LAUTERBACH A

SH2, SH3 and SH4 Debugger

SH2, SH3 and SH4 Debugger

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... r—~
£ T o T=T o r—
SH2, SH3 and SHA4 DeDUQGQErccoiiiirmiriiiisirrinsssmssssssssmss s sssssssss s ssssssss s sssssasss s ssssssnssssnsssas 1

L 1= (o 5

Y e Yo 11T £ o) o T 5
Brief Overview of Documents for New Users 6
Demo and Start-up Scripts 6
L= T 11 ' 7
Application NOtecccceiiiiiii s s 8
Location of Debug Connector 8
Reset Line 8
Enable JTAG Mode SH2 9
Enable JTAG Mode SH3 9
SH7710/12 Solution Engine 9
Enable AUD Trace lines of SH7760 9
Memory Mapping of SH7615/ SH7616 BusControlRegisters 9
Enable 8-bit AUD Trace Interface of SH4-202 10
QUICK STart JTAGeeiiiiccciriesssscesssssssmessssssssse s sessssms e s esssssmeanessssmeneesssamnesessssnnennesssnnnnneas 11
TroubleShOOtING ... 13
SYStem.Up Errors 13
Trace Errors 14

O 14

{00 o) 1o 1] = 11 [o o R 15
System Overview 15

CPU specific SYStem Settings ... s s s sssees 16
SYStem.CONFIG.state Display target configuration 16
SYStem.CONFIG Configure debugger according to target topology 17
Daisy-Chain Example 19
TapStates 20

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 2

SYStem.CONFIG.CORE Assign core to TRACE32 instance 21
SYStem.CPU CPU type selection 22
SYStem.JtagClock JTAG clock selection 22
SYStem.LOCK JTAG lock 23
SYStem.MemAccess Select run-time memory access method 24
SYStem.Mode System mode selection 24
SYStem.Option.EnReset Allow the debugger to drive nRESET 25
SYStem.Option.HOOK Compare PC to hook address 25
SYStem.Option.IMASKASM Interrupt disable 26
SYStem.Option.IMASKHLL Interrupt disable 26
SYStem.Option.JtagWait JTAG wait enable 26
SYStem.Option.KEYCODE Keycode SH7144/45 26
SYStem.Option. MMUSPACES Separate address spaces by space IDs 27
SYStem.Option.NoRunCheck No check of the running state 28
SYStem.Option.SLOWRESET Slow reset enable 28
SYStem.Option.SOFTLONG Use LONG access for softbreak patching 28
SYStem.Option.SOFTSLOT Prevent softbreak in slot-instruction 29
SYStem.Option.STEPSOFT Use software breakpoints for ASM stepping 29
SYStem.Option.LittleEnd Selection of little endian mode 29
SYStem.RESetOut Reset target without reset of debug port 29
SYStem.Option.VBR Vector base address (SH3/4 only) 30
Multicore Debugging 30
== | o o T] 31
Software Breakpoints 31
On-chip Breakpoints 31
On-chip Breakpoints SH7047, SH7144, SH7145 32
On-chip Breakpoints SH72513 32
Breakpoint in ROM 33
Example for Breakpoints 33
CPU specific BenchMarkCounter Commandsccccceeimrmmissmmsmmsnsssssmmssssssssssssssssssns 34
BMC.<counter>.ATOB Advise counter to count within AB-range 34
CPU specific TrOnchip COmMmMaNdscccciiimiismsinimnissmsrssssssssssssssms s sasssssssssssssssasanes 35
TrOnchip.CONVert Adjust range breakpoint in on-chip resource 35
TrOnchip.lIOB I/O breakpoints (SH4, ST40) 35
TrOnchip.LDTLB LDTLB breakpoints 35
TrOnchip.A.IBUS I-bus breakpoints (SH2A) 36
TrOnchip.RESet Set on-chip trigger to default state 36
TrOnchip.RPE Reset sequential trigger on reset point 36
TrOnchip.SEQ Sequential breakpoints (SH4, ST40) 37
TrOnchip.SIZE Trigger on byte, word, long memory accesses 37
TrOnchip.state Display on-chip trigger window 37
CPU specific MMU COMMANAS coviiimmmrmmissnmsrrmssssssssnsssssss s sssssssssssssssssssssssssnsssnenas 38
©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger 3

MMU.DUMP Page wise display of MMU translation table 38

MMU.List Compact display of MMU translation table 40
MMU.SCAN Load MMU table from CPU 42
Memory Classes and Cache Handlingccccccmiiininmmnininmssinssess s sssssss s s s snsnnnns 44
Memory Classes (SH2) 44
Memory Classes (SH3, SH4, ST40) 44
Cache Handling(SH3, SH4, ST40) 45
Memory Coherency 45

