
MANUAL

General Commands Reference
Guide L

General Commands Reference Guide L

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 General Commands .. 

 General Commands Reference Guide L ... 1

 History .. 6

 LA .. 7

 LA Logic analyzer 7

 LA-specific Trace Commands .. 8

 LA.IMPORT Import trace information 8

 LA.IMPORT.CoreByteStream Import pure single core trace data 10

 LA.IMPORT.cycles Import bus trace data 11

 LA.IMPORT.ELA Import ELA trace data 11

 LA.IMPORT.ETB Import on-chip trace data 11

 LA.IMPORT.GUESSWRAP Guess wrap pointer 13

 LA.IMPORT.StartInvalid Set start of trace as invalid 13

 LA.IMPORT.StartValid Set start of trace as valid 14

 LA.IMPORT.STP Import STP recording from file (nibble) 14

 LA.IMPORT.STPByteStream Import STP recording from file (byte) 15

 LA.IMPORT.TARMAC Import TARMAC trace file 15

 LA.IMPORT.TraceFile Import trace data where processing has failed 16

 LA.IMPORT.TracePort Import off-chip trace data 16

 LA.IMPORT.UltraSOC Import raw UltraSOC flow trace data 17

 LA.IMPORT.VCD Import recorded signals in VCD file format 17

 LA.IMPORT.WRAP Define wrap pointer 18

 LA.Mode Set the trace operation mode 19

 Generic LA Trace Commands .. 20

 LA.ACCESS Define access path to program code for trace decoding 20

 LA.Arm Arm the trace 20

 LA.AutoArm Arm automatically 20

 LA.AutoInit Automatic initialization 20

 LA.BookMark Set a bookmark in trace listing 20

 LA.Chart Display trace contents graphically 20

 LA.CLOCK Clock to calculate time out of cycle count information 21

 LA.ComPare Compare trace contents 21

 LA.ComPareCODE Compare trace with memory 21
General Commands Reference Guide L | 2©1989-2024 Lauterbach

 LA.DISable Disable the trace 21

 LA.DRAW Plot trace data against time 21

 LA.EXPORT Export trace data for processing in other applications 21

 LA.FILE Load a file into the file trace buffer 21

 LA.Find Find specified entry in trace 21

 LA.FindAll Find all specified entries in trace 22

 LA.FindChange Search for changes in trace flow 22

 LA.FLOWPROCESS Process flowtrace 22

 LA.FLOWSTART Restart flowtrace processing 22

 LA.GOTO Move cursor to specified trace record 22

 LA.Init Initialize trace 22

 LA.List List trace contents 22

 LA.ListNesting Analyze function nesting 23

 LA.ListVar List variable recorded to trace 23

 LA.LOAD Load trace file for offline processing 23

 LA.OFF Switch off 23

 LA.PROfileChart Profile charts 23

 LA.PROfileSTATistic Statistical analysis in a table versus time 23

 LA.PROTOcol Protocol analysis 23

 LA.PROTOcol.Chart Graphic display for user-defined protocol 24

 LA.PROTOcol.Draw Graphic display for user-defined protocol 24

 LA.PROTOcol.EXPORT Export trace buffer for user-defined protocol 24

 LA.PROTOcol.Find Find in trace buffer for user-defined protocol 24

 LA.PROTOcol.list Display trace buffer for user-defined protocol 24

 LA.PROTOcol.PROfileChart Profile chart for user-defined protocol 24

 LA.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol 24

 LA.PROTOcol.STATistic Display statistics for user-defined protocol 25

 LA.REF Set reference point for time measurement 25

 LA.RESet Reset command 25

 LA.SAVE Save trace for postprocessing in TRACE32 25

 LA.SelfArm Automatic restart of trace recording 25

 LA.SIZE Define buffer size 25

 LA.SnapShot Restart trace capturing once 25

 LA.state Display trace configuration window 25

 LA.STATistic Statistic analysis 26

 LA.Timing Waveform of trace buffer 26

 LA.TRACK Set tracking record 26

 LA.View Display single record 26

 LA.ZERO Align timestamps of trace and timing analyzers 26

 List .. 27

 List Display modes for programs 27

 List.auto Display program listing 28

 List.Asm Display disassembler 36
General Commands Reference Guide L | 3©1989-2024 Lauterbach

 List.EXPORT Export a listing to an XML file 37

 List.EXPORT.Asm Export disassembler listing 37

 List.EXPORT.auto Export source and disassembler listing 38

 List.EXPORT.Hll Export source listing 38

 List.EXPORT.Mix Export source and disassembler listing 39

 List.Hll Display source 41

 List.Java Display Java byte code 42

 List.Mix Disassembler and source 44

 LOGGER ... 45

 LOGGER Trace method LOGGER, recording and analysis commands 45

 LOGGER-specific Trace Commands ... 46

 LOGGER.ADDRESS Software trace address 46

 LOGGER.Mode Set LOGGER operation mode 46

 LOGGER.TimeStamp Configure timestamp usage of LOGGER trace 47

 Generic LOGGER Trace Commands ... 48

 LOGGER.ACCESS Define access path to program code for trace decoding 48

 LOGGER.Arm Arm the trace 48

 LOGGER.AutoArm Arm automatically 48

 LOGGER.AutoInit Automatic initialization 48

 LOGGER.BookMark Set a bookmark in trace listing 48

 LOGGER.BookMarkToggle Toggles a single trace bookmark 48

 LOGGER.Chart Display trace contents graphically 49

 LOGGER.ComPare Compare trace contents 49

 LOGGER.DISable Disable the trace 49

 LOGGER.DRAW Plot trace data against time 49

 LOGGER.EXPORT Export trace data for processing in other applications 49

 LOGGER.FILE Load a file into the file trace buffer 49

 LOGGER.Find Find specified entry in trace 49

 LOGGER.FindAll Find all specified entries in trace 49

 LOGGER.FindChange Search for changes in trace flow 50

 LOGGER.FLOWPROCESS Process flowtrace 50

 LOGGER.FLOWSTART Restart flowtrace processing 50

 LOGGER.GOTO Move cursor to specified trace record 50

 LOGGER.Init Initialize trace 50

 LOGGER.List List trace contents 50

 LOGGER.ListNesting Analyze function nesting 50

 LOGGER.ListVar List variable recorded to trace 51

 LOGGER.LOAD Load trace file for offline processing 51

 LOGGER.OFF Switch off 51

 LOGGER.PROfileChart Profile charts 51

 LOGGER.PROfileSTATistic Statistical analysis in a table versus time 51

 LOGGER.PROTOcol Protocol analysis 51
General Commands Reference Guide L | 4©1989-2024 Lauterbach

 LOGGER.PROTOcol.Chart Graphic display for user-defined protocol 51

 LOGGER.PROTOcol.Draw Graphic display for user-defined protocol 52

 LOGGER.PROTOcol.EXPORT Export trace buffer for user-defined protocol 52

 LOGGER.PROTOcol.Find Find in trace buffer for user-defined protocol 52

 LOGGER.PROTOcol.list Display trace buffer for user-defined protocol 52

 LOGGER.PROTOcol.PROfileChart Profile chart for user-defined protocol 52

 LOGGER.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol 52

 LOGGER.PROTOcol.STATistic Display statistics for user-defined protocol 52

 LOGGER.REF Set reference point for time measurement 53

 LOGGER.RESet Reset command 53

 LOGGER.SAVE Save trace for postprocessing in TRACE32 53

 LOGGER.SelfArm Automatic restart of trace recording 53

 LOGGER.SIZE Define buffer size 53

 LOGGER.SnapShot Restart trace capturing once 53

 LOGGER.state Display trace configuration window 53

 LOGGER.STATistic Statistic analysis 53

 LOGGER.Timing Waveform of trace buffer 54

 LOGGER.TRACK Set tracking record 54

 LOGGER.View Display single record 54

 LOGGER.ZERO Align timestamps of trace and timing analyzers 54

 LUA ... 55

 LUA Support for the Lua script language 55

 LUA.Data.Loadinput Load content from a file into the input buffer 55

 LUA.Data.Saveoutput Save output buffer into a binary file 56

 LUA.Data.SET Modify the Lua input buffer 56

 LUA.Data.ShowInput Show current content of the input buffer 57

 LUA.Data.ShowOutput Show current content of the output buffer 57

 LUA.Program.List List the current Lua scripts 57

 LUA.Program.LOAD Load a Lua script to debugger 58

 LUA.Program.RESet Reset the Lua context 58

 LUA.Program.RUN Execute a Lua script 58

 LUA.Program.UNLOAD Remove a Lua script from the debugger 59
General Commands Reference Guide L | 5©1989-2024 Lauterbach

General Commands Reference Guide L

Version 06-Jun-2024

History

22-Apr-2024 New option /NoExec for LA.IMPORT.TARMAC command.

