
MANUAL

General Commands Reference
Guide B

General Commands Reference Guide B

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 General Commands .. 

 General Commands Reference Guide B .. 1

 History .. 8

 BMC .. 9

 BMC Benchmark counters 9

 BMC.<counter> Benchmark counters 10

 BMC.<counter>.EVENT Assign event to counter 10

 BMC.<counter>.FORMAT Counter value format 10

 BMC.<counter>.RATIO Set two counters in relation 11

 BMC.<counter>.SIZE Specify counter size 11

 BMC.Attach BMC attach 12

 BMC.AutoInit Automatic initialization 12

 BMC.CLOCK Provide core clock for cycle counter 12

 BMC.Init Initialize counters 13

 BMC.PROfile Display counter changes per second 13

 BMC.PROfileChart Profile chart with benchmark counter 14

 BMC.PROfileChart.AddressGROUP Address group profile chart with BMC 14

 BMC.PROfileChart.DatasYmbol Pointer profile chart with BMC 15

 BMC.PROfileChart.DistriB Distribution display with BMC 15

 BMC.PROfileChart.GROUP Group profile chart with BMC 15

 BMC.PROfileChart.Line Source code line profile chart with BMC 16

 BMC.PROfileChart.MODULE Module profile chart with BMC 16

 BMC.PROfileChart.PROGRAM Program profile chart with BMC 17

 BMC.PROfileChart.sYmbol Symbol profile chart with BMC 18

 BMC.PROfileChart.TASK Task profile chart with BMC 18

 BMC.PROfileChart.TASKINFO Data trace via context ID with BMC 18

 BMC.PROfileChart.TASKINTR ISR2 profile chart with BMC 19

 BMC.PROfileChart.TASKKernel Task profile chart with BMC 19

 BMC.PROfileChart.TASKORINTERRUPT Task and interrupts with BMC 19

 BMC.PROfileChart.TASKSRV OS service routines profile chart with BMC 20

 BMC.PROfileChart.TASKVSINTR Task related intr. profile chart with BMC 20

 BMC.PROfileSTATistic Statistical analysis vs. time with benchmark counter 21

 BMC.PROfileSTATistic.Address Address statistical analysis with BMC 21
General Commands Reference Guide B | 2©1989-2024 Lauterbach

 BMC.PROfileSTATistic.AddressGROUP Address group statistic with BMC 22

 BMC.PROfileSTATistic.DatasYmbol Pointer profile statistic with BMC 22

 BMC.PROfileSTATistic.DistriB Distribution statistical analysis with BMC 22

 BMC.PROfileSTATistic.GROUP Group profile statistic with BMC 23

 BMC.PROfileSTATistic.INTERRUPT Interrupt profile statistic with BMC 23

 BMC.PROfileSTATistic.Line High-level code line profile statistic with BMC 24

 BMC.PROfileSTATistic.MODULE Module profile statistic with BMC 24

 BMC.PROfileSTATistic.PROGRAM Program profile statistic with BMC 24

 BMC.PROfileSTATistic.RUNNABLE Runnable profile statistic with BMC 25

 BMC.PROfileSTATistic.sYmbol Symbol profile statistic with BMC 25

 BMC.PROfileSTATistic.TASK Task profile statistic with BMC 25

 BMC.PROfileSTATistic.TASKINFO Data trace via context ID with BMC 26

 BMC.PROfileSTATistic.TASKINTR ISR2 profile statistic with BMC 26

 BMC.PROfileSTATistic.TASKKernel Task profile statistic with BMC 27

 BMC.PROfileSTATistic.TASKORINTERRUPT Task or interrupt with BMC 27

 BMC.PROfileSTATistic.TASKSRV OS service routines profile stat. with BMC 27

 BMC.RESet Reset benchmark counter configuration 29

 BMC.SnoopSet Assign event counter to SNOOPer trace 29

 BMC.state Display BMC configuration window 32

 BMC.STATistic Statistic analysis with benchmark counter 35

 BMC.STATistic.ChildTREE Function callee context with BMC 35

 BMC.STATistic.DistriB Distribution analysis with BMC 36

 BMC.STATistic.Func Nesting function run-time with BMC 36

 BMC.STATistic.GROUP Group run-time analysis with BMC 36

 BMC.STATistic.LINKage Per caller function statistic with BMC 37

 BMC.STATistic.MODULE Module statistic with BMC 37

 BMC.STATistic.ParentTREE Statistic for call context with BMC 37

 BMC.STATistic.PROGRAM Program statistic with BMC 38

 BMC.STATistic.sYmbol Flat run-time analysis with BMC 38

 BMC.STATistic.TASK Statistic for tasks with BMC 39

 BMC.STATistic.TASKINFO Statistic for context ID messages with BMC 39

 BMC.STATistic.TASKINTR Statistic for ISR2 with BMC 39

 BMC.STATistic.TASKKernel Statistic for tasks with BMC 40

 BMC.STATistic.TASKORINTERRUPT Tasks and interrupts with BMC 40

 BMC.STATistic.TASKSRV Statistic for OS service routines with BMC 41

 BMC.STATistic.TREE Tree nesting function run-time with BMC 41

 BookMark ... 42

 BookMark Address and trace bookmarks 42

 Overview BookMark 42

 BookMark.CHange Edit the settings of a bookmark 43

 BookMark.Create Create a new address bookmark 44

 BookMark.Delete Delete an existing bookmark 45

 BookMark.EditRemark Add/edit remark of a bookmark 46
General Commands Reference Guide B | 3©1989-2024 Lauterbach

 BookMark.EXPORT Export bookmarks 47

 BookMark.EXPORT.ADDRESS Export bookmarks for specified addresses 47

 BookMark.EXPORT.preset Export bookmarks to an XML file 47

 BookMark.EXPORT.SOURCE Export bookmarks for specified source files 49

 BookMark.EXPORT.sYmbol Export bookmarks for specified symbols 49

 BookMark.List List all bookmarks 51

 BookMark.RESet Delete all bookmarks 52

 BookMark.Toggle Toggles a single address bookmark 53

 Break .. 54

 Break Stopping the program execution 54

 Breakpoints 54

 Break.Asm Stop program/set temporary breakpoint and switch to Asm mode 56

 Break.CLEAR Reset complex triggers 57

 Break.CONFIG Configuration of breakpoint behavior and breakpoint scope 58

 Break.CONFIG.AlwaysAlive Alive Onchip breakpoints 58

 Break.CONFIG.InexactAddress Inexact address range breakpoint 58

 Break.CONFIG.InexactData Inexact data value breakpoint 59

 Break.CONFIG.InexactResume Resuming on inexact breakpoints 60

 Break.CONFIG.InexactTrigger Inexact trigger breakpoints 60

 Break.CONFIG.MatchASID Use ASID specific breakpoints 61

 Break.CONFIG.MatchMachine Use machine specific breakpoints 62

 Break.CONFIG.MatchZone Use zone specific breakpoints 62

 Break.CONFIG.METHOD Breakpoints implementation 64

 Break.CONFIG.state Breakpoint configuration window 65

 Break.CONFIG.UseContextID Context ID specific breakpoints 65

 Break.CONFIG.UseMachineID Machine ID specific breakpoints 66

 Break.CONFIG.VarConvert Convert breakpoints on scalar variables 68

 Break.Delete Delete breakpoints 69

 Break.DeletePATtern Delete breakpoints allowing wildcards 70

 Break.direct Stop program execution or set temporary breakpoints 71

 Break.DISable Disable breakpoints 73

 Break.ENable Enable breakpoints 74

 Break.Hll Stop program/set temporary breakpoint and switch to HLL mode 75

 Break.Init Initialize breakpoints 76

 Break.List Display list of breakpoints 76

 Break.Mix Stop program/set temporary breakpoint and switch to MIX mode 78

 Break.MONitor Switch back to stop mode debugging 79

 Break.PASS Define pass condition for breakpoint 79

 Break.PATtern Set temporary breakpoints allowing wildcards 80

 Break.Program CTL interactive programming 80

 Break.ReProgram Activate existing CTL program file 81

 Break.REQuest Request a program break 81

 Break.RESet Delete all breakpoints and reset the TRACE32 break system 81
General Commands Reference Guide B | 4©1989-2024 Lauterbach

 Break.Set Set breakpoints 82

 On-chip Breakpoints 84

 Breakpoint Types 86

 Real-time vs. Intrusive Breakpoints 87

 Breakpoint Options 88

 Break.SetFunc Mark HLL functions 106

 Break.SetLine Mark HLL lines 108

 Break.SetMONitor Switch to run mode debugging at the next “Go” 108

 Break.SetPATtern Set breakpoints allowing wildcards 108

 Break.SetTask Stop the program execution when task is scheduled 110

 Break.ViewProgram Show state of the CTL trigger unit 110

 BSDL ... 111

 BSDL Boundary scan description language 111

 BSDL.BYPASSall Check bypass mode 112

 BSDL.CHECK Enable test result checking 112

 BSDL.FILE Load a BSDL file 112

 BSDL.FLASH Flash programming 113

 BSDL.FLASH.IFCheck Check flash interface definition 113

 BSDL.FLASH.IFDefine Define flash interface 115

 BSDL.FLASH.IFMap Map flash interface 116

 BSDL.FLASH.INIT Initialize flash interface 117

 BSDL.HARDRESET TAP reset via TRST 117

 BSDL.IDCODEall Check ID codes 118

 BSDL.LINKAGE Create a bypass device 118

 BSDL.LoadDR Load data register from file 119

 BSDL.MOVEDOWN Move selected chip downwards 120

 BSDL.MOVEUP Move selected chip upwards 121

 BSDL.ParkState Select JTAG parking state 121

 BSDL.RESet Reset boundary scan configuration 122

 BSDL.RUN Run JTAG sequence 122

 BSDL.RUNTCK Toggle TCK 122

 BSDL.SAMPLEall Sample all signals 123

 BSDL.SELect Select a chip 123

 BSDL.SET Set chip parameters 124

 BSDL.SetAndRun Immediate data register takeover 130

 BSDL.SOFTRESET TAP reset via TMS 131

 BSDL.state Display BSDL chain configuration window 132

 BSDL.StepPauseDR Special DR shift 133

 BSDL.SToreDR Store data register to file 134

 BSDL.TwoStepDR Single/double data register shift 135

 BSDL.UNLOAD Unload a chip from chain 135

 BTrace .. 136

 BTrace Script-controlled trace sink 136
General Commands Reference Guide B | 5©1989-2024 Lauterbach

 BTrace-specific Trace Commands .. 137

 BTrace.<specific_cmds> Overview of BTrace-specific commands 137

 BTrace.Mode Set the trace operation mode 137

 BTrace.PUSH Push trace data 137

 BTrace.state Display BTrace configuration window 140

 Generic BTrace Trace Commands ... 141

 BTrace.Arm Arm the trace 141

 BTrace.AutoArm Arm automatically 141

 BTrace.AutoInit Automatic initialization 141

 BTrace.BookMark Set a bookmark in trace listing 141

 BTrace.Chart Display trace contents graphically 141

 BTrace.ComPare Compare trace contents 141

 BTrace.DISable Disable the trace 142

 BTrace.DRAW Plot trace data against time 142

 BTrace.EXPORT Export trace data for processing in other applications 142

 BTrace.FILE Load a file into the file trace buffer 142

 BTrace.Find Find specified entry in trace 142

 BTrace.FindAll Find all specified entries in trace 142

 BTrace.FindChange Search for changes in trace flow 142

 BTrace.GOTO Move cursor to specified trace record 142

 BTrace.Init Initialize trace 143

 BTrace.List List trace contents 143

 BTrace.ListNesting Analyze function nesting 143

 BTrace.LOAD Load trace file for offline processing 143

 BTrace.OFF Switch off 143

 BTrace.PROfileChart Profile charts 143

 BTrace.PROTOcol Protocol analysis 143

 BTrace.PROTOcol.Chart Graphic display for user-defined protocol 144

 BTrace.PROTOcol.Draw Graphic display for user-defined protocol 144

 BTrace.PROTOcol.EXPORT Export trace buffer for user-defined protocol 144

 BTrace.PROTOcol.Find Find in trace buffer for user-defined protocol 144

 BTrace.PROTOcol.list Display trace buffer for user-defined protocol 144

 BTrace.PROTOcol.PROfileChart Profile chart for user-defined protocol 144

 BTrace.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol 144

 BTrace.PROTOcol.STATistic Display statistics for user-defined protocol 145

 BTrace.REF Set reference point for time measurement 145

 BTrace.RESet Reset command 145

 BTrace.SAVE Save trace for postprocessing in TRACE32 145

 BTrace.SIZE Define buffer size 145

 BTrace.STATistic Statistic analysis 145

 BTrace.Timing Waveform of trace buffer 145

 BTrace.TRACK Set tracking record 145

 BTrace.View Display single record 146
General Commands Reference Guide B | 6©1989-2024 Lauterbach

 BTrace.ZERO Align timestamps of trace and timing analyzers 146
General Commands Reference Guide B | 7©1989-2024 Lauterbach

General Commands Reference Guide B

Version 06-Jun-2024

History

08-Apr-2024 New option /TraceEnableEnable for the command Break.SetFunc.

11-Mar-2024 New option /TraceEnable for the command Break.SetFunc.

20-Jul-2023 New option /OnchipDetail for the command Break.List.

18-Jan-2023 New option /SPOT for the command Break.SetFunc.

07-Oct-2022 Information about task-aware real-time breakpoints for Cortex-X, Neoverse and RISC-V has
been added to the description of the Break.Set command.

09-Mar-2022 New option /DeleteHIT for the command Break.Set.

Dec-2021 New command Break.CONFIG.AlwaysAlive.
General Commands Reference Guide B | 8©1989-2024 Lauterbach

BMC

BMC Benchmark counters

The BMC (BenchMark Counter) commands provide control and usage of the on-chip performance
monitoring capabilities. Benchmark counters are on-chip counters that count specific hardware events, e.g.,
the number of executed instructions.

The benchmark counters can be configured via the TRACE32 command line, a PRACTICE script (*.cmm),
or the BMC.state window. This document presents the generic functions while the architecture_specific
BMC commands are in the Processor Architecture Manual.

See also

■ BMC.<counter> ■ BMC.Attach ■ BMC.AutoInit ■ BMC.CLOCK
■ BMC.Init ■ BMC.PROfile ■ BMC.PROfileChart ■ BMC.PROfileSTATistic
■ BMC.RESet ■ BMC.SnoopSet ■ BMC.state ■ BMC.STATistic

▲ ’BMC Functions (Benchmark Counter)’ in ’General Function Reference’
▲ ’Release Information’ in ’Legacy Release History’
General Commands Reference Guide B | 9©1989-2024 Lauterbach

BMC.<counter> Benchmark counters

See also

■ BMC.<counter>.EVENT ■ BMC.<counter>.FORMAT ■ BMC.<counter>.RATIO ■ BMC.<counter>.SIZE
■ BMC ■ BMC.state

BMC.<counter>.EVENT Assign event to counter

Assigns an event to a counter.

See also

■ BMC.<counter>

BMC.<counter>.FORMAT Counter value format

Sets up the display format for the for each benchmark counter.

See also

■ BMC.<counter>

Format: BMC.<counter>.EVENT [<event> | <event_number>]

<event> Event name defined by core manufacturer.

<event_number> Custom event ID.

BMC.<counter>.EVENT ClockCycles ; <counter> counts clock cycles

BMC.<counter> ClockCycles ; equivalent

Format: BMC.<counter>.FORMAT <format>

BMC.<counter>.FORMAT DECimal ; Display the counter value in
; decimal format.

BMC.<counter>.FORMAT HEXadecimal ; Display the counter value in
; hexadecimal format.
General Commands Reference Guide B | 10©1989-2024 Lauterbach

BMC.<counter>.RATIO Set two counters in relation

It might be useful to set two counter values in relation to each other, e.g. data cache accesses (DCACCESS)
and data cache misses (DCMISS).

Example:

See also

■ BMC.<counter>

BMC.<counter>.SIZE Specify counter size

Specifies the width of a counter. Counters are cascaded to provide a counter of a bigger size.

Example:

See also

■ BMC.<counter>

Format: BMC.<counter>.RATIO X/<counter _n>

BMC.<counter>.EVENT DCMISS

BMC.<counter>.RATIO X/DCACCESS

Format: BMC.<counter>.SIZE <size>

BMC.<counter>.SIZE 32BIT
General Commands Reference Guide B | 11©1989-2024 Lauterbach

BMC.Attach BMC attach

Attaches to the BenchMark Counters without initializing the counter values to zero. This command is needed
when the counters are configured by the target application.

See also

■ BMC ■ BMC.state

BMC.AutoInit Automatic initialization

If this command is set to ON, The BMC.Init command will be executed automatically, when the user
program is started.

See also

■ BMC ■ BMC.state

BMC.CLOCK Provide core clock for cycle counter

TRACE32 calculates and displays time information, if clock cycles are counted and the core clock is known.

Example:

See also

■ BMC ■ BMC.state ❏ BMC.CLOCK()

Format: BMC.Attach

Format: BMC.AutoInit [ON | OFF]

Format: BMC.CLOCK <clock>

BMC.<counter> ClockCylces

BMC.CLOCK 450.Mhz
General Commands Reference Guide B | 12©1989-2024 Lauterbach

BMC.Init Initialize counters

All counters are set to their initialization values.

See also

■ BMC ■ BMC.state

BMC.PROfile Display counter changes per second

If the target system allows to read the event counters while the program execution is running, TRACE32 can
sample the values of up to three counters periodically. The counter changes per second are displayed
graphically. The default sampling rate is 10 times per second.

See also

■ BMC ■ BMC.state

Format: BMC.Init

Format: BMC.PROfile [<y_scale>]

Push Legend to get a color legend
General Commands Reference Guide B | 13©1989-2024 Lauterbach

BMC.PROfileChart Profile chart with benchmark counter

The BMC.PROfileChart command group displays distributions versus time graphically similar to
<trace>.PROfileChart. The recorded instruction flow is synthesized with recorded benchmark counter
information to display the run-time analysis.

See also

■ <trace>.PROfileChart.TASKVSINTERRUPT ■ BMC.PROfileChart.AddressGROUP
■ BMC.PROfileChart.DatasYmbol ■ BMC.PROfileChart.DistriB
■ BMC.PROfileChart.GROUP ■ BMC.PROfileChart.Line
■ BMC.PROfileChart.MODULE ■ BMC.PROfileChart.PROGRAM
■ BMC.PROfileChart.sYmbol ■ BMC.PROfileChart.TASK
■ BMC.PROfileChart.TASKINFO ■ BMC.PROfileChart.TASKINTR
■ BMC.PROfileChart.TASKKernel ■ BMC.PROfileChart.TASKORINTERRUPT
■ BMC.PROfileChart.TASKSRV ■ BMC.PROfileChart.TASKVSINTR
■ BMC.PROfileSTATistic ■ BMC
■ BMC.state ■ BMC.STATistic
■ <trace>.PROfileChart

▲ ’Release Information’ in ’Legacy Release History’

BMC.PROfileChart.AddressGROUP Address group profile chart with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a profile chart for address groups. The results include groups for both
program and data.

Refer to <trace>.PROfileChart.AddressGROUP for a description of the parameters and options.

See also

■ BMC.PROfileChart ■ BMC.PROfileChart.GROUP
■ <trace>.PROfileChart.AddressGROUP

NOTE: Please note that the BMC.PROfileChart commands are only supported if the
trace logic of the target processor generates BMC counter information via trace
messages. Please refer to your Processor Architecture Manual for more
information.

Format: BMC.PROfileChart.AddressGROUP [<trace_area>] [/<option>]
General Commands Reference Guide B | 14©1989-2024 Lauterbach

BMC.PROfileChart.DatasYmbol Pointer profile chart with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a profile chart for debug symbols with addresses corresponding to the
accessed data values in the trace.

Refer to <trace>.PROfileChart.DatasYmbol for a description of the parameters and options.

See also

■ BMC.PROfileChart ■ <trace>.PROfileChart.DatasYmbol

BMC.PROfileChart.DistriB Distribution display with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a graphical representation of the specified trace item as a percentage of a
time slice.

Refer to <trace>.PROfileChart.DistriB for a description of the parameters and options.

See also

■ BMC.PROfileChart

BMC.PROfileChart.GROUP Group profile chart with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a profile chart for groups created with the GROUP.Create command. The
results only include groups within the program range. Groups for data addresses are not included.

Format: BMC.PROfileChart.DatasYmbol [<trace_area>] [/<option>]

Format: BMC.PROfileChart.DistriB [<trace_area>] [/<option>]

Format: BMC.PROfileChart.GROUP [<trace_area>] [/<option>]
General Commands Reference Guide B | 15©1989-2024 Lauterbach

Refer to <trace>.PROfileChart.GROUP for a description of the parameters and options.

See also

■ BMC.PROfileChart ■ BMC.PROfileChart.AddressGROUP
■ <trace>.PROfileChart.GROUP

BMC.PROfileChart.Line Source code line profile chart with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a profile chart for high-level source code lines.

Refer to <trace>.PROfileChart.Line for a description of the parameters and options.

See also

■ BMC.PROfileChart ■ <trace>.PROfileChart.Line

BMC.PROfileChart.MODULE Module profile chart with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a profile chart of symbol modules. The list of loaded modules can be displayed
with sYmbol.List.Module.