£33 57 (=1 .0 T 0o 0 .4 T 14 Lo £ 46
SYStem.Option.ICFLUSH Cache invalidation option 46
SYStem.Option.DCFREEZE Freeze data cache contents 46
SYStem.Option.DCCOPYBACK Cache copy back 46
SYStem.Option.ICREAD Cache read option 46
SYStem.Option.DCREAD Cache read option 47
L= o= 48
FIFO Trace (SH2A, SH3, SH4, ST40) 48
SYStem.Option.FIFO FIFO trace configuration 48
LOGGER Trace (SH4, ST40, SH7705) 49
AUD-Trace (SH2A, SH4, ST40) 50
Selection of Branch and Data Trace Recording 50
SYStem.Option.AUDBT AUD branch trace enable 51
SYStem.Option.AUDDT AUD data trace enable 51
SYStem.Option.AUDRTT AUD real time trace enable 51
SYStem.Option.AUDClock AUD clock select 51
SYStem.Option.AUDS8 AUD 8-bit enable 52
AUD-Trace (SH3) 53
SYStem.Option.AUDRTT AUD real time trace enable 53
SYStem.Option.AUDClock AUD clock select 53
On-chip Trace SH2A 54
Onchip.Mode.MBusTrace Mbus trace enable 54
Onchip.Mode.|BusTrace Ibus trace enable 55
Onchip.Mode.ProgramTrace Program flow trace enable 55
Onchip.Mode.DataReadTrace Data read trace enable 55
Onchip.Mode.DataWriteTrace Data write trace enable 56
On-chip Performance Analysis (SH4, ST40)cccccciirirsmmimnnssrsrssssss s ssssssmssssnsss 57
TrOnchip.PMCTRXx Performance counter configuration 57
Runtime Measurementccccccicrcmmmnnrinisssssssssssmssser s sesssssssssssssmssessssssessssssssssnnnmmsnnssnns 59
0 I X € 0o T T 1= o o 60

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 4

SH2, SH3 and SH4 Debugger

Version 06-Jun-2024

History
20-Jul-22 For the MMU.SCAN ALL command, CLEAR is now possible as an optional second
parameter.
Introduction

This document describes the processor specific settings and features for TRACE32-ICD for the following
CPU families:

SH4A

SH4 (7750, 7751)

SH3 (7709A, 7729)

SH2A

SH2 (7047F, 7058FCC, 7144/45)

ST40 (ST40STB1, ST40RA166, STA0GX1, STAONGX1, SH4-202)

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

If some of the described functions, options, signals or connections in this Processor Architecture Manual are
only valid for a single CPU or for specific families, the name(s) of the family(ies) is added in brackets.

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 5

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACES2 debugger.

. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

J “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known SuperH based hardware.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:
. Type at the command line: WELCOME.SCRIPTS

. or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/sh/ subfolder of the system directory of TRACES32.

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 6

Warning

Signal Level

The debugger drives the output pins of the JTAG connector with 3.3 V always.

ESD Protection

1.

N o oo A W

—

P 0D

WARNING: To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

Disconnect the Debug Cable from the target while the target power is
off.

Connect the host system, the TRACE32 hardware and the Debug
Cable.

Power ON the TRACE32 hardware.

Start the TRACES32 software to load the debugger firmware.
Connect the Debug Cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:

Switch off the target power.

Disconnect the Debug Cable from the target.
Close the TRACE32 software.

Power OFF the TRACES32 hardware.

©1989-2024 Lauterbach

SH2, SH3 and SH4 Debugger |

Application Note

Location of Debug Connector

Locate the JTAG connector as close as possible to the processor to minimize the capacitive influence of
the trace length and cross coupling of noise onto the BDM signals.

Reset Line

Ensure that the debugger signal RESET is connected directly to the RESET of the processor. This will
provide the ability for the debugger to drive and sense the status of RESET.

Reset circuit of debugger VCC
10 kQ
Reset Sense SH2_RES#
SH3_RESETP#
N4 SH4_RESET#
= ST40_RSTH#

Force Reset

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 8

Enable JTAG Mode SH2

SH7047:
J Signal /DBGMD has to be forced to GND (debug mode enable)

SH7144/45:
J Signal DBGMD has to be forced to VCC (debug mode enable)
J Signal FWE has to be forced to GND (FLASH write enable)

Enable JTAG Mode SH3

Signal ASEMDO has to be forced to GND

SH7710/12 Solution Engine

The debug connector of the SH7710 Solution Engine requires a modification to support AUD trace. Please
connect pin 1 (NC) with pin 35 (AUDCK).

Enable AUD Trace lines of SH7760

The CPUs AUD trace lines are shared with port lines. Trace functionality has to be enabled in CPU register
IPSELR (set bit 12 and 13).

Use command: DATA.SET 0xFE400034 %Word 3003

Memory Mapping of SH7615/ SH7616 BusControlRegisters

As long as emulation is stopped the peripheral registers of addressrange
0xFFFFFFCO--OxFFFFFFFF are mapped to address range 0xFFFFFDCO--OxFFFFFDFF.
This address range covers the BusControlRegisters. During program execution they can be accessed at

their original address. When emulation is stopped they have to be accessed in the range 0xFFFFFDCO--
OxFFFFFDFF.

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 9

Enable 8-bit AUD Trace Interface of SH4-202

The CPUs AUD trace lines AUD[7..4] are shared with other CPU peripherals. For 8-bit AUD trace usage
these trace lines have to be enabled by setting bit-4 of CPU register SYS_CONF_REG (0xb9ee0004).

Attention: The access to SYS_CONF_REG only works if clocking of PLL2 is already initialized!

Find here a setup example:.

; inform TRACE32 software about 8-bit AUD trace usage
System.Option.AUD8 ON

; PLL2 init

Data.Set 0xb8800038 %Long 0x3000560e

; PLL2 enable (read-modify-write action)

Data.Set 0xb8800004 %Long DATA.LONG (d:0xb8800004) |0x1
; AUD8 bit enable (SYS_CONF_REG) bit-4

Data.Set 0xb9ee0004 %Long DATA.LONG (d:0xb9ee0004) | 0x10

Add this lines to your TRACE32 setup file.

