LAUTERBACH A

Training Simulator and Demo
Software

Training Simulator and Demo Software

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACES32 TraiNinNg .cicccccceriiiisssrriiiissssiisisssssiassssss s sasssssss s sssssss s sas s sss s easssssssseasssssss sassssnsnsenssssnsnnsansan =
Training Simulator and Demo Software ... 1
Y o T 101 {3 L= 7= o o 3
Starting the TRACE32 Simulator ... s s samsssnnas 3
User Interface - TRACE32 POWEIVIEWccovieceriimiminssmisess s sssssssssssss s ssssss s sssss s sssss s sasasssnsas 4
TRACES32 Command Line and Softkeys 6
Window Captions - What Makes Them Special in TRACE32? 7
Debugging the Program ... s ssssssss s s essssss s s sssssssss s snssssssssennsan 8
Basic Debug Commands 8
Debug Modes 10
Displaying the Stack Frame 12
[T == o T T] 1 13
Setting Breakpoints 13
Setting Read/Write Breakpoints 14
Listing all Breakpoints 15
T L4 = 1] == 16
Displaying Variables 16
Displaying Variables of the Current Program Context 18
Using the Symbol Browser 18
Formatting Variables 19
Modifying Variables 21
=T 3 T 22
Displaying Memory 22
Modifying Memory 23
Peripheral View 24

©1989-2024 Lauterbach Training Simulator and Demo Software | 2

Training Simulator and Demo Software

About the Demo

Version 06-Jun-2024

What is this? This is a guided tour through TRACES2 - a tutorial. We use a simple program example in C to

illustrate the most important debug features, and give lots of helpful tips & tricks for everyday use.
How long does this tutorial take? 0.5to0 1 hrs.

How can | learn most from this tutorial? Work completely through all chapters in sequence and then do

the quiz at the end.

Where can | download the TRACE32 Simulator for the hands-on debug session? From:
https://www.lauterbach.com/download.html. You do not need any hardware for this tutorial.

Starting the TRACE32 Simulator

1. Unzip the downloaded file. You do not need to install the TRACE32 Simulator.

2. Double-click the t32m<architecture> . exe file (e.g. t32marm. exe) to start the demo debug
session. When the TRACES32 Instruction Set Simulator starts, a start-up PRACTICE script that
sets up a debug session is automatically executed.

You can manually execute the same start-up PRACTICE script by choosing File menu > Run Script.

A TRACE32 ARM SIMULATOR
Edit View Var Break Run CPU

Edit Script...
#3 Search for Script...

Open File...
2 Load File...

Type File...

i) Dump File...

@ Stop Command

E Printer Settings...
@ Window Screenshot to File...

¥ exit

A B:B:CD.DO* =
n\;,u\;; | <« demo » simarm » - | +4 | | Search simarm 2|
Organize « MNew folder # ~ [':9:'

pdf
__ armc.cmm

[sutostart.cmm = BY default, TRACES32 executes the
autostart .cmm script on start-up.

File name: armc.crmm - |Current (*.cmm) v|

[Open l | Cancel |

PRACTICE, the Lauterbach script language, is used for automating tests, configuring the TRACES32
PowerView GUI and your debug environment.

For our demo debug session, the PRACTICE start-up script arme . cmm loads the application program
armle.axf and generates a TRACES32 internal symbol database out of the loaded information.

©1989-2024 Lauterbach

Training Simulator and Demo Software | 3

https://www.lauterbach.com/download.html

User Interface - TRACE32 PowerV

iew

The graphical user interface (GUI) of TRACES32 is cal

led TRACE32 PowerView.

The following screenshot presents the main components of this interface.

TRACE32 PawerView — u] X
File Edit View Var Break Run CPU Misc Trace Probe Perf Cov Periphersls Window Help Main Menu Bar
Mk A+ e |2 08B adEs @2 Main Tool Bar
£ Bulistauto [= = e
M Step B Over | A Diverge | 4 Return ¢ Up » Ge 11 Break % Mode |||t Find: sieve.c
addr/1ine |source | oc |
813 count = 0; ~
815 for (1 =0 ; i1 «= SIZE ; flags[i++] = TRUE) ;
817 for (i = 0; i <= SIZE; i++) { =
818 if (FlagsTi]) 1 Window Area
819 prime = i + 1 + 3;
_E!I_Fla_
821 while <= 5IZE) Pragram Address
822 Flags[k] = FALSE;
823 k += prime; + GoTill =
825 count++; ﬁ Breakpoint... c
3 ; a Breakpoints g
829 return count; iad Display Memory R o
A [Bockmark... 5
R — M Toggle Bookmarks=t
=]| &2
& S| e 4 surcree L (oI @]
t. Up Down Args [Locals [Caller Task: - Edit Source 4030?F3é 5] Stack | L]
—~000[[sTeve Ic C 4030CFF4
I L3 =Ci? A v _ | & Viewlnfo 403039DC
= prime = 37 - y o7FF
RS Copy Address > 403039cs
= count = 10 0 Kb 25 K14 40301CD8
— R7 1 PC 40301E80
001 ||main() SPSR 0 CPSR 200001D3
=3j =55 S —
. i'lnc = 60 I _ USR FIQ:
= sign =1 R8 1 R8 1]
@ p = 0x40302E84 RS9 40307F30 RO 0
I I FR10 4030CFF4 R1O o
779 sieve(); F F E1l 4030390C RI11l 0
-002||gomain (asm) R12 07FF R12 1]
w [T = R13 0 R13 o hd
Be Command Line
Message Line
components trace Data Var List PERF S¥Stem Step. Go other previous Soft keyLi ne
NSRi40301E80 \isieve_ram_arm_vTisievesieve+ (x60 stopped HLL WP State Line