25-Mar-2024 New option /COVerableItems for List.EXPORT.auto and List.EXPORT.Mix commands.

23-Feb-2024 New command LA.IMPORT.TARMAC.
General Commands Reference Guide L | 6©1989-2024 Lauterbach

LA

LA Logic analyzer

The trace method LA is used for remote control of logic analyzer systems.

For selecting and configuring the trace method LA, use the TRACE32 command line or a PRACTICE script
(*.cmm) or the LA.state window [A].

Alternatively, use the Trace.state window: click the option LA or execute the command Trace.METHOD LA
in order to select the trace method LA [B].

The chapter “LA-specific Trace Commands”, page 8 describes the LA-specific configuration commands.
While the chapter “Generic LA Trace Commands”, page 20 lists the LA trace analysis and display
commands, which are shared with other TRACE32 trace methods.

See also

■ Trace.METHOD

▲ ’Generic LA Trace Commands’ in ’General Commands Reference Guide L’
▲ ’Release Information’ in ’Legacy Release History’

A

B

General Commands Reference Guide L | 7©1989-2024 Lauterbach

LA-specific Trace Commands

LA.IMPORT Import trace information
[Example]

The LA.IMPORT command group is used to load trace data from a file into TRACE32 and to analyze it just
like data recorded with a TRACE32 trace tool.

The trace data can be obtained by the application software itself or by another tool or by TRACE32 in a
previous debug session in which the processing could not be performed for some reasons.

Trace data successfully obtained and analyzed by TRACE32 can be stored by <trace>.SAVE and re-viewed
by using the <trace>.LOAD command. This is the more convenient way because <trace>.SAVE stores a lot
of additional information used for the analysis. LA.IMPORT imports only the trace raw data. For proper
processing you need to inform the debugger about all the trace-relevant circumstances.

All kind of trace postprocessing is only possible with the trace method LA (Logic Analyzer). Therefore you
need to use LA.IMPORT and LA.* command group for all analysis commands or better switch the trace
method to LA (Trace.METHOD LA) and use the command group Trace.* for all further operations.

LA.IMPORT supports different kinds of trace data and formats. Therefore different commands are provided.

Most trace data is stored in the file in the timely order the data had been generated.

An exception is the on-chip trace buffer, which is typically used as a circular ring buffer overwriting the trace
data all the time until the point of interest is reached.

Import

LA.IMPORT.<format>

 Records in trace file

0 (oldest record)
1
.
.
.
999 (newest record)

Records in LA.List window

Save

File from an external source

Display

LA.List

0 (oldest record)
1
.
.
.
999 (newest record)
General Commands Reference Guide L | 8©1989-2024 Lauterbach

If this buffer is saved into a file, you need to know the wrap pointer for being able to get the data in a timely
order. LA.IMPORT.WRAP and LA.IMPORT.GUESSWRAP will deal with this concern.

For post processing trace data loaded by LA.IMPORT you need to take the following steps:

1. Start TRACE32 to run as simulator (config.t32 -> PBI=SIM). You neither need a debugger
hardware nor a target. You can run TRACE32 as debugger as well, but for the postprocessing
this is not needed.

2. Adjust all trace relevant settings like for a real target by running the start-up script you used for
generating the trace data. For postprocessing an ETMv4 even further setups might be needed
which normally the debugger would read out from the ETM module (ETM.COND, ETM.INSTPO,
ETM.QE).

If the start-up script is not available, then try this:

- At best selecting the chip you are debugging (SYStem.CPU ...) is sufficient.

- For trace data coming from a ARM CoreSight system, all commands describing the trace
system on the chip are required (SYStem.CONFIG ...).

- Further all settings for the trace sources done at recording time are needed (e.g. ETM. ...).

3. Load your target application (Data.LOAD ...).

4. Import the trace raw data (LA.IMPORT. ...).

5. Now you can use all trace display and analysis functions, e.g.

LA.List TP TPC TPINFO DEFault List.NoDummy.OFF ; with diagnostics

Import

LA.IMPORT.ETB

0
1
.
.
.
996 (newest record)

Records in LA.List window
-3 (oldest record)
-2
-1

Save

e.g. by external tool

Display

LA.List

Re-order

LA.IMPORT.WRAP

Process:

Circular
Ring
Buffer

997 (oldest record)
998
999

 Records in trace file
0
1
.
.
.
996 (newest record)

Wrap pointer

Result:

R
e-

or
de

r

General Commands Reference Guide L | 9©1989-2024 Lauterbach

Example:

See also

■ LA.IMPORT.CoreByteStream ■ LA.IMPORT.cycles
■ LA.IMPORT.ELA ■ LA.IMPORT.ETB
■ LA.IMPORT.GUESSWRAP ■ LA.IMPORT.StartInvalid
■ LA.IMPORT.StartValid ■ LA.IMPORT.STP
■ LA.IMPORT.STPByteStream ■ LA.IMPORT.TARMAC
■ LA.IMPORT.TraceFile ■ LA.IMPORT.TracePort
■ LA.IMPORT.UltraSOC ■ LA.IMPORT.VCD
■ LA.IMPORT.WRAP ■ <trace>.EXPORT

LA.IMPORT.CoreByteStream Import pure single core trace data

Imports pure single core trace data (e.g. for unwrapped single core trace data or x86 IPT traces).

See also

■ LA.IMPORT

SYStem.CPU CortexA15

SYStem.CONFIG COREDEBUG.Base 0x82010000
SYStem.CONFIG.ETM.Base 0x8201c000
SYStem.CONFIG.FUNNEL.Base 0x80040000
SYStem.CONFIG.FUNNEL.ATBSource ETM 0
SYStem.CONFIG.ETB.Base 0x80010000

ETM.PortMode.Wrapped
ETM.TraceID 0x55

SYStem.Up

Data.LOAD.Elf myfile.elf

Trace.METHOD.LA
Trace.IMPORT.ETB mydata.bin
Trace.IMPORT.GUESSWRAP

Trace.List TP TPC TPINFO DEFault List.NoDummy.OFF

Format: LA.IMPORT.CoreByteStream <file>
General Commands Reference Guide L | 10©1989-2024 Lauterbach

LA.IMPORT.cycles Import bus trace data

Re-imports a file that has been exported with <trace>.EXPORT.cycles. This bus trace data comes from
capturing the fetched instructions and data accesses done on an external bus to figure out the program
behavior. It works only if no cache is used and if the bus accesses can be captured. This command can be
used to import traces from external tools or simulators.

See also

■ LA.IMPORT

▲ ’Release Information’ in ’Legacy Release History’

LA.IMPORT.ELA Import ELA trace data

Imports a pure binary trace data file obtained from an ARM CoreSight Embedded Logic Analyzer
(ELA).

See also

■ LA.IMPORT

LA.IMPORT.ETB Import on-chip trace data

Imports a pure binary trace data file obtained from an on-chip trace buffer like ARM CoreSight ETB,
ETF, ETR.

You additionally need to use LA.IMPORT.WRAP or LA.IMPORT.GUESSWRAP if the following conditions
apply:

• The on-chip trace buffer was used as a circular ring buffer.

• The on-chip trace data was stored as is, it was not read out in the timely order starting from the write
pointer position.

Format: LA.IMPORT.cycles <file>

Format: LA.IMPORT.ELA <file>

Format: LA.IMPORT.ETB <file>
General Commands Reference Guide L | 11©1989-2024 Lauterbach

LA.Mode FlowTrace will automatically be set when using this command.

See also

■ LA.IMPORT

▲ ’Release Information’ in ’Legacy Release History’
General Commands Reference Guide L | 12©1989-2024 Lauterbach

LA.IMPORT.GUESSWRAP Guess wrap pointer

Reformats external trace data loaded to TRACE32 in a timely order. The external trace data of a circular ring
buffer is loaded to TRACE32 using LA.IMPORT.ETB. The command LA.IMPORT.GUESSWRAP scans
the loaded trace data and guesses where the wrap pointer might have been.

Optionally, you can pass a record number where the search for the wrap pointer shall start. Without a
parameter it starts from the beginning.

Use LA.IMPORT.WRAP if you know where the wrap pointer is.

See the figures in the introduction to <trace>.IMPORT.

See also

■ LA.IMPORT ■ LA.IMPORT.WRAP

LA.IMPORT.StartInvalid Set start of trace as invalid

Reverts the setting done with LA.IMPORT.StartValid.

See also

■ LA.IMPORT

Format: LA.IMPORT.GUESSWRAP [<record_number>]

Format: LA.IMPORT.StartInvalid
General Commands Reference Guide L | 13©1989-2024 Lauterbach

LA.IMPORT.StartValid Set start of trace as valid

This command informs the debugger that the start of the loaded trace is valid and that it should not wait for
Sync packets.

