
MANUAL

Tips to Solve NOR FLASH
Programming Problems

Tips to Solve NOR FLASH Programming Problems

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 FLASH Programming .. 

 Application Notes for FLASH .. 

 Tips to Solve NOR FLASH Programming Problems .. 1

 Introduction .. 4

 General Recommendation ... 6

 TRACE32 Error Messages ... 7

 TRACE32 Tool-based Programming .. 8

 Sources of Errors 9

 General Course of Action in the Case of Problems (Tool-based) 10

 1. Check Read Access to FLASH 11

 2. Check Write Access to FLASH 18

 3. Check the FLASH Protection 23

 4. Check the Programming of a Single Data Value 26

 5. Erase the FLASH 30

 6. Check the Programming of a Complete File 33

 Target-controlled Programming ... 34

 Sources of Errors 35

 General Course of Action in the Case of Problems (Target-controlled) 36

 1. Check Read Access to RAM 37

 2. Check Write Access to RAM 39

 3. Check if Code can be Executed in RAM 40

 4. Check if a Software Breakpoint can be Set 42

 5. Check the FLASH Programming of a Complete File 43

 Errors Caused by Wrong Usage of the TRACE32 Commands .. 47

 Unintentional Erasing of the Complete FLASH Device 47

 Multiple FLASH Devices on one Target 48

 FAQ .. 48

 Appendix A ... 49

 Conversion of the Tool-based to Target-controlled FLASH Programming 49

 Checking the Bus Configuration 50

 Main Difference between Intel and AMD/Spansion FLASH Devices 51
Tips to Solve NOR FLASH Programming Problems | 2©1989-2024 Lauterbach

 Intel FLASH Devices 52

 Switch to ID-Mode (Intel) 52

 Status Analysis (Intel) 54

 AMD/Spansion FLASH Devices 56

 Switch to ID-Mode (AMD/Spansion) 56

 Switch to CFI Mode (AMD/Spansion) 58

 The SYStem.LOG.List Command 60

 Interpretation of the SYStem.LOG.List 62

 Error Scenarios 67

 Appendix B ... 68

 FLASH Width BYTE 68

 FLASH Width WORD 69

 FLASH Width LONG 70

 FLASH Width QUAD 72
Tips to Solve NOR FLASH Programming Problems | 3©1989-2024 Lauterbach

Tips to Solve NOR FLASH Programming Problems

Version 06-Jun-2024

Introduction

The goal of this manual is to provide tips to solve problems that might arise while programming off-chip NOR
FLASHs by TRACE32.

An introduction to the FLASH programming can be found in the “Onchip/NOR FLASH Programming
User’s Guide” (norflash.pdf).

For a complete list of all FLASH programming commands refer to the FLASH command group.

Nearly all off-chip NOR FLASHs can be programmed via:

• TRACE32 tool-based FLASH programming

• target-controlled FLASH programming
Tips to Solve NOR FLASH Programming Problems | 4©1989-2024 Lauterbach

Just a few FLASH devices work only via target-controlled FLASH programming. This affects the following
FLASH devices:

• FLASHs that are connected to a PowerPC CPU in true little endian mode.

• FLASHs for which the CODE column in https://www.lauterbach.com/ylist.html shows
“TARGET”.

• FLASHs for which the COMMENT column in https://www.lauterbach.com/ylist.html shows “not
on all systems supported” may not be programmed via TRACE32 tool-based FLASH
programming for all processor architectures.

For detailed information about both FLASH programming methods please refer to the “Onchip/NOR
FLASH Programming User’s Guide” (norflash.pdf)
Tips to Solve NOR FLASH Programming Problems | 5©1989-2024 Lauterbach

https://www.lauterbach.com/ylist.html
https://www.lauterbach.com/ylist.html

General Recommendation

If you start with a new FLASH device, it is recommended to set up a script that uses TRACE32 tool-based
FLASH programming first. Errors are less likely with this method because less target resources are required.

If the script that uses TRACE32 tool-based FLASH programming runs faultless, you can almost be sure that:

• The FLASH declaration is correct.

• The bus configuration registers for the FLASH devices are set up correctly.

• The interface between the CPU and the FLASH devices on your target hardware works faultless.

• TRACE32 can erase and program the FLASH devices correctly.

After TRACE32 tool-based FLASH programming works correctly, you can convert this script to a target-
controlled FLASH programming script. This is advisable because target-controlled FLASH programming is
much faster. Refer to “Conversion of the Tool-based to Target-controlled FLASH Programming” in
Tips to Solve NOR FLASH Programming Problems, page 49 (flash_diagnosis.pdf) for details.
Tips to Solve NOR FLASH Programming Problems | 6©1989-2024 Lauterbach

TRACE32 Error Messages

One of the following error messages is displayed, when a FLASH erasing/programming error occurs:

For target-controlled FLASH programming the following error message may be displayed:

TRACE32 Error Messages

programming error Error in programming the FLASH. Proceed as described in “General
Course of Action in the Case of Problems (Tool-based)” in Tips to
Solve NOR FLASH Programming Problems, page 10
(flash_diagnosis.pdf).

erase error Error in erasing the FLASH. Proceed as described in “General Course of
Action in the Case of Problems (Tool-based)” in Tips to Solve NOR
FLASH Programming Problems, page 10 (flash_diagnosis.pdf).

bus error There is no memory at the address range declared for the FLASH.
Please check the bus configuration for the FLASH device. Refer to
“Checking the Bus Configuration” in Tips to Solve NOR FLASH
Programming Problems, page 50 (flash_diagnosis.pdf) for details.

data alignment
error

Wrong or incorrect alignment used while writing the FLASH data. It is
strongly recommended to use a format option equivalent to the
<bus_width> in the FLASH declaration for all write accesses.

FLASH.Create … Long
FLASH.Program ALL
Data.LOAD.Elf demo.elf /Long
FLASH.Program OFF

TRACE32 Error Messages

FLASH algorithm
did not execute
completely

Proceed as described in “General Course of Action in the Case of
Problems (Target-controlled)” in Tips to Solve NOR FLASH
Programming Problems, page 36 (flash_diagnosis.pdf).

Make sure that the data cache is switched off, otherwise TRACE32 can
not read/update the FLASH status registers.
Tips to Solve NOR FLASH Programming Problems | 7©1989-2024 Lauterbach

TRACE32 Tool-based Programming

If TRACE32 tool-based FLASH programming is used, the FLASH algorithm is part of the TRACE32
software and runs on the host.

TRACE32 Software

FLASH algorithm

USB

Power
Debug Module

JTAG
Connector

Target

CPU

FLASH

A
dd

re
ss

 B
us

D
at

a
B

us

C
on

tr
ol

 L
in

es

EBU

EBU=External Bus Unit

on Host
Tips to Solve NOR FLASH Programming Problems | 8©1989-2024 Lauterbach

Sources of Errors

CPU Related Errors

• Wrong or incomplete configuration of the bus configuration registers for the FLASH devices

• FLASH area is indicated as cacheable and the data cache is on (TRACE32 can not read/update
the FLASH status registers)

Errors Related to Address/Data Bus or the Control Lines

• Defect on the data bus (short circuit, broken line, soldering problem …)

• Defect on the address bus (short circuit, broken line, soldering problem …)

• Swapped address or data lines

• Defect on a control line (Chip Select, Output Enable, Write Enable)

Errors Related to the FLASH

• FLASH (sector) is locked

Errors Related to the TRACE32 FLASH Declaration

• Wrong FLASH family code

• Wrong bus width definition

Errors Related to the File that is Programmed

• The file that is programmed unintentionally overwrites peripheral configuration registers

Alignment Error

• Wrong or incorrect alignment used while writing the FLASH data. It is strongly recommended to
use a format option for all write accesses that is equivalent to the <bus_width> in the FLASH
declaration.

