LAUTERBACH A

General Commands Reference
Guide C

General Commands Reference Guide C

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
€= 1= = T 0T 1313 =T [- r—~
General Commands Reference GUide Ccccoiiiomiiimminnsmnnsnns s sass s s sssesnas 1
L 1= (o 12
07 X 0 13
CACHE View and modify CPU cache contents 13
CACHE.CLEAN Clean CACHE 13
CACHE.ComPare Compare CACHE with memory 14
CACHE.DUMP Dump CACHE 15
CACHE.FLUSH Clean and invalidate CACHE 16
CACHE.GET Get CACHE contents 17
CACHE.INFO View all information related to an address 17
CACHE.INVALIDATE Invalidate CACHE 18
CACHE.List List CACHE contents 18
CACHE.ListFunc List cached functions 19
CACHE.ListLine List cached source code lines 20
CACHE.ListModule List cached modules 20
CACHE.ListVar List cached variables 21
CACHE.LOAD Load previously stored cache contents 22
CACHE.RELOAD Reload previously loaded cache contents 22
CACHE.SAVE Save cache contents for postprocessing 22
CACHE.SNAPSHOT Take cache snapshot for comparison 23
CACHE.UNLOAD Unload previously loaded cache contents 24
CACHE.view Display cache control register 25

07 Y - 117 26
CAnalyzer Trace features of Compact Analyzer 26
CAnalyzer - Compact Analyzer specific Trace Commandscccccccmrrrmrenisssssssssmsmmsennnneens 28
CAnalyzer.<specific_cmds> Overview of CAnalyzer-specific commands 28
CAnalyzer.CLOCKDelay Setclock delay 28
CAnalyzer.CLOSE Close named pipes 28
CAnalyzer.DecodeMode Define how to decode the received trace data 29
CAnalyzer.12C 12C control 30
CAnalyzer.PipeLOAD Load a previously saved file 30
CAnalyzer.PipeRePlay Replay a previously recorded stream 30
©1989-2024 Lauterbach General Commands Reference Guide C 2

CAnalyzer.PipeSAVE Define a file that stores received data 31
CAnalyzer.PipeWRITE Define a named pipe as trace sink 31
CAnalyzer.SAMPLE Set sample time offset 32
CAnalyzer.ShowFocus Display data eye 33
CAnalyzer.ShowFocusClockEye Show clock eye 36
CAnalyzer.ShowFocusEye Show data eyes 37
CAnalyzer. TERMination Configure parallel trace termination 39
CAnalyzer.TOut Route trigger to PODBUS (CombiProbe/pTrace) 39
CAnalyzer.TraceCLOCK Configure the trace port frequency 40
CAnalyzer.TracePORT Select which trace port is used 41
CAnalyzer. WRITE Define a file as trace sink 42
Generic CAnalyzer Trace COmMMAaNAScccccerrriismmrmmssssssnnmsssssmssrssssssss s ssmss s ssssssmsssssssssmssnss 43
CAnalyzer. ACCESS Define access path to program code for trace decoding 43
CAnalyzer.Arm Arm the trace 43
CAnalyzer.AutoArm Arm automatically 43
CAnalyzer.AutoFocus Calibrate AUTOFOCUS preprocessor 43
CAnalyzer.Autolnit Automatic initialization 43
CAnalyzer.BookMark Set a bookmark in trace listing 43
CAnalyzer.BookMarkToggle Toggles a single trace bookmark 44
CAnalyzer.Chart Display trace contents graphically 44
CAnalyzer.CLOCK Clock to calculate time out of cycle count information 44
CAnalyzer.ComPare Compare trace contents 44
CAnalyzer.ComPareCODE Compare trace with memory 44
CAnalyzer.CustomTrace Custom trace 44
CAnalyzer.CustomTraceLoad Load a DLL for trace analysis/Unload all DLLs 44
CAnalyzer.DISable Disable the trace 45
CAnalyzer. DRAW Plot trace data against time 45
CAnalyzer. EXPORT Export trace data for processing in other applications 45
CAnalyzer.ExtractCODE Extract code from trace 45
CAnalyzer.FILE Load a file into the file trace buffer 45
CAnalyzer.Find Find specified entry in trace 45
CAnalyzer.FindAll Find all specified entries in trace 45
CAnalyzer.FindChange Search for changes in trace flow 45
CAnalyzer.FindProgram Advanced trace search 46
CAnalyzer.FindReProgram Activate advanced existing trace search program 46
CAnalyzer.FindViewProgram State of advanced trace search programming 46
CAnalyzer.FLOWPROCESS Process flowtrace 46
CAnalyzer.FLOWSTART Restart flowtrace processing 46
CAnalyzer.Get Display input level 46
CAnalyzer.GOTO Move cursor to specified trace record 46
CAnalyzer.Init Initialize trace 47
CAnalyzer.JOINFILE Concatenate several trace recordings 47
CAnalyzer.List List trace contents 47
©1989-2024 Lauterbach General Commands Reference Guide C 3

CAnalyzer.ListNesting Analyze function nesting 47
CAnalyzer.ListVar List variable recorded to trace 47
CAnalyzer.LOAD Load trace file for offline processing 47
CAnalyzer. MERGEFILE Combine two trace files into one 47
CAnalyzer.Mode Set the trace operation mode 47
CAnalyzer.OFF Switch off 48
CAnalyzer.PortFilter Specify utilization of trace memory 48
CAnalyzer.PortType Specify trace interface 48
CAnalyzer.PROfileChart Profile charts 48
CAnalyzer.PROfileSTATistic Statistical analysis in a table versus time 48
CAnalyzer.PROTOcol Protocol analysis 48
CAnalyzer.PROTOcol.Chart Graphic display for user-defined protocol 48
CAnalyzer.PROTOcol.Draw Graphic display for user-defined protocol 49
CAnalyzer.PROTOcol.EXPORT Export trace buffer for user-defined protocol 49
CAnalyzer.PROTOcol.Find Find in trace buffer for user-defined protocol 49
CAnalyzer.PROTOcol.list Display trace buffer for user-defined protocol 49
CAnalyzer.PROTOcol.PROfileChart Profile chart for user-defined protocol 49
CAnalyzer.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol 49
CAnalyzer.PROTOcol.STATistic Display statistics for user-defined protocol 49
CAnalyzer.REF Set reference point for time measurement 50
CAnalyzer.RESet Reset command 50
CAnalyzer.SAVE Save trace for postprocessing in TRACE32 50
CAnalyzer.SelfArm Automatic restart of trace recording 50
CAnalyzer.SIZE Define buffer size 50
CAnalyzer.SnapShot Restart trace capturing once 50
CAnalyzer.SPY Adaptive stream and analysis 50
CAnalyzer.state Display trace configuration window 50
CAnalyzer.STATistic Statistic analysis 51
CAnalyzer.STREAMCompression Select compression mode for streaming 51
CAnalyzer.STREAMFILE Specify temporary streaming file path 51
CAnalyzer.STREAMFileLimit Set size limit for streaming file 51
CAnalyzer.STREAMLOAD Load streaming file from disk 51
CAnalyzer.STREAMSAVE Save streaming file to disk 51
CAnalyzer.TDelay Trigger delay 51
CAnalyzer.TestFocus Test trace port recording 52
CAnalyzer.TestFocusClockEye Scan clock eye 52
CAnalyzer.TestFocusEye Check signal integrity 52
CAnalyzer.TestUtilization Tests trace port utilization 52
CAnalyzer.THreshold Optimize threshold for trace lines 52
CAnalyzer.Timing Waveform of trace buffer 52
CAnalyzer.TraceCONNECT Select on-chip peripheral sink 52
CAnalyzer.TRACK Set tracking record 53
CAnalyzer. TSELect Select trigger source 53
©1989-2024 Lauterbach General Commands Reference Guide C 4

CAnalyzer.View Display single record 53
CAnalyzer.ZERO Align timestamps of trace and timing analyzers 53
0 | o o - 54
CIProbe Trace with Analog Probe and CombiProbe/?Trace (MicroTrace) 54
ClIProbe-specific Trace COMMANAScccceriremiiiimmissnrinssnsssesssssass s sms s sms s sms s sms s sssanssasanes 56
ClProbe.<specific_cmds> Overview of CIProbe-specific commands 56
ClIProbe.ALOWerLIMit Set lower trigger/filter comparator value 56
ClProbe.ATrigeN Enable/disable trigger contribution of a channel 56
ClIProbe.ATrigMODE Set trigger/filter condition 58
CIProbe.AUPPerLIMit Set upper trigger/filter comparator value 59
ClIProbe.Mode Set trace operation mode 59
ClProbe.state Display CIProbe configuration window 60
ClIProbe.TDelay Define trigger delay 60
ClIProbe. TOut Route CIProbe trigger to PODBUS 61
ClProbe.TSELect Route PODBUS trigger to CIProbe 62
ClProbe. TSYNC.SELect Select trigger input pin and edge or state 62
Generic CIProbe Trace COMMANASccccceiiiiimmrrissssmsnsissssmmss s ssmss s smss s s sssssmms s sssssmmssseass 64
CIProbe.Arm Arm the trace 64
ClIProbe.AutoArm Arm automatically 64
CIProbe.Autolnit Automatic initialization 64
ClIProbe.BookMark Set a bookmark in trace listing 64
CIProbe.BookMarkToggle Toggles a single trace bookmark 64
ClProbe.Chart Display trace contents graphically 64
CIProbe.ComPare Compare trace contents 65
ClIProbe.DISable Disable the trace 65
ClProbe.DisConfig Trace disassembler configuration 65
CIProbe.DRAW Plot trace data against time 65
CIProbe.EXPORT Export trace data for processing in other applications 65
ClProbe.FILE Load a file into the file trace buffer 65
ClIProbe.Find Find specified entry in trace 65
CIProbe.FindAll Find all specified entries in trace 65
ClProbe.FindChange Search for changes in trace flow 66
CIProbe.Get Display input level 66
CIProbe.GOTO Move cursor to specified trace record 66
ClProbe.Init Initialize trace 66
ClProbe.List List trace contents 66
ClProbe.ListNesting Analyze function nesting 66
ClProbe.ListVar List variable recorded to trace 66
ClIProbe.LOAD Load trace file for offline processing 66
CIProbe.OFF Switch off 67
ClIProbe.PROfile Rolling live plots of trace data 67
ClProbe.PROfile.channel Display profile of signal probe channels 67
©1989-2024 Lauterbach General Commands Reference Guide C 5

CIProbe.PROfileChart Profile charts 67
ClIProbe.PROfileSTATistic Statistical analysis in a table versus time 67
ClIProbe.PROTOcol Protocol analysis 67
CIProbe.PROTOcol.Chart Graphic display for user-defined protocol 67
CIProbe.PROTOcol.Draw Graphic display for user-defined protocol 68
CIProbe.PROTOcol.EXPORT Export trace buffer for user-defined protocol 68
CIProbe.PROTOcol.Find Find in trace buffer for user-defined protocol 68
CIProbe.PROTOcol.list Display trace buffer for user-defined protocol 68
CIProbe.PROTOcol.PROfileChart Profile chart for user-defined protocol 68
CIProbe.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol 68
CIProbe.PROTOcol.STATistic Display statistics for user-defined protocol 68
CIProbe.REF Set reference point for time measurement 69
ClProbe.RESet Reset command 69
CIProbe.SAVE Save trace for postprocessing in TRACE32 69
ClProbe.SIZE Define buffer size 69
CIProbe.SnapShot Restart trace capturing once 69
CIProbe.SPY Adaptive stream and analysis 69
ClIProbe.STATistic Statistic analysis 69
CIProbe.STREAMCompression Select compression mode for streaming 69
ClProbe.STREAMFILE Specify temporary streaming file path 70
ClProbe.STREAMFileLimit Set size limit for streaming file 70
ClIProbe.Timing Waveform of trace buffer 70
ClIProbe. TRACK Set tracking record 70
ClProbe.View Display single record 70
ClProbe.ZERO Align timestamps of trace and timing analyzers 70
0 1 o323 oY S 71
ClipSTOre Store settings to clipboard 71
0110 0= PP 72
CLOCK Display date and time 72
CLOCK.BACKUP Set backup clock frequency 72
CLOCK.DATE Alias for DATE command 73
CLOCK.OFF Disable clock frequency computation 73
CLOCK.ON Enable clock frequency computation 73
CLOCK.OSCillator Set board oscillator frequency 74
CLOCK.Register Display PLL related registers 74
CLOCK.RESet Reset CLOCK command group settings 74
CLOCK .state Display clock frequencies 75
CLOCK.SYSCLocK Set external clock frequency 75
CLOCK.VCOBase Set 'VCOBase' clock frequency 76
CLOCK.VCOBaseERAY Set 'FlexRay VCOBase' clock frequency 76
O 1 77
CMI Clock management interface 77
©1989-2024 Lauterbach General Commands Reference Guide C 6

0 78

CMN Coherent mesh network 78
CNMN<trace> - Trace Data ANalySisccocriiiriiiismmnissninsrnss s s s snsnns 79
CMN«<trace> Command groups for CMN<trace> 79
Overview CMN<trace> 79
CMNAnalyzer Analyze CMN information recorded by TRACE32 PowerTrace 80
CMNCAnalyzer Analyze CMN information recorded by CombiProbe 80
CMNHAnalyzer Analyze CMN information captured by the host analyzer 81
CMNLA Analyze CMN information from binary source 81
CMNOnchip Analyze CMN information captured in target onchip memory 81
010 o J 83
CORE Cores in an SMP system 83
Overview CORE 83
CORE.ADD Add core/thread to the SMP system 84
CORE.ASSIGN Assign a set of physical cores/threads to the SMP system 85
CORE.List List information about cores 91
CORE.NUMber Assign a number of cores/threads to the SMP system 92
CORE.ReMove Remove core from the SMP system 93
CORE.select Change currently selected core 93
CORE.SHOWACTIVE Show active/inactive cores in an SMP system 94
CORE.SINGLE Select single core for debugging 95
0o T 1 3 97
Count Universal counter 97
Overview Count 97
Counter of TRACE32-ICD 97
Counter Functions 98
Count.Autolnit Automatic counter reset 99
Count.Gate Gate time 99
Count.GO Start measurement 100
Count.Init Reset counter 100
Count.Mode Mode selection 101
Count.OUT Forward counter input signal to trigger system/output 103
Count.PROfile Graphic counter display 103
Count.RESet Reset command 105
Count.Select Select input source 105
Count.state State display 106
00 1T - o - 107
COVerage Trace-based code coverage 107
COVerage.ADD Add trace contents to code coverage system 107
COVerage.Delete Set code coverage tagging to never 108
COVerage.EXPORT Export code coverage information 109
COVerage.EXPORT.CBA Export coverage results in CBA format 110
©1989-2024 Lauterbach General Commands Reference Guide C | 7

COVerage.EXPORT.CSV

Export coverage results in CSV format

111

COVerage.EXPORT.JSON Export code coverage results in JSON format 111
COVerage.EXPORT.JSONE Export code coverage in extended JSON format 112
COVerage.EXPORT.ListCalleEs Export the function callees 113
COVerage.EXPORT.ListCalleEs.<sub_cmd> Export callees information 114
COVerage.EXPORT.ListCalleRs Export the function callers 115
COVerage.EXPORT .ListCalleRs.<sub_cmd> Export callers information 116
COVerage.EXPORT.ListFunc Export code coverage results at function level 117
COVerage.EXPORT.ListFunc.<sub_cmd> Export function 117
COVerage.EXPORT.ListInlineBlock Export inlined code blocks 122
COVerage.EXPORT. ListInlineBlock.<sub_cmd> Export cov. inlined 123
COVerage.EXPORT .ListLine Export HLL lines 124
COVerage.EXPORT.ListLine.<sub_cmd> Export HLL lines information 125
COVerage.EXPORT.ListModule Export modules 126
COVerage.EXPORT.ListModule.<sub_cmd> Export modules information 126
COVerage.EXPORT.ListVar Export HLL variables 127
COVerage.EXPORT.ListVar.<sub_cmd> Export HLL variables information 127
COVerage.INFO Information about conditional instructions 128
COVerage.Init Clear coverage database 129
COVerage.List Coverage display 129
COVerage.ListCalleEs Display coverage for callees function 130
COVerage.ListCalleEs.<sub_cmd> Display coverage for callees function 130
COVerage.ListCalleRs Display coverage for callers function 133
COVerage.ListCalleRs.<sub_cmd> Display coverage for callers function 133
COVerage.ListFunc Display coverage for functions 136
COVerage.ListFunc.<sub_cmd> Display coverage for HLL function 136
COVerage.ListInlineBlock Display coverage for inlined block 140
COVerage.ListInlineBlock.<sub_cmd> Display coverage for inlined block 140
COVerage.ListLine Display coverage for HLL lines 143
COVerage.ListLine.<sub_cmd> Display coverage for HLL lines 143
COVerage.ListModule Display coverage for modules 145
COVerage.ListModule.<sub_cmd> Display coverage for modules 145
COVerage.ListVar Display coverage for variable 148
COVerage.ListVar.<sub_cmd> Display coverage for variables 148
COVerage.LOAD Load coverage database from file 151
COVerage.MAP Map the coverage to a differentrange 152
COVerage.METHOD Select code coverage method 153
COVerage.Mode Activate code coverage for virtual targets 154
COVerage.OFF Deactivate coverage 154
COVerage.ON Activate coverage 155
COVerage.Option Set coverage options 156
COVerage.Option.BLOCKMode Enable/disable line block mode 156
COVerage.Option.ITrace Enable instruction trace processing 157
©1989-2024 Lauterbach General Commands Reference Guide C | 8

COVerage.Option.SourceMetric Select code coverage metric 157
COVerage.Option.Staticlnfo Perform code coverage precalculations 159
COVerage.RESet Clear coverage database 160
COVerage.SAVE Save coverage database to file 160
COVerage.Set Coverage modification 161
COVerage.state Configure coverage 162
COVerage.TreeWalkSETUP Prepare a tree with code coverage symbols 163
COVerage.TreeWalkSETUP.<sub_cmd> Prepare a coverage symbol tree 163
O I 165
CTS Context tracking system (CTS) 165
Trace-based Debugging 166
Full High-Level Language Trace Display 167
Reconstruction of Trace Gaps (TRACE32-ICD) 167
CTS Commands 168
CTS.CACHE CTS cache analysis 168
CTS.CACHE.Allocation Define the cache allocation technique 170
CTS.CACHE.CYcles Define counting method for cache analysis 171
CTS.CACHE.DefineBus Define bus interface 171
CTS.CACHE.L1Architecture Define architecture for L1 cache 173
CTS.CACHE.LFSR Linear-feedback shift register for random generator 173
CTS.CACHE.ListAddress Address based cache analysis 174
CTS.CACHE.ListFunc Function based cache analysis 175
CTS.CACHE.ListLine HLL line based cache analysis 176
CTS.CACHE.ListModules Module based cache analysis 176
CTS.CACHE.ListRequests Display request for a single cache line 177
CTS.CACHE.ListSet Cache set based cache analysis 178
CTS.CACHE.ListVar Variable based cache analysis 178
CTS.CACHE.MMUArchitecture Define MMU architecture for cache control 179
CTS.CACHE.Mode Define memory coherency strategy 180
CTS.CACHE.Replacement Define the replacement strategy 181
CTS.CACHE.RESet Reset settings of CTS cache window 182
CTS.CACHE.SETS Define the number of cache sets 182
CTS.CACHE.Sort Define sorting for all list commands 182
CTS.CACHE.state Display settings of CTS cache analysis 183
CTS.CACHE.Tags Define address mode for cache lines 184
CTS.CACHE.TLBArchitecture Define architecture for the TLB 185
CTS.CACHE.View Display the results for the cache analysis 186
CTS.CACHE.ViewBPU Display statistic for branch prediction unit 190
CTS.CACHE.ViewBus Display statistics for the bus utilization 191
CTS.CACHE.ViewStalls Display statistics for idles/stalls 192
CTS.CACHE.WAYS Define number of cache ways 193
CTS.CACHE.Width Define width of cache line 194
CTS.CAPTURE Copy real memory to the virtual memory for CTS 194
©1989-2024 Lauterbach General Commands Reference Guide C | 9

CTS.Chart.ChildTREE Display callee context of a function as chart 195
CTS.Chart.Func Function activity chart 195
CTS.Chart.INTERRUPT Display interrupt chart 195
CTS.Chart.INTERRUPTTREE Display interrupt nesting 196
CTS.Chart.Nesting Show function nesting at cursor position 196
CTS.Chart. RUNNABLE Runnable activity chart 196
CTS.Chart.sYmbol Execution time at different symbols as chart 197
CTS.Chart.TASK Task activity chart 197
CTS.Chart. TASKINFO Chart for context ID special messages 198
CTS.Chart. TASKINTR Display ISR2 time chart (ORTI) 198
CTS.Chart. TASKKernel Display task time chart with kernel markers (ORTI) 198
CTS.Chart. TASKORINTERRUPT Task and interrupt activity chart 199
CTS.Chart. TASKSRV Service routine run-time analysis 199
CTS.Chart. TASKVSINTERRUPT Time chart of interrupted tasks 199
CTS.Chart. TASKVSINTR Time chart of task-related interrupts 200
CTS.Chart. TREE Display function chart as tree view 200
CTS.EXPORT Export trace data 201
CTS.FixedControl Execution time at different symbols as chart 201
CTS.GOTO Select the specified record for CTS (absolute) 201
CTS.INCremental CTS displays intermediate results while processing 202
CTS.Init Restart CTS processing 202
CTS.List List trace contents 203
CTS.ListNesting Analyze function nesting 205
CTS.Mode Operation mode 205
CTS.OFF Switch off trace-based debugging 206
CTS.ON Switch on trace-based debugging 206
CTS.PROCESS Process cache analysis 206
CTS.PROfileChart Profile charts 207
CTS.PROfileChart. CACHE Display cache analysis results graphically 207
CTS.PROfileChart.sYmbol Dynamic program behavior as profile chart 208
CTS.PROfileChart. TASK Task profile chart 209
CTS.PROfileChart. TASKINFO Profile chart for context ID special messages 209
CTS.PROfileChart. TASKINTR ISR2 profile chart 209
CTS.PROfileChart. TASKKernel Task profile chart with kernel markers 210
CTS.PROfileChart. TASKORINTERRUPT Task and interrupt profile chart 210
CTS.PROfileChart. TASKSRV OS service routines profile chart 210
CTS.PROfileChart. TASKVSINTR Task-related interrupts profile chart 211
CTS.RESet Reset the CTS settings 212
CTS.SELectiveTrace Trace contains selective trace information 212
CTS.SKIP Select the specified record for CTS (relative) 212
CTS.SmartTrace CTS smart trace 213
CTS.state Display CTS settings 214
CTS.STATistic Nesting function runtime analysis 216
©1989-2024 Lauterbach General Commands Reference Guide C | 10

CTS.STATistic.ChildTREE Show callee context of a function 216
CTS.STATistic.Func Nesting function runtime analysis 216
CTS.STATistic. GROUP Group run-time analysis 217
CTS.STATistic.INTERRUPT Interrupt statistic 217
CTS.STATistic.INTERRUPTTREE Interrupt nesting 217
CTS.STATistic.LINKage Per caller statistic of function 218
CTS.STATistic. MODULE Code execution broken down by module 218
CTS.STATistic.ParentTREE Show the call context of a function 218
CTS.STATistic. PROGRAM Code execution broken down by program 219
CTS.STATistic. RUNNABLE Runnable runtime analysis 219
CTS.STATistic.sYmbol Flat run-time analysis 219
CTS.STATistic. TASK Task statistic 220
CTS.STATistic. TASKINFO Statistic for context ID special messages 220
CTS.STATistic. TASKINTR ISR2 statistic (ORTI) 220
CTS.STATistic. TASKKernel Task statistic with kernel markers 221
CTS.STATistic. TASKORINTERRUPT Task and interrupt statistic 221
CTS.STATistic. TASKSRV OS service routines statistic 221

CTS.STATistic. TASKVSINTERRUPT
CTS.STATistic.TREE

Statistic of interrupts, task-related 222
Tree display of nesting function run-time analysis 222

CTS.TAKEOVER Take memory/registers reconstructed by CTS over to target 223
CTS.UNDO Revert last CTS command 223
CTS.UseConst Use constants for the CTS processing 223
CTS.UseDataTrace Use sampling cycles for CTS 224
CTS.UseFinalContext Use the CPU registers for CTS 224
CTS.UseFinalMemory Use memory contents for CTS 225
CTS.UseSIM Use instruction set simulator for CTS 226
CTS.UseStartMemory Use virtual memory contents as initial values for CTS 227

©1989-2024 Lauterbach

General Commands Reference Guide C

11

General Commands Reference Guide C

Version 06-Jun-2024

History

04-Jun-2024 Description for command COVerage.INFO added.
25-Jan-2024 Description for command COVerage.EXPORT.JSONE updated.
08-Dec-2023 Removed command CTS.UseCache.

07-Dec-2023 Removed CTS.UseReadCycle and CTS.UseWriteCycle commands and replaced them by
CTS.UseDataTrace.

07-Dec-2023 Removed CTS.UseVM command and replaced by CTS.UseStartMemory.

04-Dec-2023 Renamed CTS.UseMemory to CTS.UseFinalMemory.
Renamed CTS.UseRegister to CTS.UseFinalContext.

10-Oct-2023 Clean-up of CAnalyzer description.

31-Jul-2023 TriCore DAP streaming via AUTO26 V3 debug cable has been added as a configuration for
the CAnalyzer command group.

18-Apr-2023 Updated description of COVerage.TreeWalkSETUP and subcommands.

20-Mar-2023 Added pTrace (MicroTrace) with MIPI34 whisker to the list of setups that support
advanced AutoFocus features to match software since build 156270, DVD 09/2023.

24-Jan-2022 Marked the command COVerage.Staticlnfo as deprecated.

©1989-2024 Lauterbach General Commands Reference Guide C | 12

CACHE

CACHE View and modify CPU cache contents

Using the CACHE command group, you can view and modify the CPU cache contents. Note that some
targets support only a subset of the CACHE.* commands.

When you are trying to execute a command that is not supported for your target, TRACE32 displays the
error message “unknown command”.

For targets without accessible CPU cache, the entire CACHE command group is locked.

See also

B CACHE.CLEAN B CACHE.ComPare B CACHE.DUMP B CACHE.FLUSH

B CACHE.GET W CACHE.INFO Bl CACHE.INVALIDATE B CACHE.List

B CACHE.ListFunc B CACHE.ListLine B CACHE.ListModule B CACHE.ListVar

B CACHE.LOAD B CACHE.RELOAD B CACHE.SAVE B CACHE.SNAPSHOT
H CACHE.UNLOAD B CACHE.view

A 'CACHE Functions’ in ‘General Function Reference’

CACHE.CLEAN Clean CACHE
Format: CACHE.CLEAN <cache>
<cache>: ICIDCI|L2

Writes back modified (dirty) lines to the next cache level or memory. Only the specified cache is affected.

In case the operation is not supported by the CPU, the result will be a “function not implemented” error
message.

See also
B CACHE B CACHE.FLUSH B CACHE.INVALIDATE B CACHE.view

©1989-2024 Lauterbach General Commands Reference Guide C | 13

CACHE.ComPare Compare CACHE with memory

Format: CACHE.ComPare <cache>

<cache>: ICIDCI|L2

Compares CACHE contents with memory contents.

Example:
CACHE.ComPare DC ; compare contents of the data CACHE with the
; memory
See also
B CACHE Bl CACHE.view

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference GuideC | 14

CACHE.DUMP Dump CACHE

Format: CACHE.DUMP <cache> [/<options>]
<cache>: ICIDCIL2
<options>: ALL | RAW | ValidOnly

Displays a hex dump of the CACHE contents. This command extracts useful information from the raw data
read from the target and present them in a table in sequential order of the sets and ways. By default, only
valid cache lines are presented.

1 B:zCACHE.DUMP IC =N =R)

3 Goto...|| T pump ic || F pump || B List 1C || B List DC|| T Modules | [Funcions || 3 Lines || variables
address |sec | set |way| v d

ATC:B0177800 [ns | OOOO | OO /
AIC:B01B7000 [ns | 0000 | O1
AIC:B802C3000 [ns | O0OOO | 02
AIC:B80333800 (ns | OOOO | O3
ATIC:B02C3020(s o001 | 00
AIC:B0170820(s 000l | 01
AIC:B301D3820
ATIC:B8032A020
ATIC:B02C3040
ATIC:B80332040
ATIC:B302C1040
ATIC:B0170840
AIC:B80170060

1] 4 8 C
1AFFFFFA E5963000 E3AQOFB7 ELAOSFAS E0231390 E2Z833F81 F5D3F000 E1930F9F |
EAFFFFED E24BD02Z4 EBSDAEF0 CO603008 E1AOCO0OD E9ZDDSFO E24CE004 E24DDO0OC
EAFFFFEL E1A04001 EAFFFFDF CO04634E9 CO6166DA CO0461960 C0461934 E1AOCOOD
0AD0DO07 E3590000 0AOQOD00L ELAOOQOOS E1ZFFF39 ELA02009 E1A0L005 ELAQOOO7
E9ZDDEFD E24CEO04 E5S90C004 ELAOG000 E1AO0S001 ES9FE314 E1A0L00Z E31CO00L
E1A01623 E51B3030 E1811A03 EBOO37VES E1AOQ300D E3A02000 E3C33D7F EL1540002
E3500000 OAFFFFES EAFFFFDE EZ4BDOLC EB9DASFO CO803008 ELAOCOOD ESZDDIFO
E1AQ0D00Z2 E1ZFFFLE 03A00001 13A00000 E1ZFFF1lE E16F2ZF11l E262201F E1AOQ0Z30
E1A05003 01AOQCOO0 E59F0304 ES9E7O00 124CC00L1 E5902000 E0463007 EO4CT007
E1520003 0AOQOQ000 EBF7773E EZ4BDOLC EB9DABFO COB803008 ELAOCOOD ESZDDFFO
E1AQCOOD ESZDDFF8 E24CB0O04 E5902000 E1AOQ4000 E5900008 E1510000 31A06001
E3C3303F 11A00004 E593300C 01lAOQ007 E5832398 E24BD0OZE EB9DAFFO ELC520D8
E12FFF33 E3500000 OAFFFFEZ E1AO0Q009 EBEFFF354 E1A0300D E3C33D7F E3C3303F | ¥

[I T R IR I I R)

(=]

(=]

Q

=

Q

¢
cc<c<cc<<<<<<<<|

W n A
=]
=1
=1
(]
=]
[~

RAW Dump also the raw data. If the option RAW is used, all cache lines, no
matter valid or not, will be displayed.

The CACHE.DUMP window typically involves multiple columns, some of which are used to present
architecture-specific attributes of the cache lines. In the following table, we describe some commonly
presented attributes. Please refer to the design manual of the respective architecture to understand the
detailed meaning of these attributes.

Attribute Description
Valid . Column Name: “v".
. Value “V” : valid.
. Value “” : invalid.
Dirty . Column Name: “d”.

. Value “D” : dirty.

. Value “” : not dirty.
Secure . Column Name: “sec”.

J Value “s” : secure.

o Value “ns” : non-secure.

©1989-2024 Lauterbach General Commands Reference Guide C | 15

Attribute Description

Shared J Column Name: “s”.
J Value “S”: shared.
. value “-”: non-shared.
Coherence b Column Name: “c”
. The possible values of this column depend on the cache
coherence protocol used by the architecture. E.g, for the MOESI
protocol:

- Value “M” : modified.
- Value “O” : owned.
- Value “E” : exclusive.

- Value “S” : shared.

- Value “I” :invalid.
See also
W CACHE Bl CACHE.view
A ’'Release Information’ in’Legacy Release History’
CACHE.FLUSH Clean and invalidate CACHE
Format: CACHE.FLUSH <cache>

<cache>: ICIDCIL2

Writes back modified (dirty) lines to the next cache level or memory and invalidate the entire cache. Only the
specified cache is affected.

In case the operation is not supported by the CPU, the result will be a “function not implemented” error
message.

See also
B CACHE B CACHE.CLEAN B CACHE.INVALIDATE B CACHE.view

©1989-2024 Lauterbach General Commands Reference Guide C | 16

CACHE.GET

Get CACHE contents

Format:

CACHE.GET

Synchronizes the TRACES32 software with the target on the entire cache. TRACES32 loads all cache lines for
which it does not have up-to-date data. For diagnostic purposes only.

Previously loaded data are not explicitly reloaded, unless they are marked for reload by the
CACHE.RELOAD command executed before CACHE.GET.

See also
B CACHE B CACHE.RELOAD B CACHE.view
CACHE.INFO View all information related to an address
Format: CACHE.INFO.<sub_cmd> <address>
<sub_cmd>: create | scanSTART | scanRESUME | scanSTOP
TaskPageTable <address> <task>

Displays all information related to a physical address. If the given address is logical, TRACES32 first
translates it into physical. The information contains:

. All cache lines that cache the physical address, including both instruction and data cache.
J All TLB entries that contain translation rules for the physical address.
J All mmu entries that contain translation rules for the physical address (or all pages mapped to the
given physical address), including both the task and kernel MMU entries.
create Views all translation information related to an address.
scanSTART Starts a scan in all MMU page tables for entries that contain translation
rules for the physical address.
scanRESUME Resumes the scan stopped with scanSTOP.
scanSTOP Stops the scan.
TaskPageTable Displays all translation information related to a give address and task page
table. Refer to MMU.INFO.TaskPageTable for more information.

See also

B CACHE

Bl CACHE.view

©1989-2024 Lauterbach

General Commands Reference Guide C | 17

CACHE.INVALIDATE Invalidate CACHE

Format: CACHE.INVALIDATE <cache>

<cache>: ICIDCI|L2

Invalidates the entire cache. Only the specified cache is affected. In case the operation is not supported by
the CPU, the result will be a “function not implemented” error message.

See also
B CACHE B CACHE.CLEAN B CACHE.FLUSH B CACHE.view
CACHE.List List CACHE contents
Format: CACHE.List <cache>
<cache>: ICIDCIL2

Displays a list of the CACHE contents.

9} B:CACHE List DC =n| Wl <
(A Goto...) [Dump ic (38 Dump D) [List 1c | (8 List DC)[2 Modules [T Runctions) [E Lines | (2 Variables)
address dcache |
C :30000040--800000BF way 00 ~
C:300000C0--800000DF
C : B00000E0--B00000FF way 00| “Vdemo\taskchinitLinkedList'text
C:80000100--8000139F Yhdemohcstart',__init_sp+Oxd
C:B800013A0--8000145F way 00| “Vdemo\taskcsubst+0x30
C:80001460--8000149F Yhdemo' Global'y_Tc_ub_table+OxB4
C : 800014A0--800014DF way 00| “V\demo'Global'_lc_ub_table+0xF4 -
}
See also
B CACHE B CACHE.view

©1989-2024 Lauterbach General Commands Reference Guide C | 18

CACHE.ListFunc

List cached functions

Format:

<cache>: IC

IDC | L2

CACHE.ListFunc <cache>

Displays how much of each function is cached.

1 B:CACHE ListFunc

address

:B0000B10--80000E15
:B0000B18--80000B35
:B0000B38--8000063F
:80000B40--80000B67
:B0000B68--80000B8F
:80000E90--80000EDF
:B0000EED--B0000F29
:B0000F2C--80000F77
:B0000F78--8000104F
:80001050--80001306
:8000130C--8000136F

TVUTUTUTTUUTT T

f=le =
(R Goto...) (2 Dump Ic (38 Dump) [List 1c) (3 List DC)[22 Modules (T Functions) [Lines) (5 variables)
tree valid dirty Tru |
H func3 100. 000% 0. 000% 0. 000% ~
funcd 100. 000% 0. 000% 0. 000%
funcs 100. 000% 0. 000% 0. 000%
funcé 100. 000% 0. 000% 0. 000%
func? 100. 000% 0. 000% 0. 000%
funcs 100. 000% 0. 000% 0. 000%
funcg 100. 000% 0. 000% 0. 000%
func_sin 57.894% 0. 000% 0. 000%
initLinkedList 100. 000% 0. 000% 0. 000%
#Hmain 100. 000% 0. 000% 0. 000%
H sieve 100. 000% 0. 000% 0. 000% 57

Detailed information about a function is displayed by double-clicking the function.

[Bx:List P:0x80000F2C /ICACHE] =n| Wl <
[M step || M Over |[ADiverge|| ¢ Retun][¢ up || » Go |[IN Break |[' Mode |[&f[%.] "3 | Find: taske.c
icache addr/1ine |code label mnemonic comment
void func_sin(void) i
{
int index;
double x;
way 00 568 index = 0;
way 00 P:B0000F2C (0BB2 func_sin: movlé dB,#0x0
way 00 569 for (x=0.0 ; x <62.8 ; x += 0.1)
way 00 P:B0000F2E (0982 novlﬁ a9, FUxU
way 00 569 for (x=0.0 ; x <62.8 ; x += 0.1)
way 00 P:80000F30 [1D3C j16 0xB80000FGA
way 00 570 sinewave [index++] = (s1n(x)f(x+ﬂ 1)) * 300.0 + BO.D;
way 00 P:80000F32 [FO204853 mul ,dB #
way 00 570 sinewave [index++] = (s1n(x)f(x+ﬂ 1)) * 300.0 + BO.D;
way 00 P:80000F36 [F7000091 movh. a al5 ,#0x700
way 00 P:80000F3A |301BFFD9 lea al5, [alS]UxDS
way 00 570 sinewave [index++] = (s1n(x)f(x+ﬂ 1)) * 300.0 + BO.D;
way 00 P:80000F3E (FF10 addscl6.a al5,al5,dl5,#
570 sinewave index++] = (s1n(x ;(x+0 133 * 300.0 + 80.0;
P:30000F40 (3402 mov16 d4,d9
P:80000F42 (05500060 call 0xB00019E2
570 sinewave[index++] = (sin(x)/(x+0.1)) * 300.0 + B80.0; -
4 I3
See also
B CACHE B CACHE.view

©1989-2024 Lauterbach

General Commands Reference Guide C |

19

CACHE.ListLine List cached source code lines

Format: CACHE.ListLine <cache>

<cache>: ICIDCI|L2

Displays how much of each high-level source code line is cached.

9} B:CACHE ListLine =n| Wl <
[Goto...] (3E ump i) (5 Dump 0C)[F List 1¢ (5 List DC)[% Modukes | [FF Functions][% Lines][Variables)
address tree valid dirty Tru |
P:80000F2C--80000F77 = func_sin 57.894% 0. 000% 0. 000% ~
P :30000F2C--80000F2D taskec.c 4553 100. 000% 0. 000% 0. 000%
P:80000F2E--80000F2F ~taskec.c A5 100. 000% 0. 000% 0. 000%
P :30000F30--80000F31 ~taskec.c A5 100. 000% 0. 000% 0. 000%
P:30000F32--80000F35 .C M5 100. 000% 0. 000% 0. 000%
P :30000F36--80000F3D .C M5 100. 000% 0. 000% 0. 000%
P :80000F3E--80000F3F .C M5 100. 000% 0. 000% 0. 000%
P :30000F40--80000F45 .C M5 0. 000% 0. 000% 0. 000%
P :30000F46--80000F45 .C M5 0. 000% 0. 000% 0. 000%
P :30000F4A--80000F4D .C M5 0. 000% 0. 000% 0. 000%
P:30000F4E--80000F51 .C M5 0. 000% 0. 000% 0. 000%
P :80000F52--80000F55 .C M5 0. 000% 0. 000% 0. 000%
P :80000F56--80000F59 .C M5 0. 000% 0. 000% 0. 000%
P:30000F5A--80000F5D .C M5 0. 000% 0. 000% 0. 000%
P:80000F5E--80000F5F .C M5 0. 000% 0. 000% 0. 000%
P : 30000F60--80000F61 € \57 100. 000% 0. 000% 0. 000% 52
4 I3

Detailed information about a line is displayed by double-clicking the line.

See also
B CACHE Bl CACHE.view

CACHE.ListModule List cached modules

Format: CACHE.ListModule <cache>

<cache>: ICIDCIL2

Displays how much of each module is cached.

See also
B CACHE Bl CACHE.view

©1989-2024 Lauterbach General Commands Reference Guide C | 20

CACHE.ListVar List cached variables

Format: CACHE.ListVar <cache> [<range> | <address>]

<cache>: ICIDCI|L2

Displays all cached variables.