See also

■ LA.IMPORT

LA.IMPORT.STP Import STP recording from file (nibble)

Imports an STP trace from <file> to process it within TRACE32. One trace record is generated per nibble.

In order to unwrap the trace information for processing, TRACE32 needs to know the following information:
STM base address and the STP protocol version.

If TRACE32 is aware of the chip characteristic, setting up the chip is sufficient.

Example:

Format: LA.IMPORT.StartValid [<address1> <address2> …]

<address1>
<address2> …

The trace is set as valid starting from the given address. On SMP
systems, the first address corresponds to the first core, the second to the
second core...

Format: LA.IMPORT.STP <file>

SYStem.CPU OMAP4430APP1

LA.IMPORT.STP my_recording.stp

STMLA.List
General Commands Reference Guide L | 14©1989-2024 Lauterbach

Otherwise the following setup has to be done.

See also

■ LA.IMPORT

LA.IMPORT.STPByteStream Import STP recording from file (byte)

Same as LA.IMPORT.STP, but one trace record is generated per byte.

See also

■ LA.IMPORT

▲ ’Release Information’ in ’Legacy Release History’

LA.IMPORT.TARMAC Import TARMAC trace file
[build 165454 - DVD 02/2024]

Imports a trace data file in Tarmac format.

See also

■ LA.IMPORT

SYStem.CONFIG.STM.Base DAP:0xd4161000 ; any base address != 0x0 is
; fine

SYStem.CONFIG.STM.Mode STPv2 ; specify the STP protocol
; version

LA.IMPORT.STP my_recording.stp

STMLA.List

Format: LA.IMPORT.STPByteStream <file>

Format: LA.IMPORT.TARMAC <file> [/<option>]

<option>: NoExec

NoExec Allows the import process to ignore the execution state information
(exec/notexec) from the file.
General Commands Reference Guide L | 15©1989-2024 Lauterbach

LA.IMPORT.TraceFile Import trace data where processing has failed

Re-imports trace data stored by <trace>.SAVE for re-processing. This is useful if processing was not
possible when the trace recording was made. For example if you had no access to the target code at
that moment.

Only the trace raw data will be extracted from the saved (*.ad) file.

LA.Mode FlowTrace will automatically be set when using this command.

See also

■ LA.IMPORT

▲ ’Release Information’ in ’Legacy Release History’

LA.IMPORT.TracePort Import off-chip trace data

Imports a pure binary trace data file from an external trace port like an ARM CoreSight TPIU. Unlike
on-chip trace data, off-chip trace data includes synchronization packages and depend on the port size
of the trace port.

LA.Mode FlowTrace will automatically be set when using this command.

See also

■ LA.IMPORT

▲ ’Release Information’ in ’Legacy Release History’

Format: LA.IMPORT.TraceFile <file>

Format: LA.IMPORT.TracePort <file>
General Commands Reference Guide L | 16©1989-2024 Lauterbach

LA.IMPORT.UltraSOC Import raw UltraSOC flow trace data

This command allows to load raw UltraSOC flow trace data.

See also

■ LA.IMPORT

LA.IMPORT.VCD Import recorded signals in VCD file format

Imports a VCD (Value Change Dump) file, which is an industrial standard format for waveforms (not for
program trace). It is used for visualizing and analyzing the captured signals in the <trace>.Timing
window.

See also

■ LA.IMPORT

Format: LA.IMPORT.UltraSOC <file>

Format: LA.IMPORT.VCD <file>
General Commands Reference Guide L | 17©1989-2024 Lauterbach

LA.IMPORT.WRAP Define wrap pointer

Reformats external trace data loaded to TRACE32 in a timely order. The external trace data of a circular ring
buffer is loaded to TRACE32 using LA.IMPORT.ETB.

Use LA.IMPORT.GUESSWRAP if you do not know where the wrap pointer is.

See the figures in the introduction to LA.IMPORT.

See also

■ LA.IMPORT ■ LA.IMPORT.GUESSWRAP

Format: LA.IMPORT.WRAP <record_number>

<record_number> You pass the <record_number> of the first trace record in time (wrap
pointer). This is the write pointer location of a circular ring buffer the moment
the data has been stored.

NOTE: On a CoreSight trace, the write pointer points to a 32-bit value. You need to multiply
this value by 4 because each CoreSight trace record is 8 bit in size.
General Commands Reference Guide L | 18©1989-2024 Lauterbach

LA.Mode Set the trace operation mode

Selects the trace operation mode.

See also

■ <trace>.Mode

Format: LA.Mode [<mode>]

<mode>: Fifo
Stack
FlowTrace

Fifo If the trace is full, new records will overwrite older records. The trace
records always the last cycles before the break.

Stack If the trace is full recording will be stopped. The trace always records the
first cycles after starting the trace.

FlowTrace FlowTrace mode.
General Commands Reference Guide L | 19©1989-2024 Lauterbach

Generic LA Trace Commands

LA.ACCESS Define access path to program code for trace decoding

See command <trace>.ACCESS in 'General Commands Reference Guide T' (general_ref_t.pdf, page
131).

LA.Arm Arm the trace

See command <trace>.Arm in 'General Commands Reference Guide T' (general_ref_t.pdf, page 134).

LA.AutoArm Arm automatically

See command <trace>.AutoArm in 'General Commands Reference Guide T' (general_ref_t.pdf, page
135).

LA.AutoInit Automatic initialization

See command <trace>.AutoInit in 'General Commands Reference Guide T' (general_ref_t.pdf, page 140).

LA.BookMark Set a bookmark in trace listing

See command <trace>.BookMark in 'General Commands Reference Guide T' (general_ref_t.pdf, page
140).

LA.Chart Display trace contents graphically

See command <trace>.Chart in 'General Commands Reference Guide T' (general_ref_t.pdf, page 144).
General Commands Reference Guide L | 20©1989-2024 Lauterbach

LA.CLOCK Clock to calculate time out of cycle count information

See command <trace>.CLOCK in 'General Commands Reference Guide T' (general_ref_t.pdf, page 191).

LA.ComPare Compare trace contents

See command <trace>.ComPare in 'General Commands Reference Guide T' (general_ref_t.pdf, page
192).

LA.ComPareCODE Compare trace with memory

See command <trace>.ComPareCODE in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 194).

LA.DISable Disable the trace

See command <trace>.DISable in 'General Commands Reference Guide T' (general_ref_t.pdf, page 197).

LA.DRAW Plot trace data against time

See command <trace>.DRAW in 'General Commands Reference Guide T' (general_ref_t.pdf, page 201).

LA.EXPORT Export trace data for processing in other applications

See command <trace>.EXPORT in 'General Commands Reference Guide T' (general_ref_t.pdf, page
212).

LA.FILE Load a file into the file trace buffer

See command <trace>.FILE in 'General Commands Reference Guide T' (general_ref_t.pdf, page 233).

LA.Find Find specified entry in trace

See command <trace>.Find in 'General Commands Reference Guide T' (general_ref_t.pdf, page 235).
General Commands Reference Guide L | 21©1989-2024 Lauterbach

LA.FindAll Find all specified entries in trace

See command <trace>.FindAll in 'General Commands Reference Guide T' (general_ref_t.pdf, page 237).

LA.FindChange Search for changes in trace flow

See command <trace>.FindChange in 'General Commands Reference Guide T' (general_ref_t.pdf, page
238).

LA.FLOWPROCESS Process flowtrace

See command <trace>.FLOWPROCESS in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 241).

LA.FLOWSTART Restart flowtrace processing

See command <trace>.FLOWSTART in 'General Commands Reference Guide T' (general_ref_t.pdf, page
241).

LA.GOTO Move cursor to specified trace record

See command <trace>.GOTO in 'General Commands Reference Guide T' (general_ref_t.pdf, page 244).

LA.Init Initialize trace

See command <trace>.Init in 'General Commands Reference Guide T' (general_ref_t.pdf, page 246).

LA.List List trace contents

See command <trace>.List in 'General Commands Reference Guide T' (general_ref_t.pdf, page 248).
General Commands Reference Guide L | 22©1989-2024 Lauterbach

LA.ListNesting Analyze function nesting

See command <trace>.ListNesting in 'General Commands Reference Guide T' (general_ref_t.pdf, page
263).

LA.ListVar List variable recorded to trace

See command <trace>.ListVar in 'General Commands Reference Guide T' (general_ref_t.pdf, page 266).

LA.LOAD Load trace file for offline processing

See command <trace>.LOAD in 'General Commands Reference Guide T' (general_ref_t.pdf, page 270).

LA.OFF Switch off

See command <trace>.OFF in 'General Commands Reference Guide T' (general_ref_t.pdf, page 278).

LA.PROfileChart Profile charts

See command <trace>.PROfileChart in 'General Commands Reference Guide T' (general_ref_t.pdf, page
283).