Refer to <trace>.PROfileChart.MODULE for a description of the parameters and options.

See also

■ BMC.PROfileChart ■ <trace>.PROfileChart.MODULE

Format: BMC.PROfileChart.Line [<trace_area>] [/<option>]

Format: BMC.PROfileChart.MODULE [<trace_area>] [/<option>]
General Commands Reference Guide B | 16©1989-2024 Lauterbach

BMC.PROfileChart.PROGRAM Program profile chart with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a profile chart of loaded object file programs. The loaded programs can be
displayed with the command sYmbol.Browse *.

Refer to <trace>.PROfileChart.PROGRAM for a description of the parameters and options.

See also

■ BMC.PROfileChart ■ <trace>.PROfileChart.PROGRAM

Format: BMC.PROfileChart.PROGRAM [<trace_area>] [/<option>]
General Commands Reference Guide B | 17©1989-2024 Lauterbach

BMC.PROfileChart.sYmbol Symbol profile chart with BMC

The instruction flow recorded to the selected trace sink (command Trace.METHOD) is synthesized with
recorded benchmark counter information in order to display profile chart for debug symbols.

Refer to <trace>.PROfileChart.sYmbol for a description of the parameters and options.

See also

■ BMC.PROfileChart ■ <trace>.PROfileChart.sYmbol

BMC.PROfileChart.TASK Task profile chart with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a profile chart of OS tasks. This feature is only available if TRACE32 has been
set for OS-aware debugging.

Refer to <trace>.PROfileChart.TASK for a description of the parameters and options.

See also

■ BMC.PROfileChart ■ <trace>.PROfileChart.TASK

BMC.PROfileChart.TASKINFO Data trace via context ID with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a profile chart of special messages written to the Context ID register for ETM
trace.

Refer to <trace>.PROfileChart.TASKINFO for a description of the parameters and options.

See also

■ BMC.PROfileChart ■ <trace>.PROfileChart.TASKINFO

Format: BMC.PROfileChart.sYmbol [<trace_area>] [/<option>]

Format: BMC.PROfileChart.TASK [<trace_area>] [/<option>]

Format: BMC.PROfileChart.TASKINFO [<trace_area>] [/<option>]
General Commands Reference Guide B | 18©1989-2024 Lauterbach

BMC.PROfileChart.TASKINTR ISR2 profile chart with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a profile chart of ORTI based ISR2. This feature can only be used if ISR2 can
be traced based on the information provided by the ORTI file. Please refer to “OS Awareness Manual
OSEK/ORTI” (rtos_orti.pdf) for more information.

Refer to <trace>.PROfileChart.TASKINTR for a description of the parameters and options.

See also

■ BMC.PROfileChart ■ <trace>.PROfileChart.TASKINTR

BMC.PROfileChart.TASKKernel Task profile chart with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a profile chart of Tasks with kernel marker. This feature is only available if
TRACE32 has been set for OS-aware debugging. Refer to Trace.STATistic.TASKKernel for more
information.

Refer to <trace>.PROfileChart.TASKKernel for a description of the parameters and options.

See also

■ BMC.PROfileChart ■ <trace>.PROfileChart.TASKKernel

BMC.PROfileChart.TASKORINTERRUPT Task and interrupts with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a profile chart of OS tasks and interrupts. This feature is only available if
TRACE32 has been set for OS-aware debugging.

Format: BMC.PROfileChart.TASKINTR [<trace_area>] [/<option>]

Format: BMC.PROfileChart.TASKKernel [<trace_area>] [/<option>]

Format: BMC.PROfileChart.TASKORINTERRUPT [<trace_area>] [/<option>]
General Commands Reference Guide B | 19©1989-2024 Lauterbach

Refer to <trace>.PROfileChart.TASKORINTERRUPT for a description of the parameters and options.

See also

■ BMC.PROfileChart ■ <trace>.PROfileChart.TASKORINTERRUPT

BMC.PROfileChart.TASKSRV OS service routines profile chart with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a profile chart of OS service routines.

This feature is only available if an OSEK/ORTI system is used and if the OS Awareness is configured with
the TASK.ORTI command. Please refer to “OS Awareness Manual OSEK/ORTI” (rtos_orti.pdf) for more
information.

Refer to <trace>.PROfileChart.TASKSRV for a description of the parameters and options.

See also

■ BMC.PROfileChart ■ <trace>.PROfileChart.TASKSRV

BMC.PROfileChart.TASKVSINTR Task related intr. profile chart with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a profile chart of task-related interrupt service routines.

This feature is only available if an OSEK/ORTI system is used and if the OS Awareness is configured with
the TASK.ORTI command. Please refer to “OS Awareness Manual OSEK/ORTI” (rtos_orti.pdf) for more
information.

Refer to <trace>.PROfileChart.TASKVSINTR for a description of the parameters and options.

See also

■ BMC.PROfileChart ■ <trace>.PROfileChart.TASKVSINTR

Format: BMC.PROfileChart.TASKSRV [<trace_area>] [/<option>]

Format: BMC.PROfileChart.TASKVSINTR [<trace_area>] [/<option>]
General Commands Reference Guide B | 20©1989-2024 Lauterbach

BMC.PROfileSTATistic Statistical analysis vs. time with benchmark counter

The BMC.PROfileSTATistic command group shows the results of numerical interval analysis in tabular
format. <trace>.PROfileSTATistic. The recorded instruction flow is synthesized with recorded benchmark
counter information to display the run-time analysis.

See also

■ <trace>.PROfileSTATistic.TASKVSINTERRUPT ■ BMC.PROfileSTATistic.Address
■ BMC.PROfileSTATistic.AddressGROUP ■ BMC.PROfileSTATistic.DatasYmbol
■ BMC.PROfileSTATistic.DistriB ■ BMC.PROfileSTATistic.GROUP
■ BMC.PROfileSTATistic.INTERRUPT ■ BMC.PROfileSTATistic.Line
■ BMC.PROfileSTATistic.MODULE ■ BMC.PROfileSTATistic.PROGRAM
■ BMC.PROfileSTATistic.RUNNABLE ■ BMC.PROfileSTATistic.sYmbol
■ BMC.PROfileSTATistic.TASK ■ BMC.PROfileSTATistic.TASKINFO
■ BMC.PROfileSTATistic.TASKINTR ■ BMC.PROfileSTATistic.TASKKernel
■ BMC.PROfileSTATistic.TASKORINTERRUPT ■ BMC.PROfileSTATistic.TASKSRV
■ BMC.PROfileChart ■ BMC
■ BMC.state ■ <trace>.PROfileSTATistic

BMC.PROfileSTATistic.Address Address statistical analysis with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis versus time for addresses.

Refer to <trace>.PROfileSTATistic.Address for a description of the parameters and options.

See also

■ BMC.PROfileSTATistic ■ <trace>.PROfileSTATistic.Address

NOTE: Please note that the BMC.PROfileSTATistic commands are only supported if
the trace logic of the target processor generates BMC counter information via
trace messages. Please refer to your Processor Architecture Manual for more
information.

Format: BMC.PROfileSTATistic.Address [<trace_area>] <address1>
 [<address2> …] [/<option>]
General Commands Reference Guide B | 21©1989-2024 Lauterbach

BMC.PROfileSTATistic.AddressGROUP Address group statistic with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis versus time for address groups. The results include
groups for both program and data.

Refer to <trace>.PROfileSTATistic.AddressGROUP for a description of the parameters and options.

See also

■ BMC.PROfileSTATistic ■ BMC.PROfileSTATistic.GROUP
■ <trace>.PROfileSTATistic.AddressGROUP

BMC.PROfileSTATistic.DatasYmbol Pointer profile statistic with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistic analysis versus time for debug symbols with addresses
corresponding to the accessed data values in the trace.

Refer to <trace>.PROfileSTATistic.DatasYmbol for a description of the parameters and options.

See also

■ BMC.PROfileSTATistic ■ <trace>.PROfileSTATistic.DatasYmbol

BMC.PROfileSTATistic.DistriB Distribution statistical analysis with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistic analysis versus time for the selected <items>. Without <items>
the statistic is based on the symbolic addresses.

Format: BMC.PROfileSTATistic.AddressGROUP [<trace_area>] [/<option>]

Format: BMC.PROfileSTATistic.DatasYmbol [<trace_area>] [/<option>]

Format: BMC.PROfileSTATistic.DistriB [%<format>] [<items> …] [/<option>]
General Commands Reference Guide B | 22©1989-2024 Lauterbach

Refer to <trace>.PROfileSTATistic.DistriB for a description of the parameters and options.

See also

■ BMC.PROfileSTATistic ■ <trace>.PROfileSTATistic.DistriB

BMC.PROfileSTATistic.GROUP Group profile statistic with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis versus time for groups created with the GROUP.Create
command. The results only include groups within the program range. Groups for data addresses are not
included.

Refer to <trace>.PROfileSTATistic.GROUP for a description of the parameters and options.

See also

■ BMC.PROfileSTATistic ■ BMC.PROfileSTATistic.AddressGROUP
■ <trace>.PROfileSTATistic.GROUP

BMC.PROfileSTATistic.INTERRUPT Interrupt profile statistic with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis versus time for interrupts. This feature is only available if
TRACE32 has been set for OS-aware debugging.

Refer to <trace>.PROfileSTATistic.INTERRUPT for a description of the parameters and options.

See also

■ BMC.PROfileSTATistic ■ <trace>.PROfileSTATistic.INTERRUPT

Format: BMC.PROfileSTATistique.GROUP [<trace_area>] [/<option>]

Format: BMC.PROfileSTATistique.INTERRUPT [<trace_area>] [/<option>]
General Commands Reference Guide B | 23©1989-2024 Lauterbach

BMC.PROfileSTATistic.Line High-level code line profile statistic with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis versus time for high-level source code lines.

Refer to <trace>.PROfileSTATistic.Line for a description of the parameters and options.

See also

■ BMC.PROfileSTATistic ■ <trace>.PROfileSTATistic.Line

BMC.PROfileSTATistic.MODULE Module profile statistic with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis versus time for symbol modules. The list of loaded
modules can be displayed with sYmbol.List.Module.

Refer to <trace>.PROfileSTATistic.MODULE for a description of the parameters and options.

See also

■ BMC.PROfileSTATistic ■ <trace>.PROfileSTATistic.MODULE

BMC.PROfileSTATistic.PROGRAM Program profile statistic with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis versus time for loaded object file programs. The loaded
programs can be displayed with the command sYmbol.Browse *.

Refer to <trace>.PROfileSTATistic.PROGRAM for a description of the parameters and options.

See also

■ BMC.PROfileSTATistic ■ <trace>.PROfileSTATistic.PROGRAM

Format: BMC.PROfileSTATistic.Line [<trace_area>] [/<option>]

Format: BMC.PROfileSTATistic.MODULE [<trace_area>] [/<option>]

Format: BMC.PROfileSTATistic.PROGRAM [<trace_area>] [/<option>]
General Commands Reference Guide B | 24©1989-2024 Lauterbach

BMC.PROfileSTATistic.RUNNABLE Runnable profile statistic with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis versus time for AUTOSAR runnables. This feature is only
available if an OSEK/ORTI system is used and if the OS Awareness is configured with the TASK.ORTI
command. Please refer to “OS Awareness Manual OSEK/ORTI” (rtos_orti.pdf) for more information.

Refer to <trace>.PROfileSTATistic.RUNNABLE for a description of the parameters and options.

See also

■ BMC.PROfileSTATistic ■ <trace>.PROfileSTATistic.RUNNABLE

BMC.PROfileSTATistic.sYmbol Symbol profile statistic with BMC

The instruction flow recorded to the selected trace sink (command Trace.METHOD) is synthesized with
recorded benchmark counter information in order to display a statistical analysis versus time for debug
symbols.

Refer to <trace>.PROfileSTATistic.sYmbol for a description of the parameters and options.

See also

■ BMC.PROfileSTATistic ■ <trace>.PROfileSTATistic.sYmbol

BMC.PROfileSTATistic.TASK Task profile statistic with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis versus time for OS tasks. This feature is only available if
TRACE32 has been set for OS-aware debugging.

Format: BMC.PROfileSTATistic.RUNNABLE [<trace_area>] [/<option>]

Format: BMC.PROfileSTATistic.sYmbol [<trace_area>] [/<option>]

Format: BMC.PROfileSTATistic.TASK [<trace_area>] [/<option>]
General Commands Reference Guide B | 25©1989-2024 Lauterbach

Refer to <trace>.PROfileSTATistic.TASK for a description of the parameters and options.

See also

■ BMC.PROfileSTATistic ■ <trace>.PROfileSTATistic.TASK

BMC.PROfileSTATistic.TASKINFO Data trace via context ID with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis versus time of special messages written to the Context ID
register for ETM trace.

Refer to <trace>.PROfileSTATistic.TASKINFO for a description of the parameters and options.

See also

■ BMC.PROfileSTATistic ■ <trace>.PROfileSTATistic.TASKINFO

BMC.PROfileSTATistic.TASKINTR ISR2 profile statistic with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis versus time for ORTI based ISR2. This feature can only
be used if ISR2 can be traced based on the information provided by the ORTI file. Please refer to “OS
Awareness Manual OSEK/ORTI” (rtos_orti.pdf) for more information.

Refer to <trace>.PROfileSTATistic.TASKINTR for a description of the parameters and options.

See also

■ BMC.PROfileSTATistic ■ <trace>.PROfileSTATistic.TASKINTR

Format: BMC.PROfileSTATistic.TASKINFO [<trace_area>] [/<option>]

Format: BMC.PROfileSTATistic.TASKINTR [<trace_area>] [/<option>]
General Commands Reference Guide B | 26©1989-2024 Lauterbach

BMC.PROfileSTATistic.TASKKernel Task profile statistic with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis versus time for Tasks with kernel marker. Refer to
Trace.STATistic.TASKKernel for more information.

This feature is only available if TRACE32 has been set for OS-aware debugging.

Refer to <trace>.PROfileSTATistic.TASKKernel for a description of the parameters and options.

See also

■ BMC.PROfileSTATistic ■ <trace>.PROfileSTATistic.TASKKernel

BMC.PROfileSTATistic.TASKORINTERRUPT Task or interrupt with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis versus time for OS tasks and interrupts. This feature is
only available if TRACE32 has been set for OS-aware debugging.

Refer to <trace>.PROfileSTATistic.TASKORINTERRUPT for a description of the parameters and options.

See also

■ BMC.PROfileSTATistic ■ <trace>.PROfileSTATistic.TASKORINTERRUPT

BMC.PROfileSTATistic.TASKSRV OS service routines profile stat. with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis versus time for OS service routines. This feature is only
available if an OSEK/ORTI system is used and if the OS Awareness is configured with the TASK.ORTI
command. Please refer to “OS Awareness Manual OSEK/ORTI” (rtos_orti.pdf) for more information.

Format: BMC.PROfileSTATistic.TASKKernel [<trace_area>] [/<option>]

Format: BMC.PROfileSTATistic.TASKORINTERRUPT [<trace_area>] [/<option>]

Format: BMC.PROfileSTATistic.TASKSRV [<trace_area>] [/<option>]
General Commands Reference Guide B | 27©1989-2024 Lauterbach

Refer to <trace>.PROfileSTATistic.TASKSRV for a description of the parameters and options.

See also

■ BMC.PROfileSTATistic ■ <trace>.PROfileSTATistic.TASKSRV
General Commands Reference Guide B | 28©1989-2024 Lauterbach

BMC.RESet Reset benchmark counter configuration

Resets the BenchMark Counter configuration to the default settings.

See also

■ BMC ■ BMC.state

BMC.SnoopSet Assign event counter to SNOOPer trace

The TRACE32 SNOOPer Trace can be used to record the event counters periodically, if the target system
allows to read the event counters while the program execution is running.

TRACE32 provides various ways to analyze the recorded information.

Example 1 for the pure JTAG debugger.

Format: BMC.RESet

Format: BMC.SnoopSet [ON | OFF]

BMC.state ; display the BMC Configuration
; window

BMC.<counter1> <event1> ; assign event of interest to
; the event counter

;BMC.<counter2> <event2>
…

; several assignments possible

BMC.SnoopSet ON ; configure the TRACE32 SNOOPer
; Trace for event counter recording

SNOOPer.state ; display the SNOOPer Trace
; Configuration window to inspect
; the setup

Go ; start the program execution to
; fill the SNOOPer trace
General Commands Reference Guide B | 29©1989-2024 Lauterbach

Example 2: In this script, an event counter recording is combined with an instruction flow trace recording.

Break ; stop the program execution

SNOOPer.List ; display a SNOOPer trace listing

; please pay attention to the
; ti.back time, it informs you on
; the SNOOPer sampling rate

SNOOPer.PROfileChart.COUNTER ; display a profile statistic

BMC.state ; display the BMC Configuration
; window

BMC.<counter1> <event1> ; assign event of interest to
; event counter

; only one event counter possible

BMC.SnoopSet ON ; configure the TRACE32 SNOOPer
; Trace for event counter recording

SNOOPer.state ; display the SNOOPer Trace
; Configuration window to inspect
; the setup

SNOOPer.SIZE 500000. ; adjust the size of the SNOOPER
; Trace

; the SNOOPer Trace and the Trace
; recording the instruction flow
; should get full nearly at the
; same point in time
General Commands Reference Guide B | 30©1989-2024 Lauterbach

See also

■ BMC ■ BMC.state

; initialize all units involved whenever the program execution is
; started, this avoids invalid combinations

Trace.AutoInit ON ; initialize the Trace recording
; the instruction flow

SNOOPer.AutoInit ON ; initialize the SNOOPER Trace

BMC.AutoInit ON ; initialize the event counter

Go ; start the program execution to
; fill the SNOOPer trace

Break ; stop the program execution

SNOOPer.List ; display a SNOOPer trace listing

; please pay attention to the
; ti.back time, it informs you on
; the SNOOPer sampling rate

BMC.SELect <counter1> ; select <counter1> for the
; statistic evaluation

BMC.STATistic.sYmbol ; assign the recorded events to the
; recorded functions/symbol ranges
General Commands Reference Guide B | 31©1989-2024 Lauterbach

BMC.state Display BMC configuration window
[Step-by-Step Procedure] [Example]

Displays the BMC.state window, where you can assign events to benchmark counters in order to count
these events and compare one counter in relation to another counter. The benchmarking results are
displayed in the BMC.state window.

Description of Header and Columns: BMC.state Window (Using an OMAP4430 as an Example)

Format: BMC.state

NOTE: The layout and operating principle of the BMC.state window is the same for
most TRACE32 debuggers, i.e. the window is architecture-independent.
• For a few TRACE32 debuggers, the layout of the BMC.state window

remains architecture-specific because some chips offers only a limited
benchmark counter functionality.

• Architecture-specific BMC commands are described in the TRACE32
processor architecture manuals.
Choose Help menu > Processor Architecture Manual.

A The BMC.state window shows how two events, the DREAD and DWRITE events, can be counted by
assigning them to two benchmark counters, PMN0 and PMN1.

B The first ratio column lets you analyze one benchmark counter in relation to another benchmark
counter. Here, the PMN1 counter is analyzed in relation to the PMN0 counter. The result is displayed in
the second ratio column. See also BMC.<counter>.RATIO.
• For the CLOCKS benchmark counter, the runtime is given in seconds. This value is calcu-

lated from the clock frequency and the cycle count.
• For the other benchmark counters, the results are given in percentage, seconds, or Hertz.

C counter name. Performance counters from the core debug controller. The counter names are
architecture specific.

D counter name. CLOCKS: The clock cycle counter is activated if at least one of the performance
counters of the core debug controller is activated (not available on all cores).

B

E

D

C

A

General Commands Reference Guide B | 32©1989-2024 Lauterbach

To Assign Events to Benchmark Counters via the User Interface TRACE32 PowerView:

1. At the TRACE32 command line type, BMC.state to open the window.

2. In the counter name column, click the benchmark counter you want to configure.

The selected row is highlighted in blue. Little white down-arrows indicate that you can configure the
values in these columns via drop-down lists [A].

3. In the event column, right-click the white down-arrow, and then select the event to be counted [B].

E Header. For descriptions of the commands in the BMC.state window, please refer to the BMC.*
commands in this chapter.
Example: For information about the AutoInit check box, see BMC.AutoInit.

- event.The drop-down list shows the name of the event together with a short description in
parentheses. The available events are device-specific. See BMC.<counter>.EVENT.

- size. Displays the size of the performance counters. For architectures providing variable counter
sizes, the counter size can be adjusted with the BMC.<counter>.SIZE command.

- value. Number of hardware events counted. Right-click to display the value as decimal or hex.
In a PRACTICE script, you can format the value as hex or decimal using the command
BMC.<counter>.FORMAT, see example.

- ratio. See [B].