1} B:CACHE ListVar ==
(R Goto...) (2 Dump Ic (38 Dump) [List 1c) (3 List DC)[22 Modules (T Functions) [Lines) (5 variables)
address tree valid dirty Tru |
=N cstart L
D: 830000064 --80000067 start'.csa_area_begin 100. 000% 0. 000% 0. 000%
D:80000068--800000B6 \ stErt\csa_area_end 100. 000% 0. 000% 0. 000%
= hZtaske =
D:70000000--70000003 func2fstaticz 0. 000% 0. 000% 0. 000%
D:70000010--70000013 mcount 0. 000% 0. 000% 0. 0005
D:70000014--70000017 mstaticl 0. 000% 0. 000% 0. 000%
D:70000018--70000016 mstatic2 0. 000% 0. 000% 0. 000%
D:70000028--70000026 func2yfstatic 0. 000% 0. 000% 0. 000%
D:7000002C--7000002F funcdistatl 0. 000% 0. 000% 0. 000%
D:70000030--70000033 funcaistatz 0. 000% 0. 000% 0. 000%
D:70000034--70000037 period 0. 000% 0. 000% 0. 000%
D:70000AD4--70000ADE func2eixl 0. 000% 0. 000% 0. 000%
D: 800000E0--800000FE initLinkedListtext 100. 000% 0. 000% 0. 000% ~
4 F

Detailed information about a variable is displayed by double-clicking the variable.

), B:Data.View %Var D:0x800000E0 /DCACHE =n| Wl <
dcache addreszs | data value symbol |
way 00 D:B00000ED | 24 text[0] = Ox800000.. .demo taskc,initlLinkedl 1=t Lext L
way 00 00000EL [DO Viwdemo'task itLinkedList\text+0x1
way 00 00000EZ [DO \Vwdemo'taske itLinkedL \text+0x2
way 00 D:800000E3 [BO \Vwdemo'taske itLinkedL \text+0x3
way 00 D:800000E4 [2C text[1] = OxB00000." demo'taskc itLinkedL \text+0xd
way 00 D:800000E5 [OO \Vwdemo'taske itLinkedList'\text+0x5
way 00 D:800000E6 [DO \Vwdemo'taske itLinkedList\text+0x6
way 00 D:800000E7 [BO \Vwdemo'taske itLinkedList\text+0x7
way 00 00000ES [BC text[2] = OxB00000." demo' task itLinkedL \text+0x8 e
way 00 00000ES [DO \Vwdemo'taske itLinkedL \text+0xg 3
way 00 D:800000EA [00 \Vwdemo'taske itLinkedL \Eext+0x0A
way 00 D:800000EE [BO \Vwdemo'taske itLinkedL \text+0x0B
way 00 D:800000EC [CB text[3] = OxB00000." ' demo'taskc itLinkedlListh text+0x0C
way 00 D:800000ED | DO \Vwdemo'taske itLinkedList\text+0x0D
way 00 D:800000EE [00 \Vwdemo'taske itLinkedlList'text+0x0E
way 00 00000EF | BO Viwdemo'task itLinkedL \text+0x0F
way 00 00000F0 [34 text[4] = OxB00000." demo'taskc itLinkedL \text+0x10
way 00 D:800000F1 | 00 | WidemotaskcinitLinkedlist'text+0x11 v

4 | i b
See also
B CACHE B CACHE.view

©1989-2024 Lauterbach General Commands Reference Guide C

21

CACHE.LOAD Load previously stored cache contents

Format: CACHE.LOAD [IC | DC | L2] <file.cd>

Loads the cache contents previously stored with CACHE.SAVE.

This command is not supported for all target processor architectures.

See also
B CACHE B CACHE.view
CACHE.RELOAD Reload previously loaded cache contents
Format: CACHE.RELOAD

Deletes all cache data that TRACE32 already loaded. Cache data that is needed afterwards will be reloaded
from the target. For diagnostic purpose only.

This command can be useful when the cache data are loaded during a subsequent operation that needs
them, such as when executing CACHE.List or CACHE.GET command. It means that Cache.RELOAD
does not trigger any immediate cache read operation but simply marks the data for reloading.

See also
B CACHE B CACHE.GET B CACHE.view
CACHE.SAVE Save cache contents for postprocessing
Format: CACHE.SAVE [IC | DC | L2] <file.cd>

The cache contents are stored to a selected file. The file can be loaded for post processing with the
command CACHE.LOAD.

See also
B CACHE B CACHE.view

©1989-2024 Lauterbach General Commands Reference Guide C | 22

CACHE.SNAPSHOT Take cache snapshot for comparison

Format: CACHE.SNAPSHOT <cache> [[ComPare [I<cmp_opt>]]
<cache>: ICIDCIL2
<cmp_opt>: AREA <area> | VERBOSE | RAW

This command helps to investigate how the cache changes, e.g. before and after a function call. If the
command is executed without option, it takes a snapshot of the specified cache.

If the command is executed with option /ComPare, it compares the previously taken snapshot to the current
cache and prints the differences into the message AREA. Destination area and level of detail can be
configured using the options outlined below. Without detail option, the output contains event and affected

address.
AREA <area> The message AREA with name <area> will receive the comparison result.
VERBOSE Additionally print cache set and cache way of the affected cache line.
RAW Additionally print cache set and way, all status flags, and old and new data
stored in the affected cache line.
Examples:

CACHE.SNAPSHOT /ComPare

= [BAREA] [E=N Eo
LLOCATED ANC : 40004060 A
UPDATED ANC : 40004040

LLOCATED ANC : 40004120

LLOCATED ANC :40007F00

LLOCATED ANC :40007F20

LLOCATED ANC :40007F40

UPDATED ANC :40007F60 A
£ >

CACHE. SNAPSHOT /ComPare /VERBOSE

= [BAREA] [E=N Eo
LLOCATED ANC :40004060 Set 0003 Way 01 A
UPDATED ANC : 40004040 Set 0005 Way 00

LLOCATED ANC:40004120 Set 0009 Way 01

LLOCATED ANC :40007F00 Set 0078 Way 00

LLOCATED ANC :40007F20 Set 0079 Way 02

LLOCATED ANC :40007F40 Set 007A Way 03

UPDATED ANC :40007F60 Set 007E Way 01 A
£ >

©1989-2024 Lauterbach General Commands Reference Guide C | 23

CACHE.SNAPSHOT /RAW

[B::AREA] =R =R
LLOCATED ANC :40004060 Set 0003 Way 01 Dirty 00 Locked 00 Shared 00 Castout 00 Noncoher 00 LRU 00
01d: 486DCFEL 2356C902 AAESDG2F F26A4363 BFASAEAS 03F2A47B 3E7321F6 GFIFEDSE
New: S19F0000 398C0001 919F0000 S3EL1000C CZ0DFCDF BAFOOOOO 38210010 4EB00020
UPDATED ANC : 40004040 Set 0005 Way 00 Dirty 00 Locked 00 Shared 00 Castout 00 Noncoher 00 LRU 00
0ld: 00000000 AZOOOOOO 00000000 406408AZ 00000000 00000000 00000000 OOO0O000
New: 00000000 AZ2000000 00000000 40641144 00000000 00000000 00000000 OOCO0000

LLOCATED ANC :40004120 Set 0009 Way 01 Dirty 00 Locked 00 Shared 00 Castout 00 Noncoher 00 LRU 00 ¥
£ >
See also
B CACHE B CACHE.view

CACHE.UNLOAD Unload previously loaded cache contents

Format: CACHE.UNLOAD [IC | DC | L2]

Unloads cache contents previously loaded with the command CACHE.LOAD.

See also
W CACHE B CACHE.view

©1989-2024 Lauterbach General Commands Reference Guide C | 24

CACHE.view

Display cache control register

Format: CACHE.view

Displays all cache registers (not available for all processor architectures).

{53 B:CACHEview

(o] 8)

=l Cache Configuration Registers

L1CFGO,L1 Cache

Configuration Register 0

L1CFGOD 0000000

L1CFGLl,L1 Cache -tnf guration Register 1

L1FINV1,L1 Cache Flush

Invalidate ch ster 1

LICFGL 08580804 ARCH Harvard CWPA O CFAHA O C CESIZE 32 bytes
CREPL pseudo round-robin CLA 1 CPA 1 C CS5IZE B KB
= Instruction Cache Control Registers
L1CSRO, L1 Cache Configuration & Status Register 0
L1CSRO 0o0o0000 WIDDLZS 0000
L1CSR1, L1 Cache Configuration & Status Register 1
L1CSR1 00000001 E
A0
V 0o ICE 1

L1FINV1 00000000 CWAY O CSET 00D D invalidate w/o TTushing
See also
B CACHE B CACHE.CLEAN B CACHE.ComPare B CACHE.DUMP
B CACHE.FLUSH B CACHE.GET B CACHE.INFO B CACHE.INVALIDATE
B CACHE.List B CACHE.ListFunc B CACHE.ListLine B CACHE.ListModule

B CACHE.ListVar
B CACHE.SNAPSHOT

B CACHE.LOAD
B CACHE.UNLOAD

A ’'Release Information’ in’Legacy Release History’

B CACHE.RELOAD

B CACHE.SAVE

©1989-2024 Lauterbach

General Commands Reference Guide C

25

CAnalyzer

CAnalyzer Trace features of Compact Analyzer

CAnalyzer (Compact Analyzer) is the command group that controls the trace of the following:

. TRACE32 CombiProbe
The TRACE32 CombiProbe can be used for the following type of trace information:

- Any type of trace information generated by a STM or a comparable trace generation unit.
- All types of trace information generated by the Cortex-M trace infrastructure.

- MCDS data exported from a AURIX™ TriCore™ microcontroller via DAP streaming.

Further information is provided by “CombiProbe for Cortex-M User’s Guide”
(combiprobe_cortexm.pdf), by “Intel® x86/x64 Debugger” (debugger_x86.pdf) or by “MCDS
User’s Guide” (mcds_user.pdf).

. HTrace (MicroTrace)

The pTrace (MicroTrace) can record all types of trace information generated by the Cortex-M
trace infrastructure.

Further information is provided by “MicroTrace for Cortex-M User’s Guide”
(microtrace_cortexm.pdf).

. Serial Wire Viewer (SWV) trace via Debug Cable

With newer PowerDebug Module/Debug Cable configurations, TRACES32 can record ITM-
generated trace information that is exported via the SWO (Serial Wire Output) pin of the debug
connector. The trace memory is provided by the PowerDebug Module.

This is supported by the following debug cables:
- IDC20A DebugCable V5b (formerly ARM DebugCable V5b) and all its successors.
- AUTO26 Debug Cable V2 (formerly Automotive-Pro Debug Cable) and all its successors.

A PowerDebug module with trace memory is additionally required:
- PowerDebug PRO and all its successors.

- PowerDebug X50 and all its successors.

. TriCore DAP streaming via Debug Cable

With newer PowerDebug Module/Debug Cable configurations, TRACES32 can record trace data
streamed off-chip via the DAP interface.

©1989-2024 Lauterbach General Commands Reference Guide C | 26

This is supported by the following debug cable:

- AUTO26 Debug Cable V3 and all its successors.

A PowerDebug module with trace memory is additionally required:

- PowerDebug PRO and all its successors.

- PowerDebug X50 and all its successors.

Further information is provided by “MCDS User’s Guide” (mcds_user.pdf).

The amount of trace memory can be extended by using host memory (CAnalyzer STREAM mode, see
CAnalyzer.Mode STREAM).

For selecting and configuring the trace method CAnalyzer, use the TRACE32 command line or a
PRACTICE script (*.cmm) or the CAnalyzer.state window [A].

Alternatively, use the Trace.state window: click the option CAnalyzer or execute the command
Trace.METHOD CAnalyzer in order to select the trace method CAnalyzer [B].

& Bu:CAnalyzer.state EI@
state used ACCESS TDelay
A .
8 gf:ble) E.E E% & B:Trace.state EI@
O Am SIZE CLOCK METHO_D) .)
Otrigger | 268435456, | | | TSELect Onchip Analyzer @ Canabyzer Honahzer () Integrator Probe Probe QLA
O break [Jeusa ’ OarT OLoGGEROsioorer OFDX (O NONE
SPY Mode TraceCLOCK E
@ Fifo Tout state ied ACCESS TDelay
commands O stack THreshold [JBusA Opisable] > 0. 4 Tronchip
@ It O Leash ® OFF 0. 0% TRACEPORT
© snapshot| | | O STREAM TERMination Oam JEs L2 ¢ TP
= Lt S = » O trigger [268435456, | | || || - TsELect 21
4 AutoAm . O break [JBusA T BMC
[AutoInit TestFocus =9 ITiE UEEE5LEaT
o4 Autoroas @ Fifo Tout
T commands O stack THreshald [JBusa
& Init O Leash
&3 SnapShot (O STREAM TERMination
2 List OPIPE on v
AutoArm RTS
[AutoInit TestFocus
¥ AutoFocus
X ShowFoous

The chapter “CAnalyzer - Compact Analyzer specific Trace Commands”, page 28 describes the
CAnalyzer-specific configuration commands. While the chapter “Generic CAnalyzer Trace Commands”,
page 43 lists the CAnalyzer trace analysis and display commands, which are shared with other TRACE32
trace methods.

See also
B Trace. METHOD

A 'CAnalyzer - Compact Analyzer specific Trace Commands’ in 'General Commands Reference Guide C’
A ’'Generic CAnalyzer Trace Commands’ in ‘General Commands Reference Guide C’
A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide C | 27

CAnalyzer - Compact Analyzer specific Trace Commands

CAnalyzer.<specific_cmds> Overview of CAnalyzer-specific commands
See also
B CAnalyzer.SAMPLE B CAnalyzer.ShowFocus
B CAnalyzer.ShowFocusClockEye B CAnalyzer.ShowFocusEye
B <trace>.DRAW B CAnalyzer.DecodeMode
B CAnalyzer.PipeWRITE B CAnalyzer. TERMination
B CAnalyzer.TOut B CAnalyzer.TraceCLOCK

B CAnalyzer WRITE

A 'CAnalyzer in’General Commands Reference Guide C’

CAnalyzer.CLOCKDelay Set clock delay
Format: CAnalyzer.CLOCKDelay <delay>
<delay>: Auto | None | Small | MEDium | Large | MAXimum

Default: Auto. Sets the clock delay.

This command exists for setups with the CombiProbe and a whisker other than the MIPI20T-HS whisker. In
this case, the command sets the configurable delay between the TRACECLK signal and the registers that
sample the trace data, while the data delays cannot be configured.

If available, use CAnalyzer.SAMPLE for more precise control of the individual sample points.

CAnalyzer.CLOSE Close named pipes

Format: CAnalyzer.CLOSE

Closes all named pipes defined with CAnalyzer.PipeWRITE.

©1989-2024 Lauterbach General Commands Reference Guide C | 28

CAnalyzer.DecodeMode Define how to decode the received trace data

Format:

<format>:

CAnalyzer.DecodeMode <format>

AUTO
SDTI
STP
STP64
STPV2
STPV2LE
SwWv
CSITM
CSETM
CSSTM

Default: AUTO.

This command can be used to explicitly define how the recorded trace data should be decoded. In general,
the CombiProbe will try to use the correct setting automatically, dependent on the CPU selection and
enabled debug features (like ITM for example). Nevertheless, it is possible that you explicitly need to specify
the trace decoding in cases where the debugger chooses the wrong defaults; for example if you are
debugging an ARM core, which implements an ITM and at the same time an STP module and you now
need to specify which of the two outputs you are actually recording.

AUTO

SDTI
STP
STP64
STPV2
STPV2LE

sSwv
ITM (deprecated)

CSITM

Automatically derive settings.
The chosen mode depends on SYStem.CPU, the SYStem.CONFIG
settings and CAnalyzer.TraceCONNECT.

System Debug Trace Interface (SDTI) by Texas Instruments.
STP protocol (MIPI STPv1, D32 packets).

STP64 protocol (MIPI STPv1, D64 packets).

STPv2 protocol (MIPI STPv2, big endian mode).

STPv2 protocol (MIPI STPv2, little endian mode).

ITM data transferred via Serial Wire Output.

ITM data transferred via a TPIU continuous mode.
The trace ID is taken from the ITM component configuration.

©1989-2024 Lauterbach

General Commands Reference Guide C | 29

CSETM ETM + optionally ITM data transferred via TPIU continuous mode.
The trace IDs are taken from the ETM and ITM component configuration.

CSSTM STM data transferred via TPIU continuous mode.
The trace ID is taken from the STM component configuration.

See also

B CAnalyzer.<specific_cmds>

CAnalyzer.I12C 12C control

Format: CAnalyzer.l2C.<sub_cmad>

Synonym for the 12C command group. Only makes sense if your debug hardware supports accessing an
12C bus on your target (e.g. CombiProbe with MIPI60-Cv2).

CAnalyzer.PipeLOAD Load a previously saved file

Format: CAnalyzer.PipeLOAD <file>

Loads a file previously saved with CAnalyzer.PipeSAVE. Please note that the decoding will only work if your
trace setup matches the setup you used when you did save the data via CAnalyzer.PipeSAVE (selected
CPU, trace component setup,...).

This command is used in conjunction with CAnalyzer.Mode PIPE.

CAnalyzer.PipeRePlay Replay a previously recorded stream

Format: CAnalyzer.PipeRePlay <file>

Replays a previously recorded stream of data, which was stored via CAnalyzer.PipeSAVE.

This command is useful if you want to develop a PIPE mode processing DLL.Additionally you might also
“replay” artificially produced mock-up data to test your DLL.

©1989-2024 Lauterbach General Commands Reference Guide C | 30

This command is used in conjunction with CAnalyzer.Mode PIPE.

CAnalyzer.PipeSAVE Define a file that stores received data

Format: CAnalyzer.PipeSAVE <file>

Defines a file into which all received data is stored in an unprocessed manner.

This command is used in conjunction with CAnalyzer.Mode PIPE. It might be used for developing PIPE
mode processing DLLs (see CAnalyzer.PipeRePlay).

CAnalyzer.Mode STREAM offers a similar functionality.

CAnalyzer.PipeWRITE Define a named pipe as trace sink
Format: CAnalyzer.PipeWRITE <pipe_name> [/<options>]
<options>: ChannellD <channel_id>

MasterlD <master_id>

XtiMaster DSP | CPU | MCU (XTIv2)
XtiMaster DSP | CPU1 | CPU2 (SDTI)
Payload

This command is used to define a Windows or Unix named pipe as trace sink. Up to 8 named pipes can be
defined as trace sinks simultaneously.

The named pipe has to be created by the receiving application, before you can connect to the named pipe. If
the pipe is not already connected to a receiving application, the debugger software will report an error.

If you use this command without specifying a pipe name, all open pipes currently used as trace sinks are
closed.

The options are the same as for the CAnalyzer.WRITE command.

See also

B CAnalyzer.<specific_cmds>

©1989-2024 Lauterbach General Commands Reference Guide C | 31

CAnalyzer.SAMPLE Set sample time offset

Format: CAnalyzer.SAMPLE [<channel>] <time>

<channel>: DOID11D21D31D41D5I|D6 | D7

(parallel)

<channel>: SWOO0 | SWO1 | SWO2 | SWO3 | SWO4 | SWO5 | SWO6 | SWO7
(SWV)

Use this command to manually configure the sample times of the trace channels. It is typically used to
restore values previously stored using the Store... button of the CAnalyzer.ShowFocus window or with the
STOre CAnalyzerFocus command.

The availability of this command depends on the plugged hardware. It is only available in the following
scenarios:

. CombiProbe with MIPI20T-HS whisker
. CombiProbe 2 or pTrace (MicroTrace) with MIPI20T-HS or MIPI134 whisker
J CombiProbe 2 with MIP160 whisker (parallel only)

. PowerDebug PRO/E50/X50 with ARM Debug Cable v5 (SWV only)

<channel> Trace signal to be configured
If the parameter is omitted, all signals are configured with the <time>
setting.

<time> Parameter Type: Float. The value is interpreted as time in nanoseconds.
(parallel) Sample time offset to trace clock:

. Positive value: Data is sampled after the clock edge.

. Negative value: Data is sampled before the clock edge.

<time> Parameter Type: Float. The value is interpreted as time in nanoseconds.
(Swv) Sample time offset to nominal sample point derived from
CAnalyzer.TraceCLOCK setting:
. Positive value: Data is sampled after nominal sample point.
. Negative value: Data is sampled before nominal sample point.

©1989-2024 Lauterbach General Commands Reference Guide C | 32

Examples:

; Set the delay for all channels to O
CAnalyzer.SAMPLE , 0.0

; Set the delay for the DO line to 0.4 ns
CAnalyzer.SAMPLE DO 0.4

See also

B CAnalyzer.<specific_cmds>

A ’'Release Information’ in’Legacy Release History’

CAnalyzer.ShowFocus Display data eye
Format: CAnalyzer.ShowFocus [<channels> ...]
<channels>: DOID11D2|D31D4|D5I|D6 | D7
(parallel) CLK
<channels>: SWOO0 | SWO1 | SWO2 | SWO3 | SWO4 | SWO5 | SWO6 | SWO7
(SWV) SWOSTOP

Use this command to get a quick overview of the data eyes for all signals of your trace port.

The availability of this command depends on the plugged hardware. It is only available in the following
scenarios:

. CombiProbe with MIPI20T-HS whisker

. CombiProbe 2 or pTrace (MicroTrace) with MIPI20T-HS or MIPI134 whisker
J CombiProbe 2 with MIP160 whisker (parallel only)

. PowerDebug PRO/E50/X50 with ARM Debug Cable v5 (SWV only)

If used without any arguments, the channels are chosen automatically based on the current TPIU settings.

©1989-2024 Lauterbach General Commands Reference Guide C | 33

Result for parallel trace:

XX B:CAnalyzer.ShowFocus EI@
(& sewp. || San || Scan+ (i Ceaf @ On|[O Off|[% AutoFocs][3¢ Eye [0 Cockiie][4][» |[E2 Store...)[2 Load...|

‘F=100.CI"_'|HZ -15.00-12.50 -10.00 -7.500 -5.000 -2.500 +0.000 +2.500 +5.000 +7.500 +10.00 +12.50

| 1. I L. I L I L. I L. I I
4 2

The horizontal axis is the time difference from the edge of the TRACECLK signal. Each row corresponds to
one data channel DO, D1, etc. The sample point is also displayed numerically at the left of the window (in
nanoseconds). Positive values mean that the data line is sampled after the rising clock edge.

Result for SWV trace:
XX B:CAnalyzer.ShowFocus EI@
(& sew.. || San][Scan+ (il Cesf| @ on)[O Off|[xX AutoFocs] [4][» |[E2 Store...|[S2 Load...|
f=203. 8MHz -4.000 -3.000 -2.000 -1.000 +0.000 +1.000 +2.000 +3.000 +4.000

With SWV trace, there is only a single data line. This line is separated into eight virtual channels, one for
each bit of a transmitted byte. For each channel, the delay 0 refers to the “ideal” sample point that is derived
from the CAnalyzer.TraceCLOCK setting.

Color Legend

. White areas represent periods where the corresponding data line was stable.

. Gray areas indicate that changes of the data line were detected for both rising and falling clock
edges.

. Parallel trace: Red areas show that the data line changed only on rising or falling clock edges, not
both.

. SWV and parallel trace: Red lines indicate the sample points for each data line.

©1989-2024 Lauterbach General Commands Reference Guide C | 34

Description of Buttons in the CAnalyzer.ShowFocus Window

The local buttons of the CAnalyzer.ShowFocus window have the following functions:

Setup... Open CAnalyzer.state window to configure the trace.

Scan Perform a CAnalyzer.TestFocus scan.
This replaces the currently displayed data with a new scan of a test
pattern.

Scan+ Perform a CAnalyzer.TestFocus /Accumulate scan.
This works like Scan, but adds to the existing data.

Clear Clear the currently displayed data.

On Enable continuous capture. No specific test pattern is generated, but the
capture can run in parallel to the recording of normal trace data. The
CAnalyzer.ShowFocus window updates continuously.

Off Disable continuous capture.

AutoFocus Perform a CAnalyzer.AutoFocus scan.

Eye Open a CAnalyzer.ShowFocusEye window.

ClockEye Open a CAnalyzer.ShowFocusClockEye window.

Store... Save the current configuration to a file
(STOre <file> CAnalyzerFocus).

Load... Load a configuration from a file
(DO <file>).

K3} Move all sampling points one step to the left.

] Move all sampling points one step to the right.

See also

B CAnalyzer.<specific_cmds>

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide C | 35

CAnalyzer.ShowFocusClockEye Show clock eye

Format: CAnalyzer.ShowFocusClockEye

CAnalyzer.ShowFocusClockEye shows the clock eye. The data is captured by the
CAnalyzer.AutoFocus, CAnalyzer.TestFocusClockEye and CAnalyzer.TestFocusEye commands.

The availability of this command depends on the plugged hardware. It is only available in the following
scenarios:

. CombiProbe with MIPI20T-HS whisker

J CombiProbe 2 or pTrace (MicroTrace) with MIPI20T-HS, MIPI34 or MIPI60 whisker

X0 B:CAnalyzer.ShowFocusClockEye =n| Wl <

(P | San || Scan+ [AutoFocus|| 30€ sonfoas |
'F=100.0Mq% -15.00-12.50 -10.00 -7.500 -5.000 -2.500 +0.000 +2.500 +5.000 +7.500 +10.00 +12.50
a 1 1 1 1 1 1 1 1 1 1 1 1 |

The horizontal axis represents time, measured in nanoseconds. The vertical axis represents the voltage.
The visible voltage range depends on the hardware capabilities of the whisker.

To generate this view, the clock signal is sampled using the clock signal itself as the trigger. For example, a
white area around the coordinate (2.0 V, 7.5 ns) means that there were no recorded clock crossings exactly
7.5 ns apart when using a 2.0 V threshold.

Color Legend

J White areas indicate that there were no pairs of clock crossings.

. Green indicates that the reference clock crossing at t = 0 was rising.
. Red indicates that the reference clock crossing at t = 0 was falling.

. Olive green areas indicate that both occurred.

Description of Buttons in the CAnalyzer.ShowFocusClockEye Window

Please see CAnalyzer.ShowFocusEye.

See also

B CAnalyzer.<specific_cmds>

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide C | 36

CAnalyzer.ShowFocusEye Show data eyes

Format: CAnalyzer.ShowFocusEye [<channels> ...]

<channels>: DOID1/D2|ID3 D41 D5|D61I|D7

CAnalyzer.ShowFocusEye shows the data eyes. The data is captured by the CAnalyzer.AutoFocus,
CAnalyzer.TestFocusClockEye and CAnalyzer.TestFocusEye commands.

The availability of this command depends on the plugged hardware. It is only available in the following
scenarios:

. CombiProbe with MIPI20T-HS whisker

. CombiProbe 2 or pTrace (MicroTrace) with MIPI20T-HS, MIPI34or MIPI60 whisker

This screenshot shows multiple eyes overlaid on each other.

XX B:CAnalyzer.ShowFocusEye EI@

[(Psw.. || San || Scan+ (3 AutoFocus|[30¢Smfes |[£ Channel[3 Channei[4] »]
'F=100.0|'-‘Ilil% -15.00-12.50 -10.00 -7.500 -5.000 -2.500 +0.000 +2.500 +5.000 +7.500 +10.00 +12.50
a 1 1 1 1 1 | 1 1 1 1 1 1 |

This screenshot shows a single data eye.

XX B:CAnalyzer.ShowFocusEye EI@

(& sep... || Smn_][Scan+ | (% AutoFocus|| 20¢ ShwFins (4 Channel[3 Channel[4][»]
f=100 Im‘n .00-12.50 -10.00 -7.500 -5.000 -2.500 +0.000 +2.500 +5.000 +7.500 +10.00 +12.50
Do

Color Legend

J White areas indicate that the data was stable (no changes were observed).

J Green indicates that the data changed in response to a rising clock edge att = 0.
. Red indicates that the data changed in response to a falling clock edge att = 0.

. Olive green areas indicate that both occurred.

©1989-2024 Lauterbach General Commands Reference Guide C | 37

Description of Buttons in the CAnalyzer.ShowFocusEye Window

The toolbar buttons of the CAnalyzer.ShowFocusEye window have the following functions:

Setup... Open CAnalyzer.state window to configure the trace.

Scan Perform a CAnalyzer.TestFocusEye scan.
This replaces the currently displayed data with a new scan of a test
pattern.

Scan+ Perform a CAnalyzer.TestFocusEye /Accumulate scan.

This works like Scan, but adds to the existing data.

AutoFocus Perform a CAnalyzer.AutoFocus scan.
ShowFocus Open a CAnalyzer.ShowFocus window.
Channel up/down Switch between displayed channels. The default view shows all selected

channels overlaid onto each other.

K3} Move the sampling points of all visible channels one step to the left.
) Move the sampling points of all visible channels one step to the right.
See also

B CAnalyzer.<specific_cmds>

©1989-2024 Lauterbach General Commands Reference Guide C | 38

CAnalyzer.TERMination Configure parallel trace termination

Format: CAnalyzer.TERMination [ON | OFF | ALways]

Configures the termination of the trace data and clock signals (TRACEDO to TRACED3 and TRACECLK) on
the MIPI20T-HS whisker.

This command is only available if a MIPI20T-HS whisker is plugged. This whisker has a switchable 100 Ohm
parallel termination to GND. It has no effect in Serial Wire Viewer (SWV) mode.

ON Termination is enabled while the trace is armed.
This is the default and recommended setting. Parallel termination
reduces overshoots of the electrical signals.

OFF Termination is disabled completely.
Use this if your target’s drivers are too weak to drive against the
termination.
AlLways Termination is always enabled.
See also

B CAnalyzer.<specific_cmds>

A ’'Release Information’ in’Legacy Release History’

CAnalyzer.TOut Route trigger to PODBUS (CombiProbe/pTrace)

Format: CAnalyzer.TOut BusA ON | OFF

When the BusA check box is enabled, the CombiProbe/uTrace (MicroTrace) will send out a trigger on the
PODBUS, as soon as a trigger event is detected in the trace data.

Trace.METHOD.CAnalyzer ; select the trace method Compact Analyzer
Trace.state ; open the Trace.state window
Trace.TOut BusA ON ; enable the BusA check box

For information about PODBUS devices, see "Interaction between independent PODBUS devices".

See also

B CAnalyzer.<specific_cmds>

©1989-2024 Lauterbach General Commands Reference Guide C | 39

CAnalyzer.TraceCLOCK

Configure the trace port frequency

Format: CAnalyzer.TraceCLOCK <frequency>
CAnalyzer.ExportClock <frequency> (deprecated)

This command is used to manually configure the frequency of the trace port.

The interpretation of this value is different depending on whether a parallel or a SWV trace port is used.

Interpretation when parallel trace is used

With parallel trace, this setting is optional and does not affect the capture of data. However, it is used to
interpolate the timestamps in the recorded trace data where multiple logical records share a physical
timestamp. Set the value to zero (0.0) to disable timestamp interpolation.

The given frequency must be the bit rate of the trace port. Since all parallel trace ports supported by the
CAnalyzer operate in double data rate (DDR) mode, this is twice the frequency of the trace clock pin.

The command CAnalyzer.AutoFocus automatically sets this setting.

Interpretation when SWV trace is used

The bit rate of the Serial Wire Output (SWO) signal is used as frequency.

<frequency> Frequency range:
(MIP134 whisker and .
ARM Debug Cable v5) .
<frequency> Frequency range:
(MIPI20T-HS whisker) .

Minimum: 60 kHz
Maximum: 100 MHz

Minimum: 60 kHz
Maximum: 200 MHz

You might need to select an appropriate SWO clock divider to remain in the allowed range. For an example,

see TPIU.SWVPrescaler.
Examples:

CAnalyzer.TraceCLOCK 32MHz

©1989-2024 Lauterbach

General Commands Reference Guide C | 40

To auto-detect the bit rate, click the AutoFocus button in the CAnalyzer window or type at the command
line:

CAnalyzer.AutoFocus

See also

B CAnalyzer.<specific_cmds>

CAnalyzer.TracePORT Select which trace port is used

Format: CAnalyzer.TracePORT DEFault | TracePortA | TracePortB

Selects which trace port is used for recording trace data. This command only makes sense if you have two
whiskers connected to a CombiProbe.

DEFault Use same whisker for tracing as is used for debugging. The debug port can
be selected with the command SYStem.CONFIG DEBUGPORT.
TracePortA is selected per default if only one debug port is available.

TracePortA Select whisker A as trace port.

TracePortB Select whisker B as trace port.

©1989-2024 Lauterbach General Commands Reference Guide C | 41

CAnalyzer.WRITE Define a file as trace sink

Format: CAnalyzer.WRITE <file> [/<options>]

<options>: ChannellD <channel_id>
MasterID <master_id>
XtiMaster DSP | CPU | MCU (XTIv2)
XtiMaster DSP | CPU1 | CPU2 (SDTI)
Payload

This command is used to define a file as trace sink. Up to 8 files can be specified as trace sinks
simultaneously.

<file> If you use this command without specifying a <file> name, all open files
currently used as trace sinks are closed.

ChannellD If you record MIPIs STP trace (System Trace Protocol), then the options

MasterID /ChannellD and /MasterID are available. You can use this options to only
store messages into the file, which match the given ChannellD or MasterlD.
You can specify a single value, a range of values or a bitmask for the
ChannellD and MasteriD.

If you record ARMs ITM trace, the MasterID option is not available, because
ITM does not use master IDs.

Payload The /Payload option specifies, that only the payload of the ITM or STP
messages is stored into the file.

See also

B CAnalyzer.<specific_cmds>

©1989-2024 Lauterbach General Commands Reference Guide C | 42

Generic CAnalyzer Trace Commands

CAnalyzer.ACCESS Define access path to program code for trace decoding

See command <trace>.ACCESS in 'General Commands Reference Guide T' (general_ref_t.pdf, page
131).

CAnalyzer.Arm Arm the trace

See command <trace>.Arm in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 134).

CAnalyzer.AutoArm Arm automatically

See command <trace>.AutoArm in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
135).

CAnalyzer.AutoFocus Calibrate AUTOFOCUS preprocessor
See command <trace>.AutoFocus in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
135).

CAnalyzer.Autolnit Automatic initialization

See command <trace>.Autolnit in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 140).

CAnalyzer.BookMark Set a bookmark in trace listing

See command <trace>.BookMark in 'General Commands Reference Guide T' (general_ref_t.pdf, page
140).

©1989-2024 Lauterbach General Commands Reference Guide C | 43

CAnalyzer.BookMarkToggle Toggles a single trace bookmark

See command <trace>.BookMarkToggle in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 143).

CAnalyzer.Chart Display trace contents graphically

See command <trace>.Chart in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 144).

CAnalyzer.CLOCK Clock to calculate time out of cycle count information

See command <trace>.CLOCK in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 191).

CAnalyzer.ComPare Compare trace contents

See command <trace>.ComPare in 'General Commands Reference Guide T' (general_ref_t.pdf, page
192).

CAnalyzer.ComPareCODE Compare trace with memory

See command <trace>.ComPareCODE in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 194).

CAnalyzer.CustomTrace Custom trace

See command <trace>.CustomTrace in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 195).

CAnalyzer.CustomTraceLoad Load a DLL for trace analysis/Unload all DLLs

See command <trace>.CustomTraceLoad in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 196).

©1989-2024 Lauterbach General Commands Reference Guide C | 44

CAnalyzer.DISable Disable the trace

See command <trace>.DISable in 'General Commands Reference Guide T' (general_ref_t.pdf, page 197).

CAnalyzer.DRAW Plot trace data against time

See command <trace>.DRAW in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 201).

CAnalyzer.EXPORT Export trace data for processing in other applications

See command <trace>.EXPORT in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
212).

CAnalyzer.ExtractCODE Extract code from trace

See command <trace>.ExtractCODE in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 232).

CAnalyzer.FILE Load a file into the file trace buffer

See command <trace>.FILE in 'General Commands Reference Guide T' (general_ref_t.pdf, page 233).

CAnalyzer.Find Find specified entry in trace

See command <trace>.Find in 'General Commands Reference Guide T' (general_ref_t.pdf, page 235).

CAnalyzer.FindAll Find all specified entries in trace

See command <trace>.FindAll in 'General Commands Reference Guide T' (general_ref_t.pdf, page 237).

CAnalyzer.FindChange Search for changes in trace flow

See command <trace>.FindChange in 'General Commands Reference Guide T' (general_ref_t.pdf, page
238).

©1989-2024 Lauterbach General Commands Reference Guide C | 45

CAnalyzer.FindProgram Advanced trace search

See command <trace>.FindProgram in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
239).

CAnalyzer.FindReProgram Activate advanced existing trace search program

See command <trace>.FindReProgram in ‘General Commands Reference Guide T' (general_ref_t.pdf,
page 240).

CAnalyzer.FindViewProgram State of advanced trace search programming

See command <trace>.FindViewProgram in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 240).

CAnalyzer.FLOWPROCESS Process flowtrace

See command <trace>.FLOWPROCESS in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 241).

CAnalyzer.FLOWSTART Restart flowtrace processing

See command <trace>.FLOWSTART in 'General Commands Reference Guide T' (general_ref_t.pdf, page
241).

CAnalyzer.Get Display input level

See command <trace>.Get in 'General Commands Reference Guide T' (general_ref_t.pdf, page 242).

CAnalyzer.GOTO Move cursor to specified trace record

See command <trace>.GOTO in 'General Commands Reference Guide T' (general_ref_t.pdf, page 244).

©1989-2024 Lauterbach General Commands Reference Guide C | 46

CAnalyzer.Init Initialize trace

See command <trace>.Init in 'General Commands Reference Guide T' (general_ref_t.pdf, page 246).

CAnalyzer.JOINFILE Concatenate several trace recordings

See command <trace>.JOINFILE in 'General Commands Reference Guide T' (general_ref_t.pdf, page
246).

CAnalyzer.List List trace contents

See command <trace>.List in 'General Commands Reference Guide T' (general_ref_t.pdf, page 248).

CAnalyzer.ListNesting Analyze function nesting

See command <trace>.ListNesting in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
263).

CAnalyzer.ListVar List variable recorded to trace

See command <trace>.ListVar in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 266).

CAnalyzer.LOAD Load trace file for offline processing

See command <trace>.LOAD in 'General Commands Reference Guide T' (general_ref_t.pdf, page 270).

CAnalyzer.MERGEFILE Combine two trace files into one
See command <trace>.MERGEFILE in 'General Commands Reference Guide T' (general_ref_t.pdf, page
272).

CAnalyzer.Mode Set the trace operation mode

See command <trace>.Mode in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 276).

©1989-2024 Lauterbach General Commands Reference Guide C | 47

CAnalyzer.OFF Switch off

See command <trace>.OFF in 'General Commands Reference Guide T' (general_ref_t.pdf, page 278).

CAnalyzer.PortFilter Specify utilization of trace memory

See command <trace>.PortFilter in 'General Commands Reference Guide T' (general_ref_t.pdf, page
279).

CAnalyzer.PortType Specify trace interface

See command <trace>.PortType in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
280).

CAnalyzer.PROfileChart Profile charts

See command <trace>.PROfileChart in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
283).

CAnalyzer.PROfileSTATistic Statistical analysis in a table versus time

See command <trace>.PROfileSTATistic in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 322).

CAnalyzer.PROTOcol Protocol analysis

See command <trace>.PROTOcol in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
339).

CAnalyzer.PROTOcol.Chart Graphic display for user-defined protocol

See command <trace>.PROTOcol.Chart in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 339).

©1989-2024 Lauterbach General Commands Reference Guide C | 48

CAnalyzer.PROTOcol.Draw Graphic display for user-defined protocol

See command <trace>.PROTOcol.Draw in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 341).

CAnalyzer.PROTOcol.EXPORT Export trace buffer for user-defined protocol

See command <trace>.PROTOcol.EXPORT in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 342).

CAnalyzer.PROTOcol.Find Find in trace buffer for user-defined protocol

See command <trace>.PROTOcol.Find in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 343).

CAnalyzer.PROTOcol.list Display trace buffer for user-defined protocol

See command <trace>.PROTOcol.list in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 344).

CAnalyzer.PROTOcol.PROfileChart Profile chart for user-defined protocol

See command <trace>.PROTOcol.PROfileChart in '‘General Commands Reference Guide T
(general_ref_t.pdf, page 347).

CAnalyzer.PROTOcol.PROfileSTATistic Profile chart for user-defined
protocol

See command <trace>.PROTOcol.PROfileSTATistic in '‘General Commands Reference Guide T'
(general_ref_t.pdf, page 348).

CAnalyzer.PROTOcol.STATistic Display statistics for user-defined protocol

See command <trace>.PROTOcol.STATistic in 'General Commands Reference Guide T
(general_ref_t.pdf, page 350).

©1989-2024 Lauterbach General Commands Reference Guide C | 49

CAnalyzer.REF Set reference point for time measurement

See command <trace>.REF in 'General Commands Reference Guide T' (general_ref_t.pdf, page 357).

CAnalyzer.RESet Reset command

See command <trace>.RESet in 'General Commands Reference Guide T' (general_ref_t.pdf, page 357).

CAnalyzer.SAVE Save trace for postprocessing in TRACES32

See command <trace>.SAVE in 'General Commands Reference Guide T' (general_ref_t.pdf, page 358).

CAnalyzer.SelfArm Automatic restart of trace recording

See command <trace>.SelfArm in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
362).