LA.PROfileSTATistic Statistical analysis in a table versus time

See command <trace>.PROfileSTATistic in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 322).

LA.PROTOcol Protocol analysis

See command <trace>.PROTOcol in 'General Commands Reference Guide T' (general_ref_t.pdf, page
339).
General Commands Reference Guide L | 23©1989-2024 Lauterbach

LA.PROTOcol.Chart Graphic display for user-defined protocol

See command <trace>.PROTOcol.Chart in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 339).

LA.PROTOcol.Draw Graphic display for user-defined protocol

See command <trace>.PROTOcol.Draw in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 341).

LA.PROTOcol.EXPORT Export trace buffer for user-defined protocol

See command <trace>.PROTOcol.EXPORT in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 342).

LA.PROTOcol.Find Find in trace buffer for user-defined protocol

See command <trace>.PROTOcol.Find in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 343).

LA.PROTOcol.list Display trace buffer for user-defined protocol

See command <trace>.PROTOcol.list in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 344).

LA.PROTOcol.PROfileChart Profile chart for user-defined protocol

See command <trace>.PROTOcol.PROfileChart in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 347).

LA.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol

See command <trace>.PROTOcol.PROfileSTATistic in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 348).
General Commands Reference Guide L | 24©1989-2024 Lauterbach

LA.PROTOcol.STATistic Display statistics for user-defined protocol

See command <trace>.PROTOcol.STATistic in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 350).

LA.REF Set reference point for time measurement

See command <trace>.REF in 'General Commands Reference Guide T' (general_ref_t.pdf, page 357).

LA.RESet Reset command

See command <trace>.RESet in 'General Commands Reference Guide T' (general_ref_t.pdf, page 357).

LA.SAVE Save trace for postprocessing in TRACE32

See command <trace>.SAVE in 'General Commands Reference Guide T' (general_ref_t.pdf, page 358).

LA.SelfArm Automatic restart of trace recording

See command <trace>.SelfArm in 'General Commands Reference Guide T' (general_ref_t.pdf, page
362).

LA.SIZE Define buffer size

See command <trace>.SIZE in 'General Commands Reference Guide T' (general_ref_t.pdf, page 373).

LA.SnapShot Restart trace capturing once

See command <trace>.SnapShot in 'General Commands Reference Guide T' (general_ref_t.pdf, page
373).

LA.state Display trace configuration window

See command <trace>.state in 'General Commands Reference Guide T' (general_ref_t.pdf, page 376).
General Commands Reference Guide L | 25©1989-2024 Lauterbach

LA.STATistic Statistic analysis

See command <trace>.STATistic in 'General Commands Reference Guide T' (general_ref_t.pdf, page
378).

LA.Timing Waveform of trace buffer

See command <trace>.Timing in 'General Commands Reference Guide T' (general_ref_t.pdf, page 499).

LA.TRACK Set tracking record

See command <trace>.TRACK in 'General Commands Reference Guide T' (general_ref_t.pdf, page 502).

LA.View Display single record

See command <trace>.View in 'General Commands Reference Guide T' (general_ref_t.pdf, page 504).

LA.ZERO Align timestamps of trace and timing analyzers

See command <trace>.ZERO in 'General Commands Reference Guide T' (general_ref_t.pdf, page 505).
General Commands Reference Guide L | 26©1989-2024 Lauterbach

List

List Display modes for programs

The List command group displays a program listing:

• Source code and object code in the List.Mix window

• Object code only in the List.Asm window

• Source code only in the List.Hll window

• Java byte code in the List.Java window

In addition, the program listing can be exported with List.EXPORT.

See also

■ List.Asm ■ List.auto ■ List.EXPORT ■ List.Hll
■ List.Java ■ List.Mix ■ Data.dump ■ Data.LOAD
■ Go ■ SETUP.DIS ■ SETUP.LISTCLICK ■ SETUP.sYmbol
■ SETUP.TIMEOUT ■ Step ■ WinOverlay ❏ ADDRESS.isPHYSICAL()
❏ ADDRESS.OFFSET() ❏ ADDRESS.SEGMENT() ❏ ADDRESS.STRACCESS() ❏ ADDRESS.WIDTH()
❏ sYmbol.END() ❏ sYmbol.EXIT()

▲ ’Release Information’ in ’Legacy Release History’
General Commands Reference Guide L | 27©1989-2024 Lauterbach

List.auto Display program listing
[Options] [Examples]

The display format (assembler, mixed or HLL) of the List.auto window is selected dynamically, depending
on the current debug mode. You can change the debug mode by clicking the Mode button in the toolbar of a
List.* window or by using the Mode command.

If no address is specified, the window tracks the value of the program counter (PC). The window is only
scrolled, if the bar moves outside of a predefined subwindow. The display format may be specified with the
SETUP.DIS command.

Format: List.auto [<address> | <range>] [/<option>]
Data.List (deprecated)

<option>: Mark <break>
Flag <flag> (EF)
DIVERGE
COVerage
CACHE
Track
TOrder | SOrder
ISTAT [<parameter>]

<flag>: Read | Write | NoRead | NoWrite

<break>: Program | Hll | Spot | Read | Write | Alpha | Beta | Charly | Delta | Echo

<parameter>: DEFault | ALL | CLOCKS | TCLOCKS | SAMPLES | COVerage
General Commands Reference Guide L | 28©1989-2024 Lauterbach

If the source listing is displayed in HLL mode, some code lines may be marked with a tree button. This tree
button indicates that the compiler generated assembler code at more than one address location for this
source code line. This is very common for for-while loops as well as for code compiled with a high
optimization level.

If you want to inspect this in detail, the following commands might be helpful:

Data.ListHll ; display the source code in HLL
; mode (source order)

Data.ListMix /Track ; display the source code in Mixed
; mode (target line order)

tree button

Assembler code at two address locations is generated for the HLL line number 683--684
General Commands Reference Guide L | 29©1989-2024 Lauterbach

If you push the tree button to get detailed information, a duplicate of the original HLL line is generated for
each assembler code address location.

If you now select one of the duplicates, the cursor in the Data.ListMix window points automatically to the
corresponding assembler code. This feature is enabled by the /Track option.

Shaded lines indicate that the source information is not on disk or in the wrong directory. See command
sYmbol.SPATH. For an example of shaded lines in a List window, see screenshot in List.Mix.
General Commands Reference Guide L | 30©1989-2024 Lauterbach

Options of the List.* Commands
[Back]

Mark The Mark option highlights individual lines, depending on the breakpoint
type.

MarkPC The MarkPC option highlights all HLL source lines belonging to the
current PC.
See example.

Flag Mark a line with specific flag memory contents, e.g. Read

DIVERGE This option is mainly intended for internal diagnostic purposes: It
attaches tags to executed and not executed ASM and HLL lines. The tags
are displayed in the scale area of the List.* windows. You can open the
scale area by dragging the slider control to the right.
• For information about the tags, see example.
• See also Step.Diverge.

COVerage Displays trace based code coverage information. The COVerage option
highlights all code lines that have not been fully covered. For more
information, see COVerage.

CACHE Displays cache hit information and marks currently cached code.

Track Tracks the window to the reference position of other windows. The
window tries first to track to the PROGRAM reference, and if this
reference is not valid, it tracks to the DATA reference.

TOrder List source lines in target line order. This is the default for assembly and
mixed mode displays.

SOrder List source lines in source line order. This is the default for source level
displays.

ISTAT [<parameter>] Display source listing together with the information provided by the
instruction trace database (ISTATistic.ListFunc).
Instructions that have not been executed are highlighted in yellow.
• For a description of the <parameters>, see table below.
• ISTAT used without parameter, see example.
• ISTAT used with the COVerage parameter, see example.
General Commands Reference Guide L | 31©1989-2024 Lauterbach

Parameters for the ISTAT Option

[Back]

Examples

Example for the ISTAT option - without <parameter>

[Back]

DEFault Display the default information provided by the ISTAT database.

ALL Display all information provided by the ISTAT database.

CLOCK Display the clock and CPI information provided by the ISTAT database.

TCLOCK (only for special purposes)

SAMPLES Display recorded samples, time and ratio.

COVerage Display the code coverage information provided by the ISTAT database.

Data.ListAsm func13 /ISTAT ; list instruction run-time
; statistic

count Total number of instruction executions

clocks Total number of clocks for the instruction

cpi Average clocks per instruction
General Commands Reference Guide L | 32©1989-2024 Lauterbach

Example for the ISTAT option - with the COVerage <parameter>

[Back]

If exec or/and notexec is 0 for an instruction with condition, the instruction is bold-printed on a yellow
background. All other instruction are bold-printed on a yellow background if they were not executed.