- ov. Counter overflow.
General Commands Reference Guide B | 33©1989-2024 Lauterbach

PRACTICE Script Example for the OMAP4430:

See also

■ BMC ■ BMC.<counter> ■ BMC.Attach ■ BMC.AutoInit
■ BMC.CLOCK ■ BMC.Init ■ BMC.PROfile ■ BMC.PROfileChart
■ BMC.PROfileSTATistic ■ BMC.RESet ■ BMC.SnoopSet ■ BMC.STATistic

▲ ’Release Information’ in ’Legacy Release History’

BMC.state ;open the BMC.state window

BMC.CLOCK 600.0MHz ;baseline for all benchmark counter
 ;calculations

;columns 'counter name' and 'event'
BMC.PMN0.EVENT DREAD ;assign the DREAD event to the PMN0 counter
BMC.PMN1.EVENT DWRITE ;assign the DWRITE event to the PMN1 counter

;'value' column ;for demo purposes let's format the value
BMC.PMN1.FORMAT HEXadecimal ;of PMN1 as hex

;'ratio' column
BMC.PMN1.RATIO X/PMN0 ;analyze PMN1 in relation to PMN0

BMC.PROfile ;the BMC.PROfile window displays the current
 ;number of events per second.
 ;______ if 0 events.

Go ;start real-time emulation - the BMC windows
WAIT 1.s ;are updated while the emulation is running
Break ;stop emulation
General Commands Reference Guide B | 34©1989-2024 Lauterbach

BMC.STATistic Statistic analysis with benchmark counter

The BMC.STATistic command group can be used for statistical analysis based on the information sampled
to the trace buffer similar to <trace>.STATistic. The recorded instruction flow is additionally synthesized with
recorded benchmark counter information to display the run-time analysis.

See also

■ <trace>.STATistic.TASKVSINTERRUPT ■ BMC.STATistic.ChildTREE
■ BMC.STATistic.DistriB ■ BMC.STATistic.Func
■ BMC.STATistic.GROUP ■ BMC.STATistic.LINKage
■ BMC.STATistic.MODULE ■ BMC.STATistic.ParentTREE
■ BMC.STATistic.PROGRAM ■ BMC.STATistic.sYmbol
■ BMC.STATistic.TASK ■ BMC.STATistic.TASKINFO
■ BMC.STATistic.TASKINTR ■ BMC.STATistic.TASKKernel
■ BMC.STATistic.TASKORINTERRUPT ■ BMC.STATistic.TASKSRV
■ BMC.STATistic.TREE ■ BMC
■ BMC.PROfileChart ■ BMC.state
■ <trace>.STATistic

BMC.STATistic.ChildTREE Function callee context with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display the call tree and run-time of all functions called by the function specified
with the <address> parameter.

Refer to <trace>.STATistic.ChildTREE for a description of the parameters and options.

See also

■ BMC.STATistic ■ <trace>.STATistic.ChildTREE

NOTE: Please note that the BMC.STATistic commands are only supported if the trace
logic of the target processor generates BMC counter information via trace
messages. Please refer to your Processor Architecture Manual for more
information.

Format: BMC.STATistic.ChildTREE <address> [<list_items>] [/<option>]
General Commands Reference Guide B | 35©1989-2024 Lauterbach

BMC.STATistic.DistriB Distribution analysis with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display the statistic distribution of the selected <items>. Without <items> the
statistic is based on the symbolic addresses.

Refer to <trace>.STATistic.DistriB for a description of the parameters and options.

See also

■ BMC.STATistic ■ <trace>.STATistic.DistriB

BMC.STATistic.Func Nesting function run-time with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a nesting function run-time analysis.

Refer to <trace>.STATistic.Func for a description of the parameters and options.

See also

■ BMC.STATistic ■ <trace>.STATistic.Func

BMC.STATistic.GROUP Group run-time analysis with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a run-time analysis for groups created with the GROUP.Create command.
The results only include groups within the program range. Groups for data addresses are not included.

Refer to <trace>.STATistic.GROUP for a description of the parameters and options.

See also

■ BMC.STATistic ■ <trace>.STATistic.GROUP

Format: BMC.STATistic.DistriB [%<format>] [<items> …] [/<option>]

Format: BMC.STATistic.Func [%<format>] [<list_items> …] [/<option>]

Format: BMC.STATistic.GROUP [%<format>] [<list_items> …] [/<option>]
General Commands Reference Guide B | 36©1989-2024 Lauterbach

BMC.STATistic.LINKage Per caller function statistic with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a function run-time statistic for a single function itemized by its callers.

Refer to <trace>.STATistic.LINKage for a description of the parameters and options.

See also

■ BMC.STATistic ■ <trace>.STATistic.LINKage

BMC.STATistic.MODULE Module statistic with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis of symbol modules. The list of loaded modules can be
displayed with sYmbol.List.Module.

Refer to <trace>.STATistic.MODULE for a description of the parameters and options.

See also

■ BMC.STATistic ■ <trace>.STATistic.MODULE

BMC.STATistic.ParentTREE Statistic for call context with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis of all callers of the specified function. The function is
specified by its start <address>.

Refer to <trace>.STATistic.ParentTREE for a description of the parameters and options.

See also

■ BMC.STATistic ■ <trace>.STATistic.ParentTREE

Format: BMC.STATistic.LINKage <address> [<list_items> …] [/<option>]

Format: BMC.STATistic.MODULE [%<format>] [<list_items> …] [/<option>]

Format: BMC.STATistic.ParentTREE <address> [<list_items> …] [/<option>]
General Commands Reference Guide B | 37©1989-2024 Lauterbach

BMC.STATistic.PROGRAM Program statistic with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis of loaded object file programs. The loaded programs can
be displayed with the command sYmbol.Browse *.

Refer to <trace>.STATistic.PROGRAM for a description of the parameters and options.

See also

■ BMC.STATistic ■ <trace>.STATistic.PROGRAM

BMC.STATistic.sYmbol Flat run-time analysis with BMC

The instruction flow recorded to the selected trace sink (command Trace.METHOD) is synthesized with
recorded benchmark counter information in order to display a flat function run-time analysis.

Refer to <trace>.STATistic.sYmbol for a description of the parameters and options.

See also

■ BMC.STATistic ■ <trace>.STATistic.sYmbol

Format: BMC.STATistic.MODULE [%<format>] [<list_items> …] [/<option>]

Format: BMC.STATistic.sYmbol [%<format>] [<list_items> …] [/<option>]
General Commands Reference Guide B | 38©1989-2024 Lauterbach

BMC.STATistic.TASK Statistic for tasks with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis of OS tasks. This feature is only available if TRACE32
has been set for OS-aware debugging.

Refer to <trace>.STATistic.TASK for a description of the parameters and options.

See also

■ BMC.STATistic ■ <trace>.STATistic.TASK

BMC.STATistic.TASKINFO Statistic for context ID messages with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis of special messages written to the Context ID register for
ETM trace. Refer to <trace>.STATistic.TASKINFO for more information.

Refer to <trace>.STATistic.TASKINFO for a description of the parameters and options.

See also

■ BMC.STATistic ■ <trace>.STATistic.TASKINFO

BMC.STATistic.TASKINTR Statistic for ISR2 with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis of ORTI based ISR2. This feature can only be used if
ISR2 can be traced based on the information provided by the ORTI file. Please refer to “OS Awareness
Manual OSEK/ORTI” (rtos_orti.pdf) for more information.

Format: BMC.STATistic.TASK [%<format>] [<list_items> …] [/<option>]

Format: BMC.STATistic.TASKINFO [%<format>] [<list_items> …] [/<option>]

Format: BMC.STATistic.TASKINTR [%<format>] [<list_items> …] [/<option>]
General Commands Reference Guide B | 39©1989-2024 Lauterbach

Refer to <trace>.STATistic.TASKINTR for a description of the parameters and options.

See also

■ BMC.STATistic ■ <trace>.STATistic.TASKINTR

BMC.STATistic.TASKKernel Statistic for tasks with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis of tasks with kernel marker. Refer to
Trace.STATistic.TASKKernel for more information. This feature is only available if TRACE32 has been set
for OS-aware debugging.

Refer to <trace>.STATistic.TASKKernel for a description of the parameters and options.

See also

■ BMC.STATistic ■ <trace>.STATistic.TASKKernel

BMC.STATistic.TASKORINTERRUPT Tasks and interrupts with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis of OS tasks and interrupts. This feature is only available if
TRACE32 has been set for OS-aware debugging.

Refer to <trace>.STATistic.TASKORINTERRUPT for a description of the parameters and options.

See also

■ BMC.STATistic ■ <trace>.STATistic.TASKORINTERRUPT

Format: BMC.STATistic.TASKKernel [%<format>] [<list_items> …] [/<option>]

Format: BMC.STATistic.TASKORINTERRUPT [%<format>] [<list_items> …]
 [/<option>]
General Commands Reference Guide B | 40©1989-2024 Lauterbach

BMC.STATistic.TASKSRV Statistic for OS service routines with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis of OS service routines. This feature is only available if an
OSEK/ORTI system is used and if the OS Awareness is configured with the TASK.ORTI command. Please
refer to “OS Awareness Manual OSEK/ORTI” (rtos_orti.pdf) for more information.

Refer to <trace>.STATistic.TASKSRV for a description of the parameters and options.

See also

■ BMC.STATistic ■ <trace>.STATistic.TASKSRV

BMC.STATistic.TREE Tree nesting function run-time with BMC

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a graphical tree of the function nesting.

Refer to <trace>.STATistic.TREE for a description of the parameters and options.

See also

■ BMC.STATistic ■ <trace>.STATistic.TREE

Format: BMC.STATistic.TASKSRV [%<format>] [<list_items> …] [/<option>]

Format: BMC.STATistic.TREE [%<format>] [{<list_items>}] [/<option>]
General Commands Reference Guide B | 41©1989-2024 Lauterbach

BookMark

BookMark Address and trace bookmarks

See also

■ BookMark.CHange ■ BookMark.Create ■ BookMark.Delete ■ BookMark.EditRemark
■ BookMark.EXPORT ■ BookMark.List ■ BookMark.RESet ■ BookMark.Toggle
■ <trace>.BookMark ■ <trace>.BookMarkToggle ■ <trace>.GOTO ■ <trace>.TRACK
■ COVerage

Overview BookMark

There are two types of bookmarks, which are distinguished by their color:

• Address bookmarks are marked with a small green rectangle.

• Trace bookmarks are marked with a small yellow rectangle.

Using bookmarks, you can mark, locate, and identify trace records of interest or addresses of interest.
For code coverage, you can use bookmarks to add comments to not-executed code.

It is recommended that you use bookmarks together with the /Track option to improve navigation: Let’s
assume that the List.auto /Track window is already open. When you single-click any of the address
bookmarks in the BookMark.List window, the cursor in the List.auto /Track window automatically points to
the corresponding assembler code. See figure below.

When you double-click an address bookmark in the BookMark.List window, a new List window opens at
the bookmarked address.

When you double-click a trace bookmark in the BookMark.List window, a new <trace>.List window opens
at the bookmarked trace record.

NOTE: Bookmark names are case sensitive.
General Commands Reference Guide B | 42©1989-2024 Lauterbach

BookMark.CHange Edit the settings of a bookmark

Opens a dialog where you can change the settings of a bookmark and rename the bookmark. In addition,
you can use the BookMark.CHange command to create a new bookmark. Alternatively, you can right-click
the desired bookmark in the BookMark.List window, and then select Change.

Example:

See also

■ BookMark

Format: BookMark.CHange "<bookmark_name>" <address> | <time> [<file>] [<line>]

<bookmark_name> Bookmark names are case sensitive.

<time>, <file>, <line> The parameters <time>, <file>, and <line> are reserved for the scripting-
mode of TRACE32, they are not needed in the dialog-mode of TRACE32.

;displays the settings for the bookmark "Loop"
BookMark.CHange "Loop"

;TRACE32 suggests a new bookmark name by incrementing to the next
;bookmark number
BookMark.CHange

;the bookmark name is incremented, and the new bookmark will refer
;to the symbol main (see screenshot below)
BookMark.CHange , main

Opens the Browse Symbols
dialog.
(sYmbol.Browse.sYmbol)
General Commands Reference Guide B | 43©1989-2024 Lauterbach

BookMark.Create Create a new address bookmark

Creates a new address bookmark. If the <bookmark_name> exists already, the command
BookMark.Create will overwrite the address bookmark with the new parameters.

Examples:

See also

■ BookMark ■ <trace>.BookMark

Format: BookMark.Create "<bookmark_name>" <address> | <time> [<file>] [<line>]

NOTE: To create a trace bookmark, use the <trace>.BookMark command.

<bookmark_name> Bookmark names are case sensitive.

<time>, <file>, <line> The parameters <time>, <file>, and <line> are reserved for the scripting-
mode of TRACE32, they are not needed in the dialog-mode of TRACE32.

; create a new bookmark at 0x1000 and label it "start"
BookMark.Create "start" 0x1000

; create a new bookmark at the entry of func24 and name it "My_Code"
BookMark.Create "My_Code" func24

; overwrites the existing bookmark called "My_Code" with the address
; 0x2000
BookMark.Create "My_Code" 0x2000
General Commands Reference Guide B | 44©1989-2024 Lauterbach

BookMark.Delete Delete an existing bookmark

Deletes an existing bookmark.

Examples:

See also

■ BookMark

Format: BookMark.Delete "<bookmark_name>" [<address> | <time>] [<file>] [<line>]

<bookmark_name> Bookmark names are case sensitive.

<time>, <file>, <line> The parameters <time>, <file>, and <line> are reserved for the scripting-
mode of TRACE32, they are not needed in the dialog-mode of TRACE32.

BookMark.Delete "start" ; Delete the bookmark named "start"

BookMark.Delete "My_Code" ; Delete the bookmark "My_Code"
General Commands Reference Guide B | 45©1989-2024 Lauterbach

BookMark.EditRemark Add/edit remark of a bookmark

Adds a user-defined <remark> to a <bookmark_name>.

• To edit or delete a remark via the BookMark.List window, right-click the remark, and then select
the desired option from the popup menu.

• To edit or delete a remark via the TRACE32 command line, assign the desired string or empty
string to <remark>.

Adding another remark to the same bookmark-symbol combination overwrites the previous remark.
However, you can add multiple remarks to the same symbol if you also assign multiple bookmarks to that
symbol, as shown in the example below.

Example:

See also

■ BookMark ■ <trace>.BookMark

Format: BookMark.EditRemark "<bookmark_name>" [<remark>]

;open the Bookmark.List window
BookMark.List

;create a bookmark for symbol main and add a remark
BookMark.Create "any_BM" main
BookMark.EditRemark "any_BM" "This is a remark for main"

;create two new bookmarks at the entry of the symbol “func24”
;and name the bookmarks "My_Code1, My_Code2"
BookMark.Create "My_Code1" func24
BookMark.Create "My_Code2" func24

;for each bookmark of symbol “func24”, add one remark:
BookMark.EditRemark "My_Code1" "This is remark 1 for func24"
BookMark.EditRemark "My_Code2" "This is remark 2 for func24"
General Commands Reference Guide B | 46©1989-2024 Lauterbach

BookMark.EXPORT Export bookmarks

See also

■ BookMark.EXPORT.ADDRESS ■ BookMark.EXPORT.preset
■ BookMark.EXPORT.SOURCE ■ BookMark.EXPORT.sYmbol
■ BookMark

BookMark.EXPORT.ADDRESS Export bookmarks for specified addresses

Exports only those bookmarks to an XML file that have been created for the specified addresses.

Example:

See also

■ BookMark.EXPORT

BookMark.EXPORT.preset Export bookmarks to an XML file

Exports all bookmarks to an XML file or just the bookmarks selected with <range> or <address>. The XML
file is formatted by placing a transformation template (*.xsl) in the same folder as the XML file.

Format: BookMark.EXPORT.ADDRESS <xml_file> <address>… [/Append]

<address> Apply one or more address as filter criteria. Only bookmarks matching
the specified addresses are exported.

Append For a description and an example, see BookMark.EXPORT.

BookMark.EXPORT.ADDRESS ~~/bookmarks-addresses.xml 0x13ce 0x12aa

Format: BookMark.EXPORT.preset <file> [<range> <address>] [/Append]

<range> Range filter for exporting bookmarks that are located within a specified
address range.
General Commands Reference Guide B | 47©1989-2024 Lauterbach

Using the STOre <file> BookMark command, you can save the bookmark list as a PRACTICE script
(*.cmm).

Example 1: All existing bookmarks are exported. The unformatted result is displayed in TRACE32, and
the formatted result is displayed in a browser window.

The tildes ~~ expand to your TRACE32 system directory, by default c:\t32.

<address> Address filter for exporting an individual bookmark located at a specified
address.

Append The bookmarks displayed in the BookMark.List window are appended at
the end of the file.

;export all bookmarks
BookMark.EXPORT "~~/bookmarks.xml" ,

;for demo purposes: let's assume that you have added another bookmark
BookMark.Create "any_BM" R:0x1FF8 ;e.g. at this address

;append the new bookmark to the previous XML file
BookMark.EXPORT "~~/bookmarks.xml" R:0x1FF8 /Append

;for demo purposes: let's open the unformatted result in the internal
;TRACE32 editor
EDIT.OPEN "~~/bookmarks.xml"

;place the transformation template in the same folder as the XML file
COPY "~~/demo/coverage/single_file_report/t32transform.xsl" \
 "~~/t32transform.xsl"

;you can now open the formatted result in an external browser window
OS.Command start iexplore.exe "file:///C:/t32/bookmarks.xml"

A Unformatted result.

B Example of a formatted result in a browser window.

A

B

General Commands Reference Guide B | 48©1989-2024 Lauterbach

Example 2: A more complex demo script is included in your TRACE32 installation. To access the script, run
this command:

See also

■ BookMark.EXPORT

BookMark.EXPORT.SOURCE Export bookmarks for specified source files

Exports only those bookmarks to an XML file that have been created within the specified source files.

Example:

See also

■ BookMark.EXPORT

BookMark.EXPORT.sYmbol Export bookmarks for specified symbols

Exports only those bookmarks to an XML file that have been created for the specified symbols.

B::CD.PSTEP ~~/demo/coverage/example.cmm

Format: BookMark.EXPORT.SOURCE <xml_file> <source_file>… [/Append]

<source_file> Apply one or more source files as filter criteria. The wildcards ‘*’ and ‘?’
are supported. Only bookmarks matching the filter criteria are exported.

Append For a description and an example, see BookMark.EXPORT.

BookMark.EXPORT.SOURCE ~~/bookmarks-sources.xml *\".\src\sieve.c"

Format: BookMark.EXPORT.sYmbol <xml_file> <symbol>… [/Append]

<symbol> Apply one or more symbol names as filter criteria. The wildcards ‘*’ and
‘?’ are supported. Only bookmarks matching the filter criteria are
exported.

Append For a description and an example, see BookMark.EXPORT.
General Commands Reference Guide B | 49©1989-2024 Lauterbach

Example:

See also

■ BookMark.EXPORT

BookMark.EXPORT.sYmbol ~~/bookmarks-symbols.xml main *eve*
General Commands Reference Guide B | 50©1989-2024 Lauterbach

BookMark.List List all bookmarks

Displays all existing bookmarks. There are two types of bookmarks, which are distinguished by their color:

• Address bookmarks are marked with a small green rectangle.

• Trace bookmarks are marked with a small yellow rectangle.

The same bookmark color codes are also used in other TRACE32 windows.

Example:

See also

■ BookMark ■ <trace>.BookMark ■ <trace>.BookMarkToggle ■ AutoSTOre
■ STOre

▲ ’Comment Your Results’ in ’Application Note for Trace-Based Code Coverage’

Format: BookMark.List

A Address bookmark.

B Trace bookmark.

BookMark.List ; display all bookmarks in a list

B

A

General Commands Reference Guide B | 51©1989-2024 Lauterbach

BookMark.RESet Delete all bookmarks

Resets the bookmarking system. Alternatively, click Delete All in the BookMark.List window.

Example:

See also

■ BookMark

Format: BookMark.RESet

BookMark.RESet ; reset all the bookmarks in the bookmarking system
General Commands Reference Guide B | 52©1989-2024 Lauterbach

BookMark.Toggle Toggles a single address bookmark

Switches a single address bookmark on or off. TRACE32 executes the same command when you right-click
in a List.auto window, and then choose Toggle Bookmark (see figure below).

The resulting bookmark names are auto-incremented 1, 2, 3, etc. User-defined bookmark names can be
created via the command line. A small green rectangle next to the address/line number indicates an address
bookmark.

Example:

See also

■ BookMark ■ <trace>.BookMarkToggle

Format: BookMark.Toggle "<bookmark_name>" [<address> | <time>] [<file>] [<line>]

<bookmark_name> User-defined bookmark name. An auto-incremented bookmark name can
be generated via the command line if a comma is entered instead of a
user-defined name.

<time>, <file>, <line> The parameters <time>, <file>, and <line> are reserved for the scripting-
mode of TRACE32, they are not needed in the dialog-mode of TRACE32.

List.auto /Track ;display source listing
BookMark.List ;display all bookmarks in a list

BookMark.Toggle , 0x2290 ;switch on a bookmark at 0x2290 and
 ;auto-increment the bookmark name

BookMark.Toggle "start" 0x1000 ;switch on a bookmark at 0x1000 and
 ;label it "start"

BookMark.Toggle "start" ;switch off the existing bookmark

Address bookmark at
line 692.
General Commands Reference Guide B | 53©1989-2024 Lauterbach

Break

Break Stopping the program execution

The Break command group can be used in TRACE32 for

• Stopping the target program execution asynchronously using the command Break.direct or
Break.REQuest

• Setting breakpoints

• Setting trace filters

• Programming complex triggers

See also

■ Go

▲ ’Breakpoints’ in ’Training Basic Debugging’
▲ ’Breakpoints’ in ’Training Basic SMP Debugging’

Breakpoints

A debugger has two methods to realize breakpoints: Software breakpoints and Onchip Breakpoints

A Software breakpoint replaces an instruction in the target memory by a special “breakpoint” instruction to
stop the program and return control the debugger. The number of software breakpoints is unlimited.
Breakpoints on instructions are called Program breakpoints by TRACE32 PowerView.