CAnalyzer.SIZE Define buffer size

See command <trace>.SIZE in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 373).

CAnalyzer.SnapShot Restart trace capturing once

See command <trace>.SnapShot in 'General Commands Reference Guide T' (general_ref_t.pdf, page
373).

CAnalyzer.SPY Adaptive stream and analysis

See command <trace>.SPY in 'General Commands Reference Guide T' (general_ref_t.pdf, page 374).

CAnalyzer.state Display trace configuration window

See command <trace>.state in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 376).

©1989-2024 Lauterbach General Commands Reference Guide C | 50

CAnalyzer.STATistic Statistic analysis

See command <trace>.STATistic in 'General Commands Reference Guide T' (general_ref_t.pdf, page
378).

CAnalyzer.STREAMCompression Select compression mode for streaming

See command <trace>.STREAMCompression in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 485).

CAnalyzer.STREAMFILE Specify temporary streaming file path

See command <trace>.STREAMFILE in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 486).

CAnalyzer.STREAMFileLimit Set size limit for streaming file

See command <trace>.STREAMFileLimit in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 487).

CAnalyzer.STREAMLOAD Load streaming file from disk

See command <trace>.STREAMLOAD in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 488).

CAnalyzer.STREAMSAVE Save streaming file to disk

See command <trace>.STREAMSAVE in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 490).

CAnalyzer.TDelay Trigger delay

See command <trace>.TDelay in 'General Commands Reference Guide T' (general_ref_t.pdf, page 491).

©1989-2024 Lauterbach General Commands Reference Guide C | 51

CAnalyzer.TestFocus Test trace port recording

See command <trace>.TestFocus in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
494).

CAnalyzer.TestFocusClockEye Scan clock eye

See command <trace>.TestFocusClockEye in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 496).

CAnalyzer.TestFocusEye Check signal integrity
See command <trace>.TestFocusEye in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 497).

CAnalyzer.TestUtilization Tests trace port utilization

See command <trace>.TestUtilization in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 497).

CAnalyzer.THreshold Optimize threshold for trace lines
See command <trace>.THreshold in 'General Commands Reference Guide T' (general_ref_t.pdf, page
498).

CAnalyzer.Timing Waveform of trace buffer

See command <trace>.Timing in 'General Commands Reference Guide T' (general_ref_t.pdf, page 499).

CAnalyzer.TraceCONNECT Select on-chip peripheral sink

See command <trace>.TraceCONNECT in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 501).

©1989-2024 Lauterbach General Commands Reference Guide C | 52

CAnalyzer.TRACK Set tracking record

See command <trace>.TRACK in 'General Commands Reference Guide T' (general_ref_t.pdf, page 502).

CAnalyzer.TSELect Select trigger source

See command <trace>.TSELect in 'General Commands Reference Guide T' (general_ref_t.pdf, page
503).

CAnalyzer.View Display single record

See command <trace>.View in 'General Commands Reference Guide T' (general_ref_t.pdf, page 504).

CAnalyzer.ZERO Align timestamps of trace and timing analyzers

See command <trace>.ZERO in 'General Commands Reference Guide T' (general_ref_t.pdf, page 505).

©1989-2024 Lauterbach General Commands Reference Guide C | 53

ClIProbe

ClIProbe Trace with Analog Probe and CombiProbe/uTrace (MicroTrace)

ClProbe is the command group that is used to configure, display, and evaluate signal trace information
recorded with one of the following setups:

o Analog Probe connected to port B of a CombiProbe or pTrace (MicroTrace)

Using the converter LA-4508, a Powerlntegrator Analog probe can be used to capture analog
trace data, which can be correlated with flow trace, e. g. for Energy Trace Analysis (ETA).

. Mixed-Signal Probe connected to port B of a CombiProbe 2 or pTrace (MicroTrace)

A Mixed-Signal probe can be connected directly to port B of a CombiProbe 2 or pTrace
(MicroTrace). Like the analog probe, it can be used for ETA, but it is also possible to capture
digital signals for protocol analysis or for measuring interrupt latency for external events.

. Built-in logic analyzer for debug signals

With a PowerDebug PRO/E40/X50 and a regular Debug Cable, it is possible to trace the signals
that form the debug port (e. g. JTAG). This can be useful when analyzing problems with the
debug connection.

For the IDC20A and AUTO26 Debug Cables, a script to set up signal names and JTAG protocol
analysis can be found at ~~/demo/etc/diagnosis/debug_cable_probe_setup.cmm.

The Analog Probe must be connected to the port B of the CombiProbe/uTrace
(MicroTrace) using a special adapter (LA-4508). Please do not connect the
Analog Probe directly to the CombiProbe/uTrace (MicroTrace).

The CIProbe feature set and usage is very similar to the IProbe, which refers to the analog or logic
analyzer port of a PowerTrace module. Notable differences include:

. The CIProbe only supports the TRACE32 Analog Probe and Mixed-Signal Probe.

J The CIProbe uses the main trace memory of the CombiProbe/uTrace (MicroTrace). The
maximum depth is 16/32/64 million records when used with a CombiProbe/uTrace
(MicroTrace)/CombiProbe 2, respectively. The built-in logic analyzer for debug signals can store
16 million records.

. The CIProbe supports TRACES32 streaming to the host to provide virtually unlimited recording
time, limited only by hard drive or SSD capacity of the host PC. Simultaneous CIProbe and
CAnalyzer streaming is also supported.

©1989-2024 Lauterbach General Commands Reference Guide C | 54

Due to the similarities, there is no dedicated CIProbe user’s guide. For general instructions on how to use
the CIProbe or to learn about its analog capabilities, please refer to “IProbe User’s Guide”
(iprobe_user.pdf). When commands starting with IProbe are mentioned, remember to use their ClProbe
equivalents instead.

The chapter “ClProbe-specific Trace Commands”, page 56 describes the ClProbe-specific configuration
commands. While the chapter “Generic ClIProbe Trace Commands”, page 64 lists the CIProbe trace
analysis and display commands, which are shared with other TRACE32 trace methods.

©1989-2024 Lauterbach General Commands Reference Guide C | 55

ClProbe-specific Trace Commands

ClIProbe.<specific_cmds> Overview of CIProbe-specific commands
See also
B CIProbe. ALOWerLIMit B CIProbe.ATrigeN B CIProbe.ATrigMODE B CIProbe. AUPPerLIMit
B CIProbe.Mode B ClProbe.state B CIProbe.TDelay B CIProbe.TOut

B CIProbe. TSELect

CIProbe.ALOWerLIMit Set lower trigger/filter comparator value
Format: ClProbe.ALOWerLIMit <channel> <value>
<channel>: VOIV1IV2|V3I
10111112

Sets the lower limit for the trigger and filter logic of a physical ADC channel. The <value> must be given in
Volts for voltage channels or Amperes for current channels.

The actual comparison performed depends on the CIProbe.ATrigMODE setting.

See also

B CIProbe.<specific_cmds>

ClIProbe.ATrigEN Enable/disable trigger contribution of a channel
Format: CIProbe.ATrigEN <channel> [ON | OFF]
<channel>: VOIV1IV2IV3|
1011112

Enables or disables the contribution of a physical channel’s comparator logic to the CIProbe trigger. If this
setting is enabled for multiple channels, a trigger condition is generated when the trigger condition of any
channels is satisfied.

©1989-2024 Lauterbach General Commands Reference Guide C | 56

If no [ON | OFF] argument is given, the current state of the setting is toggled.

NOTE: Even if this setting is OFF for a given channel, the comparator may still be used for
filtering. Refer to the POD.ADC command for details.

See also

B CIProbe.<specific_cmds>

©1989-2024 Lauterbach General Commands Reference Guide C | 57

ClIProbe.ATrigMODE

Set trigger/filter condition

Format: CIProbe.ATrigMODE <channel> <mode>
<channel>: VoIlVv1iIVv2|V3I

10111112
<mode>: DISabled |

GreaterUPPer | SmallerUPPer |
GreaterLOWer | SmallerLOWer |
INBound | BEYONDbound

Sets the condition for a physical channel’s comparator logic.

DISabled

GreaterUPPer

SmallerUPPer

GreaterLOWer

SmallerLOWer

INBound

BEYONDBound

See also

No value matches.

Value must be greater than upper limit.
See CIProbe.AUPPerLIMit.

Value must be less than upper limit.
See CIProbe.AUPPerLIMit.

Value must be greater than lower limit.
See CIProbe.ALOWerLIMit.

Value must be less than lower limit.
See CIProbe.ALOWerLIMit.

Value must be greater than lower limit and less than upper limit.
See CIProbe.ALOWerLIMit and CIProbe.AUPPerLIMit.

Value must be less than lower limit or greater than upper limit.
See CIProbe.ALOWerLIMit and CIProbe.AUPPerLIMit.

B CIProbe.<specific_cmds>

©1989-2024 Lauterbach

General Commands Reference Guide C

58

CIProbe.AUPPerLIMit Set upper trigger/filter comparator value

Format: CIProbe.AUPPerLIMit <channel> <value>
<channel>: VOIV1IV2|V3]|
oI II2

Sets the upper limit for the trigger and filter logic of a physical ADC channel. The <value> is in Volts for
voltage channels and Amperes for current channels.

The actual comparison performed depends on the CIProbe.ATrigMODE setting.

See also

B CIProbe.<specific_cmds>

CIProbe.Mode Set trace operation mode
Format: CIProbe.Mode Fifo | Stack
Fifo If the trace is full, new records will overwrite older records. The trace

records always the last cycles before the break.

Stack If the trace is full recording will be stopped. The trace always records the
first cycles after starting the trace.

See also
B CIProbe.<specific_cmds> B <trace>.Mode

©1989-2024 Lauterbach General Commands Reference Guide C | 59

ClIProbe.state Display CIProbe configuration window

Format: ClIProbe.state

Displays the main ClProbe configuration window. Use the advanced button to get access to analog trigger
settings.

Use the Analog Settings button or the command POD.state CIP to enable and configure channels. Note
that by default, all channels are disabled, so no data will be recorded.

4 Bu:ClProbe.state

state used TDelay channel — sample — ATrigEN — ATrigMODE ALOWerLIMit — AUPPerLIMit
O pIsable [| 33554432. Vo Hvays O
® OFF 6630806. 50% ~
Oam Size VI Fiter | MBound ~ | 1.500000 | [3.000000
O trigger TSELect
O break [JBusA =
Mode
commands ® Fifo Tout =
@ Init O stack [JBusa
49 DRAW | | | O STREAM 0 A GeatelOWer
AutoArm OPIPE
[Autolnit =
o nakg Settings & advanced

See also

B CIProbe.<specific_cmds>

ClIProbe.TDelay Define trigger delay

Format: ClIProbe.TDelay <records> | <percent>%

Selects the delay between the trigger point and the time where the trace stops recording. This delay is
always defined as a number of records. For convenience, you can also specify a the delay as a percentage
of the current CIProbe.SIZE setting.

When the trigger point occurs (either from the trigger comparator or from the BusA source), the CIProbe will
enter the trigger state and keep recording. After the number of records specified in this setting, the CIProbe
will then enter the break state and no longer record new samples.

©1989-2024 Lauterbach General Commands Reference Guide C | 60

Examples:

; Stop immediately after the trigger condition. All recorded samples
; will have been sampled before or at the trigger point.
CIProbe.TDelay O.

; After the trigger condition occurs, fill the entire trace buffer with
; new samples. All recorded samples will have been sampled after the

; trigger point.

CIProbe.TDelay 100%

; Stop such that the sample point is exactly in the middle of the
; recorded data.
CIProbe.TDelay 50%

See also

B CIProbe.<specific_cmds>

CIProbe.TOut Route CIProbe trigger to PODBUS

Format: CIProbe.TOut BusA [ON | OFF]

When this setting is enabled, the CIProbe will send out a trigger on the PODBUS as soon as a trigger event
is detected in the trace data.

Regardless of this setting, a trigger condition will cause the CIProbe to enter the trigger and eventually the
break state.

If no [ON | OFF] argument is given, the current state of the setting is toggled.

For information about PODBUS devices, see "Interaction between independent PODBUS devices".

See also

B CIProbe.<specific_cmds>

©1989-2024 Lauterbach General Commands Reference Guide C | 61

CIProbe.TSELect Route PODBUS trigger to CIProbe

Format: CiProbe.TSELect BusA [ON | OFF]

When this setting is enabled, a trigger condition on the PODBUS will trigger the CIProbe, This will cause the
CIProbe to enter the trigger and eventually the break state.

If other trigger conditions are configured with CIProbe.ATrigEN, these conditions can independently trigger
the ClProbe.

If no [ON | OFF] argument is given, the current state of the setting is toggled.

For information about PODBUS devices, see "Interaction between independent PODBUS devices".

See also

B CIProbe.<specific_cmds>

CIProbe.TSYNC.SELect Select trigger input pin and edge or state
Format: CIProbe.TSYNC.SELect [<channel> <mode>]
<mode>: Low | High | Falling | Rising
<value>
<mask>

Set the trigger condition for digital trace. Only available for the Mixed-Signal Probe.

The <channel> can be one of the digital CIProbe channels (e. g. CIProbe.00 or an alias set with the
command NAME.Set) or a Word or Group channel (created with NAME.Word or NAME.Group). The
<mode> can be either a level (Low, High), an edge (Falling, Rising) or a numeric value or mask, which
will assign Low, High or don’t care to each of the bits in <channel>.

It is possible to specify multiple pairs of [<channel> <mode>] with this command. The trigger condition will
be the logical AND of the given conditions. If no condition is given at all, no digital trigger will be generated.

While it is possible to specify edge triggers for multiple channels, these edges would have to occur within the
same digital sample period. Since the CIProbe’s sample clock is asynchronous to the target, this makes it
impossible to guarantee that two edges will be sampled at the same time. Therefore, a sensible trigger
condition will have at most one edge channel in addition to any number of level channels.

©1989-2024 Lauterbach General Commands Reference Guide C | 62

Example:

; set up a named word and two named signals

NAME .Word data CIProbe.00 CIProbe.0l CIProbe.02 CIProbe.03
NAME.Set CIProbe.04 clk

NAME.Set CIProbe.05 valid

; set up a trigger condition:
; - CLK (channel 04) must have a rising edge
; — VALID (channel 05) must be a logic 1
;- DATA (channels 00 to 03) must have the value 0x8 or 0xA
CIProbe.TSYNC.SELect CIProbe.clk Rising \
CIProbe.valid High \
CIProbe.data 0bl0x0

©1989-2024 Lauterbach General Commands Reference Guide C | 63

Generic CIProbe Trace Commands

CIProbe.Arm Arm the trace

See command <trace>.Arm in 'General Commands Reference Guide T' (general_ref_t.pdf, page 134).

ClIProbe.AutoArm Arm automatically

See command <trace>.AutoArm in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
135).

CIProbe.Autolnit Automatic initialization

See command <trace>.Autolnit in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 140).

ClIProbe.BookMark Set a bookmark in trace listing

See command <trace>.BookMark in 'General Commands Reference Guide T' (general_ref_t.pdf, page
140).

ClIProbe.BookMarkToggle Toggles a single trace bookmark
See command <trace>.BookMarkToggle in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 143).

ClIProbe.Chart Display trace contents graphically

See command <trace>.Chart in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 144).

©1989-2024 Lauterbach General Commands Reference Guide C | 64

CIProbe.ComPare Compare trace contents

See command <trace>.ComPare in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
192).

CIProbe.DISable Disable the trace

See command <trace>.DISable in 'General Commands Reference Guide T' (general_ref_t.pdf, page 197).

ClIProbe.DisConfig Trace disassembler configuration

See command <trace>.DisConfig in 'General Commands Reference Guide T' (general_ref_t.pdf, page
198).

CIProbe.DRAW Plot trace data against time

See command <trace>.DRAW in 'General Commands Reference Guide T' (general_ref_t.pdf, page 201).

CIProbe.EXPORT Export trace data for processing in other applications

See command <trace>.EXPORT in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
212).

CIProbe.FILE Load a file into the file trace buffer

See command <trace>.FILE in 'General Commands Reference Guide T' (general_ref_t.pdf, page 233).

ClIProbe.Find Find specified entry in trace

See command <trace>.Find in 'General Commands Reference Guide T' (general_ref_t.pdf, page 235).

ClIProbe.FindAll Find all specified entries in trace

See command <trace>.FindAll in 'General Commands Reference Guide T' (general_ref_t.pdf, page 237).

©1989-2024 Lauterbach General Commands Reference Guide C | 65

ClIProbe.FindChange Search for changes in trace flow

See command <trace>.FindChange in 'General Commands Reference Guide T' (general_ref_t.pdf, page
238).

ClIProbe.Get Display input level

See command <trace>.Get in 'General Commands Reference Guide T' (general_ref_t.pdf, page 242).

CIProbe.GOTO Move cursor to specified trace record

See command <trace>.GOTO in 'General Commands Reference Guide T' (general_ref_t.pdf, page 244).

ClIProbe.lnit Initialize trace

See command <trace>.Init in 'General Commands Reference Guide T' (general_ref_t.pdf, page 246).

ClIProbe.List List trace contents

See command <trace>.List in 'General Commands Reference Guide T' (general_ref_t.pdf, page 248).

ClIProbe.ListNesting Analyze function nesting

See command <trace>.ListNesting in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
263).

ClIProbe.ListVar List variable recorded to trace

See command <trace>.ListVar in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 266).

ClIProbe.LOAD Load trace file for offline processing

See command <trace>.LOAD in 'General Commands Reference Guide T' (general_ref_t.pdf, page 270).

©1989-2024 Lauterbach General Commands Reference Guide C | 66

CIProbe.OFF Switch off

See command <trace>.OFF in 'General Commands Reference Guide T' (general_ref_t.pdf, page 278).

CIProbe.PROfile Rolling live plots of trace data

See command <trace>.PROfile in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 282).

ClIProbe.PROfile.channel Display profile of signal probe channels

See command <trace>.PROfile.channel in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 282).

CIProbe.PROfileChart Profile charts

See command <trace>.PROfileChart in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
283).

CIProbe.PROfileSTATistic Statistical analysis in a table versus time

See command <trace>.PROfileSTATistic in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 322).

ClIProbe.PROTOcol Protocol analysis

See command <trace>.PROTOcol in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
339).

CIProbe.PROTOcol.Chart Graphic display for user-defined protocol

See command <trace>.PROTOcol.Chart in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 339).

©1989-2024 Lauterbach General Commands Reference Guide C | 67

CIProbe.PROTOcol.Draw Graphic display for user-defined protocol

See command <trace>.PROTOcol.Draw in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 341).

CIProbe.PROTOCoOl.EXPORT Export trace buffer for user-defined protocol

See command <trace>.PROTOcol.EXPORT in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 342).

CIProbe.PROTOcol.Find Find in trace buffer for user-defined protocol

See command <trace>.PROTOcol.Find in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 343).

CIProbe.PROTOcol.list Display trace buffer for user-defined protocol

See command <trace>.PROTOcol.list in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 344).

CIProbe.PROTOcol.PROfileChart Profile chart for user-defined protocol

See command <trace>.PROTOcol.PROfileChart in '‘General Commands Reference Guide T
(general_ref_t.pdf, page 347).

CIProbe.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol

See command <trace>.PROTOcol.PROfileSTATistic in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 348).

CIProbe.PROTOcol.STATistic Display statistics for user-defined protocol

See command <trace>.PROTOcol.STATistic in '‘General Commands Reference Guide T
(general_ref_t.pdf, page 350).

©1989-2024 Lauterbach General Commands Reference Guide C | 68

CIProbe.REF Set reference point for time measurement

See command <trace>.REF in 'General Commands Reference Guide T' (general_ref_t.pdf, page 357).

CIProbe.RESet Reset command

See command <trace>.RESet in 'General Commands Reference Guide T' (general_ref_t.pdf, page 357).

CIProbe.SAVE Save trace for postprocessing in TRACES32

See command <trace>.SAVE in 'General Commands Reference Guide T' (general_ref_t.pdf, page 358).

CIProbe.SIZE Define buffer size

See command <trace>.SIZE in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 373).

ClIProbe.SnapShot Restart trace capturing once

See command <trace>.SnapShot in 'General Commands Reference Guide T' (general_ref_t.pdf, page
373).

CIProbe.SPY Adaptive stream and analysis

See command <trace>.SPY in 'General Commands Reference Guide T' (general_ref_t.pdf, page 374).

ClIProbe.STATistic Statistic analysis

See command <trace>.STATistic in 'General Commands Reference Guide T' (general_ref_t.pdf, page
378).

CIProbe.STREAMCompression Select compression mode for streaming

See command <trace>.STREAMCompression in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 485).

©1989-2024 Lauterbach General Commands Reference Guide C | 69

CIProbe.STREAMFILE Specify temporary streaming file path

See command <trace>.STREAMFILE in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 486).

CIProbe.STREAMFileLimit Set size limit for streaming file

See command <trace>.STREAMFileLimit in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 487).

ClIProbe.Timing Waveform of trace buffer

See command <trace>.Timing in 'General Commands Reference Guide T' (general_ref_t.pdf, page 499).

CIProbe.TRACK Set tracking record

See command <trace>.TRACK in 'General Commands Reference Guide T' (general_ref_t.pdf, page 502).

ClIProbe.View Display single record

See command <trace>.View in 'General Commands Reference Guide T' (general_ref_t.pdf, page 504).

ClIProbe.ZERO Align timestamps of trace and timing analyzers

See command <trace>.ZERO in 'General Commands Reference Guide T' (general_ref_t.pdf, page 505).

©1989-2024 Lauterbach General Commands Reference Guide C | 70

ClipStore

ClipSTOre Store settings to clipboard
Format: ClipSTOre [%<format>] [<item> ...]
<format>: sYmbol | NosYmbol
<item>: default | ALL | Win | WinPAGE | Symbolic | HEX | SYStem ...

Stores settings in the format of PRACTICE commands to the clipboard.

<item>, <format> For a detailed descriptions, refer to the STOre command.
Example:
ClipSTOre SYStem ; store the settings of the SYStem.state window

; to the clipboard

Result (example):
182 ¢

SYStem.RESet

SYStem.CPU CortexA9
SYStem.CONFIG CORE 1.
SYStem.MemAccess Enable
SYStem.CpuBreak Enable
SYStem.CpuSpot Enable
SYStem.Option.IMASKASM ON
SYStem.Mode Up

ENDDO

See also
B AutoSTOre B STOre B SETUP.STOre

©1989-2024 Lauterbach General Commands Reference Guide C | 71

CLOCK

CLOCK Display date and time

The command group CLOCK is used to display and calculate the system clock configuration. The results
are also used to decode the on-chip trace timestamp information in complex scenarios.

Currently this feature is only implemented for TriCore, PCP, and GTM.

For architectures that do not have the CLOCK command group, CLOCK is an alias for DATE.

See also

B CLOCK.BACKUP B CLOCK.DATE B CLOCK.OFF B CLOCK.ON
B CLOCK.OSCillator B CLOCK Register B CLOCK.RESet B CLOCK state
B CLOCK.SYSCLocK B CLOCK.VCOBase B CLOCK.VCOBaseERAY B DATE

A ’'Release Information’ in’Legacy Release History’

CLOCK.BACKUP Set backup clock frequency

TriCore only, device dependent

Format: CLOCK.BACKUP <frequency>

Default: 100.0MHz (TriCore, device dependent)

Configure the backup clock frequency. Required to compute the clock frequencies when TriCore switches to
the backup clock. Check CPU data sheet for details.

See also
W CLOCK B CLOCK state

©1989-2024 Lauterbach General Commands Reference Guide C | 72

CLOCK.DATE Alias for DATE command

Format: CLOCK.DATE

Alias for the DATE command.

See also
B CLOCK B CLOCK state
CLOCK.OFF Disable clock frequency computation
Format: CLOCK.OFF
Default: OFF

Disables the computation of clock frequencies.

See also
B CLOCK B CLOCK state
CLOCK.ON Enable clock frequency computation
Format: CLOCK.ON

Enables the computation of clock frequencies.

Prior to enabling the computation of clock frequencies, it is recommended to configure the clock sources
(oscillator, backup, VCOBase). The resulting clock frequencies are also used for decoding on-chip trace
timestamps, if supported by device and TRACES32.

See also
B CLOCK B CLOCK:.state

©1989-2024 Lauterbach General Commands Reference Guide C | 73

CLOCK.OSCillator Set board oscillator frequency

Format: CLOCK.OSCillator <frequency>

Default: 20.0MHz (TriCore)

Configures the board oscillator clock frequency. Check board oscillator and/or schematics.

See also
B CLOCK B CLOCK state
CLOCK.Register Display PLL related registers
Format: CLOCK.Register

Opens the PLL or system clock register section within the device’s peripheral file.

See also
B CLOCK B CLOCK state
CLOCK.RESet Reset CLOCK command group settings
Format: CLOCK.RESet

Resets all CLOCK command group related settings to defaults.

See also
W CLOCK B CLOCK:.state

©1989-2024 Lauterbach General Commands Reference Guide C | 74

CLOCK.state Display clock frequencies

Format: CLOCK.state

Opens a dialog with all computed clock frequencies and related settings.

A B:CLOCK view =n| Wl <
CLOCK 0SCillator VCOBase VODBseERAY
OFF 20.0MHz 160.0MHz 260.0MHz

system eray

RESet pll mode: normal pl_eray mode: disabled
" Register f{pl): 180.0MHz fipll_eray): 0.Hz

ﬁ MCDS
BMC flpcp): 180.0MHz flrefck2): 0.Hz

f{imb): 180.0MHz
fifpi): 90.0MHz eec
flrefck1): 7.5MHz f{mcds): 180.0MHz
output clock reference clock
mode: offfreset source: pl
flout): 0.Hz flrefclk): 7.5MHz

ftimer): disabled

A For descriptions of the commands in the CLOCK.state window, please refer to the CLOCK.*

commands in this chapter.
Example: For information about ON, see CLOCK.ON.

See also
B CLOCK B CLOCK.BACKUP B CLOCK.DATE B CLOCK.OFF
B CLOCK.ON B CLOCK.OSCillator B CLOCK Register B CLOCK.RESet
B CLOCK.SYSCLocK B CLOCK.VCOBase B CLOCK.VCOBaseERAY
CLOCK.SYSCLocK Set external clock frequency

TriCore only, device dependent

Format: CLOCK.SYSCLocK <frequency>

Configure the external clock frequency when the SYSCLOCK pin is used as clock source. Check CPU data
sheet for details.

See also
B CLOCK B CLOCK state

©1989-2024 Lauterbach General Commands Reference Guide C | 75

CLOCK.VCOBase Set "VCOBase" clock frequency

TriCore only, device dependent

Format: CLOCK.VCOBase <frequency>

Default: device dependent

Configures the VCO base clock frequency. Required when TriCore PLL operates in free-running mode.
Check CPU data sheet for details.

See also
B CLOCK B CLOCK state
CLOCK.VCOBaseERAY Set "FlexRay VCOBase" clock frequency

TriCore only, device dependent

Format: CLOCK.VCOBaseERAY <frequency>

Default: device dependent
Configures the FlexRay VCO base clock frequency. Required when TriCore FlexRay PLL operates in free-

running mode. Check CPU data sheet for details.

See also
W CLOCK B CLOCK:.state

©1989-2024 Lauterbach General Commands Reference Guide C | 76

CMI

CMI Clock management interface

For a description of the CMI commands and CMITrace commands, see “System Trace User’s Guide”
(trace_stm.pdf).

©1989-2024 Lauterbach General Commands Reference GuideC | 77

CMN

CMN Coherent mesh network

The Coherent Mesh Network (CMN) is a scalable and configurable coherent interconnect which enables the

developer to output the messages of the coherence protocol without affecting the run-time behavior of the
system.

For a description of the CMN commands, see “System Trace User’s Guide” (trace_stm.pdf).

©1989-2024 Lauterbach General Commands Reference Guide C | 78

CMN<trace> - Trace Data Analysis

CMN<trace> Command groups for CMN<trace>

Overview CMN<trace>

Using the CMN<trace> command group, you can configure the trace recording as well as analyze and
display the recorded CMN trace data. The command groups consist of the name of the trace source, here
CMN, plus the TRACES32 trace method you have chosen for recording the CMN trace data.

For more information about the TRACES32 convention of combining <trace_source> and <trace_method> to
a <trace> command group that is aimed at a specific trace source, see “Replacing <trace> with Trace
Source and Trace Method - Examples” (general_ref_t.pdf).

Not any arbitrary combination of <frace_source> and <trace_method> is possible. For an overview of the
available command groups “Related Trace Command Groups” (general_ref_t.pdf).

Example:

CMNTrace.state ;optional step: open the window in which the
;trace recording is configured.
CMNTrace.METHOD Analyzer ;select the trace method Analyzer for

;<configuration> ;recording trace data.

CMN.state ;optional step: open the window in which
;the trace source CMN is configured.

CMN . ON ;switch the trace source CMN on.

;<configuration>

;trace data is recorded using the commands Go, WAIT, Break

CMNAnalyzer.List ;display the CMN trace data recorded with the
; trace method Analyzer as a trace listing.

CMNTrace.List ;this is the generic replacement for the above
;CMNAnalyzer.List command.

©1989-2024 Lauterbach General Commands Reference Guide C | 79

CMNAnalyzer Analyze CMN information recorded by TRACE32 PowerTrace

[Example]

Format: CMNAnalyzer.<sub_cmd>

The CMNAnNalyzer command group allows to display and analyze the information emitted by the Coherent
Mesh Network (CMN) component.

The CMN information emitted off-chip via the Trace Port Interface Unit (TPIU) is recorded by the TRACE32

PowerTrace.
<sub_cmd> For descriptions of the subcommands, please refer to the general
<trace> command descriptions in “General Commands Reference
Guide T” (general_ref_t.pdf).
Example: For a description of CMNAnalyzer.List refer to <trace>.List
CMNCAnalyzer Analyze CMN information recorded by CombiProbe
Format: CMNCAnalyzer.<sub_cmd>

The CMNCAnalyzer command group allows to display and analyze the information emitted by the Coherent
Mesh Network (CMN) component.

The CMN information emitted off-chip via the Trace Port Interface Unit (TPIU) is recorded by the TRACE32
CombiProbe.

<sub_cmd> For descriptions of the subcommands, please refer to the general
<trace> command descriptions in “General Commands Reference
Guide T” (general_ref_t.pdf).

Example: For a description of CMNCAnNalyzer.List refer to <trace>.List

©1989-2024 Lauterbach General Commands Reference Guide C | 80

CMNHAnalyzer Analyze CMN information captured by the host analyzer

Format: CMNHAnalyzer.<sub_cmd>

The CMNHAnNalyzer command group allows to display and analyze the information emitted by the Coherent
Mesh Network (CMN) component. Trace data is transferred off-chip via the USB port and is recorded in the
trace memory of the TRACES32 host analyzer.

<sub_cmd> For descriptions of the subcommands, please refer to the general
<trace> command descriptions in “General Commands Reference
Guide T” (general_ref_t.pdf).

Example: For a description of CMNHAnNalyzer.List refer to <trace>.List

CMNLA Analyze CMN information from binary source

Format: CMNLA.<sub_cmd>

The CMNLAnalyzer command group allows to display and analyze the information emitted by the Coherent
Mesh Network (CMN) component. Trace data is collected form Lauterbach’s Logic Analyzer or from a binary

file.
<sub_cmd> For descriptions of the subcommands, please refer to the general
<trace> command descriptions in “General Commands Reference
Guide T” (general_ref_t.pdf).
Example: For a description of CMNLAnRalyzer.List refer to <trace>.List
CMNOnchip Analyze CMN information captured in target onchip memory
Format: CMNOnchip.<sub_cmd>

The CMNOnNchip command group allows to display and analyze the information emitted by the Coherent
Mesh Network (CMN) component.

©1989-2024 Lauterbach General Commands Reference Guide C | 81

The CMN trace is sent to the device-specific onchip trace memory and is read by TRACE32 via debug cable

JTAG).

<sub_cmd>

For descriptions of the subcommands, please refer to the general
<trace> command descriptions in “General Commands Reference
Guide T” (general_ref_t.pdf).

Example: For a description of CMNONchip.List refer to <trace>.List

©1989-2024 Lauterbach

General Commands Reference Guide C

82

CORE

CORE Cores in an SMP system
See also
B CORE.ADD B CORE.ASSIGN B CORE.List W CORE.NUMber
B CORE.ReMove B CORE.select B CORE.SHOWACTIVE B CORE.SINGLE

A 'CORE Functions’ in’General Function Reference’

Overview CORE

With the CORE command group, TRACES32 supports debugging of SMP systems (symmetric
multiprocessing).

For various architectures like ARM, MIPS, PowerPC, and SH4 there are chips containing two or more
identical cores.

When debugging SMP systems with TRACE32, the context (Register window, List window, etc.) of a single
core is displayed at a time, but it is possible to switch to another core within the same TRACE32 instance. In
contrast to this, all debug actions as Go or Break are effected on all cores to maintain synchronicity
between the cores.

To set up an SMP System the commands SYStem.CONFIG.CoreNumber and CORE.ASSIGN or
CORE.NUMber are necessary. The SYStem.CONFIG window and commands define how the access to a
certain hardware thread can be achieved and how many hardware threads are available. The CORE
commands assign the hardware threads to the SMP system that is handled by this TRACE32 instance. In
case there are multiple SMP systems configured on the chip, the command SYStem.CONFIG.CORE is
necessary to define different SMP System indices (Y) that are used as start value for the command
CORE.NUMber and the information whether the SMP System is located at a different or the same chip by
the chip index (X).

©1989-2024 Lauterbach General Commands Reference Guide C | 83

SYStem.CONFIG window

SYStem.CONFIG.CoreNumber M

Core 1 |‘Core2HCore3HCore4H HCoreM

i ABCorY.Y+N-1

Assignment of Cores

CORE.ASSIGNABC
or CORE.NUMber N

SYStem.CONFIG.CORE Y X

A012

or 0 .. N-1

Target System

Chip X

SMP System Y

Core 0 | [Core 1 HII

SMP System Y+1

Chip X+1

Setup of SMP Systems

CORE.ADD

Add core/thread to the SMP system

Format:

CORE.ADD <core> | <thread>

THREAD.ADD (deprecated)

Adds a physical core/thread to the SMP System. This synchronizes it with other cores/threads when debug
features are applied to the SMP System.

See also

B CORE

B CORE.select

©1989-2024 Lauterbach

General Commands Reference Guide C

84

CORE.ASSIGN Assign a set of physical cores/threads to the SMP system
[Examples]
Format 1: CORE.ASSIGN <core1> [<core2> ...]
Format 2: CORE.ASSIGN <thread1> [<thread2> ...]

MIPS64, XLR, XLS, XLP, QorlQ64 only

The command configures an instance of the TRACE32 PowerView GUI so that this particular instance
knows for which physical cores or physical threads of the target system it is “responsible”. Typically this
configuration is required in multicore systems:

. In AMP (asynchronous multiprocessing) systems, each TRACE32 PowerView instance is
responsible for a single physical core/thread.

J In SMP (symmetric multiprocessing) systems, an instance of TRACE32 PowerView may be
responsible for multiple physical cores/threads.

. Mixed AMP SMP systems may have several TRACE32 PowerView instances, where one or more

TRACE32 PowerView instances are responsible for more than one physical core/thread.

one thread).

<core> The physical <core> number refers to the respective physical core in the chip. This
applies to CPUs that have only physical cores (i.e. no physical threads at all, or just

<thread> The physical <thread> number refers to the respective physical thread in the chi

The physical threads are numbered sequentially throughout all cores. Thus, the
cores themselves can be ignored in the multicore setup of TRACES32.

This applies to CPUs with physical cores that have more than one thread per core.

p.

Each core/thread assignment is also referred to as TRACES32 configuration. A TRACES32 configuration
contains information about how to access a specific physical core/thread in a multicore chip, e.g.:

. TAP coordinates (IRPRE, IRPOST, DRPRE, DRPOST)
. CoreSight addresses for ARM chips

J Other physical access parameters for the core/thread

The setup of the individual cores/threads is done in the SYStem.CONFIG window.

NOTE: For each assigned physical core/thread, TRACE32 uses a logical core number,
which serves as an alias for the physical core/thread.

©1989-2024 Lauterbach General Commands Reference Guide C

| 85

Examples

To illustrate the CORE.ASSIGN command, the following examples are provided:

J Example 1 - Assignment of Physical Cores

J Example 2 - Assignment of Physical Threads (MIPS specific)

J Example 3 - Core Assignment for an SMP-4 / AMP-3 Setup (MIPS specific)
J Example 4 - Core Assignment for an AMP-2 Setup (MIPS specific)

Example 1 - Assignment of Physical Cores

In this example, the physical cores 1, 2, 4, and 5 of a multicore chip are assigned to TRACE32; core 3
is not used in this example setup. The resulting logical cores can be seen from the Cores pull-down list
in TRACE32.

CORE.ASSIGN 1. 2. 4. 5. ;assign the physical cores 1, 2, 4, and 5

Assigned physical cores | Resulting logical cores

| Cores 'I

B: 2 |0

as;ignmentnm 1
smulate [gviess || ? [var][other | [previow
o

3
MIX

Right-click to open the Cores pull-down list.
In the status line, this box shows the currently selected core, here core 0.

©1989-2024 Lauterbach General Commands Reference Guide C | 86

Example 2 - Assignment of Physical Threads

In this example, a CPU has 3 physical cores, each core has 2 physical threads. That means for TRACES32,
this CPU has 6 physical threads in total. Use CORE.ASSIGN as shown below to assign the 6 physical

threads. The resulting logical threads can be seen from the Cores pull-down list in TRACES32.

Thread 1

Thread 2

CORE 2

Thread 1

Thread 2

CORE 3
Thread 1

Thread 2

CORE.ASSIGN 1.

Physical
Thread Index

2.

TRACE32
Logical
Thread Index

5. 6. ;assign the physical threads 1 to 6

©1989-2024 Lauterbach

General Commands Reference Guide C

87

Example 3: Core Assignment for an SMP-4 / AMP-3 Setup (MIPS specific)

The figure shows an SMP-4 / AMP-3 setup. For this kind of setup, the six cores need to be assigned to three

TRACE32 PowerView GUIs. The target is a MIPS64 with six cores (CPU CN6335).
AMP-3
|
| | |
AMP1 AMP2 AMP3
| [N —

6

Code required for assigning the cores 1 to 4 to the first TRACE32 PowerView GUI:

SYStem.CPU CN63XX ; Select the target CPU (MIPS CN6335).

7

SYStem.CONFIG.CoreNumber 6.

; Start core assignment at this <core> of this <chip>.
SYStem.CONFIG.CORE 1. 1.

I

CORE.ASSIGN 1. 2. 3. 4.

Code required for assigning core 5 to the second TRACE32 PowerView GUI:

7

SYStem.CPU CN63XX ;Select the target CPU (MIPS CN6335).

7
7

SYStem.CONFIG.CoreNumber 6.

; Start core assignment at this <core> of this <chip>.
SYStem.CONFIG.CORE 5. 1.

7

CORE.ASSIGN 5.

Assign the cores 1 to 4 to the first TRACE32 PowerView GUI.

This step needs to be repeated for the second TRACE32 PowerView GUI:

This step needs to be repeated for the second TRACE32 PowerView GUI:
Inform TRACE32 about the total number of cores of this multicore chip.

Assign the core 5 to the second TRACE32 PowerView GUI.

Inform TRACE32 about the total number of cores of this multicore chip.

©1989-2024 Lauterbach

General Commands Reference Guide C

88

Code required for assigning core 6 to the third TRACE32 PowerView GUI:

; This step needs to be repeated for the third TRACE32 PowerView GUI:
SYStem.CPU CN63XX ;Select the target CPU (MIPS CN6335).

; This step needs to be repeated for the third TRACE32 PowerView GUI:
; Inform TRACE32 about the total number of cores of this multicore chip.

SYStem.CONFIG.CoreNumber 6.

; Start core assignment at this <core> of this <chip>.
SYStem.CONFIG.CORE 6. 1.

; Assign the core 6 to the third TRACE32 PowerView GUI.
CORE.ASSIGN 6.

Example 4: AMP-2 Setup (MIPS specific)

The figure shows an AMP-2 setup, which in turn consists of an SMP-2 and SMP-4 setup. For this kind of
setup, the six cores need to be assigned to two TRACES32 PowerView GUIs. The target is a MIPS64 with six
cores (CPU CN6335).

AMP-2

1st TRACE32 PowerView GUI ond TRACE32 PowerView GUI

Code required for assigning the cores 1 and 2 to the first TRACE32 PowerView GUI:

SYStem.CPU CN63XX ; Select the target CPU (MIPS CN6335).

; Inform TRACE32 about the total number of cores of this multicore chip.
SYStem.CONFIG.CoreNumber 6.

; Start core assignment at this <core> of this <chip>.
SYStem.CONFIG.CORE 1. 1.