FLASH.Create … Long

FLASH.Program ALL

Data.LOAD.Elf demo.elf /Long

FLASH.Program OFF
Tips to Solve NOR FLASH Programming Problems | 9©1989-2024 Lauterbach

General Course of Action in the Case of Problems (Tool-based)

In case of FLASH programming problems the following course of actions is recommended:

1. Check the read access to
FLASH

2. Check the write access to
FLASH

3. Check the FLASH protection

4. Check the FLASH programming
of a single data value

5. Erase the FLASH

6. Check the FLASH programming
of a complete file
Tips to Solve NOR FLASH Programming Problems | 10©1989-2024 Lauterbach

1. Check Read Access to FLASH

In case of FLASH programming problems it is recommended to test, if TRACE32 can read the FLASH
contents. This can be checked by using the Data.dump command.

Data.dump <start_address> <bus_width> /SpotLight Display the contents of the FLASH in a
Data.dump window.

Use the start address of the FLASH
devices as <start_address>.

<bus_width> defines the data bus width
that is used to connect the FLASH devices
to the CPU.

If the option /Spotlight is used, changed
FLASH contents is highlighted.

FLASH.Program OFF ; Disable FLASH programming

Data.dump 0xA0000000 /Word /SpotLight ; Example 1

Data.dump 0x40000000 /Long /SpotLight ; Example 2

Data.dump window Clear and stable display

Unstable display
Tips to Solve NOR FLASH Programming Problems | 11©1989-2024 Lauterbach

Clear and Stable Display

Clear and stable display
of FLASH contents

Verify that there is FLASH
in the specified address range

Check for a defect on a single
data line

Check for a defect on a single
address line

Displayed memory
doesn’t seem to be
FLASH

OR
Tips to Solve NOR FLASH Programming Problems | 12©1989-2024 Lauterbach

1. Verify that the specified address range is FLASH

Here an example of how to verify if there is FLASH at the specified address range:

This test can have the following results:

If the result is No memory:

- Please check the bus configuration registers. For details refer to “Checking the Bus
Configuration” in Tips to Solve NOR FLASH Programming Problems, page 50
(flash_diagnosis.pdf).

- Please check your target for hardware problems accessing the off-chip FLASH.

If the result is RAM:

- Please check the bus configuration registers. For details refer to “Checking the Bus
Configuration” in Tips to Solve NOR FLASH Programming Problems, page 50
(flash_diagnosis.pdf).

- Please check your target design for the correct FLASH address range.

Short description and link to newly introduced command:

FLASH.Program OFF ; Disable FLASH programming

Data.TestList 0xa1000000++3fffff ; Check memory type located at
; the specified address range.
; It is recommended to specify
; the complete FLASH address
; space.

ok RAM

read only FLASH / ROM

read fail
write fail

No memory

Data.TestList <address_range> Test memory type for specified address range

The memory test stays active as long as the
Data.TestList window is displayed.
Tips to Solve NOR FLASH Programming Problems | 13©1989-2024 Lauterbach

2. Is there a defect on a single data line?

If there is a defect on a single data line, a single bit is either permanently 0 or permanently 1.

Use the Data.dump command to display the FLASH contents.

If the FLASH is empty (0xff) it is easy to check, if a single data line is permanently 0. This behavior
points to a short-circuit, a broken data line or soldering problems on your target.

If the FLASH isn’t empty, a defective data line might be visible if you look carefully to the contents of
the Data.dump window.

If a RAM is connected to the same data bus, it is possible to perform the following test for a short-
circuit on a data line by using the RAM:

Short description and link to newly introduced command:

; Display the memory contents of the RAM
Data.dump 0x0++0x1fff /Long /SpotLight

; Write a bit shifting pattern to the RAM
Data.Pattern 0x0++0x1fff /LongShift

; Test if the bit shifting pattern is written correctly to RAM
Data.Pattern 0x0++0x1fff /LongShift /Compare

Data.Pattern <range> [/<option>] Fill memory with selected pattern
Tips to Solve NOR FLASH Programming Problems | 14©1989-2024 Lauterbach

3. Is there a defect on a single address line?

A defective address line results in mirrored memory. This effect is only visible in the Data.dump
window, if the FLASH is not empty.

Mirrored address ranges can be found by the following procedure:

Please be aware, that one reason for mirrored address ranges can also be a wrong bus configuration
for the FLASH device.

&start_address=0x40000000

&flash_size=0x3fffff

; display a hex dump
Data.dump &start_address /Long

; store the contents of the first four 32-bit values into PRACTICE
; variables to build a test pattern
&v1=Data.Long(D:&start_address)

&v2=Data.Long(D:&start_address+0x4)

&v3=Data.Long(D:&start_address+0x8)

&v4=Data.Long(D:&start_address+0xc)

; search for the test pattern in the FLASH
Data.Find (&start_address+0x10)++&flash_size %Long &v1 &v2 &v3 &v4

IF FOUND()

; if the test pattern is found in the FLASH, lock carefully to
; the Data.dump window to check if this is a result of mirrored
; address ranges
Data.dump TRACK.ADDRESS() /Long

ENDDO

Mirrored address range
Tips to Solve NOR FLASH Programming Problems | 15©1989-2024 Lauterbach

Short description and link to newly introduced command:

Data.Find <range> %<format> <test_pattern> FOUND() returns true if the <test_pattern>
was found
TRACK.ADDRESS() returns the address
at which the <test_pattern> was found
Tips to Solve NOR FLASH Programming Problems | 16©1989-2024 Lauterbach

Unstable Display

1. Check the bus configuration registers

For details refer to “Checking the Bus Configuration” in Tips to Solve NOR FLASH Programming
Problems, page 50 (flash_diagnosis.pdf).

If only some bits are toggling, this leads to the assumption, that the timing for the FLASH is not set up
correctly. In most cases it is sufficient to increase the number of waits states for the memory access
by 1.

2. Check your target hardware

Keep the Data.dump window open. This way the FLASH memory contents is read 10 times/s.
Please measure the following lines:

Measure if the Chip Select line becomes active, if the FLASH is accessed.

Measure if the Output Enable line becomes active, if the FLASH contents is read.

Unstable Display Check bus configuration registers

Check CS and OE line
Tips to Solve NOR FLASH Programming Problems | 17©1989-2024 Lauterbach

2. Check Write Access to FLASH

A simple way to check if TRACE32 has write access to the FLASH is to switch the FLASH into ID-mode
(Autoselect Mode for AMD/Spansion devices, Read Identifier Mode for Intel devices).

In ID-mode the following information is provided:

• Manufacturer identification

• Device identification

• Sector protection information if available

Intel FLASH Devices

The procedure to switch to ID-mode is described in “Switch to ID-Mode (Intel)” in Tips to Solve NOR
FLASH Programming Problems, page 52 (flash_diagnosis.pdf).

Alternative test procedures:

• Try to read the FLASH status and reset the status registers. For details refer to “Status Analysis
(Intel)” in Tips to Solve NOR FLASH Programming Problems, page 54 (flash_diagnosis.pdf).
Reading the FLASH status requires less correctly operating address and data lines, but this check is
sufficient to test the write access.

AMD/Spansion FLASH Devices

The procedure to switch to ID-mode is described in “Switch to ID-Mode (AMD/Spansion)” in Tips to Solve
NOR FLASH Programming Problems, page 56 (flash_diagnosis.pdf).

Alternative test procedures:

• Try to switch to CFI mode for Intel/AMD FLASH devices, if CFI mode is supported by your FLASH
device. For details refer to “Switch to CFI Mode (AMD/Spansion)” in Tips to Solve NOR FLASH
Programming Problems, page 58 (flash_diagnosis.pdf). Switching to CFI mode requires less
correctly operating address and data lines, but this check is sufficient to test the write access.
Tips to Solve NOR FLASH Programming Problems | 18©1989-2024 Lauterbach

Switching to ID-Mode is not possible

If switching to ID mode is not possible, the write access to FLASH doesn’t seem to work.

1. Check the bus configuration register

For details refer to “Checking the Bus Configuration” in Tips to Solve NOR FLASH Programming
Problems, page 50 (flash_diagnosis.pdf).

2. Check your target hardware

Please check the WE, OE and CS line on your target hardware.

Swapped or defect address/data lines can prohibit that the FLASH is switched to ID mode.

