed (e.g. ETM. ...).
3. Load your target application (Data.LOAD ...).
4. Import the trace raw data (LA.IMPORT. ...).

5. Now you can use all trace display and analysis functions, e.g.

LA.List TP TPC TPINFO DEFault List.NoDummy.OFF ; with diagnostics

©1989-2024 Lauterbach General Commands Reference Guide L |

9

Example:

SYStem.

SYStem.
SYStem.
SYStem.
SYStem.
SYStem.

CPU CortexAl5

CONFIG

CONFIG.
CONFIG.
CONFIG.
CONFIG.

COREDEBUG.Base 0x82010000
ETM.Base 0x8201c000
FUNNEL.Base 0x80040000
FUNNEL .ATBSource ETM 0
ETB.Base 0x80010000

ETM. PortMode .Wrapped
ETM.TraceID 0x55

SYStem.

Up

Data.LOAD.E1f myfile.elf

Trace.METHOD.LA
Trace.IMPORT.ETB mydata.bin
Trace.IMPORT.GUESSWRAP

Trace.List TP TPC TPINFO DEFault List.NoDummy.OFF

See also

B LA.IMPORT.CoreByteStream B LA.IMPORT.cycles

B LAIMPORTELA H LAIMPORTETB

B LA IMPORT.GUESSWRAP B LA IMPORT.StartInvalid
B LA.IMPORT.StartValid B LAIMPORT.STP

B LA.IMPORT.STPByteStream B LAIMPORT.TARMAC
B LA IMPORT.TraceFile B LA.IMPORT.TracePort
B LA IMPORT.UltraSOC H LAIMPORT.VCD

B LAIMPORT.WRAP W <trace>.EXPORT

LA.IMPORT.CoreByteStream

Import pure single core trace data

Format:

LA.IMPORT.CoreByteStream <file>

Imports pure single core trace data (e.g. for unwrapped single core trace data or x86 IPT traces).

See also

N LA.IMPORT

©1989-2024 Lauterbach

General Commands Reference GuideL | 10

LA.IMPORT.cycles Import bus trace data

Format: LA.IMPORT.cycles <file>

Re-imports a file that has been exported with <trace>.EXPORT.cycles. This bus trace data comes from
capturing the fetched instructions and data accesses done on an external bus to figure out the program
behavior. It works only if no cache is used and if the bus accesses can be captured. This command can be
used to import traces from external tools or simulators.

See also
B LAIMPORT
A ’'Release Information’ in’Legacy Release History’

LA.IMPORT.ELA Import ELA trace data

Format: LA.IMPORT.ELA <file>

Imports a pure binary trace data file obtained from an ARM CoreSight Embedded Logic Analyzer
(ELA).

See also
N LA.IMPORT

LA.IMPORT.ETB Import on-chip trace data

Format: LA.IMPORT.ETB <file>

Imports a pure binary trace data file obtained from an on-chip trace buffer like ARM CoreSight ETB,
ETF, ETR.

You additionally need to use LA.IMPORT.WRAP or LA.IMPORT.GUESSWRAP if the following conditions

apply:
. The on-chip trace buffer was used as a circular ring buffer.
J The on-chip trace data was stored as is, it was not read out in the timely order starting from the write

pointer position.

©1989-2024 Lauterbach General Commands Reference Guide L | 11

LA.Mode FlowTrace will automatically be set when using this command.

See also
N LA.IMPORT

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference GuideL | 12

LA.IMPORT.GUESSWRAP Guess wrap pointer

Format: LA.IMPORT.GUESSWRAP [<record_number>]

Reformats external trace data loaded to TRACES32 in a timely order. The external trace data of a circular ring
buffer is loaded to TRACES32 using LA.IMPORT.ETB. The command LA.IMPORT.GUESSWRAP scans
the loaded trace data and guesses where the wrap pointer might have been.

Optionally, you can pass a record number where the search for the wrap pointer shall start. Without a
parameter it starts from the beginning.

Use LA.IMPORT.WRAP if you know where the wrap pointer is.

See the figures in the introduction to <trace>.IMPORT.

See also
H LA.IMPORT H LA.IMPORT.WRAP
LA.IMPORT.Startinvalid Set start of trace as invalid
Format: LA.IMPORT.StartInvalid

Reverts the setting done with LA.IMPORT.StartValid.

See also
W LA.IMPORT

©1989-2024 Lauterbach General Commands Reference GuideL | 13

LA.IMPORT.StartValid Set start of trace as valid

Format: LA.IMPORT.StartValid [<address1> <address2> ...]

This command informs the debugger that the start of the loaded trace is valid and that it should not wait for
Sync packets.

<address1> The trace is set as valid starting from the given address. On SMP
<address2> ... systems, the first address corresponds to the first core, the second to the
second core...

See also
W LA.IMPORT

LA.IMPORT.STP Import STP recording from file (nibble)

Format: LA.IMPORT.STP <file>

Imports an STP trace from <file> to process it within TRACES32. One trace record is generated per nibble.

In order to unwrap the trace information for processing, TRACES32 needs to know the following information:
STM base address and the STP protocol version.

If TRACES2 is aware of the chip characteristic, setting up the chip is sufficient.
Example:

SYStem.CPU OMAP4430APP1
LA.IMPORT.STP my_recording.stp

STMLA.List

©1989-2024 Lauterbach General Commands Reference GuideL | 14

Otherwise the following setup has to be done.

SYStem.CONFIG.STM.Base DAP:0xd4161000 ; any base address != 0x0 is
; fine
SYStem.CONFIG.STM.Mode STPv2 ; specify the STP protocol
; version

LA.IMPORT.STP my_ recording.stp

STMLA.List

See also
B LAIMPORT
LA.IMPORT.STPByteStream Import STP recording from file (byte)
Format: LA.IMPORT.STPByteStream <file>

Same as LA.IMPORT.STP, but one trace record is generated per byte.

See also
N LA.IMPORT

A ’Release Information’ in’Legacy Release History’

LA.IMPORT.TARMAC Import TARMAC trace file
[build 165454 - DVD 02/2024]
Format: LA.IMPORT.TARMAC <file> [/<option>]
<option>: NoExec

Imports a trace data file in Tarmac format.

NoExec Allows the import process to ignore the execution state information
(exec/notexec) from the file.

See also
H LAIMPORT

©1989-2024 Lauterbach General Commands Reference GuideL | 15

LA.IMPORT.TraceFile Import trace data where processing has failed

Format: LA.IMPORT.TraceFile <file>

Re-imports trace data stored by <trace>.SAVE for re-processing. This is useful if processing was not
possible when the trace recording was made. For example if you had no access to the target code at
that moment.

Only the trace raw data will be extracted from the saved (*.ad) file.
LA.Mode FlowTrace will automatically be set when using this command.
See also

N LA.IMPORT

A ’Release Information’ in’Legacy Release History’

LA.IMPORT.TracePort Import off-chip trace data

Format: LA.IMPORT.TracePort <file>

Imports a pure binary trace data file from an external trace port like an ARM CoreSight TPIU. Unlike
on-chip trace data, off-chip trace data includes synchronization packages and depend on the port size
of the trace port.

LA.Mode FlowTrace will automatically be set when using this command.
See also

B LAIMPORT
A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference GuideL | 16

LA.IMPORT.UItraSOC Import raw UltraSOC flow trace data

Format: LA.IMPORT.UIltraSOC <file>

This command allows to load raw UltraSOC flow trace data.

See also
N LA.IMPORT

LA.IMPORT.VCD Import recorded signals in VCD file format

Format: LA.IMPORT.VCD <file>

Imports a VCD (Value Change Dump) file, which is an industrial standard format for waveforms (not for
program trace). It is used for visualizing and analyzing the captured signals in the <trace>.Timing

window.

See also
W LA.IMPORT

©1989-2024 Lauterbach General Commands Reference GuideL | 17

LA.IMPORT.WRAP Define wrap pointer

Format: LA.IMPORT.WRAP <record_number>

Reformats external trace data loaded to TRACES32 in a timely order. The external trace data of a circular ring
buffer is loaded to TRACE32 using LA.IMPORT.ETB.

<record_number> You pass the <record_number> of the first trace record in time (wrap
pointer). This is the write pointer location of a circular ring buffer the moment
the data has been stored.