; Assign the cores 1 and 2 to the first TRACE32 PowerView GUI.
CORE.ASSIGN 1. 2.

©1989-2024 Lauterbach General Commands Reference Guide C | 89

Code required for assigning the cores 3 to 6 to the second TRACES32 PowerView GUI:

; This step needs to be repeated for the second TRACE32 PowerView GUI:
SYStem.CPU CN63XX ; Select the target CPU (MIPS CN6335).

This step needs to be repeated for the second TRACE32 PowerView GUI:
; Inform TRACE32 about the total number of cores of this multicore chip.

SYStem.CONFIG.CoreNumber 6.

I

; Start core assignment at this <core> of this <chip>.

SYStem.CONFIG.CORE 3. 1.
; Assign the cores 3 to 6 to the first TRACE32 PowerView GUI.

CORE.ASSIGN 3. 4. 5. 6.

NOTE: The numbering of physical and logical cores is as follows:
o “Physical cores” may have numbers starting with 1.
. “Logical cores” have numbers starting with 0.
See also
B CORE B CORE.select B SYStem.CONFIG.CORE 1O CORE.ISASSIGNED()
General Commands Reference Guide C | 90

©1989-2024 Lauterbach

CORE.List List information about cores

Format: CORE.List

Lists for each core the location of the PC (program counter) and the current task. The list is empty while the
cores are running and updated as soon as the program execution is stopped.

o B:CORE.List =n| Wl <
zel core |stop |state pc symbo | taszk |
W [1] + NUX:2:::03A5 :00401ECO si1eve\sieve\fl Linux:::sieve -
1 * HX:0:::0023D064C
2 * NSR:3:::1000B7B4 itingTermination+0xC0 |FreeRTOS:::IDLE
3 + HX:0:::00227344 xenyspinlocky_spin_loc =2
[

Description of Columns in the CORE.List Window

sel Currently selected core.
core Logical core number.
stop Stopped cores.
state Architecture-specific states, e.g. power down.
pc Location of the PC.
symbol Symbol information about the PC
task Active task on core.
See also
B CORE B CORE.select B TASK List.tasks 1 CORE()

A ’PowerView - Screen Display’ in ’PowerView User’s Guide’

©1989-2024 Lauterbach General Commands Reference Guide C | 91

CORE.NUMber

Assign a number of cores/threads to the SMP system

Format:

CORE.NUMber <number_of_cores> | <number_of_threads>

Assigns multiple physical cores/threads to the SMP system. The cores/threads are assigned in a linear
sequence and without gaps.

The setup of the cores/threads is done in the SYStem.CONFIG window. The assignment starts with the

<core> parameter of the SYStem.CONFIG.CORE command and iterates through the number of
cores/threads passed to the CORE.NUMber command.

Example 1 shows how to assign the first 4 cores of a chip. In our example, chip 1 has 7 cores.

D1
L [

I

SYStem.CONFIG.CORE

CORE .NUMber 4.

1. 1.

<chip> i.e.

;assign the first 4 cores.

start at core 1 of chip 1

;this assignment corresponds to: CORE.ASSIGN 1. 2. 3. 4.
Example 2 shows how to assign the cores 3 to 6 of a chip. In our example, chip 1 has 7 cores.
e
1 2 1 3 4 1 5 16 7
1 . 1 1 1 1 1 1 1
; <core> <chip> i.e. start at core 3 of chip 1
SYStem.CONFIG.CORE 3. 1.
CORE.NUMber 4. ;assign cores 3 to 6, i.e. 4 cores.
;this assignment corresponds to: CORE.ASSIGN 3. 4. 5. 6.
See also
B CORE B CORE.select
©1989-2024 Lauterbach General Commands Reference Guide C | 92

CORE.ReMove Remove core from the SMP system

Format: CORE.ReMove <core>
THREAD.ReMove (deprecated)

Removes a physical core from the SMP system.

See also
B CORE W CORE.select
CORE.select Change currently selected core
Format: CORE.select <logical_core>

THREAD.select (deprecated)

Changes the currently selected core to the specified <logical_core>. As a result the debugger view is
changed to <logical_core> and all commands without /CORE <number> option apply to <logical_core>.

The number of the selected core is displayed in the state line at the bottom of the TRACE32 main window.

NOTE: CORE.List shows the states of all cores and allows to switch between cores
with a simple mouse-click.

See also

B CORE B CORE.ADD B CORE.ASSIGN B CORE.List

B CORE.NUMber B CORE.ReMove B CORE.SHOWACTIVE B CORE.SINGLE
B MACHINE.select B TASK .select 1 CORE()

©1989-2024 Lauterbach General Commands Reference Guide C | 93

CORE.SHOWACTIVE Show active/inactive cores in an SMP system

Format: CORE.SHOWACTIVE

Opens a window with a color legend, displaying individual colors and numbers for the cores assigned to
TRACES32:

. Gray indicates that a core is inactive.

An inactive core is not executing any code. The debugger can neither control nor talk to this core.
A core is inactive if it is not clocked or not powered or held in reset.

J Colors other than gray (e.g. orange, green, yellow) indicate that a core is active.

An active core is executing code and the debugger has full control. A core is active if it is clocked,
powered and not in reset.

Clicking a number switches the debugger view to the selected core. The window background is highlighted
in the same color as the selected core.

For example, when you click 1 in the CORE.SHOWACTIVE window, the Register.view window updates
accordingly. The green background color tells you that this register information refers to core 1 (see
screenshots below):

Core 1 = green Register.view window = green = Core 1
2 B:CORESHOWACTVE [= || @ |25 [B::Registerview =n| Wl <

»

R1

[=f=f=j=f=l=le]e]=]
WOoooo0000o

NPT BWD A
T S o B L R
]

1

L
L
[

01D

4 T

Example: Let's assume a multicore chip has 6 cores, and just 4 cores of them are assigned to the
TRACE32 PowerView GUI. The CORE.SHOWACTIVE window lets you switch between the assigned 4
cores. If you want to pin a window to a particular core, append /CORE <number> to the window command
(see source example below):

©1989-2024 Lauterbach General Commands Reference Guide C | 94

;- The cores 1, 2, 4, 5 (= four cores) are assigned to the TRACE32
; PowerView GUI

;- The cores 3 and 6 are skipped (= two cores)
CORE.ASSIGN 1. 2. 4. 5.
SYStem.Up

;Open the CORE.SHOWACTIVE window. It has four entries because
; four cores were assigned to the TRACE32 PowerView GUI via CORE.ASSIGN
CORE.SHOWACTIVE ;To select a core, click the core number you want

;alternatively, use this command to select the core you want:

CORE.select 1 ;e.g. select core 1
Register.view ;displays register information and source listing
Data.List funcl ;from the core currently selected in the

; CORE.SHOWACTIVE window, i.e. core 1

Register.view /CORE 3. ;displays register information from core 3
Data.List funcl /CORE 3. ;and source listing from core 3,
; independently of the core currently selected
;in the CORE.SHOWACTIVE window

See also
B CORE B CORE.select B CmdPOS B FramePOS
B SETUP.COLOR 1d CORE.ISACTIVE()

A ’PowerView - Screen Display’ in ’PowerView User’s Guide’

CORE.SINGLE Select single core for debugging

[build 137288 - DVD 09/2021]

Format: CORE.SINGLE <logical_core>

Selects single core for debugging on SMP systems. As a result the debugger view is changed to
<logical_core> and all commands, as Go and Step, are only valid for this core. The core number field in the
TRACE32 state line will display the number of the selected core with a turquoise background color.

wn

Frame Register FPU
1 |system ready

©1989-2024 Lauterbach General Commands Reference Guide C | 95

The command CORE.select can be used to revert this selection when the CPU is stopped.

See also
W CORE B CORE.select

©1989-2024 Lauterbach General Commands Reference Guide C | 96

Count

Count Universal counter
See also
H Count.Autolnit B Count.Gate H Count.GO W Count.Init
B Count.Mode H Count.OUT H Count.PROfile H Count.RESet
B Count.Select B Count.state 1 Count.Frequency()

A 'Count’ in’EPROM/FLASH Simulator
A 'Count Functions’ in ’General Function Reference’
A ’Release Information’ in’Legacy Release History’

Overview Count

Counter of TRACE32-ICD

The universal counter system TRACE32-ICD can measure the frequency of the target clock (if the target

clock is connected to the debug cable) or the signal on the count line of the Stimuli Generator (see “Stimuli
Generator User’s Guide” (stg_user.pdf)).

The input multiplexer enables the target clock line if a debug module is used and Count.Select is entered
while the device B: (TRACE32-ICD) is selected.

The input multiplexer enables the count line of the Stimuli Generator if a Stimuli Generator is connected and
Count.Select is entered while the device ESI: (EPROM Simulator) is selected.

If only the debug module or only the Stimuli Generator is connected, the input multiplexer enables the
present input signal independent of the device selection.

Using the Count.OUT command the input signal is issued to the trigger connector on the PODBUS
interface. By that the trigger output is disabled.

©1989-2024 Lauterbach General Commands Reference Guide C | 97

Trigger
MUX Trigger

in/out
of PODBU
interfac

BDM

target CLK Input Universal

Multiplexer Counter
STG
count line

Counter Functions

To use the result of the measurement in automatic test programs, some functions are defined to get the
counter state. The functions are valid only if the Count.Go command is executed.

Count.Frequency()
The result of a frequency measurement

Count.LEVEL()
The actual level of the counter signal (Low = 0, High = 1)

Count.Time()
The result of a period or pulse duration measurement

Count.VALUE()
The result of a event count measurement

©1989-2024 Lauterbach General Commands Reference Guide C | 98

Count.Autolnit Automatic counter reset

Format: Count.Autolnit [ON | OFF]

If Autolnit is selected, the counter is initialized when emulation is started (Go or Step).

See also
H Count B Count.state
A 'Count’ in’ EPROM/FLASH Simulator’

Count.Gate Gate time
Format: Count.Gate [<time>]
<time>: 0.01s ... 10.0s
0. (= infinite gate time)

The gate time has two functions. On measuring frequencies it defines the sample time (gate time). The
precision of the measurement increases with the gate time. If pulse measurement is selected, the gate time
is the max. time for the pulse width. To measure very long pulses the gate time must be set to infinite.

Count.Gate 0.1s ; set gate time to 0.1 s
Count.Gate 0. ; infinite gate time

See also

H Count B Count.state

©1989-2024 Lauterbach General Commands Reference Guide C | 99

Count.GO Start measurement

Format: Count.GO

Start single measurement of the frequency counter. This command is usually used only in PRACTICE
scripts.

Count.Select Cycle
Count .Mode Frequency
Count.Gate 0.1s

Count.GO ; start measurement
PRINT COUNT.VALUE () ; print value
See also
H Count B Count.state 1 Count.Frequency() 1 Count.Time()

0 Count.VALUE()
A "Count’ in’EPROM/FLASH Simulator’

Count.Init Reset counter

Format: Count.Init

The counter is reset (counter value to zero), running measurement cycles are stopped. The counter modes
and the channel selection are not changed.

See also
H Count B Count.state
A 'Count’ in’ EPROM/FLASH Simulator’

©1989-2024 Lauterbach General Commands Reference Guide C | 100

Count.Mode Mode selection

Format: Count.Mode [<mode>]

<mode>: Frequency
Period
PulsLow
PulsHigh
EventLow
EventHigh
EventHOId

Select mode of the counter.
Frequency

Frequency measurement. The range is up to 20 MHz on external signals and up to 80 MHz for CLOCK and
VCO measurement. Depending on the gate time the resolution is from 0.2 Hz to 800 Hz, which is displayed
behind the result in the display window.

Period

Period time. The resolution is 100 ns, the maximum range up to 300 days

I —

|— Period —l

PulsHigh

Measurement of time between the rising and the falling edge

I —

|— Puls High —|

PulsLow

Measurement of time between the falling and the rising edge

I ——

|—PulsLow—|

©1989-2024 Lauterbach General Commands Reference Guide C | 101

EventHigh

Event count on rising edges

I —

1003 | 1004 | 1005—

EventLow

Event count on falling edges

I ——

—-1003—|——— 1004 | 1005

EventHOId

The event count is stopped. On starting the previous event count mode, the counter is not cleared.

[N S I O I S R

—1003—|—1004—|—hold | —1005—|—1006—
—EventHigh Hold | EventHigh
Count .Mode PulsHigh ; pulse time high
Count .Mode Period ; period duration
Count .Mode EventHigh ; event count rising edge
Count .Mode EventHOld ; stop event count
Count .Mode EventHigh ; continue event count
See also
B Count B Count.state

A 'Count’ in’EPROM/FLASH Simulator

©1989-2024 Lauterbach General Commands Reference Guide C | 102

Count.OUT Forward counter input signal to trigger system/output

Format: Count.OUT [ON | OFF]

Default: OFF.

When enabled, the input signal of the counter module is forwarded to the Podbus Trigger system. From there
it can be used with other devices connected to the Podbus chain. It is also possible to forward the signal to
the trigger connector on the debug interface. This is done with TrBus.Connect Out.

See also
H Count B Count.state
A 'Count’ in’EPROM/FLASH Simulator

Count.PROfile Graphic counter display
Format: Count.PROfile [<gate>] [<scale>]
<gate>: 0.1s | 1.0s | 10.0s
<scale>: 1... 32768.

The count rate is displayed in graphic mode. The counter mode must be EventHigh or EventLow. The
display is updated and shift every 100 ms or slower. The profiler system is a very effective subsystem to
show transfer or interrupt rates in a running system (see also Analyzer.PROfile). An opened window may
be zoomed by the function keys. An auto zooming feature displays the results always with the best vertical
scaling. The auto zoom is switched off by supplying a scale factor, manual zoom or vertical scrolling. The
scale factor must be a power of 2.

NOTE: Open windows that make dualport memory access may influence the profiling
window!

©1989-2024 Lauterbach General Commands Reference Guide C | 103

pe=== PEOLlle INtErruUpt FAEE ====s=ssssssscscssosssososososooes

Break.Set INT routine /Alpha ; set address mark on beginning of
; interrupt routine

TrEvent.Select Alpha ; set event selector to breakpoint
; alpha

Count .Mode EventLow ; event measurement

Count.Select Event

Go ; start emulation

Count.PROfile ; display window

;———- profile data transfer rate - - - ——-———-—-—-——————————————

Break.Set V.RANGE (bufferl) /Alpha ; mark buffer area
TrEvent.Select Alpha ; set event selector to breakpoint
; alpha

Count .Mode EventLow ; event measurement

Count.Select Event

Go ; start emulation

Count.PROfile ; display window
lli Ex:Count.PROfile /AutoScale =n| Wl <
(&setup...]| @mit || OHold |[O |pDeout) & || 2 out)[E Autd used: [

-17.5s -15.0s -12.5s -10.0s -7.55 -5.0s -2.55 0.

;
events/sec I I I I I I I L1

152300.

152280.

152260.

152240.

152220.

152200.

See also
H Count B Count.state
A 'Count’ in’ EPROM/FLASH Simulator’

©1989-2024 Lauterbach General Commands Reference Guide C | 104

Count.RESet

Reset command

Format:

Count.RESet

The counter system is initialized to the reset state after power up.

See also

H Count

H Count.state

A 'Count’ in’EPROM/FLASH Simulator’

Count.Select

Select input source

Format:

<signal>:

Count.Select [<signal>]

VCO

Clock

CYcle

ExtComp

EXT

Event

PODBUS

Port

AlphaBreak

BetaBreak

CharlyBreak

OouTD

RESet

Halt

BusReq

BusErr

Vpa

VCC

BusGrant

BusGrantAck
EOIE1/E2|E3IE4|E5|1E6|E7
TOIT1IT2IT3IT4IT51T6 | T7
T8IT9IT101T111T121T131T141T15
B0/ B1/B21B31B4|1B5|B6|B7

Count.Select controls the input multiplexer of the universal counter. The selected signal (named SIG) may
be used as trigger source too. To see this signal on the EVENT output on the rear of the ECU box, use the
TriggerEvent.Select command.

©1989-2024 Lauterbach

General Commands Reference Guide C | 105

Clock
CYcle

RESet, Halt, Bus-
Req, BusGrant, ...

PODBUS
Port

B0, B1, B2, B3, B4,
B5, B6, B7

T0, T1, T2, T3, T4,
T5, T6, T7

See also

Clock frequency of the emulation CPU (external or internal)
OUT.D Signal of the trigger unit (additional event counter or profiler).

Cycle signal of emulation CPU. Normally generated by the data strobe.

Signal selected by the external PODBUS probes.
This signal is the channel selected by the port analyzer.

Inputs lines on BANK probe

Input lines on TRIGGER probe

H Count

B Count.state

A Count’ in’EPROM/FLASH Simulator’

Count.state

State display

Format: Count.state

Displays the measurement value and setup of the frequency counter. The number of channels and the
configuration depends on the development tool and the CPU used.

See also

H Count H Count.Autolnit B Count.Gate M Count.GO

B Count.Init B Count.Mode H Count.OUT B Count.PROfile
B Count.RESet B Count.Select 1 Count.Frequency() 1 Count.LEVEL()
1 Count.Time() 1 Count.VALUE()

A 'Count’ in’EPROM/FLASH Simulator’

©1989-2024 Lauterbach

General Commands Reference Guide C | 106

COVerage

COVerage

Trace-based code coverage

The COVerage command group uses the program flow information from the trace for a detailed code
coverage analysis. The manual “Application Note for Trace-Based Code Coverage”
(app_code_coverage.pdf) gives a detailed introduction to the topic.

=1 [BuList HLL ComplexDoWhile /COVerage]

[=][5 k=]

M Step M Over | JMyDiverge ¢ Return e up » Go 1l Break || ¥ Mode |&=f||t- Find: coverage.c
id dec/cond true false coverage addr/line |source |
stmt 57 [static unsigned CompTexDoWhiTe(int const a, nt const b, int const ¢, int const d) &
stmt 59| unsigned num_cycles = Ou;
do { .
2 1 1 1 mc/dc 62 if (num_cycles > 1u) {
stmt 63 reak;
stmt 65 Huln_cyc1es++;
3 1 1. 1 mc/dc 67 while (((!(Identity(a) »= -45) && Identity(h)) && Identity(c)) || d);
stmt 69 [return num_cycles;
stmt 70 [}

A demo script is included in your TRACE32 installation. To access the script, run this command:

ChDir.PSTEP ~~/demo/coverage/mcdc/measure_mcdc.cmm
See also
B COVerage.ADD B COVerage.Delete B COVerage.EXPORT B COVerage.INFO
B COVerage.Init B COVerage.List B COVerage.ListCalleEs B COVerage.ListCalleRs
B COVerage.ListFunc B COVerage.ListInlineBlock B COVerage.ListLine B COVerage.ListModule
B COVerage.ListVar B COVerage.LOAD B COVerage.MAP B COVerage. METHOD
B COVerage.Mode B COVerage.OFF B COVerage.ON B COVerage.Option
B COVerage.RESet B COVerage.SAVE B COVerage.Set B COVerage.state
B COVerage.TreeWalkSETUP H BookMark B RTS 1 COVerage.BDONE()
1 COVerage.IDLE() 1 COVerage.Percentage() 1 COVerage.SCOPE() 1 CQOVerage.SourceMetric()
1 COVerage.TreeWalk()
A ’Introduction’ in’Application Note for t32cast’

A 'COVerage Functions’ in ’General Function Reference’

COVerage.ADD Add trace contents to code coverage system
Format: COVerage.ADD [/<option>]
<trace>.COVerage.add (deprecated)
<option>: FILE
FlowTrace | BusTrace

©1989-2024 Lauterbach

General Commands Reference Guide C |

107

The trace contents is processed and added to the TRACES32 internal code coverage system

FILE Takes trace memory contents loaded by Trace.FILE.
FlowTrace The trace works as a program flow trace. This option is usually not
required.
BusTrace Trace works as a bus trace. This option is usually not required.
Example:

Trace.Mode Leash ; clear trace buffer and use leash mode
Go sieve ; run a part of the application
COVerage .ADD ; measures code coverage across all source

; code metrics using recorded trace data,
; storing the outcomes within TRACE32 s
; internal code coverage system

See also
B COVerage B COVerage.state

A ’Trace Data Collection’ in ’Application Note for Trace-Based Code Coverage’

COVerage.Delete Set code coverage tagging to never

Format: COVerage.Delete [<address> | <range>]

Tag the defined range as 'never' executed.

.
I

COVerage.Delete

; set code coverage tagging for the function SetFalse to never
COVerage.Delete sYmbol.Range (SetFalse)

See also
B COVerage B COVerage.state

A ’Trace Data Collection’ in ’Application Note for Trace-Based Code Coverage’

©1989-2024 Lauterbach General Commands Reference Guide C | 108

COVerage.EXPORT Export code coverage information

Using the COVerage.EXPORT commands, you can export code coverage information for all HLL functions,
lines, modules, or variables to an XML file.

In addition, TRACE32 provides an XSL transformation template for formatting the XML file. The formatting is
automatically applied to the XML file when it is opened in an external browser window. Prerequisite: The
XSL file is placed in the same folder as the XML file.

For an export example and demo scripts, see COVerage.EXPORT.ListFunc.

TRACE32 provides the option to export code coverage measurement results for further processing or for
display in HTML format. The following table provides an overview:

Command Supported Metric

CQOVerage.EXPORT.CBA Statement Export code coverage results
in the proprietary CBA format
for importing into
VectorCAST/CBA.

COVerage.EXPORT.CSV Object code The export enables additional
processing with third-party
tools.

CQOVerage.EXPORT.JSON Statement Export code coverage results
in JSON format for importing
into Geov.

COVerage.EXPORT.JSONE Statement, decision, Export code coverage results

condition, MC/DC, to afile in extended JSON
call, function format, a proprietary

Lauterbach format. These files
can be processed further using
t32covtool, the Lauterbach
merging and reporting tool.
Additionally, the format is open
to third-party tools.

COQOVerage.EXPORT.ListCalleEs All Export the code coverage

COVerage.EXPORT.ListCalleRs results in XML format.

COVerage.EXPORT.ListFunc Lauterbach provides an

COVerage.EXPORT.ListInlineBlock appropriate XSL file for

COVerage.EXPORT.ListLine generating an HTML report.

COVerage.EXPORT.ListModule

COVerage.EXPORT.ListVar

See also

B COVerage.EXPORT.CBA
B COVerage.EXPORT.JSON

B COVerage.EXPORT.CSV
B COVerage.EXPORT.JSONE

©1989-2024 Lauterbach General Commands Reference Guide C | 109

B COVerage.EXPORT.ListCalleEs B COVerage.EXPORT.ListCalleEs.<sub_cmd>

B COVerage.EXPORT.ListCalleRs B COVerage.EXPORT.ListCalleRs.<sub_cmd>

B COVerage.EXPORT.ListFunc B COVerage.EXPORT.ListFunc.<sub_cmd>

B COVerage.EXPORT.ListInlineBlock B COVerage.EXPORT.ListInlineBlock.<sub_cmd>

B COVerage.EXPORT.ListLine B COVerage.EXPORT.ListLine.<sub_cmd>

B COVerage.EXPORT.ListModule B COVerage.EXPORT.ListModule.<sub_cmd>

B COVerage.EXPORT.ListVar B COVerage.EXPORT.ListVar.<sub_cmd>

B COVerage B COVerage.state

B |STATistic. EXPORT W List EXPORT

B SETUPXSLTSTYLESHEET

A ’Release Information’ in’Legacy Release History’

COVerage.EXPORT.CBA Export coverage results in CBA format

Format: COVerage.EXPORT.CBA <file> [/Append]

Export statement coverage results to a file in CBA format for importing into VectorCAST/CBA.

<file> The default extension of the file name is *.cba. If you omit the extension,
it is added automatically on file creation.

Example:

COVerage.Option.SourceMetric Statement
COVerage.Option.BLOCKMode ON

; for a comparison of ON and OFF, see below
COVerage .EXPORT.CBA ~~\measurementl.cba

B::TYPE ~~A\hll-lines-blockmode-on.cha =n| Wl < B::TYPE ~~Ahll-lines-blockmode-off.cba =n| Wl <
1. of 250. [=] (=] [#FAnd..] | [Track 1. of 250. (=] [=] [#Fnd...] | [Track

-- The structural coverage has been measured with TRACE3Z N.2019. . -- The structural coverage has been measured with TRACE3Z
-- The Tisted sections satisfy the criterion statement coverage. -- The Tisted sections satisfy the criterion statement cov
arm.c:152-156 arm.c:156

arm.c:157 arm.c:157

arm.c:158-160 arm.c:160 E

arm.c:1lel-166 arm.c:1l66

arm. c:167 arm. c:167

arm.c:168-169 arm.c:169

arm.c:170-171 arm.c:171

arm.c:172-173 arm.c:173

arm.c:174 i arm.c:174 i
'l 1 2 4 1 +

A With COVerage.Option.BLOCKMode ON, the B With COVerage.Option.BLOCKMode OFF,

line number range for each entry is printed. only the number of the last line is printed.
See also
B COVerage.EXPORT B COVerage.Option.BLOCKMode

©1989-2024 Lauterbach General Commands Reference Guide C | 110

COVerage.EXPORT.CSV Export coverage results in CSV format

Format: COVerage.EXPORT.CSV <file> [<string> | <range>] [[<option>]

<option>: Append

Export statement coverage results to a file in CSV format for additional processing with third-party tools.

<file> The default extension of the file name is *.csv. If you omit the extension, it
is added automatically on file creation.

Append Appends the coverage information to an existing CSV file - without
overwriting the current file contents.

See also
B COVerage.EXPORT

A ’Release Information’ in’Legacy Release History’

COVerage.EXPORT.JSON Export code coverage results in JSON format

Format: COVerage.EXPORT.JSON <file>

Exports statement coverage results to a file in JSON format for importing into Geov.

<file> The default extension of the file name is *.json. If you omit the extension,
it is added automatically on file creation.

©1989-2024 Lauterbach General Commands Reference GuideC | 111

Example:

; Process trace data for code coverage
COVerage.Add

; Process trace data for ISTATistic

; (needed for export of execution count)
ISTATistic.Add

; Export to JSON

COVerage.EXPORT.JSON ~~/result.json

See also
B COVerage.EXPORT M |STATistic M |STATistic.ADD

A ’Release Information’ in’Legacy Release History’

COVerage.EXPORT.JSONE Export code coverage in extended JSON format

Format: COVerage.EXPORT.JSONE <file>

Exports coverage results for statement, decision, condition, call and function coverage as well as
MC/DC to a file in an extended JSON format. Export is restricted to functions with loaded symbols.

Unlike JSON files exported with the COVerage.EXPORT.JSON command, JSONE files are not Gcov
compatible.

Files in extended JSON format are used as input for t32covertool. This format can also be used by third-
party tools to generate a code coverage report from code coverage data measured with TRACE32.

<file> The default extension of the file name is *.json. If you omit the extension,
it is added automatically on file creation.

Example:

; Process trace data for coverage
COVerage.Add

; Export to JSON
COVerage.EXPORT.JSONE ~~/result.json

See also
B COVerage.EXPORT
A 'TRACES32 Merge and Report Tool’ in ’Application Note for Trace-Based Code Coverage’

©1989-2024 Lauterbach General Commands Reference GuideC | 112

COVerage.EXPORT.ListCalleEs Export the function callees

See also
B COVerage.EXPORT.ListCalleEs.<sub_cmd> B COVerage.EXPORT
A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide C | 113

COVerage.EXPORT.ListCalleEs.<sub_cmd> Export callees information

Format: COVerage.EXPORT.ListCalleEs.<sub_cmd>

<sub_cmd>: ADDRESS |[<file>] [<source_file>...] [/<option>]
preset [<file>] [Yo<format>] [<filter>] [/<option>]
SOURCE [<file>] [<source_file>...] [[<option>]
sYmbol [<file>] [<symbol>...] [[<option>]

<option>: Append

Exports coverage information for function callees to an XML file.

The following <sub_cmd> are possible:

ADDRESS Uses addresses to control which coverage information for function
callees to export.

preset If the command contains no parameters, then all function callees are
exported.

The <filter> parameter allows to reduce the number of functions to that
which is in the focus of the code coverage analysis.

SOURCE Uses the names of source files to control which coverage information for
function callees to export. The syntax of the pathname is oriented
towards the symbol and path columns in the sYmbol.Browse.SOURCE

window.
sYmbol Defines a filter for the symbols of the HLL function callees to export.
<file>, <option> For descriptions, see COVerage.EXPORT.ListFunc.
<source_file>, You can use one or more items as filter criteria. The wildcards ‘*’ and ‘?’
<symbol> are supported. Only items matching the filter criteria are displayed.
See also
B COVerage.EXPORT.ListCalleEs B COVerage.EXPORT

B COVerage.ListCalleEs

©1989-2024 Lauterbach General Commands Reference GuideC | 114

COVerage.EXPORT.ListCalleRs Export the function callers

See also
B COVerage.EXPORT.ListCalleRs.<sub_cmd> B COVerage.EXPORT
A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide C | 115

COVerage.EXPORT.ListCalleRs.<sub_cmd> Export callers information

Format: COVerage.EXPORT.ListCalleRs.<sub_cmd>

<sub_cmd>: ADDRESS |[<file>] [<source_file>...] [/<option>]
preset [<file>] [Yo<format>] [<filter>] [/<option>]
SOURCE [<file>] [<source_file>...] [[<option>]
sYmbol [<file>] [<symbol>...] [[<option>]

<option>: Append

Exports coverage information for function callers to an XML file.

The following <sub_cmd> are possible:

ADDRESS Uses addresses to control which coverage information for function callers
to export.

preset If the command contains no parameters, then all function callers are
exported.

The <filter> parameter allows to reduce the number of functions to that
which is in the focus of the code coverage analysis.

SOURCE Uses the names of source files to control which coverage information for
function callers to export. The syntax of the pathname is oriented towards
the symbol and path columns in the sYmbol.Browse.SOURCE window.

sYmbol Defines a filter for the symbols of the HLL function callers to export.
<file>, <option> For descriptions, see COVerage.EXPORT.ListFunc.
<source_file>, You can use one or more items as filter criteria. The wildcards ‘*’ and ‘?’
<symbol> are supported. Only items matching the filter criteria are displayed.

See also

B COVerage.EXPORT.ListCalleRs B COVerage.EXPORT

B COVerage.ListCalleRs

©1989-2024 Lauterbach General Commands Reference Guide C | 116

COVerage.EXPORT.ListFunc Export code coverage results at function level

[Examples]
See also
B COVerage.EXPORT.ListFunc.<sub_cmd> B COVerage.EXPORT
B COVerage.ListFunc
COVerage.EXPORT.ListFunc.<sub_cmd> Export function
Format: COVerage.EXPORT.ListFunc.<sub_cmd>
<sub_cmd>: ADDRESS |[<file>] [<source_file>...] [/<option>]
preset [<file>] [Yo<format>] [<filter>] [/<option>]
SOURCE [<file>] [<source_file>...] [[<option>]
sYmbol [<file>] [<symbol>...] [[<option>]
<option>: Append
Exports code coverage results for functions to an XML file.
The following <sub_cmd> are possible:
ADDRESS Exports code coverage information for functions filtered by source file.
preset If the command contains no parameters, then all the HLL function are

exported.
The <filter> parameter allows to reduce the number of functions to that
which is in the focus of the code coverage analysis.

SOURCE Exports code coverage information for source code lines filtered by
source file. The syntax of the pathname is oriented towards the symbol
and path columns in the sYmbol.Browse.SOURCE window.

sYmbol Defines a filter for the symbols of the HLL function to export.

<file>, <option> For descriptions, see COVerage.EXPORT.ListFunc.

<source_file>, You can use one or more items as filter criteria. The wildcards ‘*’ and ‘?’
<symbol> are supported. Only items matching the filter criteria are displayed.

©1989-2024 Lauterbach General Commands Reference GuideC | 117

Examples:

COVerage.EXPORT.ListFunc.ADDRESS output.xml P:0x0000000--0x9000000

COVerage.EXPORT.ListFunc.SOURCE output.xml “*sieve.c”

;In this script line,

;the patterns func? and *eve* are exported

COVerage.EXPORT.ListFunc.sYmbol ~~\coverage.xml

Example of an XML export file opened in an external browser window:

TRACE32 Export

. COVerage. ListModule
. COVerage ListFunc

. COVerage ListLine

. COVerage. Listvar

TR

main

Table of Contents: Click to jump to the table you want.

1. COVerage.ListModule

func?

only the symbol main as well as symbols matching

eve

address tree coverage | executed |D% 50% 100%| branches | ok taken ta;}?etn never | bytes bytesok|
R:104C--22F7| Yarmlelarm partial 87.531% 83.673% 41 3 0 5| 4780 4184
none | \\armle\Global ? ? ? ?
R:104C--22F7| total partial 87.531% — 83.673% 41 3 0 5| 4780 41384
2. COVerage.ListFunc
address tree coverage | executed |0% 50% 100%| branches | ok taken ta;}?etn never | bytes bytesok|
R:104C--22F7 |\\armle\arm partial 87.531% 83.673% 41 3 0 5| 4780 4184
R:104C--1053 funco 0.000% - 0 0 0 0 8 0
R:1054--1063 funci 100.000% - 0 0 0 0 16 16
R:1064--110F| func2 100.000% 100.000% 1 0 0 o] 172 172
R:1110--115F| func2a 100.000% 100.000% 1 0 0 0 80 80
R:1160--11A3 func2b c 100.000% 100.000% 1 0 0 0 65 65
I (JASM (e Mixed () HLL I I Keys: tTop, s:Source, b:B m:Modules, f:F ions, v , LList, a:ASM, x-Mixed, hiHLL I color[] w7

I
Click to toggle the display of the listing.

<file>

I
Press these keys to jump to the table you want.

Name of the XML file that stores the code coverage information. The file extension *.xml can be omitted.

<string>

Defines a filter for the source files that you want to export. The filter consists of the file path and refers only to
source files that are listed in the tree column of a COVerage.ListFunc, COVerage.ListModule, etc.

window.

©1989-2024 Lauterbach

General Commands Reference Guide C |

118

Example for <string>:

;export the code coverage information for all HLL functions with
;a source path that matches the pattern "*/gnu/sub/*"
COVerage.EXPORT.ListFunc C:\t32\coverage.xml "*/gnu/sub/*"

;export the code coverage information for all modules with a file path

;that matches the pattern "*crt0.s"
COVerage.EXPORT.ListModule C:\t32\coverage.xml "*crt0.s" /Append

<range>

Filter for exporting the specified address range or symbol range.

The address range can be specified as follows:
J Start and end address.

J Only start address. Exports items from the start address up to the maximum address of the
current address space.

The symbol range can be specified as program, module, or function.
Example: This script line exports code coverage information for three symbol ranges.
;export the code coverage information for three symbol ranges

COVerage.EXPORT.ListFunc C:\t32\coverage.xml \\myprog\funcl3 funclO \
\\prog2

NOTE: The backslash \ can be used as a line continuation character in PRACTICE
script files (*.cmm). No white space permitted after the backslash.

APPEND

Appends the coverage information to an existing XML file - without overwriting the current file contents.

SOrder, TOrder

SOrder Sort in source line order.

TOrder Sort by address.

©1989-2024 Lauterbach General Commands Reference Guide C | 119

Example 1:

Prerequisite: The debug symbols have been loaded and trace data has been recorded.

This script shows how to export code coverage information for all modules, HLL functions, lines, and
variables to the same XML file. The formatted file is then opened in an external browser window.

COVerage .ADD ;update the coverage database
COVerage.ListModule ;display coverage of all modules
COVerage.ListFunc ;display coverage of all functions
COVerage.ListLine ;display coverage of all source lines
COVerage.ListVar ;display coverage of all variables

;export the code coverage information for all modules of
;program “armle”
COVerage.EXPORT.ListModule "~~/coverage.xml" \\armle

;export the code coverage information for all HLL functions of the
;module “arm” and append to an existing file
COVerage .EXPORT.ListFunc "~~/coverage.xml" \arm /Append

;export the code coverage information for all HLL lines of the
;function “sieve” and append to an existing file
COVerage.EXPORT.ListLine "~~/coverage.xml" sieve /Append

;export the code coverage information for HLL variables
;and append to an existing file
COVerage.EXPORT.ListVar "~~/coverage.xml" |, /Append

;for demo purposes: let's open the unformatted result in TRACE32
EDIT "~~/coverage.xml"

;place the transformation template in the same folder as the XML file

COPY "~~/demo/coverage/single_file_report/t32transform.xsl" \
"~~/t32transform.xsl"

;you can now open the formatted result in an external browser window

O0S.Command start iexplore.exe "file:///C:/t32/coverage.xml"

The tildes ~~ expand to your TRACES32 system directory, (e.g. C:\T32).

©1989-2024 Lauterbach General Commands Reference Guide C | 120

Example 2:

A more complex demo script is included in your TRACE32 installation. To access the script, run this
command:

CD.PSTEP ~~/demo/coverage/example.cmm

This demo script also tells you how to include a listing in the XML export file.

See also

B COVerage.EXPORT.ListFunc B COVerage.EXPORT
B COVerage.ListFunc

©1989-2024 Lauterbach General Commands Reference Guide C | 121

COVerage.EXPORT.ListInlineBlock Export inlined code blocks

See also
B COVerage.EXPORT.ListInlineBlock.<sub_cmd> B COVerage.EXPORT

©1989-2024 Lauterbach General Commands Reference Guide C | 122

COVerage.EXPORT.ListInlineBlock.<sub_cmd> Export cov. inlined

Format: COVerage.EXPORT.ListInlineBlock.<sub_cmd>

<sub_cmd>: ADDRESS |[<file>] [<source_file>...] [/<option>]
preset [<file>] [Yo<format>] [<filter>] [/<option>]
SOURCE [<file>] [<source_file>...] [[<option>]
sYmbol [<file>] [<symbol>...] [[<option>]

<option>: Append

Exports coverage information about inlined code blocks to an XML file.

The following <sub_cmd> are possible:

ADDRESS Uses addresses to control which coverage information for inlined code
blocks to export.

preset If the command contains no parameters, then all inlined code blocks are
exported.

The <filter> parameter allows to reduce the number of functions to that
which is in the focus of the code coverage analysis.

SOURCE Uses the names of source files to control which coverage information for
inlined code blocks to export. The syntax of the pathname is oriented
towards the symbol and path columns in the sYmbol.Browse.SOURCE

window.
sYmbol Defines a filter for the symbols of the inlined code blocks to export.
<file>, <option> For descriptions, see COVerage.EXPORT.ListFunc.
<source_file>, You can use one or more items as filter criteria. The wildcards ‘*’ and ‘?’
<symbol> are supported. Only items matching the filter criteria are displayed.
See also
B COVerage.EXPORT.ListInlineBlock B COVerage.EXPORT

B COVerage.ListInlineBlock

©1989-2024 Lauterbach General Commands Reference Guide C | 123

COVerage.EXPORT.ListLine Export HLL lines

See also

B COVerage.EXPORT.ListLine.<sub_cmd> B COVerage.EXPORT
B COVerage.ListLine

©1989-2024 Lauterbach General Commands Reference Guide C | 124

COVerage.EXPORT.ListLine.<sub_cmd> Export HLL lines information

Format:

<sub_cmd>:

<option>:

COVerage.EXPORT.ListLine.<sub_cmad>

ADDRESS |[<file>] [<source_file>...] [/<option>]
preset [<file>] [Yo<format>] [<filter>] [/<option>]
SOURCE [<file>] [<source_file>...] [[<option>]
sYmbol [<file>] [<symbol>...] [[<option>]

Append

Exports coverage information about HLL lines to an XML file.

The following <sub_cmd> are possible:

ADDRESS Uses addresses to control which coverage information for source code
lines to export.

preset If the command contains no parameters, then all HLL lines are exported.
The <filter> parameter allows to reduce the number of functions to that
which is in the focus of the code coverage analysis.

SOURCE Uses the names of source files to control which coverage information for
source code lines to export. The syntax of the pathname is oriented
towards the symbol and path columns in the sYmbol.Browse.SOURCE
window.

sYmbol Defines a filter for the symbols of the HLL lines to export.

<file>, <option> For descriptions, see COVerage.EXPORT.ListFunc.

<source_file>, You can use one or more items as filter criteria. The wildcards ‘*’ and ‘?’

<symbol> are supported. Only items matching the filter criteria are displayed.

See also
B COVerage.EXPORT.ListLine M COVerage.EXPORT B COVerage.ListLine

©1989-2024 Lauterbach

General Commands Reference Guide C | 125

COVerage.EXPORT.ListModule Export modules

See also

B COVerage.EXPORT.ListModule.<sub_cmd> B COVerage.EXPORT
B COVerage.ListModule

COVerage.EXPORT.ListModule.<sub_cmd> Export modules information

Format: COVerage.EXPORT.ListModule.<sub_cmad>

<sub_cmd>: ADDRESS [<file>] [<source_file>...] [[<option>]
preset [<file>] [Y%<format>] [<filter>] [[<option>]
SOURCE [<file>] [<source_file>...] [I<option>]
sYmbol [<file>] [<symbol>...] [[<option>]

<option>: Append

Exports coverage information bout modules to an XML file.