List func11 /ISTAT COVerage ; list instruction coverage

exec conditional instructions: number of times the instruction was executed
because the condition was true.

other instructions: number of times the instruction was executed

notexec conditional instructions: number of times the instruction wasn’t
executed because the condition was false.

coverage Instruction coverage

Data.List ; display source listing around the
; current PC

Data.List /Mark Program

Data.List /Mark

; display source listing, bold print
; all instructions / HLL lines on a
; yellow background if a program
; breakpoint is set

; remove bold printing on yellow
; background
General Commands Reference Guide L | 33©1989-2024 Lauterbach

Example for the DIVERGE option

[Back]

Data.List /Track ; track the window to a reference, e.g.
; analyzer

Data.List Register(a0) ; follow the register A0 of the CPU

PRINT Data.Long(d:0x200) ; prints the memory contents of addresses
; D:0x200..0x203
; Do not mix up the command Data.List
; with the function Data.Long()

; Short form of the command is D.L
; Short form of the function is D.L()

Tags in the columns s, state, and i

h Line in HLL mode (Mode.Hll).

a Address in ASM mode (Mode.Asm).

stop Reached by a breakpoint.

done An executed line or address.

hit A reached line or address that has not yet been executed, e.g. in a linear code
sequence.

target This line or address is a possible target of the next Step.Diverge. Once reached, target
is replaced with hit.

i Indirect branch instruction.
General Commands Reference Guide L | 34©1989-2024 Lauterbach

Example for the MarkPC option

[Back]

See also

■ List ■ List.Asm ■ List.EXPORT ■ List.Hll
■ List.Java ■ List.Mix ■ SETUP.DIS ■ SETUP.LISTCLICK
■ SETUP.sYmbol ■ SETUP.TIMEOUT ❏ ADDRESS.isPHYSICAL() ❏ ADDRESS.OFFSET()
❏ ADDRESS.SEGMENT() ❏ ADDRESS.STRACCESS() ❏ ADDRESS.WIDTH() ❏ sYmbol.END()
❏ sYmbol.EXIT()

▲ ’Release Information’ in ’Legacy Release History’

Register.Set PC main ; set the Program Counter to the label main
List.auto main /MarkPC ; highlight all instructions related to the
 ; current HLL line

MarkPC
General Commands Reference Guide L | 35©1989-2024 Lauterbach

List.Asm Display disassembler

Displays the program in disassembled format. The functionality is the same as the Data.List command.

See also

■ List ■ List.auto ■ List.Hll ■ List.Java
■ List.Mix ■ Mode ❏ DEBUGMODE()

Format: List.Asm [<address>] [/<option>]
Data.ListAsm (deprecated)

<option>: Mark <break>
Flag <flag> (EF)
COVerage
CACHE
Track
MarkPC

TOrder | SOrder
IgnoreSymbols

<option> For a description of the options, see List.auto command.

IgnoreSymbols Let the disassembler ignore any symbols for deciding at which byte of the
machine code the disassembling should start. This option does normally
only make sense on architectures with different instruction lengths.
General Commands Reference Guide L | 36©1989-2024 Lauterbach

List.EXPORT Export a listing to an XML file

Using the List.EXPORT command group, you can export a source or disassembler listing or both listings to
an XML file.

In addition, TRACE32 provides an XSL transformation template for formatting the XML file. The formatting is
automatically applied to the XML file when it is opened in an external browser window. Prerequisite: The
XSL file is placed in the same folder as the XML file.

For demo scripts, see List.EXPORT.Mix.

See also

■ List.EXPORT.Asm ■ List.EXPORT.auto ■ List.EXPORT.Hll ■ List.EXPORT.Mix
■ List ■ List.auto ■ COVerage.EXPORT ■ ISTATistic.EXPORT

List.EXPORT.Asm Export disassembler listing

Creates an XML file containing the disassembler listing. For an example and a description of the options,
see List.EXPORT.Mix.

See also

■ List.EXPORT

Format: List.EXPORT.Asm <file> <range> [/<option>]
Data.ListEXPORTAsm (as an alternative)

<option>: COVerage | ISTATistic Append | NoData
General Commands Reference Guide L | 37©1989-2024 Lauterbach

List.EXPORT.auto Export source and disassembler listing

Creates an XML file containing the source listing and the disassembler listing - same as List.EXPORT.Mix.
For an example and a description of the options, see List.EXPORT.Mix.

See also

■ List.EXPORT

List.EXPORT.Hll Export source listing

Creates an XML file containing just the source listing. For an example and a description of the options, see
List.EXPORT.Mix.

See also

■ List.EXPORT

Format: List.EXPORT.auto <file> <range> [/<option>]
Data.ListEXPORT (as an alternative)

<option>: COVerage | ISTATistic | TOrder | SOrder Append | NoData | COVerableItems

Format: List.EXPORT.Hll <file> <range> [/<option>]
Data.ListEXPORTHll (as an alternative)

<option>: COVerage | ISTATistic | Append | NoData
General Commands Reference Guide L | 38©1989-2024 Lauterbach

List.EXPORT.Mix Export source and disassembler listing
[Example]

Creates an XML file containing the source listing and the disassembler listing.

Format: List.EXPORT.Mix <file> <range> [/<option>]
Data.ListEXPORTMix (as an alternative)

<option>: COVerage | ISTATistic | SOrder | TOrder | Append | NoData | COVerableItems

<file> Name of the XML file that stores a listing of the source and disassembler
code. The file extension *.xml can be omitted.

<range> Address filter for exporting the specified range.

Append Appends the listing to an existing XML file - without overwriting the
current file contents.

COVerage Listing additionally contains code coverage information.

COVerableItems Exports only coverage results for measurable source lines.

ISTATistic Listing additionally contains information provided by the ISTATistics
module.

NoData Excludes data-only sections from the XML output.

SOrder Export the source code lines in source order.

TOrder Export the source code lines in target order (default).
General Commands Reference Guide L | 39©1989-2024 Lauterbach

Example 1: The prerequisites for the following example are that the debug symbols have already been
loaded, the address bookmarks have been created, and trace data has been recorded.

The tildes ~~ expand to your TRACE32 system directory, by default c:\t32.

Example 2: A more complex demo script is included in your TRACE32 installation. To access the script, run
this command:
B::CD.PSTEP ~~/demo/coverage/example.cmm

See also

■ List.EXPORT

COVerage.ADD ;update the coverage database
Data.List /COVerage /Track ;display source listing
COVerage.ListFunc ;display coverage for HLL functions

;export all bookmarks
BookMark.EXPORT "~~/list.xml"

;export the source listing of the functions “main” and “sieve”
List.EXPORT.Mix "~~/list.xml" main /COVerage /Append
List.EXPORT.Mix "~~/list.xml" sieve /COVerage /Append

;for demo purposes: let's open the unformatted result in TRACE32
EDIT "~~/list.xml"

;place the transformation template in the same folder as the XML file
COPY "~~/demo/coverage/single_file_report/t32transform.xsl" \
 "~~/t32transform.xsl"

;you can now open the formatted result in an external browser window
OS.Command start iexplore.exe "file:///C:/t32/list.xml"
General Commands Reference Guide L | 40©1989-2024 Lauterbach

List.Hll Display source

Displays the program in source format. The functionality is the same as the Data.List command. If the
starting address in not an HLL (High Level Language) line, assembler code is displayed to the next HLL line
found in the code segment.

Shaded lines indicate that the source information is not on disk or in the wrong directory. See command
sYmbol.SPATH.

See also

■ List ■ List.Asm ■ List.auto ■ List.Java
■ List.Mix ■ Mode ❏ DEBUGMODE()

Format: List.Hll [<address>] [/<option>]
Data.ListHll (as an alternative)

<option>: Mark <break>
Flag <flag> (EF)
COVerage
CACHE
Track
MarkPC
TOrder | SOrder

<option> For a description of the options, see List.auto.

Program counter
(PC)

Shaded lines
General Commands Reference Guide L | 41©1989-2024 Lauterbach

List.Java Display Java byte code
[Example]

Displays the program in Java byte code format. The functionality is the same as the Data.List command.

This command is NOT required when an address range is specified as Java byte code area with the Java
byte code debugger or when the processor implements a special byte code mode (e.g. ARM Jazelle).

Format: List.Java [<address>] [/<option>]
Data.ListJava (as an alternative)

<option>: Mark <break>
Flag <flag>(EF)
COVerage
CACHE
Track
TOrder | SOrder

<option> For a description of the options, see List.auto.
General Commands Reference Guide L | 42©1989-2024 Lauterbach

Android is used in this example:

See also

■ List ■ List.Asm ■ List.auto ■ List.Hll
■ List.Mix

;list all running tasks by magic number, task name, task ID, etc.
TASK.List.tasks

;change view to a task by specifying the magic number, task name or ID
Frame.TASK 0xEFD29700

;display a source listing at this address for the task specified above
List.Java J:0x0690:0x583A3D14

;alternatively, use the label to display the same source listing.
List.Java `<clinit>()` ;enclose the label in backticks `...`

Java file name:
Click to open the
symbol browser.