Onchip breakpoints use resources provided by the chip/core to realize a breakpoint. Onchip breakpoints are
only available in a limited number. Refer to your Processor Architecture Manual for a detailed list of the
available Onchip breakpoints. Onchip breakpoints can be set on instruction addresses (Program
breakpoints) or can be used to stop the core at a read or write access to a memory location (Read/Write
breakpoints).

Breakpoints can be set using the Break.Set command and controlled using the commands Break.Delete,
Break.ENable and Break.DISable or from the Break.List window. Breakpoints set with Break.Set are
permanent, i.e. they are not deleted when the program execution is stopped.
General Commands Reference Guide B | 54©1989-2024 Lauterbach

TRACE32 provides also so-called temporary breakpoints. Temporary breakpoints are only valid until the
program execution stops the next time. They are automatically deleted by TRACE32. There are various
commands that use temporary breakpoints. Just a few examples:

The Break.Set command can also be used to set up trace filters as enabling or disabling the trace recording
on a specific program address. These are also called in TRACE32 Breakpoints, which do not have however
the default action “stop”.

The behavior of the different breakpoint types as well as their scope can be controlled with Break.CONFIG
command group or from the Break.CONFIG.state window.

Further details and examples about the breakpoint usage are provided in “Training Basic Debugging”
(training_debugger.pdf).

Break.direct <address> [<breakpoint_type>] Set a temporary breakpoint to the
specified <address> of the specified
<breakpoint_type>.

Go.direct <address> Set a temporary Program breakpoint to
<address> and start the program execution.

Var.Go <hll_expression> [Read | Write | ReadWrite] Set a temporary breakpoint to the
specified <hll_expression> of the specified
<breakpoint_type> and start the program
execution.

Go.Return Set a temporary Program breakpoint to
the function epilog/exit and start the
program execution.
General Commands Reference Guide B | 55©1989-2024 Lauterbach

Break.Asm Stop program/set temporary breakpoint and switch to Asm mode

Without an <address> parameter, this command stops the program execution and switches the debug
mode to Asm.

With an <address> parameter, the command sets a temporary breakpoint at the given address. When the
breakpoint is hit, TRACE32 PowerView switches the debug mode to Asm.

Refer to the description of the command Mode.Asm for more information about the different debug modes.

See also

■ Break.direct

Format: Break.Asm [<address> …[/<breaktype> …]]

<breaktype>: Program | ReadWrite | Read | Write

Onchip | HARD | SOFT

ProgramPass | ProgramFail

MemoryReadWrite | MemoryRead | MemoryWrite
RegisterReadWrite | RegisterRead | RegisterWrite
VarReadWrite | VarRead | VarWrite
DATA[.Byte | .Word | .Long] <value> …

Alpha | Beta | Charly | Delta | Echo

WATCH | BusTrigger | BusCount
TraceEnable | TraceData | TraceON | TraceOFF | TraceTrigger

Spot
DISable | DISableHIT | DeleteHIT | NoMark | EXclude
TASK <task_magic> | <task_id> | <task_name>
MACHINE <machine_magic> | <machine_id> | <machine_name>
CORE <number>
COUNT <value>
CONDition <expression> [/AfterStep]
VarCONDition <hll_expression> [/AfterStep]
CMD <command_string>
RESUME

DIALOG | DIALOGADVANCED

<breaktype> For a description of the breakpoint types and breakpoint options, see
Break.Set.
General Commands Reference Guide B | 56©1989-2024 Lauterbach

Break.CLEAR Reset complex triggers

Resets complex triggers. This command does not reset breakpoints.

See also

■ Break.Delete ■ Break.direct ■ Break.Program ■ Break.ReProgram
■ Break.ViewProgram

▲ ’Introduction’ in ’Application Note for Complex Trigger Language’

Format: Break.CLEAR
General Commands Reference Guide B | 57©1989-2024 Lauterbach

Break.CONFIG Configuration of breakpoint behavior and breakpoint scope

The Break.CONFIG command group allows the configuration of the behavior of the different breakpoint
types as well as their scope.

See also

■ Break.CONFIG.AlwaysAlive ■ Break.CONFIG.InexactAddress
■ Break.CONFIG.InexactData ■ Break.CONFIG.InexactResume
■ Break.CONFIG.InexactTrigger ■ Break.CONFIG.MatchASID
■ Break.CONFIG.MatchMachine ■ Break.CONFIG.MatchZone
■ Break.CONFIG.METHOD ■ Break.CONFIG.state
■ Break.CONFIG.UseContextID ■ Break.CONFIG.UseMachineID
■ Break.CONFIG.VarConvert ■ Break.direct
■ Break.Set

Break.CONFIG.AlwaysAlive Alive Onchip breakpoints
[build 142724 - DVD 02/2022]

Default: OFF

Allows to keep Onchip breakpoints alive in core when target is stopped.

See also

■ Break.CONFIG

Break.CONFIG.InexactAddress Inexact address range breakpoint

Default: ON

Allows to specify how TRACE32 behaves if an Onchip breakpoint is set to an address range, but the
breakpoint logic of the core in use does not provide the appropriate resources (see note below).

Format: Break.CONFIG.AlwaysAlive [ON | OFF]

Format: Break.CONFIG.InexactAddress [ON | OFF]
TrOnchip.CONVert [ON | OFF] (deprecated)
General Commands Reference Guide B | 58©1989-2024 Lauterbach

Break.CONFIG.InexactAddress can be used in conjunction with Break.CONFIG.InexactResume. If this
command is set to ON, TRACE32 will automatically resume the program execution if it detects that the stop
is due to an access outside the original address range set by the user. Please note however, that in some
cases, it is not possible to determine the exact address that caused the breakpoint to fire.

When stopping on an inexact breakpoint, the TRACE32 state line displays the message “stopped at
inexact breakpoint”.

See also

■ Break.CONFIG

▲ ’Release Information’ in ’Legacy Release History’

Break.CONFIG.InexactData Inexact data value breakpoint

Default: ON

ON TRACE32 will automatically adjust the address range to fit in the
breakpoint logic. This may cause the core to stop outside the desired
range. Please note that the Break.List window still display the
original address range, but the breakpoint is marked as intrusive
breakpoint. Please refer to “Real-time vs. Intrusive Breakpoints”, page
87 for more information.

OFF If the breakpoint logic can not implement the address range exact, the
error message “address does not fit in on-chip breakpoint resources” is
returned.

NOTE: The breakpoint logic of the core usually allows to set Onchip breakpoints for single
addresses. Breakpoints for exact address ranges are however not supported by
many core architectures. Some core architectures allow only single addresses,

others only fixed ranges (e.g. Intel® x86/x64 allows ranges of 2, 4 or 8 bytes) and
many cores implement ranges as bit masks.

Format: Break.CONFIG.InexactData [ON | OFF]
General Commands Reference Guide B | 59©1989-2024 Lauterbach

The breakpoint logic of some processor architectures allows to set data value breakpoints i.e. to stop the
program execution when a specific data value is written or read to/from an address. The command
Break.CONFIG.InexactData can be used to specify how TRACE32 behaves when data value breakpoints
are not supported by the breakpoint logic of the core.

Break.CONFIG.InexactData can be used in conjunction with Break.CONFIG.InexactResume. If this
command is set to ON, TRACE32 will automatically resume the program execution if the data value
written/read to/from the breakpoint address is different from the one selected by the user.

See also

■ Break.CONFIG

Break.CONFIG.InexactResume Resuming on inexact breakpoints

Default: ON

Defines how TRACE32 behaves when the execution is stopped on an inexact breakpoint. Please refer to
Break.CONFIG.InexactAddress, Break.CONFIG.InexactData and Break.CONFIG.InexactTrigger for
more information.

See also

■ Break.CONFIG

Break.CONFIG.InexactTrigger Inexact trigger breakpoints

Default: OFF

ON TRACE32 sets an Onchip breakpoint without data value and checks on
each breakpoint hit the value which is read/written from/to the breakpoint
address. The breakpoint is marked as intrusive in the Break.List window.
Please refer to “Real-time vs. Intrusive Breakpoints”, page 87 for more
information.

OFF If the breakpoint logic can not implement data value Onchip breakpoints,
the error message “data does not fit in on-chip breakpoint resources” is
returned.

Format: Break.CONFIG.InexactResume [ON | OFF]

Format: Break.CONFIG.InexactTrigger [ON | OFF]
General Commands Reference Guide B | 60©1989-2024 Lauterbach

Enables/disables inexact breakpoints for TraceON, TraceOFF, TraceTrigger, BusTrigger and BusCount
breakpoints. Please refer to the documentation of the Break.Set command for more information about the
different breakpoint types.

Setting Break.CONFIG.InexactTrigger to ON will automatically set Break.CONFIG.InexactAddress ON.

See also

■ Break.CONFIG

Break.CONFIG.MatchASID Use ASID specific breakpoints

Default: OFF

When this command is set to ON, Onchip breakpoints will be set specific to the ASID (Address Space
IDentifier) relative to the used task space ID or the space ID of the current task (if supported by the target
processor). Space IDs are enabled in TRACE32 with the command SYStem.Option.MMUSPACES ON.
OS-aware debugging has additionally to be enabled in TRACE32 in order to set ASID specific breakpoints.

Example:

The Onchip breakpoint will only trigger if the ASID used for the breakpoint is the current one. If the ASID is
not available for the target processor, MatchASID will be greyed out in the Break.CONFIG.state window
and the command will be locked.

See also

■ Break.CONFIG

▲ ’Release Information’ in ’Legacy Release History’

Format: Break.CONFIG.MatchASID [ON | OFF]
TrOnchip.MatchASID [ON | OFF] (deprecated)
TrOnchip.ASID [ON | OFF] (deprecated)

Break.CONFIG.MatchASID ON

; set an Onchip breakpoint specific to the ASID of the process with
; space ID 0x159
Break.Set 0x159:0x97D0 /Onchip

; set an Onchip breakpoint specific to the ASID of the current process
Break.Set 0x97D0 /Onchip
General Commands Reference Guide B | 61©1989-2024 Lauterbach

Break.CONFIG.MatchMachine Use machine specific breakpoints

Default: OFF

When this command is set to ON, Onchip breakpoints will be set specific to the specified machine ID or the
current machine ID if no machine is specified. The Onchip breakpoint will only trigger if the machine used for
the breakpoint is the current one. Machine IDs are enabled in TRACE32 with the command
SYStem.Option.MACHINESPACES ON. Hypervisor-aware debugging has additionally to be configured in
order to set machine specific breakpoints.

Example:

See also

■ Break.CONFIG

▲ ’Release Information’ in ’Legacy Release History’

Break.CONFIG.MatchZone Use zone specific breakpoints

Default: OFF

When this command is set to ON, Onchip breakpoint are set specific to the given zone or the current zone.
Zones are enabled in TRACE32 with the command SYStem.Option.ZoneSPACES ON.

Format: Break.CONFIG.MatchMachine [ON | OFF]
TrOnchip.MatchMachine [ON | OFF] (deprecated)

Break.CONFIG.MatchMachine ON

; Trace only machine 2 on a 64-bit architecture
Break.Set 2:::0x0:0x0--0xffffffffffffffff /TraceEnable

Format: Break.CONFIG.MatchZone [ON | OFF]
TrOnchip.MatchZone [ON | OFF] (deprecated)
General Commands Reference Guide B | 62©1989-2024 Lauterbach

Example:

See also

■ Break.CONFIG

▲ ’Release Information’ in ’Legacy Release History’

Break.CONFIG.MatchZone ON

; Set an Onchip breakpoint on address 0x1000 for the Arm secure zone
Break.Set Z:0x1000 /Onchip
General Commands Reference Guide B | 63©1989-2024 Lauterbach

Break.CONFIG.METHOD Breakpoints implementation

Defines the default implementation of breakpoints. Without any parameters, the command opens the
Break.CONFIG.state window.

See also

■ Break.CONFIG

Format: Break.CONFIG.METHOD [<breaktype> <impl>]
Break.METHOD [<breaktype> <impl>] (deprecated)
Break.IMPLementation [<breaktype> <impl>] (deprecated)
Break.SELect (deprecated)

<breaktype>: Program
Read
Write
Alpha
Beta
Charly
Delta
Echo

<impl>: AUTO
Onchip
SOFT

AUTO Leave it to the debugger to use the appropriate breakpoint
implementation.

SOFT Advise TRACE32 to implement this breakpoint type as SOFTware
breakpoint.

Onchip Advise TRACE32 to implement this breakpoint type as Onchip
General Commands Reference Guide B | 64©1989-2024 Lauterbach

Break.CONFIG.state Breakpoint configuration window

Opens the breakpoint configuration window.

See also

■ Break.CONFIG

Break.CONFIG.UseContextID Context ID specific breakpoints

Default: OFF

Format: Break.CONFIG.state

A For descriptions of the commands in the Break.CONFIG.state window, please refer to the
Break.CONFIG.* commands in this chapter.
Example: For information about VarConvert, see Break.CONFIG.VarConvert.

Format: Break.CONFIG.UseContextID [ON | OFF]
TrOnchip.ContextID [ON | OFF] (deprecated)

A

General Commands Reference Guide B | 65©1989-2024 Lauterbach

Enables/disables the usage of the ContextID comparator, if supported by the target processor architecture,
for task selective Onchip breakpoints. Please note the CONTEXTIDR register has additionally to be written
by the kernel on every task switch.

If the ContextID comparator is not available for the target processor architecture, UseContextID will be
greyed out in the Break.CONFIG.state window and the command will be locked.

See also

■ Break.CONFIG

▲ ’Release Information’ in ’Legacy Release History’

Break.CONFIG.UseMachineID Machine ID specific breakpoints

Default: OFF

ON Task-selective Onchip breakpoints will be implemented using the
ContextID comparator. The breakpoint is in this case non-intrusive i.e.
the execution will stop on the breakpoint only if the selected task is the
current one.

OFF Task-selective breakpoints will be implemented as intrusive breakpoints
i.e. the program execution will always stop on the breakpoint. The
execution will be automatically resumed by the debugger if the selected
task for the breakpoint is not the current one.

Format: Break.CONFIG.UseMachineID [ON | OFF]
TrOnchip.MachineID [ON | OFF] (deprecated)
General Commands Reference Guide B | 66©1989-2024 Lauterbach

Enables/disables the usage of the VMID comparator to set machine specific breakpoints, if supported by the
target processor architecture. Please note the VMID has additionally to be written by the kernel on every
machine switch.

See also

■ Break.CONFIG

▲ ’Release Information’ in ’Legacy Release History’

ON Machine-selective Onchip breakpoints will be implemented using the
VMID comparator. The breakpoint is in this case non-intrusive i.e. the
execution will stop on the breakpoint only if the selected machine is the
current one.

OFF Machine-selective breakpoints will be implemented as intrusive
breakpoints i.e. the program execution will always stop on the breakpoint.
The execution will be automatically resumed by the debugger if the
selected machine for the breakpoint is not the current one.
General Commands Reference Guide B | 67©1989-2024 Lauterbach

Break.CONFIG.VarConvert Convert breakpoints on scalar variables

Default: OFF

Defines the debugger behavior when setting a breakpoint to a scalar variable (int, float, double).

See also

■ Break.CONFIG

▲ ’Release Information’ in ’Legacy Release History’

Format: Break.CONFIG.VarConvert [ON | OFF]
TrOnchip.VarCONVert [ON | OFF] (deprecated)

ON The breakpoint is set to the start address of the variable. This setting
consumes the least amount of core breakpoint resources.

OFF The breakpoint is set to all the memory address range that holds the
variable value. This setting requires more core breakpoint resources, but
also triggers on partial accesses to the variable (e.g. only one byte of the
32 bit variable). Use this setting when searching for a variable being
partially overwritten (e.g. by an out-of bounds access to an array located
nearby).
General Commands Reference Guide B | 68©1989-2024 Lauterbach

Break.Delete Delete breakpoints

Deletes all breakpoints if used without a parameter.

Examples:

See also

■ Break.CLEAR ■ Break.direct ■ Var.Break.Delete

▲ ’Breakpoint Handling’ in ’Training Basic Debugging’
▲ ’Breakpoint Handling’ in ’Training Basic SMP Debugging’

Format: Break.Delete [[<address> | <addressrange>] [/<breaktype> …]]

<breaktype>: Program | ReadWrite | Read | Write

Onchip | HARD | SOFT

ProgramPass | ProgramFail
Alpha | Beta | Charly | Delta | Echo

WATCH | BusTrigger | BusCount
TraceEnable | TraceData | TraceON | TraceOFF | TraceTrigger

TASK <task_magic> | <task_id> | <task_name>
MACHINE <machine_magic> | <machine_id> | <machine_name>

Spot

<address>,
<addressrange>

Specifying an <address> or an <addressrange> allows to delete only the
specified breakpoint.

<breaktype> Specifying a <breaktype> allow to delete all breakpoints of this type.

For a description of the breakpoint types and breakpoint options, see
Break.Set.

Break.Delete ; delete all breakpoints

Break.Delete 0x1000--0x1fff ; delete all breakpoints
; in the address range of 0x1000 to 0x1fff

Break.Delete func9 ; delete the breakpoint at the entry
; to the function func9

Break.Delete mstatic1 /Read ; delete read breakpoints on integer
; variable mstatic1

; delete write breakpoint on array flags
Var.Break.Delete flags /Write
General Commands Reference Guide B | 69©1989-2024 Lauterbach

Break.DeletePATtern Delete breakpoints allowing wildcards

Delete breakpoints allowing the wildcards ? and *. For details on deleting breakpoints, refer to the
Break.Delete command.

Example:

See also

■ Break.direct

▲ ’Release Information’ in ’Legacy Release History’

Format: Break.DeletePATtern <symbol_pattern> [/<type>]

<type> Specifying a <type> allow to delete all breakpoints of this type.

For a description of the breakpoint types and breakpoint options, see
Break.Set.

Break.DeletePATtern *memory* /Program ; delete program breakpoints
; from all debug symbols that
; contain the string "memory".
General Commands Reference Guide B | 70©1989-2024 Lauterbach

Break.direct Stop program execution or set temporary breakpoints

Break.direct stops the program execution, if no address parameter is specified

If address parameters are provided, Break.direct sets so-called temporary breakpoints at the specified
addresses. A temporary breakpoint is valid until the program stops the next time. Once the program stops,
all temporary breakpoints are deleted by the debugger. One application is to set temporary breakpoints on
multiple alternative execution paths, if it is not known which one will be taken.

Format: Break.direct [<address> …[/<breaktype> …]]

<breaktype>: Program | ReadWrite | Read | Write

Onchip | HARD | SOFT

ProgramPass | ProgramFail

MemoryReadWrite | MemoryRead | MemoryWrite
RegisterReadWrite | RegisterRead | RegisterWrite
VarReadWrite | VarRead | VarWrite
DATA[.Byte | .Word | .Long] <value> …

Alpha | Beta | Charly | Delta | Echo

WATCH | BusTrigger | BusCount
TraceEnable | TraceData | TraceON | TraceOFF | TraceTrigger

Spot
DISable | DISableHIT | DeleteHIT | NoMark | EXclude
TASK <task_magic> | <task_id> | <task_name>
MACHINE <machine_magic> | <machine_id> | <machine_name>
CORE <number>
COUNT <value>
CONDition <expression> [/AfterStep]
VarCONDition <hll_expression> [/AfterStep]
CMD <command_string>
RESUME

DIALOG | DIALOGANVANCED

<breaktype> For a description of the breakpoint types and breakpoint options, see
Break.Set.

NOTE: Please note that break and b are abbreviations of the Break.direct
command and not of Break.Set.

Also note the convention used in TRACE32 manuals to spell commands
with all mandatory letters capitalized.
General Commands Reference Guide B | 71©1989-2024 Lauterbach

Examples:

See also

■ Break.Asm ■ Break.CLEAR ■ Break.CONFIG ■ Break.Delete
■ Break.DeletePATtern ■ Break.DISable ■ Break.ENable ■ Break.Hll
■ Break.Init ■ Break.List ■ Break.Mix ■ Break.MONitor
■ Break.PASS ■ Break.PATtern ■ Break.Program ■ Break.ReProgram
■ Break.REQuest ■ Break.RESet ■ Break.Set ■ Break.SetFunc
■ Break.SetLine ■ Break.SetMONitor ■ Break.SetPATtern ■ Break.SetTask
■ Break.ViewProgram ■ Go.direct ■ Var.Break.direct

Go
Break

; start program execution
; stop program execution

Break 0x1000

Go

; set a temporary Program breakpoint at
; address 0x1000
; start the program execution

Break main /Program ; set a temporary breakpoint of the type
; Program to the entry of the function
; main

Break \main\100 ; set a temporary breakpoint to line 100
; of module "main"

Break func1 func9

Go

Go func1 func9

; set temporary breakpoints to the entries
; of the functions func1 and func9
; start the program execution

; or identical

Var.Break ast /Read ; set a temporary Read breakpoint to
; the variable ast
General Commands Reference Guide B | 72©1989-2024 Lauterbach

Break.DISable Disable breakpoints

Disables a breakpoint. The breakpoint remains set but is not active.