The following <sub_cmd> are possible:

ADDRESS Uses addresses to control which coverage information for modules to
export.
preset If the command contains no parameters, then all modules are exported.

The <filter> parameter allows to reduce the number of functions to that
which is in the focus of the code coverage analysis.

SOURCE Uses the names of source files to control which coverage information for
modules to export. The syntax of the pathname is oriented towards the
symbol and path columns in the sYmbol.Browse.SOURCE window.

sYmbol Defines a filter for the symbols of the modules to export.
<file>, <option> For descriptions, see COVerage.EXPORT.ListFunc.
<source_file>, You can use one or more items as filter criteria. The wildcards ‘*’ and ‘?’
<symbol> are supported. Only items matching the filter criteria are displayed.
See also
B COVerage.EXPORT.ListModule B COVerage.EXPORT

B COVerage.ListModule

©1989-2024 Lauterbach General Commands Reference Guide C | 126

COVerage.EXPORT.ListVar Export HLL variables

See also

B COVerage.EXPORT.ListVar.<sub_cmd> B COVerage.EXPORT
B COVerage.ListVar

COVerage.EXPORT.ListVar.<sub_cmd> Export HLL variables information

Format: COVerage.EXPORT.ListVar.<sub_cmd>

<sub_cmd>: ADDRESS [<file>] [<source_file>...] [[<option>]
preset [<file>] [Y%<format>] [<filter>] [[<option>]
SOURCE [<file>] [<source_file>...] [I<option>]
sYmbol [<file>] [<symbol>...] [[<option>]

<option>: Append

Exports coverage information for HLL variables to an XML file.

The following <sub_cmd> are possible:

ADDRESS Uses addresses to control which coverage information for variables to
export.

preset If the command contains no parameters, then all HLL variables are
exported.

The <filter> parameter allows to reduce the number of functions to that
which is in the focus of the code coverage analysis.

SOURCE Uses the names of source files to control which coverage information for
variables to export. The syntax of the pathname is oriented towards the
symbol and path columns in the sYmbol.Browse.SOURCE window.

sYmbol Defines a filter for the symbols of the HLL variables to export.
<file>, <option> For descriptions, see COVerage.EXPORT.ListFunc.
<source_file>, You can use one or more items as filter criteria. The wildcards ‘*’ and ‘?’
<symbol> are supported. Only items matching the filter criteria are displayed.
See also
B COVerage.EXPORT.ListVar B COVerage.EXPORT B COVerage.ListVar

©1989-2024 Lauterbach General Commands Reference Guide C | 127

COVerage.INFO

Information about conditional instructions

[build 166747 - Release 2024/02]

Format:

COVerage.INFO

The COVerage.INFO command opens a window that allows the user to verify if the instruction set of the
core-under-debug includes conditional instructions (isa: non-branch check mark) and if its trace protocol

generates information about their execution (trace: non-branch check mark).

#! B:COVerageNFO

(o8)

cond opcodes [1sa

trace

branch v
non-branch v
<

<
<

>

Ll

v

This command is not supported by all architectures. If the command is unsupported, no check marks are

set.

You can use the CPU.Feature(CONDISA) function in a script to check whether the instruction set of the

core-under-debug contains conditional instructions.

You can use the CPU.Feature(CONDTRACE) function in a script to determine whether the trace protocol of
the core-under-debug indicates if the condition code check passed or failed.

See also

B COVerage

B COVerage.state

©1989-2024 Lauterbach

General Commands Reference Guide C

128

COVerage.Init Clear coverage database

Format: COVerage.Init
<trace>.COVerage.Init (deprecated)

Deletes all code coverage information for HLL source code statements, assembly instructions and data
values.

See also
B COVerage B COVerage.state

COVerage.List Coverage display

Format: COVerage.List [<address> | <range>]
<trace>.COVerage.List (deprecated)

Displays the results of the coverage analysis.

@ B:COVerage.List funcll EI@
[B, |1 Goto...][@ Modules][@ Furctbrs][@ Lines][@ Valiabla][@ Groups|[+ Add |[FELoad...|[E2save...[@ nit
address to Coverage |

C:00001C80--00001CE7 [ok armlesarmyfuncll L

C:00001C88--00001C8E |branch taken Yharmleharmi funcll+0x8

C:00001C8C--00001CA3 |never executed Wharmleharm' Funcll+0x0C

C:00001CA4--00001CAT |ok Wharmleharm funcll+0x24

C:00001CAS--00001CDE |never executed Wharmleharm funcll+0x28

C:00001CDC--00001CDF |ok Wharmleharm' Funcll+0x5C

C:00001CEQ--00001CEE |never executed Wharmleharm Funcll+0x60

C:00001CEC--00001CF3 |ok Wharmleharm' Funcll+0x6C

C:00001CF4--00001CFE |never executed Wharmleharm Funcll+0x74

C:00001CFC--00001043 |ok Yharmleharmi funcl3

C:00001044--00001D4E |never executed Wharmleharm funcl3+0x48

C:0000104C--00001D5E |ok Yharmleharmh funcld

C:00001D5C--00001D63 |never executed Wharmleharm Funcld+0x10

C:00001D64--00001D77 |ok Yharmleharmh funcls i

4 I3

Double-clicking a line opens a List window, showing the context of and more details about the covered code.

See also
B COVerage.ListCalleEs B COVerage.ListFunc B COVerage.ListLine B COVerage.ListModule
B COVerage.ListVar B COVerage B COVerage.state

©1989-2024 Lauterbach General Commands Reference Guide C | 129

COVerage.ListCalleEs Display coverage for callees function

See also

B COVerage.ListCalleRs B COVerage.List

B COVerage.ListFunc B COVerage.ListInlineBlock

B COVerage.ListLine B COVerage.ListModule

B COVerage.ListVar B COVerage.LOAD

B COVerage B COVerage.EXPORT.ListCalleEs.<sub_cmd>

B COVerage.state

A ’'Release Information’ in’Legacy Release History’

COVerage.ListCalleEs.<sub_cmd> Display coverage for callees function
Format: COVerage.ListCalleEs.<sub_cmd>
<sub_cmd>: ADDRESS [%<format>] [<address> | <address_range>] [I<option>]

preset [% <format>] [<filter>] [I<option>]
SOURCE [%<format>] [<source>...] [/<option>]
sYmbol [%<format>] [<symbol>...] [[<option>]

<format>: SINGLE | MULTI | DO178

<option>: SOrder | TOrder

Displays the results of the code coverage analysis related to function callees. If the metric Call is set
(see COVerage.Option SourceMetric Call) callee details are part of the report generated with the help
of the TRACE32 Coverage Report Utility.

The following <sub_cmd> are possible:

ADDRESS Allows to restrict the displayed function callees to a specified address
range.
preset If the command contains no parameters, then all function callees are

displayed (see example 1).
The <filter> parameter allows to reduce the number of functions to that
which is in the focus of the code coverage analysis (see example 2).

SOURCE Allows to restrict the displayed function callees to the specified source
files. The syntax of the pathname is oriented towards the symbol and
path columns in the sYmbol.Browse.SOURCE window (see example 3).

©1989-2024 Lauterbach General Commands Reference Guide C | 130

sYmbol

Allows to restrict the displayed callees to the specified symbol ranges.
The symbol names are oriented towards the symbol column in the
sYmbol.Browse.Function or sYmbol.Browse.Module window (see
example 4).

<symbol>, <source>

You can use one or more items as filter criteria. The wildcards ‘*’ and ‘?’
are supported. Only items matching the filter criteria are displayed.

See commands sYmbol.FILTER.ADD.sYmbol and
sYmbol.FILTER.ADD.SOURCE.

Format Parameters SINGLE, MULTI, DO178

SINGLE The code coverage results are displayed only for the selected metric.

MULTI The code coverage results are displayed for the selected metric and all
included metrics. E.g. the MCDC metric includes also CONDition,
Decision and Statement coverage.

DO178 The code coverage results are displayed for the selected metric and all
included metrics that are relevant for DO178. E.g. the MCDC metric
includes also Decision and Statement coverage.

Option SOrder, TOrder

SOrder Display the source code lines belonging to a function in source order.

TOrder Display the source code lines belonging to a function in target order
(default).

Example 1:

COVerage.Option SourceMetric Call

COVerage.ListCalleEs

[£B B:COVerage.ListCalleEs (=N =R
L. | Goto... | @BLst | + Add | Fload.. E2save..| @t
address tree coverage call 0% 50% 100 Func calls bytes |
P:08000798--08000823 = TestswitchCase Tncomplete 41, 666% |n————— 1. 0. 1z. 5 140. B80. | o
5R:080007B8--080007EB cove e Cou age never 0. 000% 0. 0. 0. o 4. 0.
SR:080007C0--080007C3 e ge never 0. 000% 0. 4} 0. o 4. 0.
SR:080007C8--080007CE never 0. 000% 0. 0. 0 4. 0.
SR:080007D0--080007D3 never 0. 000% 0. 0. 0. 4. 0.
SR:080007D8--080007DB never 0. 000% 0. 0. 0. 4. 0.
SR:080007E0--080007E3 never 0. 000% 0. 0. 0. 4. 0.
SR:080007E8--080007EE never 0. 000% 0. 0. 0. 4. 0.
SR:080007F4--080007F7 ok 100. 000% | e— 0. 0. 0. 4. 4.
SR:080007FC--0B0007FF ok 100. 000% | e— 0. 0. 0. 4. 4.
SR:08000804--08000807 ok 100. 000% | e—— 0. 0. 0. 4. 4.
SR :0800080C--0800080F ok 100. 000% | e— 0. 0. o 4. 4.
SR:08000814--08000817 ok 100. 000% | —— 0. 0. 4. 4.
P:08000824--080008AF = MultiLine call 100. 0005 |e— 1. 0. 1] 140. 108.
P :080008B0--08000947 = TestMultiline call 100. 0005 |e— 1. 2. 2 152. 148.
5R:08000914--08000917 cover age'coverage ok 100. 0005 |e— 0. 0. 1] 4. 4.
SR:08000934--08000937 cover agehcoverage ok 100. 000% | e———— 0. 0. 4. L

©1989-2024 Lauterbach

General Commands Reference Guide C | 131

Double-clicking a line displays the function or call and detailed information about the code coverage in a List
window.

Example 2:

COVerage.Option SourceMetric Call

sYmbol .Browse.Module
sYmbol .FILTER.ADD.sYmbol jd_modules \jdcolor \jdmarker \jdtrans

COVerage.ListCalleEs.preset jd_modules

Example 3:

sYmbol .Browse .SOURCE

COVerage.ListCalleEs.SOURCE \

\"D: /work/demo/mpc5xxx/mpc5646c_jpeg/jdapistd.c" \
\"D: /work/demo/mpc5xxx/mpc5646c_jpeg/jdinput.c" \
\"D: /work/demo/mpc5xxx/mpc5646c_jpeg/jdpostct.c"

COVerage.ListCalleEs.SOURCE \"*jdc*.c"

Example 4:

sYmbol .Browse.Module

COVerage.ListCalleEs.sYmbol \jdapistd \jdmaster \jidctred

COVerage.ListCalleEs.sYmbol \jda*

©1989-2024 Lauterbach General Commands Reference Guide C | 132

COVerage.ListCalleRs Display coverage for callers function

See also
B COVerage.ListCalleEs B COVerage
B COVerage.EXPORT.ListCalleRs.<sub_cmd> B COVerage.state
A ’Release Information’ in’Legacy Release History’
COVerage.ListCalleRs.<sub_cmd> Display coverage for callers function
Format: COVerage.ListCalleRs.<sub_cmd>
<sub_cmd>: ADDRESS [%<format>] [<address> | <address_range>] [[<option>]
preset [% <format>] [<filter>] [/<option>]
SOURCE [%<format>] [<source>...] [[<option>]
sYmbol [%<format>] [<symbol>...] [/<option>]
<format>: SINGLE | MULTI | DO178
<option>: SOrder | TOrder

Displays the results of the code coverage analysis related to function callees. If the metric Call is set
(see COVerage.Option SourceMetric Call) callee details are part of the report generated with the help
of the TRACE32 Coverage Report Utility.

The following <sub_cmd> are possible:

ADDRESS

Allows to restrict the displayed function callers to a specified address
range.

preset

If the command contains no parameters, then all function callers are
displayed (see example 1).

The <filter> parameter allows to reduce the number of functions to that
which is in the focus of the code coverage analysis (see example 2).

SOURCE

Allows to restrict the displayed function callers to the specified source
files. The syntax of the pathname is oriented towards the symbol and
path columns in the sYmbol.Browse.SOURCE window (see example 3).

©1989-2024 Lauterbach

General Commands Reference Guide C | 133

sYmbol

Allows to restrict the displayed callers to the specified symbol ranges.
The symbol names are oriented towards the symbol column in the
sYmbol.Browse.Function or sYmbol.Browse.Module window (see
example 4).

<symbol>, <source>

You can use one or more items as filter criteria. The wildcards ‘*’ and ‘?’
are supported. Only items matching the filter criteria are displayed.

See commands sYmbol.FILTER.ADD.sYmbol and
sYmbol.FILTER.ADD.SOURCE.

Format Parameters SINGLE, MULTI, DO178

SINGLE The code coverage results are displayed only for the selected metric.

MULTI The code coverage results are displayed for the selected metric and all
included metrics. E.g. the MCDC metric includes also CONDition,
Decision and Statement coverage.

DO178 The code coverage results are displayed for the selected metric and all
included metrics that are relevant for DO178. E.g. the MCDC metric
includes also Decision and Statement coverage.

Option SOrder, TOrder
SOrder Display the source code lines belonging to a function in source order.
TOrder Display the source code lines belonging to a function in target order

(default).

Example 1:

COVerage.Option SourceMetric Call

COVerage.ListCalleRs

1£9 B:COVerage ListCalleRs == =
& ., |Q Goto...| BList | + Add [load... FPSave.. @ Inic
address coverage call [0% 50% 100 func calls bytes I

P:0B0006F0--0800079 incomplete 41.666% 0. 1z, 5. 48. 20. | &
SR:08000758--080007EB never 0. 000% 0. 0. 0. 4. 0.
SR:080007C0--080007C3 never 0.000% 0. 0. 0. 4. 0.
SR:080007C8--080007CE never 0.000% 0. 0. 4. 0.

SR :080007D0--080007D3 never 0.000% 0. 0. 4. 0.
SR :080007D8--080007DB never 0. 000% 0. 0. 4. 0.
SR :080007E0--080007E3 never 0. 000% 0. 0. 4. 0.
SR:080007E8--080007EB never 0. 000% 0. 0. 4. 0.
SR:080007F4--080007F7 o 100. 000% 0. 0. 4. 4.
SR :080007FC--080007FF ok 100. 000% 0. 0. 4. 4.
SR:08000804--08000807 ok 100. 000% 0. 0. 4. 4.
SR:0800080C--0800080F ok 100. 000% 0. 0. 4. 4.
SR:08000814--08000817 1) 91--19 ok 100. 000% 0. 0. 4. 4.

P :08000798--08000823 = TestSwitchCase call 100. 000% | e— 0. 1. 4. 4.
SR :08000FB8--08000FBB coverage',coverage ok 100. 000% | e— 0. 0. 4. 4.

P :08000824--080008AF EMultiLine call 100, 000% | e———— 0. 2. 8. 8.
SR:08000914--08000917 coverage'\coverage [} 100. 000% 0. 0. 0 4. 4.
SR:08000934--08000937 coverage'\coverage ok 100. 000% 0. 0. 0 4. 4. | ¥

©1989-2024 Lauterbach General Commands Reference Guide C | 134

Double-clicking a line displays the function or call and detailed information about the code coverage in a List
window.

Example 2:

COVerage.Option SourceMetric Call

sYmbol .Browse.Module
sYmbol .FILTER.ADD.sYmbol jd_modules \jdcolor \jdmarker \jdtrans

COVerage.ListCalleRs.preset jd_modules

Example 3:

sYmbol .Browse .SOURCE

COVerage.ListCalleRs.SOURCE \

\"D: /work/demo/mpc5xxx/mpc5646c_jpeg/jdapistd.c" \
\"D: /work/demo/mpc5xxx/mpc5646c_jpeg/jdinput.c" \
\"D: /work/demo/mpc5xxx/mpc5646c_jpeg/jdpostct.c"

COVerage.ListCalleRs.SOURCE \"*jdc*.c"

Example 4:

sYmbol .Browse.Module

COVerage.ListCalleRs.sYmbol \jdapistd \jdmaster \jidctred

COVerage.ListCalleRs.sYmbol \jda*

©1989-2024 Lauterbach General Commands Reference Guide C | 135

COVerage.ListFunc

Display coverage for functions

See also

B COVerage.ListFunc.<sub_cmd>
B COVerage.ListCalleEs

B COVerage.ListModule

B COVerage.EXPORT.ListFunc
B COVerage.state

B COVerage.List

B COVerage.ListLine

B COVerage

B COVerage.EXPORT.ListFunc.<sub_cmd>

A ’Trace Data Collection’ in ’Application Note for Trace-Based Code Coverage’
A ’'Release Information’ in’Legacy Release History’

COVerage.ListFunc.<sub_cmd> Display coverage for HLL function
Format: COVerage.ListFunc.<sub_cmd>
<sub_cmd>: ADDRESS [%<format>] [<address> | <address_range>] [I<option>]

preset [% <format>] [<filter>] [I<option>]
SOURCE [%<format>] [<source>...] [/<option>]
sYmbol [%<format>] [<symbol>...] [[<option>]

<format>: SINGLE | MULTI | DO178 | OBC

<option>: SOrder | TOrder

Displays the results of the code coverage analysis related to HLL functions based on the selected
metric (see COVerage.Option SourceMetric).

The following <sub_cmd> are possible:

ADDRESS Allows to restrict the displayed functions to a specified address range.

COVerage.ListFunc

(deprecated)

preset If the command contains no parameters, then all HLL functions are

COVerage.ListFunc displayed (see example 1).

(deprecated) The <filter> parameter allows to reduce the number of functions to that
which is in the focus of the code coverage analysis (see example 2).

SOURCE Allows to restrict the displayed functions to the specified source files. The
syntax of the pathname is oriented towards the symbol and path
columns in the sYmbol.Browse.SOURCE window (see example 3).

©1989-2024 Lauterbach

General Commands Reference Guide C | 136

sYmbol Allows to restrict the displayed functions to the specified symbol ranges.
The symbol names are oriented towards the symbol column in the
sYmbol.Browse.Function or sYmbol.Browse.Module window (see
example 4).

<symbol>, <source> You can use one or more items as filter criteria. The wildcards ‘*’ and ‘?’
are supported. Only items matching the filter criteria are displayed.

See commands sYmbol.FILTER.ADD.sYmbol and
sYmbol.FILTER.ADD.SOURCE.

Format Parameters SINGLE, MULTI, DO178, OBC

SINGLE The code coverage results are displayed only for the selected metric.

MULTI The code coverage results are displayed for the selected metric and all
included metrics. E.g. the MCDC metric includes also CONDition,
Decision and Statement coverage.

DO178 The code coverage results are displayed for the selected metric and all
included metrics that are relevant for DO178. E.g. the MCDC metric
includes also Decision and Statement coverage.

OBC Includes object code branch coverage results if
COVerage.Option.SourceMetric Statement is set.

Option SOrder, TOrder

SOrder Display the source code lines belonging to a function in source order.
TOrder Display the source code lines belonging to a function in target order
(default).
Example 1:

COVerage.Option SourceMetric Statement

COVerage.ListFunc

©1989-2024 Lauterbach General Commands Reference Guide C | 137

Igj B:COVerage ListFunc

cetup... A Goto.. | EBList +Add | 2 load... | Psave.. | @ mit

address tree coverage | statement 0% 50% 100 lines
P:00001138--000032F6 = \Jpeg Tncomplete 55. 000% |e—— 240.
P:00001138--00001167 jpeg_get_small stmt | 100.000% 3. 3.
P:00001168--00001197 jpeg_free_small stmt | 100. 000% | ———— 3. 3.
P:00001198--000011C7 lpeg_get_'l arge stmt 100. 000% | ee— 3. 3.
P:000011C8--000011F7 jpeg_free_large stmt | 100, 000 | e— 3. 3.
P:000011F8--00001223 jpeg_men_available incomplete 0.000% 3. 0.
P:00001224--00001268 jpeg_open_backing store |incomplete 0.000% 3. 0.
P:0000126C--00001288 jpeg_men_init stmt | 100. 000% | ee—— 3. 3.
P:0000128C--000012A7 Jjpeg_mem_term incomplete 0.000% 2. 0.
P:000012A8--000012F3 output_message incomplete 0.000% 4. 0.
P:000012F4--0000138F emit_message incomplete 55. 555% | m— 9. 5.
P:00001390--000014EF format_message incomplete 0.000% 23. 0.
P:000014C0--000014FF reset_error_mgr stmt | 100, 000 | e— 4. 4
P:00001500--0000153F t32_error_exit incomplete 0.000% 4. 0.

Double-clicking a line displays the function or call and detailed information about the code coverage in a List

window.

Example 2:

COVerage.Option SourceMetric

sYmbol .Browse.Module

sYmbol .FILTER.ADD.sYmbol jd_modules \jdcolor \jdmarker \jdtrans

COVerage.ListFunc.preset jd_modules

Statement

(49 B:COVerage ListFunc

=]

(i3} B:COVerage ListFunc /SOrder

2 setup...| A Goto... | @List

tree

+add | Sload... | 52 save...

@ it

address
:0000641C--000076FB Cl
0000641C--00006477
0000647 8--00006628
0000662C--0000671F
000067 20--0000680F
00006810--00006908
0000690C--0000698F
000069C0--00006A73
00006A74--00006CCF
00006CD0--00006DEF
00006CD0--00006CER
00006CEC--00006CEF
00006CF0--00006CF7

00006D4C--00006D63
00006D64--00006D68
00006D6C--00006D6F
00006D70--00006D77
00006D7 8--00006DA3
00006DA4--00006DCE
00006DCC--00006DCF
00006DD0--00006DD7
00006DD8--00006DDB
00006DDC --00006DEF
00006DF0--00006F13
00006F14--00007127

UVUVTTUUTUTUVUUUUVUUTUTUUTUUUVU UL T TUTTT D

\Jmemmgr-
® out_of _memary
® alloc_small
alloc_large
alloc_sarray
allec_barray
request_virt_sarray
request_virt_barray
realize_virt_arrays
= do_sarray_io
.demo'\mpc5xxx\mp

mo\mpc5xxx\mpc56
moY\mpc5xxx\mpc 56
mo\mpc5xxx\mpc56:

5. €56

0\mpC5 XXX \mpc 56
mo\mpc5xxx\mpc 56
mo\mpc5xxx\mpc 56
- demo\mpc 5xxx\mpc 56
_demo\mpc 5xxx\mpc 56
do_barray_io
access_virt_sarray

2 setup...| (3 Goto...

3 List

tree

+Add || 2 Load...

@ Init

& save...

address

:0000641C--000076FB C]
0000641C--00006477
0000647 8--00006628
0000662C--0000671F
000067 20--0000680F
00006810--00006908
0000690C--000069BF
000069C0--00006A73
00006A74--00006CCF
00006CD0--00006DEF
00006CD0--00006CER
00006CEC--00006CEF
00006CF0--00006CF7
00006CF8

000060D0
00006008 006028
00006D2C 0006033
00006D34--00006D4B
00006D4C--00006D63
00006D64--00006D6B
00006D6C--00006DEF
00006D70--00006D77
00006D78--00006DA3
00006DA4--00006DCB
00006DCC--00006DCF
00006DD8--00006DDB
00006DDC--00006DEF
00006DF0--00006F13
00006F14--00007127

006DD7

UUTTTUTUTUTVUTUUVUUVTUTTUTVTUUVU OO TTTTT T

\jmemmgr
aut_of _memary
alloc_small
alloc_large
alloc_sarray
alloc_barray
request_virt_sarray
request_wirt_barray
realize_virt_arrays
= do_sarray_io

_demo\mpc5xxx\mpcs
do_barray_io
access_virt_sarray

g\jmemmar . ¢

Example 3:

sYmbol .Browse . SOURCE

COVerage.ListFunc.SOURCE \

\"D: /work/demo/mpc5xxx/mpc5646c_jpeg/jdapistd.c"
\"D: /work/demo/mpc5xxx/mpc5646c_jpeg/jdinput.c" \
\"D: /work/demo/mpc5xxx/mpc5646c_jpeg/jdpostct.c"

\

©1989-2024 Lauterbach

General Commands Reference Guide C |

138

COVerage.ListFunc.SOURCE \"*jdc*.c"

Example 4:

sYmbol .Browse.Module

COVerage.ListFunc.sYmbol \jdapistd \jdmaster \jidctred

COVerage.ListFunc.sYmbol \jda*

See also
B COVerage.ListFunc

©1989-2024 Lauterbach General Commands Reference Guide C | 139

COVerage.ListInlineBlock Display coverage for inlined block

See also
B COVerage.ListCalleEs B COVerage
B COVerage.EXPORT.ListInlineBlock.<sub_cmd> B COVerage.state
COVerage.ListInlineBlock.<sub_cmd> Display coverage for inlined block
Format: COVerage.ListInlineBlock.<sub_cmd>
<sub_cmd>: ADDRESS [%<format>] [<address> | <address_range>] [I<option>]
preset [% <format>] [<filter>] [I<option>]
SOURCE [%<format>] [<source>...] [/<option>]
sYmbol [%<format>] [<symbol>...] [[<option>]
<format>: SINGLE | MULTI | DO178
<option>: SOrder | TOrder

Displays the result of the code coverage analysis related to inlined code blocks based on the selected metric
(seeCOVerage.Option SourceMetric). The command sYmbol.List.InlineBlock provides a list of all inlined

code blocks.

The following <sub_cmd> are possible:

ADDRESS

Allows to restrict the displayed blocks to a specified address range.

preset

When compiling with optimization the compiler may insert functions or
parts of a function directly instead of adding a call to the function. This
command lists all parts of the code where function parts have been
inlined by the compiler and displays the code coverage result for the
individual blocks.

If the command contains no parameters, then all inline blocks are
displayed (see example1).

The commands sYmbol.FILTER.ADD.SOURCE and
sYmbol.FILTER.ADD.sYmbol allow to combine source files/symbols of
interest under a <filter>. The <filter> parameter allows to reduce the number
of inlined blocks to that which is in the focus of the code coverage analysis.
This is especially useful for very large projects (see example 2).

SOURCE

Allows to restrict the displayed inlined blocks to the specified source files.
The syntax of the pathname is oriented towards the symbol and path
columns in the sYmbol.Browse.SOURCE window (see example 3).

©1989-2024 Lauterbach

General Commands Reference Guide C | 140

sYmbol

Allows to restrict the displayed inlined blocks to the specified symbol
ranges. The symbol names are oriented towards the symbol column in
the sYmbol.Browse.Function or sYmbol.Browse.Module window (see
example 4).

<symbol>, <source>

Instead of listing the sources individually, they can also be combined
under a filter name. See commands sYmbol.FILTER.ADD.sYmbol and
sYmbol.FILTER.ADD.SOURCE.

The wildcards ‘*’ and ‘?’ are supported.

Format Parameters SINGLE, MULTI, DO178

SINGLE The code coverage results are displayed only for the selected metric.

MULTI The code coverage results are displayed for the selected metric and all
included metrics. E.g. the MCDC metric includes also CONDition,
Decision and Statement coverage.

DO178 The code coverage results are displayed for the selected metric and all
included metrics that are relevant for DO178. E.g. the MCDC metric
includes also Decision and Statement coverage.

Option SOrder, TOrder

SOrder Display the source code lines belonging to a function in source order.

TOrder Display the source code lines belonging to a function in target order
(default).

Example 1:

COVerage.Option SourceMetric Statement

COVerage.ListInlineBlock

@ B:COVerage.ListinlineBlock

(=)= =]

& seup... | (3 Goto...| ([EBLst | + Add

address [Er

=2 Load... |52 Save... | @ Init

coverage objectcode 0% 50% 100 branches |

ee
“FFFFF FFF--00000000 = funcl
000006A2--000006A5
0000088C--0000088F
00000896--00000899
000008AA--000008AF
000008C6--000008CT
0000080D5--000008DB
FFFFFFFF--00000000 = subs

00000928--00000981 s
Q0000AQB--00000A1F
00000AZ0--00000A9F
00000095--000000AF
000006E6--000006BB
000006BE--000006BF
000006Ce--000006C

VUTVUVUWWUMATUD OO

sieveoptisieve 146
ths

sie
= func2a

ok 100. 000%
ok | 100.000%
ok | 100.000%
ok 100. 000%
ok 100. 000%
ok 100. 000%

ve \146

Bb. bEE%
33.333%
62.500%

partial
partial
partial

ok | 100.000%
ok | 100.000% 0. 0. 0.
ok | 100.000% |ee————— 0. 0. 0. v

©1989-2024 Lauterbach

General Commands Reference Guide C | 141

Double-clicking a line displays the block and detailed information about the code coverage in a List window.
Example 2:

COVerage.Option SourceMetric Statement

sYmbol .Browse.Module
sYmbol .FILTER.ADD.sYmbol jd_modules \jdcolor \jdmarker \jdtrans

COVerage.ListInlineBlock.preset jd_modules

Example 3:

sYmbol .Browse .SOURCE

COVerage.ListInlineBlock.SOURCE \

\"D: /work/demo/mpc5xxx/mpc5646c_jpeg/jdapistd.c" \
\"D: /work/demo/mpc5xxx/mpc5646c_jpeg/jdinput.c" \
\"D: /work/demo/mpc5xxx/mpc5646c_jpeg/jdpostct.c"

COVerage.ListInlineBlock.SOURCE \"*jdc*.c"

Example 4:

sYmbol .Browse.Module

COVerage.ListInlineBlock.sYmbol \jdapistd \jdmaster \jidctred

COVerage.ListInlineBlock.sYmbol \jda*

©1989-2024 Lauterbach General Commands Reference Guide C | 142

COVerage.ListLine

Display coverage for HLL lines

See also

B COVerage.ListLine.<sub_cmd>
B COVerage.ListCalleEs

B COVerage.ListModule

B COVerage.EXPORT.ListLine
B COVerage.state

A ’Release Information’ in’Legacy Release History’

COVerage.ListLine.<sub_cmd>

B COVerage.List

B COVerage.ListFunc

B COVerage

B COVerage.EXPORT.ListLine.<sub_cmd>

Display coverage for HLL lines

<option>: SOrder | TOrder

Format: COVerage.ListLine.<sub_cmd>

<sub_cmd>: ADDRESS [%<format>] [<address> | <address_range>] [[<option>]
preset [% <format>] [<filter>] [/<option>]
SOURCE [<source_file>...] [I<option>]
sYmbol [%<format>] [<symbol>...] [/<option>]

<format>: SINGLE | MULTI | DO178 | OBC

Displays the result of the code coverage analysis related to HLL lines based on the selected metric

(seeCOVerage.Option SourceMetric).

The following <sub_cmd> are possible:

ADDRESS Allows to restrict the displayed lines to a specified address range.

COVerage.ListLine

(deprecated)

preset If the command contains no arguments, then all HLL lines are displayed. If
the <filter> argument is passed, then only items matching the filter criteria
are displayed (see example 1).

SOURCE Lists lines using <source_file> as filter criterion. The syntax of the
pathname is oriented towards the symbol and path columns in the
sYmbol.Browse.SOURCE window.

sYmbol Defines a filter for the symbols of the HLL lines to view.

<symbol>, You can use one or more items as filter criteria. The wildcards ‘*’ and ‘?’

<source_file> are supported. Only items matching the filter criteria are displayed.

©1989-2024 Lauterbach

General Commands Reference Guide C | 143

Format Parameters SINGLE, MULTI, DO178, OBC

SINGLE

The code coverage results are displayed only for the selected metric.

MULTI

The code coverage results are displayed for the selected metric and all
included metrics. E.g. the MCDC metric includes also CONDition,
Decision and Statement coverage.

DO178

The code coverage results are displayed for the selected metric and all
included metrics that are relevant for DO178. E.g. the MCDC metric
includes also Decision and Statement coverage.

oBC

Includes object code branch coverage results if
COVerage.Option.SourceMetric Statement is set.

Option SOrder, TOrder

SOrder Display the source code lines belonging to a function in source order.
TOrder Display the source code lines belonging to a function in target order
(default).
Example 1:

COVerage.ADD
COVerage.ListLine

COVerage.ListLine

Example 2:

COVerage.ListLine.

See also

;Update the coverage database

"*chario.c" ;Display all items which contain the

;file chario.c
main ;Display coverage for function main

SOURCE “*sieve.c”

B COVerage.ListLine

©1989-2024 Lauterbach

General Commands Reference Guide C |

144

COVerage.ListModule Display coverage for modules

See also

B COVerage.ListModule.<sub_cmd> B COVerage.List

B COVerage.ListCalleEs

B COVerage.ListFunc

B COVerage.ListLine B COVerage
B COVerage.EXPORT.ListModule B COVerage.EXPORT.ListModule.<sub_cmd>
B COVerage.state
A ’Release Information’ in’Legacy Release History’
COVerage.ListModule.<sub_cmd> Display coverage for modules
Format: COVerage.ListModule.<sub_cmd>
<sub_cmd>: ADDRESS [%<format>] [<address> | <address_range>] [[<option>]
preset [% <format>] [<filter>] [/<option>]
SOURCE [<source_file>...] [I<option>]
sYmbol [%<format>] [<symbol>...] [/<option>]
<format>: SINGLE | MULTI | DO178 | OBC
<option>: SOrder | TOrder

Displays the result of the code coverage analysis related to modules based on the selected metric
(seeCOVerage.Option SourceMetric).

The following <sub_cmd> are possible:

ADDRESS

ule (deprecated)

COVerage.ListMod-

Allows to restrict the displayed modules to a specified address range.

preset

Displays the results of the coverage analysis related to modules. Double-
clicking a line displays the function and detailed information about the
coverage.

If the command contains no arguments, then all modules are displayed. If
<filter> argument is passed, then only items matching the filter criteria
are displayed (see example 1).

SOURCE

Lists modules using <source_file> as filter criterion. The syntax of the
pathname is oriented towards the symbol and path columns in the
sYmbol.Browse.SOURCE window.

©1989-2024 Lauterbach

General Commands Reference Guide C | 145

sYmbol

Defines a filter for the symbols of the modules to view.

<symbol>,
<source_file>

You can use one or more items as filter criteria. The wildcards ‘*’ and ‘?’
are supported. Only items matching the filter criteria are displayed.

Format Parameters SINGLE, MULTI, DO178, OBC

SINGLE

The code coverage results are displayed only for the selected metric.

MULTI

The code coverage results are displayed for the selected metric and all
included metrics. E.g. the MCDC metric includes also CONDition,
Decision and Statement coverage.

DO178

The code coverage results are displayed for the selected metric and all
included metrics that are relevant for DO178. E.g. the MCDC metric
includes also Decision and Statement coverage.

OBC

Includes object code branch coverage results if
COVerage.Option.SourceMetric Statement is set.

Option SOrder, TOrder

SOrder Display the source code lines belonging to a function in source order.
TOrder Display the source code lines belonging to a function in target order
(default).
Example 1:

COVerage.Option SourceMetric Statement

COVerage.ListModule

©1989-2024 Lauterbach

General Commands Reference Guide C | 146

(L9 B:COV.ListModule

B .. | Goto...| @Blist | + Add S Load... E2save...| @ Init

address tree coverage | statement [0% 50% 100 Tines
P : 00000000--00000208 crtl incomplete 6. 250% [m 16.
P:00000210--00000433 portAsm incomplete 6. 29605 | n—— 54.
P :00000440--0000068F “freertos incomplete 22.222% |w— 45,
P :00000690--00000E97 = \midi incomplete 66. 379% |—— 116.
P :00000690--00000643 vQueueConsumeHook stmt 100, 0005 [e— 2.
P : 00000644 --000006E3 vQueueConsume incomplete 60, 000% [e———————— 5.
P :000006E4--00000777 vStackEater incomplete 0. 000% 6.
P : 0000077 8--000007 96 vStackEatTask incomplete 0. 000% 4.
P : 000007 9C--000007CE stmt 100. 000% | e———— 3.
P :000007CC--000008986 stmt 100. 000% | e———— 1z.
P:0000089C--00000933 stmt 100. 000% 13,
P:00000934--00000A23 incomplete 0. 000% 9.
P:00000A24--00000AB3 incomplete 0. 000% 5.
P :00000AB4--00000B57 stmt 100. 000% | e———— 8.
P :00000B5 8--00000D13 S1eveDemo incomplete FT.TTT% 27.
P : 00000014 --00000DC3 sieve stmt 100. 000% | e———— 15.
P :00000DC4--00000ES7 vCreateMidiDemo incomplete 0. 000% 7.
P :00000E98--00001BF7 ‘wcoverage incomplete 97, 435% (— 234,
P :00001BF8--00002637 gueue incomplete 42,541% | e—— 181.

Double-clicking a line displays the module and detailed information about the code coverage in a List

window.

Example 2:

COVerage.Option SourceMetric Statement

sYmbol .Browse.Module

sYmbol .FILTER.ADD.sYmbol jd_modules \crt0 \freertos \midi

COVerage.ListModule.preset jd_modules

@ B:COVerage.ListModule EI@ @ B:COVerage ListModule /5Order EI@
.| A Gt | @Lst | + Add |52 Load... 52 save..| @ Init .| A Gt | @Lst | + Add |52 Load... 52 save..| @ Init
address tree | address tree |
P:00000690--00000E97 [= \midi ~ P :00000690--00000E97 [= ymidi ~
P :00000690--00000643 vQueueConsumeHook P :00000690--00000643 vQueueConsumeHook
P : 00000644 --000006E3 vijueueConsume P :000006A4--000006E3 vQueuelonsume
P :000006E4--00000777 v5stackEater P :000006E4--00000777 StackEater
P :00000778--000007 96 v5stackEatTask P :00000778--000007 96 StackEatTask
P : 000007 9C--000007CE funcl P : 000007 9C--000007CE uncl
P :000007CC--000008986 funcz P :000007CC--000008986 funcz
P:0000089C--00000933 # funca P:0000089C--00000933 # funca
P:00000934--00000A23 int_sin P:00000934--00000A23 int_sin
P :00000A24--00000AB3 = func_sin P :00000A24--00000AB3 = func_sin
P :00000A24--00000A2F idi.c P :00000A24--00000A2F idi.c
P :00000A30--00000A3B [P :00000A30--00000A3B [
P :00000A3C--00000A93 [P : 00000A94--00000AAB .C
P : 00000A94--00000AAB [P :00000A3C--00000A93 i.€
P : 00000AAC--00000AB3 midi.c %153--153 P : 00000AAC--00000AB3 c %153--153
P :00000AB4--00000B57 ® funcl3 P :00000AB4--00000B57 ® funcl3
P :00000B58--00000013 5ieveDemo hd P :00000B58--00000013 5ieveDemo hd
JES > JES >
Example 3:
COVerage.ListModule.sYmbol \main
See also
B COVerage.ListModule
©1989-2024 Lauterbach General Commands Reference Guide C | 147

COVerage.ListVar Display coverage for variable

[Example]

See also

B COVerage.ListVar.<sub_cmd> B COVerage.List

B COVerage.ListCalleEs B COVerage

B COVerage.EXPORT.ListVar B COVerage.EXPORT.ListVar.<sub_cmd>

B COVerage.state

A ’Appendix D: Data Coverage’ in ’Application Note for Trace-Based Code Coverage’
COVerage.ListVar.<sub_cmd> Display coverage for variables

Format: COVerage.ListVar.<sub_cmd>

<sub_cmd>: ADDRESS [<address> | <address_range>]
preset [<filter>]
SOURCE [<source._file>...]
sYmbol [<symbol>...]

Displays the result of the data coverage analysis for source code variables if the source metric ObjectCode
is set (COVerage.Option SourceMetric ObjectCode).

Since off-chip trace ports usually do not have enough bandwidth to make all read/write accesses (and the
program flow) visible, they are rather unsuitable for data coverage. For test phases in which testing in the
target environment is not yet required, a TRACE32 Instruction Set Simulator can be used well for data
coverage.

If the program and data flow is broadcast via an offchip trace port (e.qg.
ARM-ETM or NEXUS), COVerage.ListVar displays an accurate result
only if the trace does not contain FIFOFULLSs.

©1989-2024 Lauterbach General Commands Reference Guide C | 148

The following <sub_cmd> are possible:

ADDRESS Allows to restrict the displayed variables to a specified address range.

COVerage.ListVar

(deprecated)

preset If the command contains no arguments, then all variables are displayed.
If <filter> argument is passed, then only items matching the filter criteria
are displayed (see examples).