NOTE: On a CoreSight trace, the write pointer points to a 32-bit value. You need to multiply
this value by 4 because each CoreSight trace record is 8 bit in size.

Use LA.IMPORT.GUESSWRAP if you do not know where the wrap pointer is.

See the figures in the introduction to LA.IMPORT.

See also
W LA.IMPORT B LA IMPORT.GUESSWRAP

©1989-2024 Lauterbach General Commands Reference GuideL | 18

LA.Mode Set the trace operation mode

Format: LA.Mode [<mode>]
<mode>: Fifo

Stack

FlowTrace

Selects the trace operation mode.

Fifo If the trace is full, new records will overwrite older records. The trace
records always the last cycles before the break.

Stack If the trace is full recording will be stopped. The trace always records the
first cycles after starting the trace.

FlowTrace FlowTrace mode.

See also

B <trace>.Mode

©1989-2024 Lauterbach General Commands Reference GuideL | 19

Generic LA Trace Commands

LA.ACCESS Define access path to program code for trace decoding

See command <trace>.ACCESS in 'General Commands Reference Guide T' (general_ref_t.pdf, page
131).

LA.Arm Arm the trace

See command <trace>.Arm in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 134).

LA.AutoArm Arm automatically

See command <trace>.AutoArm in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
135).

LA.Autolnit Automatic initialization

See command <trace>.Autolnit in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 140).

LA.BookMark Set a bookmark in trace listing
See command <trace>.BookMark in 'General Commands Reference Guide T' (general_ref_t.pdf, page
140).

LA.Chart Display trace contents graphically

See command <trace>.Chart in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 144).

©1989-2024 Lauterbach General Commands Reference GuideL | 20

LA.CLOCK Clock to calculate time out of cycle count information

See command <trace>.CLOCK in 'General Commands Reference Guide T' (general_ref_t.pdf, page 191).

LA.ComPare Compare trace contents

See command <trace>.ComPare in '‘General Commands Reference Guide T' (general_ref_t.pdf, page

192).

LA.ComPareCODE Compare trace with memory
See command <trace>.ComPareCODE in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 194).

LA.DISable Disable the trace

See command <trace>.DISable in 'General Commands Reference Guide T' (general_ref_t.pdf, page 197).

LA.DRAW Plot trace data against time

See command <trace>.DRAW in 'General Commands Reference Guide T' (general_ref_t.pdf, page 201).

LA.EXPORT Export trace data for processing in other applications

See command <trace>.EXPORT in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
212).

LA.FILE Load a file into the file trace buffer

See command <trace>.FILE in 'General Commands Reference Guide T' (general_ref_t.pdf, page 233).

LA.Find Find specified entry in trace

See command <trace>.Find in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 235).

©1989-2024 Lauterbach General Commands Reference Guide L | 21

LA.FindAll Find all specified entries in trace

See command <trace>.FindAll in 'General Commands Reference Guide T' (general_ref_t.pdf, page 237).

LA.FindChange Search for changes in trace flow

See command <trace>.FindChange in 'General Commands Reference Guide T' (general_ref_t.pdf, page
238).

LA.FLOWPROCESS Process flowtrace
See command <trace>.FLOWPROCESS in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 241).

LA.FLOWSTART Restart flowtrace processing

See command <trace>.FLOWSTART in 'General Commands Reference Guide T' (general_ref_t.pdf, page
241).

LA.GOTO Move cursor to specified trace record

See command <trace>.GOTO in 'General Commands Reference Guide T' (general_ref_t.pdf, page 244).

LA.Init Initialize trace

See command <trace>.Init in 'General Commands Reference Guide T' (general_ref_t.pdf, page 246).

LA List List trace contents

See command <trace>.List in 'General Commands Reference Guide T' (general_ref_t.pdf, page 248).

©1989-2024 Lauterbach General Commands Reference Guide L | 22

LA.ListNesting Analyze function nesting

See command <trace>.ListNesting in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
263).

LA.ListVar List variable recorded to trace

See command <trace>.ListVar in 'General Commands Reference Guide T' (general_ref_t.pdf, page 266).

LA.LOAD Load trace file for offline processing

See command <trace>.LOAD in 'General Commands Reference Guide T' (general_ref_t.pdf, page 270).

LA.OFF Switch off

See command <trace>.OFF in 'General Commands Reference Guide T' (general_ref_t.pdf, page 278).

LA.PROfileChart Profile charts

See command <trace>.PROfileChart in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
283).

LA.PROfileSTATistic Statistical analysis in a table versus time
See command <trace>.PROfileSTATistic in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 322).

LA.PROTOcol Protocol analysis

See command <trace>.PROTOcol in 'General Commands Reference Guide T' (general_ref_t.pdf, page
339).

©1989-2024 Lauterbach General Commands Reference Guide L | 23

LA.PROTOcol.Chart Graphic display for user-defined protocol

See command <trace>.PROTOcol.Chart in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 339).

LA.PROTOcol.Draw Graphic display for user-defined protocol
See command <trace>.PROTOcol.Draw in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 341).

LA.PROTOCcol.EXPORT Export trace buffer for user-defined protocol

See command <trace>.PROTOcol.EXPORT in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 342).

LA.PROTOcol.Find Find in trace buffer for user-defined protocol

See command <trace>.PROTOcol.Find in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 343).

LA.PROTOcol.list Display trace buffer for user-defined protocol
See command <trace>.PROTOcol.list in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 344).

LA.PROTOcol.PROfileChart Profile chart for user-defined protocol

See command <trace>.PROTOcol.PROfileChart in '‘General Commands Reference Guide T
(general_ref_t.pdf, page 347).

LA.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol

See command <trace>.PROTOcol.PROfileSTATistic in '‘General Commands Reference Guide T'
(general_ref_t.pdf, page 348).

©1989-2024 Lauterbach General Commands Reference Guide L | 24

LA.PROTOcol.STATistic Display statistics for user-defined protocol

See command <trace>.PROTOcol.STATistic in '‘General Commands Reference Guide T
(general_ref_t.pdf, page 350).

LA.REF Set reference point for time measurement

See command <trace>.REF in 'General Commands Reference Guide T' (general_ref_t.pdf, page 357).

LA.RESet Reset command

See command <trace>.RESet in 'General Commands Reference Guide T' (general_ref_t.pdf, page 357).

LA.SAVE Save trace for postprocessing in TRACES2

See command <trace>.SAVE in 'General Commands Reference Guide T' (general_ref_t.pdf, page 358).

LA.SelfArm Automatic restart of trace recording
See command <trace>.SelfArm in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
362).

LA.SIZE Define buffer size

See command <trace>.SIZE in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 373).

LA.SnapShot Restart trace capturing once

See command <trace>.SnapShot in 'General Commands Reference Guide T' (general_ref_t.pdf, page
373).

LA.state Display trace configuration window

See command <trace>.state in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 376).

©1989-2024 Lauterbach General Commands Reference GuideL | 25

LA.STATistic Statistic analysis

See command <trace>.STATistic in 'General Commands Reference Guide T' (general_ref_t.pdf, page
378).

LA.Timing Waveform of trace buffer

See command <trace>.Timing in 'General Commands Reference Guide T' (general_ref_t.pdf, page 499).

LA.TRACK Set tracking record

See command <trace>.TRACK in 'General Commands Reference Guide T' (general_ref_t.pdf, page 502).

LA.View Display single record

See command <trace>.View in 'General Commands Reference Guide T' (general_ref_t.pdf, page 504).

LA.ZERO Align timestamps of trace and timing analyzers

See command <trace>.ZERO in 'General Commands Reference Guide T' (general_ref_t.pdf, page 505).

©1989-2024 Lauterbach General Commands Reference GuideL | 26

List

List

Display modes for programs

The List command group displays a program listing:

Source code and object code in the List.Mix window
Object code only in the List. Asm window
Source code only in the List.HIl window

Java byte code in the List.Java window

In addition, the program listing can be exported with List. EXPORT.