We'll briefly explain the GUI using the List command and List window as an example. For a more
comprehensive introduction, a video tutorial about the TRACE32 PowerView GUI is available here:
support.lauterbach.com/kb/articles/introduction-to-trace32-gui

To open the List window, do one of the following:

o Choose View > List Source from the menu

. At the TRACE32 command line, type: List (or L)

©1989-2024 Lauterbach

Training Simulator and Demo Software |

4

https://support.lauterbach.com/kb/articles/introduction-to-trace32-gui

The List window displays the code in both assembler mnemonic and HLL (High-Level Language). HLL

refers to the programming language of your source code, e.g. C or C++.

N TRACE32 PowerView - O x®
File Edit View Var Break Run CPU Misc Trace Probe Perf Cov Peripherals Window Help
['m0 W | f Registers gl @l mEses @ 2
- % Dump..
£ List Source |—:I H—EI H_EE
Pl Ste| & Watch & Return ¢ Up » Go 11 Break %% Mode ||6=f | L. Find: sieve.c
qic comment |

NSR?; 65/ Referenced Var

mow -
NSR:q) Tdrh + 0
NSR:4 &d Locals bfi r3
NSR:4 : drh rz,[r
NoR:4 ﬁ Stackframe with Locals b r3lr2
& Stackframe _
NSR:4 cpy ro,r3
NSR:4 o Peripherals sub ri3,rll,#0x0
NSR:4 pop {ri1}
NSR:4 £ Symbols > bx ria
il Groups
Bookmarks void);
flizc=lek roid) __attribute__ ((section (".data"))) = 0;
Message Area chdogTrigger) (void);
int main(void)
NSR:4030184C||E92D4810 main: push {ra,r11,ri14}
NSR:40301850|E2BDEODE add rll,rl3 £0x8
: E24DD034 sub rl3,rl3,#0x34 i rl3,ri3,#52
int I;
short int inc, sign; = e
char *n3 ' ! | |i”£”£|
. T R4 40302E48 Rz 30 =
702 func_sin(); RS 40302E48 R13 40303A14
NSR:40301858 |[EEFFFEDF b 0 0 _ R6 68 R14 40300124
1~ R7 1 PC
do { 2 _ SPsR 0 CPSR 00001D3 v
705 (monHook) < >
B::|List]
components trace Data Var List PERF S¥Stem Step Go other previons
NSR:40301854 \\sieve_ram_arm_vTisieveimain+0x8 stopped MIX |UP

Opens the
List window

. Program
counter (PC)

In the List window, the gray bar indicates the position of the program counter (PC). In the screenshot above,

it is located at the symbolic address of the label main.

A video tutorial about the source code display in TRACE32 is available here:

support.lauterbach.com/kb/articles/displaying-the-source-code

To summarize, you can execute commands in TRACE32 PowerView using the following methods:

1. Menus on the menu bar

2
3. Context menus in TRACE32 windows
4

Using commands via the TRACE32 command line.

Buttons on the main toolbar and the buttons on the toolbars of TRACE32 windows

©1989-2024 Lauterbach

Training Simulator and Demo Software |

5

https://support.lauterbach.com/kb/articles/displaying-the-source-code

TRACE32 Command Line and Softkeys

TRACE32 commands are not case sensitive: register.view isthe same as Register.view
. UPPER CASE letters indicate the short forms of commands and must not be omitted.

o All lower case letters can be omitted.

This makes short forms an efficient time saver when entering frequently-used commands in the command

line.

Examples:

J Instead of the long form Register.view type justthe shortform r or R
. Instead of the long form List type just the shortform 1 or L

The softkeys are located below the command line. The camel casing (i.e. upper and lower case letters) on
any softkey indicates the long form of a command. The softkeys guide you through the command input,
displaying all possible commands and parameters.

Example - To assemble the Data.dump command using the softkeys:

1. Click Data.

2 Click dump.

3. Type the <range> or <address> you want to dump. For example, 0x1000--0x2000
4

Click [ok] to execute the command.

The Data.dump window will open.

‘B:: —— Command line
emulate trigger | devices | | trace | Data || Var | | List | | other | | previous I—— Softkeys
SR:00001FF8 \\armle\arm\main system ready MIX |UP

‘B:: DATA.
| [ok] i| dump |I View | | Print | | List | | Set | | Assemble | | other | | previous
SR:00001FF8 \\armle\arm\main system ready MIX |UP

‘B::DATA.DUMPIOxlOOO——OXZOOOI

| [ok] | | <ranges | | <address> | | options previous
SR:00001FF8 \\armle\arm\main system ready MIX |UP

©1989-2024 Lauterbach Training Simulator and Demo Software | 6

Window Captions - What Makes Them Special in TRACE32?

The command used to open a window is displayed in the window caption, along with any parameters and

options used.