For 4-bit AUD trace mode no setup is required (default setting).

’

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger

10

Quick Start JTAG

Starting up the Debugger is done as follows:

1.

Select the device prompt B: for the ICD Debugger, if the device prompt is not active after the
TRACERS2 software was started.

b:
Select the CPU type to load the CPU specific settings.

SYStem.CPU SH7750

If the TRACE32-ICD hardware is installed properly, the following CPU is the default setting:
SH7750
Tell the debugger where’s FLASH/ROM on the target.

MAP.BOnchip OxFF000000++0xFFFFFFFF

This command is necessary for the use of on-chip breakpoints.

Enter debug mode

SYStem.Up

This command resets the CPU and enters debug mode. After this command is executed, it is possible
to access the registers. Set the chip selects to get access to the target memory.

Data.Set ..

Load the program.

Data.LOAD.ELF diabc.elf ; elf specifies the format, diabc.elf
; 1s the file name

The option of the Data.LOAD command depends on the file format generated by the compiler. A
detailed description of the Data.LOAD command is given in the “General Commands Reference”.

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 11

The start-up can be automated using the programming language PRACTICE. A typical start sequence is

shown below:
199 g ; Select the ICD device prompt
WinCLEAR ; Delete all windows
MAP.BOnchip 0x100000++0x0fffff ; Specify where’s FLASH/ROM
SYStem.CPU SH7750 ; Select the processor type
SYStem.Up ; Reset the target and enter debug
; mode
Data.LOAD.COFF GNUSH7.X ; Load the application
Register.Set PC main ; Set the PC to function main
Data.List ; Open disassembly window *)
Register.view /SpotLight ; Open register window *)
Frame.view /Locals /Caller ; Open the stack frame with
; local variables *)
Var.Watch %Spotlight flags ast ; Open watch window for variables *)
PER.view ; Open window with peripheral register
g =)
Break.Set sieve ; Set breakpoint to function sieve
Break.Set 0x1000 /Program ; Set software breakpoint to address
; 1000 (address 1000 is in RAM)
Break.Set 0x101000 /Program ; Set on-chip breakpoint to address

; 101000 (address 101000 is in ROM)
; (Refer to the restrictions in
; On-chip Breakpoints.)

*) These commands open windows on the screen. The window position can be specified with the WinPOS
command.

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 12

Troubleshooting

SYStem.Up Errors

The SYStem.Up command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command this may have the following reasons.

All The target has no power.

All The target is in reset:
The debugger controls the processor reset and use the RESET line to reset the
CPU on every SYStem.Up.

All There is logic added to the JTAG state machine:

By default the debugger supports only one processor on one JTAG chain.

If the processor is member of a JTAG chain the debugger has to be informed
about the target JTAG chain configuration. See Multicore Debugging.

All There are additional loads or capacities on the JTAG lines.

Monitor Download Error

At System.Up the debugger loads a monitor program into the target CPU and checks if communication with
the monitor works well.

Each CPU type has it's own monitor program, so it is a must to inform the debugger about the CPU in use
and the endianness. Use commands:

o System.CPU
o System.Option.LittleEnd

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 13

Trace Errors

There are several reasons for Trace Errors.
1. Hardware problems with AUD trace interface:

The TRACES32 AUD trace is designed for up to 200 MHz AUDCLK. Take care about the layout of your
target especially the routing of AUDCLK. In case of Trace Errors try lower AUDCLK speeds with
command SYStem.Option.AUDCLK 1/1, 1/2, 1/4 1/8.

2. AUD protocol errors

In case of RealTimeTrace mode (SYSTEM.Option.AUDRTT ON) it might happen the CPU executes
program quicker than the AUD interface can transfer its information. In this case the current AUD
transfer is skipped, trace information gets lost and as a result it is not possible to calculate the correct
program flow. To prevents this kind of error the AUD clock should be as high as possible. If this does
not solve the problem you have to switch OFF the RealTimeTrace mode (SYSTEM.Option.AUDRTT
OFF)

3. Calculation Error

The trace listing is calculated in conjunction of the trace records plus the memory contents. If the
memory content has changed (self modified code, different chipselect setting, MMU ...) in between
run time and calculation time there will be mismatches of the trace records compared to the current
program in memory.

FAQ

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 14

https://support.lauterbach.com/kb

Configuration

System Overview

PODBUS Cable u

PODPC
PODPAR Debug EPROM
PODETH Interface Simulator e

(optional)

[

—Debug Cable

|

. —
CPU CLK e—RESET
e—INT

Target Connector
EPROM

Target

Basic configuration for the BDM Interface

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 15

CPU specific SYStem Settings

SYStem.CONFIG.state Display target configuration
Format: SYStem.CONFIG.state [/<tab>]
<tab>: DebugPort | Jtag

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are notincluded in the SYStem.CONFIG.state window.

<tab> Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.

DebugPort Informs the debugger about the debug connector type and the
communication protocol it shall use.

Jtag Informs the debugger about the position of the Test Access Ports (TAP) in
the JTAG chain which the debugger needs to talk to in order to access the
debug and trace facilities on the chip.