Switching to ID-mode is
not possible

Check the bus configuration register,

Check the Write Enable line (WE)

start with the write access to FLASH

Check for swapped or defective
address/data lines
(mainly AMD/Spansion FLASH)

Go to step 1:
Check the read access to FLASH
Tips to Solve NOR FLASH Programming Problems | 19©1989-2024 Lauterbach

The Manufacturer Identification or the Device Identifier is wrong

1. Is there a defect on an address line?

A defective address line results in mirrored memory. This effect is only visible in the Data.dump
window, if the FLASH is not empty.

The manufacturer ID or
the device ID is wrong

Check the bus configuration registers

Check for swapped or defective
address lines

Go to step 1:
Check the read access to FLASH

Mirrored address range
Tips to Solve NOR FLASH Programming Problems | 20©1989-2024 Lauterbach

Mirrored address ranges can be found by the following procedure:

Please be aware, that one reason for mirrored address ranges can also be a wrong bus configuration
for the FLASH device.

For swapped address lines please check your schematics or measure each address line on your
target.

Short description and link to newly introduced command:

&start_address=0x40000000

&flash_size=0x3fffff

; display a hex dump
Data.dump &start_address /Long

; store the contents of the first four 32-bit values into PRACTICE
; variables to build a test pattern
&v1=Data.Long(D:&start_address)

&v2=Data.Long(D:&start_address+0x4)

&v3=Data.Long(D:&start_address+0x8)

&v4=Data.Long(D:&start_address+0xc)

; search for the test pattern in the FLASH
Data.Find (&start_address+0x10)++&flash_size %Long &v1 &v2 &v3 &v4

IF FOUND()

; if the test pattern is found in the FLASH, lock carefully to
; the Data.dump window to check if this is a result of mirrored
; address ranges
Data.dump TRACK.ADDRESS() /Long

ENDDO

Data.Find <range> %<format> <test_pattern> FOUND() returns true if the <test_pattern>
was found.
TRACK.ADDRESS() returns the address
at which the <test_pattern> was found.
Tips to Solve NOR FLASH Programming Problems | 21©1989-2024 Lauterbach

2. Check the bus configuration registers

For details refer to “Checking the Bus Configuration” in Tips to Solve NOR FLASH Programming
Problems, page 50 (flash_diagnosis.pdf).
Tips to Solve NOR FLASH Programming Problems | 22©1989-2024 Lauterbach

3. Check the FLASH Protection

The FLASH protection can be checked, if the FLASH is in ID-Mode. For a detailed description on how to
switch the FLASH to ID-mode, refer to “2. Check Write Access to FLASH” in Tips to Solve NOR FLASH
Programming Problems, page 18 (flash_diagnosis.pdf).

E.g ID information for Intel 28F128W18T:

1st word:
Manufacturer ID

0x89 (Intel)

2nd word:
Device ID

0x8866 (28F128W18T as bottom boot block device)

3rd word:
Sector protection

0x1 (sector locked)

Sector Protection Information

0x0 Sector is not locked

0x1 Sector is locked

any other value Please refer to the data sheet for your FLASH device
Tips to Solve NOR FLASH Programming Problems | 23©1989-2024 Lauterbach

FLASH Sector is protected

Some FLASH devices are locked after power-up. Refer to the data sheet for your FLASH device for details. If
your FLASH device is locked after power-up, the following command sequence is recommended:

FLASH.UNLOCK <unit> | <range> | ALL Unlock FLASH

FLASH.UNLOCK ALL

FLASH.UNLOCK 0xa0000000++0xfffff

… ; Configure your CPU

SYStem.Up ; Establish the communication
; between TRACE32 and the CPU

… ; Configure the bus configuration
; registers

FLASH.Create … ; Declare your FLASH

FLASH.UNLOCK ALL ; Remove the FLASH protection

FLASH sector is
protected

Use FLASH.UNLOCK command to
remove the protection
Tips to Solve NOR FLASH Programming Problems | 24©1989-2024 Lauterbach

FLASH devices behave differently when removing the protection.

• Each FLASH sector has to be unlocked separately. In this case the command
FLASH.UNLOCK ALL is recommended if the complete FLASH device should be unprotected.

If the block address (BA) is required to unlock the FLASH, each sector has to be unlocked
separately.

• Each unlock takes effect on the complete FLASH device. In this case the command
FLASH.UNLOCK <range_of_first_sector> is more effective, since it performs much faster.

If the block address (BA) isn’t required to unlock the FLASH, all sectors are unlocked in one step.

For details refer to the data sheet of your FLASH device.

Please use the command FLASH.LOCK if you want to enable the sector protection after the FLASH is
programmed.

Locking the FLASH is always performed sector-wise.

FLASH.LOCK <unit> | <range> | ALL Lock FLASH
Tips to Solve NOR FLASH Programming Problems | 25©1989-2024 Lauterbach

4. Check the Programming of a Single Data Value

Here a short example to program a single data value to FLASH.

; Search for empty FLASH cell
Data.Find 0x0++0xfffff %Long 0xffffffff

; Display empty cell
Data.dump TRACK.ADDRESS() /SpotLight

; Enable FLASH programming
FLASH.Program ALL

; Write new data value to empty FLASH cell
Data.Set TRACK.ADDRESS() %Long 0x01234567

; Disable FLASH programming
FLASH.Program OFF

Data.Find <range> %<format> <test_pattern> FOUND() returns true if the <test_pattern> was
found.
TRACK.ADDRESS() returns the address at
which the <test_pattern> was found.
Tips to Solve NOR FLASH Programming Problems | 26©1989-2024 Lauterbach

Programming of a Single Data Value is not Possible

Programming of a single
data value is not possible

Wrong FLASH declaration
in TRACE32 (mainly AMD/Spansion)

Defective or swapped data lines

Go to step 2
Check the write access to FLASH

Go to step 3
Check the FLASH protection
Tips to Solve NOR FLASH Programming Problems | 27©1989-2024 Lauterbach

1. Log all read/write accesses that are performed by TRACE32 to write a single data value

If you succeeded to switch the FLASH to ID mode by using the Data.Set commands described in
“Switch to ID-Mode (AMD/Spansion)” in Tips to Solve NOR FLASH Programming Problems, page
56 (flash_diagnosis.pdf), perform the following test sequence:

An introduction on how to analyze the logging of the TRACE32 read/write accesses is given in
“Interpretation of the SYStem.LOG.List” in Tips to Solve NOR FLASH Programming Problems,
page 62 (flash_diagnosis.pdf).

Compare the command register addresses used by TRACE32 with the command register addresses
you used to switch to ID-mode. Differences in the command register addresses lead to the
assumption that a wrong <family_code> or a wrong <bus_width> is used in the TRACE32 FLASH
declaration.

Differences in the endianness used for the data values lead to the assumption that the FLASH is
connected to your PowerPC CPU in true little endian mode. In this case only target-controlled FLASH
programming can be used.

WinClear

SYStem.LOG.List

FLASH.Program ALL

; Search for empty FLASH cell
Data.Find 0x++0xfffff %Long 0xffffffff

; Write single data value for empty FLASH cell
Data.Set TRACK.ADDRESS() %Long 0x01234567

FLASH.Program OFF

Data.Find <range> %<format> <test_pattern> FOUND() returns true if the <test_pattern>
was found.
TRACK.ADDRESS() returns the address
at which the <test_pattern> was found.
Tips to Solve NOR FLASH Programming Problems | 28©1989-2024 Lauterbach

2. Is there a defect on a single data line?

To test for a defective data line, write a test pattern to the FLASH.

In case of an error, check your target hardware for a defective data line.

WinClear

FLASH.Program ALL

; Search for an empty FLASH cell
Data.Find 0x++0xfffff %Long 0xffffffff

; Write test pattern 1
Data.Set TRACK.ADDRESS() %Long 0x55555555

; Check the result
Data.Print TRACK.ADDRESS() %Long

; Search for the next empty FLASH cell
Data.Find

; Write test pattern 2
Data.Set TRACK.ADDRESS() %Long 0xaaaaaaaa

; Check the result
Data.Print TRACK.ADDRESS() %Long

FLASH.Program OFF

Data.Find <range> %<format> <test_pattern> Repeat search by using Data.Find without
any parameters.