SOURCE Lists variables using <source_file> as filter criterion. The syntax of the
pathname is oriented towards the symbol and path columns in the
sYmbol.Browse.SOURCE window.

sYmbol List variable by using a module or program name as filter criterion.

<symbol>, You can use one or more items as filter criteria. The wildcards ‘*’ and ‘?’

<source_file> are supported. Only items matching the filter criteria are displayed.

Examples:

Trace.FLOWPROCESS

Trace.Find FIFOFULL /ALL
PRINT %Decimal FOUND.COUNT ()

COVerage.ADD

COVerage.ListVar

; Process the whole trace

; Display the number of FIFOFULLS

; Add the trace contents to the

; coverage system

(£B B:COV.ListVar = =R
L. | Goto...| @ALst | + Add T2 Load...|[ERsave...| @ Init
address coverage |read 03 50% 100 write 03 50% 100
P:000004B0--000016C3 = hs1eve A
D:00006418--00006433 init_Tinked_Tist'text p-read | 71.428% | —— 0. 000%
D:00006728--000067 26 period read (100, 000% | e —— 0. 000%
D:00006750--00006753 func2fstatic readwrite |[100. 0005 [—— 100 (005 | —
D:00006754--0000675E func2e'xl p-wr read (100, 000% | ———— 90. 909% | ———————
D:000067C0--000067C3 mstaticl readwrite |[100. 0005 [—— 100 (005 | —
D:000067C4--000067C7 mstatic2 readwrite |[100. 0005 [—— 100 (005 | —
D:000067C8--000067CE mcount readwrite |[100. 0005 [—— 100 (005 | —
D:000067D0--000067D3 func2fstatic2 readwrite |[100. 0005 [—— 100 (005 | —
D:000067D4--000067D7 funcdistatl readwrite |[100. 0005 [—— 100 (005 | —
D:0000670D8--00006706 funcdistatz readwrite |100.000% 100. 000%
D:000067DC--000067DF background'bent2 never 0. 000% 0. 000%
D:000067E0--000067E3 background'bentl never 0. 000% 0. 000% W
>

©1989-2024 Lauterbach

General Commands Reference Guide C

149

A filter allows to limit the result to the variables of interest.

sYmbol .Filter.ADD.sYmbol vardiabc \diabc ; create a filter that
; represents the module
; \diabc

COVerage .ADD ; Add the trace contents

; to the coverage system

COVerage.ListVar vardiabc ; display data coverage
; only for the variables
; of the module \diabc

See also
B COVerage.ListVar

©1989-2024 Lauterbach General Commands Reference Guide C | 150

COVerage.LOAD Load coverage database from file

Format: COVerage.LOAD <file> [[<option>]
<trace>.COVerage.LOAD (deprecated)

<option>: Replace
ADD
SUBtract

Loads the code coverage information from a file. The currently available code coverage information is

discarded.
<file> Name of the file with a previously saved code coverage data set. The
default extension of the file name is *.acd. The file extension *.acd can be
omitted.
Replace Removes the current coverage information of TRACES32 and replaces it
(default) with the stored coverage data set of the file.
ADD Keeps the current coverage information of TRACES32 and updates it with
the stored coverage data set of the file.
SUBtract Removes all coverage information of TRACES2 that is also present in the
stored coverage data set of the file.
See also
B COVerage.ListCalleEs Bl COVerage B COVerage.state

A ’Appendix B: Assemble Multiple Test Runs at Address Level' in ’Application Note for Trace-Based Code Coverage’

©1989-2024 Lauterbach General Commands Reference Guide C | 151

COVerage.MAP Map the coverage to a different range

Format: COVerage.MAP <source> <destination> [/<option>]
<option>: Replace

ADD

SUBtract

Allows to summarize the coverage of a code section that is available several times in a program, e.g. a
shared library that is used more the once.

Maps the code coverage of a source range to a destination range. Both ranges have to have the same

length.
<source> The address range whose code coverage is mapped to another one.
<destination> The address range whose code coverage is updated.
Replace Removes the current coverage information of the destination range and
replaces it with the coverage data of the source range.
ADD Keeps the current coverage information of the destination range, but
updates it with the coverage data of the source range.
SUBtract Removes all coverage information of the destination range that is also
present in the coverage data set of the source range.
See also
B COVerage B COVerage.state

©1989-2024 Lauterbach General Commands Reference Guide C | 152

COVerage.METHOD Select code coverage method

Format: COVerage.METHOD INCremental | SPY | RTS | ART | Hardware

TRACE32 supports various code coverage methods. The code coverage method INCremental is supported
for all processor architectures, as long as information about the executed instructions is recorded by a
TRACE32 trace tool or by an onchip trace buffer. All other methods are subject to restrictions.

INCremental INCRemental code coverage is based on the trace recording. After the
trace recording stopped the command COVerage.ADD can be used to
add the current trace recording to the code coverage database.

Incremental code coverage is the preferred method for the Trace.Modes
Fifo, Stack and Leash, but it can also be used in conjunction with the
Trace.Mode STREAM.

SPY SPY code coverage is based on the trace recording. It can only be
selected if the Trace.Mode STREAM is active. While trace data is being
recorded, streaming to the host is automatically interrupted at regular
intervals in order to update the coverage database.

SPY code coverage is only recommended if the processor/trace protocol
in use is not supported by RTS. For setup details, refer to the chapter
“SPY Mode Code Coverage” in Application Note for Trace-Based Code
Coverage, page 65 (app_code_coverage.pdf).

SPY code coverage is only possible for static code and is otherwise
subject to the same restrictions as Trace.Mode STREAM.

RTS RTS stands for Real-time Processing. The COVerage.METHOD RTS is
automatically enabled if RTS.ON. Trace data are processed while
recording and a live display of the code coverage results is possible. For
details refer to the examples given in the description of the RTS
command group.

RTS code coverage is subject to the same restrictions as the RTS
command group.

ART ART code coverage is based on the assembiler single steps recorded to
the TRACES32 Advanced Register Trace ART. The code coverage
database is updated after every single step.

ART code coverage is only supported for a limited humber of processor
architectures. If your processor architecture is not supported, the ART
method will be grayed out in the COVerage window and the
COVerage.METHOD ART command will return a “command locked”
error. Please contact in this case the Lauterbach technical support.

©1989-2024 Lauterbach General Commands Reference Guide C | 153

See also

B COVerage B COVerage.state B Analyzer.Mode B ART
B RTS.ON

A ’Trace Data Collection’ in ’Application Note for Trace-Based Code Coverage’
A ’Release Information’ in’Legacy Release History’

COVerage.Mode Activate code coverage for virtual targets
Format: COVerage.Mode <mode>
<mode>: FastCOVerage [ON | OFF]

Activates code coverage for virtual targets with minimal trace activation.

FastCOVerage Code coverage via the MCD interface. TRACES32 instructs a virtual target
via the MCD interface to perform a code coverage analysis. Upon
completion of the coverage analysis, the coverage information is
imported to the TRACES32 coverage database with the COVerage.ADD
command.

Prerequisite: COVerage.METHOD.INCremental is selected in the
COVerage.state window.

See also
B COVerage B COVerage.state

A ’Trace Data Collection’ in ’Application Note for Trace-Based Code Coverage’

COVerage.OFF Deactivate coverage

Format: COVerage.OFF

Coverage data will not be recorded.

See also
B COVerage B COVerage.state

A ’Trace Data Collection’ in ’Application Note for Trace-Based Code Coverage’

©1989-2024 Lauterbach General Commands Reference Guide C | 154

COVerage.ON Activate coverage

Format: COVerage.ON

Activates the currently selected COVerage.METHOD.

See also
B COVerage B COVerage.state

A ’Trace Data Collection’ in ’Application Note for Trace-Based Code Coverage’

©1989-2024 Lauterbach General Commands Reference Guide C | 155

COVerage.Option Set coverage options

Using the COVerage.Option command group, you can configure how TRACE32 processes or displays
code coverage data.

See also
B COVerage.Option.BLOCKMode B COVerage.Option.|Trace
B COVerage.Option.SourceMetric B COVerage.Option.Staticlnfo
B COVerage B COVerage.state
COVerage.Option.BLOCKMode Enable/disable line block mode
Format: COVerage.Option.BLOCKMode [ON | OFF]

Changes how code coverage measurements are applied to source code lines.

ON The code coverage result is applied to all associated source code lines.

OFF The code coverage result is applied only to the last source code line.

Example: Please refer to COVerage.EXPORT.CBA.

See also
B COVerage.Option Bl COVerage.EXPORT.CBA

©1989-2024 Lauterbach General Commands Reference Guide C | 156

COVerage.Option.ITrace Enable instruction trace processing

Format:

COVerage.Option.ITrace [ON | OFF]

TRACE32 does not record trace information about conditional instructions in the simulator. If a trace, which
has been recorded on real hardware, should be loaded in the simulator, the additional info is processed.

ON

OFF

See also

Conditional instruction trace is processed.

Only the simulator bus trace is processed.

B COVerage.Option

COVerage.Option.SourceMetric Select code coverage metric

Format:

<criterion>:

COVerage.Option.SourceMetric <criterion>

Call
CONDition
Decision
Function
MCDC
ObjectCode
Statement

Code coverage for the selected metric is performed based on the trace data.

ObjectCode ObjectCode coverage is performed.

Statement Indicates if a source code line has achieved the code coverage criterion
statement coverage.

Decision Indicates if a source code line has achieved the code coverage criterion
decision coverage.

MCDC Modified condition/decision coverage (MC/DC).
Indicates if a source code line has achieved the code coverage criterion
modified condition/decision coverage.

©1989-2024 Lauterbach

General Commands Reference Guide C | 157

Function Indicates which functions have been (at least partially) executed.

Call Indicates which function calls have been executed.

Blocks of assembly instructions are not affected by this option.

For more information about all the metrics, please refer to the chapter “Code Coverage Analysis” in
Application Note for Trace-Based Code Coverage, page 76 (app_code_coverage.pdf).

See also
B COVerage.Option 1 COVerage.SourceMetric()

A 'Code Coverage Analysis’ in ’Application Note for Trace-Based Code Coverage’
A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide C | 158

COVerage.Option.Staticinfo Perform code coverage precalculations

Format: COVerage.Option.Staticinfo [ON | OFF]

Performs the following precalculations for the code coverage if ON:

. Object code coverage
- IT block preprocessing to improve the coverage results for ARM Thumb code.
- Counting the conditional branches for the conditional branch analysis.

J Statement and decision coverage
- Detection of literal pools and alignment padding blocks.

- Counting the instructions for modules/functions without source code information.

ON (default) Perform precalculations.

code coverage).

OFF Do not perform precalculations (recommended in the case of issues with the

See also

B COVerage.Option

©1989-2024 Lauterbach General Commands Reference Guide C

159

COVerage.RESet Clear coverage database

Format: COVerage.RESet
<trace>.COVerage.RESet (deprecated)

Discards the complete code coverage information and restores the default code coverage settings.

See also
B COVerage B COVerage.state
A ’Trace Data Collection’ in ’Application Note for Trace-Based Code Coverage’

COVerage.SAVE Save coverage database to file

Format: COVerage.SAVE <file>
<trace>.COVerage.SAVE (deprecated)

Saves the code coverage information to a file.

<file> The default extension of the file name is *.acd.
See also
B COVerage B COVerage.state

A ’Appendix B: Assemble Multiple Test Runs at Address Level' in ’Application Note for Trace-Based Code Coverage’

©1989-2024 Lauterbach General Commands Reference Guide C | 160

COVerage.Set Coverage modification

Format: COVerage.Set [<address> | <range>] <state>
<trace>.COVerage.Set (deprecated)

<state> NOTTAKEN
TAKEN
NOTEXEC
ONLYEXEC
OK

Marks the defined range with the specified execution state. If the instruction is already marked with an
execution state the new state is added incrementally.

See also
B COVerage B COVerage.state

©1989-2024 Lauterbach General Commands Reference Guide C | 161

COVerage.state

Configure coverage

Format:

COVerage.state

Opens the COVerage.state window, where you can configure the code coverage analysis and display the

results.

& B:COVerage.state
METHOD

state Option
OFF StaticInfo
@ ON
SourceMetric

@ INCremental SPY (RTS €

commands ObjectCode - commands

(=[O sl

| ART

+ ADD MatchPolicy E Load
[@mt]| | [ecc | || [Esavem
(_RESet] T

@4

[ﬁ ListVar

A For descriptions of the commands in the COVerage.state window, please refer to the COVerage.*
commands in this chapter.
Example: For information about the ListFunc button, see COVerage.ListFunc.

B Click to display the results of the code coverage analysis.

See also

COVerage
COVerage.INFO
COQOVerage.ListCalleRs
COVerage.ListModule

COVerage.Option

B COVerage.ADD

B COVerage.Init

B COVerage.ListFunc
B COVerage.ListVar
B COVerage.Mode
B COVerage.RESet

COVerage.TreeWalkSETUP B RTS.OFF
‘Release Information’ in ’Legacy Release History’

|
|
|
|
B COVerage.METHOD
|
|
A

B COVerage.Delete

B COVerage.List

B COVerage.ListInlineBlock
B COVerage.LOAD

B COVerage.OFF

B COVerage.SAVE

B COVerage.EXPORT
B COVerage.ListCalleEs
B COVerage.ListLine

B COVerage.MAP

B COVerage.ON

B COVerage.Set

©1989-2024 Lauterbach

General Commands Reference Guide C | 162

COVerage.TreeWalkSETUP Prepare a tree with code coverage symbols

See also
B COVerage.TreeWalkSETUP.<sub_cmd> B COVerage
B COVerage.state (d COVerage.TreeWalk()
COVerage.TreeWalkSETUP.<sub_cmd> Prepare a coverage symbol tree
Format: COVerage.TreeWalkSETUP.<sub_cmd>
<sub_cmd>: ADDRESS [<address> | <address_range>]

preset [<filter>] [/<option>]
SOURCE [<source._file>]
sYmbol [<symbol>...]

Prepares a tree with modules, functions, and HLL lines. The tree can be traversed with the PRACTICE
function COVerage.TreeWalk().

ADDRESS Defines a filter for the addresses you want to include in the tree.

preset If the command contains no parameters, then all symbols are
included in the tree.
The <filter> parameter allows to reduce the number of symbols.

SOURCE Defines a filter for the source files you want to include in the tree.
The syntax of the pathname is oriented towards the symbol and path
columns in the sYmbol.Browse.SOURCE window.

sYmbol Defines a filter for the symbols you want to include in the tree.

<symbol>, <source> You can use one or more items as filter criteria. The wildcards ‘*’ and ‘?’
are supported. Only items matching the filter criteria are displayed.

©1989-2024 Lauterbach General Commands Reference Guide C | 163

Example:

PRIVATE &node

; create a tree with all symbols starting with “func”

COVerage.TreeWalkSETUP.sYmbol func*

&node=COVerage.TreeWalk ("Init") g
WHILE "&node"!=""
(
IF STRing.SCAN("&node","\",0.)==0. g
(
PRINT "The next module is: &node"
)
ELSE IF STRing.SCAN("&node","--",0.)>-1. ;
(
PRINT "The next HLL line is: &node"
)
ELSE H
(
PRINT "The next function is: &node"
)

&node=COVerage.TreeWalk ("Recurse") g

See also

get the

element

element

element

get the

first tree element

is a module

is an HLL line

is a function

next tree element

B COVerage.TreeWalkSETUP

©1989-2024 Lauterbach General Commands Reference Guide C | 164

CTS

CTS Context tracking system (CTS)

CTS (Context Tracking System) is a technique that allows the context of the target system to be
reconstructed for each single record sampled to the trace buffer. Context of the target system means here
the contents of the CPU registers, the memories, the caches and TLBs (for selected architectures only).

See also

B CTS.CACHE B CTS.CAPTURE B CTS.Chart.sYmbol B CTS.EXPORT
B CTS.FixedControl B CTS.GOTO B CTS.INCremental B CTS.Init

W CTS.List B CTS ListNesting B CTS.Mode B CTS.OFF

H CTS.ON B CTS.PROCESS B CTS.PROfileChart B CTS.RESet

B CTS.SELectiveTrace B CTS.SKIP B CTS.SmartTrace B CTS.state

B CTS.STATistic Bl CTS.TAKEOVER B CTS.UNDO B CTS.UseConst
B CTS.UseDataTrace B CTS.UseFinalContext B CTS.UseFinalMemory B CTS.UseSIM
B CTS.UseStartMemory B Go.Back

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide C | 165

Trace-based Debugging

The main application for CTS is the so-called trace-based debugging. Trace-based debugging allows to re-
run the program and data flow sampled to the trace buffer on the TRACES2 screen. Precondition to perform
a full-featured trace-based debugging is that the complete program and data flow until the stop of the

program execution is sampled to the trace buffer. Otherwise CTS has to be configured to give correct results

(See CTS.state).
/A TRACE3Z - O X
File Edit View Var Break Run CPU Misc Trace Probe Perf Cov Window Help
(M AT rn | 28 0 EnEscs @22
= (===
Step Over || Diverge Return Up Sepl| - | Over |- Ent)| | OFf|[t%] &= | +..||"3 | Find: sieve.c
addr/1ine [source |
600 index = 0; .
50 'For‘(x—OO,x<628,x+=Ol
602 sinewave index++] (=1nix) ,.f(x+0 1)) * 300.0 + B0.0;
503 |}
void init_Tinked_Tisti{void)
506 |{
607 int i = 0;
608 const int last = s‘lzeo'F(pL'lnkedL'lstBu'F / s‘lzeof(pLinkedListBuf:O:} - 1;
static const char®* const text[{"Monday"”, "Tuesday"”, "Wednesday"”, "Thursday”, "Friday"”, "Saturday”, "
611 ast.left = pLinkedListBuf; W
1< >
i BuTrace.List EI@ o = || = | = |
B .. | A Goto...| #3Fnd... | M chart | Bl Profile || B MPS | 4 More | X Less v 0 0 5] . stack A
record |run |address cycle |data symbol ik c rz 0 RO o
600 AV - Rr3 0 Rl 0
= R4 o RlZ o
T = RS 0 R13 7F90
W R& 0 R14 1ZAF
-08511900 D:00007FAS wr- 10ng 00000000 Y| R+ Set Ref 0 R7 7Fa0 Pe DFAS
-08511899 T:00000FAG Tetch C27 A x0A N SPS 10 CPSE &0O0000F3 W
: for [x = 0.0 ; x < 62.8 ;| 2+ SetZero = 5
dr r4,0x1044
-08511898 D:00001044 rd-Tong 00000000 Y | H_ Toggle Bookmark XAS b
-08511897 T:00000FA8 fetch 4825 oc = e |
dr F3,001040 * 6 = ==
-08511896 D:00001040 rd-Tong 00000000 % E xA4
-08511895 T:00000FAA fetch GOBB \ XOE t. Up Down BMargs [ilocals [caller
str r3, [r7, -000|[func_sin() ~
-08511894 D:00007F98 00000000 Y|, 14 -001|main()
-08511893 T:00000FAC fetch BOFC x10 -002[gomat Casm)
str r4,[r7,] N Chart —|end of frame
-08511892 D:00007FaC Tong 0000 kY 8
-08511891 T:00000FAE fetch [Y, . x12
- b 0x1024 v | Ignore in Statistic W
A Use in Statistic >
= - 4 First in Statistic
o & Last in Statistic
4 Full Statistic
components trace Var List Step Go Break sYmbol other pravious
C-T: -0851190 1.190ms | C-Z: +604.413ms here ' CTS (-8511897.0.) HLL up
/ . .
Select the start point for the trace-based debugging
After selecting the start point for the trace-based debugging TRACES32 does the following:
. The TRACE32 screen displays the context of the processor as it was when the selected start

point was recorded to the trace buffer (e.g. CPU registers, source listing, variables etc.).

J The yellow CTS field in the state line indicates that the TRACES32 screen no longer displays the

current state of the CPU.

. All run-time control buttons in the List window are yellow, to indicate that trace-based debugging

is enabled.

If trace-based debugging in on, you can use all run-time control commands to re-run the information
sampled to the trace buffer on the TRACES32 screen (e.g. Step.single, Step.Back, Go.Return,

Var.Step.Till etc.).

©1989-2024 Lauterbach

General Commands Reference Guide C |

166

Trace-based debugging can be switched off by either using the Off button in the List window or by entering
CTS.OFF into the command line.

Full High-Level Language Trace Display

If the complete program and data flow until the stop of the program execution is sampled to the trace buffer
TRACES2 can display a full High-Level Language trace containing also register and stack variables. See the
command CTS.List.

Reconstruction of Trace Gaps (TRACE32-ICD)

CTS.List can also be used to reconstruct trace information:

. trace information lost through an overload of the trace port can be reconstructed in most cases.
J if only read cycles are sampled to prevent an overload of the trace port, CTS can reconstruct all
write cycles.

©1989-2024 Lauterbach General Commands Reference Guide C | 167

CTS Commands

CTS.CACHE

CTS cache analysis

Format:

CTS.CACHE

TRACE32 allows to perform a cache analysis using CTS technology, i.e. based on the program execution
captured in a trace recording.

The cache analysis requires detailed knowledge of the structure of the CPU’s cache. For most CPUs
TRACERS2 is aware of the cache structure.

To check if TRACES32 has the correct information for the cache structure of your CPU, open the
CTS.CACHE.state window. To define the cache structure for TRACE32, use the TRACE32 command line
or adjust the settings in the CTS.CACHE.state window.

% B:CTS.CACHE
commands
RESet
&% PROCESS
Q OFF
@ on
ZcTs
&Tmce

cache SETS

progress

warnings

0.

fifofulls

0.

L1Architecture
Harvard ~
TLBArchitecture
Harvard ~
MMUArchitecture
CortexAQ

Width

1C 64.

32.

32.

L2

0.

Dc 64.
0.
0.

L3

0.

ITLB
DTLB

TLBO 0.

TLB1 0.

C¥cles
Core

Mode
MMU
MMU
MMU
MMU

LY B R L

results
w £l View
£l ViewBPU
£l ViewStalls
£ ViewBus
&% List

Allocation Tags
ReadAlloc VIPT
ReadAlloc PIPT
WritzAlloc PIPT
WritzAlloc PIPT

LY B R L

(o] 2)

Replacement
MMU
MMU
Cyclic
Cyclic
MMU
MMU
Cyclic
Cyclic

LY B R L

ClC]€]€]€]€]€]<

After CTS is switched to ON and CTS.Mode CACHE is selected, the contents of the caches and TLBs can
be reconstructed. The cache analysis can be used for the following tasks:

To support you to improve the cache hit rate by changing code and data locations

To verify the cache hit rates after code changes

To identify candidates for TCMs (tightly coupled memories) or faster memories

To support you to find performance or bus bottlenecks

To support you to improve the system performance and to reduce the power consumption

To support you to try and verify different cache strategies

To support you to identify optimum cache configuration and sizes for new silicons

©1989-2024 Lauterbach

General Commands Reference Guide C

168

The command group CTS.CACHE provides also the following advanced performance analysis features:

J Analysis of the branch prediction unit
. Analysis of the external bus interface
. Analysis of idle/stall operations

Even if these commands analyze different aspects of a microcontroller they are summarized here.

See also

B CTS.CACHE.Allocation

B CTS.CACHE.DefineBus

B CTS.CACHE.LFSR

B CTS.CACHE.ListFunc

B CTS.CACHE.ListModules

B CTS.CACHE ListSet

B CTS.CACHE.MMUArchitecture
B CTS.CACHE.Replacement
B CTS.CACHE.SETS

B CTS.CACHE.state

B CTS.CACHE.TLBArchitecture
B CTS.CACHE.ViewBPU

B CTS.CACHE.ViewStalls

B CTS.CACHE.Width

B CTS.PROfileChart. CACHE
A

‘Release Information’ in’Legacy Release History’

CTS.CACHE.CYcles
CTS.CACHE.L1Architecture
CTS.CACHE.ListAddress
CTS.CACHE.ListLine
CTS.CACHE.ListRequests
CTS.CACHE.ListVar
CTS.CACHE.Mode
CTS.CACHE.RESet
CTS.CACHE.Sort
CTS.CACHE.Tags
CTS.CACHE.View
CTS.CACHE.ViewBus
CTS.CACHE.WAYS

CTS

CTS.state

©1989-2024 Lauterbach

General Commands Reference Guide C |

169

CTS.CACHE.Allocation Define the cache allocation technique

Format: CTS.CACHE.Allocation <cache> ReadAlloc | WriteAlloc
<cache>: IC

DC

L2

L3

The command CTS.CACHE.Allocation describes how the CPU deals with a cache miss on a data
store/write access.

ReadAlloc The data from a memory address is only loaded to the cache on
read/load accesses.

WriteAlloc The data from a memory address is loaded to the cache on a store/write
access and the new data is written in the cache line. Please note that this
also depends on the cache mode (write-through or copy-back).

CTS.CACHE.Allocation IC ReadAlloc ; the instruction cache is a
; read allocate cache

See also
B CTS.CACHE B CTS.CACHE state

©1989-2024 Lauterbach General Commands Reference Guide C | 170

CTS.CACHE.CYcles Define counting method for cache analysis

Format: CTS.CACHE.CYcle Core | Bus | NonSequential

Defines which method is used to count the cache hit/cache miss rate.

Core The hit or miss counter is incremented on every core cycle.
Bus The hit or miss counter is incremented on every bus cycle.
NonSequential The hit or miss counter is only incremented if the CPU accesses a new

cache line or performs a non-sequential access.

See also
B CTS.CACHE B CTS.CACHE. state

CTS.CACHE.DefineBus Define bus interface

Format: CTS.CACHE.DefineBus <bus> <range> <bus_type> <frequency> <unknown>
<read> <readreq> <readline> <write> <writeseq> <writeline> <writehalf>

<bus>: BUSO
BUS1
BUS2
BUS3

<bus_type>: SIMPLE32
SIMPLE32I
SIMPLE32D
SIMPLEG64
SIMPLEG64I
SIMPLE64D

Defines the bus interface that is the base for the analysis of the bus utilization by the command
CTS.CACHE.ViewBus.

SIMPLE indicates that the number of clock cycles required by each type of memory access can be directly
given.

©1989-2024 Lauterbach General Commands Reference GuideC | 171

<range>

<frequency>

<unknown>

<read>

<readseq>

<readline>
<write>

<writeseq>

<writeline>

<writehalf>

Memory range addressed by the bus. The physical address has to be
specified (memory class A:)

Bus frequency.

Average number of clock cycles required by a memory access that is
categorized as unknown by the cache analysis.

Number of clock cycles required by a memory read access.

Number of clock cycles required by a subsequent memory read access
(e.g. burst access).

Number of clock cycles required by a cache line fill.
Number of clock cycles required by a memory write access.

Number of clock cycles required by a subsequent memory write access
(e.g. burst access).

Number of clock cycles required to write the contents of a cache line
back to memory (copy back).

Number of clock cycles required to write the contents of half a cache line
back to memory (copy back).

CTS.CACHE.DefineBus BUSO A:0++0xffffffff SIMPLE64 100.MHz

1. 4. 1. 1. 4. 2.

CTS.CACHE.DefineBus BUS1 A:0x80000000++0x1ffffff SIMPLE32 100.MHz

See also

1. 6. 7. 1. 8. 4.

B CTS.CACHE

B CTS.CACHE.state

©1989-2024 Lauterbach

General Commands Reference Guide C | 172

CTS.CACHE.L1Architecture Define architecture for L1 cache

Format: CTS.CACHE.L1Architecture Harvard | Unified | UnifiedSplit

Defines the CACHE structure. This command defines the architecture of the level 1 cache.

Harvard The L1 cache has Harvard architecture, which means that there is an
instruction cache and a data cache available.

Unified The L1 cache is a unified cache, which means that the same cache is
used for instruction fetches and data loads/stores.

UnifiedSplit The L1 cache is a unified cache, which means that the same cache is
used for instruction fetches and data loads/stores.
TRACE32 splits however the unified cache in an instruction and data
cache for the cache analysis. The splitting is based on the cycle type
(e.g. read, write, ptrace, exec).

See also
B CTS.CACHE B CTS.CACHE state
CTS.CACHE.LFSR Linear-feedback shift register for random generator
Format: CTS.CACHE.LFSRIC | DC | L2 | L3 <lfsr>

Set the start value of the linear-feedback shift register for random replacement strategy.

See also
B CTS.CACHE B CTS.CACHE state

©1989-2024 Lauterbach General Commands Reference Guide C | 173

CTS.CACHE.ListAddress

Address based cache analysis

Format:

CTS.CACHE.ListAddress IC | DC | L2 | L3 <range>

Performs a cache analysis based on addresses.

£ B:CTS.CACHE ListAddress DC = =R
Z2 Porams...|| 3% Config... || B Functions || B Lines || £ Variables | B Sets & In Y out
POS: O.
address |cached hits misses victims hits |

N5D: 0000 : 00030000 0. 0. 0. 0. A

N5D: 0000 : 00040000 0. 0. 0. 0.

N5D: 0000 : 00050000 0. 0. 0. 0.

N5D: 0000 : 00050000 336. 221. 115. 115. | 85.773%

N5D: 0000 : 00070000 24, 14. 10. 10. | 58.333%

N5D: 0000 : 00080000 0. 0. 0. 0.

N5D: 0000 : 00090000 0. 0. 0. 0.

N5D: 0000 : 000AD000 0. 0. 0. 0.

N5D: 0000 : 000B0000 0. 0. 0. 0.

N5D: 0000 : 000C0000 27. 11. 16. 16. | 40.740%

N5D: 0000 : 000D0000 41 27. 14. 14. | B85.853%

N5D: 0000 : 000EQOOD 407 380. 27. 27. | 93.366%

N5D: 0000 : 000F0000 128 119. 9. 9. | 92.968%

N5D: 0000 : 00100000 4484 4069, 415. 415. | 90.744%

N5SD: 0000 : 00110000 0. 0. 0. b

miss occurred.

cached Number of accesses to cached memory.
hits Number of cache hits.
(percentage based on all cached accesses)
misses Number of cache misses.
(percentage based on all cached accesses)
victims Number of cache lines that were thrown out of the cache after a cache

CTS.CACHE.ListAddress IC 0x8000--0x12000

See also

B CTS.CACHE

B CTS.CACHE.state

©1989-2024 Lauterbach

General Commands Reference Guide C

174

CTS.CACHE.ListFunc

Function based cache analysis

Format:

CTS.CACHE.ListFunc IC | DC | L2 | L3 [<range> | <address>]

Performs a function-based cache analysis.

£ B:CTS.CACHE ListFunc IC = =R
8 params...|| (A Goto...|| Ef view
address tree cached hits misses victims hits
none = hsoftirg
P:0000:C01020C0--CO1022FF ® __do_softirg 38842, 34212 4630. 4630. | B5.079%
P:0000:C0112CF8--C011201F asklet_init 0. . 0. 0.
P:0000:C0112D020--C011203B softirgd_should_run 385. 339. 46. 46. | 88.051%
P:0000:C0112D3C--C0112D6F vakeup_softirgd 528. 395. 133, 133. | 74.810%
P:0000:C0112D70--C0O112DFF asklet_kill 108. 108 0. 0. |100. 000%
P:0000:C0O112E00--CO112E4F asklet_hrtimer_init 0. 0. 0. 0.
P:0000:C0112E50--CO112EAT __tasklet_hrtimer_trampoline 0. 0. 0. 0.
P:0000:C0O112EAS--CO112F1F ocal_bh_enable 300. 257 43, 43. | 85.666%
P:0000:C0112F20--CO112F4F un_ksoftirgd 405. 337 68, 68. | 83.209%
P:0000:C0112F50--CO112FCF o_softirg 81. 81. 0. 0. |100. 000%
P:0000:C0112FD0O--CO1130AF __local_bh_enable_ip 100. 86. 14. 14. | 86.000%
P:0000:C01130B0--C0113123 ro_enter 4492, 3775 717. 717. | 84.038%
P:0000:C0113124--C01131C3 ro_exit BOTT. 7224 B53. 853. | 89.439%

CTS.CACHE.ListFunc IC 8000++0fff

See also

perform a function based cache
cache analysis for the specified
; address range

B CTS.CACHE

B CTS.CACHE.state

©1989-2024 Lauterbach

General Commands Reference Guide C

175

CTS.CACHE.ListLine

HLL line based cache analysis

Format:

CTS.CACHE.ListLine IC | DC | L2 | L3 [<range> | <address>]

Performs an HLL-line-based cache analysis.

£ BxCTS.CACHE Listline IC = =R
8 params...|| (A Goto...|| Ef view
address tree cached hits misses victims hits
none = hsoftirg
P:0000:C01020C0--CO1022FF = __do_softirg 38842, 34212, 4630. 4630, | B8.079%
P:0000:C01020C0--CO1020CF ~elysoftirg.c 2946, 1856. 1090. 1090. | &3.000%
P:0000:C01020D0--C0O1020DF ~elysoftirg.c BOS8. BOS8. 0. 0. [100.000%
P:0000:C01020E0--CO1020EBE .mthread_info.h B06. 435. 171. 171. | 71.782%
P:0000:C01020EC--CO1020F7 ~elysoftirg.c B06. B06. 0. 0. [100.000%
P:0000:C01020F8--CO1020FF ~elysoftirg.c 404, 404, 0. 0. [100.000%
P:0000:C0102100--C0102103 werichpreempt.h 202. 9. 193. 193. 4.455%
P:0000:C0102104--C0102107 .el'softirg.c 202. 202. 0. 0. [100.000%
CTS.CACHE.ListLine IC dosomethingbad

See also

B CTS.CACHE

B CTS.CACHE.state

CTS.CACHE.ListModules

Module based cache analysis

Format:

CTS.CACHE.ListModules IC | DC | L2 | L3 [<range> | <address>]

Performs a module-based cache analysis.

£ B:CTS.CACHE ListModule IC = =R
8 params...|| (A Goto...|| Ef view
address tree cached hits misses victims hits
P:0000:C01085898--C0O1085EE \mm,;/ 1 omap 0. 0.
none Y dma-mapping
P:0000:C0109944--C01090F3 Flush 1044865, 94701, 9764, 9764. | 90.653%
none idmap
none mm/ 1 oremap
P:0000:CO10A3ES--COL10ATCT “arch/arm/mm/mmap 0. 0. 0. 0.
P:0000:COL0ATCE--CO10ASCT pad 49, 44, 5. 5. | B9.795%
none ymmu
P:0000:CO10AB7E--CO10ADS 3 ‘pageattr 0. 0. 0. 0.
none “alignment
P:0000:CO10BEEO--COL10BEF7 “abort-ev? G. 5. 1. 1 83.333%
P:0000:CO10BFO0--CO10BFOB ‘wpabort-v7 1. 0. 1. 1.
P:0000:CO10BFOC--CO10C1ET Ycache-v7 38225 38188. 37. 34. | 99.903%
See also
B CTS.CACHE B CTS.CACHE state

©1989-2024 Lauterbach

General Commands Reference Guide C

CTS.CACHE.ListRequests Display request for a single cache line

Format: CTS.CACHE.ListRequests IC | DC | L2 | L3 <address>

Display which addresses compete for the same cache line.

£ B:CTS.CACHE ListRequests IC 0x30 = =R
Z Porams...|| 3% Confa... || B Addresses]|] Functions || & Lines || EFf] Variables || EFf| Sets
POS: O.
address |cached hits misses victims hits |
IC:0000:C0103020 9. . [[33.333% A
IC:0000:C0107820 8. 7. 1. 1. | 87.500%
IC:0000:C0108820 8. 7. 1. 1. | 87.500%
IC:0000:C010AB20 12. 11. 1 1 91. 666%
IC:0000:C010C020 22, 20. 2. 2. | 90.909%
IC:0000:C010C820 2328. 2326. 2. 2. | 99.914%
IC:0000:C010D020 2216. 2031. 185. 185. | 91.851%
IC:0000:CO10EQ20 1704, 1491. 213. 213. | 87.500%
IC:0000:C0O10F020 2130. 1730. 400. 400, | 81.220%
IC:0000:C0O10FB20 736. 552. 184. 184. | 75.000%
IC:0000:C0110820 142, 131. 11. 10. | 92.253%
IC:0000:C0112820 756. 567. 189. 189. | 75.000% b

CTS.CACHE.ListRequests IC 0x30 ; Display which addresses compete for
; the cache line 0x30 of the instruction
; cache

See also
B CTS.CACHE B CTS.CACHE.state

©1989-2024 Lauterbach General Commands Reference GuideC | 177

CTS.CACHE.ListSet

Cache set based cache analysis

Format:

CTS.CACHE.ListSetIC IDCIL2|L3

Performs a cache analysis based on cache sets.

£ B:CTS.CACHE ListSet IC = =R
Z Porams...|| 3% Confa... || B Addresses]|] Functions || & Lines || EFf] Variables || EFf| Sets
POS: O.
address |cached hits misses victims hits |
IC:0000:00000000 348401, 330803. 17598, 17586. | 94.948% A
IC:0000:00000020 479444, 454032, 25412, 25400. | 94.6599%
IC:0000:00000040 2452573, 2430777, 21796. 21784, | 99.111%
IC:0000:00000080 9317358, 9292841. 24517. 24505. | 99.736%
IC:0000:00000080 25168974, 2489785, 27189, 27177. | 958.919%
IC:0000:00000040 433358, 404347, 29011. 28999, | 93.305%
IC:0000:000000C0 380687, 350672, 30015. 30003. | 92.115%
IC:0000:000000E0 375315. 345716, 29599, 29587. | 92.113%
IC:0000:00000100 352282, 329197. 23085. 23073. | 93.447%
IC:0000:00000120 362541, 335392, 27149, 27137. | 92.511%
IC:0000:00000140 287973, 285052, 22921. 22909, | 92.040%
IC:0000:00000160 287508, 263687, 23821. 23809, | 91.714%
IC:0000:00000180 1998555, 1957385, 41170. 41158, | 97.940%
IC:0000:000001A0 3047305, 3013882, 33423, 33411. | 958.903% b

See also

B CTS.CACHE

CTS.CACHE.ListVar

B CTS.CACHE.state

Variable based cache analysis

Format:

CTS.CACHE.ListVar IC | DC | L2 | L3 [<range> | <address>]

Performs a cache analysis based on variables.

£ B:CTS.CACHE ListVar DC

8 params...|| (A Goto...|| Ef view

address tree cached hits misses victims hits
D:0000:CO60C2584--CO60C3DF reu_sched_state 2319. 1619. 700 700. | 89,
D:0000:CO60C3E0--COG0C5 3B reu_bh_state 2321. 1775. 546. 546. | 76.
D:0000:COG0C3E0--COG0C5 3B reu_bh_state 2321. 1775. 546. 546. | 76.
D:0000:C060C53C--C060C543 rcu_struct_flavors 531. 335. 196. 196. | 63.
D:0000:C060C53C--C0O60C543 rcu_struct_flavors 531. 335. 196. 196. | 63.
D:0000:CO60C544--CO60C547 qlowmark 1. 1. 0. 0. |100.
D:0000:CO60C548--CO60C54B blimit 4. 4. 0. 0. |100.
D: 0000 :COB0C54C--COG0C54F ghimark 1297, 957. 340. 340. | 73.
D:0000:CO60C550--CO60C553 Jiffies_till_first_fqgs 86. 54. 32. 32. | 62,
D:0000:CO60C554--CO60C557 Jiffies_till_next_fqgs 3. 3. 0. 0. |100.
D:0000:CO60C558--CO60C55E Jiffies_till_sched_qgs 0. 0. 0. 0.
D:0000:C060C55C--CO60C55F rcu_fanout_leaf 2. 1. 1. 1. | s0.

F14% | A
475%
475%
088%
088%
000%
000%
785%
790%
000%

000% | ¥

See also

B CTS.CACHE

B CTS.CACHE.state

©1989-2024 Lauterbac

h

General Commands Reference Guide C |

178

CTS.CACHE.MMUArchitecture

Define MMU architecture for cache control

Format:

<control>:

CTS.CACHE.MMUArchitecture <control>

NONE

ARM920T | ARM922T | ARM925T | ARM926EJ | ARM946E
ARM1136J | ARM1156T2 | ARM1176JZ | ARM11MPCORE
CortexA5 | CortexA7 | CortexA8 | CortexA9

CortexR4 | CortexR5 | CortexR7 | CortexR8

MXPLMEM

SCORPION

E200MMU | E200MPU | E200FLASH | E200FLASH2

M340

MCF5272

SC140E

NIOS2E | NIOS2S | NIOS2F

TC1766 | TC1796

If the MMU architecture is set, the cache analysis takes all manipulations on the cache control registers
into account for the cache analysis:

o Cache flushes
o Switch-on and switch-off of the caches
o Cache locks

If CTS.CACHE.MMUArchitecture is set to NONE, the manipulations on the cache control registers are not
taken into account for the cache analysis.