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 16

SYStem.CONFIG Configure debugger according to target topology

Format: SYStem.CONFIG <parameter> <number_or_address>
SYStem.MultiCore <parameter> <number_or_address> (deprecated)

<parameter>: CORE <core>
<parameter>: DRPRE <bits>
(JTAG): DRPOST <bits>

IRPRE <bits>
IRPOST <bits>
TAPState <state>
TCKLevel </evel>
TriState [ON | OFF]
Slave [ON | OFF]

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger about the
TAP controller position in the JTAG chain, if there is more than one core in the JTAG chain (e.g. Arm + DSP).
The information is required before the debugger can be activated e.g. by a SYStem.Up. See Daisy-chain
Example.

For some CPU selections (SYStem.CPU) the above setting might be automatically included, since the
required system configuration of these CPUs is known.

TriState has to be used if several debuggers (“via separate cables”) are connected to a common JTAG port
at the same time in order to ensure that always only one debugger drives the signal lines. TAPState and
TCKLevel define the TAP state and TCK level which is selected when the debugger switches to tristate
mode. Please note: nTRST must have a pull-up resistor on the target, TCK can have a pull-up or pull-down
resistor, other trigger inputs need to be kept in inactive state.

Multicore debugging is not supported for the DEBUG INTERFACE (LA-7701).

g
CORE For multicore debugging one TRACE32 PowerView GUI has to be started
per core. To bundle several cores in one processor as required by the
system this command has to be used to define core and processor
coordinates within the system topology.
Further information can be found in SYStem.CONFIG.CORE.
DRPRE (default: 0) <number> of TAPs in the JTAG chain between the core of

interest and the TDO signal of the debugger. If each core in the system
contributes only one TAP to the JTAG chain, DRPRE is the number of
cores between the core of interest and the TDO signal of the debugger.

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 17

DRPOST (default: 0) <number> of TAPs in the JTAG chain between the TDI signal
of the debugger and the core of interest. If each core in the system
contributes only one TAP to the JTAG chain, DRPOST is the number of
cores between the TDI signal of the debugger and the core of interest.

IRPRE (default: 0) <number> of instruction register bits in the JTAG chain
between the core of interest and the TDO signal of the debugger. This is
the sum of the instruction register length of all TAPs between the core of
interest and the TDO signal of the debugger.

IRPOST (default: 0) <number> of instruction register bits in the JTAG chain
between the TDI signal and the core of interest. This is the sum of the
instruction register lengths of all TAPs between the TDI signal of the
debugger and the core of interest.

TAPState (default: 7 = Select-DR-Scan) This is the state of the TAP controller when
the debugger switches to tristate mode. All states of the JTAG TAP
controller are selectable.

TCKLevel (default: 0) Level of TCK signal when all debuggers are tristated.

TriState (default: OFF) If several debuggers share the same debug port, this
option is required. The debugger switches to tristate mode after each
debug port access. Then other debuggers can access the port. JTAG:
This option must be used, if the JTAG line of multiple debug boxes are
connected by a JTAG joiner adapter to access a single JTAG chain.

Slave (default: OFF) If more than one debugger share the same debug port, all
except one must have this option active.
JTAG: Only one debugger - the “master” - is allowed to control the signals
nTRST and nSRST (nNRESET).

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 18

Daisy-Chain Example

TDl——-® Core A —Core B p Core C—» Core D +—» TDO

Chip 0 Chip 1

Below, configuration for core C.

Instruction register length of
. Core A: 3 bit
. Core B: 5 bit
. Core D: 6 bit

SYStem.CONFIG.IRPRE 6. ; IR Core D

SYStem.CONFIG.IRPOST 8. ; IR Core A + B
SYStem.CONFIG.DRPRE 1. ; DR Core D

SYStem.CONFIG.DRPOST 2. ; DR Core A + B

SYStem.CONFIG.CORE 0. 1. ; Target Core C i1s Core 0 in Chip 1

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 19

TapStates

0 Exit2-DR
Exit1-DR
Shift-DR
Pause-DR
Select-IR-Scan
Update-DR
Capture-DR
Select-DR-Scan
Exit2-IR
Exit1-IR
Shift-IR
Pause-IR
Run-Test/Idle
Update-IR
Capture-IR

© 00 N o 0o~ W N =

—_ - e e —d
a A~ WO N = O

Test-Logic-Reset

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 20

SYStem.CONFIG.CORE Assign core to TRACE32 instance

Format: SYStem.CONFIG.CORE <core_index> <chip_index>
SYStem.MultiCore.CORE <core_index> <chip_index> (deprecated)

<chip_index>: 1.0

<core_index>: 1...k

Default core_index: depends on the CPU, usually 1. for generic chips

Default chip_index: derived from CORE= parameter of the configuration file (config.t32). The CORE
parameter is defined according to the start order of the GUI in T32Start with ascending values.

To provide proper interaction between different parts of the debugger, the systems topology must be
mapped to the debugger’s topology model. The debugger model abstracts chips and sub cores of these
chips. Every GUI must be connect to one unused core entry in the debugger topology model. Once the
SYStem.CPU is selected, a generic chip or non-generic chip is created at the default chip_index.

Non-generic Chips
Non-generic chips have a fixed number of sub cores, each with a fixed CPU type.

Initially, all GUIs are configured with different chip_index values. Therefore, you have to assign the
core_index and the chip_index for every core. Usually, the debugger does not need further information to
access cores in non-generic chips, once the setup is correct.

Generic Chips

Generic chips can accommodate an arbitrary amount of sub-cores. The debugger still needs information
how to connect to the individual cores e.g. by setting the JTAG chain coordinates.