FOUND() returns true if the <test_pattern>
was found.
TRACK.ADDRESS() returns the address
at which the <test_pattern> was found.
Tips to Solve NOR FLASH Programming Problems | 29©1989-2024 Lauterbach

5. Erase the FLASH

Before you try to erase the complete FLASH it is recommended to test if a single FLASH sector can be
erased.

Check the protection for a selected FLASH sector as described in “3. Check the FLASH Protection” in
Tips to Solve NOR FLASH Programming Problems, page 23 (flash_diagnosis.pdf). Use the following
command to erase this single sector.

1. Read the Status Registers for Intel FLASH devices.

Refer to “Status Analysis (Intel)” in Tips to Solve NOR FLASH Programming Problems, page 54
(flash_diagnosis.pdf) for details.

2. Use the SYStem.LOG.List window to check the correct FLASH declaration.

3. Use the SYStem.LOG.List window to check if the data cache is on.

Both test are described in “Interpretation of the SYStem.LOG.List”, page 62.

If TRACE32 is able to erase a single sector, you can be sure that TRACE32 can erase the complete FLASH.

FLASH.Erase <range> Erase the contents of the specified address range

FLASH.Erase 0x0--0xfffff

Please be aware that TRACE32 doesn’t detect any problem in erasing a FLASH
sector, if the FLASH sector is already empty.

FLASH sector can´t
be erased

Wrong FLASH declaration
in TRACE32 (mainly AMD/Spansion)

Data cache is on
(AMD/Spansion)
Tips to Solve NOR FLASH Programming Problems | 30©1989-2024 Lauterbach

Errors that occur now when you try to erase several sectors or the complete FLASH can be isolated as a
sector protection problem.

Please be aware that a bulk erase/chip erase command is used to erase the
FLASH device if

• bulk erase/chip erase is supported by the FLASH device
• and if one of the following commands is used to erase the FLASH

FLASH.Erase ALL
FLASH.Erase <unit_number>
FLASH.Erase <range>, when the <range> covers the complete address
range declared for a <unit_number>

For details refer also to “Unintentional Erasing of the Complete FLASH
Device” in Tips to Solve NOR FLASH Programming Problems, page 47
(flash_diagnosis.pdf).
Tips to Solve NOR FLASH Programming Problems | 31©1989-2024 Lauterbach

An Erase Error is Generated

Refer to “3. Check the FLASH Protection” in Tips to Solve NOR FLASH Programming Problems, page 23
(flash_diagnosis.pdf) in both cases.

FLASH erase error Use the FLASH.UNLOCK command
to remove the sector protection

Check the protection for each FLASH
sector
Tips to Solve NOR FLASH Programming Problems | 32©1989-2024 Lauterbach

6. Check the Programming of a Complete File

Unintended Overwrite of Peripheral Configuration Registers

At this point it makes only sense to check if the file you want to program into FLASH unintentionally
overwrites peripheral configuration registers.

Here an example, that shows you how to check if your file unintentionally overwrites important configuration
registers.

Please make sure, that the file is solely downloaded to the address ranges of the FLASH.

If your file overwrites peripheral configuration registers, please check your map file or continue as follows:

Short description and link to newly introduced command:

Data.LOAD.Elf demo.elf /VM ; Download the file to the virtual
; memory

sYmbol.List.Map ; Display the load order and the
; address ranges to which the file
; was downloaded

FLASH.Program ALL ; Enable FLASH programming

Data.LOAD.Elf demo.elf 0xc00000++0x1ffff ; Load file to FLASH address
; ranges

FLASH.Program OFF ; Disable FLASH programming

sYmbol.List.MAP Display to which address ranges in the memory a file was downloaded.
Tips to Solve NOR FLASH Programming Problems | 33©1989-2024 Lauterbach

Target-controlled Programming

If target-controlled FLASH programming is used, the FLASH algorithm is downloaded to the target RAM and
is executed there.

The fact that the FLASH algorithm is downloaded to the target RAM and is executed there adds new
requirements:

1. Read and write access to the target RAM by TRACE32

2. Execution of the downloaded FLASH algorithm on the target RAM

3. Setting of software breakpoints to target RAM

TRACE32 Software

USB

Power
Debug Module

JTAG
Connector

Target CPU

RAM

Address Bus

Data Bus

Control Lines

EBU

EBU=External Bus Unit

FLASH

FLASH algorithm
program range

FLASH algorithm
data range

on Host
Tips to Solve NOR FLASH Programming Problems | 34©1989-2024 Lauterbach

Sources of Errors

CPU Related Errors

• Wrong or incomplete configuration of the bus configuration registers for the RAM

Errors Related to the RAM

• Wrong or incomplete SDRAM initialization

• Missing ECC initialization for the RAM

Watchdog Problems

• The FLASH programming algorithm doesn’t serve any active watchdog. An active watchdog
results in an abort of the FLASH programming algorithm.

Errors Related to the File that is Programmed

• The file that is programmed unintentionally overwrites the FLASH algorithm

Address Range for FLASH Algorithm is to Small

• The data of the FLASH algorithm unintentionally overwrite the FLASH algorithm
Tips to Solve NOR FLASH Programming Problems | 35©1989-2024 Lauterbach

General Course of Action in the Case of Problems (Target-controlled)

After you defined both, the code range for the FLASH algorithm and the data range for the FLASH algorithm,
the following course of action is recommended:

1. Check the read access to
RAM

2. Check the write access to
RAM

3. Check if code can be executed

4. Check if a software breakpoint
can be set to the code in RAM

5. Check the FLASH programming
of a complete file

in RAM
Tips to Solve NOR FLASH Programming Problems | 36©1989-2024 Lauterbach

1. Check Read Access to RAM

To check if TRACE32 can read the RAM use the Data.dump command. It is recommended to perform all
test either on the program or on the data range defined for the FLASH algorithm.

Clear and Stable Display

Verify that the address range required for the FLASH algorithm and its data is RAM

If the result is read fail or write fail, please check the bus configuration registers for the RAM and the
RAM initialization.

Since TRACE32 tool-based FLASH programming runs faultless, you can almost be sure that the address
bus, the data bus and the control lines are working correctly.

Data.dump <start_address> <bus_width> /SpotLight

Data.dump 0x1000 /Long /SpotLight

Data.TestList <address_range> Test memory type for specified address range

Data.TestList 0x1000++0x2fff

Clear and stable display
of RAM contents

Verify that there is RAM
in the specified address range

Displayed memory
doesn’t seem to be
RAM

OR
Tips to Solve NOR FLASH Programming Problems | 37©1989-2024 Lauterbach

Unstable Display

Unstable Display Check bus configuration registers for
the RAM
Tips to Solve NOR FLASH Programming Problems | 38©1989-2024 Lauterbach

2. Check Write Access to RAM

To test the write access to RAM, use the following command:

Example:

If TRACE32 can not write to RAM, check the bus configuration registers.

Data.Pattern <range> [/<option>] Fill memory with selected pattern

; Display the memory contents of the RAM
Data.dump 0x1000 /Long /SpotLight

; Write a bit shifting pattern to the RAM
Data.Pattern 0x1000++0x2fff /LongShift

; Test if the bit shifting pattern is written correctly to RAM
Data.Pattern 0x1000++0x2fff /LongShift /Compare
Tips to Solve NOR FLASH Programming Problems | 39©1989-2024 Lauterbach

3. Check if Code can be Executed in RAM

To check, if code can be executed use the following command to write a small test program into RAM.

Example:

Data.Assemble <address> <mnemonic> Assemble the mnemonic to RAM

Data.Assemble 0x1000 b 0x1000 ; b 0x1000 prevents that test
; program is unintentionally
; re-entered after a TRAP or
; interrupt

Data.Assemble 0x1002 mov r0,#1 ; Start of test program

Data.Assemble 0x1004 mov r1,#2

Data.Assemble 0x1006 add r2,r1,r0

Data.Assemble 0x1008 b 0x1002
Tips to Solve NOR FLASH Programming Problems | 40©1989-2024 Lauterbach

Set the Program Counter/Instruction Pointer to the start address of your test program and perform a few
single steps.