[N TRACE32 PowerView - O X
File Edit View Var Break Run CPU Misc Trace Perf Cov Peripherals Window Help
(M A+ e[pn|E 20 =suldas @2
[= =)=
Ml Step B Over | Ay Diverge | 4 Return ¢ Up » Go Il Break %% Mode ||6=f | t.. Find:
addr /Tine [code Tabel mnemonic comment |
"
int main(void)
ST:000012A4|(E5FO main: push {r4— ,rl4}
ST:000012A6|EOED sub 3
ST.:000012A8,|AF0D2 ad.d. 7 sp,#ms
1 t
FEH IData dump 0x1000--0x2000 I < —
691 Quun T3> 0123456?89AECDEF i
ST:000012AA [F7FFF SD: 00001000 +1C03F309 4918J.COC L1EBA0D0EA 60546013 5 ~
SD:00001010 | 68F968B8 4B0OD4AQC FFFCFOOL 1COC1CO3 & F‘JH _
5SD:00001020 | 60FC60BE 68F968E8 4BOE4AOD FFEEFOOL §°%° =
594 SD:00001030 | DIBDIEO3 BOOG46BD BCO1BCBO 46C04700 W
ST:000012AE [4BC2 SD:00001040 | 00000000 00000000 99999994 3FB99999
ST:000012B0 [6516 5D:00001050 | 00000000 4072C000 00000000 40540000 2
ST:000012B2 [2B00 SD:00001060 | 66666666 404F6666 00006AFQ EOBZB5E0
ST:000012B4 [DOO3 SD:00001070 | 2300AF00 23046076 4B31603B 609A4A31
SD:00001080 | 2200462F 4B2E60DA 605AZ200 22004B2C iy
ST:000012E6 |1BC0 5D:00001090 | 23006014 E045607B 683B687A DOOBAZ9A >
ST:000012B8 [651E SD:000010A0 | 1C5A687E Q09B1C13 O09BLB9B 18944A25
ST:000012BA [FOOOF SD:000010B0 | 2200E000 68794823 0Q09BELCOB O09BL1B5EB
SD:000010C0 | 330818C3 687BG0LA DDOS2ZBOO 1ESAGETE &
5D:000010D0 | 009B1C13 009B189E 189A4A1A 4A1SEQ00 S5
ST:000012BE |1B5F 5D:000010E0 | 68794818 D09B1COB O0SBLB5B 330818C3 SHyhY
ST:000012C0 (220C SD:000010F0 | 4914605A 1C13687A 18980096 18CE0O09B Z° WiI A
ST:000012C2 |601A
6598 -
5T:000012C4 |4BBE dr r3,0x15C0 v
I 1
F:I Data.dump 0x1000--0x2000 I
[ok] options previeus
ST:000012A8 \\sieve\sieve\main-+0x4 stopped MIX [UP

You can re-insert a command from a window caption (a) into the command line (b) in order to modify
the command. Let’s do this with the Register window.

1.
2.

Choose View > Register from the menu.

Right-click the window caption (a).

Modify the command, e.g. by adding the /SpotLight option: This will highlight changed registers.

B fregiservien | (@) ll&hké#deHMlll|||||||||||||||||||

R4 1 RI1Z 25 R12

RS 564C FR13 OFE4 R': 564{ R13 OFE4

RE 0 R14]} RE 0 R14 0

R7 0 PC 2258 R7 0 PC 22A0

SPSR 10 CPsR 800000D3 SPSR 10 CPsR 800000D3
4 4

\

(b) ‘B: :|B::Register.view /SpotLight

[[ok]][options

Click [ok] to execute the modified command.

Click M/ Single Step on the TRACE32 toolbar. Changed registers are highlighted immediately.

©1989-2024 Lauterbach

Training Simulator and Demo Software |

7

Debugging the Program

Basic Debug Commands

The basic debug commands are accessible from:

. the Run menu
o the toolbar of the List window
o the main toolbar

o the TRACE32 command line.

Single stepping M is one of these fundamental debug commands.
Run CPU Misc Trace Probe Pef Cov ARMY Window Help

[m— o o o ;5
W Step Over Call F3
WA Step Diverge Path F4 = BuList.auto EI@
4 GoNext I M step | W Over ||\ ADiverge/ ¢ Retumn| ¢ Up b Go || Il Break || U%[Mode &= t. "% Fir
¢ GoRetum Fs T e L e N
¢ Golp %2 ST:0000158
+ GoTill... ST:0000138C |4
» Go 7 ST:0000138E |5
1 Break & snooongg
"% Mode F9 snooongi
S5T:00001396
ST:00001398 |6
722 ast.fieldl
: 1dr r3,0x15C0
5T:0000139C Idr r3, r3]
ST:0000139E 1s ri,r 4
ST:000013A0 |0 sr ri,r3,#0x1s
Single Step
Step over function calls or subroutines
Step till next unreached line
Go to the next code line written in the program listing
Useful e.g. to leave loops
M » A | + ¢ | (I || - Stop the program execution
IGo / Start program execution
Go Up / return to the caller function
| Go Return / Go to the last instruction of the current function
B::5tep. B::Go.
[[ok]][single][Asm][Hil][Mix [[ok]][direct][Asm][Hil][Mix][Return
SR:00001014 ‘\\armle\Global__main+0x14 SR:00001014 \\armle\Global__main+0x14

©1989-2024 Lauterbach Training Simulator and Demo Software | 8

TRACE32 PowerView also offers more complex debug control commands. For example, you can step until
an expression changes or becomes true.