Start-up Process

The debug system must not have an invalid state where a GUI is connected to a wrong core type of a non-
generic chip, two GUIs are connected to the same coordinate or a GUI is not connected to a core. The initial
state of the system is valid since every new GUI uses a new chip_index according to its CORE= parameter
of the configuration file (config.t32). If the system contains fewer chips than initially assumed, the chips must
be merged by calling SYStem.CONFIG.CORE.

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 21

SYStem.CPU CPU type selection

Format: SYStem.CPU <cpu>

<cpu>: AUTO | SH7750 | SH7751 ...

Default selection: SH7750.

Selects the CPU type.
AUTO Automatic CPU detection during SYStem.UP. The JTAG clock has to be
less/equal 5 MHz. The detected CPU type can be checked with the function
CPU().
SYStem.JtagClock JTAG clock selection
Format: SYStem.JtagClock [<frequency> | EXT/x]

SYStem.BdmClock [<frequency> | EXT/x] (deprecated)

Default frequency: 20 MHz.

Selects the JTAG port frequency (TCK). The SH3/4-Core is designed for a maximum TCK clockspeed of
20 MHz!

Any frequency can be entered, it will be generated by the debuggers internal PLL.

There is an additional plug on the debug cable on the debugger side. This plug can be used as an external
clock input. With setting EXT/x the external clock input (divided by x) is used as JTAG port frequency.

If there are buffers, additional loads or high capacities on the JTAG/COP lines,
reduce the debug speed.

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 22

SYStem.LOCK JTAG lock

Format: SYStem.LOCK [ON | OFF]

Default: OFF.

If the system is locked (ON) no access to the JTAG port will be performed by the debugger. All JTAG
connector signals of the debugger are tristated.

This command is useful if there are additional CPUs (Cores) on the target which have to use the same JTAG
lines for debugging. By locking the T32 debugger lines, a different debugger can own mastership of the
JTAG interface.

It must be ensured that the state of the SHx/ST40 core JTAG state machine remains unchanged while the
system is locked. To ensure correct hand-over between two debuggers, a pull-down resistor on TCK and a
pull-up resistor on /TRST is required.

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 23

SYStem.MemAccess Select run-time memory access method

Format: SYStem.MemAccess Enable | StopAndGo | Denied
SYStem.ACCESS (deprecated)
Enable Memory access during program execution to target is enabled.

CPU (deprecated)
Denied (default)

StopAndGo

Memory access during program execution to target is disabled.

Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

If MemAccess is set to Enable, setting breakpoints and memory accesses (access class “E”) is possible
even if the core is running.

NOTE: o Memory Access while core is running is only supported by SH2A and
SHA4A cores.

. Memory Access does not support the access to cache contents! To fol-
low up variable changes in cached memory areas, the cache has to be
switched OFF or set to WriteTrough mode. Write accesses only modify
system- or target-memory no cache content!

SYStem.Mode System mode selection
Format: SYStem.Mode <mode>
SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)
<mode>: Down
Go
Up
Attach

©1989-2024 Lauterbach

SH2, SH3 and SH4 Debugger | 24

Down Disables the Debugger.

Go Resets the target with debug mode enabled and prepares the CPU for
debug mode entry. After this command the CPU is in the system.up
mode and running. Now, the processor can be stopped with the break
command or until any break condition occurs.

Up Resets the target and sets the CPU to debug mode. After execution of
this command the CPU is stopped and prepared for debugging. All
register are set to the default value.

Attach Attach to cpu without entering debug mode. There is no debug control
but memory contents can be accessed. Only supported for SH4A cores.

NoDebug Not supported.
StandBy Not supported.
SYStem.Option.EnReset Allow the debugger to drive nRESET
Format: SYStem.Option.EnReset [ON | OFF]
Default: ON.

If this option is disabled the debugger will never drive the nRESET line of the JTAG connector. This is
necessary if NRESET is no open collector or tristate signal.

From the view of the SH core it is not necessary that nRESET becomes active at the start of a debug
session (SYStem.Up), but there may be other logic on the target which requires a reset.

SYStem.Option.HOOK Compare PC to hook address

Format: SYStem.Option.HOOK <address> | <address_range>

The command defines the hook address. After program break the hook address is compared against the
program counter value.

If the values are equal, it is supposed that a hook function was executed. This information is used to
determine the right break address by the debugger.

Command is valid for SH2 only. Hook address for on-chip breakpoints. See also Onchip Break SH7047.

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 25

SYStem.Option.IMASKASM Interrupt disable

Format: SYStem.Option.IMASKASM [ON | OFF]

Mask interrupts during assembler single steps. Useful to prevent interrupt disturbance during assembler

single stepping.
SYStem.Option.IMASKHLL Interrupt disable
Format: SYStem.Option.IMASKHLL [ON | OFF]

Mask interrupts during HLL single steps. Useful to prevent interrupt disturbance during HLL single stepping.

SYStem.Option.JtagWait JTAG wait enable

Format: SYStem.Option.JtagWait [ON | OFF]

Has to be switched “ON” for SH7705, SH7709A till revision “S” and SH7729 till revision “R”.

This option enables a special bugfix for the CPUs Jtag interface. Jtag communication becomes slower!

SYStem.Option.KEYCODE Keycode SH7144/45

Format: SYStem.Option.KEYCODE [<32bit_value>]

Has to be the same value as present in CPU Flash at address 0x20--0x23

The KEYCODE is sent to the CPU during system up. If the KEYCODE does not fit then the CPU
automatically erases its FLASH before the debug monitor can be downloaded. This is a special security

feature of the SH7144/45.