See also

B List Asm B List.auto W List EXPORT W List.HIl

B List.Java B List.Mix B Data.dump B Data.LOAD

H Go B SETUPDIS B SETUPLISTCLICK W SETUP.sYmbol

B SETURTIMEOUT W Step B WinOverlay 1 ADDRESS.isPHYSICAL()
1 ADDRESS.OFFSETY() 1 ADDRESS.SEGMENT() 1 ADDRESS.STRACCESS() 1 ADDRESS.WIDTH()

d sYmbol.END() 1 sYmbol.EXIT()

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach

General Commands Reference Guide L |

27

List.auto

Display program listing

[Options] [Examples]

Format:

<option>:

<flag>:

<break>:

<parameter>:

List.auto [<address> | <range>] [[<option>]
Data.List (deprecated)

Mark <break>

Flag <flag> (EF)
DIVERGE
COVerage

CACHE

Track

TOrder | SOrder
ISTAT [<parameter>]

Read | Write | NoRead | NoWrite

Program | HIl | Spot | Read | Write | Alpha | Beta | Charly | Delta | Echo

DEFault | ALL | CLOCKS | TCLOCKS | SAMPLES | COVerage

The display format (assembler, mixed or HLL) of the List.auto window is selected dynamically, depending
on the current debug mode. You can change the debug mode by clicking the Mode button in the toolbar of a
List.* window or by using the Mode command.

If no address is specified, the window tracks the value of the program counter (PC). The window is only
scrolled, if the bar moves outside of a predefined subwindow. The display format may be specified with the

SETUP.DIS command.

©1989-2024 Lauterbach

General Commands Reference Guide L | 28

If the source listing is displayed in HLL mode, some code lines may be marked with a tree button. This tree
button indicates that the compiler generated assembler code at more than one address location for this
source code line. This is very common for for-while loops as well as for code compiled with a high
optimization level.

=1 B:Data.List oo =
[Mstep |[M over || $Mext |[#Retun | ¢ up || »Go | BN Break]ﬂ Mode | Find: arm.c
addr/Tine |source |
int sieve() /* sieve of erathostenes */ :
67841

register int 1, primz, k;
int anzahl;

682 anzahl = 0;
684 for (1 =0; i == 5IZE ; flags[i++] = TRUE) ;
686 for (1 =0; 1 <= SIZE ; i++) L
687 { -
J 4 | i | 3

/

tree button

% B:sVmbol List.LINE [= ==
address to source’ line i
R:00001B80--00001E87 [\thumbTeY\arm\arm. c\683--684 B
R:00001B88--00001E95 Y\ thumble‘\arm'arm. c\683--684 -

4 11 | +

Assembler code at two address locations is generated for the HLL line number 683--684

If you want to inspect this in detail, the following commands might be helpful:

Data.ListH11 ; display the source code in HLL
; mode (source order)

Data.ListMix /Track ; display the source code in Mixed
; mode (target line order)

©1989-2024 Lauterbach General Commands Reference GuideL | 29

=1 [B=Data.ListHLL] =R | EER
[M Step] W Over][+ Mext][+ Return][¢ up][b Go][Il Break] ¥ Mode] Find: a
addr/line |source | | | Ly
register 1nt 1, primz, k; -
int anzahl;
68 anzahl = 0;
for (1 =0; i == SIZE ; flags[i++] = TRUE) ;
684 e = :
686 for (1 =0; i == SIZE ; i++) 3
687
688 if (flags[1 1) -
i< [i1 3
E B:Data.ListMix /Track EI@
[M Step] W Over][+ Mext][+ Return][¢ up][» Go][Il Break] ¥ Mode] Find:
addr/line |code 1abel mnemonic |comment Ly
684 for (1 =0 ; 1 == 5IZE ; fTlags[1++] = TRUE J ; o~
ST:00001B80 |2200 mowv r2,#0x0
ST:00001B82 |2a12 cmp r2,#0x12
ST:00001B84 |DDOG ble Ox1B94
ST:00001B86 [EO0G b 0x1B96
684 for (1 =0 ; 1 <= SIZE ; flags[i++] = TRUE } ;
ST:00001B8&
ST:00001B8A [1C10 mowv rO,r2
ST:00001B8C (1912 add r2,r2,r4
ST:00001B8E [4D0F Tdr r5,0x1BCC
ST:00001B90 (542C strb r4,[r5,r0]
ST:00001B92 [E7FG b Ox1B82 =
ST:00001B94 |[E7FE b 0x1B88 o
686 for (1 =0; 1 <= SIZE ; i++) -
i< [i1 3

If you push the tree button to get detailed information, a duplicate of the original HLL line is generated for

each assembler code address location.

If you now select one of the duplicates, the cursor in the Data.ListMix window points automatically to the

corresponding assembler code. This feature is enabled by the /Track option.

Shaded lines indicate that the source information is not on disk or in the wrong directory. See command

sYmbol.SPATH. For an example of shaded lines in a List window, see screenshot in List.Mix.

©1989-2024 Lauterbach

General Commands Reference Guide L

30

Options of the List.* Commands

[Back]

Mark

The Mark option highlights individual lines, depending on the breakpoint
type.

MarkPC

The MarkPC option highlights all HLL source lines belonging to the
current PC.
See example.

Flag

Mark a line with specific flag memory contents, e.g. Read

DIVERGE

This option is mainly intended for internal diagnostic purposes: It
attaches tags to executed and not executed ASM and HLL lines. The tags
are displayed in the scale area of the List.* windows. You can open the
scale area by dragging the slider control to the right.

. For information about the tags, see example.

. See also Step.Diverge.

COVerage

Displays trace based code coverage information. The COVerage option
highlights all code lines that have not been fully covered. For more
information, see COVerage.

CACHE

Displays cache hit information and marks currently cached code.

Track

Tracks the window to the reference position of other windows. The
window tries first to track to the PROGRAM reference, and if this
reference is not valid, it tracks to the DATA reference.

TOrder

List source lines in target line order. This is the default for assembly and
mixed mode displays.

SOrder

List source lines in source line order. This is the default for source level
displays.

ISTAT [<parameter>]

Display source listing together with the information provided by the
instruction trace database (ISTATistic.ListFunc).

Instructions that have not been executed are highlighted in yellow.
. For a description of the <parameters>, see table below.

. ISTAT used without parameter, see example.

. ISTAT used with the COVerage parameter, see example.

©1989-2024 Lauterbach

General Commands Reference Guide L | 31

Parameters for the ISTAT Option

[Back]

DEFault Display the default information provided by the ISTAT database.

ALL Display all information provided by the ISTAT database.

CLOCK Display the clock and CPI information provided by the ISTAT database.

TCLOCK (only for special purposes)

SAMPLES Display recorded samples, time and ratio.

COVerage Display the code coverage information provided by the ISTAT database.
Examples

Example for the ISTAT option - without <parameter>

[Back]
Data.ListAsm funcl3 /ISTAT ; list instruction run-time
; statistic
£ BuList P:0:20000C88 /ISTAT = -E]
[Mstep |[M over || $ Next [Retun | @ up || P Go | NN Break H_"_yﬂ Mode | Find: diabc.c
| [count clocks cpi | addr/1line |code label mremonic comment i
int funcl3{ a, c, e) /* arguments and locals
int a, ¢, e;
112. 9882. 12.6 466 |1
112. 1412. [12.6 SP:20000C88
112. 1412. [12.6 SP:20000C8C
112. 1412. [12.6 SP:20000C90
112. 1412. [12.6 SP:20000C94
112. 1412. [12.6 SP:20000C98
112. 1412. [12.6 SP:20000C9C
112. 1412. [12.6 SP:20000CA0 |7 3 mr
int b, d, f;
112. 2823, 12.6 469 b = a+cte;
112. 1412. [12.6 SP:20000CA4 |7T
112. 1412. [12.6 SP:20000CA8 -
»
count Total number of instruction executions
clocks Total number of clocks for the instruction
cpi Average clocks per instruction
©1989-2024 Lauterbach General Commands Reference Guide L | 32

Example for the ISTAT option - with the COVerage <parameter>

[Back]