Access class J for Java

Thread ID

Address
General Commands Reference Guide L | 43©1989-2024 Lauterbach

List.Mix Disassembler and source

The code is displayed in HLL (High Level Language) and additionally disassembled from the memory. The
functionality is the same as the Data.List command.

Shaded lines indicate that the source information is not on disk or in the wrong directory. See the command
sYmbol.SPATH.

See also

■ List ■ List.Asm ■ List.auto ■ List.Hll
■ List.Java ■ Mode ❏ DEBUGMODE()

Format: List.Mix [<address>] [/<option>]
Data.ListMix (as an alternative)

<option>: Mark <break>
Flag <flag> (EF)
COVerage
CACHE
Track
MarkPC
TOrder | SOrder

<option> For a description of the options, see List.auto command.

Program counter
(PC)

Shaded lines
General Commands Reference Guide L | 44©1989-2024 Lauterbach

LOGGER

LOGGER Trace method LOGGER, recording and analysis commands

LOGGER is a software trace method where the target application writes the required trace information to the
a reserved buffer on the target RAM. TRACE32 loads then the trace information from the target RAM for
display and processing.

Please refer to the “Application Note for the LOGGER Trace” (app_logger.pdf) for more information.

For selecting and configuring the trace method LOGGER, use the TRACE32 command line or a PRACTICE
script (*.cmm) or the LOGGER.state window [A].

Alternatively, use the Trace.state window: click the option LOGGER or execute the command
Trace.METHOD Analyzer in order to select the trace method LOGGER [B].

The chapter “LOGGER-specific Trace Commands”, page 46 describes the LOGGER-specific
configuration commands. While the chapter “Generic LOGGER Trace Commands”, page 48 lists the
LOGGER trace analysis and display commands, which are shared with other TRACE32 trace methods.

See also

■ FDX ■ Trace.METHOD

A

B

General Commands Reference Guide L | 45©1989-2024 Lauterbach

LOGGER-specific Trace Commands

LOGGER.ADDRESS Software trace address

Defines the address of the logger trace control block in target memory.

LOGGER.Mode Set LOGGER operation mode

Selects the trace operation mode.

See also

■ <trace>.Mode

Format: LOGGER.ADDRESS [<address>]

Format: LOGGER.Mode [<mode>]

<mode>: Fifo | Stack

Create
runtimE
64bit

FlowTrace

Fifo If the trace is full, new records will overwrite older records. The trace
records always the last cycles before the break.

Stack If the trace is full recording will be stopped. The trace always records the
first cycles after starting the trace.

Create Create LOGGER software trace control block by debugger.

runtimE Dualport access.

64Bit LOGGER mode for 64-bit traces.

FlowTrace Special mode where the LOGGEr is used to sample the program flow.
The LOGGER trace listing reconstructs the program flow based on the
sampled information. Only supported for PowerPC and SH4.
General Commands Reference Guide L | 46©1989-2024 Lauterbach

LOGGER.TimeStamp Configure timestamp usage of LOGGER trace

Configure timestamps for the LOGGER trace. The LOGGER trace record format includes a timestamp field
for up to 48 bit timestamps. The direction and rate information passed by this command is required to
convert the timestamp into the time in seconds.

Example: The timestamp used by the LOGGER target code increments at a rate of 16 million per second
(16 MHz):

Format: LOGGER.TimeStamp OFF | Up | Down | Rate <rate>

OFF
(default)

Disable timestamps. Use this setting if the LOGGER target code does
not store timestamps in the LOGGER trace records. When this setting is
used, the x-direction in chart views is the record number axis instead of
the time axis.

Up Enable timestamp counter, counting upwards. Use this setting if the
LOGGER target code stores timestamps in the LOGGER trace records
and if the timestamp increments with each timer tick.

Down Enable timestamp counter, counting downwards. Use this setting if the
LOGGER target code stores timestamps in the LOGGER trace records
and if the timestamp decrements with each timer tick.

Rate <rate> Frequency of the timestamp in ticks per second.

AllCycles
[ON | OFF]
SH only

Set timestamp generation frequency.
• OFF (default): Generate a single timestamp for 6 trace cycles.
• ON: Generate dedicated timestamps for all trace cycles.

LOGGER.TimeStamp Up
LOGGER.TimeStamp Rate 16000000.
General Commands Reference Guide L | 47©1989-2024 Lauterbach

Generic LOGGER Trace Commands

LOGGER.ACCESS Define access path to program code for trace decoding

See command <trace>.ACCESS in 'General Commands Reference Guide T' (general_ref_t.pdf, page
131).

LOGGER.Arm Arm the trace

See command <trace>.Arm in 'General Commands Reference Guide T' (general_ref_t.pdf, page 134).

LOGGER.AutoArm Arm automatically

See command <trace>.AutoArm in 'General Commands Reference Guide T' (general_ref_t.pdf, page
135).

LOGGER.AutoInit Automatic initialization

See command <trace>.AutoInit in 'General Commands Reference Guide T' (general_ref_t.pdf, page 140).

LOGGER.BookMark Set a bookmark in trace listing

See command <trace>.BookMark in 'General Commands Reference Guide T' (general_ref_t.pdf, page
140).

LOGGER.BookMarkToggle Toggles a single trace bookmark

See command <trace>.BookMarkToggle in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 143).
General Commands Reference Guide L | 48©1989-2024 Lauterbach

LOGGER.Chart Display trace contents graphically

See command <trace>.Chart in 'General Commands Reference Guide T' (general_ref_t.pdf, page 144).

LOGGER.ComPare Compare trace contents

See command <trace>.ComPare in 'General Commands Reference Guide T' (general_ref_t.pdf, page
192).

LOGGER.DISable Disable the trace

See command <trace>.DISable in 'General Commands Reference Guide T' (general_ref_t.pdf, page 197).

LOGGER.DRAW Plot trace data against time

See command <trace>.DRAW in 'General Commands Reference Guide T' (general_ref_t.pdf, page 201).

LOGGER.EXPORT Export trace data for processing in other applications

See command <trace>.EXPORT in 'General Commands Reference Guide T' (general_ref_t.pdf, page
212).

LOGGER.FILE Load a file into the file trace buffer

See command <trace>.FILE in 'General Commands Reference Guide T' (general_ref_t.pdf, page 233).

LOGGER.Find Find specified entry in trace

See command <trace>.Find in 'General Commands Reference Guide T' (general_ref_t.pdf, page 235).

LOGGER.FindAll Find all specified entries in trace

See command <trace>.FindAll in 'General Commands Reference Guide T' (general_ref_t.pdf, page 237).
General Commands Reference Guide L | 49©1989-2024 Lauterbach

LOGGER.FindChange Search for changes in trace flow

See command <trace>.FindChange in 'General Commands Reference Guide T' (general_ref_t.pdf, page
238).

LOGGER.FLOWPROCESS Process flowtrace

See command <trace>.FLOWPROCESS in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 241).

LOGGER.FLOWSTART Restart flowtrace processing

See command <trace>.FLOWSTART in 'General Commands Reference Guide T' (general_ref_t.pdf, page
241).

LOGGER.GOTO Move cursor to specified trace record

See command <trace>.GOTO in 'General Commands Reference Guide T' (general_ref_t.pdf, page 244).

LOGGER.Init Initialize trace

See command <trace>.Init in 'General Commands Reference Guide T' (general_ref_t.pdf, page 246).

LOGGER.List List trace contents

See command <trace>.List in 'General Commands Reference Guide T' (general_ref_t.pdf, page 248).

LOGGER.ListNesting Analyze function nesting

See command <trace>.ListNesting in 'General Commands Reference Guide T' (general_ref_t.pdf, page
263).
General Commands Reference Guide L | 50©1989-2024 Lauterbach

LOGGER.ListVar List variable recorded to trace

See command <trace>.ListVar in 'General Commands Reference Guide T' (general_ref_t.pdf, page 266).

LOGGER.LOAD Load trace file for offline processing

See command <trace>.LOAD in 'General Commands Reference Guide T' (general_ref_t.pdf, page 270).

LOGGER.OFF Switch off

See command <trace>.OFF in 'General Commands Reference Guide T' (general_ref_t.pdf, page 278).

LOGGER.PROfileChart Profile charts

See command <trace>.PROfileChart in 'General Commands Reference Guide T' (general_ref_t.pdf, page
283).

LOGGER.PROfileSTATistic Statistical analysis in a table versus time

See command <trace>.PROfileSTATistic in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 322).

LOGGER.PROTOcol Protocol analysis

See command <trace>.PROTOcol in 'General Commands Reference Guide T' (general_ref_t.pdf, page
339).