Example:

Var.Step.Till i>11. ; single-steps the program until the
; variable i becomes greater than 11.
; Please note that TRACE32 uses a dot to
; denote decimal numbers.

Debug Modes

Take a look at the state line at the bottom of the TRACE32 PowerView main window:

N TRACE32 PowerView - | X
File Edit View Var Break Run CPU Misc Trace Perf Cov Peripherals Window Help
(M A+ || 2R 0 0SS @ 1 L
= [B:List.auto] EI@
M Step W Over | MAyDiverge | & Return ¢ Up p Go 1l Break I 1% Mode Iﬁ t. Find:
addr/T1ine |code label mnemonic comment |
SP:000019F4 00005 3CC dca 0x53CC ~
main()
s86||{
5T :000019F8||B5 90 main: push {r4,r7,ri14}
] EO&2 sub sp,#0x8
int J;
char * p;
vtripplearray[0][0]1[0] = 1;
S5T:000019FC |2001 mow ri, #0x1
ST:000019FE |4954 1dr rl,0x1B50 hd
B::
components trace Data Var List PERF SYStem Step other previous
ST:000019FA \\thumble\armmain+0x2 stopped MIX |UP

=

The state line provides the following information

A The (symbolic) address of the current cursor position.
The program counter (PC) is highlighted in gray.

B The state of the debugger: stopped indicates that the program execution is stopped. At this
point, you can inspect or modify memory, for example.

C The state line displays the currently selected debug mode, which can be:
o HLL (High Level Language)
. ASM (assembler)

U MIXed mode showing both HLL and its corresponding assembler mnemonic.

©1989-2024 Lauterbach Training Simulator and Demo Software | 9

On the toolbar of the List window, click Mode to toggle the debug mode to HLL.

Debug mode HLL

Debug mode MIX

Click Step.

(BLitouto = (Bsitauto == s
MR A e e M Step| B Over| My Tiop| ¢ Fam | @& Up|| P Go | I Bresk| V5|0 |] | .
line [source | addr/Tine code label mnemonic |
581 Tor T x = 0.0 ; X < 62.8 ; X a SP:000019F4 |000053CC dcd 0x53CC A
582 sinewave[index++] = .
583 |} main()
s86||{
maini) ST:000019F8]|E520 main: push {r4,r7,r1a}
i : |[E0&2 . . sub sp,#0x38
int J; int J;
char * p; char * p;
590 vtripplearray[0][0]1[0] = 1;
591 ST:000019FC |20 mow ri, #0x1
592 ST:000019FE |4954 Tdr rl,0x1B50
593 ST:00001A00 |7005 strb ro, [ri]
591 vtripplearray[1][0]1[0] = 2;
595 funcz(); WZDDZ mov ro,#0x2
5T :0000: = strb ro, [rl,20x0C]
597 funczai); 592 vtripplearray[0][1]1[0] = 3;
ST:00001A06 |2003 mow ri, #0x3
599 funczb(; ST:00001A08 |7108 strb ro, [rl,£0x4]
vtripplearray[0][0]1[1] = 4;
601 func2e(l; ST:00001A0A |2004 mow ro,#0x4
Y] 5T :00001A0C |7048 strb ro, [rl,20x1] b
£ > £ >

In HLL mode, this action moves the program execution to the next source code line.

Click Mode again to toggle the debug mode to MIX.

Click Step.

This time, the step executes one assembler instruction.

Right-click a code line, then select Go Till.
Program execution starts, and stops when the program reaches the selected code line.

B\ TRACE32 PowerView - | X
File Edit View Var Break Run CPU Misc Trace Perf Cov Peripherals Window Help
(MW A I e |28 0 = nisdas @22
=1 [BuList.auto] EI@
M Step W Over | A Diverge | ¢ Return ¢ Up p Go Il Break | M Mode | &f t.
addr/T1ine |code label mnemonic comment |
~
607 ast.count = 12345;
i 84C dr r0,0x1B5C
ST:00001A24 4940 Tdr r1,0x1B60
ST:00001A2C |60458 str ro, [rl,20x4]
ast.lef *
ST:00001AZE |454C , Ox1B60
5T :00001A30
609 . 1 R ~ Program Address
5T:00001A32 |6900 dr ro, [ro,20x10]
5T :00001A34 |0850 Isr ro,ro,#0x2 Ii Go Till I
ST:00001A36 D050 1s1 ro,rd, #0x2 =
ST:00001A38 (2301 n r3,#0x1 &j Breakpoint...
ST:00001A3A 43518 ro,r3 .
ST:00001A3C [6108 0.1, #0x10] | @ Breakpoints »
610 ast.fieldz = =
ST:0D001A3E |4848 r0,0x1B60 i Display Memory >
ST:00001A40 |6900 [rO,#0x10]
5T:00001A42 |231C xic P Ezai=it
ST:00001444 [4398 A Toggle Bookmark
ST:00001A46 |2308
ST:00001A48 |4318 +H+ Set PC Here
ST :00001A44 |5108 ro, [rl,20x101 | o,
ST :00001A4C |06C0 r0,r0, #0x1B E,(Edit Source
®
612 ast = func4(ast J; z ViewInfo
ST:00001A4E (4668 mow ro,rl3 b
ST:00001A50 |310C add r1,#0x0C Copyaddis=
ST:00001A52 |C990 Tdm ri!,{r4,r7}
ST:00001A54 |C020 stmia r0!,{r4,r7} Go Till There W
u List There
B:: Assemble...
Modify...
components trace Data Var List Patch... previous
ST:00001A30 \\thumble\armimain+0x38 stopped MIX |UP