See also

B CTS.CACHE

B CTS.CACHE.state

©1989-2024 Lauterbach

General Commands Reference Guide C

179

CTS.CACHE.Mode Define memory coherency strategy

Format: CTS.CACHE.Mode IC | DC | L2 | L3 <mode>
<mode>: CopyBack

WriteThrough

MMU

This command defines the strategy used for the memory coherency for each cache.

CopyBack Copy back strategy guarantees memory coherency.
When a cache hit occurred for a data store/write, the cache contents is
updated and the corresponding cache line is marked as dirty. The data
value is copied back to memory when the contents of the cache line is
evicted.

WriteThrough Write Through strategy guarantees memory coherency.
When a cache hit occurs for a data store/write, the cache contents is
updated and the data is also stored/written to memory.

MMU The strategy for memory coherency is taken from the MMU.
See also
B CTS.CACHE B CTS.CACHE state

©1989-2024 Lauterbach General Commands Reference Guide C |

180

CTS.CACHE.Replacement Define the replacement strategy

Format:

<cache>:

<replace>:

CTS.CACHE.Replacement <cache> <replace>

ICIDCIL2|L3IITLB|DTLB | TLBO | TLB1

Cyclic

FreeCyclic
PseudoCyclic
FreePseudoCyclic
Random
FreeRandom

LRU

MMU

This command defines the replacement strategy for each cache.

Cyclic

FreeCyclic

PseudoCyclic

FreePseudoCyclic

Cyclic (round-robin) replacement strategy is used. One round robin
counter for each cache set.

Cyclic (round-robin) replacement strategy is used, but if an empty cache
line is found it is filled first.

Cyclic (round-robin) replacement strategy is used. But there is only one
round robin counter for all cache sets.

Cyclic (round-robin) replacement strategy is used

. but if an empty cache line is found it is filled first
. but there is only one round robin counter for all cache sets
Random Random replacement strategy is used.
FreeRandom Random replacement strategy is used, but if an empty cache line is found
it is filled first.
LRU Last recently used replacement strategy is used.
MMU The replacement strategy is defined by the CPU.
Please use CTS.CACHE.Replacement MMU is your CPU uses a not
listed replacement strategy.
See also
B CTS.CACHE B CTS.CACHE state

©1989-2024 Lauterbach

General Commands Reference Guide C | 181

CTS.CACHE.RESet Reset settings of CTS cache window

Format: CTS.CACHE.RESet

Resets the settings of the CTS.CACHE window.

See also
W CTS.CACHE B CTS.CACHE.state
CTS.CACHE.SETS Define the number of cache sets
Format: CTS.CACHE.SETS <cache> <sets>
<cache>: ICIDCIL2IL3IITLB|DTLBI|TLBO | TLB1

This command defines the number of cache sets for each cache.

CTS.CACHE.SETS IC 4. ; The instruction CACHE has 4 sets
CTS.CACHE.SETS DC 4. ; The data CACHE has 4 sets
See also
B CTS.CACHE B CTS.CACHE.state
CTS.CACHE.Sort Define sorting for all list commands
Format: CTS.CACHE.Sort OFF | Address | Victims

Defines the sorting for all list commands.

See also
B CTS.CACHE B CTS.CACHE. state

©1989-2024 Lauterbach General Commands Reference Guide C | 182

CTS.CACHE.state

Display settings of CTS cache analysis

Format:

CTS.CACHE.state

Displays the cache structure of your CPU in the CTS.CACHE.state window. For background information,

see CTS.CACHE.
7% B:CTS.CACHE = =R
commands progress L1 Architecture CYcles results
RESet Harvard ~ Core ~ £l View
&% PROCESS TLBArchitecture £l ViewBPU
O OFF Warnings Harard — ~ £ viewstalls
® on 0. MMUArchitecture £l ViewBus
FicTs fifofulls CortexA9 ~ & List
&Trace 0.
cache SETS WAYS Width Mode Allocation Tags Replacement
IC 64. 4. 32. MMU Readilec ~ | |VIPT ~| [MMU ~
DC 64. 4. 32. MMU Readiloc v |PIPT ~| [MMU ~
L2 0. 0. 0. MMU Witeloc v | |[PIPT ~| |Cydic ~
L3 0. 0. 0. MMU Witeloc v | |[PIPT ~| |Cydic ~
ITLB 2. MMU v
DTLB 2. MMU v
TLBO 0. 64. Cycic ~
TLB1 0. 4. Cycdic ~
See also
B CTS.CACHE B CTS.CACHE.Allocation
B CTS.CACHE.CYcles B CTS.CACHE.DefineBus
B CTS.CACHE.L1Architecture B CTS.CACHE.LFSR
B CTS.CACHE.ListAddress B CTS.CACHE.ListFunc
B CTS.CACHE.ListLine B CTS.CACHE.ListModules
B CTS.CACHE.ListRequests B CTS.CACHE ListSet
B CTS.CACHE.ListVar B CTS.CACHE.MMUArchitecture
B CTS.CACHE.Mode B CTS.CACHE.Replacement
B CTS.CACHE.RESet B CTS.CACHE.SETS
B CTS.CACHE.Sort B CTS.CACHE.Tags
B CTS.CACHE.TLBArchitecture B CTS.CACHE.View
B CTS.CACHE.ViewBPU B CTS.CACHE.ViewBus
B CTS.CACHE.ViewStalls B CTS.CACHE.WAYS
B CTS.CACHE.Width B CTS.state

©1989-2024 Lauterbach

General Commands Reference Guide C

183

CTS.CACHE.Tags Define address mode for cache lines

Format: CTS.CACHE.Tags IC | DC | L2 | L3 <fag>
<tag>: VIVT

PIPT

VIPT

AVIVT

Defines the cache structure.

VIVT Virtual Index, Virtual Tag
The logical address is used as tag for a cache line.
PIPT Physical Index, Physical Tag
The physical address is used as tag for a cache line.
VIPT Virtual Index, Physical Tag
AVIVT Address Space ID + Virtual Index, Virtual Tag
See also
B CTS.CACHE B CTS.CACHE state

©1989-2024 Lauterbach General Commands Reference Guide C | 184

CTS.CACHE.TLBArchitecture Define architecture for the TLB

Format: CTS.CACHE.TLBArchitecture Harvard | Unified | UnifiedSplit

This command defines the architecture for the TLB cache.

Harvard The TLB cache has Harvard architecture, that means there is an
instruction TLB and a data TLB available.

Unified The TLB cache is a unified cache, that means the same TLB is used for
instruction fetches and data loads/stores.

UnifiedSplit The TLB cache is a unified cache, that means the same TLB is used for
instruction fetches and data loads/stores.
But TRACE32 splits the unified cache in an instruction and data TLB for
the cache analysis. The splitting is based on the cycles type (e.g.
read/write/ptrace/exec).
(not implemented yet)

See also
B CTS.CACHE B CTS.CACHE. state

©1989-2024 Lauterbach General Commands Reference Guide C | 185

CTS.CACHE.View

Display the results for the cache analysis

[Columns] [Buttons]

Format:

CTS.CACHE.View

Displays the results for the cache analysis. CTS.Mode CACHE has to be selected before any calculation
can be started. The calculation of the results for the cache analysis can be activated as follows:

By using the command CTS.PROCESS. That way the complete trace contents is analyzed.

By selecting a part of the trace contents e.g. a function. The starting point for the analysis is

selected by setting a reference point (command Analyzer.REF) to the relevant trace record [A].
The endpoint for the analysis is selected by setting the CTS point (command CTS.GOTO) to the

relevant trace record [B].

BiTrace List =R o
2 snp... || Goto...| #4Find... | flChart || BE Profile | EEMIPS | 4 More | X Less
record |run |address cycle |data symbol ti.back |
~
223 for (regvar = 0; regvar < 51 ; regvar++) _
s r3,r4,#0x10 =
T: Trace 0.100us |
000025 T \\sieve\si k» SetRef 0.100us #
000024 T: 0C1B \\sieve\si| 2% SetZero 0.100us
sr r3,r3,#0x
-000023 T:000006F0 fetch 301 \\sieve\si W Toggle Bookmark 0.100us
add r3,#0xl &yl Set CTS E
-000022 T:000006F2 fetch 041B Yisievelsi B 0.100us
s r3,r3,#0x10 Copy ?
-000021 T:000006F4 C 0C1E Y\sievelsi 0.100us
sr 3,r3,# . 1 View
-000020 T: 041B Yisievelsi List 0.100us
51 isi
-000019 T: C1C Yhsievelsi il Chart 0.100us
sr
-000018 T: C 042 YWisieve'si R . 0.100us
=1 r3,rd,#0x10 v | Ignore in Statistic
-000017 er T:OEE"?E?EE—C\ C 1416 V\siewvelsi == im Belisis 0.100us
-000016 T:000006FE fTetch 2B04 “A\sieve\si ¥ First in Statistic 0.100us
Cmf r3,#0x4 i o
-000015 T:00000700 fetch DDE7 ‘\sieve\si ¥ Lastin Statistic 0.100us
4 ble 0x6D2 .
-000014 |] T:000006D2 fetch 0423 Visieveysi ¥ Full Statistic 0.100us
224 vlong += regvar“autovar;
s1 r3,r4,#0x10 here L4
-000013 T:00000604 fetch 1416 Y\sieve'sicverrameserones 0.100us ¥
The result:
£l B:CTS.CACHE view =R o
2. | ZAcTs... | .| 6% Process| s¥ilist | Eferu | Sfstals | Bus
POS: O
cache lunknown cached hits misses victims flushes copybacks |writethrus |nawrites |
IC 17067 67656992, 65520568, 2136424, 2135656, 51z, 0. [{] 0.
0.025% 99, 974% 96.842% 3.157% 3.156% <0. 001%
DC 56259 21225619, 19967356, 1258263, 1258263, 0. 896065 . 0. 109939584,
0.174% 65.755% 94, 071% 5.928% 5.928% 2.775% 34.058%
L2
L3
ITLE 0. 67656992, 67646949, 10043, 0. 10039
99, 985% 0. 014% 0. 014%
DTLB 2. 32264648, 32252154, 12494 0. 12481
<0. 001% 99, 961% 0.038% 0.038%
TLEO 2. 22537. 22478 59. 0. 8
0. 008% 99.738% 0.261% 0.035%
TLE1 0. 0. o o 0. o
1< >

©1989-2024 Lauterbach

General Commands Reference Guide C | 186

£ B=CTS.CACHE view = =R
2. | ZAcTs... | .| 6% Process| s¥ilist | Eferu | Sfstals | Bus
cache Egg;fbgéks writethrus |nawrites reads writes trashes |
IC 0. 0. 0. 0. 0.
DC 896065 . 0. 109939584, 2970. 715. 0.
2.775% 34.058% 0. 009% 0.002%
L2
L3
ITLE
DTLB
TLEO
TLE1
1< >

Interpretation of the result:

All memory accesses

unknown I
known

hit mi : . .
s 158 trashes nawrites flushes writethrus copybacks writes reads

victims

©1989-2024 Lauterbach General Commands Reference Guide C | 187

Description of Buttons in the CTS.CACHE.View Window

[Back to Top]
Setup Display a Trace configuration window.
CTS Display CTS settings window.
Params Display information about the cache structure (CTS.CACHE.state).
Process Initiate calculation for cache analysis (CTS.PROCESS).
List Display a CTS listing (CTS.List).
BPU Display a statistic for branch prediction unit (CTS.CACHE.ViewBPU).
Stalls Display a statistic for idles/stalls (CTS.CACHE.ViewStalls).
Bus Display a statistic for bus utilization (CTS.CACHE.ViewBus).

Description of Columns in the CTS.CACHE.View Window

[Backto Top]

unknown

All accesses for which TRACE32 has no information

The cache analysis is based on the memory addresses recorded in the
trace buffer. Before the first memory address is mapped to a specific
cache line the contents of this cache line is unknown.

Other reasons for unknown are: gaps in the trace recording, missing
address information etc.

(percentage is based on all memory accesses)

cached

Number of accesses to cached addresses
(percentage is based on all memory accesses)

hits

Number of cache hits
(percentage is based on all cached accesses)

miss

Number of cache misses
(percentage is based on all cached accesses)

victims

Number of cache victims
(percentage is based on all cached accesses)

flushes

Number of cache lines that were flushed
(percentage is based on all memory accesses)

copybacks

Number of cache lines that were copied back to memory
(percentage is based on all memory accesses)

©1989-2024 Lauterbach

General Commands Reference Guide C | 188

writethrus Number of cache lines that were written through to memory
(percentage is based on all memory accesses)

nawrites Writes in a read-allocated cache
(percentage is based on all memory accesses)

reads Number of not-cached reads
(percentage is based on all memory accesses)

writes Number of not-cached writes
(percentage is based on all memory accesses)

trashes Discarded accesses (ARM11 only)
(percentage is based on all memory accesses)

See also
B CTS.CACHE B CTS.CACHE state

©1989-2024 Lauterbach General Commands Reference Guide C | 189

CTS.CACHE.ViewBPU

Display statistic for branch prediction unit

Format:

CTS.CACHE.ViewBPU

£ BxCTS.CACHE ViewBPU = =R
G2 s, || BacTs... | 22 paams.. || 8% Process| B BTAC ||BE STATIC/| B RSTACK
POS: 0.
unit [unknown predictions misses matches fails |
BTAC 0. 12296774, 2510886, 9672587 113301
. 811 20.419% 78.6859% 0.921%
STATIC 0. 2512526 0. 1863633, 548893,
. 74.173% 25.826%
RSTACK 0. 112484, 723557, o
13.454% B6.545%
branches instrs taken nottaken
13891736, 6059?1?6.| 11301962, 2389774,
B82.545% 17.454%
BTAC Branch Target Address Cache / Branch Folding
STATIC Static Branch Predictor
RSTACK Return Stack

For details about the program flow prediction please refer to your processor manual.

instrs Total number of instructions.
branches Total number of branches.
taken Number of taken branches.
nottaken Number of not-taken branches.
predictions Total number of branch predictions.
unknown Since the contents of Branch Target Address Cache is unknown at the
beginning of the analysis, the first
<size_of _branch_target_address_cache> predictions are unknown.
misses No entry was found in the Branch Target Address Cache for the branch
source address.
hits An entry for the branch source address was found in the Branch Target
Address Cache and the prediction was correct.
fails An entry for the branch source address was found in the Branch Target
Address Cache, but the prediction failed.
See also
B CTS.CACHE B CTS.CACHE state

©1989-2024 Lauterbach

General Commands Reference Guide C |

190

CTS.CACHE.ViewBus Display statistics for the bus utilization

Format: CTS.CACHE.ViewBus

Displays a detailed analysis of the bus utilization.

£ B:CTS.CACHE ViewBus [rolE-]

B senp.. | B cTs... || 22 params... | 8% Process
POS: -131072.0.

bus |unknown read readseq readline write writeseq writeline |writehalf bytes
BUSD 57. 8036, 0. 25407, 144076, 303. 1063. 379. 1015364, | .
BUS1 0. 7. 0. 14806. 26. 0. 29. 76. 476068,
v
£ >
£ B:CTS.CACHE ViewBus = =R

B senp.. | B cTs... || 22 params... | 8% Process
POS: -131072.0.

bus | |writehalf bytes clocks bytes/second clocks/second used
uso 379. 1015364, 259110, 24,993575MB 6. 378092MHz 6.378% | .
BUS1 76. 476068, 89610, 11.718596MB 2. 205784MHz 2.205%

< >

unknown Number of clock cycles consumed by memory accesses that are
categorized as unknown by the cache analysis

read Number of clock cycles consumed by memory read accesses

readseq Number of clock cycles consumed by subsequent memory read accesses
(e.g. burst access)

readline Number of clock cycles consumed by cache line fill operations

write Number of clock cycles consumed by memory write accesses

writeseq Number of clock cycles consumed by subsequent memory write accesses
(e.g. burst access)

writeline Number of clock cycles consumed by writing the contents of a cache line
back to memory (copy back)

writehalf Number of clock cycles consumed by writing the contents of half a cache
line back to memory (copy back)

bytes Number of bytes transferred via the external bus interface

clocks Number of clock cycles the external bus was busy

bytes/s Transmission rate

clocks/s Transmission frequency

used Bus load in percentage

See also
B CTS.CACHE B CTS.CACHE state

©1989-2024 Lauterbach General Commands Reference Guide C | 191

CTS.CACHE.ViewStalls Display statistics for idles/stalls

Format: CTS.CACHE.ViewStalls

Analyses over the measurement interval how much cycles/time was taken by idles/stalls and how much
cycles/time the CPU was really working.

£ B:CTS.CACHE ViewStalls [rolE-]

& setup...| FCTS... | FParams... | &% Process| &% List B Stalls | BR MIPS

POs: 0.
total idles work stalls mstalls istalls fstalls |
26848 48. 0.). 0.).

268. 480us

total Number of analyzed clock cycles
measurement time

idles Number of idles cycles (the CPU is not executing instructions)

time the CPU was in idle mode

percentage of time/clocks the CPU was in idle mode

number of time the CPU was in idle state

The number of idles states is calculated as follows:

. number of times the CPU went in power-down or sleep mode (e.g.
for the ARM architecture the number of times a Wait for Interrupt
CP15 operation was performed)

. number of times a single instruction last more the 1000. clock
cycles

work Number of cycles the processor was working

time the CPU was working

percentage of time the processor was working

number of instructions that were executed by the processor

stalls Number of stalls
time the CPU was stalled

percentage of time the CPU was stalled

mstalls Number of memory stalls

time taken by memory stalls

percentage of time taken by memory stalls

Memory stalls are caused by e.g. cache misses, TLB misses, accesses
to slow memory ...

©1989-2024 Lauterbach General Commands Reference Guide C | 192

istalls Number of interlock stalls

time taken by interlock stalls

percentage of time taken by interlock stalls

Interlock stalls are caused by e.g. resource conflicts between
instructions, data dependencies ...

fstalls Number of fetch stalls

time taken by fetch stalls

percentage of time taken by fetch stalls

Fetch stalls are caused by e.g. pipeline reload etc.

See also
B CTS.CACHE B CTS.CACHE. state

A ’'Release Information’ in’Legacy Release History’

CTS.CACHE.WAYS Define number of cache ways
Format: CTS.CACHE.WAYS <cache> <ways>
<cache>: ICIDCIL2|L3|ITLB | DTLB | TLBO | TLB1

This command defines the number of cache ways (blocks) for each cache.

CTS.CACHE.WAYS IC 4. ; The instruction CACHE has 4 blocks
CTS.CACHE.WAYS DC 4. ; The data CACHE has 4 blocks

See also

B CTS.CACHE B CTS.CACHE.state

©1989-2024 Lauterbach General Commands Reference Guide C | 193

CTS.CACHE.Width Define width of cache line

Format: CTS.CACHE.Width IC | DC | L2 | L3 <width>

This command define the width of a single cache line in bytes.

A cache line for the instruction cache

CTS.CACHE.Width IC 32. ;
is 32. byte

7

See also
W CTS.CACHE B CTS.CACHE.state
CTS.CAPTURE Copy real memory to the virtual memory for CTS
Format: CTS.CAPTURE

Copies “real” memory to the TRACES32 virtual memory (VM:) for all places where VM: is already mapped.

; Capture a snapshot of the system for the analysis.
CTS.CAPTURE

Go ; Start the analysis.
Break ; Stop the analysis.

See also

m CTS
A ’Release Information’ in’Legacy Release History’

B CTS.state

194

©1989-2024 Lauterbach General Commands Reference Guide C |

CTS.Chart.ChildTREE Display callee context of a function as chart

Format: CTS.Chart.ChildTREE <address>

Show call tree and run-time of all functions called by the specified functions based on the CTS data.
Gaps in the trace caused by FIFO overflows are filled by CTS when SmartTrace is enabled
(CTS.SmartTrace ON).

Refer to <trace>.Chart.ChildTREE for a description of the parameters and options.

See also
B <trace>.Chart.ChildTREE

CTS.Chart.Func Function activity chart

Format: CTS.Chart.Func [<trace_area>] [/<option>]

Displays the time spent in different functions as chart based on the CTS data. Gaps in the trace caused by
FIFO overflows are filled by CTS when SmartTrace is enabled (CTS.SmartTrace ON).

Refer to <trace>.Chart.Func for a description of the parameters and options.

See also

B <trace>.Chart.Func

CTS.Chart.INTERRUPT Display interrupt chart

Format: CTS.Chart.INTERRUPT [<irace_area>] [/<option>]

Displays the time spent in different interrupts as time chart based on the CTS data. Gaps in the trace caused
by FIFO overflows are filled by CTS when SmartTrace is enabled (CTS.SmartTrace ON).

Refer to <trace>.Chart.INTERRUPT for a description of the parameters and options.

See also
B <trace>.Chart.INTERRUPT

©1989-2024 Lauterbach General Commands Reference Guide C | 195

CTS.Chart.INTERRUPTTREE Display interrupt nesting

Format: CTS.Chart.INTERRUPTTREE [<trace_area>] [/<option>]

Displays the interrupt nesting as time chart based on the CTS data. Gaps in the trace caused by FIFO
overflows are filled by CTS when SmartTrace is enabled (CTS.SmartTrace ON).

Refer to <Trace>.Chart.INTERRUPTTREE for a description of the parameters and options.

See also
B <trace>.Chart.INTERRUPTTREE

CTS.Chart.Nesting Show function nesting at cursor position

Format: <trace>.Chart.Nesting [<trace_area>] [[<option>]

Shows the function call stack as a time chart based on the CTS data. Gaps in the trace caused by FIFO
overflows are filled by CTS when SmartTrace is enabled (CTS.SmartTrace ON).

Refer to <trace>.Chart.Nesting for a description of the parameters and options.

See also

B <trace>.Chart.Nesting

CTS.Chart. RUNNABLE Runnable activity chart

Format: <trace>.Chart. RUNNABLE [<trace_area>] [/<option>]

The time spent in different AUTOSAR Runnables is displayed graphically. Gaps in the trace caused by FIFO
overflows are filled by CTS when SmartTrace is enabled (CTS.SmartTrace ON).

This feature is only available if an OSEK/ORTI system is used and if the OS Awareness is configured with
the TASK.ORTI command. Please refer to “OS Awareness Manual NORTi” (rtos_norti.pdf) for more
information.

©1989-2024 Lauterbach General Commands Reference Guide C | 196

Refer to <trace>.Chart.Nesting for a description of the parameters and options.

See also
B <trace>.Chart. RUNNABLE

CTS.Chart.sYmbol Execution time at different symbols as chart

Format: CTS.Chart.sYmbol [<itrace_area>] [/<option>]

Displays the distribution of program execution time at different symbols as a time chart based on the CTS
data. Gaps in the trace caused by FIFO overflows are filled by CTS when SmartTrace is enabled
(CTS.SmartTrace ON).

Refer to <trace>.Chart.sYmbol for a description of the parameters and options.

See also
m CTS B CTS.PROfileChart B CTS.state W <trace>.Chart.sYmbol
CTS.Chart.TASK Task activity chart
Format: <trace>.Chart.TASK [<trace_area>] [/<option>]

Displays the time spent in different tasks based on the CTS data. Gaps in the trace caused by FIFO
overflows are filled by CTS when SmartTrace is enabled (CTS.SmartTrace ON). This feature is only
available if TRACES32 has been set for OS-aware debugging.

Refer to <trace>.Chart.TASK for a description of the parameters and options.

See also
B <trace>.Chart. TASK

©1989-2024 Lauterbach General Commands Reference Guide C | 197

CTS.Chart. TASKINFO Chart for context ID special messages

Format: CTS.Chart. TASKINFO [<trace_area>] [/<option>]

Displays a graphical chart based on the CTS data for special messages written to the context ID register
(ETM trace).

Refer to <trace>.Chart. TASKINFO for a description of the parameters and options.

See also
B <trace>.Chart. TASKINFO

CTS.Chart.TASKINTR Display ISR2 time chart (ORTI)

Format: CTS.Chart.TASKINTR [<trace_area>] [/<option>]

Displays an ORTI based ISR2 time chart based on the CTS data. Gaps in the trace caused by FIFO
overflows are filled by CTS when SmartTrace is enabled (CTS.SmartTrace ON). This feature can only be
used if ISR2 can be traced based on the information provided by the ORTI file. Please refer to “OS
Awareness Manual NORTi” (rtos_norti.pdf) for more information.

Refer to <trace>.Chart.TASKINTR for a description of the parameters and options.

See also
B <trace>.Chart. TASKINTR

CTS.Chart.TASKKernel Display task time chart with kernel markers (ORT])

Format: CTS.Chart.TASKKernel [<trace_area>] [[<option>]

Similar command to <trace>.Chart. TASKKernel. The analysis is however based on the CTS data. Gaps in
the trace caused by FIFO overflows are filled by CTS when SmartTrace is enabled (CTS.SmartTrace ON).
This feature is only available if TRACES32 has been set for OS-aware debugging.

©1989-2024 Lauterbach General Commands Reference Guide C | 198

Refer to <trace>.Chart.TASKKernel for a description of the parameters and options.

See also
B <trace>.Chart. TASKKernel

CTS.Chart. TASKORINTERRUPT Task and interrupt activity chart

Format: <trace>.Chart. TASKORINTERRUPT [<trace_area>] [[<option>]

Displays the time spent in different tasks and interrupts based on the CTS data. Gaps in the trace caused by
FIFO overflows are filled by CTS when SmartTrace is enabled (CTS.SmartTrace ON). This feature is only
available if TRACES32 has been set for OS-aware debugging.

Refer to <trace>.Chart. TASKORINTERRUPT for a description of the parameters and options.

See also
B <trace>.Chart. TASKORINTERRUPT

CTS.Chart. TASKSRV Service routine run-time analysis

Format: CTS.Chart.TASKSRV [<trace_area>] [/[<option>]

The time spent in OS service routines and different tasks is displayed. Gaps in the trace caused by FIFO
overflows are filled by CTS when SmartTrace is enabled (CTS.SmartTrace ON). This feature is only
available if an OSEK/ORTI system is used and if the OS Awareness is configured with the TASK.ORTI
command. Please refer to “OS Awareness Manual NORTi” (rtos_norti.pdf) for more information.

Refer to <Trace>.Chart. TASKSRYV for a description of the parameters and options.

CTS.Chart. TASKVSINTERRUPT Time chart of interrupted tasks

Format: CTS.Chart. TASKVSINTERRUPT [<trace_area>] [/<option>]

Shows a graphical representation of tasks that were interrupted by interrupt service routines based on the
CTS data. Gaps in the trace caused by FIFO overflows are filled by CTS when SmartTrace is enabled
(CTS.SmartTrace ON). This feature is only available if TRACES32 has been set for OS-aware debugging.

©1989-2024 Lauterbach General Commands Reference Guide C | 199

Refer to <trace>.Chart. TASKVSINTERRUPT for a description of the parameters and options.

See also
B <trace>.Chart. TASKVSINTERRUPT

CTS.Chart. TASKVSINTR Time chart of task-related interrupts

Format: CTS.Chart.TASKVSINTR [<trace_area>] [I<options> ...]

Displays a time-chart for task-related interrupt service routines based on the CTS data. Gaps in the trace
caused by FIFO overflows are filled by CTS when SmartTrace is enabled (CTS.SmartTrace ON). This
feature is only available if an OSEK/ORTI system is used and if the OS Awareness is configured with the
TASK.ORTI command. Please refer to “OS Awareness Manual NORTi” (rtos_norti.pdf) for more
information.

Refer to <trace>.Chart. TASKVSINTR for a description of the parameters and options.

See also
B <trace>.Chart. TASKVSINTR

CTS.Chart.TREE Display function chart as tree view

Format: CTS.Chart.TREE [<trace_area>] [[<option>]

The result of this command shows a graphical chart tree of the function nesting based on the CTS data.
Gaps in the trace caused by FIFO overflows are filled by CTS when SmartTrace is enabled
(CTS.SmartTrace ON).

Refer to <trace>.Chart.TREE for a description of the parameters and options.

See also
B <trace>.Chart. TREE

©1989-2024 Lauterbach General Commands Reference Guide C | 200

CTS.EXPORT Export trace data

Format: CTS.EXPORT <file> [<trace_area>] [/<option>]

<option> FILE | CORE | CACHE | BUS

Exports the trace contents with CTS information for postprocessing by an external analysis tool. The
command is similar to <trace>.EXPORT.

FILE Exports the trace contents loaded with <trace>.FILE.
CORE Exports core accesses.
CACHE Exports cache accesses. This option is only available if CTS.Mode

CACHE has been selected.

BUS Exports bus accesses. This option is only available if CTS.Mode CACHE
has been selected.

See also
m CTS
CTS.FixedControl Execution time at different symbols as chart
Format: CTS.FixedControl [ON | OFF]

Fixes control register values to current value. Only supported for PowerPC E200ZX.

See also
B CTS
CTS.GOTO Select the specified record for CTS (absolute)
Format: CTS.GOTO <record> [/FILE]

Selects the specified record for the trace based debugging. If CTS is OFF, CTS is switched to ON by this
command.

©1989-2024 Lauterbach General Commands Reference Guide C | 201

This command can be used to set the starting point for trace-based debugging.

FILE Takes trace memory contents loaded by <trace>.LOAD.
CTS.GOTO -123. ; Select record -123. for CTS
See also
m CTS B CTS.state
CTS.INCremental CTS displays intermediate results while processing
Format: CTS.INCremental [ON | OFF]
ON CTS.List displays intermediate results while TRACE32 is processing the

trace contents.

OFF CTS.List displays the result after TRACE32 has completely processed
the trace contents.

See also
B CTS B CTS.state
CTS.Init Restart CTS processing
Format: CTS.Init

Restarting the CTS processing has effects:
J CTS.List is reprocessed.
. The target context for trace-based debugging is re-processed.

. The new settings of the CTS window take effect.

See also
B CTS B CTS.state

©1989-2024 Lauterbach General Commands Reference Guide C | 202

CTS.List

List trace contents

Format:

<options>:

<items>:

<format>:

CTS.List [<record> | <record_ range>] [<items> ...] [/<options>]

FILE

Track

Mark <item>

TASK <task_magic> | <task_id> | <task_name>
<other_generic_options>

% <format>

DEFault | ALL | CPU | LINE | PORTS

Run

CYcle | Data[.<subitem> | BDATA | List[.<subitem>]
Address | BAddress | FAddress

| sYmbol | sYmboIN | PAddress | PsYmbol | Var
Time[.<subitem>]

FUNC | FUNCR | FUNCVar | IGNORE

LeVel | MARK].<marker> | FLAG[.<flag_index>]
Trigger | Trigger.A | Trigger.B

SPARE

<special_lines>

Ascii | BINary | Decimal | Hex | Signed | Unsigned
HighLow | Timing

TimeAuto | TimeFixed

LEN <size>

<options>

For a detailed description of all other parameters and options, refer to the
<trace>.List command.

etc.

TASK <task_magic>, Filters the CTS.List window by the specified task.

See also “What to know about the Task Parameters”
(general_ref_t.pdf).

©1989-2024 Lauterbach

General Commands Reference Guide C | 203

&/ B:CTS.List =R o
s, || ZcTs... |4 Goto...| #3Find... | =|TREE || M chart | % Chart | % More | X Less
record ti.back time |
-08691249 [« - - - 1.300us
v
224 vlong += regvar*autovar;
vlong = -1887525750 2
autovar = -5693
-08691236 |- - - 1.300us 1.600us
regvar = 4
223 for (regvar = 0; regvar < 51 ; regvar++)
regvar = 5
-08691220 |« P 1.600us 1.300us
225 1
-08691207 |- - - 1.300us 0. 800us
-08691199 LFunc hoas —
funcy
717 funeptr = (int (*) () 0;
funcptr = 0x0
-08691199 |« - - 0. 800us 0.500us ¥

Description of Buttons in the CTS.List Window

Setup ... Open a <trace>.state window to configure the trace.
CTS ... Open a CTS.view window to configure CTS.
Goto ... Open a <trace>.GOTO dialog box to move the cursor to a specific record.
Find ... Open a <trace>.Find dialog box to search for specific entries in the trace.
TREE Open a CTS.STATistic.TREE window to display the call structure of the
trace contents as a tree.
Chart Opens a CTS.Chart.sYmbol window to display the program execution
time at different symbols as a time chart.
Chart Opens a CTS.Chart.Func window to display the time spent in different
functions as chart.
More/Less The More and Less button allow to switch between the following displays:
. Interrupts and task levels
. Function nesting
. HLL lines
. HLL lines and disassembled code
. All CPU cycles

Cache analysis results (when enabled) are shown in the following formats:

J <cache_mode> <cyclecount>?

Information about a number of accesses is unknown.

o <cache_mode> <hits><misses>

Regular cached cycles.

o <cache_mode> <hits>/<misses>I<bypasses>

Bypasses are cycles that where not using the cache (non-allocated write cycles or trash cycles).

See also

m CTS

B CTS.state

©1989-2024 Lauterbach

General Commands Reference Guide C

204

A ’Release Information’ in’Legacy Release History’

CTS.ListNesting Analyze function nesting

Format: CTS.ListNesting[<frace_area>] [I<option>]

Investigates issues in the construction of the call tree for the nesting function run-time analysis based on the
CTS data.

Refer to <Trace>.ListNesting for a description of the parameters and options.

See also
m CTS

A ’Release Information’ in’Legacy Release History’

CTS.Mode Operation mode
Format: CTS.Mode [Full | Memory | CACHE]
Full (default) The trace contains the full program and data flow information.
Memory The trace contains only data flow information, a selective trace on

specific data accesses was performed. CTS can reconstruct the memory
contents only.

CTS is used here e.g. to reconstruct the contents of several HLL
variables or task control block information.

CACHE Reconstruct the contents of caches and TBLs (only required if a cache
analysis is performed).

See also
B CTS B CTS.state

©1989-2024 Lauterbach General Commands Reference Guide C | 205

CTS.OFF Switch off trace-based debugging

Format: CTS.OFF

Trace-based debugging is switch to off. The current context of the target system is re-displayed on the
TRACE32 screen.

See also
H CTS B CTS.state
CTS.ON Switch on trace-based debugging
Format: CTS.ON

Switches trace-based debugging to ON. The starting point is either 0./1. or the last selected record.

Use CTS.GOTO to switch CTS to ON with at specific starting point.

See also
B CTS B CTS.state
A ’'Release Information’ in’Legacy Release History’

CTS.PROCESS Process cache analysis

Format: CTS.PROCESS [/FILE]

Switches CTS to ON and calculates the results for the cache analysis by processing the complete trace
contents.

See also
H CTS B CTS.state

©1989-2024 Lauterbach General Commands Reference Guide C | 206

CTS.PROfileChart Profile charts

Format: CTS.PROfileChart [<trace_area>] [/<option>]

Displays distributions versus time graphically based on the CTS data. Gaps in the trace caused by FIFO
overflows are filled by CTS when SmartTrace is enabled (CTS.SmartTrace ON).

Refer to <trace>.PROfileChart for a description of the parameters and options.

See also
H CTS B CTS.Chart.sYmbol B CTS.STATistic

A ’'Release Information’ in’Legacy Release History’

CTS.PROfileChart.CACHE Display cache analysis results graphically
Format: CTS.PROfileChart.CACHE <cache> [<trace_area>] [/<option>]
<cache> ICIDC|L2|L3|STALLS | BUSO | BUS1 | BUS2 | BUS3 | MIPS | BTAC |

STATIC | RSTACK

<option> FILE
FlowTrace | BusTrace
ReScale | TimeScale | TimeZero | TimeREF
Vector | Steps
Track | ZoomTrack

Displays the results of the CTS cache analysis as profile chart.

<trace_area> Refer to <trace>.PROfileChart
<option>

Example:

CTC.Mode CACHE
CTS.ON
CTS.PROFileChart DC
CTS.PROFileChart IC

©1989-2024 Lauterbach General Commands Reference Guide C | 207

B B::CTS.PROfileChart. CACHE IC

(o8)

2 ... | Goto...| #3Find...
W hits

cycles/s

| Chart

B unknown

-800. 000ms
I

vIn Mot EHFUl S In

-600. 000ms
I

M reads+write [l nawrites+tr Jll misses

o out|| [&] Full

-400. 000ms -200. 000ms
I I

W victims

0.00

12000000.

10000000.
8000000.
6000000.
4000000.

2000000.
0.

> < m >

B B::CTS.PROfileChart.CACHE DC

(o8)

2 ... | Goto...| #3Find...
W hits

cycles/s

| Chart

B unknown

-800. 000ms
I

vIn Mot EHFUl S In

-600. 000ms
I

M reads+write [l nawrites+tr Jll misses

o out|| [&] Full

-400. 000ms -200. 000ms

W victims

0.00

12000000.

10000000.

> < m >

8000000.
6000000.
4000000.

2000000.
0.

See also
B CTS.CACHE

CTS.PROfileChart.sYmbol Dynamic program behavior as profile chart

Format: CTS.PROfileChart.sYmbol [<trace_area>] [/<option>]

Displays the dynamic program behavior versus time graphically based on the CTS data.

Refer to <trace>.PROfileChart.sYmbol for a description of the parameters and options.

See also
B <trace>.PROfileChart.sYmbol

©1989-2024 Lauterbach General Commands Reference Guide C | 208

CTS.PROfileChart.TASK Task profile chart

Format: CTS.PROfileChart.TASK [<trace_area>] [/<option>]

Displays the dynamic task behavior versus time graphically based on the CTS data. This feature is only
available if TRACES32 has been set for OS-aware debugging.

Refer to <trace>.PROfileChart.TASK for a description of the parameters and options.

See also
B <trace>.PROfileChart. TASK

CTS.PROfileChart.TASKINFO Profile chart for context ID special messages

Format: CTS.PROfileChart.TASKINFO [<trace_area>] [/<option>]

Displays a graphical profile chart based on the CTS data for special messages written to the context ID
register (ETM trace).

Refer to <trace>.PROfileChart. TASKINFO for a description of the parameters and options.

See also
B <trace>.PROfileChart. TASKINFO

CTS.PROfileChart.TASKINTR ISR2 profile chart

Format: CTS.PROfileChart.TASK [<trace_area>] [/<option>]

Displays the dynamic behavior of ORTI based ISR2 versus time graphically based on the CTS data. This
feature can only be used if ISR2 can be traced based on the information provided by the ORTI file. Please
refer to “OS Awareness Manual NORTi” (rtos_norti.pdf) for more information.

Refer to <trace>.PROfileChart.TASKINTR for a description of the parameters and options.

See also
B <trace>.PROfileChart. TASKINTR

©1989-2024 Lauterbach General Commands Reference Guide C | 209

CTS.PROfileChart.TASKKernel Task profile chart with kernel markers

Format: CTS.PROfileChart.TASKKernel [<frace_area>] [/<option>]

Similar command to <trace>.PROfileChart. TASKKernel. The analysis is however based on the CTS data.
This feature is only available if TRACES32 has been set for OS-aware debugging.

Refer to <trace>.PROfileChart. TASKKernel for a description of the parameters and options.

See also
B <trace>.PROfileChart. TASKKernel

CTS.PROfileChart. TASKORINTERRUPT Task and interrupt profile chart

Format: CTS.PROfileChart. TASKORINTERRUPT [<trace_area>] [/<option>]

Displays the dynamic behavior of tasks and interrupts versus time graphically based on the CTS data. This
feature is only available if TRACES32 has been set for OS-aware debugging.

Refer to <trace>.PROfileChart. TASKORINTERRUPT for a description of the parameters and options.

See also
B <trace>.PROfileChart. TASKORINTERRUPT

CTS.PROfileChart. TASKSRV OS service routines profile chart

Format: CTS.PROfileChart.TASKSRYV [<trace_area>] [/<option>]

Displays the dynamic behavior of OS service routines versus time graphically based on the CTS data. This
feature is only available if an OSEK/ORTI system is used and if the OS Awareness is configured with the
TASK.ORTI command. Please refer to “OS Awareness Manual NORTi” (rtos_norti.pdf) for more
information.

Refer to <trace>.PROfileChart. TASKSRYV for a description of the parameters and options.

See also
B <trace>.PROfileChart. TASKSRV

©1989-2024 Lauterbach General Commands Reference Guide C | 210

CTS.PROfileChart. TASKVSINTR Task-related interrupts profile chart

Format: CTS.PROfileChart.TASKVSINTR [<trace_area>] [/<option>]

Displays the dynamic behavior of task-related interrupts versus time graphically based on the CTS data.
This feature is only available if an OSEK/ORTI system is used and if the OS Awareness is configured with
the TASK.ORTI command. Please refer to “OS Awareness Manual NORTi” (rtos_norti.pdf) for more
information.

Refer to <trace>.PROfileChart. TASKVSINTR for a description of the parameters and options.

See also
B <trace>.PROfileChart. TASKVSINTR

©1989-2024 Lauterbach General Commands Reference GuideC | 211

CTS.RESet Reset the CTS settings

Format: CTS.RESet

Resets the CTS setting and switch trace based debugging to off.