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 26

SYStem.Option.MMUSPACES Separate address spaces by space IDs

Format: SYStem.Option.MMUSPACES [ON | OFF]
SYStem.Option.MMUspaces [ON | OFF] (deprecated)
SYStem.Option.MMU [ON | OFF] (deprecated)

Default: OFF.
Enables the use of space IDs for logical addresses to support multiple address spaces.

For an explanation of the TRACES32 concept of address spaces (zone spaces, MMU spaces, and machine
spaces), see “TRACE32 Concepts” (trace32_concepts.pdf).

NOTE: SYStem.Option.MMUSPACES should not be set to ON if only one translation
table is used on the target.

If a debug session requires space IDs, you must observe the following
sequence of steps:

1. Activate SYStem.Option.MMUSPACES.
2. Load the symbols with Data.LOAD.

Otherwise, the internal symbol database of TRACE32 may become
inconsistent.

Examples:

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x012A:
Data.dump D:0x012A:0xC00208A

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x0203:
Data.dump D:0x0203:0xC00208A

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 27

SYStem.Option.NoRunCheck No check of the running state

Format: SYStem.Option.NoRunCheck [ON | OFF]

Default: OFF.

This option advises the debugger not to do any running check. In this case the debugger does not even
recognize that there will be no response from the processor. Therefore there is always the message
“running” independent if the core is in power down or not. This can be used to overcome power saving
modes in case the user knows when this happens and that he can manually de-activate and re-activate the
running check.

SYStem.Option.SLOWRESET Slow reset enable

Format: SYStem.Option.SlowReset [ON | OFF]

Has to be switched “ON” if the reset line of the debug connector is not(!) connected direct to the CPU reset
pin.

Problem: At system-up the debugger has to enable the CPUs debug mode first. This is done by a certain
sequence of the debug signals. This sequence becomes faulty if the target includes a reset-circuit which
hold the reset line for a unknown period.

If SlowReset is switched “ON” the debugger accepts a reset-hold period of up to 1 s. A system up needs
about 3 s then!

SYStem.Option.SOFTLONG Use LONG access for softbreak patching
Format: SYStem.Option.SOFTLONG [ON | OFF]
Default: OFF.

A software breakpoint is a certain 16bit CPU instruction which is patched to the code. For applications which
support 32bit write cycles only this option has to be switched ON. This way the break patching will not
corrupt the instruction before/after the break address.

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 28

SYStem.Option.SOFTSLOT Prevent softbreak in slot-instruction

Format: SYStem.Option.SOFTSLOT [ON | OFF]

Default: OFF.

If set to ON, TRACES32 gives an error message if a software breakpoint should be set to a slot-instruction. It
is a CPU restriction which does not allow to set software breakpoints to slot-instructions.

SYStem.Option.STEPSOFT Use software breakpoints for ASM stepping
Format: SYStem.Option.STEPSOFT [ON | OFF]
Default: OFF.

If this option is ON software breakpoints are used for single stepping on assembler level (advanced users
only).

SYStem.Option.LittleEnd Selection of little endian mode

Format: SYStem.Option.LittleEnd [ON | OFF]

With this option data is displayed little endian style.

SYStem.RESetOut Reset target without reset of debug port

Format: SYStem.RESetOut

If possible (NnRESET is open collector), this command asserts the nRESET line on the debug connector.
This will reset the target including the CPU but not the debug port. The function only works when the system
is in SYStem.Mode.Up.

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 29

SYStem.Option.VBR Vector base address (SH3/4 only)

Format: SYStem.Option.VBR [<32bit_value>]

Enter Vector-Base-Address here.
This value is used to detect and display exception table accesses in the trace listing. In case the application

dynamically changes the VBR register settings the trace.list algorithm can use this value instead of the VBR
register content.

Multicore Debugging

If your SHx/ST40 device is the only one connected to the JTAG connector then the following system setting
should be left in their default position.

If your SHx/ST40 CPU is lined up in a target JTAG chain then the debugger has to be informed about the
“position” of the device inside the JTAG chain. Following system settings have to be done according to your

target configuration.

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 30

Breakpoints

There are two types of breakpoints available: Software breakpoints (SW-BP) and on-chip breakpoints (HW-
BP).

Software Breakpoints

Software breakpoints are the default breakpoints. A special breakcode is patched to memory so it only can
be used in RAM or FLASH areas.There is no restriction in the number of software breakpoints.

On-chip Breakpoints

The following list gives an overview of the usage of the on-chip breakpoints by

TRACE32-ICD..
CPU Family Number of Number of Sequential
Address Breakpoints Data Breakpoints Breakpoints

SH2A 10 2 C->D

ST4A B->C->D
A->B->C->D

SH4 6 2 C->D

ST40 B->C->D
A->B->C->D

SH3 2 1

SH7047 1

SH7144/45

SH7058 12 12 A->B->C->D

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 31

On-chip Breakpoints SH7047, SH7144, SH7145

The SH2 debugger uses the CPU internal UserBreakControl unit. This break unit generates an user
exception, so some special settings and software changes are needed.

1. Define the UBC exception vector-12 (address 0x30++3)
2. The first instruction of the UBC exception handler must be a BRK (0x0000)

3. UBC exceptions are only accepted if the interrupt mask of SR register is less than 15. This
means the application should not set the interrupt mask to 15!