©1989-2024 Lauterbach

Training Simulator and Demo Software

10

Displaying the Stack Frame

For the next example, we will assume that we have the following call hierarchy: main () calls func2 () and
func2 () calls funcl():

vtripplearray[0][1]]]
vtripplearray[0] [0][| [Tine |source = |

-

(B i =8 Een
| Mstep || W over | 4 next |[# Retum] e up |
1line |source | =
main() l
586 ¢ o
nt J;
char * p;
590 vtripplearray[0] [0] [| =] [BuLis =n =R ==
5oz Versoptearray[0]] 1 [Mh.step][over] $es | & Reun]|_€p]

Eo‘i d func2()

int autovar;

register int regvar; 3
static int fstatic =g
static int fstatic2;

autovar = regvar = f| | M Step || ® over || & Next |[& Return [@ up |
autovar++; line |source I 1

funczal();

166
167

static void funcl(intptr)
%nt * intptr;

171 funcl(&fstatic);

Select Show Stack in the Var menu. This will open the Frame.view window, displaying the call hierarchy.

The /Locals option displays the local variables of each function, while the /Caller option shows a few source
code lines to indicate where the function was called.

This screenshot corresponds to the calling hierarchy described above.

BN TRACE32 PowerView
File Edit View Var Break Run CPU Misc Trace Perf Cov Peripherals Window Help

| MK A | d6Y Watch.. TR D EHHE SEE S DL
M View...
Q, Data View...
ﬁ Breakpoint... 3 ocals /Calle
E’J Show Function... Flocals [Caller
@ Show Watch
& Show Locals

intptr = O0x7FA4

funcz ()
= = autovar = 45
Show Current Vars = regvar = 44
= fstatic = 44
= fstaticz = 0

funcl(&autovar J; /* to force au

W Format...

B::[Frame.view /Locals /Caller

©1989-2024 Lauterbach Training Simulator and Demo Software | 11

Breakpoints

Video tutorials about breakpoints in TRACE32 PowerView are available here:
support.lauterbach.com/kb/articles/using-breakpoints-in-trace32

Setting Breakpoints

Let’s set a breakpoint at the instruction prime = i + i + 3 andthe instructionk += prime

To set a program breakpoint, double-click a code line where you want to set the breakpoint. Ensure to click
the white space in the code line, and not the code literal. All code lines with a program breakpoint are
marked with a red vertical bar.

i1 [BeList] =R o
M Step | B Over | \AsDiverge « Return|| ¢ Up » Go 1l Break | % Mode |62 T Find: sieve.c
addr/1ine [source |
char Tl1ags[SIZE+1l]; ~
static int sieveivoid) * sjeve of erathostenes *
794 |{
register int 1, prime, k;
int count;
798 count = 03
800 for (1 =0 ; i <= S5IZE ; flags[i++] = TRUE) ;
802 for (i = 0; :I[-'Ic_ SIZE, 1-H— {
— ags[il)
504 = 3;
Lo S LR
806 while (k <= SIZE) {
— flags[k] = FALSE;
I 808|] _» k += prime;
810 count-H—,
v
To set a breakpoint to an instruction that is not in the focus of the current source listing:
1. Choose Var > Show Function from the menu.
The sYmbol.Browse.Function window opens.
N TRACE32 PowerView - | X
File Edit View Var Break Run CPU Misc Trace Perf Cov Peripherals Window Help
[» B A| 365 Watch.. TR DB SEE @ 2P
T & View..
3y, Data View...
ﬁ Breakpoint...
= Show Function... —#i B::s¥mbaol. Browse.Function * /Click "Data.List ™" /Delete
& Show Watch Filter: |\\"'\“‘* | t. "3 | Type: I [Funcs
5{3’ Show Locals symbol tyvpe address 1
unce (tToat () R:00001244--00001293
ﬁ Show Stack uncy R:00001294--000012FF
= uncs R:00001300--0000146F
& Show Current Vars uncg R:00001470--000014CB
& Format.. I|sl'|'eve | R:00001B7C--00001BCF I v
2. Select the function you are interested in, for example sieve.

The List window will open, displaying this function. This window is now fixed to the start address
of the function sieve and does not move with the program counter cursor.

©1989-2024 Lauterbach Training Simulator and Demo Software | 12

https://support.lauterbach.com/kb/articles/using-breakpoints-in-trace32

Setting Read/Write Breakpoints

You can set a breakpoint that halts the program execution at a read or write access to a memory location,

such as global variable.

To set a breakpoint on the array £1ags, for instance, right-click on the array name in the List window then

select Breakpoints > Write.