Examples:

See also

■ Break.direct

▲ ’Breakpoint Handling’ in ’Training Basic Debugging’
▲ ’Breakpoint Handling’ in ’Training Basic SMP Debugging’

Format: Break.DISable [[<address> | <addressrange>] [/<breaktype> …]]

<breaktype>: Program | ReadWrite | Read | Write

Onchip | HARD | SOFT

ProgramPass | ProgramFail
Alpha | Beta | Charly | Delta | Echo

WATCH | BusTrigger | BusCount
TraceEnable | TraceData | TraceON | TraceOFF | TraceTrigger

TASK <task_magic> | <task_id> | <task_name>

CORE <number>

<breaktype> For a description of the breakpoint types and breakpoint options, see
Break.Set.

Break.DISable ; disable all breakpoints

Break.DISable sieve ; disable the breakpoint at address sieve
General Commands Reference Guide B | 73©1989-2024 Lauterbach

Break.ENable Enable breakpoints

Enables a breakpoint. The breakpoint becomes active again.

Examples:

See also

■ Break.direct

▲ ’Breakpoint Handling’ in ’Training Basic Debugging’
▲ ’Breakpoint Handling’ in ’Training Basic SMP Debugging’

Format: Break.ENable [[<address> | <addressrange>] [/<breaktype> …]]

<breaktype>: Program | ReadWrite | Read | Write

Onchip | HARD | SOFT

ProgramPass | ProgramFail
Alpha | Beta | Charly | Delta | Echo

WATCH | BusTrigger | BusCount
TraceEnable | TraceData | TraceON | TraceOFF | TraceTrigger

TASK <task_magic> | <task_id> | <task_name>

CORE <number>

<breaktype> For a description of the breakpoint types and breakpoint options, see
Break.Set.

Break.DISable sieve ; disable the breakpoint at address sieve

Break.ENable sieve ; enable the breakpoint at address sieve
General Commands Reference Guide B | 74©1989-2024 Lauterbach

Break.Hll Stop program/set temporary breakpoint and switch to HLL mode

Stops the program execution or sets a temporary breakpoint and switches the debug mode to Hll. Please
refer to the description of the Mode.Hll command for more information.

See also

■ Break.direct

Format: Break.Hll [<address> …[/<breaktype> …]]

<breaktype>: Program | ReadWrite | Read | Write

Onchip | HARD | SOFT

ProgramPass | ProgramFail

MemoryReadWrite | MemoryRead | MemoryWrite
RegisterReadWrite | RegisterRead | RegisterWrite
VarReadWrite | VarRead | VarWrite
DATA[.Byte | .Word | .Long] <value> …

Alpha | Beta | Charly | Delta | Echo

WATCH | BusTrigger | BusCount
TraceEnable | TraceData | TraceON | TraceOFF | TraceTrigger

Spot
DISable | DISableHIT | DeleteHIT | NoMark | EXclude
TASK <task_magic> | <task_id> | <task_name>
MACHINE <machine_magic> | <machine_id> | <machine_name>
CORE <number>
COUNT <value>
CONDition <expression> [/AfterStep]
VarCONDition <hll_expression> [/AfterStep]
CMD <command_string>
RESUME

DIALOG | DIALOGADVANCED

<breaktype> For a description of the breakpoint types and breakpoint options, see
Break.Set.
General Commands Reference Guide B | 75©1989-2024 Lauterbach

Break.Init Initialize breakpoints

Break.Init deletes all temporary breakpoints, sets all permanent breakpoint again and resets the breakpoint
counters.

See also

■ Break.direct

▲ ’Release Information’ in ’Legacy Release History’

Break.List Display list of breakpoints

Displays a list of all breakpoints.

The following options are mainly used for diagnosis:

See also

■ Break.direct

▲ ’Release Information’ in ’Legacy Release History’

Format: Break.Init

Format: Break.List [/<option>]

<option>: Onchip | CTL | Summary | HARD

Onchip Display details on Onchip breakpoints.

OnchipDetail Display details about the usage of the available address comparators
for the individual Onchip breakpoints.

[build 116363 - DVD 02/2020]

CTL Display details on CTL breakpoints.

Summary
Physical (deprecated)

Summarizes the details about all breakpoints.

HARD Display details on HARDware breakpoints.
General Commands Reference Guide B | 76©1989-2024 Lauterbach

▲ ’Breakpoint Handling’ in ’Training Basic Debugging’
▲ ’Breakpoint Handling’ in ’Training Basic SMP Debugging’
General Commands Reference Guide B | 77©1989-2024 Lauterbach

Break.Mix Stop program/set temporary breakpoint and switch to MIX mode

Stops program execution or sets a temporary breakpoint and switches the debug mode to Mix. Refer to
Mode.Mix for more information,

See also

■ Break.direct

Format: Break.Mix [<address> …[/<breaktype> …]]

<breaktype>: Program | ReadWrite | Read | Write

Onchip | HARD | SOFT

ProgramPass | ProgramFail

MemoryReadWrite | MemoryRead | MemoryWrite
RegisterReadWrite | RegisterRead | RegisterWrite
VarReadWrite | VarRead | VarWrite
DATA[.Byte | .Word | .Long] <value> …

Alpha | Beta | Charly | Delta | Echo

WATCH | BusTrigger | BusCount
TraceEnable | TraceData | TraceON | TraceOFF | TraceTrigger

Spot
DISable | DISableHIT | DeleteHIT | NoMark | EXclude
TASK <task_magic> | <task_id> | <task_name>
MACHINE <machine_magic> | <machine_id> | <machine_name>
CORE <number>
COUNT <value>
CONDition <expression> [/AfterStep]
VarCONDition <hll_expression> [/AfterStep]
CMD <command_string>
RESUME

DIALOG | DIALOGADVANCED

<breaktype> For a description of the breakpoint types and breakpoint options, see
Break.Set.
General Commands Reference Guide B | 78©1989-2024 Lauterbach

Break.MONitor Switch back to stop mode debugging

This command is used in Run Mode debugging to switch back to Stop Mode and stop the program
execution.

The command Go.MONitor is used to switch from Stop Mode to Run Mode debugging.

See also

■ Break.direct ■ Break.SetMONitor ■ Go.MONitor

Break.PASS Define pass condition for breakpoint

When the program execution is stopped by a breakpoint, and the boolean expression is true, the program
execution is automatically restarted. The feature can be cleared by entering the command without
arguments.

Examples:

The following commands shows how a condition can be directly assigned to a single breakpoint.

See also

■ Break.direct ■ Break.ReProgram ■ Break.ViewProgram

Format: Break.MONitor

Format: Break.PASS [<boolean_expression>]

Break.PASS Register(A7)>0x1000

Break.Set 0x100
Break.Set sieve+34
Go
…
Break.PASS

; automatically restart the program
; execution at a breakpoint hit, if
; the register A7 is larger than
; 0x1000
; set a breakpoint
; set a second breakpoint
; start the program execution

; remove the pass condition

Break.Set sieve+34 /Program /CONDition Register(R9)==0

Go

Break.Delete sieve+34
General Commands Reference Guide B | 79©1989-2024 Lauterbach

Break.PATtern Set temporary breakpoints allowing wildcards

Sets a temporary breakpoint allowing the wildcards ? and *. For details on temporary breakpoints, refer to
the Break.direct command.

Example:

See also

■ Break.direct

▲ ’Release Information’ in ’Legacy Release History’

Break.Program CTL interactive programming

Opens the Break.Program editor window, where you can create Complex Trigger Language (CTL) scripts.
The editor provides syntax highlighting, configurable auto-indentation and an online syntax check. The input
is guided by softkeys.

See also

■ Break.CLEAR ■ Break.direct

▲ ’Introduction’ in ’Application Note for Complex Trigger Language’

Format: Break.PATtern <symbol_pattern> [/<type>]

Break.PATtern *memory* /Program ; set temporary program breakpoints to
; all debug symbols that contain the
; string "memory".

Format: Break.Program [<file>]
General Commands Reference Guide B | 80©1989-2024 Lauterbach

Break.ReProgram Activate existing CTL program file

Activates an existing Complex Trigger Language (CTL) file.

See also

■ Break.CLEAR ■ Break.direct ■ Break.PASS

▲ ’Introduction’ in ’Application Note for Complex Trigger Language’

Break.REQuest Request a program break

This command requests a program break but does not wait until the program execution is stopped.

See also

■ Break.direct

Break.RESet Delete all breakpoints and reset the TRACE32 break system

Deletes all breakpoints and resets the TRACE32 break system.

See also

■ Break.direct

Format: Break.ReProgram [<file>]

Format: Break.REQuest

Format: Break.RESet
General Commands Reference Guide B | 81©1989-2024 Lauterbach

Break.Set Set breakpoints
[Breakpoint Types] [Breakpoint Options]

The Break.Set command sets breakpoints via the TRACE32 command line. Without parameters, the
command opens the Break.Set dialog window for setting breakpoints.

Format: Break.Set [<address>|<range>] [/<breaktype> …]] [/<impl>]

<impl>: SOFT | Onchip

<breaktype>: Program | ReadWrite | Read | Write

Onchip | HARD | SOFT

ProgramPass | ProgramFail

MemoryReadWrite | MemoryRead | MemoryWrite
RegisterReadWrite | RegisterRead | RegisterWrite
VarReadWrite | VarRead | VarWrite
DATA[.Byte | .Word | .Long] <value> …

Alpha | Beta | Charly | Delta | Echo

WATCH | BusTrigger | BusCount
TraceEnable | TraceData | TraceON | TraceOFF | TraceTrigger

Spot
DISable | DISableHIT | DeleteHIT | NoMark | EXclude
TASK <task_magic> | <task_id> | <task_name>
MACHINE <machine_magic> | <machine_id> | <machine_name>
CORE <number>
COUNT <value>
CONDition <expression> [/AfterStep]
VarCONDition <hll_expression> [/AfterStep]
CMD <command_string>
RESUME
DIALOG | DIALOGADVANCED

NOTE: You can configure the breakpoint behavior with the Break.CONFIG command
group.
General Commands Reference Guide B | 82©1989-2024 Lauterbach

A detailed introduction into the breakpoint usage can be found in “Training Basic Debugging”
(training_debugger.pdf).

The following breakpoint implementations are available:

NOTE: Do not erroneously abbreviate the command
Break.Set <address>
as
Break <address>

The command Break.Set <address> sets a permanent breakpoint, whereas the
command Break <address> sets a breakpoint that is automatically deleted when
the program execution is stopped the next time (temporary breakpoint).

SOFT The code at the breakpoint location is patched with a break instruction.
A software breakpoint usually requires RAM at the breakpoint location.
If you want to set software breakpoints to instructions in FLASH refer to
command FLASH.Auto.

Onchip The resources for the breakpoints are provided by the chip.
General Commands Reference Guide B | 83©1989-2024 Lauterbach

On-chip Breakpoints
[Back to Top]

Refer to your Processor Architecture Manual for a detailed list of the available Onchip breakpoints.

For some processor architectures Onchip breakpoints can only mark single addresses (e.g Cortex-A9).
Most processor architectures, however, allow to mark address ranges with Onchip breakpoints. It is very
common that one Onchip breakpoint marks the start address of the address range while the second Onchip
breakpoint marks the end address (e.g. MPC57xx).

The command Break.CONFIG.VarConvert (TrOnchip.VarConvert in older software versions) allows to
control how range breakpoints are set for scalars (int, float, double).

The current setting can be inspected and changed from the Break.CONFIG window.

Example: the red line in the Data.View window shows the range of the Onchip breakpoint.

Break.CONFIG.VarConvert
ON

If a breakpoint is set to a scalar variable (int, float, double) the
breakpoint is set to the start address of the variable.
+ Requires only one single address breakpoint.
- Program will not stop on unintentional accesses to the variable’s
address space.

Break.CONFIG.VarConvert
OFF

If a breakpoint is set to a scalar variable (int, float, double) breakpoints
are set to all memory addresses that store the variable value.

+ The program execution stops also on any unintentional accesses
to the variable’s address space.
- Requires two onchip breakpoints since a range breakpoint is
used.

; Set an Onchip breakpoint to the start address of the variable vint
Break.CONFIG.VarConvert ON
Var.Break.Set vint /Write
Data.View vint

; Set an Onchip breakpoint to the whole memory range address of the
; variable vint
Break.CONFIG.VarConvert OFF
Var.Break.Set vint /Write
Data.View vin
General Commands Reference Guide B | 84©1989-2024 Lauterbach

A number of processor architectures provide only bit masks or fixed range sizes to mark an address range
with Onchip breakpoints. In this case the address range is always enlarged to the smallest bit mask/next
allowed range that includes the address range.

It is recommended to control which addresses are actually marked with breakpoints by using the
Break.List /Onchip command:

Breakpoint setting:

Var.Break.Set str2

Break.List

Break.List /Onchip
General Commands Reference Guide B | 85©1989-2024 Lauterbach

Breakpoint Types
[Back to Top]

The following breakpoint types are available:

There are two flavours of breakpoints:

• Break after make

The program execution is stopped after the read/write access was performed respectively after
the instruction marked with the breakpoint was executed.

• Break before make

The program execution is stopped before the instruction marked with the breakpoint was
executed respectively before the read/write access was performed.

Program The program execution is stopped before the instruction marked with the
breakpoint is executed (for most processor architectures).

Default implementation for a Program breakpoint is SOFT for nearly all
processor architectures.

ReadWrite The program executions is stopped at a read or write access to the
specified address.
Default implementation for a read/write breakpoint is Onchip.

Read The program executions is stopped at a read access to the specified
address.
Default implementation for a read breakpoint is Onchip.

Write The program executions is stopped at a write access to the specified
address.
Default implementation for a write breakpoint is Onchip.
General Commands Reference Guide B | 86©1989-2024 Lauterbach

Real-time vs. Intrusive Breakpoints
[Back to Top]

Real-time breakpoints

The usage of a breakpoint does not influence the real-time behavior of the application program.

Intrusive breakpoints

The usage of the breakpoint influences the real-time behavior. Intrusive breakpoints perform as follows:

Each stop to perform the check suspends the program execution for at least 1 ms.

The (short-time) display of a red S in the state line indicates that an intrusive breakpoint was hit.

TRACE32 implements real-time breakpoints whenever possible.

Intrusive breakpoints are marked with a special breakpoint indicator:

Perform
check

Check not ok

Check ok

Program execution

Breakpoint hit

Stop

Program restart
General Commands Reference Guide B | 87©1989-2024 Lauterbach

Breakpoint Options
[Back to Top]

If an instruction is conditionally executed (e.g. BGT - Branch Greater Then, LDREQB - Load Byte if Equal),
TRACE32 stops shortly to check the status flags in order to find out if the condition is satisfied.

• ProgramPass (intrusive breakpoint)

• ProgramFail (intrusive breakpoint)

Stop program execution at ProgramPass
breakpoint

Check
status flag for

Condition not satisfied
Continue program
execution

Keep stop of program execution

Condition satisfied

condition

Stop program execution at ProgramFail
breakpoint

Condition satisfied
Continue program
execution

Keep stop of program execution

Condition not satisfied

Check
status flag for

condition
General Commands Reference Guide B | 88©1989-2024 Lauterbach

The following options can be used, if the on-chip debug unit of your processor makes it possible to stop the
program execution when a read or write access to an address is performed by a specific code section. If this
feature is not supported by your processor, these options are deactivated.

Examples:

NOTE: The following options are not available for all processor architectures!

MemoryReadWrite Set a MemoryReadWrite breakpoint.

MemoryRead Set a MemoryRead breakpoint.

MemoryWrite Set a MemoryWrite breakpoint.

VarReadWrite Set a MemoryReadWrite breakpoint to a static variable.

VarRead Set a MemoryRead breakpoint to a static variable.

VarWrite Set a MemoryWrite breakpoint to a static variable.

; Stop the program execution when an instruction of the code range
; 0xA100--0xA32D writes to the address 0x400
Break.Set 0xA100--0xA32D /MemoryWrite 0x400

; Stop the program execution when an instruction of the function sieve
; writes to the variable flags
Var.Break.Set sieve /VarWrite flags
General Commands Reference Guide B | 89©1989-2024 Lauterbach

The following options can be used, if the on-chip debug unit of you processor makes it possible to stop the
program execution when a read or write access to a core register is performed by a specific code section. If
this feature is not supported by your processor, these options are deactivated.

Examples:

RegisterReadWrite Set a breakpoint which stops the cpu on a core register access.

RegisterRead Set a breakpoint which stops the cpu on a core register read.

RegisterWrite Set a breakpoint which stops the cpu on a core register write.

VarReadWrite Set a RegisterReadWrite breakpoint to a register variable.

VarRead Set a RegisterRead breakpoint to a register variable.

VarWrite Set a RegisterWrite breakpoint to a register variable.

; Stop the program execution when an instruction of the code range
; 0xA100--0xA32D writes to register R1

Break.Set 0xA100--0xA32D /RegisterWrite R1

; Stop the program execution when an instruction of the function sieve
; writes to the register variable i

Var.Break.Set sieve /VarWrite i
General Commands Reference Guide B | 90©1989-2024 Lauterbach

The following options are only used together with the on-chip trigger unit of the processor. Please refer to the
TrOnchip commands.

If the option Spot is selected, the program execution is only stopped shortly to update the TRACE32 screen
when the breakpoint is hit. As soon as the screen is updated, the program execution continues. Each stop at
a breakpoint with the option Spot takes approximately 50 … 100 ms.

Alpha Set an Alpha breakpoint.

Beta Set an Beta breakpoint.

Charly Set an Charly breakpoint.

Delta Set an Delta breakpoint.

Echo Set an Echo breakpoint.

Break.Set func1 /Alpha

TrOnchip.IW0 Ibus Alpha

TrOnchip.IW0 WATCH ON

; Example for MPC500/800
; Generate a pulse on the processor pin IWP0
; if the function func1 is entered

; Set an Alpha breakpoint to the entry of
; func1
; The addresses marked with Alpha
; breakpoints define the Ibus address
; Generate a pulse on IWP0 when IW0 is hit

Spot Set the option Spot for a breakpoint.

Break.Set func7 /Program /Spot ; When the program breakpoint
; at the entry of function
; func7 is hit update the
; TRACE32 screen.

Break.Set data /Write /Spot ; Update the TRACE32 screen
; when a write access to the
; address data occurred.

Var.Break.Set flags[3] /Write /Spot ; Update the TRACE32 screen
; when a write access to the
; variable flags[3] occurred.
General Commands Reference Guide B | 91©1989-2024 Lauterbach

The following options can be used, if they are supported by the used processor, they are deactivated
otherwise.

Examples:

WATCH If the option WATCH is set, the program execution is not stopped at a
breakpoint hit, the WATCH facility of the processor is activated instead.
Examples for the WATCH facility are: Watchpoint Hit Messages with
NEXUS; a short pulse on a watchpoint pin for the MPC5xx family etc.

BusTrigger If the option BusTrigger is set, the program execution is not stopped at a
breakpoint hit, a pulse for the internal trigger bus of the TRACE32
development tool is generated instead. For information about the internal
trigger bus refer to the TrBus command.

BusCount If the option BusCount is set, the program execution is not stopped at a
breakpoint hit, the breakpoint hits are counted by the TRACE32 counter
system instead. For more information about the TRACE32 counter
system refer to the Counter command.

Break.Set sieve /Program /Watch ; Activate the WATCH facility of
; your processor when the
; function sieve is entered.

Break.Set sieve /Program /BusTrigger

TrBus.RESet

TrBus.Connect Out

TrBus.Mode Low

; Generate a 100 ns pulse for
; the TRACE32 internal trigger
; bus when the function sieve
; is entered
; Configure the TRACE32 internal
; trigger bus
; The TRIGGER connector of the
; TRACE32 development tool works
; as output
; A 100 ns low pulse is
; generated on TRIGGER

Break.Set sieve /Program /BusCount

Count.RESet
Count.Mode EventHigh

; Count the entries to the
; function sieve
General Commands Reference Guide B | 92©1989-2024 Lauterbach

The following options are available if a trace is used and trace control features are provided either by the
used processor or by the TRACE32 hardware. These options are deactivated otherwise.

Examples:

TraceEnable Enable the trace on the specified event.

TraceData Sample the complete program flow and the specified data event.

TraceON Switch the sampling to the trace ON on the specified event.

TraceOFF Switch the sampling to the trace OFF on the specified event.

TraceTrigger Stop the sampling to the trace on the specified event. A trigger delay is
possible.

; Sample only the function entries to func5 to the trace buffer
Break.Set func5 /Program /TraceEnable

; Sample only write accesses to the variable vint into the trace buffer
Var.Break.Set vint /Write /TraceEnable

; Sample the complete program flow plus all write accesses to the
; variable vlong into the trace buffer
Var.Break.Set vlong /Write /TraceData

; Start the sampling to the trace buffer, when the function func7 is
; entered and stop the sampling to the trace buffer after the variable
; WriteBuffer was read
Break.Set func7 /Program /TraceON
Var.Break.Set WriteBuffer /Read /TraceOFF

; Sample another 2000. records to the trace buffer after the function
; func23 was entered
Break.Set func23 /Program /TraceTrigger
Trace.TDelay 2000.
General Commands Reference Guide B | 93©1989-2024 Lauterbach

Examples:

DISable Set the specified breakpoint, but disable it.