4. The debugger has to be informed about the start address of the UBC exception. Use command
SYStem.Option.HOOK <ubc_exception_address>

Example: Patch a 0x00000030 to address 0x30. This way the exception vector points to UBC-exception
handler at address 0x30. There the first instruction is a BRK (0x0000).

SYSTEM.Option.HOOK 0x30
Register.Set SR 0xEO

On-chip Breakpoints SH72513

For SH2A production devices the debugger uses the CPU internal UserBreakControl unit. This break unit
generates an user exception, so some special settings and software changes are needed.

1. Define the UBC exception vector-12 (address 0x30++3)
2. The first instruction of the UBC exception handler must be a BRK (0x003B)

3. UBC exceptions are only accepted if the interrupt mask of SR register is less than 15. This
means the application should not set the interrupt mask to 15!

4. The debugger has to be informed about the start address of the UBC exception. Use command
SYStem.Option.HOOK <ubc_exception_address>

Example: Patch a 0x00000008 value to address 0x30. This way the UBC-exception vector points to the
exception handler at address 0x08.

There the first instruction is a BRK instruction (0x003B).

SYSTEM.Option.HOOK 0x08
Register.Set SR O0xEO

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 32

Breakpoint in ROM

With the command MAP.BOnchip <range> it is possible to inform the debugger about ROM
(FLASH,EPROM) address ranges in target. If a breakpoint is set within the specified address range the
debugger uses automatically the available on-chip breakpoints.

Example for Breakpoints

Assume you have a target with FLASH from 0 to 0xFFFFF and RAM from 0x100000 to 0x11FFFF. The
command to configure TRACES32 correctly for this configuration is:

Map .BOnchip 0x0--0xOFFFFF

The following breakpoint combinations are possible.

Software breakpoints:

Break.Set 0x100000 /Program ; Software Breakpoint 1
Break.Set 0x101000 /Program ; Software Breakpoint 2
Break.Set 0Oxx /Program ; Software Breakpoint 3

On-chip breakpoints:

Break.Set 0x100 /Program ; On-chip Breakpoint 1

Break.Set 0x0ff00 /Program ; On-chip Breakpoint 2

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 33

CPU specific BenchMarkCounter Commands

The benchmark counters can be read at run-time. Events can be assigned to BMC.<counter>.EVENT
<event>. For a list of supported events, refer to TrOnchip.PMCTRXx.

For information about architecture-independent BMC commands, refer to “BMC” (general_ref_b.pdf).

For information about architecture-specific BMC command(s), see command description(s) below.

BMC.<counter>.ATOB

Advise counter to count within AB-range

Format: BMC.<counter>.ATOB [ON | OFF]

Advise the counter to count the specified event only in AB-range. Alpha and Beta markers are used to
specify the AB-range.

Example to measure the time used by the function sieve:

BMC.<counter> ClockCylces
BMC.CLOCK 450.Mhz

Break.Set sieve /Alpha

Break.Set V.END(sieve)-1 /Beta

BMC.<counter>.ATOB ON

<counter> counts clock cycles
core i1s running at 450.MHz

set a marker Alpha to the entry
of the function sieve

set a marker Beta to the exit
of the function sieve

advise <counter> to count only
in AB-range

©1989-2024 Lauterbach

SH2, SH3 and SH4 Debugger |

34

CPU specific TrOnchip Commands

TrOnchip.CONVert Adjust range breakpoint in on-chip resource

Format: TrOnchip.CONVert [ON | OFF] (deprecated)
Use Break.CONFIG.InexactAddress instead

The on-chip breakpoints can only cover specific ranges. If a range cannot be programmed into the
breakpoint, it will automatically be converted into a single address breakpoint when this option is active. This
is the default. Otherwise an error message is generated.

TrOnchip.CONVert ON

Break.Set 0x1000--0x17ff /Write ; sets breakpoint at range

Break.Set 0x1001--0x17ff /Write ; 1000--17ff sets single breakpoint
; at address 1001

TrOnchip.CONVert OFF ; sets breakpoint at range

Break.Set 0x1000--0x17ff /Write ; 1000--17ff

Break.Set 0x1001--0x17ff /Write ; gives an error message
TrOnchip.lIOB I/O breakpoints (SH4, ST40)

Format: TrOnchip.IOB [ON | OFF]

Enable break on I/O access.

TrOnchip.LDTLB LDTLB breakpoints

Format: TrOnchip.LDTLB [ON | OFF]

Enable break on LDTLB instruction.

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 35

TrOnchip.A.IBUS I-bus breakpoints (SH2A)

Format: TrOnchip.ABCD.IBUS <action>

Defines a trigger or trace action for I-Bus activity.

Selects onchip break action for /Alpha, /Beta, /Charly and /Delta breaks. The selected action becomes active
for breakpoints which are set with option /Alpha, /Beta, /Charly or /Delta.

Actions can be defined for any I-Bus master (CPU, DMA, ADMA):
. Break: Stop program execution
. TraceEnable: Do selective trace

J TraceOff: Stop trace recording

TrOnchip.RESet Set on-chip trigger to default state

Format: TrOnchip.RESet

Sets the TrOnchip settings and trigger module to the default settings.