(o)[O el

£ [B:Listauto] o]l 5 |
[Mistep |[M over]@Diverge][SReturn [@up | »co | mEBreak |[#|Mode | Find:
addr/Tine |source |
689 for (1 =03 1 <= SIZE ; i++)
e —— TG [aoSIRETRIR
1 Variable
8 65 Add to Watch Window
695 fff View in Window
= Set Value...
=y a0 LSE;
698 &5 Modify Value...
+ GoTill ’
e a Breakpoint... 3
@ Advanced Breakpoint L4 s
J‘ [—— Ul°. Breakpoints 4 ReadWrite C
4 Display Memory L4 Read
7 Grep in Sourcefiles
Spot
other L4
Alpha
Beta
Charly
Delta
Echo
8 B::Break.List
(3% Delete All| [Disable All (@ Enable All|[@ Init][2 Method... | 22 store... || £ Load... || EiiSet... |

address

method

Fl

type
C:20005500--20005 512JWF1te

ONCHIP W tTags
e

©1989-2024 Lauterbach

Training Simulator and Demo Software

13

Listing all Breakpoints

Choose Break > List from the menu to list all breakpoints.
The Break.List window opens, providing an overview of the set breakpoints.

Break Run CPU Misc Trace Probe Pedf Cov Window Help

© set. HEEL I TN XS

3 B::Break.List / EI@

B senp... || 3% Delete All|| O Disable Al @ Enable All| @ Init | 52 store...| 52 Load... || B set...

address type method |
T:OOOOlGSOﬁPr‘Dgr‘am SOFT i [# | s1eveill

T:0000166C |Program SOFT y (& | sieve\20

A Address of the breakpoint.

a Configuration...

2% Delete All

“F Trigger Bus...
JF OnChip Trigger...

Trigger Reset

B Breakpoint type, for example Program, Read, Write
C Breakpoint method: SOFTware, ONCHIP or DISABLED.

D Symbolic address of the breakpoint. Example:
. sieve\1ll means source code line 11 in function sieve.

On the toolbar, click | *| Go to start the program execution.

When the program execution stops at a breakpoint, it is highlighted in the Break.List window.

a B::Break.List EI@
B senp... || 3% Delete All|| O Disable Al @ Enable All| @ Init | 52 store...| 52 Load... || B set...
address type method |
T:00001650|Program SOFT v & | steve\I1
T:0000166C |Program SOFT y (&4 | sieve\20

©1989-2024 Lauterbach Training Simulator and Demo Software |

14

Variables

Video tutorials about variable display in TRACES32 are available here:
support.lauterbach.com/kb/articles/variable-logging-and-monitoring-in-trace32

Displaying Variables

Let’s display the variables £1ags, def, and ast.

1. Choose Var > Watch... from the menu.

The Var.AddWatch window will open, displaying the variables known to the symbol database.
N TRACE32 PowerView - | X
File Edit View Var Break Run CPU Misc Trace Perf Cov Peripherals Window Help
[Mm% A | 365 Watch.. TR D EHE S @ 2L

T & View..

3y, Data View... 1
? Breakpoint.... Filter: |*** | t. | |"¥ | Type l:l [JFunes
=i Show Function... symbol type address
t (strtypel) D:00005114--00005127
65 Show Watch 2 (st:uclteun"t:nl) D:00005 380--00005 397 ~
&% Show Locals cstrl onst unsigned char [17]1) D:00004DE4--00004DF4
def (struct abc) D:00004EFC--00004F03
ﬁ Show Stack enuml Cint) none
_ enumz2 (int) none
&5 Show Current Vars enumd (int) none
enum? Cint) none
8 (int)
& ol :nﬂmvar‘ (e:uT enumtyp) D:OOOSSESC——OOOMFOC
Cint) none
£1 funsi | char [191) D:0000677C--000067 8E
[E (E’I:t gnef'\-s a D:00004F10--00004F13
mst@ticl (int) D:00004E80--00004E83
ms*icz (int) D:00004E84--00004E87 hd
L]
2. Double-click the variable £1ags.
The Var.Watch window will open, displaying the selected variable.
& BuVar.Watch EI@
| - [5 et watch | [ot view | | [
[Eflags =@, 1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,110 |
] 1 b
3. Alternative steps:

- In the Var.Watch window, click Watch, and then double-click the variables def and
ast to add them to the Var.Watch window.

& BuVar.Watch EI@
- I 65 Watch ! 6ol View

ast (word = 0x0, count = 12346, tert = ux>o3C, right = 0x0, T1eTdl .
= def (x=0, y=0)
®flags = (1, 1,1,0,1,1,0,1,1,0,1,1,0,1,1, 0,1, 1, 0)

4 I 2

- From a List window, drag and drop any variable you want into the Var.Watch window.

- In a List window, right-click any variable, and then select Add to Watch window from the
context menu.

©1989-2024 Lauterbach Training Simulator and Demo Software |

15

https://support.lauterbach.com/kb/articles/variable-logging-and-monitoring-in-trace32

- If you want to display a more complex structure or an array in a separate window,
select the menu Var > View.

Displaying Variables of the Current Program Context

1. Set the program counter (PC) to the function sieve () by typing the following at the TRACE32
command line:

Register.Set PC sieve

2. Select the menu Var > Show Current Vars.

The Var.REF window opens, displaying all variables accessed by the current program context.