List funcll /ISTAT COVerage ; list instruction coverage

i£] [BrList P:0x20000BF0 /ISTAT COVerage] ==
[M Step][W Over][+ Mext][+ Return][¢ Up][» Go][1l Break]ﬂ Mode] Find: diabc.c
| | exec notexec coverage | addr/line |code label mnemonic comment
k H int funcll{ x) /= multiple returns =/ .
int x;
140. 0. 100.000% 438 |{
28. 0. [100.000% SP:20000BF0 0 funcll: rl,-0x10(r1)
28. 0. |100. 000% SP:20000BF4 rQ
28. 0. |100. 000% SP:20000BF8 r31,0x0C(r1)
28. 0. |100. 000% SP:20000BFC r0,0x14(r1)
28. 0. |100. 000% SP:20000C00 r3i,r3
140. 56. 30.769% 439
28. 0. [100.000% SP:20000C04 |2C1 r31,0x3
28. 0. 0. 000% SP:20000C08 |4181001C bgt 0x20000C24
0. 0. 0. 000% SP:20000C0C |41820044 beq 0x20000C50
0. 0. 0. 000% SP:20000C10 |2C1F0001L cmpwi r31,0x1 I
0. 0. 0. 000% SP:20000C14 |41820024 beq 0x20000C38 —
0. 0. 0. 000% SP:20000C18 |2C1F0002 cmpwi r31,0x2
0. 0. 0. 000% SP:20000C1C |4182002C beq 0x20000C48
0. 0. 0. 000% SP:20000C20 b 0x20000C70
28. 0. |100.000% SP:20000C24 [2C1 LL341: cmpwi r3il,0x4
0. 28. 0. 000% SP:20000C28 beq 0x20000C58
28. 0. |100. 000% SP:20000C2C |2C1 cmpwi r3l,0xe6
0. 28. 0. 000% SP:20000C30 beq 0x20000C68
28. | 0. 100.000% | sP:20000C34 |4 b 0x20000C70 -
1 2
exec conditional instructions: number of times the instruction was executed
because the condition was true.
other instructions: number of times the instruction was executed
notexec conditional instructions: number of times the instruction wasn’t
executed because the condition was false.
coverage Instruction coverage

If exec or/and notexec is 0 for an instruction with condition, the instruction is bold-printed on a yellow
background. All other instruction are bold-printed on a yellow background if they were not executed.

Data.List ; display source listing around the
; current PC
Data.List /Mark Program ; display source listing, bold print

Data.List /Mark

; all instructions / HLL lines on a
; vellow background if a program
; breakpoint is set

; remove bold printing on yellow
; background

©1989-2024 Lauterbach

General Commands Reference Guide L |

33

Data.List /Track

Data.List Register (al)

PRINT Data.Long(d:0x200)

Example for the DIVERGE option

track the window to a reference, e.g.
analyzer

follow the register A0 of the CPU

prints the memory contents of addresses
D:0x200..0x203

Do not mix up the command Data.List
with the function Data.Long ()

Short form of the command is D.L
Short form of the function is D.L()

[Back]

=1 [BuList.auto /DIVERGE]

=N Noh/

P Go Il Break |['%Mode ||&[t.] "2 | Find:

[_Wrcenn 11wt yer @DNerge”JReturn” cup |
s state i addr/Tine |source
822
h stop [823
h done 823
hit
825
target 827

count++;

+ prime; A
(k <= SIZE) {
(k <= SIZE) {

flags[k] = FALSE;

k += prime;

Tags in the columns s, state, and i

is replaced with hit.

h Line in HLL mode (Mode.HII).

a Address in ASM mode (Mode.Asm).

stop Reached by a breakpoint.

done An executed line or address.

hit A reached line or address that has not yet been executed, e.g. in a linear code
sequence.

target This line or address is a possible target of the next Step.Diverge. Once reached, target

i Indirect branch instruction.

©1989-2024 Lauterbach

General Commands Reference Guide L

34

Example for the MarkPC option

[Back]
Register.Set PC main ; set the Program Counter to the label main
List.auto main /MarkPC ; highlight all instructions related to the
; current HLL line
=i [B:List.auto main /MarkPC | =l e =]
[M step |[% over |[ihe Dr\rerge][JReturn][@ up |[P Go |[I Break |[¥|Mode J&A[t.][2| Find: arm.c
addr/1ine |code label mnemonic comment |
SP:00001FEC [3FE [= 0x3FBE99999 ~
SP:00001FFO |- ded 0x99999994
SP:00001FF4 ded Ox5AF4
— MarkPC
main: stmdb rl3!,{rd4-r5,rid}
E24DD008 sub ri3,ri3,#0x8
int J;
char * p; m
See also
W List B List. Asm W List EXPORT W List.HIl
W List.Java W List.Mix W SETUPDIS B SETUPLISTCLICK

B SETUPTIMEOUT
0 ADDRESS.STRACCESS()

B SETUPsYmbol
O ADDRESS.SEGMENT/()
0 sYmbol.EXIT()

A ’Release Information’ in’Legacy Release History’

0O ADDRESS.isPHYSICAL()
O ADDRESS.WIDTH()

1 ADDRESS.OFFSET()
1 sYmbol.END()

©1989-2024 Lauterbach

General Commands Reference Guide L | 35

List. Asm

Display disassembler

Format:

<option>:

List.Asm [<address>] [/<option>]
Data.ListAsm (deprecated)

Mark <break>
Flag <flag> (EF)
COVerage
CACHE

Track

MarkPC

TOrder | SOrder
IgnoreSymbols

Displays the program in disassembled format. The functionality is the same as the Data.List command.

= BuList.Asm

(=[O el

addr/Tine

[M step |[M Over]@D'Nerg
d

Tab

el[queturn][¢up [pGo]w Break]UfﬂMode | Find:

mnemonic comment

SR:00001FFC |EZ
SR: 00002000 |E
SR:00002004 |ES

SR:00002008 |ES
SR:0000200C |E
SR:00002010 |ES
SR:00002014 |ES
SR:00002018 |E
SR:0000201C |ES
SR:00002020 |ES
SR:00002024 |E

SR :00001FFO S [= 0x9999999A
SR:00001FF4 F4 dcd Ox5AF4

E32040 main: stmdb r13l,{r4jr5,r14}

sub rl £0x8

-

m

J 4 I
<option> For a description of the options, see List.auto command.
IgnoreSymbols Let the disassembler ignore any symbols for deciding at which byte of the

machine code the disassembling should start. This option does normally
only make sense on architectures with different instruction lengths.

See also
W List W List.auto W ListHIl W List.Java
M List.Mix H Mode 1 DEBUGMODE()
©1989-2024 Lauterbach General Commands Reference Guide L | 36

List. EXPORT Export a listing to an XML file

Using the List.EXPORT command group, you can export a source or disassembler listing or both listings to
an XML file.

In addition, TRACE32 provides an XSL transformation template for formatting the XML file. The formatting is
automatically applied to the XML file when it is opened in an external browser window. Prerequisite: The
XSL file is placed in the same folder as the XML file.

For demo scripts, see List. EXPORT.Mix.

See also
W List EXPORT.Asm B List EXPORT.auto W List EXPORTHII B List EXPORT.Mix
W List W List.auto B COVerage.EXPORT B ISTATistic. EXPORT
List. EXPORT.Asm Export disassembler listing
Format: List. EXPORT.Asm <file> <range> [/<option>]
Data.ListEXPORTAsm (as an alternative)
<option>: COVerage | ISTATistic Append | NoData

Creates an XML file containing the disassembler listing. For an example and a description of the options,
see List. EXPORT.Mix.

See also
B List EXPORT

©1989-2024 Lauterbach General Commands Reference Guide L | 37

List. EXPORT.auto Export source and disassembler listing

Format: List. EXPORT.auto <file> <range> [/<option>]
Data.ListEXPORT (as an alternative)

<option>: COVerage | ISTATistic | TOrder | SOrder Append | NoData | COVerableltems

Creates an XML file containing the source listing and the disassembler listing - same as List. EXPORT.Mix.
For an example and a description of the options, see List. EXPORT.Mix.

See also
B List EXPORT
List. EXPORT.HII Export source listing
Format: List. EXPORT.HII <file> <range> [/<option>]
Data.ListEXPORTHII (as an alternative)
<option>: COVerage | ISTATistic | Append | NoData

Creates an XML file containing just the source listing. For an example and a description of the options, see
List. EXPORT.Mix.