Set the Program Counter/Instruction Pointer to the start address of your test program. Start the program
execution, let it run for a few seconds and stop it again. With this test you can check if an active watchdog will
cause problems for the target-controlled FLASH algorithm.

Please check carefully, if the program execution is stopped within your test program. If this is not case this
leads to the assumption, that the watchdog on your target needs to be deactivated.

Register.Set pc 0x1002

Step

Step

Register.Set pc 0x1002

Go

; WAIT 10.s can be used only in scripts

Break
Tips to Solve NOR FLASH Programming Problems | 41©1989-2024 Lauterbach

4. Check if a Software Breakpoint can be Set

Check if a software breakpoint can be set to your small test program.

Example:

Break.Set <address> /Program /SOFT Set a software breakpoint to an instruction

Break.Set 0x1004 /Program /SOFT

Go
Tips to Solve NOR FLASH Programming Problems | 42©1989-2024 Lauterbach

5. Check the FLASH Programming of a Complete File

Programming of File Failed

FLASH.Create … TARGET … ; Declare your FLASH

FLASH.TARGET …

FLASH.Erase ; Erase the FLASH contents

FLASH.Program ALL ; Enable FLASH programming

Data.LOAD.Elf demo.elf ; Load file to FLASH address ranges

FLASH.Program OFF ; Disable FLASH programming

Data.LOAD.Elf demo.elf /Compare

Programming of file
failed

Check for unintended overwrite of
FLASH algorithm by the fileFLASH algorithm by the file

Check for unintended overwrite of
peripheral configuration registers by
the file

Check for unintended overwrite of
FLASH algorithm by FLASH algorithm
data

Wrong FLASH algorithm is used
(wrong bus width or wrong endianness)
Tips to Solve NOR FLASH Programming Problems | 43©1989-2024 Lauterbach

1. Does the file that is programmed to the FLASH unintentionally overwrite important
configuration registers or parts of the FLASH programming algorithm?

Here an example, that shows you how to check if your file unintentionally overwrites important
configuration registers or parts of the FLASH programming algorithm.

Please make sure, that the file is solely downloaded to the address ranges of the FLASH.

If you also want to download some program parts to RAM, please proceed as follows:

Short description and link to newly introduced command:

Data.LOAD.Elf demo.elf /VM ; Download the file to the virtual
; memory

sYmbol.List.Map ; Display the load order and the
; address ranges to which the file
; was downloaded

FLASH.Program ALL ; Enable FLASH
; programming

Data.LOAD.Elf demo.elf 0xc00000++0x1ffff ; Load file to FLASH
; address ranges

FLASH.Program OFF ; Disable FLASH
; programming

Data.LOAD.Elf demo.elf 0xe00000++0x7ff ; Load file to the RAM
; address ranges

sYmbol.List.MAP Display to which address ranges in memory a file was downloaded.
Tips to Solve NOR FLASH Programming Problems | 44©1989-2024 Lauterbach

2. Do the data of the FLASH programming algorithm unintentionally overwrite the FLASH
algorithm?

Please make sure, that you reserve enough target RAM for the FLASH programming algorithm. The
required size for the FLASH algorithm is calculated as follows:

Required size for the code is size_of(<flash_algorithm>) + 32 byte

The required size for the data of the FLASH algorithm is calculated as follows:

<buffer_size> =
size_of(<data_range>) - 32 byte argument buffer - 256 byte stack

<buffer_size> is the maximum number of bytes that are transferred from the TRACE32
software to the external FLASH programming algorithm in one step.

Details on the memory mapping for the FLASH algorithm can be found in the “Onchip/NOR FLASH
Programming User’s Guide” (norflash.pdf).

RAM

FLASH algorithm
program range

FLASH algorithm
data range

The FLASH algorithm data overlay
the FLASH algorithm program range

FLASH algorithm

Figure: Memory mapping for the <code_range>

32 byte

32 byte argument buffer

Figure: Memory mapping for the <data_range>

buffer for programming data

256 byte stack
Tips to Solve NOR FLASH Programming Problems | 45©1989-2024 Lauterbach

3. Check if the Correct FLASH Algorithm is used.

To check if the correct FLASH algorithm is used, use the following commands:

The command FLASH.Program ALL loads the FLASH algorithm to the target RAM and set the
program counter/instruction pointer correctly. Please look carefully to the code displayed in the
Data.List window. If the code displayed there doesn’t seem to be the code at the beginning of a
function, check if you use the FLASH algorithm from the correct directory.

FLASH.Create … TARGET … ; FLASH declaration

FLASH.TARGET …

…

FLASH.Program ALL

Data.List

Ready-to-run binary files for target-controlled FLASH programming are
available for the most common architectures in the TRACE32 demo
folder under:
~~/demo/<architecture>/flash

The FLASH algorithms are organized by <bus_width> and by
<endianness>.

<bus_width>_be stands for FLASH support for big endian mode.
<bus_width>_le stands for FLASH support for little endian mode.

If your processor architecture has a preferred endianness, this
<endianness> is left out and only the <bus_width> is listed.

Example: the preferred <endianness> for the ARM architecture is little
endian mode.
~~/demo/arm/flash/long

; algorithms for little endian
~~/demo/arm/flash/long_be

; algorithms for big endian

If your FLASH is connected in true little endian mode to your PowerPC
CPU, please use the FLASH algorithm from the directory
~~/demo/powerpc/flash/<bus_width>_tle
Tips to Solve NOR FLASH Programming Problems | 46©1989-2024 Lauterbach

Errors Caused by Wrong Usage of the TRACE32 Commands

Unintentional Erasing of the Complete FLASH Device

Here an example:

TRACE32 FLASH declaration:

The following command will erase the complete FLASH (0xa2000000--0xa21fffff):

Please be aware that a bulk erase/chip erase command is used to erase the
FLASH device if
• bulk erase/chip erase is supported by the FLASH device
• and if one of the following commands is used to erase the FLASH

FLASH.Erase ALL
FLASH.Erase <unit_number>
FLASH.Erase <range>, when the <range> covers the complete address
range declared for a <unit_number>

FLASH typ S29CD016, chip erase possible

FLASH start address 0xa2000000

FLASH sectors 8 x 8 KByte (0x2000)
30 (0x1E) x 64 KByte (0x10000)
8 x 8 KByte (0x2000)

; FLASH declarations for the top boot sectors only
FLASH.Create 1. 0xa2000000--0xa200ffff 0x2000 AM29BDD Long

; FLASH.Create 1. 0xa2010000--0xa21effff 0x10000 AM29BDD Long

; FLASH.Create 1. 0xa21f0000--0xa21fffff 0x2000 AM29BDD Long

FLASH.List

FLASH.Erase ALL

FLASH.Erase 1.

FLASH.Erase 0xa2000000--0xa200ffff
Tips to Solve NOR FLASH Programming Problems | 47©1989-2024 Lauterbach

Multiple FLASH Devices on one Target

TRACE32 can handle only a single FLASH algorithm for target-controlled FLASH programming. This
applies for both on-chip FLASH and off-chip FLASH devices.

The FLASH algorithm defined with the last FLASH.TARGET command is always the valid one.

If you have multiple FLASH devices on your target they require different FLASH algorithms, proceed as
follows:

FAQ

Please refer to https://support.lauterbach.com/kb.

FLASH.Create 1. … TARGET … ; Declaration for first FLASH device

…

FLASH.Create 2. … TARGET … ; Declaration for second FLASH device

…

FLASH.TARGET … am29lv100.bin ; Declare target algorithm for FLASH
; device with <unit_number> 1.

FLASH.Erase 1.

FLASH.Program 1.

Data.Load <file1>

FLASH.Program OFF

FLASH.TARGET … i28f200b.bin ; Declare target algorithm for FLASH
; device with <unit_number> 2.

FLASH.Erase 2.

FLASH.Program 2.