DISableHit Disable the breakpoint after it was hit.

DeleteHIT Delete the breakpoint when it is hit.

NoMark Don’t display a breakpoint indicator on the TRACE32 screen.

EXclude The breakpoint is inverted:
• by the inverting logic of the on-chip trigger unit
• by setting the specified breakpoint to the following 2 address

ranges
0x0--(start_of_breakpoint_range -1)
(end_of_breakpoint_range+1)--end_of_memory

The EXclude option only applies to the implementation Onchip or
Hardware.
If the implementation is Onchip and the Onchip trigger unit does not
provide an inverting logic, the processor has to provide the facility to set
the specified breakpoint type on 2 address ranges.

; Set a Write breakpoint to the address data but disable it
Break.Set data /Write /DISable

; Set a Program breakpoint to the entry of the function sieve. Disable
; the breakpoint after it was hit.
Break.Set sieve /Program /DISableHit

; Set a Program breakpoint to the entry of the function sieve.
; delete the breakpoint when it is hit.
Break.Set sieve /Program /DeleteHIT

; Set a Write breakpoint to the code range 0x3F000--0x3FAFF to make sure
; that no write access happens to your code range, but suppress the
; display of a break indicator
Break.Set 0x3F000--0x3FAFF /Write /NoMark

; Stop the program execution when a instruction outside of the function
; sieve accesses the variable flags
Var.Break.Set sieve; /VarReadWrite flags; /EXclude
General Commands Reference Guide B | 94©1989-2024 Lauterbach

The following options allow to stop the program execution when a specific data value is read or written.

Examples:

• Not all data widths are supported for all architectures. Quad will normally not be available for
most 8-, 16- or 32-bit architectures. TByte and HByte are only available for specific DSP
architectures.

• If the processor provides data value breakpoints (see “On-chip Breakpoints”, page 84) a real-
time data value breakpoint is possible.

• TRACE32 provides an intrusive data value breakpoint, if the processor does not provide data
value breakpoints.

DATA.Byte <value> Define the data value for a byte access.

DATA.Word <value> Define the data value for a word access.

DATA.Long <value> Define the data value for a long access.

DATA.Quad <value> Define the data value for a quad access.

DATA.TByte <value> Define the data value for a triple-byte access.

DATA.HByte
<value>

Define the data value for a hexabyte access.

DATA.auto <value> Define the data value for an HLL variable. The access width is taken from
the HLL information. If there is no HLL information available, the
architecture width is taken.

; Stop the program execution when 0x33 is written to the address buffer
; via a byte write
Break.Set buffer /Write /DATA.Byte 0x33

; Stop the program execution when 0xf00023aa is read from the address
; long_value via a long read
Break.Set long_value /Read /DATA.Long 0xf00023aa

; Stop the program execution when 0x0 is written to the variable
; flags[3]
Var.Break.Set flags[12] /Write /DATA 0x0

Break.Set word_value /Write /DATA.Word 0yxxxxxxxxxxxxxxx1
General Commands Reference Guide B | 95©1989-2024 Lauterbach

An intrusive data value breakpoint for “break after make” processors is implemented as follows:

Specified
data value?

No

Yes

Program execution

Breakpoint hit at intrusive

Stop

restart program

data value breakpoint

Debugger reads data
value at read/write address
General Commands Reference Guide B | 96©1989-2024 Lauterbach

An intrusive data value breakpoint for “break before make” processors is implemented as
follows:

A intrusive data value breakpoint on a memory-mapped I/O register can
result in a failing read or destructive write access.

Specified
data value?

NoYes

Program execution

Breakpoint hit at intrusive

Stop

restart program

data value breakpoint

Debugger reads data
value at read address

Read
access?

Debugger simulates
write access

No

Yes
General Commands Reference Guide B | 97©1989-2024 Lauterbach

If a hex number is entered to identify the TASK, it is interpreted as task magic number.

If a decimal number is entered to identify the TASK, it is interpreted as task ID. If the OS does not assign a
task ID, the decimal number is interpreted as magic instead.

TASK <task_magic>,
etc.

If OS-aware debugging is configured, TASK-aware breakpoints allow to
stop the program execution at a breakpoint only if the specified
task/process is running.

TASK-aware breakpoints are implemented on most cores as intrusive
breakpoints. A few cores support real-time TASK-aware breakpoints (e.g
ARM/Cortex).

See also “What to know about the Task Parameters”
(general_ref_t.pdf).

MACHINE
<machine_id>, etc.

Specify the machine where you want to set the breakpoint. The
breakpoint action, such as stop, takes effect only if the program is
executed on the specified machine.

The breakpoint is a real-time breakpoint if the processor architecture
provides a machine ID register. Otherwise the breakpoint is an intrusive
breakpoint.

See also “What to know about the Machine Parameters”
(general_ref_t.pdf).

CORE <number> Specify the core where you want to set the breakpoint. The breakpoint
action, such as stop, takes effect only if the program is executed on the
specified core.

; Stop the program execution at the entry to func12 only if the task
; with the magic 0xC2034000 is running
Break.Set func12 /Program /TASK 0xC2034000

; Stop the program execution at the entry to func9 only if the task
; with the ID 14. is running
Break.Set func9 /Program /TASK 14.
; if the RTOS doesn’t assign IDs, the ID is interpreted as magic

; Stop the program execution at the entry to func7 only if the task with
; the name task5 is running
Break.Set func7 /Program /TASK "task5"
General Commands Reference Guide B | 98©1989-2024 Lauterbach

Task-specific real-time breakpoints are available for:

Examples:

ARM7/ARM9 By chaining the 2 on-chip breakpoints.

ARM11 Via the Context ID register.

Cortex-A/-R/-X Via the Context ID register.

ColdFire Via ASID (Address Space Identifier) for V4 architecture.

MMDSP8820 Via thread_ref register.

Neoverse Via the Context ID register.

RISC-V Via textr debug register.

; example ARM7/ARM9
; disable all on-chip breakpoints
Break.DISable /Onchip
; set task-specific real-time breakpoint
Break.Set buzzer_high /Program /Onchip /TASK smxKillTask

; example ARM11/Cortex/Neoversetextra
; inform the debugger that your OS serves the Context ID register
Break.CONFIG.UseContextID ON
Break.Set DPhysicalDevice::Info /Program /Onchip /TASK EKern.exe:Thread1

; example for MMDSP8820
; if the OS serves the thread_ID register
Break.Set buzzer_high /Program /Onchip /TASK smxTask

; example for RISC-V
; if the OS serves the scontext register
Break.Set buzzer_high /Program /Onchip /TASK smxTask
General Commands Reference Guide B | 99©1989-2024 Lauterbach

If no task-specific real-time breakpoints are available, task-specific breakpoints are implemented as intrusive
breakpoints.

The on-chip debug units for the following processor architectures provide on-chip counters:

COUNT <value> Stop the program execution after <value> breakpoint hits.
Implementation: If the on-chip trigger unit provides a counter and the
breakpoint is implemented as Onchip, this counter is used.

Otherwise the program execution is stopped shortly at each breakpoint
hit, the counter is incremented and the program execution is restarted if
the current counter value is smaller then <value>. The current counter
value is displayed in the Break.List window.
Use the Break.Init command to reset the counter.

Architecture On-chip Counters

MMDSP 1 x 16-bit counter

MPC500/800 2 x 16-bit counter for instructions
2 x 16-bit counter for data

MPC5500 2 x 16-bit counter
(not MPC551x)

SH2A 1 x 12-bit counter

SH4 2 x 32-bit counter

StarCore 1 x 30-bit counter

Super10 1 x 16-bit counter

Stop program execution at task-related breakpoint

Check
for specified

Not specified task
Continue program
execution

Keep stop of program execution

Specified task

task
General Commands Reference Guide B | 100©1989-2024 Lauterbach

On-chip counter allow to count the event of interest in real-time. TRACE32 uses the on-chip counters only if
the implementation /Onchip is used:

Example:

If no on-chip counter is provided by the on-chip debug unit or if the implementing /SOFT is used for a
Program breakpoint, an intrusive breakpoint is used to count the event of interest.

Example:

; Stop the program execution after 5 entries to func25

Break.Set func25 /Program /Onchip /COUNT 5.

; Stop the program execution after 5 entries to func25

Break.Set func25 /Program /SOFT /COUNT 5.

Stop program execution at breakpoint with counter

Check
the counter

Not final value
Continue program
execution

Keep stop of program execution

Final value

value
General Commands Reference Guide B | 101©1989-2024 Lauterbach

CONDition
<expression>

The program execution is only stopped at the breakpoint if the specified
condition is true. The condition has to be defined in the TRACE32 syntax
(intrusive breakpoint).

VarCONDition
<hll_expression>

The program execution is only stopped at the breakpoint if the specified
HLL condition is true. The condition has to be defined in the syntax of
your programming language (intrusive breakpoint).

AfterStep AfterStep forces TRACE32 to perform an assembler step before the
specified condition is verified. This option might be useful:
• If a Program breakpoint with condition is set to a register-indirect

call instruction
• If a Read/Write breakpoint with condition is set and the processor

architecture under debug stops before the read/write access
occurred.
General Commands Reference Guide B | 102©1989-2024 Lauterbach

Examples:

; Stop the program execution at the instruction address 0x2228 only if
; the contents of Register R7 is greater 5.
Break.Set 0x2228 /Program /CONDition Register(R7)>5

; Stop the program execution at the register-indirect call at 0x2228
; only if the contents of Register R7 is greater 5, perform the register-
; indirect call before the condition is verified
Break.Set 0x2228 /Program /CONDition Register(R7)>5 /AfterStep

Program execution is suspended
at a breakpoint with condition

No
Continue with program

Stop program execution

Yes

Condition
is

true?

Verify
condition

execution

AfterStep
check box

Yes

Perform assembler
 single step

No

ON?
General Commands Reference Guide B | 103©1989-2024 Lauterbach

; Stop the program execution at a write access to vint only if flags[12]
; is equal to 0
Var.Break.Set vint /Write /VarCONDition (flags[12]==0)

; Stop the program execution at a write access to vint only if flags[12]
; is equal to 0 and vint is greater 10
; perform an assembler single step because the processor architecture
; stops before the write access occurs (break-before make breakpoint)
Var.Break.Set vint /Write /VarCOND (flags[12]==0)&&(vint>10.) /AfterStep

; Stop the program execution at the instruction address 0x2228 only if
; the contents of address 0x1234 has value of 0x55.
Break.Set 0x2228 /Program /CONDition Data.Word(D:0x1234)==0x55
General Commands Reference Guide B | 104©1989-2024 Lauterbach

Example:

See also

■ Break.CONFIG ■ Break.direct ■ Var.Break.Set

▲ ’Release Information’ in ’Legacy Release History’
▲ ’Breakpoint Handling’ in ’Training Basic Debugging’
▲ ’Breakpoint Handling’ in ’Training Basic SMP Debugging’

CMD <string> Execute one or more TRACE32 commands when the breakpoint is hit.

RESUME [ON | OFF] ON: Restart the program execution after the commands are executed.
Please be aware that the execution of a single TRACE32 commands
takes at least 200 ms.
OFF: The program execution is not resumed.

It is recommended to set RESUME to OFF, if CMD
• starts a PRACTICE script with the command DO
• commands are used that open processing windows like

Trace.STATistic.Func, Trace.Chart.sYmbol or CTS.List
because the program execution is restarted before these commands are
finished.

; Save the contents to register R12 to the file outreg1.lst whenever
; the breakpoint is hit.

Open #1 outreg1.lst /Create
Break.Set sieve\17 /Program /CMD "write #1 ""R12="" register(r12)"
/RESUME
Close #1

DIALOG Open a standard Break.Set dialog for the breakpoint configuration.

DIALOGADVANCED Open a full Break.Set dialog for the breakpoint configuration (advanced
features).
General Commands Reference Guide B | 105©1989-2024 Lauterbach

Break.SetFunc Mark HLL functions

Without parameter, the entry point of all HLL functions is marked with an Alpha breakpoint and the exit point
with a Beta breakpoint. Otherwise, only the specified function(s)/range(s) is/are marked with Alpha and
Beta. The breakpoints can then be used for statistic analysis (see Analyzer.STATistic) or for function
runtime and nesting displays (see Analyzer.List).

Format: Break.SetFunc [<range> | <module>] [/<option>]

<option>: TAGS
ALLRET
ALLBX
ODD
ONLYAB
SIMPLE
PATCH
INTR | NOINTR
Program
TraceONOFF
BreakReturn
SPOT
TraceEnable
TraceEnableEnable

ALLBX
(only ARM)

Tags any BX instruction found in the function.

ALLRET Tags any return instruction found in the function. This option is useful
when the compiler produces more than one exit point for a function, but
doesn't inform the debugger about it.

BreakReturn Sets stopping breakpoints at function returns.

INTR Marks the beginning of the function by Alpha and Charly, as required for
interrupt programs.

ONLYAB Uses only Alpha and Beta breakpoints. When the INTR option is also set
then the combination of both will be used to mark interrupt functions. The
option is required when the Charly is not available (e.g. when using ROM
breakpoints on the C167 Bondout).

PATCH Uses debug patch information.

SIMPLE Tags the last instruction of a function even when the default strategy for
determining the end of a function would be different.

SPOT For a description, see Break.Set Spot.
General Commands Reference Guide B | 106©1989-2024 Lauterbach

Examples:

See also

■ Break.direct

▲ ’Release Information’ in ’Legacy Release History’

TAGS Processors with cache or prefetch can cause serious problems for
statistic analysis. The best workaround is to make a data access base
analysis. For this purpose extra code is added at each function entry and
exit. This code writes to two variable to tag the entry or exit of a function.
With the option TAGS all symbols beginning with '_r_' are marked with
Alpha and Beta. These symbols can be generated by Microtec compilers
to support performance analysis.

TraceEnable Enables the trace on the full address range covered by the specified
function.

TraceEnableEnable Enables the trace on the entries and exists of the specified function.

TraceONOFF Sets TraceON/TraceOFF breakpoints.

Break.SetFunc ; marks all functions

Break.SetFunc 0x1000--0x2fff ; marks functions in address range

Break.SetFunc \mcc ; marks all functions in one module
General Commands Reference Guide B | 107©1989-2024 Lauterbach

Break.SetLine Mark HLL lines

The HLL lines are marked with Alpha breakpoints. The breakpoints are set short after the first instruction of
the line, to prevent the access of the breakpoint by a prefetch of the CPU. The breakpoints can be used
either for HLL line sampling or for performance analysis on HLL line (see Analyzer.STATistic.Line).

Examples:

See also

■ Break.direct

Break.SetMONitor Switch to run mode debugging at the next “Go”

Switches to run mode debugging at the next Go.

See also

■ Break.direct ■ Break.MONitor ■ Go.MONitor

Break.SetPATtern Set breakpoints allowing wildcards

Sets breakpoints allowing the wildcards ? and *. For details on setting breakpoints, refer to the Break.Set
command.

Format: Break.SetLine [<range> | <module> | <function>] [/<option>]

<option>: Alpha | Beta | Charly

Break.SetLine ; marks all lines

Break.SetLine 0x1000--0x2fff ; marks lines in address range

Break.SetLine \mcc ; marks lines in one module

Break.SetLine main ; marks lines in function 'main'

Format: Break.SetMONitor [ON | OFF]

Format: Break.SetPATtern <symbol_pattern> [/<type>]
General Commands Reference Guide B | 108©1989-2024 Lauterbach

Example:

See also

■ Break.direct

▲ ’Release Information’ in ’Legacy Release History’

Break.SetPATtern *memory* /Program ; set program breakpoints to
; all debug symbols that
; contain the string "memory".
General Commands Reference Guide B | 109©1989-2024 Lauterbach

Break.SetTask Stop the program execution when task is scheduled

Sets a breakpoint to stop as soon as the task is scheduled. This function is only available, if the debugger is
configured with the appropriate OS Awareness.

Depending on the capabilities of the OS and the OS Awareness, this command may set a conditional
breakpoint onto the OS variable that holds the current task, or a breakpoint to stop as soon as the saved PC
of this task is read. The program execution will be stopped inside the kernel scheduler. You can then step up
to the calling task manually.

Examples:

See also

■ Break.direct

Break.ViewProgram Show state of the CTL trigger unit

Opens a windows that shows the state of the Complex Trigger Language (CTL) trigger unit.

See also

■ Break.CLEAR ■ Break.direct ■ Break.PASS

Format: Break.SetTask <task_magic> | <task_id> | <task_name>

<task_magic>, etc. See also “What to know about the Task Parameters”
(general_ref_t.pdf).

Break.SetTask 7. ; set a breakpoint to the next entry of the
; task with the ID 7

Break.SetTask "module1" ; set a breakpoint to the next entry of the
; task module1

Format: Break.ViewProgram
General Commands Reference Guide B | 110©1989-2024 Lauterbach

BSDL

BSDL Boundary scan description language

The BSDL commands are used for reading boundary scan description language (IEE1149-1) files,
performing boundary scan tests and program external flash memories via the boundary scan chain. For
more information and step-by-step procedures, refer to “Boundary Scan User´s Guide”
(boundary_scan.pdf).

For configuration, use the TRACE32 command line, a PRACTICE script (*.cmm), or the BSDL.state
window.

The following TRACE32 ■ commands and ❏ functions() are available to configure the boundary scan chain.

See also

■ BSDL.BYPASSall ■ BSDL.CHECK ■ BSDL.FILE ■ BSDL.FLASH
■ BSDL.HARDRESET ■ BSDL.IDCODEall ■ BSDL.LINKAGE ■ BSDL.LoadDR
■ BSDL.MOVEDOWN ■ BSDL.MOVEUP ■ BSDL.ParkState ■ BSDL.RESet
■ BSDL.RUN ■ BSDL.RUNTCK ■ BSDL.SAMPLEall ■ BSDL.SELect
■ BSDL.SET ■ BSDL.SetAndRun ■ BSDL.SOFTRESET ■ BSDL.state
■ BSDL.StepPauseDR ■ BSDL.SToreDR ■ BSDL.TwoStepDR ■ BSDL.UNLOAD
❏ BSDL.GetDRBit() ❏ BSDL.GetPortLevel()

▲ ’What to know about Boundary Scan’ in ’Boundary Scan User’s Guide’
▲ ’FLASH Programming via Boundary Scan’ in ’eMMC FLASH Programming User’s Guide’
▲ ’Boundary Scan Description Language (BSDL) Functions’ in ’General Function Reference’
▲ ’FLASH Programming via Boundary Scan’ in ’Serial FLASH Programming User’s Guide’
General Commands Reference Guide B | 111©1989-2024 Lauterbach

BSDL.BYPASSall Check bypass mode

Sets all chips in the boundary scan chain in BYPASS mode and shifts a 32-bit random number through it. If
this test fails, an error will be reported.

See also

■ BSDL ■ BSDL.state ❏ BSDL.CHECK.BYPASS()

BSDL.CHECK Enable test result checking

Enables or disables the test result checking for boundary scan. When enabled all data register bits with
expect high or low are checked after a BSDL.RUN / BSDL.RUN DR command. If a test fails, an error
message is printed.

See also

■ BSDL ■ BSDL.state

BSDL.FILE Load a BSDL file

Loads a BSDL file and places its entity on the current position in the boundary scan chain.

See also

■ BSDL ■ BSDL.LINKAGE ■ BSDL.state

Format: BSDL.BYPASSall

Format: BSDL.CHECK ON | OFF

Format: BSDL.FILE <file>
General Commands Reference Guide B | 112©1989-2024 Lauterbach

BSDL.FLASH Flash programming

BSDL.FLASH command group is used for programming non-volatile memories via boundary scan. The
following protocols are supported:

• Common flash interface (NOR flash memory)

• I2C

• SPI

• eMMC

With the BSDL.FLASH commands the boundary scan chain is prepared for flash programming, the flash
programming itself is done with either the FLASH or FLASHFILE commands.

See also

■ BSDL.FLASH.IFCheck ■ BSDL.FLASH.IFDefine ■ BSDL.FLASH.IFMap ■ BSDL.FLASH.INIT
■ BSDL ■ FLASH ■ FLASHFILE

▲ ’FLASH’ in ’General Commands Reference Guide F’
▲ ’FLASHFILE’ in ’General Commands Reference Guide F’

BSDL.FLASH.IFCheck Check flash interface definition

Checks if flash definition is valid and all required flash ports are mapped to a device port. The check results
are displayed in the area window.