See also
W List. EXPORT

©1989-2024 Lauterbach General Commands Reference Guide L | 38

List. EXPORT.Mix

Export source and disassembler listing

[Example]

Format:

<option>:

List. EXPORT.Mix <file> <range> [[<option>]
Data.ListEXPORTMix (as an alternative)

COVerage | ISTATistic | SOrder | TOrder | Append | NoData | COVerableltems

Creates an XML file containing the source listing and the disassembler listing.

<file>

<range>

Append

COVerage
COVerableltems

ISTATistic

NoData
SOrder

TOrder

Name of the XML file that stores a listing of the source and disassembler
code. The file extension *.xml can be omitted.

Address filter for exporting the specified range.

Appends the listing to an existing XML file - without overwriting the
current file contents.

Listing additionally contains code coverage information.
Exports only coverage results for measurable source lines.

Listing additionally contains information provided by the ISTATistics
module.

Excludes data-only sections from the XML output.
Export the source code lines in source order.

Export the source code lines in target order (default).

©1989-2024 Lauterbach

General Commands Reference Guide L | 39

Example 1: The prerequisites for the following example are that the debug symbols have already been
loaded, the address bookmarks have been created, and trace data has been recorded.

COVerage .ADD ;update the coverage database
Data.List /COVerage /Track ;display source listing
COVerage.ListFunc ;display coverage for HLL functions

;export all bookmarks
BookMark.EXPORT "~~/list.xml"

;export the source listing of the functions “main” and “sieve”
List.EXPORT.Mix "~~/list.xml" main /COVerage /Append
List.EXPORT.Mix "~~/list.xml" sieve /COVerage /Append

;for demo purposes: let's open the unformatted result in TRACE32
EDIT "~~/list.xml"

;place the transformation template in the same folder as the XML file

COPY "~~/demo/coverage/single_file_report/t32transform.xsl" \
"~~/t32transform.xsl"

;you can now open the formatted result in an external browser window

0S.Command start iexplore.exe "file:///C:/t32/list.xml"

The tildes ~~ expand to your TRACE32 system directory, by default c:\t32.

Example 2: A more complex demo script is included in your TRACES2 installation. To access the script, run

this command:
B::CD.PSTEP ~~/demo/coverage/example.cmn

See also

W List EXPORT

©1989-2024 Lauterbach General Commands Reference Guide L |

40

List.HII

Display source

Format:

<option>:

List.HIl [<address>] [/<option>]
Data.ListHIl (as an alternative)

Mark <break>
Flag <flag> (EF)
COVerage
CACHE

Track

MarkPC

TOrder | SOrder

Displays the program in source format. The functionality is the same as the Data.List command. If the
starting address in not an HLL (High Level Language) line, assembler code is displayed to the next HLL line

found in the code segment.

] BaListHLL] [E=5EoR 5
[Mstep |[M Over |[AaDiverge|[¢ Return|[@ up || »Go |[Ml Break |[B¥Mode | Find: arm.
addr/1ine |source
582 sinewave_index++, = sinix)/(x+0.1); L
583 |1
e ?a'l n() . Program counter
——
char '+ p; (PC)
590 vtripplearray[0][0]1[0] = 1; -
4 m 3

Shaded lines indicate that the source information is not on disk or in the wrong directory. See command

sYmbol.SPATH.

= [BuList.HIN

(=[O el

[Mstep |[M Over |[uAaDiverge][¢ Return ||

a

eup |

addr/Tine |source
582

583

» Go [I Break |[B¥Mode | Find: rm.
I
‘| -— Shaded lines

///2

M

<option> For a description of the options, see List.auto.
See also
W List W List.Asm W List.auto W List.Java
W List.Mix B Mode 0 DEBUGMODE()

©1989-2024 Lauterbach

General Commands Reference Guide L | 41

List.Java Display Java byte code

[Example]

Format: List.Java [<address>] [/<option>]
Data.ListJava (as an alternative)

<option>: Mark <break>
Flag <flag>(EF)
COVerage
CACHE
Track
TOrder | SOrder

Displays the program in Java byte code format. The functionality is the same as the Data.List command.

This command is NOT required when an address range is specified as Java byte code area with the Java
byte code debugger or when the processor implements a special byte code mode (e.g. ARM Jazelle).

<option> For a description of the options, see List.auto.

©1989-2024 Lauterbach General Commands Reference Guide L | 42

Android is used in this example:

;1list all running tasks by magic number, task name, task ID, etc.
TASK.List.tasks

;change view to a task by specifying the magic number, task name or ID
Frame.TASK 0xEFD29700

;display a source listing at this address for the task specified above
List.Java J:0x0690:0x583A3D14

;alternatively, use the label to display the same source listing.

List.Java “<clinit> ()" ;enclose the label in backticks)
i£] BuListJava J:0:0690:0:583A3D14 =n| Wl <
[Mstep |[M Over]LDNerge][d’Return][@up || »Go [M Break |[B¥Mode | Find: Daemons.java -
addr/Tine |code bel mnemonic comment | JaVa flle name:

al FinalizerDaemon INFFANCE = new FinalizerDaemon(); ~

‘:c"'n"t-»(): Inc v-instance ,thing@0xD2 C||Ck to open the
nvoke-direct 'cthcd%x 90
symbol browser.

| 3:0690:58343014

:0690:583A3D1E
:0690:583A3D22
:0690:583A3D24
:0690:583A3D28

sput-object
return-void
move,/fromlé
move,/fromlé

(S

:0690:5834302C const (I
:0690:583A3D32 (0000 nop
o Tist.pendingNext = reference.pendingNext;
reference. pendingNext = null; -
J 4 | i b
——— Address
Thread ID

Access class J for Java

See also

W List M List Asm W List.auto W List.HIl
B List.Mix

©1989-2024 Lauterbach General Commands Reference Guide L | 43

List.Mix Disassembler and source

Format: List.Mix [<address>] [/<option>]
Data.ListMix (as an alternative)

<option>: Mark <break>
Flag <flag> (EF)
COVerage
CACHE
Track
MarkPC
TOrder | SOrder

The code is displayed in HLL (High Level Language) and additionally disassembled from the memory. The
functionality is the same as the Data.List command.

= [BuList.Mix] o -E =]
IHStplllio LD glld‘Rt Il ¢UD JL_»Go J[MBre kIL_IMdIFd arm.
SR 00001FF4 33335' HEH_ Jx3#F4 mmmmmm
S — T — - E’Fgg?fam counter
int J;
char * p;

Shaded lines indicate that the source information is not on disk or in the wrong directory. See the command
sYmbol.SPATH.

= [BuList.Mix] El-@
IHStDHIiO LD glld‘Rt Il ¢up || »Go | MBre kIL_IMd] Find:

mmmmmm
SR 00001FF4 00005 AF4

//////////////////?{///////}//////4/}////////////// /:l Shaded lines

A35an3n %l’_f4: ::::

<option> For a description of the options, see List.auto command.
See also
W List B List.Asm B List.auto W List.HIl
W List.Java W Mode 0 DEBUGMODE()

©1989-2024 Lauterbach General Commands Reference Guide L | 44

LOGGER

LOGGER

Trace method LOGGER, recording and analysis commands

LOGGER is a software trace method where the target application writes the required trace information to the
a reserved buffer on the target RAM. TRACES32 loads then the trace information from the target RAM for

display and processing.

Please refer to the “Application Note for the LOGGER Trace” (app_logger.pdf) for more information.

For selecting and configuring the trace method LOGGER, use the TRACE32 command line or a PRACTICE
script (*.cmm) or the LOGGER.state window [A].