Data.Load <file2>

FLASH.Program OFF
Tips to Solve NOR FLASH Programming Problems | 48©1989-2024 Lauterbach

https://support.lauterbach.com/kb

Appendix A

Conversion of the Tool-based to Target-controlled FLASH Programming

Conversion from TRACE32 tool-based FLASH declaration to target-controlled FLASH declaration:

1. Replace the <family_code> by the keyword TARGET when using the FLASH.Create
command.

2. Use the FLASH.TARGET command to specify the <code_address>, <data_address>,
<buffer_size> and the <flash_algorithm>. Please remember to use the FLASH algorithm from
the directory with the adequate <bus_width> and the correct <endianness>. The name of
<flash_algorithm> matches with the <family_code>.

After the declarations for the FLASH devices are done, all other commands of the command group FLASH
apply to both programming methods.

For details, refer to the “Onchip/NOR FLASH Programming User’s Guide” (norflash.pdf).

&FLASH_PROGRAMMING_METHOD="TRACE32 tool-based"
; &FLASH_PROGRAMMING_METHOD="target-controlled"

FLASH.RESet
IF "&FLASH_PROGRAMMING_METHOD"=="TRACE32 tool-based"
(
; FLASH.Create <unit_number> <physical_range> <sector_size> <family_code> <bus_witdth>

FLASH.Create 1. 0x40000000++0x3fffff 0x20000 I28F200B Long
)
IF "&FLASH_PROGRAMMING_METHOD"=="target-controlled"
(

; FLASH.Create <unit_number> <physical_range> <sector_size> TARGET <bus_witdth>

FLASH.Create 1. 0x40000000++0x3fffff 0x20000 TARGET Long

; FLASH.Target <code_address> <data_address> <buffer_size> <flash_algorithm>

FLASH.TARGET 0x0 0x1000 0x1000 ~~/demo/arm/flash/long_be/i28f200b.bin
)

Tips to Solve NOR FLASH Programming Problems | 49©1989-2024 Lauterbach

Checking the Bus Configuration

Correct settings in the bus configuration registers are key for the FLASH programming. The following
settings in the bus configuration are of importance:

• The base address for the FLASH devices

• The size of the FLASH devices

• The bus size that is used to access the FLASH devices

If several FLASH devices are used in parallel to realize the required <bus_width> between the
processor and the FLASH memory, make sure that the <bus_width> is configured correctly

• The timing (number of wait states for the access to the FLASH devices)

• The write access has to be enabled for the FLASH devices

Use the PER.view command to check the settings in the bus configuration registers:
Tips to Solve NOR FLASH Programming Problems | 50©1989-2024 Lauterbach

Main Difference between Intel and AMD/Spansion FLASH Devices

Intel FLASH Devices

Commands are executed on Intel FLASH devices by writing a specified data value to any FLASH address.

AMD/Spansion FLASH Devices

Commands are executed on AMD/Spansion FLASH devices by writing a command sequence to the
command registers of the FLASH.

Example: Switch an AM29BDD with <bus_width> long to ID mode.

Data.Set 0xa0000000 %Long 0x90909090 ; Switch the FLASH device to ID
; mode

Data.Set 0xa0000000 %Long 0x70707070 ; Read FLASH status registers

Data.Set 0xa0000000 %Long 0x50505050 ; Reset FLASH status register

Data.Set 0xa0001554 %Long 0xaa

Data.Set 0xa000aa8 %Long 0x55

Data.Set 0xa0001554 %Long 0x90
Tips to Solve NOR FLASH Programming Problems | 51©1989-2024 Lauterbach

Intel FLASH Devices

Switch to ID-Mode (Intel)

INTEL FLASH devices are switched to ID mode by writing 0x90 to any address of the FLASH address
range.

INTEL FLASH devices are switched back to Read Mode by writing 0xff to any address of the FLASH
address range.

Example for FLASH device M58BW016BB from ST Microelectronics. The FLASH device is connected to the
CPU via a 32 bit data bus.

ID information:

Data.Set <start_address_of_flash> <bus_width> 0x90

Data.Set <start_address_of_flash> <bus_width> 0xff

Data.Dump 0xa0000000 /Long /NoAscii ; Display the ID mode
; information

Data.Set 0xa0000000 %Long 0x90 ; Switch the FLASH device to ID
; mode

Manufacturer ID 0x20 (ST Microelectronics)

Device ID 0x8835 (FLASH device M58BW016BB as bottom boot block device)
Tips to Solve NOR FLASH Programming Problems | 52©1989-2024 Lauterbach

The ID information is either displayed:

• always at the beginning of each FLASH sector

• repetitive in each FLASH sector (see example above), the repetition rate depends on the FLASH
device

Data.Set 0xa0000000 %Long 0xff ; Switch the FLASH back to Read
; Mode
Tips to Solve NOR FLASH Programming Problems | 53©1989-2024 Lauterbach

Status Analysis (Intel)

Intel FLASH devices can be switched to Read Status Register mode by writing 0x70 to any address of the
FLASH.

Any other value then 0x80 indicates an error. For a description of the error codes refer to the data sheet of
your FLASH device.

Data.Set <start_address_of_flash> <bus_width> 0x70

Data.Set 0xa0000000 %Long 0x70

Data.dump 0xa0000000 /Long
Tips to Solve NOR FLASH Programming Problems | 54©1989-2024 Lauterbach

Writing 0x50 to any address clears the status registers.

Writing 0xff to any address switches the FLASH device back to Read Mode.

Data.dump 0xa0000000 /Long /SpotLight

Data.Set 0xa0000000 %Long 0x50

Data.Set 0xa0000000 %Long 0xff
Tips to Solve NOR FLASH Programming Problems | 55©1989-2024 Lauterbach

AMD/Spansion FLASH Devices

Switch to ID-Mode (AMD/Spansion)

Switching to ID-mode is done by writing a specific command sequence to the command registers of the
FLASH device.

To switch an AMD/Spansion FLASH device via TRACE32 to ID-mode, the following 3 commands have to be
used:

<addra>, <addrb> and <valuex> depend on the FLASH device type and can be referenced from “Appendix
B”, page 68.

Example for 2 AM29BL162C (16-bit mode) in parallel to realize a 32-bit bus.

ID information:

Data.Set <start_address_of_flash>+<addra> <bus_width> <value1>

Data.Set <start_address_of_flash>+<addrb> <bus_width> <value2>

Data.Set <start_address_of_flash>+<addra> <bus_width> <value3>

Data.Set <start_address_of_flash>+0x1554 %Long 0x00aa00aa

Data.Set <start_address_of_flash>+0xaa8 %Long 0x00550055

Data.Set <start_address_of_flash>+0x1554 %Long 0x00900090

Manufacturer ID 0x01 (AMD)

Device ID 0x2203 (FLASH device AM29BL162C as bottom boot block device)

Sector protection
information

0 (Sector unlocked)
Tips to Solve NOR FLASH Programming Problems | 56©1989-2024 Lauterbach

The ID information is either displayed:

• always at the beginning of each FLASH sector

• repetitive in each FLASH sector (see example above), the repetition rate depends on the FLASH
device

Data.Set <start_address_of_flash> <bus_width> 0xf0 Switch the FLASH back to Read Mode

Data.Set <start_address_of_flash> %Long 0xf0f0f0f0

If switching to ID-mode for an AMD/Spansion device can be done and if the
manufacturer-id and the device-id is displayed correctly, you can almost be sure
that the data bus is working properly.
Tips to Solve NOR FLASH Programming Problems | 57©1989-2024 Lauterbach

Switch to CFI Mode (AMD/Spansion)

To switch an AMD/Spansion FLASH device via TRACE32 to CFI-mode, the following command has to be
used:

In the example above 2 16 bit FLASH devices are used in parallel to realize a 32 bit bus. For this reason

is displayed at address 0xa0000040.

Please be aware, that the memory display of QRY will vary depending on:

• the data width of the FLASH device

• the number of parallel FLASH devices

The address 0xa0000040 is also just an example.