LOGGER.PROTOcol.Chart Graphic display for user-defined protocol

See command <trace>.PROTOcol.Chart in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 339).
General Commands Reference Guide L | 51©1989-2024 Lauterbach

LOGGER.PROTOcol.Draw Graphic display for user-defined protocol

See command <trace>.PROTOcol.Draw in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 341).

LOGGER.PROTOcol.EXPORT Export trace buffer for user-defined protocol

See command <trace>.PROTOcol.EXPORT in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 342).

LOGGER.PROTOcol.Find Find in trace buffer for user-defined protocol

See command <trace>.PROTOcol.Find in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 343).

LOGGER.PROTOcol.list Display trace buffer for user-defined protocol

See command <trace>.PROTOcol.list in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 344).

LOGGER.PROTOcol.PROfileChart Profile chart for user-defined protocol

See command <trace>.PROTOcol.PROfileChart in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 347).

LOGGER.PROTOcol.PROfileSTATistic Profile chart for user-defined
protocol

See command <trace>.PROTOcol.PROfileSTATistic in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 348).

LOGGER.PROTOcol.STATistic Display statistics for user-defined protocol

See command <trace>.PROTOcol.STATistic in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 350).
General Commands Reference Guide L | 52©1989-2024 Lauterbach

LOGGER.REF Set reference point for time measurement

See command <trace>.REF in 'General Commands Reference Guide T' (general_ref_t.pdf, page 357).

LOGGER.RESet Reset command

See command <trace>.RESet in 'General Commands Reference Guide T' (general_ref_t.pdf, page 357).

LOGGER.SAVE Save trace for postprocessing in TRACE32

See command <trace>.SAVE in 'General Commands Reference Guide T' (general_ref_t.pdf, page 358).

LOGGER.SelfArm Automatic restart of trace recording

See command <trace>.SelfArm in 'General Commands Reference Guide T' (general_ref_t.pdf, page
362).

LOGGER.SIZE Define buffer size

See command <trace>.SIZE in 'General Commands Reference Guide T' (general_ref_t.pdf, page 373).

LOGGER.SnapShot Restart trace capturing once

See command <trace>.SnapShot in 'General Commands Reference Guide T' (general_ref_t.pdf, page
373).

LOGGER.state Display trace configuration window

See command <trace>.state in 'General Commands Reference Guide T' (general_ref_t.pdf, page 376).

LOGGER.STATistic Statistic analysis

See command <trace>.STATistic in 'General Commands Reference Guide T' (general_ref_t.pdf, page
378).
General Commands Reference Guide L | 53©1989-2024 Lauterbach

LOGGER.Timing Waveform of trace buffer

See command <trace>.Timing in 'General Commands Reference Guide T' (general_ref_t.pdf, page 499).

LOGGER.TRACK Set tracking record

See command <trace>.TRACK in 'General Commands Reference Guide T' (general_ref_t.pdf, page 502).

LOGGER.View Display single record

See command <trace>.View in 'General Commands Reference Guide T' (general_ref_t.pdf, page 504).

LOGGER.ZERO Align timestamps of trace and timing analyzers

See command <trace>.ZERO in 'General Commands Reference Guide T' (general_ref_t.pdf, page 505).
General Commands Reference Guide L | 54©1989-2024 Lauterbach

LUA

LUA Support for the Lua script language

The TRACE32 Lua API allows the user to load and execute Lua scripts directly in the debugger. This feature
can be used to accelerate execution of certain debug commands by avoiding the interaction between the
TRACE32 host software and the debug driver. A Lua interpreter is built into the debug box, supporting the
complete Lua language. Please refer to the official website of Lua www.lua.org for documentation.

In addition to the standard language elements, Lauterbach extended Lua with a set of TRACE32 specific
libraries. This allows you to, for example, use the JTAG shift functions directly in the Lua script. For a
description of the TRACE32 specific libraries, refer to “TRACE32 Lua Library” (lua_library.pdf).

The TRACE32 host software maintains an input buffer with size 0x1000 bytes to store input parameters for
the Lua script. While sending the command to execute a certain Lua script, TRACE32 also packs and sends
the input buffer to the debugger. Use LUA.Data.SET to manipulate the input buffer and
LUA.Data.ShowInput to view the current content in the input buffer. Loading the input buffer from a binary
file is also supported. From within the Lua scripts, the data in the input buffer can be retrieved using functions
from the “TRACE32 Lua Library” (lua_library.pdf).

When executing a Lua script, the TRACE32 host software blocks until it returns. Inside the Lua script,
functions from the “TRACE32 Lua Library” (lua_library.pdf) can be used to store output data into an output
buffer (again 0x1000 bytes). The output buffer will be automatically sent back to the TRACE32. Use
LUA.Data.ShowOutput to view the output data. It is also supported to save the output buffer into a binary
file.

The Lua API can be used both as TRACE32 commands and through the remote C API. The LUA command
group is described in the following sections and the C API is introduced in chapter Remote Lua API.

LUA.Data.Loadinput Load content from a file into the input buffer

Load content from a binary file into the input buffer. Use LUA.Data.ShowInput to check the current content
of the input buffer.

Format: LUA.Data.Loadinput <file> [/<load_option>]

Offset
<offset>

Starting position in the binary file to be loaded into the input buffer

Length
<length>

Number of bytes to be loaded into the input buffer
General Commands Reference Guide L | 55©1989-2024 Lauterbach

LUA.Data.Saveoutput Save output buffer into a binary file

Save content of the output buffer into a file. Use LUA.Data.ShowOutput to check the current content of the
output buffer.

LUA.Data.SET Modify the Lua input buffer

Writes byte-wise data to the input buffer. Use LUA.Data.ShowInput to view the current content of the input
buffer. The input buffer will be sent to the debugger upon executing a LUA.Program.RUN command.

Format: LUA.Data.Saveoutput <file> [/<save_option>]

Append Append data to the end of the output file.

Format: LUA.Data.SET <index> %<format> <value>

<format>: Byte | Word | Long | Quad | TByte | HByte | PByte | SByte
BE | LE

<index> The byte position of the input buffer to be written.

Byte, Word, … Data size.
• Byte (8-bit accesses) Word (16-bit accesses)
• TByte (24-bit accesses) Long (32-bit accesses)
• PByte (40-bit accesses) HByte (48-bit accesses)
• SByte (56-bit accesses) Quad (64-bit accesses)
•

BE, LE Define byte endianness: big endian or little endian.

<value> The value to be written to the buffer.
General Commands Reference Guide L | 56©1989-2024 Lauterbach

LUA.Data.ShowInput Show current content of the input buffer

Displays the current content of the input buffer in the AREA window.

LUA.Data.ShowOutput Show current content of the output buffer

Displays the current content of the output buffer in the AREA window.The output buffer contains the return
values from the Lua script. Inside the Lua script, functions from the “TRACE32 Lua Library”
(lua_library.pdf) can be used to write to the output buffer.

LUA.Program.List List the current Lua scripts

Lists the Lua scripts that have been loaded into the debugger. The output is redirected to the AREA window
and has the following format: <id> : <label>, <attribute>, <file>. See example.

Format: LUA.Data.ShowInput

Format: LUA.Data.ShowOutput

Format: LUA.Program.List

ID An auto-generated sequential index of the current Lua scripts. Note that the
ID of a certain script may change after loading/unloading another script.

label A unique string to identify a Lua script.

attribute EXE: an executable script.
LIB: a library script.
See LUA.Program.LOAD for more details.

filename Path to the Lua file.
General Commands Reference Guide L | 57©1989-2024 Lauterbach

LUA.Program.LOAD Load a Lua script to debugger

Loads the Lua script to the debugger without executing it. The script is uniquely identified by its label. See
example here.

LUA.Program.RESet Reset the Lua context

Resets the Lua context, unloads all scripts from the debugger and clears all input and output buffers.

LUA.Program.RUN Execute a Lua script

Executes the Lua script with given index or label. Use LUA.Program.List to check IDs and labels of the Lua
scripts that are currently available in the debugger.

See example.

Format: LUA.Program.LOAD <file> [<label>] [/<options>]

<option>: Program | Library

<file> Path and file name of the Lua script to be loaded.

<label> A unique string to identify the Lua script. If not specified, a default label will
be generated.

Program The Lua script is loaded as an executable script. This is the default
option.

Library The Lua script is loaded as a library script. The Lua functions in a library
script will be made available to all other Lua scripts. Although marked as
a library, the script itself can still be executed normally. However, we
recommend to develop separate Lua scripts for libraries and executables.

Format: LUA.Program.RESet

Format: LUA.Program.RUN <id> | <label>
General Commands Reference Guide L | 58©1989-2024 Lauterbach

LUA.Program.UNLOAD Remove a Lua script from the debugger

Removes a Lua script from the debugger. Use LUA.Program.List to see the scripts currently loaded.