TRACE32 PowerView - | X

File Edit View Var Break Run CPU Misc Trace Perf Cov Peripherals Window Help

[» B A| 365 Watch.. TR D EHE S @ 2L

T bl View..
3y, Data View...
ﬁ Breakpoint...
=i Show Function... o || B 2

&% Show Watch
& Show Locals
ﬁ Show Stack
& Show Current Vars

& Format...

=,1,1,1,1,1,1,1,1,1,1,1, 0,1, 1, 0, 0, 1, 0)

3. Click M| Step on the TRACE32 PowerView toolbar to execute a few single steps.
The Var.REF window is updated automatically.

Using the Symbol Browser

The symbol browser offers an overview of the variables, functions, and modules currently stored in the
symbol database.

1. Select Var from the menu, then choose Watch...

The Var.AddWatch window will open, allowing you to browse through the contents of the symbol
database. Global variables are displayed in black and functions in gray. Double-clicking a function
will display its local variables are displayed.

2. In the Var.AddWatch window, double-click func2.

©1989-2024 Lauterbach Training Simulator and Demo Software | 16

Formatting Variables

2 B:Var.AddWatch * = =R
[t.|[3 | Type: [] [vanables | [Jsource
symbol type address |
(struct abc) D:00006818--0000681F ,
(char [51) D:00006720--00006724
(enum enumtyp) D:00007E94--00007ES4
(char [191) D:00007E98--00007EAA
=Y [B:List func2]
_ M step |[% over || ¥ Next |[¢ Retun | & up |
laddr/Tine |source
% B:VarAddWatch * ﬁ?) LFIntptr J++;
W func2* EJ E e void func2()
symbol |type address 160 |{
autovar [[auto int) (F-0004)--(F-0001) int autovar;
| D:0000563C--0000563F register int regvar;
C t) . D:00005640--00005643 static int fstatic = 44;
gister int) R2 static int fstatic2;
4 166J autovar = regvar = fstatic;
4 I

To format the display of variables with global settings:

1. Choose Var from the menu, then select Format.

2.
windows that you open afterwards.

To format the display of an individual variable:

In the SETUP.Var window, configure your settings. TRACE32 applies your settings to all Var.view

1. At the command line, type: var.view ast (The variable ast is included in this demo.)

Select the Type check box to display the variable ast with the complete type information.

2. In the Var.view window, right-click ast, and then click Format.
The Change Variable Format dialog opens.

3.

4.

Click Apply. The format of ast in the Var.view window is updated immediately.

©1989-2024 Lauterbach

Training Simulator and Demo Software | 17

E=H(EE =

(word = Ox0, count = 12346 = 0x303A, left = Ox583C, right = Ox0, T1eldl -

Variable

« [g4 Add to Watch Window
ff} View in Window

&3 Set Value...

&5 Modify Value...

+ GoTill

a Breakpoint...

@ Advanced Breakpoint
e Breakpoints

i Display Memory
Display Trace

7 Grep in Sourcefiles
other

-

) [

28 Change Variable Format

(= ==]

— radix — format — pointer
Decimal Compact String
Hex Fixed WideString
BINary TREE sYmbol
Ascii SHOW PDUMP
DUMP — Open — Recursive ——
SCALED [oFe || | [oFF -

— other

- display

[~ Indax herited SPaces
| Type HIdden E
|| Location MEthods SpotLight

=)

(stat1c strtypel

< I

ast = ((unsigned char *) word = Ox0, (int) count = 12346 = 0x303A, (struct structl #) Teft = =

-

[

5. For more complex variable select TREE in the Change Variable Format dialog box.

Click + and - to expand
and collapse the tree.

B (static strtyﬁel) ast = (~

E| (uns‘l gned ¢

ar *) word = 0x0 — NULL,
Lo-t) count = 12346 = 0x303A,

»

Modifying Variables

B (sjruct structl #) left = 0x583C — (

unsigned char *) word = Ox0,

= (struct structl #) right = Ox0 — NULL

=

int) count = 12346 = 0x303A,
(struct structl '—‘) left = 0x583C,
B (struct structl *) right = 0x0,

= (int:2) fieldl =1 2 0x1,

= (unsigned int:3) field2 = 2 = 0x2),

<

I | o

1. Double-click the variable value to modify the value. The Var.set command will be displayed in the
command line. The short form of the command is v or v

-

(2] | (8 Waich) [0 View | |

@ def

#H ast = (word = DxD, count = 12346, Teft = 0x583C, right = Ox0, fieldl =1, f1 .
= 0

(x
mflags = [a,], 0. 1,1, 0,1,1,0,1,0,0,1,1,0, 0,1, 0

< I

B::V [flags[1] =

<

lags[1] =1
[okl J[formats J[<var> || J(J(J(J(J(
2. Enter the new value directly after the equal sign and confirm with [ok].

©1989-2024 Lauterbach

Training Simulator and Demo Software | 18

Memory

Displaying Memory

1.

Choose View from the menu then select Du

Click & Memory Dump on the toolbar,

symbol directly, e.g.: Data.dump flags

2. In the Data.dump dialog, enter the data item, e.

Alternatively click [z] to browse through the
3.

N TRACE32 PowerView
File
[M %

Edit Break Run CPU Misc Trace Perf Cov Pa

1) 2 R

View Var

it Reaqisters

To display a memory dump in a Data.dump window, do one of the following:

mp,

Type: Data.dump in the TRACE32 command line. You can also specify an address or

g. flags

symbol database.