Data.Set <start_address_of_flash>+<addra> <bus_width> 0x98

Data.dump <start_address_of_flash> /Long /SpotLight

Data.Set <start_address_of_flash>+0x1554 %Long 0x98989898

0x00510051 Q

0x00520052 R

0x00590059 Y

The letters Q R Y indicate, that
the FLASH is in CFI mode
Tips to Solve NOR FLASH Programming Problems | 58©1989-2024 Lauterbach

Status Analysis (AMD/Spansion)

The operations on AMD/Spansion FLASH devices (e.g. erasing, programming) are initiated by writing a
command sequence to the command registers. Since these write accesses are performed by TRACE32,
they are not visible to the user by default.

The TRACE32 SYStem.LOG.List window provides now the possibility to log all read and write accesses
performed by TRACE32 in order to get full visibility. To restrict the logging to the read/write accesses to the
FLASH device, it is recommended to close all TRACE32 windows, that display memory.

By using the SYStem.LOG.List window, you can check the following:

1. Does TRACE32 use the correct addresses for the FLASH command registers?

Wrong command register addresses lead to the assumption, that the wrong <family_code> or the
wrong <bus_width> is used in the TRACE32 FLASH declaration.

2. Does TRACE32 write the required data values in the correct endianness to the command
registers?

Differences in the endianness used for the data values lead to the assumption that the FLASH is
connected to your PowerPC CPU in true little endian mode. In this case only target-controlled FLASH
programming can be used.

3. Can TRACE32 read the FLASH status correctly?

If TRACE32 is unable to read the FLASH status, this leads to the assumption, that the data cache is
on.
Tips to Solve NOR FLASH Programming Problems | 59©1989-2024 Lauterbach

The SYStem.LOG.List Command

The former Data.LOG command is now called SYStem.LOG.List.

Example for TRACE32 screen based logging:

By default the SYStem.LOG.List window can log up to 256 read/write accesses. To log more read/write
accesses, define the required size.

SYStem.LOG.List <size> <file> Log all read/write accesses performed by TRACE32.
For support purposes it is possible to save the logging to a
file.

WinCLEAR ; Close all TRACE32 windows

SYStem.LOG.List ; Open a data log window

… ; Perform your test sequence

WinCLEAR ; Close all TRACE32 windows

SYStem.LOG.List 1000. ; Open a data log window

… ; Perform your test sequence
Tips to Solve NOR FLASH Programming Problems | 60©1989-2024 Lauterbach

An unlimited number of read/write accesses can be logged, if the logging is redirected to a file.

Example:

If the read/write accesses performed by TRACE32 are logged into a file, they are converted to Data.Set
commands. This way it is possible to re-run the log with a TRACE32 Instruction Set Simulator.

WinCLEAR ; Close all TRACE32 windows

SYStem.LOG.OPEN flashtest ; Open a file to store the data log
 ; information (standard extension .log)

… ; Perform your test sequence

SYStem.LOG.CLOSE ; Close the log file
Tips to Solve NOR FLASH Programming Problems | 61©1989-2024 Lauterbach

Interpretation of the SYStem.LOG.List

The following shows a step by step interpretation of the TRACE32 read/write accesses logged to the
SYStem.LOG.List window.

FLASH configuration: 2 AM29BL162C (16-bit mode) in parallel to realize a 32-bit bus width

Tested FLASH command: Sector erase

1. Check the command register addresses

Please refer to the command definition for the sector erase in the data sheet for your FLASH device.

• TRACE32 uses byte addresses to write to the FLASH command registers. If word addresses are
used in the data sheet of the FLASH device, they have to be converted to byte addresses.

• If parallel FLASHs are used to realize the required <bus_width>, this has also to be taken into
account:

• Due to compatibility reasons TRACE32 uses 15 bit command register addresses instead of 11.

Calculation example:

FLASH.Create … Long ; FLASH declaration

FLASH.Erase 0xa2000000++0x3fff ; Erase the defined FLASH sector

2 parallel FLASHs Multiply the byte address of the command register by 2

4 parallel FLASHs Multiply the byte address of the command register by 4

Command register address for first bus cycle
from data command definition

0x555 (word address)

Conversion from word address to byte
address

2 * 0x555 = 0xAAA

Multiplication for parallel FLASHs 2 * 0xAAA = 0x1554

Conversion from 11 bit address into 15 bit
command register address

0x15554
Tips to Solve NOR FLASH Programming Problems | 62©1989-2024 Lauterbach

The SYStem.LOG.List window shows that TRACE32 uses the correct command register addresses.

The width column indicates the <bus_width> used by TRACE32. 4. shows that TRACE32 perform 32
bit write accesses.

Write command
sequence

Read status
Tips to Solve NOR FLASH Programming Problems | 63©1989-2024 Lauterbach

2. Check the data values

Please refer to the command definition for the sector erase in the data sheet for your FLASH device.

The width column in the SYStem.LOG.List window indicates the <bus_width> used by TRACE32.

The byte order is as follows:

The SYStem.LOG.List window shows that TRACE32 writes the correct data values in little endian
mode. Since 2 parallel FLASHs are used, B0 and B2 are used to write the data value.

Byte Order

Little Endian Mode B0 B1 B2 B3

Big Endian Mode B3 B2 B1 B0

Write command
sequence

Read status
Tips to Solve NOR FLASH Programming Problems | 64©1989-2024 Lauterbach

3. Check the status read

After TRACE32 wrote the require 6 commands to erase the FLASH sector, it starts reading the
FLASH status.

Please refer to the write operation status information in the data sheet for your FLASH device.

The following status bits are of importance:

The following SYStem.LOG.List window show that DQ2 and DQ6 are toggling at each status read.

Status Bits

DQ2/6 Bit 2 and Bit 6 need to toggle at each status read

DQ5 DQ5==1 && DQ7==0 indicates a time-out caused by an
internal FLASH error

DQ7 A soon as DQ7 becomes 1, erasing of the FLASH sector is
done

Write command
sequence

Read status
Tips to Solve NOR FLASH Programming Problems | 65©1989-2024 Lauterbach

The SYStem.LOG.List window below shows that erasing the sector is done (DQ7==1). Afterwards the
FLASH is switched back to read mode.

The picture above shows, that the sector erase for one FLASH performed faster (Status already 0xff 0xff).

Read status

Sector erase for both

Write command
to switch FLASH
to read mode

FLASH devices is done
Tips to Solve NOR FLASH Programming Problems | 66©1989-2024 Lauterbach

Error Scenarios

Erasing the FLASH sector failed because FLASH area is indicated as cacheable and data cache is
on.

Since the FLASH area is cached to the data cache, the status never changes. As a result, TRACE32 can´t
read the ready status (DQ7==1). This situation leads to an erase timeout error.

Erasing the FLASH sector failed, because TRACE32 has no write access to the FLASH

Write command
sequence

Read status

Status can only be read once

Write command
sequence

FLASH is still in read mode,
FLASH contents is read instead of status
Tips to Solve NOR FLASH Programming Problems | 67©1989-2024 Lauterbach

Appendix B

&base=<start_address_of_flash>

FLASH Width BYTE

CODE Test write access

AM29F010
AM29LV010
AM29M010
AT49F010
SST29F010

Data.Set &base+0x5555 %Byte 0xaa
Data.Set &base+0x2aaa %Byte 0x55
Data.Set &base+0x5555 %Byte 0x90

AM29F100B
AM29LV100B
AM29LV256B
AM29M100B
AM29M256B
AM29N256B
AT49F100B

Data.Set &base+0xaaaa %Byte 0xaa
Data.Set &base+0x5555 %Byte 0x55
Data.Set &base+0xaaaa %Byte 0x90
Tips to Solve NOR FLASH Programming Problems | 68©1989-2024 Lauterbach

FLASH Width WORD

CODE Test write access Test PPC target for true
little endian mode

AM29F010
AM29LV010
AM29M010
AT49F010
SST29F010

D.S &base+0xaaaa %W 0xaaaa
D.S &base+0x5554 %W 0x5555
D.S &base+0xaaaa %W 0x9090

AM29F100
AM29LV100
AM29LV256
AM29M100
AM29M256
AM29N256
AT49F100

D.S &base+0xaaaa %W 0x00aa
D.S &base+0x5554 %W 0x0055
D.S &base+0xaaaa %W 0x0090

D.S &base+0xaaaa %W 0xaa00
D.S &base+0x5554 %W 0x5500
D.S &base+0xaaaa %W 0x9000

AM29F100B
AM29LV100B
AM29LV256B
AM29M100B
AM29M256B
AM29N256B
AT49F100B

D.S &base+0x15554 %W 0xaaaa
D.S &base+0xaaaa %W 0x5555
D.S &base+0x15554 %W 0x9090