Alternatively, use the Trace.state window: click the option LOGGER or execute the command
Trace.METHOD Analyzer in order to select the trace method LOGGER [B].
1

&% B:LOGGER state (==
& BiTrace (=N HoR >
state used TimeStamp NECER
DISabl OFF
8 =hie 8 Onchip () Analyzer CAnalyzer (! HAnalyzer Integrator (! Probe IProbe OLA
OFF u
p ClProbe (O ART (® LOGGER (O SNOOPer (O FDX (O NONE
O Arm SIZE () Down
tri 0. Rat:
O trigger e state used TimeStamp E
O break ADDRESS 40000000, O Disabl O 0FF
able
SD:0x81918 ® OFF @
p
d
commanes O Am Size O Down
@ Init Mode Mode O trigger - e
© Snapshat | | | @ Fifo [Create O break ADDRESS 40000000
2 List () Stack [runtimE SD0E1918
[AutoArm [e4Bit 4 [soosists]
commands
[Autolnit [FlowTrace @ Init - -
ni ode ode
&3 SnapShot (® Fifo [Create
2 List () Stack [runtimE
] AutoArm [64Bit
[Autolnit [FlowTrace

The chapter “LOGGER-specific Trace Commands”, page 46 describes the LOGGER-specific
configuration commands. While the chapter “Generic LOGGER Trace Commands”, page 48 lists the
LOGGER trace analysis and display commands, which are shared with other TRACE32 trace methods.

See also

B FDX

B Trace. METHOD

©1989-2024 Lauterbach

General Commands Reference Guide L | 45

LOGGER-specific Trace Commands

LOGGER.ADDRESS Software trace address

Format:

LOGGER.ADDRESS [<address>]

Defines the address of the logger trace control block in target memory.

LOGGER.Mode Set LOGGER operation mode
Format: LOGGER.Mode [<mode>]
<mode>: Fifo | Stack
Create
runtimg
64bit
FlowTrace

Selects the trace operation mode.

Fifo

Stack

Create

runtimE

64Bit

FlowTrace

See also

If the trace is full, new records will overwrite older records. The trace
records always the last cycles before the break.

If the trace is full recording will be stopped. The trace always records the
first cycles after starting the trace.

Create LOGGER software trace control block by debugger.

Dualport access.

LOGGER mode for 64-bit traces.

Special mode where the LOGGEr is used to sample the program flow.

The LOGGER trace listing reconstructs the program flow based on the
sampled information. Only supported for PowerPC and SH4.

B <trace>.Mode

©1989-2024 Lauterbach

General Commands Reference Guide L | 46

LOGGER.TimeStamp

Configure timestamp usage of LOGGER trace

Format: LOGGER.TimeStamp OFF | Up | Down | Rate <rate>

Configure timestamps for the LOGGER trace. The LOGGER trace record format includes a timestamp field
for up to 48 bit timestamps. The direction and rate information passed by this command is required to
convert the timestamp into the time in seconds.

OFF
(default)

Up

Down

Rate <rate>

AliCycles
[ON | OFF]
SH only

Disable timestamps. Use this setting if the LOGGER target code does
not store timestamps in the LOGGER trace records. When this setting is
used, the x-direction in chart views is the record number axis instead of
the time axis.

Enable timestamp counter, counting upwards. Use this setting if the
LOGGER target code stores timestamps in the LOGGER trace records
and if the timestamp increments with each timer tick.

Enable timestamp counter, counting downwards. Use this setting if the
LOGGER target code stores timestamps in the LOGGER trace records
and if the timestamp decrements with each timer tick.

Frequency of the timestamp in ticks per second.
Set timestamp generation frequency.

o OFF (default): Generate a single timestamp for 6 trace cycles.
. ON: Generate dedicated timestamps for all trace cycles.

Example: The timestamp used by the LOGGER target code increments at a rate of 16 million per second

(16 MHz):

LOGGER.TimeStamp Up
LOGGER.TimeStamp Rate 16000000.

©1989-2024 Lauterbach

General Commands Reference Guide L |

47

Generic LOGGER Trace Commands

LOGGER.ACCESS Define access path to program code for trace decoding

See command <trace>.ACCESS in 'General Commands Reference Guide T' (general_ref_t.pdf, page
131).

LOGGER.Arm Arm the trace

See command <trace>.Arm in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 134).

LOGGER.AutoArm Arm automatically
See command <trace>.AutoArm in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
135).

LOGGER.Autolnit Automatic initialization

See command <trace>.Autolnit in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 140).

LOGGER.BookMark Set a bookmark in trace listing
See command <trace>.BookMark in 'General Commands Reference Guide T' (general_ref_t.pdf, page
140).

LOGGER.BookMarkToggle Toggles a single trace bookmark

See command <trace>.BookMarkToggle in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 143).

©1989-2024 Lauterbach General Commands Reference Guide L | 48

LOGGER.Chart Display trace contents graphically

See command <trace>.Chart in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 144).

LOGGER.ComPare Compare trace contents

See command <trace>.ComPare in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
192).

LOGGER.DISable Disable the trace

See command <trace>.DISable in 'General Commands Reference Guide T' (general_ref_t.pdf, page 197).

LOGGER.DRAW Plot trace data against time

See command <trace>.DRAW in 'General Commands Reference Guide T' (general_ref_t.pdf, page 201).

LOGGER.EXPORT Export trace data for processing in other applications

See command <trace>.EXPORT in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
212).

LOGGER.FILE Load a file into the file trace buffer

See command <trace>.FILE in 'General Commands Reference Guide T' (general_ref_t.pdf, page 233).

LOGGER.Find Find specified entry in trace

See command <trace>.Find in 'General Commands Reference Guide T' (general_ref_t.pdf, page 235).

LOGGER.FindAll Find all specified entries in trace

See command <trace>.FindAll in 'General Commands Reference Guide T' (general_ref_t.pdf, page 237).

©1989-2024 Lauterbach General Commands Reference Guide L | 49

LOGGER.FindChange Search for changes in trace flow

See command <trace>.FindChange in 'General Commands Reference Guide T' (general_ref_t.pdf, page
238).

LOGGER.FLOWPROCESS Process flowtrace

See command <trace>.FLOWPROCESS in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 241).

LOGGER.FLOWSTART Restart flowtrace processing

See command <trace>.FLOWSTART in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
241).

LOGGER.GOTO Move cursor to specified trace record

See command <trace>.GOTO in 'General Commands Reference Guide T' (general_ref_t.pdf, page 244).

LOGGER.Init Initialize trace

See command <trace>.Init in 'General Commands Reference Guide T' (general_ref_t.pdf, page 246).

LOGGER.List List trace contents

See command <trace>.List in 'General Commands Reference Guide T' (general_ref_t.pdf, page 248).

LOGGER.ListNesting Analyze function nesting

See command <trace>.ListNesting in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
263).

©1989-2024 Lauterbach General Commands Reference Guide L | 50

LOGGER.ListVar List variable recorded to trace

See command <trace>.ListVar in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 266).

LOGGER.LOAD Load trace file for offline processing

See command <trace>.LOAD in 'General Commands Reference Guide T' (general_ref_t.pdf, page 270).

LOGGER.OFF Switch off

See command <trace>.0FF in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 278).

LOGGER.PROfileChart Profile charts

See command <trace>.PROfileChart in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
283).

LOGGER.PROfileSTATistic Statistical analysis in a table versus time
See command <trace>.PROfileSTATistic in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 322).

LOGGER.PROTOcol Protocol analysis

See command <trace>.PROTOcol in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
339).

LOGGER.PROTOcol.Chart Graphic display for user-defined protocol

See command <trace>.PROTOcol.Chart in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 339).

©1989-2024 Lauterbach General Commands Reference Guide L | 51

LOGGER.PROTOcol.Draw Graphic display for user-defined protocol

See command <trace>.PROTOcol.Draw in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 341).

LOGGER.PROTOcol.EXPORT Export trace buffer for user-defined protocol

See command <trace>.PROTOcol.EXPORT in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 342).

LOGGER.PROTOcol.Find Find in trace buffer for user-defined protocol

See command <trace>.PROTOcol.Find in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 343).

LOGGER.PROTOcol.list Display trace buffer for user-defined protocol

See command <trace>.PROTOcol.list in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 344).

LOGGER.PROTOcol.PROfileChart Profile chart for user-defined protocol

See command <trace>.PROTOcol.PROfileChart in '‘General Commands Reference Guide T
(general_ref_t.pdf, page 347).

LOGGER.PROTOcol.PROfileSTATistic Profile chart for user-defined
protocol

See command <trace>.PROTOcol.PROfileSTATistic in '‘General Commands Reference Guide T'
(general_ref_t.pdf, page 348).

LOGGER.PROTOcol.STATistic Display statistics for user-defined protocol

See command <trace>.PROTOcol.STATistic in 'General Commands Reference Guide T
(general_ref_t.pdf, page 350).