Format: LUA.Program.UNLOAD <id> | <label>
General Commands Reference Guide L | 59©1989-2024 Lauterbach

Example

; load the Lua script lib.lua as a library
LUA.Program.LOAD c:\lua\lib.lua "mylib" /Library
; load the Lua script jtag.lua as an executable
; use default option "/Program" and default label
LUA.Program.LOAD c:\lua\jtag.lua

; see the current list of Lua scripts
LUA.Program.List
; you should see the following:
; 0 : mylib, LIB, C:\lua\lib.lua
; 1 : jtag.lua, EXE, C:\lua\jtag.lua

; set input parameter
LUA.Data.SET 0x0 %l 0x12345678
LUA.Data.ShowInput

; execute the Lua script jtag.lua using its index
LUA.Program.RUN 1
; execute the Lua script jtag.lua using its label
LUA.Program.RUN "jtag.lua"

; view the output buffer
LUA.Data.ShowOutput

; remove a Lua script
LUA.Program.UNLOAD 0
; Note that now the Lua script with index 0 (lib.lua) is removed
; and the indexing has changed
LUA.Program.List
; now you should see the following
; 0 : jtag.lua, EXE, C:\lua\jtag.lua
; the Lua script jtag.lua now has the index 0
LUA.Program.UNLOAD "jtag.lua"

; clear the context
LUA.Program.RESet
General Commands Reference Guide L | 60©1989-2024 Lauterbach

	General Commands Reference Guide L
	History
	LA
	LA Logic analyzer

	LA-specific Trace Commands
	LA.IMPORT Import trace information
	LA.IMPORT.CoreByteStream Import pure single core trace data
	LA.IMPORT.cycles Import bus trace data
	LA.IMPORT.ELA Import ELA trace data
	LA.IMPORT.ETB Import on-chip trace data
	LA.IMPORT.GUESSWRAP Guess wrap pointer
	LA.IMPORT.StartInvalid Set start of trace as invalid
	LA.IMPORT.StartValid Set start of trace as valid
	LA.IMPORT.STP Import STP recording from file (nibble)
	LA.IMPORT.STPByteStream Import STP recording from file (byte)
	LA.IMPORT.TARMAC Import TARMAC trace file
	LA.IMPORT.TraceFile Import trace data where processing has failed
	LA.IMPORT.TracePort Import off-chip trace data
	LA.IMPORT.UltraSOC Import raw UltraSOC flow trace data
	LA.IMPORT.VCD Import recorded signals in VCD file format
	LA.IMPORT.WRAP Define wrap pointer
	LA.Mode Set the trace operation mode

	Generic LA Trace Commands
	LA.ACCESS Define access path to program code for trace decoding
	LA.Arm Arm the trace
	LA.AutoArm Arm automatically
	LA.AutoInit Automatic initialization
	LA.BookMark Set a bookmark in trace listing
	LA.Chart Display trace contents graphically
	LA.CLOCK Clock to calculate time out of cycle count information
	LA.ComPare Compare trace contents
	LA.ComPareCODE Compare trace with memory
	LA.DISable Disable the trace
	LA.DRAW Plot trace data against time
	LA.EXPORT Export trace data for processing in other applications
	LA.FILE Load a file into the file trace buffer
	LA.Find Find specified entry in trace
	LA.FindAll Find all specified entries in trace
	LA.FindChange Search for changes in trace flow
	LA.FLOWPROCESS Process flowtrace
	LA.FLOWSTART Restart flowtrace processing
	LA.GOTO Move cursor to specified trace record
	LA.Init Initialize trace
	LA.List List trace contents
	LA.ListNesting Analyze function nesting
	LA.ListVar List variable recorded to trace
	LA.LOAD Load trace file for offline processing
	LA.OFF Switch off
	LA.PROfileChart Profile charts
	LA.PROfileSTATistic Statistical analysis in a table versus time
	LA.PROTOcol Protocol analysis
	LA.PROTOcol.Chart Graphic display for user-defined protocol
	LA.PROTOcol.Draw Graphic display for user-defined protocol
	LA.PROTOcol.EXPORT Export trace buffer for user-defined protocol
	LA.PROTOcol.Find Find in trace buffer for user-defined protocol
	LA.PROTOcol.list Display trace buffer for user-defined protocol
	LA.PROTOcol.PROfileChart Profile chart for user-defined protocol
	LA.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol
	LA.PROTOcol.STATistic Display statistics for user-defined protocol
	LA.REF Set reference point for time measurement
	LA.RESet Reset command
	LA.SAVE Save trace for postprocessing in TRACE32
	LA.SelfArm Automatic restart of trace recording
	LA.SIZE Define buffer size
	LA.SnapShot Restart trace capturing once
	LA.state Display trace configuration window
	LA.STATistic Statistic analysis
	LA.Timing Waveform of trace buffer
	LA.TRACK Set tracking record
	LA.View Display single record
	LA.ZERO Align timestamps of trace and timing analyzers

	List
	List Display modes for programs
	List.auto Display program listing
	List.Asm Display disassembler
	List.EXPORT Export a listing to an XML file
	List.EXPORT.Asm Export disassembler listing
	List.EXPORT.auto Export source and disassembler listing
	List.EXPORT.Hll Export source listing
	List.EXPORT.Mix Export source and disassembler listing
	List.Hll Display source
	List.Java Display Java byte code
	List.Mix Disassembler and source

	LOGGER
	LOGGER Trace method LOGGER, recording and analysis commands

	LOGGER-specific Trace Commands
	LOGGER.ADDRESS Software trace address
	LOGGER.Mode Set LOGGER operation mode
	LOGGER.TimeStamp Configure timestamp usage of LOGGER trace

	Generic LOGGER Trace Commands
	LOGGER.ACCESS Define access path to program code for trace decoding
	LOGGER.Arm Arm the trace
	LOGGER.AutoArm Arm automatically
	LOGGER.AutoInit Automatic initialization
	LOGGER.BookMark Set a bookmark in trace listing
	LOGGER.BookMarkToggle Toggles a single trace bookmark
	LOGGER.Chart Display trace contents graphically
	LOGGER.ComPare Compare trace contents
	LOGGER.DISable Disable the trace
	LOGGER.DRAW Plot trace data against time
	LOGGER.EXPORT Export trace data for processing in other applications
	LOGGER.FILE Load a file into the file trace buffer
	LOGGER.Find Find specified entry in trace
	LOGGER.FindAll Find all specified entries in trace
	LOGGER.FindChange Search for changes in trace flow
	LOGGER.FLOWPROCESS Process flowtrace
	LOGGER.FLOWSTART Restart flowtrace processing
	LOGGER.GOTO Move cursor to specified trace record
	LOGGER.Init Initialize trace
	LOGGER.List List trace contents
	LOGGER.ListNesting Analyze function nesting
	LOGGER.ListVar List variable recorded to trace
	LOGGER.LOAD Load trace file for offline processing
	LOGGER.OFF Switch off
	LOGGER.PROfileChart Profile charts
	LOGGER.PROfileSTATistic Statistical analysis in a table versus time
	LOGGER.PROTOcol Protocol analysis
	LOGGER.PROTOcol.Chart Graphic display for user-defined protocol
	LOGGER.PROTOcol.Draw Graphic display for user-defined protocol
	LOGGER.PROTOcol.EXPORT Export trace buffer for user-defined protocol
	LOGGER.PROTOcol.Find Find in trace buffer for user-defined protocol
	LOGGER.PROTOcol.list Display trace buffer for user-defined protocol
	LOGGER.PROTOcol.PROfileChart Profile chart for user-defined protocol
	LOGGER.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol
	LOGGER.PROTOcol.STATistic Display statistics for user-defined protocol
	LOGGER.REF Set reference point for time measurement
	LOGGER.RESet Reset command
	LOGGER.SAVE Save trace for postprocessing in TRACE32
	LOGGER.SelfArm Automatic restart of trace recording
	LOGGER.SIZE Define buffer size
	LOGGER.SnapShot Restart trace capturing once
	LOGGER.state Display trace configuration window
	LOGGER.STATistic Statistic analysis
	LOGGER.Timing Waveform of trace buffer
	LOGGER.TRACK Set tracking record
	LOGGER.View Display single record
	LOGGER.ZERO Align timestamps of trace and timing analyzers

	LUA
	LUA Support for the Lua script language
	LUA.Data.Loadinput Load content from a file into the input buffer
	LUA.Data.Saveoutput Save output buffer into a binary file
	LUA.Data.SET Modify the Lua input buffer
	LUA.Data.ShowInput Show current content of the input buffer
	LUA.Data.ShowOutput Show current content of the output buffer
	LUA.Program.List List the current Lua scripts
	LUA.Program.LOAD Load a Lua script to debugger
	LUA.Program.RESet Reset the Lua context
	LUA.Program.RUN Execute a Lua script
	LUA.Program.UNLOAD Remove a Lua script from the debugger