See also
H CTS B CTS.state
CTS.SELectiveTrace Trace contains selective trace information

Format: CTS.SELectiveTrace [ON | OFF]

ON A selective trace was performed, so the trace buffer does not contain the
complete program and data flow. The sampling to the trace buffer is
either controlled by the development tool or by the processor. In this case
CTS clears the register and memory context after each discontinuance of
the program/data flow.

It is recommended to switch CTS.UseFinalMemory to OFF (not
supported for all CPUs).

OFF (default) The trace contains the relevant program and data flow.

See also
m CTS
CTS.SKIP Select the specified record for CTS (relative)
Format: CTS.SKIP <delta> [/FILE]

Selects a specific record for CTS relative to the currently selected record.

CTS.SKIP 20.

See also
B CTS B CTS.state

©1989-2024 Lauterbach General Commands Reference Guide C | 212

CTS.SmartTrace CTS smart trace

Format: CTS.SmartTrace [ON | OFF]

Enables/disables CTS SmartTrace. When SmartTrace is enabled, all CTS commands as CTS.List and
CTS.Chart will fill gaps in the trace caused by FIFO overflows.

Only supported for the following architectures:
. PowerPC MPC5xx Nexus

J PowerPC MPC5xxx Nexus

. ARM ETMv3

. MCORE Nexus

o StarCore Nexus

SmartTrace is an algorithm developed by LAUTERBACH. It allows to offset trace data loss caused by a
FIFO OVERFLOW under certain circumstances. SmartTrace investigates whether there is a clear path from
address A to address B via direct branches that can be reached in the calculated number of clock cycles
with the instructions used. If a clear path exists the lost trace data can be reconstructed.

See also
B CTS B CTS.state

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide C | 213

CTS.state Display CTS settings

Format: CTS.state [<address> | <range>]
Displays the CTS settings.
a B::CTS.state EI@
state progress options
O oFF [UsesIM
®on CJusevm
warnings [Useconst
commands 0. [useMemory
RESet fifofulls UUseRegister
@ Init 0. [useCcACHE
TAKEOVER UseReadCycle
&4 PROCESS Mode [LseWriteCyce
&= List @ Ful SmartTrace
B Trace O Memory [5B ectiveTrace
8 CACHE (O CACHE INCremental

The settings below are recommended in case:
. the program execution is still running while CTS is used

. or not all CPU cycles until the stop of the program execution are sampled to the trace buffer

In both cases the current state of the target can not be used by CTS.

CTS.UseFinalMemory OFF ; don’t use the current state of
; the target memory for CTS

CTS.UseFinalContext OFF ; don’t use the current state of
; the CPU register for CTS

MAP.CONST ; attribute the constant section
sYmbol . SECRANGE (\ .sdata2)

Data.COPY ; copy contents of constant section
sYmbol . SECRANGE (\ .sdata2) VM: ; to the virtual memory. This

; allows CTS to use this memory

; contents even when the program

; execution is running

CTS.UseConst ON ; read accesses to all memory
; locations with the attribute
; CONST are used by CTS

Recommended settings for selective trace on data:

CTS.Mode Memory ; CTS reconstructs only the memory

©1989-2024 Lauterbach General Commands Reference Guide C | 214

Recommended settings if a selective trace is used:

CTS.SELectiveTrace ON ; Clear memory and register context
; at each discontinuance of the
; program/data flow

The following settings are only necessary if the not sampled parts of the program/data flow change the
memory or register contents.

CTS.UseFinalMemory OFF ; CTS doesn’t use the current
; memory

CTS.UseFinalContext OFF ; CTS doesn’t use the current CPU
; registers

Recommended settings if only the program flow is sampled to the trace buffer:

CTS.UseFinalMemory OFF ; CTS doesn’t use the current
; memory
See also
m CTS B CTS.CACHE B CTS.CACHE state B CTS.CAPTURE
B CTS.Chart.sYmbol B CTS.GOTO B CTS.INCremental B CTS.Init
B CTS.List B CTS.Mode B CTS.OFF Bl CTS.ON
B CTS.PROCESS B CTS.RESet B CTS.SKIP B CTS.SmartTrace
B CTS.TAKEOVER B CTS.UseConst B CTS.UseFinalContext B CTS.UseFinalMemory
B CTS.UseSIM B Go.BackTillWarning B Go.TillWarning

©1989-2024 Lauterbach General Commands Reference Guide C | 215

CTS.STATistic Nesting function runtime analysis

The CTS.STATistic command group displays a statistical analysis based on the CTS data. Gaps in the
trace caused by FIFO overflows are filled by CTS when SmartTrace is enabled (CTS.SmartTrace ON).

See also
m CTS W CTS.PROfileChart
CTS.STATistic.ChildTREE Show callee context of a function
Format: CTS.STATistic.ChildTREE <address> [/<option>]

Show call tree and run-time of all functions called by the specified function based on the CTS data. The
function is specified by its start <address>.

Refer to the description of <trace>.STATistic.ChildTREE for more information.

See also
B <trace>.STATistic. TREE

CTS.STATistic.Func Nesting function runtime analysis

Format: CTS.STATistic.Func [<trace_area>] [/<option>]

Analyzes the function nesting and calculates the time spent in functions and the number of function calls
based on the CTS data. CTS tries to fill gaps in the trace using SmartTrace.

Refer to the description of <trace>.STATistic.Func for more information.

See also
B <trace>.STATistic.Func

©1989-2024 Lauterbach General Commands Reference Guide C | 216

CTS.STATistic. GROUP Group run-time analysis

Format: CTS.STATistic. GROUP [<trace_area>] [/<option>]

The time spent in groups and the number of calls is calculated (flat statistic) based on the CTS data. CTS
tries to fill gaps in the trace using SmartTrace. The results only include groups within the program range.
Groups for data addresses are not included.

Refer to the description of <trace>.STATistic. GROUP for more information.

See also
B <trace>.STATistic. GROUP

CTS.STATistic.INTERRUPT Interrupt statistic

Format: CTS.STATistic.INTERRUPT [<trace_area>] [/<option>]

Analyzes the function nesting and calculates the time spent in interrupts and the number of interrupt calls
based on the CTS data. CTS tries to fill gaps in the trace using SmartTrace. This feature is only available if
TRACE32 has been set for OS-aware debugging.

Refer to the description of <trace>.STATistic.INTERRUPT for more information.

See also
B <trace>.STATistic.INTERRUPT

CTS.STATistic.INTERRUPTTREE Interrupt nesting

Format: CTS.STATistic.INTERRUPTTREE [<trace_area>] [/<option>]

This command displays a graphical tree of the interrupt nesting based on the CTS data. This feature is only
available if TRACES32 has been set for OS-aware debugging.

Refer to the description of <trace>.STATistic.INTERRUPTTREE for more information.

See also
B <trace>.STATistic.INTERRUPTTREE

©1989-2024 Lauterbach General Commands Reference Guide C | 217

CTS.STATistic.LINKage Per caller statistic of function

Format: CTS.STATistic.LINKage [<trace_area>] [/<option>]

Performs a function run-time statistic for a single function itemized by its callers based on the CTS data. CTS
tries to fill gaps in the trace using SmartTrace.

Refer to the description of <trace>.STATistic.LINKage for more information.

See also
B <trace>.STATistic.LINKage

CTS.STATistic. MODULE Code execution broken down by module

Format: CTS.STATistic.MODULE [<trace_area>] [/<option>]

Shows a statistical analysis of symbol modules based on the CTS data. The list of loaded modules can be
displayed with sYmbol.List.Module. CTS tries to fill gaps in the trace using SmartTrace.

Refer to the description of <trace>.STATistic.MODULE for more information.

See also
B <trace>.STATistic. MODULE

CTS.STATistic.ParentTREE Show the call context of a function

Format: CTS.STATistic.ParentTREE [<trace_area>] [/<option>]

Show call tree and run-time of all callers of the specified function based on the CTS data. CTS tries to fill
gaps in the trace using SmartTrace.

Refer to the description of <trace>.STATistic.ParentTREE for more information.

See also
B <trace>.STATistic.ParentTREE

©1989-2024 Lauterbach General Commands Reference Guide C | 218

CTS.STATistic.PROGRAM Code execution broken down by program

Format: CTS.STATistic.PROGRAM [<trace_area>] [/<option>]

Shows a statistical analysis of loaded object file programs based on the CTS data. CTS tries to fill gaps in
the trace using SmartTrace. The loaded programs can be displayed with the command sYmbol.Browse *.

Refer to the description of <trace>.STATistic. PROGRAM for more information.

See also
B <trace>.STATistic. PROGRAM

CTS.STATistic.RUNNABLE Runnable runtime analysis

Format: CTS.STATistic.RUNNABLE [<trace_area>] [/<option>]

Analyzes the function nesting and calculates the time spent in AUTOSAR Runnables and the number of
Runnable calls based on the CTS data. CTS tries to fill gaps in the trace using SmartTrace. This feature is
only available if an OSEK/ORTI system is used and if the OS Awareness is configured with the TASK.ORTI
command. Please refer to “OS Awareness Manual NORTi” (rtos_norti.pdf) for more information.

Refer to the description of <trace>.STATistic. RUNNABLE for more information.

See also
B <trace>.STATistic. RUNNABLE

CTS.STATistic.sYmbol Flat run-time analysis

Format: CTS.STATistic.sYmbol [<trace_area>] [/<option>]

Displays the execution time in different symbol regions based on the CTS data. CTS tries to fill gaps in the
trace using SmartTrace.

Refer to the description of <trace>.STATistic.sYmbol for more information.

See also
B <trace>.STATistic.sYmbol

©1989-2024 Lauterbach General Commands Reference Guide C | 219

CTS.STATistic.TASK Task statistic

Format: CTS.STATistic.TASK [<trace_area>] [/<option>]

Displays a task runtime statistic based on the CTS data. CTS tries to fill gaps in the trace using SmartTrace.
This feature is only available if TRACES32 has been set for OS-aware debugging.

Refer to the description of <trace>.STATistic. TASK for more information.

See also
B <trace>.STATistic. TASK

CTS.STATistic.TASKINFO Statistic for context ID special messages

Format: CTS.STATistic.TASKINFO [<trace_area>] [/<option>]

Displays a run-time statistic based on the CTS data for special messages written to the context ID register
(ETM trace).

Refer to <trace>.STATistic. TASKINFO for a description of the parameters and options.

See also
B <trace>.STATistic. TASKINFO

CTS.STATistic.TASKINTR ISR2 statistic (ORT])

Format: CTS.STATistic. TASKINTR [<trace_area>] [/<option>]

Displays an ORTI based ISR2 runtime statistic based on the CTS data. CTS tries to fill gaps in the trace
using SmartTrace. This feature can only be used if ISR2 can be traced based on the information provided by
the ORTI file. Please refer to “OS Awareness Manual NORTi” (rtos_norti.pdf) for more information.

Refer to the description of <trace>.STATistic. TASKINTR for more information.

See also
B <trace>.STATistic. TASKINTR

©1989-2024 Lauterbach General Commands Reference Guide C | 220

CTS.STATistic.TASKKernel Task statistic with kernel markers

Format: CTS.STATistic.TASK [<trace_area>] [/<option>]

Similar command to <trace>.STATistic. TASKKernel. The analysis is however based on the CTS data. This
feature is only available if TRACES32 has been set for OS-aware debugging.

Refer to the description of <trace>.STATistic. TASKKernel for more information.

See also
B <trace>.STATistic. TASKKernel

CTS.STATistic. TASKORINTERRUPT Task and interrupt statistic

Format: CTS.STATistic. TASKORINTERRUPT [<trace_area>] [/<option>]

Displays the execution time in different tasks and interrupts based on the CTS data. CTS tries to fill gaps in
the trace using SmartTrace. This feature is only available if TRACE32 has been set for OS-aware

debugging.

Refer to the description of <trace>.STATistic. TASKORINTERRUPT for more information.

See also
B <trace>.STATistic. TASKORINTERRUPT

CTS.STATistic. TASKSRV OS service routines statistic

Format: CTS.STATistic.TASKSRYV [<trace_area>] [/<option>]

Displays the execution time in OS service routines based on the CTS data. CTS tries to fill gaps in the trace
using SmartTrace. This feature is only available if an OSEK/ORTI system is used and if the OS Awareness is
configured with the TASK.ORTI command. Please refer to “OS Awareness Manual NORTi”
(rtos_norti.pdf) for more information.

©1989-2024 Lauterbach General Commands Reference Guide C | 221

Refer to the description of <trace>.STATistic. TASKSRV for more information.

See also
B <trace>.STATistic. TASKSRV

CTS.STATistic. TASKVSINTERRUPT Statistic of interrupts, task-related

Format: CTS.STATistic. TASKVSINTERRUPT [<trace_area>] [/<option>]

Displays the execution time in task-related interrupts based on the CTS data. CTS tries to fill gaps in the
trace using SmartTrace. This feature is only available if TRACES32 has been set for OS-aware debugging.

Refer to the description of <trace>.STATistic. TASKVSINTERRUPT for more information.

See also
B <trace>.STATistic. TASKVSINTERRUPT

CTS.STATistic.TREE Tree display of nesting function run-time analysis

Format: CTS.STATistic.TREE [<trace_area>] [/<option>]

The results of this command shows a graphical tree of the function nesting based on the CTS data. CTS
tries to fill gaps in the trace using SmartTrace.

Refer to the description of <trace>.STATistic.TREE for more information.
See also

W <trace>.STATistic. TREE

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide C | 222

CTS.TAKEOVER Take memory/registers reconstructed by CTS over to target

Format: CTS.TAKEOVER

If CTS is active, the TRACES32 screen displays the contents of the registers and memories as they have
been when the currently active CTS record (see the yellow CTS field in the state line) was sampled to the
state line. The command CTS.TAKEOVER takes the register and memory contents over to the target and

deactivates CTS.

See also
m CTS B CTS.state
CTS.UNDO Revert last CTS command
Format: CTS.UNDO

Undoes last CTS run-control command (e.g CTS Step).

See also
B CTS.UseConst B CTS.UseFinalMemory B CTS.UseSIM B CTS
CTS.UseConst Use constants for the CTS processing
Format: CTS.UseConst [ON | OFF]

CTS.UseConst become effective after CTS.UseFinalMemory is set to OFF.

Read accesses to all memory locations that have the mapper attribute

ON
CONST are evaluated by CTS even if CTS.UseFinalMemory is switched
to OFF.
OFF Memory locations with the attribute CONST are not used by CTS.
See also
B CTS.UNDO B CTS.UseDataTrace B CTS.UseFinalContext B CTS.UseFinalMemory
B CTS.UseSIM B CTS.UseStartMemory B CTS B CTS.state
General Commands Reference Guide C | 223

©1989-2024 Lauterbach

CTS.UseDataTrace Use sampling cycles for CTS

Format: CTS.UseDataTrace [ON | OFF]
ON (default) CTS uses the data cycles sampled to the trace buffer.
OFF CTS doesn’t use the data cycles sampled to the trace buffer.
See also
B CTS.UseConst B CTS.UseFinalMemory B CTS.UseSIM B CTS
CTS.UseFinalContext Use the CPU registers for CTS
[build 164999 - DVD 02/2024]
Format: CTS.UseFinalContext [ON | OFF]

CTS.UseRegister [ON | OFF] (deprecated)

ON (default) CTS uses the current contents of the CPU registers. When a CPU
register was not accessed by the program section sampled to the trace
buffer, CTS assumes, that the register had the current contents during all
program steps.

OFF CTS doesn’t use the current contents of the CPU registers. This is
required if the program execution is still running when CTS is used or if
the program execution was still running after the sampling to the trace
buffer was stopped.

See also

B CTS.UseFinalMemory B CTS.UseConst B CTS.UseSIM B CTS
B CTS.state

©1989-2024 Lauterbach General Commands Reference Guide C | 224

CTS.UseFinalMemory Use memory contents for CTS
[build 164999 - DVD 02/2024]

Format: CTS.UseFinalMemory [ON | OFF]
CTS.UseMemory [ON | OFF] (deprecated)

ON (default) The memory contents is used by CTS.

] When a memory location was not accessed by the program sec-
tion sampled to the trace buffer, CTS assumes, that the memory
location had the current contents during all program steps.

] When there was no write access to a memory location by the pro-
gram section sampled to the trace buffer, CTS assumes, that the
current contents was read by read accesses to this memory loca-
tion sampled to the trace buffer.

To set CTS.UseFinalMemory to ON requires, that all CPU cycles until the

stop of the program execution were sampled to the trace buffer.

Memory ranges that are changed not only by the CPU core e.g.

peripherals or dual-ported memories can be excluded by using the

MAP.VOLATILE command
OFF CTS.UseFinalMemory OFF is required:
. if not all CPU cycles until the stop of the program execution were
sampled to the trace buffer.
. if the program execution is still running while CTS is used.
. if no data flow is sampled to the trace buffer.

MAP.CONST can be used to define memory ranges with constant
contents that are used by CTS if CTS.UseConst is set to ON.

See also
B CTS.UseFinalContext B CTS.UNDO B CTS.UseConst B CTS.UseDataTrace
B CTS.UseSIM B CTS.UseStartMemory B CTS B CTS.state

B MAPVOLATILE

©1989-2024 Lauterbach General Commands Reference Guide C | 225

CTS.UseSIM Use instruction set simulator for CTS

Format: CTS.UseSIM [ON | OFF]

ON (default) CTS uses the instruction set simulator.

OFF (For error diagnosis only.)
See also
B CTS.UseStartMemory B CTS.UNDO B CTS.UseConst B CTS.UseDataTrace
B CTS.UseFinalContext B CTS.UseFinalMemory B CTS B CTS.state

©1989-2024 Lauterbach General Commands Reference Guide C | 226

CTS.UseStartMemory Use virtual memory contents as initial values for CTS

Format: CTS.UseStartMemory [ON | OFF]
CTS.UseVM [ON | OFF] (deprecated)

This command is typically used for short trace recordings to minimize the number of unknown cycles. It
allows you to use the virtual memory contents as initial values for CTS. When you use the command,
make sure that the trace recording contains the program start.

ON The virtual memory contents (VM:) are used as initial values for CTS.
This allows you to have valid memory contents even for the first record.

OFF The virtual memory contents are not used.

; It is recommended to make this setting very early on in a script.
CTS.UseStartMemory ON

; For the 1st analysis:

; Before the trace is started, data can be copied to the virtual memory
; (VM:) of TRACE32.

; Copy contents of specified address range to TRACE32 virtual memory.
Data.Copy 0x3fa000++0xfff VM:

; Start the trace recording and completely fill the trace buffer.
Go

Break

; For the 2nd analysis:

; Repeat the above Data.Copy command.
CTS.CAPTURE

; Start the trace recording and completely fill the trace buffer.
Go

Break

See also
B CTS.UseSIM B CTS.UseConst B CTS.UseFinalMemory B CTS

©1989-2024 Lauterbach General Commands Reference Guide C | 227

	General Commands Reference Guide C
	History
	CACHE
	CACHE View and modify CPU cache contents
	CACHE.CLEAN Clean CACHE
	CACHE.ComPare Compare CACHE with memory
	CACHE.DUMP Dump CACHE
	CACHE.FLUSH Clean and invalidate CACHE
	CACHE.GET Get CACHE contents
	CACHE.INFO View all information related to an address
	CACHE.INVALIDATE Invalidate CACHE
	CACHE.List List CACHE contents
	CACHE.ListFunc List cached functions
	CACHE.ListLine List cached source code lines
	CACHE.ListModule List cached modules
	CACHE.ListVar List cached variables
	CACHE.LOAD Load previously stored cache contents
	CACHE.RELOAD Reload previously loaded cache contents
	CACHE.SAVE Save cache contents for postprocessing
	CACHE.SNAPSHOT Take cache snapshot for comparison
	CACHE.UNLOAD Unload previously loaded cache contents
	CACHE.view Display cache control register

	CAnalyzer
	CAnalyzer Trace features of Compact Analyzer

	CAnalyzer - Compact Analyzer specific Trace Commands
	CAnalyzer.<specific_cmds> Overview of CAnalyzer-specific commands
	CAnalyzer.CLOCKDelay Set clock delay
	CAnalyzer.CLOSE Close named pipes
	CAnalyzer.DecodeMode Define how to decode the received trace data
	CAnalyzer.I2C I2C control
	CAnalyzer.PipeLOAD Load a previously saved file
	CAnalyzer.PipeRePlay Replay a previously recorded stream
	CAnalyzer.PipeSAVE Define a file that stores received data
	CAnalyzer.PipeWRITE Define a named pipe as trace sink
	CAnalyzer.SAMPLE Set sample time offset
	CAnalyzer.ShowFocus Display data eye
	CAnalyzer.ShowFocusClockEye Show clock eye
	CAnalyzer.ShowFocusEye Show data eyes
	CAnalyzer.TERMination Configure parallel trace termination
	CAnalyzer.TOut Route trigger to PODBUS (CombiProbe/µTrace)
	CAnalyzer.TraceCLOCK Configure the trace port frequency
	CAnalyzer.TracePORT Select which trace port is used
	CAnalyzer.WRITE Define a file as trace sink

	Generic CAnalyzer Trace Commands
	CAnalyzer.ACCESS Define access path to program code for trace decoding
	CAnalyzer.Arm Arm the trace
	CAnalyzer.AutoArm Arm automatically
	CAnalyzer.AutoFocus Calibrate AUTOFOCUS preprocessor
	CAnalyzer.AutoInit Automatic initialization
	CAnalyzer.BookMark Set a bookmark in trace listing
	CAnalyzer.BookMarkToggle Toggles a single trace bookmark
	CAnalyzer.Chart Display trace contents graphically
	CAnalyzer.CLOCK Clock to calculate time out of cycle count information
	CAnalyzer.ComPare Compare trace contents
	CAnalyzer.ComPareCODE Compare trace with memory
	CAnalyzer.CustomTrace Custom trace
	CAnalyzer.CustomTraceLoad Load a DLL for trace analysis/Unload all DLLs
	CAnalyzer.DISable Disable the trace
	CAnalyzer.DRAW Plot trace data against time
	CAnalyzer.EXPORT Export trace data for processing in other applications
	CAnalyzer.ExtractCODE Extract code from trace
	CAnalyzer.FILE Load a file into the file trace buffer
	CAnalyzer.Find Find specified entry in trace
	CAnalyzer.FindAll Find all specified entries in trace
	CAnalyzer.FindChange Search for changes in trace flow
	CAnalyzer.FindProgram Advanced trace search
	CAnalyzer.FindReProgram Activate advanced existing trace search program
	CAnalyzer.FindViewProgram State of advanced trace search programming
	CAnalyzer.FLOWPROCESS Process flowtrace
	CAnalyzer.FLOWSTART Restart flowtrace processing
	CAnalyzer.Get Display input level
	CAnalyzer.GOTO Move cursor to specified trace record
	CAnalyzer.Init Initialize trace
	CAnalyzer.JOINFILE Concatenate several trace recordings
	CAnalyzer.List List trace contents
	CAnalyzer.ListNesting Analyze function nesting
	CAnalyzer.ListVar List variable recorded to trace
	CAnalyzer.LOAD Load trace file for offline processing
	CAnalyzer.MERGEFILE Combine two trace files into one
	CAnalyzer.Mode Set the trace operation mode
	CAnalyzer.OFF Switch off
	CAnalyzer.PortFilter Specify utilization of trace memory
	CAnalyzer.PortType Specify trace interface
	CAnalyzer.PROfileChart Profile charts
	CAnalyzer.PROfileSTATistic Statistical analysis in a table versus time
	CAnalyzer.PROTOcol Protocol analysis
	CAnalyzer.PROTOcol.Chart Graphic display for user-defined protocol
	CAnalyzer.PROTOcol.Draw Graphic display for user-defined protocol
	CAnalyzer.PROTOcol.EXPORT Export trace buffer for user-defined protocol
	CAnalyzer.PROTOcol.Find Find in trace buffer for user-defined protocol
	CAnalyzer.PROTOcol.list Display trace buffer for user-defined protocol
	CAnalyzer.PROTOcol.PROfileChart Profile chart for user-defined protocol
	CAnalyzer.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol
	CAnalyzer.PROTOcol.STATistic Display statistics for user-defined protocol
	CAnalyzer.REF Set reference point for time measurement
	CAnalyzer.RESet Reset command
	CAnalyzer.SAVE Save trace for postprocessing in TRACE32
	CAnalyzer.SelfArm Automatic restart of trace recording
	CAnalyzer.SIZE Define buffer size
	CAnalyzer.SnapShot Restart trace capturing once
	CAnalyzer.SPY Adaptive stream and analysis
	CAnalyzer.state Display trace configuration window
	CAnalyzer.STATistic Statistic analysis
	CAnalyzer.STREAMCompression Select compression mode for streaming
	CAnalyzer.STREAMFILE Specify temporary streaming file path
	CAnalyzer.STREAMFileLimit Set size limit for streaming file
	CAnalyzer.STREAMLOAD Load streaming file from disk
	CAnalyzer.STREAMSAVE Save streaming file to disk
	CAnalyzer.TDelay Trigger delay
	CAnalyzer.TestFocus Test trace port recording
	CAnalyzer.TestFocusClockEye Scan clock eye
	CAnalyzer.TestFocusEye Check signal integrity
	CAnalyzer.TestUtilization Tests trace port utilization
	CAnalyzer.THreshold Optimize threshold for trace lines
	CAnalyzer.Timing Waveform of trace buffer
	CAnalyzer.TraceCONNECT Select on-chip peripheral sink
	CAnalyzer.TRACK Set tracking record
	CAnalyzer.TSELect Select trigger source
	CAnalyzer.View Display single record
	CAnalyzer.ZERO Align timestamps of trace and timing analyzers

	CIProbe
	CIProbe Trace with Analog Probe and CombiProbe/μTrace (MicroTrace)

	CIProbe-specific Trace Commands
	CIProbe.<specific_cmds> Overview of CIProbe-specific commands
	CIProbe.ALOWerLIMit Set lower trigger/filter comparator value
	CIProbe.ATrigEN Enable/disable trigger contribution of a channel
	CIProbe.ATrigMODE Set trigger/filter condition
	CIProbe.AUPPerLIMit Set upper trigger/filter comparator value
	CIProbe.Mode Set trace operation mode
	CIProbe.state Display CIProbe configuration window
	CIProbe.TDelay Define trigger delay
	CIProbe.TOut Route CIProbe trigger to PODBUS
	CIProbe.TSELect Route PODBUS trigger to CIProbe
	CIProbe.TSYNC.SELect Select trigger input pin and edge or state

	Generic CIProbe Trace Commands
	CIProbe.Arm Arm the trace
	CIProbe.AutoArm Arm automatically
	CIProbe.AutoInit Automatic initialization
	CIProbe.BookMark Set a bookmark in trace listing
	CIProbe.BookMarkToggle Toggles a single trace bookmark
	CIProbe.Chart Display trace contents graphically
	CIProbe.ComPare Compare trace contents
	CIProbe.DISable Disable the trace
	CIProbe.DisConfig Trace disassembler configuration
	CIProbe.DRAW Plot trace data against time
	CIProbe.EXPORT Export trace data for processing in other applications
	CIProbe.FILE Load a file into the file trace buffer
	CIProbe.Find Find specified entry in trace
	CIProbe.FindAll Find all specified entries in trace
	CIProbe.FindChange Search for changes in trace flow
	CIProbe.Get Display input level
	CIProbe.GOTO Move cursor to specified trace record
	CIProbe.Init Initialize trace
	CIProbe.List List trace contents
	CIProbe.ListNesting Analyze function nesting
	CIProbe.ListVar List variable recorded to trace
	CIProbe.LOAD Load trace file for offline processing
	CIProbe.OFF Switch off
	CIProbe.PROfile Rolling live plots of trace data
	CIProbe.PROfile.channel Display profile of signal probe channels
	CIProbe.PROfileChart Profile charts
	CIProbe.PROfileSTATistic Statistical analysis in a table versus time
	CIProbe.PROTOcol Protocol analysis
	CIProbe.PROTOcol.Chart Graphic display for user-defined protocol
	CIProbe.PROTOcol.Draw Graphic display for user-defined protocol
	CIProbe.PROTOcol.EXPORT Export trace buffer for user-defined protocol
	CIProbe.PROTOcol.Find Find in trace buffer for user-defined protocol
	CIProbe.PROTOcol.list Display trace buffer for user-defined protocol
	CIProbe.PROTOcol.PROfileChart Profile chart for user-defined protocol
	CIProbe.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol
	CIProbe.PROTOcol.STATistic Display statistics for user-defined protocol
	CIProbe.REF Set reference point for time measurement
	CIProbe.RESet Reset command
	CIProbe.SAVE Save trace for postprocessing in TRACE32
	CIProbe.SIZE Define buffer size
	CIProbe.SnapShot Restart trace capturing once
	CIProbe.SPY Adaptive stream and analysis
	CIProbe.STATistic Statistic analysis
	CIProbe.STREAMCompression Select compression mode for streaming
	CIProbe.STREAMFILE Specify temporary streaming file path
	CIProbe.STREAMFileLimit Set size limit for streaming file
	CIProbe.Timing Waveform of trace buffer
	CIProbe.TRACK Set tracking record
	CIProbe.View Display single record
	CIProbe.ZERO Align timestamps of trace and timing analyzers

	ClipStore
	ClipSTOre Store settings to clipboard

	CLOCK
	CLOCK Display date and time
	CLOCK.BACKUP Set backup clock frequency
	CLOCK.DATE Alias for DATE command
	CLOCK.OFF Disable clock frequency computation
	CLOCK.ON Enable clock frequency computation
	CLOCK.OSCillator Set board oscillator frequency
	CLOCK.Register Display PLL related registers
	CLOCK.RESet Reset CLOCK command group settings
	CLOCK.state Display clock frequencies
	CLOCK.SYSCLocK Set external clock frequency
	CLOCK.VCOBase Set "VCOBase" clock frequency
	CLOCK.VCOBaseERAY Set "FlexRay VCOBase" clock frequency

	CMI
	CMI Clock management interface

	CMN
	CMN Coherent mesh network

	CMN<trace> - Trace Data Analysis
	CMN<trace> Command groups for CMN<trace>
	Overview CMN<trace>
	CMNAnalyzer Analyze CMN information recorded by TRACE32 PowerTrace
	CMNCAnalyzer Analyze CMN information recorded by CombiProbe
	CMNHAnalyzer Analyze CMN information captured by the host analyzer
	CMNLA Analyze CMN information from binary source
	CMNOnchip Analyze CMN information captured in target onchip memory

	CORE
	CORE Cores in an SMP system
	Overview CORE
	CORE.ADD Add core/thread to the SMP system
	CORE.ASSIGN Assign a set of physical cores/threads to the SMP system
	CORE.List List information about cores
	CORE.NUMber Assign a number of cores/threads to the SMP system
	CORE.ReMove Remove core from the SMP system
	CORE.select Change currently selected core
	CORE.SHOWACTIVE Show active/inactive cores in an SMP system
	CORE.SINGLE Select single core for debugging

	Count
	Count Universal counter
	Overview Count
	Counter of TRACE32-ICD
	Counter Functions

	Count.AutoInit Automatic counter reset
	Count.Gate Gate time
	Count.GO Start measurement
	Count.Init Reset counter
	Count.Mode Mode selection
	Count.OUT Forward counter input signal to trigger system/output
	Count.PROfile Graphic counter display
	Count.RESet Reset command
	Count.Select Select input source
	Count.state State display

	COVerage
	COVerage Trace-based code coverage
	COVerage.ADD Add trace contents to code coverage system
	COVerage.Delete Set code coverage tagging to never
	COVerage.EXPORT Export code coverage information
	COVerage.EXPORT.CBA Export coverage results in CBA format
	COVerage.EXPORT.CSV Export coverage results in CSV format
	COVerage.EXPORT.JSON Export code coverage results in JSON format
	COVerage.EXPORT.JSONE Export code coverage in extended JSON format
	COVerage.EXPORT.ListCalleEs Export the function callees
	COVerage.EXPORT.ListCalleEs.<sub_cmd> Export callees information
	COVerage.EXPORT.ListCalleRs Export the function callers
	COVerage.EXPORT.ListCalleRs.<sub_cmd> Export callers information
	COVerage.EXPORT.ListFunc Export code coverage results at function level
	COVerage.EXPORT.ListFunc.<sub_cmd> Export function
	COVerage.EXPORT.ListInlineBlock Export inlined code blocks
	COVerage.EXPORT.ListInlineBlock.<sub_cmd> Export cov. inlined
	COVerage.EXPORT.ListLine Export HLL lines
	COVerage.EXPORT.ListLine.<sub_cmd> Export HLL lines information
	COVerage.EXPORT.ListModule Export modules
	COVerage.EXPORT.ListModule.<sub_cmd> Export modules information
	COVerage.EXPORT.ListVar Export HLL variables
	COVerage.EXPORT.ListVar.<sub_cmd> Export HLL variables information
	COVerage.INFO Information about conditional instructions
	COVerage.Init Clear coverage database
	COVerage.List Coverage display
	COVerage.ListCalleEs Display coverage for callees function
	COVerage.ListCalleEs.<sub_cmd> Display coverage for callees function
	COVerage.ListCalleRs Display coverage for callers function
	COVerage.ListCalleRs.<sub_cmd> Display coverage for callers function
	COVerage.ListFunc Display coverage for functions
	COVerage.ListFunc.<sub_cmd> Display coverage for HLL function
	COVerage.ListInlineBlock Display coverage for inlined block
	COVerage.ListInlineBlock.<sub_cmd> Display coverage for inlined block
	COVerage.ListLine Display coverage for HLL lines
	COVerage.ListLine.<sub_cmd> Display coverage for HLL lines
	COVerage.ListModule Display coverage for modules
	COVerage.ListModule.<sub_cmd> Display coverage for modules
	COVerage.ListVar Display coverage for variable
	COVerage.ListVar.<sub_cmd> Display coverage for variables
	COVerage.LOAD Load coverage database from file
	COVerage.MAP Map the coverage to a different range
	COVerage.METHOD Select code coverage method
	COVerage.Mode Activate code coverage for virtual targets
	COVerage.OFF Deactivate coverage
	COVerage.ON Activate coverage
	COVerage.Option Set coverage options
	COVerage.Option.BLOCKMode Enable/disable line block mode
	COVerage.Option.ITrace Enable instruction trace processing
	COVerage.Option.SourceMetric Select code coverage metric
	COVerage.Option.StaticInfo Perform code coverage precalculations
	COVerage.RESet Clear coverage database
	COVerage.SAVE Save coverage database to file
	COVerage.Set Coverage modification
	COVerage.state Configure coverage
	COVerage.TreeWalkSETUP Prepare a tree with code coverage symbols
	COVerage.TreeWalkSETUP.<sub_cmd> Prepare a coverage symbol tree

	CTS
	CTS Context tracking system (CTS)
	Trace-based Debugging
	Full High-Level Language Trace Display
	Reconstruction of Trace Gaps (TRACE32-ICD)
	CTS Commands
	CTS.CACHE CTS cache analysis
	CTS.CACHE.Allocation Define the cache allocation technique
	CTS.CACHE.CYcles Define counting method for cache analysis
	CTS.CACHE.DefineBus Define bus interface
	CTS.CACHE.L1Architecture Define architecture for L1 cache
	CTS.CACHE.LFSR Linear-feedback shift register for random generator
	CTS.CACHE.ListAddress Address based cache analysis
	CTS.CACHE.ListFunc Function based cache analysis
	CTS.CACHE.ListLine HLL line based cache analysis
	CTS.CACHE.ListModules Module based cache analysis
	CTS.CACHE.ListRequests Display request for a single cache line
	CTS.CACHE.ListSet Cache set based cache analysis
	CTS.CACHE.ListVar Variable based cache analysis
	CTS.CACHE.MMUArchitecture Define MMU architecture for cache control
	CTS.CACHE.Mode Define memory coherency strategy
	CTS.CACHE.Replacement Define the replacement strategy
	CTS.CACHE.RESet Reset settings of CTS cache window
	CTS.CACHE.SETS Define the number of cache sets
	CTS.CACHE.Sort Define sorting for all list commands
	CTS.CACHE.state Display settings of CTS cache analysis
	CTS.CACHE.Tags Define address mode for cache lines
	CTS.CACHE.TLBArchitecture Define architecture for the TLB
	CTS.CACHE.View Display the results for the cache analysis
	CTS.CACHE.ViewBPU Display statistic for branch prediction unit
	CTS.CACHE.ViewBus Display statistics for the bus utilization
	CTS.CACHE.ViewStalls Display statistics for idles/stalls
	CTS.CACHE.WAYS Define number of cache ways
	CTS.CACHE.Width Define width of cache line
	CTS.CAPTURE Copy real memory to the virtual memory for CTS
	CTS.Chart.ChildTREE Display callee context of a function as chart
	CTS.Chart.Func Function activity chart
	CTS.Chart.INTERRUPT Display interrupt chart
	CTS.Chart.INTERRUPTTREE Display interrupt nesting
	CTS.Chart.Nesting Show function nesting at cursor position
	CTS.Chart.RUNNABLE Runnable activity chart
	CTS.Chart.sYmbol Execution time at different symbols as chart
	CTS.Chart.TASK Task activity chart
	CTS.Chart.TASKINFO Chart for context ID special messages
	CTS.Chart.TASKINTR Display ISR2 time chart (ORTI)
	CTS.Chart.TASKKernel Display task time chart with kernel markers (ORTI)
	CTS.Chart.TASKORINTERRUPT Task and interrupt activity chart
	CTS.Chart.TASKSRV Service routine run-time analysis
	CTS.Chart.TASKVSINTERRUPT Time chart of interrupted tasks
	CTS.Chart.TASKVSINTR Time chart of task-related interrupts
	CTS.Chart.TREE Display function chart as tree view
	CTS.EXPORT Export trace data
	CTS.FixedControl Execution time at different symbols as chart
	CTS.GOTO Select the specified record for CTS (absolute)
	CTS.INCremental CTS displays intermediate results while processing
	CTS.Init Restart CTS processing
	CTS.List List trace contents
	CTS.ListNesting Analyze function nesting
	CTS.Mode Operation mode
	CTS.OFF Switch off trace-based debugging
	CTS.ON Switch on trace-based debugging
	CTS.PROCESS Process cache analysis
	CTS.PROfileChart Profile charts
	CTS.PROfileChart.CACHE Display cache analysis results graphically
	CTS.PROfileChart.sYmbol Dynamic program behavior as profile chart
	CTS.PROfileChart.TASK Task profile chart
	CTS.PROfileChart.TASKINFO Profile chart for context ID special messages
	CTS.PROfileChart.TASKINTR ISR2 profile chart
	CTS.PROfileChart.TASKKernel Task profile chart with kernel markers
	CTS.PROfileChart.TASKORINTERRUPT Task and interrupt profile chart
	CTS.PROfileChart.TASKSRV OS service routines profile chart
	CTS.PROfileChart.TASKVSINTR Task-related interrupts profile chart
	CTS.RESet Reset the CTS settings
	CTS.SELectiveTrace Trace contains selective trace information
	CTS.SKIP Select the specified record for CTS (relative)
	CTS.SmartTrace CTS smart trace
	CTS.state Display CTS settings
	CTS.STATistic Nesting function runtime analysis
	CTS.STATistic.ChildTREE Show callee context of a function
	CTS.STATistic.Func Nesting function runtime analysis
	CTS.STATistic.GROUP Group run-time analysis
	CTS.STATistic.INTERRUPT Interrupt statistic
	CTS.STATistic.INTERRUPTTREE Interrupt nesting
	CTS.STATistic.LINKage Per caller statistic of function
	CTS.STATistic.MODULE Code execution broken down by module
	CTS.STATistic.ParentTREE Show the call context of a function
	CTS.STATistic.PROGRAM Code execution broken down by program
	CTS.STATistic.RUNNABLE Runnable runtime analysis
	CTS.STATistic.sYmbol Flat run-time analysis
	CTS.STATistic.TASK Task statistic
	CTS.STATistic.TASKINFO Statistic for context ID special messages
	CTS.STATistic.TASKINTR ISR2 statistic (ORTI)
	CTS.STATistic.TASKKernel Task statistic with kernel markers
	CTS.STATistic.TASKORINTERRUPT Task and interrupt statistic
	CTS.STATistic.TASKSRV OS service routines statistic
	CTS.STATistic.TASKVSINTERRUPT Statistic of interrupts, task-related
	CTS.STATistic.TREE Tree display of nesting function run-time analysis
	CTS.TAKEOVER Take memory/registers reconstructed by CTS over to target
	CTS.UNDO Revert last CTS command
	CTS.UseConst Use constants for the CTS processing
	CTS.UseDataTrace Use sampling cycles for CTS
	CTS.UseFinalContext Use the CPU registers for CTS
	CTS.UseFinalMemory Use memory contents for CTS
	CTS.UseSIM Use instruction set simulator for CTS
	CTS.UseStartMemory Use virtual memory contents as initial values for CTS