NOR flash:

• Required ports (will cause an error, if not mapped):

OE (output enable)

WE (write enable)

A0 - An (address ports, number n of address ports is defined with BSDL.FLASH.IFDefine)

DQ0-DQm (data ports, number m of data ports is defined with BSDL.FLASH.IFDefine)

• Optional ports (will cause a warning, if not mapped):

CE (chip enable)

RB (ready/busy)

BYTE (data bus width selection)

RESET (flash hardware reset)

WP (write protection/acceleration input)

Format: BSDL.FLASH.IFCheck
General Commands Reference Guide B | 113©1989-2024 Lauterbach

SPI flash:

• Required ports (will cause an error, if not mapped):

CE (chip enable / chip select)

SCK (serial data clock)

SI (serial data input)

SO (serial data output)

I2C flash:

• Required ports (will cause an error, if not mapped):

SDA (serial data)

SCL (serial clock)

MMC flash:

• Required ports (will cause an error, if not mapped):

CLK (Clock)

CMD (Command)

DAT0 - DATn (Data I/O)

See also

■ BSDL.FLASH ❏ BSDL.CHECK.FLASHCONF()
General Commands Reference Guide B | 114©1989-2024 Lauterbach

BSDL.FLASH.IFDefine Define flash interface

Defines the flash memory configuration:

See also

■ BSDL.FLASH ■ FLASH.BSDLaccess

Format: BSDL.FLASH.IFDefine RESet <nor_param> | <spi_param> | <i2c_param> |
<mmc_param>

<nor_param>: NOR <chip_number> <address_size> <data_size>

<spi_param>: SPI <chip_number>

<i2c_param>: I2C <chip_number>

<mmc_
param>:

MMC <chip_number> <data_size>

RESet Resets the BSDL flash configuration.

NOR Selects NOR flash memory type.

SPI Selects SPI flash memory type.

I2C Selects I2C flash memory type.

MMC Selects MMC flash memory type.

<chip_number> Number of the chip in the boundary scan chain to which the flash
memory is connected.

<address_size> Number of address ports of the flash memory

<data_size> Number of data ports of the flash memory (max. 32 bit for NOR flash; 1,
4, or 8 bit for MMC flash)

BSDL.FLASH.IFDefine DELete

BSDL.FLASH.IFDefine NOR 2. 23. 16.

; deletes all BSDL flash
; configurations
; defines a NOR flash on chip
; 2 of the boundary scan chain
; with 23 address ports (A0-
; A22)and 16 data ports (DQ0-
; DQ15)
General Commands Reference Guide B | 115©1989-2024 Lauterbach

BSDL.FLASH.IFMap Map flash interface

Maps the generic flash ports to the device ports.

Examples:

See also

■ BSDL.FLASH ■ FLASH.BSDLaccess

Format: BSDL.FLASH.IFMap <flash_port> <device_port>

<flash_port> Generic flash port names
NOR flash:
• CE (chip enable), OE (output enable), WE (write enable),

RB (ready busy), BYTE, RESET, WP (write protection)
• CE2, OE2, WE2, RB2, BYTE2, RESET2, WP2
• CE3, OE3, WE3, RB3, BYTE3, RESET3, WP3
• CE4, OE4, WE4, RB4, BYTE4, RESET4, WP4
• A* (address), DQ* (data input/output)
SPI flash:
• CE (chip enable), SCK (serial clock), SI (Master output, slave

input), SO (Master input, slave output)
I2C (FLASH EEPROM):
• SCL (serial clock), SDA (serial data)
MMC flash:
• CLK (Clock), CMD (Command), DAT0 - DAT7 (Data I/O)

<device_port> Device port name (from the corresponding BSDL file, case insensitive)

BSDL.FLASH.IFMap CE PR7C

BSDL.FLASH.IFMap DQ15 PR12A

; Maps the generic NOR flash port CE
; to the device port PR7C

; Maps the generic NOR flash port
; DQ15 to the device port PR12A
General Commands Reference Guide B | 116©1989-2024 Lauterbach

BSDL.FLASH.INIT Initialize flash interface

Initializes the boundary scan chain for flash programming. The boundary scan register of the device to which
the flash memory is connected, will be initialized to the parameter value, the flash control ports will be set in
the inactive state (all control ports set to ’1’, data output driver disabled, address ports set to ’0’).

The chip, which is connected to the flash memory is set to EXTEST mode, all other chips are set to BYPASS
mode.

See also

■ BSDL.FLASH

BSDL.HARDRESET TAP reset via TRST

TRST port is toggled and the TAP controllers are set to the “Select-DR-SCAN” state.

See also

■ BSDL ■ BSDL.state

Format: BSDL.FLASH.INIT SAFE | SAMPLE | ZERO | ONE | NONE

SAFE The boundary scan register is initialized to the SAFE (defined in the
corresponding BSDL file).

SAMPLE A SAMPLE run is executed and the sampled data are taken for
initialization.

ZERO The boundary scan register is initialized to all zero.

ONE The boundary scan register is initialized to all one.

NONE The boundary scan register is not initialized, it must be initialized before
with BSDL.SET, otherwise its state will be undefined.

Format: BSDL.HARDRESET
General Commands Reference Guide B | 117©1989-2024 Lauterbach

BSDL.IDCODEall Check ID codes

Sets all chips in the boundary scan chain in IDCODE mode and checks the resulting ID codes. Chips,
without an ID code register will be set in BYPASS mode. If this test fails, an error will be reported.

See also

■ BSDL ■ BSDL.state ❏ BSDL.CHECK.IDCODE()

BSDL.LINKAGE Create a bypass device

Creates a bypass device with instruction size <IR size> and places its entity on the current position in the
boundary scan chain.

See also

■ BSDL ■ BSDL.FILE ■ BSDL.state

Format: BSDL.IDCODEall

Format: BSDL.LINKAGE <IR size>
General Commands Reference Guide B | 118©1989-2024 Lauterbach

BSDL.LoadDR Load data register from file

Loads the content of <file> into data register <register_name> of IC <chip_number>.

• If the <file> contains more date than data register <register_name>, the redundant data from the
<file> will be ignored.

• If the <file> contains less data than data register <register_name> only the least significant bits
of data register <register_name> will be loaded.

The BINary format is byte wise, the first byte will be the first 8 bit of the data register <register_name>.

The ASCII format is 1 bit per line. Line comments starts with “//”:

See also

■ BSDL ■ BSDL.SToreDR

Format: BSDL.LoadDR <chip_number> <register_name> <file> [/<option>]

<option>: ASCII
BINary

<chip_number> Number of IC in the boundary scan chain, if the boundary scan chain has
only one IC, this parameter can be omitted.

<register_name> Data register name (must be defined in BSDL file).

<file> File with register data

ASCII File format is ASCII.

BINary File format is binary (default).

// IC001 = CPU_TEST
// DR = USER_DATA[56]
1
0
0
0
0
1
0
0 // 21
1

General Commands Reference Guide B | 119©1989-2024 Lauterbach

BSDL.MOVEDOWN Move selected chip downwards

Moves the selected chip down by one position (i.e. increase chip number by one).

Chip is either selected by the command BSDL.SELect or in the BSDL.state window.

See also

■ BSDL ■ BSDL.state

Format: BSDL.MOVEDOWN
General Commands Reference Guide B | 120©1989-2024 Lauterbach

BSDL.MOVEUP Move selected chip upwards

Moves the selected chip up by one position (i.e. decrease chip number by one).

Chip is either selected by the command BSDL.SELect or in the BSDL.state window.

See also

■ BSDL ■ BSDL.state

BSDL.ParkState Select JTAG parking state

Selects the parking state for the JTAG state machine. The parking state is the state where the JTAG state
machine will stop after a BSDL.HARDRESET, BSDL.SOFTRESET or a BSDL.RUN command. The default
parking state after a BSDL.RESet is Run-Test/Idle.

See also

■ BSDL

Format: BSDL.MOVEUP

Format: BSDL.ParkState Run-Test/Idle | Select-DR-Scan

Run-Test/Idle Selects Run-Test/Idle as parking state for the JTAG state machine

Select-DR-Scan Selects Select-DR-Scan as parking state for the JTAG state machine

If the parking states of the debug and the boundary scan functions are different,
unintended side effects may occur. See “Boundary Scan User´s Guide” for
details.
General Commands Reference Guide B | 121©1989-2024 Lauterbach

BSDL.RESet Reset boundary scan configuration

Deletes the boundary scan configuration and set all boundary scan options to their default values

See also

■ BSDL

BSDL.RUN Run JTAG sequence

The BSDL.RUN command will apply (i.e. shift out) the instruction and data register settings to the boundary
scan chain. Without any option, the instruction register settings are applied first and the data register settings
are applied second.

See also

■ BSDL ■ BSDL.state

BSDL.RUNTCK Toggle TCK

Toggles TCK for <count> clocks.

See also

■ BSDL

Format: BSDL.RESet

Format: BSDL.RUN [IR | DR]

IR With the option IR only the instruction register settings are applied,

DR With the option DR only the data register settings are applied.

When a DR shift is executed, the result data can be viewed in the
settings/result window (opens with BSDL.SET <chip_number> or double
click on the corresponding entry in the BSDL.state entity list).

Format: BSDL.RUNTCK <count>
General Commands Reference Guide B | 122©1989-2024 Lauterbach

BSDL.SAMPLEall Sample all signals

Sets all chips in the boundary scan chain in SAMPLE mode and runs a sample test. The results can be
viewed in the result window (see BSDL.SET).

See also

■ BSDL ■ BSDL.state

BSDL.SELect Select a chip

Selects <chip_number> for the commands BSDL.MOVEUP, BSDL.MOVEDOWN, and BSDL.FILE.

• BSDL.MOVEUP, BSDL.MOVEDOWN: The selected chip is moved.

• BSDL.FILE: The loaded entity is placed after the selected chip

See also

■ BSDL ■ BSDL.state

Format: BSDL.SAMPLEall

Format: BSDL.SELect [<chip_number>]
General Commands Reference Guide B | 123©1989-2024 Lauterbach

BSDL.SET Set chip parameters

The command BSDL.SET modifies the instruction and data register settings for a chip in the boundary scan
chain. The settings are applied to the system with BSDL.RUN command.

If the boundary scan chain has only chip, the <chip_number> can be omitted.

Format: BSDL.SET [<chip_number>] [<set_selection>]

<set_
selection>:

<ir_conf> | <dr_conf> | <bsr_conf> | <port_conf> | <pinmap_conf> | <options>

<ir_conf>: IR <instr_name> | <opcode>

<dr_conf>: DR <bit_slice> ZERO | ONE | ExpectH | ExpectL | ExpectX | <opcode>

<bsr_conf>: BSR <bit_slice> ZERO | ONE | SAFE | SAMPLE | DISable | ENable | Drive0 |
Drive1 | ExpectH | ExpectL | ExpectX | <opcode>

<port_conf>: PORT <port_name> 1 | 0 | Z | H | L | X

<pinmap_
conf>:

PINMAP <pinmap_name>

<options>: OPTION IN | OUT | BIDI | OBSERVE | INTERN | ALL | SPOTLIGHT |
MARKLINES | BSRHISTORY ON | OFF
General Commands Reference Guide B | 124©1989-2024 Lauterbach

With <chip_number> as the only parameter BSDL.SET will open the settings/result window for
<chip_number>.

Depending on the selected instruction, the data area of the settings/result window shows the results of the
last DR scan operation. The instruction and the view options for the chip can be modified.

The information from the BSDL file can be viewed by toggling the data area to the “File info” view. It shows
the provided instructions, compliance pattern, boundary scan register, TAP parameters, etc.

BSDL.SET 4. ; opens the settings/result window for chip 4
General Commands Reference Guide B | 125©1989-2024 Lauterbach

Instruction register settings

IR Selects the instruction register for the BSDL.SET command.

<instr_name> Instruction names of the selected chip: SAMPLE/PRELOAD, BYPASS,
EXTEST
Depending on the chip more instructions may be available.

<opcode> One or more 64 bit integer values, only n(=instruction register size) bits
are used other bits will be ignored.
General Commands Reference Guide B | 126©1989-2024 Lauterbach

Data register settings

Boundary scan register settings

BSDL.SET 4. IR SAMPLE

BSDL.SET 4. IR 0x023

; sets chip 4 in SAMPLE mode

; sets the instruction register of chip 4 to
; 0x023 (bits > instruction size will be
; ignored

DR Selects the data register for the BSDL.SET command. The currently
selected instruction determines the data register size, the upper index of
the bit slice will be cut, if it exceed the data register size

<bit_slice> Bit slice can be:
i--k: the bits from i to k will be modified
i : bit i will be modified
* : all bits will be modified

ZERO The selected bit slice will be set to zero.

ONE The selected bit slice will be set to one.

ExpectH The selected bit slice will be set to “expect high” (for read register)

ExpectL The selected bit slice will be set to “expect low” (for read register)

ExpectX The selected bit slice will be set to “ignore” (for read register)

<opcode> One or more 64 bit integer values, only n (=bit slice size) bits are used
other bits will be ignored.

BSDL.SET 4. DR 3.--16. ONE

BSDL.SET 4. DR 0 ZERO

BSDL.SET 1. DR * 0x1234

; sets the bits 3..16 of chip 4 to one

; sets the bit 0 of chip 4 to zero

; sets data register of chip 1 to 0x1234
; all bits > 15 will be set to zero

BSR Selects the boundary scan register for the BSDL.SET command.
Register size is equal to the boundary scan register size, the upper index
of the bit slice will cut, if it exceed the register size

<bit_slice> Bit slice can be:
i--k : the bits from i to k will be modified
i : bit i will be modified
* : all bits will be modified
General Commands Reference Guide B | 127©1989-2024 Lauterbach

The settings for the boundary scan register are only meaningful in PRELOAD, EXTEST or INTEST mode.

Port settings

ZERO The selected bit slice will be set to zero.

ONE The selected bit slice will be set to one.

SAFE The selected bit slice will be set to the SAFE state (according the BSDL
file).

SAMPLE The selected bit slice will be set to previously sampled data.

DISable All ports in the selected bit slice will be disabled (if a control cell is
defined)

ENable All ports in the selected bit slice will be enabled (if a control cell is
defined)

Drive0 All ports in the selected bit slice will drive ’0’, if the port is an output or
bidi. Output drivers will be enabled, if required.

Drive1 All ports in the selected bit slice will drive ’1’, if the port is an output or
bidi. Output drivers will be enabled, if required.

ExpectH The selected bit slice will be set to “expect high” (for read register)

ExpectL The selected bit slice will be set to “expect low” (for read register)

ExpectX The selected bit slice will be set to “ignore” (for read register)

<opcode> One or more 64 bit integer values, only n (=bit slice size) bits are used
other bits will be ignored.

BSDL.SET 4. BSR * SAMPLE

BSDL.SET 1. BSR * SAFE

BSDL.SET 1. BSR 2--7 Drive0

; initializes the boundary scan register
; of chip 4 with a previous sample run
; initializes the boundary scan register
; of chip 1 to SAFE values
; drive 0 to the ports which are control-
; led by the register bits 2..7 of chip 1

PORT Selects the port settings for the BSDL.SET command. The boundary
scan register is modified for this port (drive/expect value, enable/disable
output)

<port_name> Name of the port, which should be modified. The port name must be
listed in the definition of the boundary register in the BSDL file.

1 The selected port is set to drive 1 (only for output/bidir ports).
General Commands Reference Guide B | 128©1989-2024 Lauterbach

Pin map settings

This command can be used, if no default pin map is defined in the BSDL file or if it has multiple pin maps. It
has only an effect on the data output shown in the BSDL.SET window (boundary register view, fileinfo view).

0 The selected port is set to drive 0 (only for output/bidir ports).

Z The selected port is set to drive ’Z’ (only for output/bidir ports).

H The selected port is set to expect high (only for input/bidir ports).

L The selected port is set to expect low (only for input/bidir ports).

X The selected port is set to ignore result (only for input/bidir ports).

BSDL.SET 4. PORT PL7A 1
BSDL.SET 3. PORT PS1 H

; set port PL7A of IC4 to “drive 1”
; set port PS1 of IC3 to “expect high”

PINMAP Selects the pin map settings for the BSDL.SET command.

<pinmap_name> Name of the pin map, which should be selected. It must be a valid pin
map from the BSDL file.

BSDL.SET 3. PINMAP TQFP_48 ; select pin map TQFP_48 for IC3
General Commands Reference Guide B | 129©1989-2024 Lauterbach

Option settings

The options can be turned on or off.

See also

■ BSDL ■ BSDL.state

BSDL.SetAndRun Immediate data register takeover

Enables or disables the set and run feature. If enabled, a modification of a data register bit or bitslice will
cause an immediate BSDL.RUN, i.e. the modified settings are applied immediately to the boundary scan
register chain.

See also

■ BSDL ■ BSDL.state

OPTION Selects the options menu for the command BSDL.SET.

IN Show/hide inputs in result window.

OUT Show/hide outputs in result window.

BIDI Show/hide bidi ports in result window.

OBSERVE Show/hide observer cells in result window.

INTERN Show/hide internal cells in result window.

ALL Show/hide all cells in result window.

SPOTLIGHT Enable/disable the spotlight function in result window (Sample mode).

MARKLINES Enable/disable alternating line colors in result window.

BSRHISTORY Enable/disable graphical history view for boundary scan register in result
window (Sample mode).

BSDL.SET 4. OPTION IN ON

BSDL.SET 4. OPTION INTERN OFF

; show inputs in the settings/result
; window for chip 4
; hide internal registers in the
; settings/result window for chip 4

Format: BSDL.SetAndRun ON | OFF
General Commands Reference Guide B | 130©1989-2024 Lauterbach

BSDL.SOFTRESET TAP reset via TMS

A TMS reset (5 TCK cycles with TMS=’1’) are executed and the TAP controllers are set to the “Select-DR-
SCAN” state.

See also

■ BSDL ■ BSDL.state

Format: BSDL.SOFTRESET
General Commands Reference Guide B | 131©1989-2024 Lauterbach

BSDL.state Display BSDL chain configuration window

The command BSDL.state opens the boundary scan chain configuration dialog. The entity, which is closest
to the TDO has the number one in the list, the entity with the highest number is connected to the TDI.

A double-click on a list entry will open the settings/result window for this entry.

The list shows the entity name (taken from the corresponding BSDL file), the current instruction and the
corresponding data register name and size for each entity in the boundary scan chain. If an instruction is
changed, its name and the corresponding data register will change its color. As soon as the changes are
applied to boundary scan chain (BSDL.RUN IR / BSDL.RUN DR), they will change their color to normal.

Configure (Chain configuration):

• FILE: Load a BSDL file and place it on the current position in the boundary scan chain

• MOVEUP, MOVEDOWN: move the selected entity up or down in the boundary scan chain

• UNLOAD: remove the selected entity from the boundary scan chain

Run:

• RUN IR: the instruction register settings will be applied to the boundary scan chain.

• RUN DR: the data register setting will be applied to the boundary scan chain. The read data can
be viewed for each entity by opening the set/result window (double click on list entry)

• RUN: a instruction and data register shift will be executed (same as “RUN IR” + “RUN DR”)

Format: BSDL.state
General Commands Reference Guide B | 132©1989-2024 Lauterbach

Checks:

• BYPASSall: BYPASS mode for all entities will be set and tested, the result is shown right to this
button

• IDCODEall: IDCODE mode is set for all entities (if defined in the BSDL file) and tested, the result
is shown right to this button

• SAMPLEall: SAMPLE mode for all entities will be set and tested, the results for each entity can
be viewed in the set/result window (double click on list entry)

See also

■ BSDL ■ BSDL.BYPASSall ■ BSDL.CHECK ■ BSDL.FILE
■ BSDL.HARDRESET ■ BSDL.IDCODEall ■ BSDL.LINKAGE ■ BSDL.MOVEDOWN
■ BSDL.MOVEUP ■ BSDL.RUN ■ BSDL.SAMPLEall ■ BSDL.SELect
■ BSDL.SET ■ BSDL.SetAndRun ■ BSDL.SOFTRESET ■ BSDL.TwoStepDR
■ BSDL.UNLOAD ❏ BSDL.GetDRBit() ❏ BSDL.GetPortLevel()

▲ ’Configuration of the Boundary Scan Chain’ in ’Boundary Scan User’s Guide’
▲ ’Boundary Scan Description Language (BSDL) Functions’ in ’General Function Reference’

BSDL.StepPauseDR Special DR shift

Default: OFF.

Enables or disables the step through PauseDR for the boundary scan chain. If enabled, each DR-SCAN will
step through PauseDR and Exit2DR state.

See also

■ BSDL

Format: BSDL.StepPauseDR [ON | OFF]
General Commands Reference Guide B | 133©1989-2024 Lauterbach

BSDL.SToreDR Store data register to file

Stores the data register <register_name> to <file>.

See also

■ BSDL ■ BSDL.LoadDR

Format: BSDL.SToreDR <chip_number> <register_name> <file> [/<option>]

<option>: ASCII
BINary

<chip_number> Number of IC in the boundary scan chain, if the boundary scan chain has
only one IC, this parameter can be omitted.

<register_name> Data register name (must be defined in BSDL file).

<file> File for register data

ASCII File format is ASCII.

BINary (default) File format is binary.
General Commands Reference Guide B | 134©1989-2024 Lauterbach

BSDL.TwoStepDR Single/double data register shift

Enables or disables double data register shift execution. When enabled, each BSDL.RUN DR command will
execute 2 data register shifts (BSDL.RUN will execute 1 instruction register shift and 2 data register shifts).

This option is useful in interactive connection test, when 1 device acts as a signal driver and another as a
signal receiver.

See also

■ BSDL ■ BSDL.state

BSDL.UNLOAD Unload a chip from chain

Removes one or all chips from the boundary scan chain configuration.

See also

■ BSDL ■ BSDL.state

Format: BSDL.TwoStepDR ON | OFF

ON With TwoStepDR enabled, the modified data register of the driver is shifted
twice and the effect on the receiver could be observed immediately.