AM29BDDW D.S &base+0x15554 %W 0x00aa
D.S &base+0xaaaa %W 0x0055
D.S &base+0x15554 %W 0x0090

D.S &base+0x15554 %W 0xaa00
D.S &base+0xaaaa %W 0x5500
D.S &base+0x15554 %W 0x9000
Tips to Solve NOR FLASH Programming Problems | 69©1989-2024 Lauterbach

FLASH Width LONG

CODE

AM29F010
AM29LV010
AM29M010
AT49F010
SST29F010

Data.Set &base+0x15554 %Long 0xaaaaaaaa
Data.Set &base+0xaaa8 %Long 0x55555555
Data.Set &base+0x15554 %Long 0x90909090

AM29F100
AM29LV100
AM29LV256
AM29M100
AM29M256
AM29N256
AT49F100

Test write access

Data.Set &base+0x15554 %Long 0x00aa00aa
Data.Set &base+0xaaa8 %Long 0x00550055
Data.Set &base+0x15554 %Long 0x00900090

Test PPC target for true little endian mode

Data.Set &base+0x15554 %Long 0xaa00aa00
Data.Set &base+0xaaa8 %Long 0x55005500
Data.Set &base+0x15554 %Long 0x90009000

AM29F100B
AM29LV100B
AM29LV256B
AM29M100B
AM29M256B
AM29N256B
AT49F100B

Data.Set &base+0x2aaa8 %Long 0xaaaaaaaa
Data.Set &base+0x15554 %Long 0x55555555
Data.Set &base+0x2aaa8 %Long 0x90909090

AM29BDD Test write access

Data.Set &base+0x15554 %Long 0x000000aa
Data.Set &base+0xaaa8 %Long 0x00000055
Data.Set &base+0x15554 %Long 0x00000090

Test PPC target for true little endian mode

Data.Set &base+0x15554 %Long 0xaa000000
Data.Set &base+0xaaa8 %Long 0x55000000
Data.Set &base+0x15554 %Long 0x90000000
Tips to Solve NOR FLASH Programming Problems | 70©1989-2024 Lauterbach

AM29BDDW Test write access

Data.Set &base+0x2aaa8 %Long 0x00aa00aa
Data.Set &base+0x15554 %Long 0x00550055
Data.Set &base+0x2aaa8 %Long 0x00900090

Test PPC target for true little endian mode

Data.Set &base+0x2aaa8 %Long 0xaa00aa00
Data.Set &base+0x15554 %Long 0x55005500
Data.Set &base+0x2aaa8 %Long 0x90009000

AM29M2562 Test write access

Data.Set &base+0x15554 %Long 0x0000aaaa
Data.Set &base+0xaaa8 %Long 0x00005555
Data.Set &base+0x15554 %Long 0x00009090

Test PPC target for true little endian mode

Data.Set &base+0x15554 %Long 0xaaaa0000
Data.Set &base+0xaaa8 %Long 0x55550000
Data.Set &base+0x15554 %Long 0x90900000

CODE
Tips to Solve NOR FLASH Programming Problems | 71©1989-2024 Lauterbach

FLASH Width QUAD

CODE

AM29F010
AM29LV010
AM29M010
AT49F010
SST29F010

Data.Set &base+0x2aaa8 %Quad 0xaaaaaaaaaaaaaaaa
Data.Set &base+0x15550 %Quad 0x5555555555555555
Data.Set &base+0x2aaa8 %Quad 0x9090909090909090

AM29F100
AM29LV100
AM29LV256
AM29M100
AM29M256
AM29N256
AT49F100

Test write access

Data.Set &base+0x2aaa8 %Quad 0x00aa00aa00aa00aa
Data.Set &base+0x15550 %Quad 0x0055005500550055
Data.Set &base+0x2aaa8 %Quad 0x0090009000900090

Test PPC target for true little endian mode

Data.Set &base+0x2aaa8 %Quad 0xaa00aa00aa00aa00
Data.Set &base+0x15550 %Quad 0x5500550055005500
Data.Set &base+0x2aaa8 %Quad 0x9000900090009000

AM29F100B
AM29LV100B
AM29LV256B
AM29M100B
AM29M256B
AM29N256B
AT49F100B

Data.Set &base+0x55550 %Quad 0xaaaaaaaaaaaaaaaa
Data.Set &base+0x2aaa8 %Quad 0x5555555555555555
Data.Set &base+0x55550 %Quad 0x9090909090909090

AM29BDD Test write access

Data.Set &base+0x2aaa8 %Quad 0x000000aa000000aa
Data.Set &base+0x15550 %Quad 0x0000005500000055
Data.Set &base+0x2aaa8 %Quad 0x0000009000000090

Test PPC target for true little endian mode

Data.Set &base+0x2aaa8 %Quad 0xaa000000aa000000
Data.Set &base+0x15550 %Quad 0x5500000055000000
Data.Set &base+0x2aaa8 %Quad 0x9000000090000000
Tips to Solve NOR FLASH Programming Problems | 72©1989-2024 Lauterbach

AM29BDDW Test write access

Data.Set &base+0x55550 %Quad 0x00aa00aa00aa00aa
Data.Set &base+0x2aaa8 %Quad 0x0055005500550055
Data.Set &base+0x55550 %Quad 0x0090009000900090

Test PPC target for true little endian mode

Data.Set &base+0x55550 %Quad 0xaa00aa00aa00aa00
Data.Set &base+0x2aaa8 %Quad 0x5500550055005500
Data.Set &base+0x55550 %Quad 0x9000900090009000

AM29M2562 Test write access

Data.Set &base+0x2aaa8 %Quad 0x0000aaaa0000aaaa
Data.Set &base+0x15550 %Quad 0x0000555500005555
Data.Set &base+0x2aaa8 %Quad 0x0000909000009090

Test PPC target for true little endian mode

Data.Set &base+0x2aaa8 %Quad 0xaaaa0000aaaa0000
Data.Set &base+0x15550 %Quad 0x5555000055550000
Data.Set &base+0x2aaa8 %Quad 0x9090000090900000

CODE
Tips to Solve NOR FLASH Programming Problems | 73©1989-2024 Lauterbach

	Tips to Solve NOR FLASH Programming Problems
	Introduction
	General Recommendation
	TRACE32 Error Messages
	TRACE32 Tool-based Programming
	Sources of Errors
	General Course of Action in the Case of Problems (Tool-based)
	1. Check Read Access to FLASH
	2. Check Write Access to FLASH
	3. Check the FLASH Protection
	4. Check the Programming of a Single Data Value
	5. Erase the FLASH
	6. Check the Programming of a Complete File

	Target-controlled Programming
	Sources of Errors
	General Course of Action in the Case of Problems (Target-controlled)
	1. Check Read Access to RAM
	2. Check Write Access to RAM
	3. Check if Code can be Executed in RAM
	4. Check if a Software Breakpoint can be Set
	5. Check the FLASH Programming of a Complete File

	Errors Caused by Wrong Usage of the TRACE32 Commands
	Unintentional Erasing of the Complete FLASH Device
	Multiple FLASH Devices on one Target

	FAQ
	Appendix A
	Conversion of the Tool-based to Target-controlled FLASH Programming
	Checking the Bus Configuration
	Main Difference between Intel and AMD/Spansion FLASH Devices
	Intel FLASH Devices
	Switch to ID-Mode (Intel)
	Status Analysis (Intel)

	AMD/Spansion FLASH Devices
	Switch to ID-Mode (AMD/Spansion)
	Switch to CFI Mode (AMD/Spansion)
	The SYStem.LOG.List Command
	Interpretation of the SYStem.LOG.List
	Error Scenarios

	Appendix B
	FLASH Width BYTE
	FLASH Width WORD
	FLASH Width LONG
	FLASH Width QUAD