In the Browse Symbols window, double-click the symbol £1ags to select it, and then click OK.

M step gty
addr
&

&{o},

Watch
Referenced Var

Locals

| 5T:000
ST:000

&= Stackframe with Locals

1dr
add

:f|Data. dump

ST:000 g Stackframe str

[[okl | [<range> || <address=|[options

SR:00001FF8 \\armle\arm\main

ST:000 «# Peripherals mow
3 Symbols »
1} BaData.dump [F=5 Eol 5
Address [Expression
+ [2]EHe

Width Access Options Flag

@ default @ default [CITrack Read

) Byte @E Orient Write

©) Word [V] Ascii

) Long [T] Spotlight
Z Browse Symbols =0 ESH =
W (] [-2] Type: Variables ~| [C]Source
symbol type address i
ast (strtypel)] D:0000583C--0000584F -
aun (struct unionl) D:00005AA8--00005ABF m
background m
cstrl D:00005500--00005510
def D:00005624--00005628
enumvar D:00005634--00005634

D:00006EA4--00006ERE .

Funco Double-click £1ags.
Funct [flags=(1,1,1,1,1,1,1,1,1,1,1,0,0,1,1,0,0,1,0) }
funcl0
Tuncll 4
| «)

©1989-2024 Lauterbach

Training Simulator and Demo Software | 19

In the following screenshot, the Data.dump window is called via the TRACE32 command line.

address [0 1 2
SD:00007ESO | OO 0O OO0
SD:00007EAQ | O1 00 01
SD:00007EBO | 58 6D 9E
SD:00007ECO | BC D3 22
5D:00007EDO | BE 2B 28
SD:00007EEQ | 55 55 C5
sD:00007EF0 | 00 00 0O 4w
SD:00007F00 | 58 6D 9E Xm
SD:00007F10 | 33 CE 83 36 4B C7 62 BF EE 60 CD 34 00 00 00 00 3%%6K5
sD:00007F20 | 34 00 00 00 25 00 00 00 OO OO OO0 00 CE 2B OO0 0O 4%%%s

‘B: :[Data.dump flags /Byte »Dﬂmdumpﬂagsmﬁe

[ok] options

Access Class + Address HEX ASCII

There are different ways to define an address range:

J <start_address>--<end_address> (SD is an access class)

Data.dump SD:0x5530--SD:0x554F

o <start_address>++<offset>

Data.dump cstrl++0x1f /Byte ;start at cstrl plus the next 0xl1f bytes

Modifying Memory

1. In a Data.dump window, double-click the value you want to modify.
A Data.Set command for the selected address is displayed in the command line. The short form
of the commandis D.S or d.s

N TRACE32 PowerView - | X
File Edit View Var Break Run CPU Misc Trace Perf Cov Peripherals Window Help

(M A+ || 2R 0 0SS @ 1 L

& [= ==
address |0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF
; ; #FiConstant 5tr
M

MM

SD:00004DF0
SD:00004E00
SD:00004E10
SD:00004E20
SD:00004E30
SD:00004E40
SD:00004E50
SD:00004EB0
SD:00004E7D

> < m >

—? D.S SD:0x4DE4 %LE]
[ok] Byte Word Long Quad Oct other previous
SD:00004DE4 “Nthumble\armbcstrl stopped MIX |UP
2. Enter the new value directly after %LE, and then confirm with [ok].

(%LE stands for Little Endian).

©1989-2024 Lauterbach Training Simulator and Demo Software | 20

Peripheral View

TRACE32 supports a freely configurable window for displaying and manipulating configuration registers and
on-chip peripheral registers at a logical level. Predefined peripheral files are available for most standard

processors/chips.

You can open the peripheral register view in the TRACES2 by selection the CPU menu, then Peripherals, or
by using the command PER.view in the TRACE32 command line.

I PER.view Display peripheral registers
B:PERview = =R
N - ~
= SCU (System Control Unit)
B CCU (Clocking and Clock Control Uni
B RCU (Reset Control Unit)
SCU_RSTSTAT 10010000 Not terminated Not terminated
Not requested Not requested
Not requested Not requested
Not requested Not requested
Not requested Not requested
Not requested Not requested
Not requested Not requested
Not requested Not requested
SCU_RSTCON 00000282 No reset No reset
No reset No reset
Application reset Application reset
No reset Application reset
SCIU_ARSTDIS 00000000 No No
No No
IN 00000000 No reset
2 00009FFC hd
£ >

©1989-2024 Lauterbach

Training Simulator and Demo Software

21

	Training Simulator and Demo Software
	About the Demo
	Starting the TRACE32 Simulator
	User Interface - TRACE32 PowerView
	TRACE32 Command Line and Softkeys
	Window Captions - What Makes Them Special in TRACE32?

	Debugging the Program
	Basic Debug Commands
	Debug Modes
	Displaying the Stack Frame

	Breakpoints
	Setting Breakpoints
	Setting Read/Write Breakpoints
	Listing all Breakpoints

	Variables
	Displaying Variables
	Displaying Variables of the Current Program Context
	Using the Symbol Browser
	Formatting Variables
	Modifying Variables

	Memory
	Displaying Memory
	Modifying Memory
	Peripheral View