OFF Without TwoStepDR mode, the modified data register of the driver would be
shifted in and the data register from the previous cycle would be shifted out.
To see the modified signal from the driver on the receiver, a second
BSDL.RUN DR is required.

Format: BSDL.UNLOAD <chip_number> | ALL

<chip_number> The <chip_number> is removed from the configuration.

ALL All chips are removed from the configuration.
General Commands Reference Guide B | 135©1989-2024 Lauterbach

BTrace

BTrace Script-controlled trace sink

BTrace allows to add trace information to TRACE32 PowerView using PRACTICE commands. This trace
information can then be displayed using the BTrace.* windows. The trace memory is reserved on the host
running TRACE32 PowerView.

The chapter “BTrace-specific Trace Commands”, page 137 describes the BTrace-specific commands.
While the chapter “Generic BTrace Trace Commands”, page 141 lists the BTrace analysis and display
commands, which are generic for all TRACE32 trace methods.
General Commands Reference Guide B | 136©1989-2024 Lauterbach

BTrace-specific Trace Commands

BTrace.<specific_cmds> Overview of BTrace-specific commands

BTrace.Mode Set the trace operation mode

Selects the trace operation mode.

BTrace.PUSH Push trace data

Adds trace records to BTrace.

Format: <trace>.Mode [<mode>]

<mode>: Fifo | Stack

Fifo If the trace is full, new records will overwrite older records. The trace
records always the last cycles before the break.

Stack If the trace is full recording will be stopped. The trace always records the
first cycles after starting the trace.

Format: BTrace.PUSH <data> <data>

<cycle>
<data>: Read <address> <value> <time>

Write <address> <value> <time>
EXECUTE <address> <value> <time>
STATistic <address> <count> <time> <mintime> <maxtime>
STATisticROOT <time>
General Commands Reference Guide B | 137©1989-2024 Lauterbach

Definition of the <cycle> Parameter

Definition of the <data> Parameters

Read Memory read access with data value.

Write Memory write access with data value.

EXECUTE Program execution.

STATistic Run-time statistic.

STATisticROOT Total execution time (root).

<address>: Address of the added trace record.

<value>: Represents the data access value for cycles Read and Write.
Represents the opcode for cycle EXECUTE.

<count>: Number of calls. This value is displayed under count in the
BTrace.STATistic windows.
Cycles STATistic and STATisticROOT only.

<time>: Timestamp of the trace record for cycles Read, Write and EXECUTE.
Total time for cycles STATistic and STATisticROOT.

<mintime>: Shortest execution time. This value is displayed under min in the
BTrace.STATistic windows.
Cycles STATistic and STATisticROOT only.

<maxtime>: Longest execution time. This value is displayed under max in the
BTrace.STATistic windows.
Cycles STATistic and STATisticROOT only.
General Commands Reference Guide B | 138©1989-2024 Lauterbach

Examples

Example 1: Read, Write and EXECUTE cycles

Example 2: STATIStic and STATisticROOT cycles

An example for RH850 using the BTrace and BenchMark Counters (BMC) can be found in TRACE32
system directory under ~~/demo/rh850/etc/runtime_measurement/runtime.cmm

BTrace.RESet
BTrace.SIZE 1000.
BTrace.Arm
BTrace.PUSH EXECUTE func2 0xB590 1us
BTrace.PUSH Write mcount 1 2.us
BTrace.PUSH Read mstatic1 0 2.5us
BTrace.PUSH EXECUTE sYmbol.EXIT(func2) 0x4700 3us
BTrace.OFF
BTrace.List

BTrace.RESet
BTrace.SIZE 1000.
BTrace.OFF
BTrace.PUSH STATistic func2 3. 4.7us 2.us 2.5us
BTrace.PUSH STATistic func3 2. 3.5us 0.5us 3us
BTrace.PUSH STATistic func4 1. 1.us 1us 1us
BTrace.PUSH STATisticROOT 20.us
BTrace.STATistic.Func
General Commands Reference Guide B | 139©1989-2024 Lauterbach

BTrace.state Display BTrace configuration window

Displays the BTrace.state window, where you can configure the BTrace.

Format: BTrace.state
General Commands Reference Guide B | 140©1989-2024 Lauterbach

Generic BTrace Trace Commands

BTrace.Arm Arm the trace

See command <trace>.Arm in 'General Commands Reference Guide T' (general_ref_t.pdf, page 134).

BTrace.AutoArm Arm automatically

See command <trace>.AutoArm in 'General Commands Reference Guide T' (general_ref_t.pdf, page
135).

BTrace.AutoInit Automatic initialization

See command <trace>.AutoInit in 'General Commands Reference Guide T' (general_ref_t.pdf, page 140).

BTrace.BookMark Set a bookmark in trace listing

See command <trace>.BookMark in 'General Commands Reference Guide T' (general_ref_t.pdf, page
140).

BTrace.Chart Display trace contents graphically

See command <trace>.Chart in 'General Commands Reference Guide T' (general_ref_t.pdf, page 144).

BTrace.ComPare Compare trace contents

See command <trace>.ComPare in 'General Commands Reference Guide T' (general_ref_t.pdf, page
192).
General Commands Reference Guide B | 141©1989-2024 Lauterbach

BTrace.DISable Disable the trace

See command <trace>.DISable in 'General Commands Reference Guide T' (general_ref_t.pdf, page 197).

BTrace.DRAW Plot trace data against time

See command <trace>.DRAW in 'General Commands Reference Guide T' (general_ref_t.pdf, page 201).

BTrace.EXPORT Export trace data for processing in other applications

See command <trace>.EXPORT in 'General Commands Reference Guide T' (general_ref_t.pdf, page
212).

BTrace.FILE Load a file into the file trace buffer

See command <trace>.FILE in 'General Commands Reference Guide T' (general_ref_t.pdf, page 233).

BTrace.Find Find specified entry in trace

See command <trace>.Find in 'General Commands Reference Guide T' (general_ref_t.pdf, page 235).

BTrace.FindAll Find all specified entries in trace

See command <trace>.FindAll in 'General Commands Reference Guide T' (general_ref_t.pdf, page 237).

BTrace.FindChange Search for changes in trace flow

See command <trace>.FindChange in 'General Commands Reference Guide T' (general_ref_t.pdf, page
238).

BTrace.GOTO Move cursor to specified trace record

See command <trace>.GOTO in 'General Commands Reference Guide T' (general_ref_t.pdf, page 244).
General Commands Reference Guide B | 142©1989-2024 Lauterbach

BTrace.Init Initialize trace

See command <trace>.Init in 'General Commands Reference Guide T' (general_ref_t.pdf, page 246).

BTrace.List List trace contents

See command <trace>.List in 'General Commands Reference Guide T' (general_ref_t.pdf, page 248).

BTrace.ListNesting Analyze function nesting

See command <trace>.ListNesting in 'General Commands Reference Guide T' (general_ref_t.pdf, page
263).

BTrace.LOAD Load trace file for offline processing

See command <trace>.LOAD in 'General Commands Reference Guide T' (general_ref_t.pdf, page 270).

BTrace.OFF Switch off

See command <trace>.OFF in 'General Commands Reference Guide T' (general_ref_t.pdf, page 278).

BTrace.PROfileChart Profile charts

See command <trace>.PROfileChart in 'General Commands Reference Guide T' (general_ref_t.pdf, page
283).

BTrace.PROTOcol Protocol analysis

See command <trace>.PROTOcol in 'General Commands Reference Guide T' (general_ref_t.pdf, page
339).
General Commands Reference Guide B | 143©1989-2024 Lauterbach

BTrace.PROTOcol.Chart Graphic display for user-defined protocol

See command <trace>.PROTOcol.Chart in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 339).

BTrace.PROTOcol.Draw Graphic display for user-defined protocol

See command <trace>.PROTOcol.Draw in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 341).

BTrace.PROTOcol.EXPORT Export trace buffer for user-defined protocol

See command <trace>.PROTOcol.EXPORT in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 342).

BTrace.PROTOcol.Find Find in trace buffer for user-defined protocol

See command <trace>.PROTOcol.Find in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 343).

BTrace.PROTOcol.list Display trace buffer for user-defined protocol

See command <trace>.PROTOcol.list in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 344).

BTrace.PROTOcol.PROfileChart Profile chart for user-defined protocol

See command <trace>.PROTOcol.PROfileChart in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 347).

BTrace.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol

See command <trace>.PROTOcol.PROfileSTATistic in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 348).
General Commands Reference Guide B | 144©1989-2024 Lauterbach

BTrace.PROTOcol.STATistic Display statistics for user-defined protocol

See command <trace>.PROTOcol.STATistic in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 350).

BTrace.REF Set reference point for time measurement

See command <trace>.REF in 'General Commands Reference Guide T' (general_ref_t.pdf, page 357).

BTrace.RESet Reset command

See command <trace>.RESet in 'General Commands Reference Guide T' (general_ref_t.pdf, page 357).

BTrace.SAVE Save trace for postprocessing in TRACE32

See command <trace>.SAVE in 'General Commands Reference Guide T' (general_ref_t.pdf, page 358).

BTrace.SIZE Define buffer size

See command <trace>.SIZE in 'General Commands Reference Guide T' (general_ref_t.pdf, page 373).

BTrace.STATistic Statistic analysis

See command <trace>.STATistic in 'General Commands Reference Guide T' (general_ref_t.pdf, page
378).

BTrace.Timing Waveform of trace buffer

See command <trace>.Timing in 'General Commands Reference Guide T' (general_ref_t.pdf, page 499).

BTrace.TRACK Set tracking record

See command <trace>.TRACK in 'General Commands Reference Guide T' (general_ref_t.pdf, page 502).
General Commands Reference Guide B | 145©1989-2024 Lauterbach

BTrace.View Display single record

See command <trace>.View in 'General Commands Reference Guide T' (general_ref_t.pdf, page 504).

BTrace.ZERO Align timestamps of trace and timing analyzers

See command <trace>.ZERO in 'General Commands Reference Guide T' (general_ref_t.pdf, page 505).
General Commands Reference Guide B | 146©1989-2024 Lauterbach

	General Commands Reference Guide B
	History
	BMC
	BMC Benchmark counters
	BMC.<counter> Benchmark counters
	BMC.<counter>.EVENT Assign event to counter
	BMC.<counter>.FORMAT Counter value format
	BMC.<counter>.RATIO Set two counters in relation
	BMC.<counter>.SIZE Specify counter size
	BMC.Attach BMC attach
	BMC.AutoInit Automatic initialization
	BMC.CLOCK Provide core clock for cycle counter
	BMC.Init Initialize counters
	BMC.PROfile Display counter changes per second
	BMC.PROfileChart Profile chart with benchmark counter
	BMC.PROfileChart.AddressGROUP Address group profile chart with BMC
	BMC.PROfileChart.DatasYmbol Pointer profile chart with BMC
	BMC.PROfileChart.DistriB Distribution display with BMC
	BMC.PROfileChart.GROUP Group profile chart with BMC
	BMC.PROfileChart.Line Source code line profile chart with BMC
	BMC.PROfileChart.MODULE Module profile chart with BMC
	BMC.PROfileChart.PROGRAM Program profile chart with BMC
	BMC.PROfileChart.sYmbol Symbol profile chart with BMC
	BMC.PROfileChart.TASK Task profile chart with BMC
	BMC.PROfileChart.TASKINFO Data trace via context ID with BMC
	BMC.PROfileChart.TASKINTR ISR2 profile chart with BMC
	BMC.PROfileChart.TASKKernel Task profile chart with BMC
	BMC.PROfileChart.TASKORINTERRUPT Task and interrupts with BMC
	BMC.PROfileChart.TASKSRV OS service routines profile chart with BMC
	BMC.PROfileChart.TASKVSINTR Task related intr. profile chart with BMC
	BMC.PROfileSTATistic Statistical analysis vs. time with benchmark counter
	BMC.PROfileSTATistic.Address Address statistical analysis with BMC
	BMC.PROfileSTATistic.AddressGROUP Address group statistic with BMC
	BMC.PROfileSTATistic.DatasYmbol Pointer profile statistic with BMC
	BMC.PROfileSTATistic.DistriB Distribution statistical analysis with BMC
	BMC.PROfileSTATistic.GROUP Group profile statistic with BMC
	BMC.PROfileSTATistic.INTERRUPT Interrupt profile statistic with BMC
	BMC.PROfileSTATistic.Line High-level code line profile statistic with BMC
	BMC.PROfileSTATistic.MODULE Module profile statistic with BMC
	BMC.PROfileSTATistic.PROGRAM Program profile statistic with BMC
	BMC.PROfileSTATistic.RUNNABLE Runnable profile statistic with BMC
	BMC.PROfileSTATistic.sYmbol Symbol profile statistic with BMC
	BMC.PROfileSTATistic.TASK Task profile statistic with BMC
	BMC.PROfileSTATistic.TASKINFO Data trace via context ID with BMC
	BMC.PROfileSTATistic.TASKINTR ISR2 profile statistic with BMC
	BMC.PROfileSTATistic.TASKKernel Task profile statistic with BMC
	BMC.PROfileSTATistic.TASKORINTERRUPT Task or interrupt with BMC
	BMC.PROfileSTATistic.TASKSRV OS service routines profile stat. with BMC
	BMC.RESet Reset benchmark counter configuration
	BMC.SnoopSet Assign event counter to SNOOPer trace
	BMC.state Display BMC configuration window
	BMC.STATistic Statistic analysis with benchmark counter
	BMC.STATistic.ChildTREE Function callee context with BMC
	BMC.STATistic.DistriB Distribution analysis with BMC
	BMC.STATistic.Func Nesting function run-time with BMC
	BMC.STATistic.GROUP Group run-time analysis with BMC
	BMC.STATistic.LINKage Per caller function statistic with BMC
	BMC.STATistic.MODULE Module statistic with BMC
	BMC.STATistic.ParentTREE Statistic for call context with BMC
	BMC.STATistic.PROGRAM Program statistic with BMC
	BMC.STATistic.sYmbol Flat run-time analysis with BMC
	BMC.STATistic.TASK Statistic for tasks with BMC
	BMC.STATistic.TASKINFO Statistic for context ID messages with BMC
	BMC.STATistic.TASKINTR Statistic for ISR2 with BMC
	BMC.STATistic.TASKKernel Statistic for tasks with BMC
	BMC.STATistic.TASKORINTERRUPT Tasks and interrupts with BMC
	BMC.STATistic.TASKSRV Statistic for OS service routines with BMC
	BMC.STATistic.TREE Tree nesting function run-time with BMC

	BookMark
	BookMark Address and trace bookmarks
	Overview BookMark
	BookMark.CHange Edit the settings of a bookmark
	BookMark.Create Create a new address bookmark
	BookMark.Delete Delete an existing bookmark
	BookMark.EditRemark Add/edit remark of a bookmark
	BookMark.EXPORT Export bookmarks
	BookMark.EXPORT.ADDRESS Export bookmarks for specified addresses
	BookMark.EXPORT.preset Export bookmarks to an XML file
	BookMark.EXPORT.SOURCE Export bookmarks for specified source files
	BookMark.EXPORT.sYmbol Export bookmarks for specified symbols
	BookMark.List List all bookmarks
	BookMark.RESet Delete all bookmarks
	BookMark.Toggle Toggles a single address bookmark

	Break
	Break Stopping the program execution
	Breakpoints
	Break.Asm Stop program/set temporary breakpoint and switch to Asm mode
	Break.CLEAR Reset complex triggers
	Break.CONFIG Configuration of breakpoint behavior and breakpoint scope
	Break.CONFIG.AlwaysAlive Alive Onchip breakpoints
	Break.CONFIG.InexactAddress Inexact address range breakpoint
	Break.CONFIG.InexactData Inexact data value breakpoint
	Break.CONFIG.InexactResume Resuming on inexact breakpoints
	Break.CONFIG.InexactTrigger Inexact trigger breakpoints
	Break.CONFIG.MatchASID Use ASID specific breakpoints
	Break.CONFIG.MatchMachine Use machine specific breakpoints
	Break.CONFIG.MatchZone Use zone specific breakpoints
	Break.CONFIG.METHOD Breakpoints implementation
	Break.CONFIG.state Breakpoint configuration window
	Break.CONFIG.UseContextID Context ID specific breakpoints
	Break.CONFIG.UseMachineID Machine ID specific breakpoints
	Break.CONFIG.VarConvert Convert breakpoints on scalar variables
	Break.Delete Delete breakpoints
	Break.DeletePATtern Delete breakpoints allowing wildcards
	Break.direct Stop program execution or set temporary breakpoints
	Break.DISable Disable breakpoints
	Break.ENable Enable breakpoints
	Break.Hll Stop program/set temporary breakpoint and switch to HLL mode
	Break.Init Initialize breakpoints
	Break.List Display list of breakpoints
	Break.Mix Stop program/set temporary breakpoint and switch to MIX mode
	Break.MONitor Switch back to stop mode debugging
	Break.PASS Define pass condition for breakpoint
	Break.PATtern Set temporary breakpoints allowing wildcards
	Break.Program CTL interactive programming
	Break.ReProgram Activate existing CTL program file
	Break.REQuest Request a program break
	Break.RESet Delete all breakpoints and reset the TRACE32 break system
	Break.Set Set breakpoints
	On-chip Breakpoints
	Breakpoint Types
	Real-time vs. Intrusive Breakpoints
	Breakpoint Options

	Break.SetFunc Mark HLL functions
	Break.SetLine Mark HLL lines
	Break.SetMONitor Switch to run mode debugging at the next “Go”
	Break.SetPATtern Set breakpoints allowing wildcards
	Break.SetTask Stop the program execution when task is scheduled
	Break.ViewProgram Show state of the CTL trigger unit

	BSDL
	BSDL Boundary scan description language
	BSDL.BYPASSall Check bypass mode
	BSDL.CHECK Enable test result checking
	BSDL.FILE Load a BSDL file
	BSDL.FLASH Flash programming
	BSDL.FLASH.IFCheck Check flash interface definition
	BSDL.FLASH.IFDefine Define flash interface
	BSDL.FLASH.IFMap Map flash interface
	BSDL.FLASH.INIT Initialize flash interface
	BSDL.HARDRESET TAP reset via TRST
	BSDL.IDCODEall Check ID codes
	BSDL.LINKAGE Create a bypass device
	BSDL.LoadDR Load data register from file
	BSDL.MOVEDOWN Move selected chip downwards
	BSDL.MOVEUP Move selected chip upwards
	BSDL.ParkState Select JTAG parking state
	BSDL.RESet Reset boundary scan configuration
	BSDL.RUN Run JTAG sequence
	BSDL.RUNTCK Toggle TCK
	BSDL.SAMPLEall Sample all signals
	BSDL.SELect Select a chip
	BSDL.SET Set chip parameters
	BSDL.SetAndRun Immediate data register takeover
	BSDL.SOFTRESET TAP reset via TMS
	BSDL.state Display BSDL chain configuration window
	BSDL.StepPauseDR Special DR shift
	BSDL.SToreDR Store data register to file
	BSDL.TwoStepDR Single/double data register shift
	BSDL.UNLOAD Unload a chip from chain

	BTrace
	BTrace Script-controlled trace sink

	BTrace-specific Trace Commands
	BTrace.<specific_cmds> Overview of BTrace-specific commands
	BTrace.Mode Set the trace operation mode
	BTrace.PUSH Push trace data
	BTrace.state Display BTrace configuration window

	Generic BTrace Trace Commands
	BTrace.Arm Arm the trace
	BTrace.AutoArm Arm automatically
	BTrace.AutoInit Automatic initialization
	BTrace.BookMark Set a bookmark in trace listing
	BTrace.Chart Display trace contents graphically
	BTrace.ComPare Compare trace contents
	BTrace.DISable Disable the trace
	BTrace.DRAW Plot trace data against time
	BTrace.EXPORT Export trace data for processing in other applications
	BTrace.FILE Load a file into the file trace buffer
	BTrace.Find Find specified entry in trace
	BTrace.FindAll Find all specified entries in trace
	BTrace.FindChange Search for changes in trace flow
	BTrace.GOTO Move cursor to specified trace record
	BTrace.Init Initialize trace
	BTrace.List List trace contents
	BTrace.ListNesting Analyze function nesting
	BTrace.LOAD Load trace file for offline processing
	BTrace.OFF Switch off
	BTrace.PROfileChart Profile charts
	BTrace.PROTOcol Protocol analysis
	BTrace.PROTOcol.Chart Graphic display for user-defined protocol
	BTrace.PROTOcol.Draw Graphic display for user-defined protocol
	BTrace.PROTOcol.EXPORT Export trace buffer for user-defined protocol
	BTrace.PROTOcol.Find Find in trace buffer for user-defined protocol
	BTrace.PROTOcol.list Display trace buffer for user-defined protocol
	BTrace.PROTOcol.PROfileChart Profile chart for user-defined protocol
	BTrace.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol
	BTrace.PROTOcol.STATistic Display statistics for user-defined protocol
	BTrace.REF Set reference point for time measurement
	BTrace.RESet Reset command
	BTrace.SAVE Save trace for postprocessing in TRACE32
	BTrace.SIZE Define buffer size
	BTrace.STATistic Statistic analysis
	BTrace.Timing Waveform of trace buffer
	BTrace.TRACK Set tracking record
	BTrace.View Display single record
	BTrace.ZERO Align timestamps of trace and timing analyzers