©1989-2024 Lauterbach General Commands Reference Guide L | 52

LOGGER.REF Set reference point for time measurement

See command <trace>.REF in 'General Commands Reference Guide T' (general_ref_t.pdf, page 357).

LOGGER.RESet Reset command

See command <trace>.RESet in 'General Commands Reference Guide T' (general_ref_t.pdf, page 357).

LOGGER.SAVE Save trace for postprocessing in TRACES32

See command <trace>.SAVE in 'General Commands Reference Guide T' (general_ref_t.pdf, page 358).

LOGGER.SelfArm Automatic restart of trace recording

See command <trace>.SelfArm in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
362).

LOGGER.SIZE Define buffer size

See command <trace>.SIZE in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 373).

LOGGER.SnapShot Restart trace capturing once

See command <trace>.SnapShot in 'General Commands Reference Guide T' (general_ref_t.pdf, page
373).

LOGGER.state Display trace configuration window

See command <trace>.state in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 376).

LOGGER.STATistic Statistic analysis

See command <trace>.STATistic in 'General Commands Reference Guide T' (general_ref_t.pdf, page
378).

©1989-2024 Lauterbach General Commands Reference Guide L | 53

LOGGER.Timing Waveform of trace buffer

See command <trace>.Timing in 'General Commands Reference Guide T' (general_ref_t.pdf, page 499).

LOGGER.TRACK Set tracking record

See command <trace>.TRACK in 'General Commands Reference Guide T' (general_ref_t.pdf, page 502).

LOGGER.View Display single record

See command <trace>.View in 'General Commands Reference Guide T' (general_ref_t.pdf, page 504).

LOGGER.ZERO Align timestamps of trace and timing analyzers

See command <trace>.ZERO in 'General Commands Reference Guide T' (general_ref_t.pdf, page 505).

©1989-2024 Lauterbach General Commands Reference Guide L | 54

LUA

LUA Support for the Lua script language

The TRACE32 Lua API allows the user to load and execute Lua scripts directly in the debugger. This feature
can be used to accelerate execution of certain debug commands by avoiding the interaction between the
TRACE32 host software and the debug driver. A Lua interpreter is built into the debug box, supporting the
complete Lua language. Please refer to the official website of Lua www.lua.org for documentation.

In addition to the standard language elements, Lauterbach extended Lua with a set of TRACES32 specific
libraries. This allows you to, for example, use the JTAG shift functions directly in the Lua script. For a
description of the TRACE32 specific libraries, refer to “TRACE32 Lua Library” (lua_library.pdf).

The TRACES2 host software maintains an input buffer with size 0x1000 bytes to store input parameters for
the Lua script. While sending the command to execute a certain Lua script, TRACE32 also packs and sends
the input buffer to the debugger. Use LUA.Data.SET to manipulate the input buffer and
LUA.Data.Showlnput to view the current content in the input buffer. Loading the input buffer from a binary
file is also supported. From within the Lua scripts, the data in the input buffer can be retrieved using functions
from the “TRACE32 Lua Library” (lua_library.pdf).

When executing a Lua script, the TRACES32 host software blocks until it returns. Inside the Lua script,
functions from the “TRACE32 Lua Library” (lua_library.pdf) can be used to store output data into an output
buffer (again 0x1000 bytes). The output buffer will be automatically sent back to the TRACE32. Use
LUA.Data.ShowOutput to view the output data. It is also supported to save the output buffer into a binary
file.

The Lua API can be used both as TRACE32 commands and through the remote C API. The LUA command
group is described in the following sections and the C APl is introduced in chapter Remote Lua API.

LUA.Data.Loadinput Load content from a file into the input buffer

Format: LUA.Data.Loadinput <file> [/<load_option>]

Load content from a binary file into the input buffer. Use LUA.Data.Showlnput to check the current content
of the input buffer.

Offset Starting position in the binary file to be loaded into the input buffer
<offset>

Length Number of bytes to be loaded into the input buffer

<length>

©1989-2024 Lauterbach General Commands Reference Guide L | 55

LUA.Data.Saveoutput Save output buffer into a binary file

Format: LUA.Data.Saveoutput <file> [/<save_option>]

Save content of the output buffer into a file. Use LUA.Data.ShowOutput to check the current content of the

output buffer.
Append Append data to the end of the output file.
LUA.Data.SET Modify the Lua input buffer
Format: LUA.Data.SET <index> %<format> <value>
<format>: Byte | Word | Long | Quad | TByte | HByte | PByte | SByte
BE | LE

Writes byte-wise data to the input buffer. Use LUA.Data.ShowlInput to view the current content of the input
buffer. The input buffer will be sent to the debugger upon executing a LUA.Program.RUN command.

<index> The byte position of the input buffer to be written.

Byte, Word, ... Data size.
. Byte (8-bit accesses) Word (16-bit accesses)
. TByte (24-bit accesses) Long (32-bit accesses)
. PByte (40-bit accesses) HByte (48-bit accesses)
. SByte (56-bit accesses) Quad (64-bit accesses)

BE, LE Define byte endianness: big endian or little endian.

<value> The value to be written to the buffer.

©1989-2024 Lauterbach General Commands Reference Guide L | 56

LUA.Data.Showlnput Show current content of the input buffer

Format: LUA.Data.ShowInput

Displays the current content of the input buffer in the AREA window.

LUA.Data.ShowOutput Show current content of the output buffer

Format: LUA.Data.ShowOutput

Displays the current content of the output buffer in the AREA window.The output buffer contains the return
values from the Lua script. Inside the Lua script, functions from the “TRACE32 Lua Library”
(lua_library.pdf) can be used to write to the output buffer.

LUA.Program.List List the current Lua scripts

Format: LUA.Program.List

Lists the Lua scripts that have been loaded into the debugger. The output is redirected to the AREA window
and has the following format: <id> : <label>, <attribute>, <file>. See example.

ID An auto-generated sequential index of the current Lua scripts. Note that the
ID of a certain script may change after loading/unloading another script.

label A unique string to identify a Lua script.

attribute EXE: an executable script.

LIB: a library script.
See LUA.Program.LOAD for more details.

filename Path to the Lua file.

©1989-2024 Lauterbach General Commands Reference Guide L | 57

LUA.Program.LOAD Load a Lua script to debugger

Format: LUA.Program.LOAD <file> [<label>] [/<options>]

<option>: Program | Library

Loads the Lua script to the debugger without executing it. The script is uniquely identified by its label. See
example here.

<file> Path and file name of the Lua script to be loaded.

<label> A unique string to identify the Lua script. If not specified, a default label will
be generated.

Program The Lua script is loaded as an executable script. This is the default
option.
Library The Lua script is loaded as a library script. The Lua functions in a library

script will be made available to all other Lua scripts. Although marked as
a library, the script itself can still be executed normally. However, we
recommend to develop separate Lua scripts for libraries and executables.

LUA.Program.RESet Reset the Lua context

Format: LUA.Program.RESet

Resets the Lua context, unloads all scripts from the debugger and clears all input and output buffers.

LUA.Program.RUN Execute a Lua script

Format: LUA.Program.RUN <id> | <label>

Executes the Lua script with given index or label. Use LUA.Program.List to check IDs and labels of the Lua
scripts that are currently available in the debugger.

See example.

©1989-2024 Lauterbach General Commands Reference Guide L | 58

LUA.Program.UNLOAD Remove a Lua script from the debugger

Format: LUA.Program.UNLOAD <id> | <label>

Removes a Lua script from the debugger. Use LUA.Program.List to see the scripts currently loaded.

©1989-2024 Lauterbach General Commands Reference Guide L | 59

Example

; load the Lua script lib.lua as a library
LUA.Program.LOAD c:\lua\lib.lua "mylib" /Library
; load the Lua script jtag.lua as an executable

; use default option "/Program" and default label
LUA.Program.LOAD c:\lua\jtag.lua

; see the current list of Lua scripts
LUA.Program.List

; you should see the following:

; 0 : mylib, LIB, C:\lua\lib.lua

; 1 : jtag.lua, EXE, C:\lual\jtag.lua

; set input parameter
LUA.Data.SET 0x0 %1 0x12345678
LUA.Data.ShowInput

; execute the Lua script jtag.lua using its index
LUA.Program.RUN 1

; execute the Lua script jtag.lua using its label
LUA.Program.RUN "jtag.lua"

; view the output buffer
LUA.Data.ShowOutput

; remove a Lua script

LUA.Program.UNLOAD 0

; Note that now the Lua script with index 0 (lib.lua) is removed
; and the indexing has changed

LUA.Program.List

; now you should see the following

; 0 : jtag.lua, EXE, C:\lua\jtag.lua

; the Lua script jtag.lua now has the index 0

LUA.Program.UNLOAD "jtag.lua"

; clear the context
LUA.Program.RESet

©1989-2024 Lauterbach General Commands Reference Guide L | 60

	General Commands Reference Guide L
	History
	LA
	LA Logic analyzer

	LA-specific Trace Commands
	LA.IMPORT Import trace information
	LA.IMPORT.CoreByteStream Import pure single core trace data
	LA.IMPORT.cycles Import bus trace data
	LA.IMPORT.ELA Import ELA trace data
	LA.IMPORT.ETB Import on-chip trace data
	LA.IMPORT.GUESSWRAP Guess wrap pointer
	LA.IMPORT.StartInvalid Set start of trace as invalid
	LA.IMPORT.StartValid Set start of trace as valid
	LA.IMPORT.STP Import STP recording from file (nibble)
	LA.IMPORT.STPByteStream Import STP recording from file (byte)
	LA.IMPORT.TARMAC Import TARMAC trace file
	LA.IMPORT.TraceFile Import trace data where processing has failed
	LA.IMPORT.TracePort Import off-chip trace data
	LA.IMPORT.UltraSOC Import raw UltraSOC flow trace data
	LA.IMPORT.VCD Import recorded signals in VCD file format
	LA.IMPORT.WRAP Define wrap pointer
	LA.Mode Set the trace operation mode

	Generic LA Trace Commands
	LA.ACCESS Define access path to program code for trace decoding
	LA.Arm Arm the trace
	LA.AutoArm Arm automatically
	LA.AutoInit Automatic initialization
	LA.BookMark Set a bookmark in trace listing
	LA.Chart Display trace contents graphically
	LA.CLOCK Clock to calculate time out of cycle count information
	LA.ComPare Compare trace contents
	LA.ComPareCODE Compare trace with memory
	LA.DISable Disable the trace
	LA.DRAW Plot trace data against time
	LA.EXPORT Export trace data for processing in other applications
	LA.FILE Load a file into the file trace buffer
	LA.Find Find specified entry in trace
	LA.FindAll Find all specified entries in trace
	LA.FindChange Search for changes in trace flow
	LA.FLOWPROCESS Process flowtrace
	LA.FLOWSTART Restart flowtrace processing
	LA.GOTO Move cursor to specified trace record
	LA.Init Initialize trace
	LA.List List trace contents
	LA.ListNesting Analyze function nesting
	LA.ListVar List variable recorded to trace
	LA.LOAD Load trace file for offline processing
	LA.OFF Switch off
	LA.PROfileChart Profile charts
	LA.PROfileSTATistic Statistical analysis in a table versus time
	LA.PROTOcol Protocol analysis
	LA.PROTOcol.Chart Graphic display for user-defined protocol
	LA.PROTOcol.Draw Graphic display for user-defined protocol
	LA.PROTOcol.EXPORT Export trace buffer for user-defined protocol
	LA.PROTOcol.Find Find in trace buffer for user-defined protocol
	LA.PROTOcol.list Display trace buffer for user-defined protocol
	LA.PROTOcol.PROfileChart Profile chart for user-defined protocol
	LA.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol
	LA.PROTOcol.STATistic Display statistics for user-defined protocol
	LA.REF Set reference point for time measurement
	LA.RESet Reset command
	LA.SAVE Save trace for postprocessing in TRACE32
	LA.SelfArm Automatic restart of trace recording
	LA.SIZE Define buffer size
	LA.SnapShot Restart trace capturing once
	LA.state Display trace configuration window
	LA.STATistic Statistic analysis
	LA.Timing Waveform of trace buffer
	LA.TRACK Set tracking record
	LA.View Display single record
	LA.ZERO Align timestamps of trace and timing analyzers

	List
	List Display modes for programs
	List.auto Display program listing
	List.Asm Display disassembler
	List.EXPORT Export a listing to an XML file
	List.EXPORT.Asm Export disassembler listing
	List.EXPORT.auto Export source and disassembler listing
	List.EXPORT.Hll Export source listing
	List.EXPORT.Mix Export source and disassembler listing
	List.Hll Display source
	List.Java Display Java byte code
	List.Mix Disassembler and source

	LOGGER
	LOGGER Trace method LOGGER, recording and analysis commands

	LOGGER-specific Trace Commands
	LOGGER.ADDRESS Software trace address
	LOGGER.Mode Set LOGGER operation mode
	LOGGER.TimeStamp Configure timestamp usage of LOGGER trace

	Generic LOGGER Trace Commands
	LOGGER.ACCESS Define access path to program code for trace decoding
	LOGGER.Arm Arm the trace
	LOGGER.AutoArm Arm automatically
	LOGGER.AutoInit Automatic initialization
	LOGGER.BookMark Set a bookmark in trace listing
	LOGGER.BookMarkToggle Toggles a single trace bookmark
	LOGGER.Chart Display trace contents graphically
	LOGGER.ComPare Compare trace contents
	LOGGER.DISable Disable the trace
	LOGGER.DRAW Plot trace data against time
	LOGGER.EXPORT Export trace data for processing in other applications
	LOGGER.FILE Load a file into the file trace buffer
	LOGGER.Find Find specified entry in trace
	LOGGER.FindAll Find all specified entries in trace
	LOGGER.FindChange Search for changes in trace flow
	LOGGER.FLOWPROCESS Process flowtrace
	LOGGER.FLOWSTART Restart flowtrace processing
	LOGGER.GOTO Move cursor to specified trace record
	LOGGER.Init Initialize trace
	LOGGER.List List trace contents
	LOGGER.ListNesting Analyze function nesting
	LOGGER.ListVar List variable recorded to trace
	LOGGER.LOAD Load trace file for offline processing
	LOGGER.OFF Switch off
	LOGGER.PROfileChart Profile charts
	LOGGER.PROfileSTATistic Statistical analysis in a table versus time
	LOGGER.PROTOcol Protocol analysis
	LOGGER.PROTOcol.Chart Graphic display for user-defined protocol
	LOGGER.PROTOcol.Draw Graphic display for user-defined protocol
	LOGGER.PROTOcol.EXPORT Export trace buffer for user-defined protocol
	LOGGER.PROTOcol.Find Find in trace buffer for user-defined protocol
	LOGGER.PROTOcol.list Display trace buffer for user-defined protocol
	LOGGER.PROTOcol.PROfileChart Profile chart for user-defined protocol
	LOGGER.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol
	LOGGER.PROTOcol.STATistic Display statistics for user-defined protocol
	LOGGER.REF Set reference point for time measurement
	LOGGER.RESet Reset command
	LOGGER.SAVE Save trace for postprocessing in TRACE32
	LOGGER.SelfArm Automatic restart of trace recording
	LOGGER.SIZE Define buffer size
	LOGGER.SnapShot Restart trace capturing once
	LOGGER.state Display trace configuration window
	LOGGER.STATistic Statistic analysis
	LOGGER.Timing Waveform of trace buffer
	LOGGER.TRACK Set tracking record
	LOGGER.View Display single record
	LOGGER.ZERO Align timestamps of trace and timing analyzers

	LUA
	LUA Support for the Lua script language
	LUA.Data.Loadinput Load content from a file into the input buffer
	LUA.Data.Saveoutput Save output buffer into a binary file
	LUA.Data.SET Modify the Lua input buffer
	LUA.Data.ShowInput Show current content of the input buffer
	LUA.Data.ShowOutput Show current content of the output buffer
	LUA.Program.List List the current Lua scripts
	LUA.Program.LOAD Load a Lua script to debugger
	LUA.Program.RESet Reset the Lua context
	LUA.Program.RUN Execute a Lua script
	LUA.Program.UNLOAD Remove a Lua script from the debugger