TrOnchip.RPE Reset sequential trigger on reset point

Format: TrOnchip.RPE [ON | OFF]

If ON: If the break reset point register (BRPR) setting matches the instruction fetch address, the sequential
state and execution count break register value are initialized. Default: OFF

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 36

TrOnchip.SEQ Sequential breakpoints (SH4, ST40)

Format: TrOnchip.SEQ <mode>
<mode>: OFF

CcDh

BCD

ABCD

This trigger-on-chip command selects sequential breakpoints.

OFF Sequential break off.

BA, CD Sequential break, first condition, then second condition.

BCD, CBA Sequential break, first condition, then second condition, then third
condition.

ABCD, DCBA Sequential break, first condition, then second condition, then third

condition and the fourth condition.

Break.Set sieve /Charly /Program
Var.Break.Set flags[3] /Delta /Write

TrOnchip.SEQ CD

TrOnchip.SIZE Trigger on byte, word, long memory accesses

Format: TrOnchip.SIZE [ON | OFF]

If ON, breakpoints on single-byte, two-byte or four-byte address ranges only hit if the CPU accesses this
ranges with a byte, word or long bus cycle. Default: OFF

TrOnchip.state Display on-chip trigger window

Format: TrOnchip.state

Opens the TrOnchip.state window.

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 37

CPU specific MMU Commands

MMU.DUMP Page wise display of MMU translation table
Format: MMU.DUMP <table> [<range> | <address> | <range> <root> |
<address> <root>]
MMU. <table>.dump (deprecated)
<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

Displays the contents of the CPU specific MMU translation table.

. If called without parameters, the complete table will be displayed.

o If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root>

The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.

PageTable

Displays the entries of an MMU translation table.

. if <range> or <address> have a space ID: displays the translation
table of the specified process

. else, this command displays the table the CPU currently uses for
MMU translation.

©1989-2024 Lauterbach

SH2, SH3 and SH4 Debugger | 38

KernelPageTable

Displays the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and displays its table entries.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Displays the MMU translation table entries of the given process. Specify
one of the TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and displays its table entries.

. For information about the first three parameters, see “What to
know about the Task Parameters” (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.

©1989-2024 Lauterbach

SH2, SH3 and SH4 Debugger |

39

CPU specific Tables in MMU.DUMP <table>

ITLB Displays the contents of the ITLB translation table.
Deprecated command syntax: MMU.ITLB.
UTLB Displays the contents of the UTLB translation table.
Deprecated command syntax: MMU.UTLB.
MMU.List Compact display of MMU translation table
Format: MMU.List <table> [<range> | <address> | <range> <root> | <address> <root>]
MMU.<table>.List (deprecated)
<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0

Lists the address translation of the CPU-specific MMU table.

o If called without address or range parameters, the complete table will be displayed.

. If called without a table specifier, this command shows the debugger-internal translation table.
See TRANSIation.List.

J If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.
<range> Limit the address range displayed to either an address range
<address> or to addresses larger or equal to <address>.
For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.
PageTable Lists the entries of an MMU translation table.
. if <range> or <address> have a space ID: list the translation table
of the specified process
. else, this command lists the table the CPU currently uses for MMU
translation.

©1989-2024 Lauterbach

SH2, SH3 and SH4 Debugger | 40

KernelPageTable

Lists the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and lists its address translation.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Lists the MMU translation of the given process. Specify one of the
TaskPageTable arguments to choose the process you want.

In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and lists its address translation.

. For information about the first three parameters, see “What to
know about the Task Parameters” (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.

©1989-2024 Lauterbach

SH2, SH3 and SH4 Debugger |

41

MMU.SCAN Load MMU table from CPU

Format: MMU.SCAN <table> [<range> <address>]
MMU. <table>.SCAN (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
ALL [Clear]
<cpu_specific_tables>

Loads the CPU-specific MMU translation table from the CPU to the debugger-internal static translation table.

. If called without parameters, the complete page table will be loaded. The list of static address
translations can be viewed with TRANSIation.List.

J If the command is called with either an address range or an explicit address, page table entries
will only be loaded if their logical address matches with the given parameter.

Use this command to make the translation information available for the debugger even when the program
execution is running and the debugger has no access to the page tables and TLBs. This is required for the
real-time memory access. Use the command TRANSIation.ON to enable the debugger-internal MMU table.

PageTable Loads the entries of an MMU translation table and copies the address
translation into the debugger-internal static translation table.
J if <range> or <address> have a space ID: loads the translation table
of the specified process
. else, this command loads the table the CPU currently uses for MMU
translation.

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 42

KernelPageTable

Loads the MMU translation table of the kernel.

If specified with the MMU.FORMAT command, this command reads the table
of the kernel and copies its address translation into the debugger-internal
static translation table.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Loads the MMU address translation of the given process. Specify one of
the TaskPageTable arguments to choose the process you want.

In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and copies its address translation into the debugger-internal static translation
table.

o For information about the first three parameters, see “What to know
about the Task Parameters” (general_ref_t.pdf).
J See also the appropriate OS Awareness Manual.

ALL [Clear]

Loads all known MMU address translations.

This command reads the OS kernel MMU table and the MMU tables of all
processes and copies the complete address translation into the debugger-
internal static translation table.

See also the appropriate OS Awareness Manual.

Clear: This option allows to clear the static translations list before reading
it from all page translation tables.

CPU specific tables in MMU.SCAN <table>

ITLB Loads the ITLB translation table from the CPU to the debugger-internal
translation table.
UTLB Loads the UTLB translation table from the CPU to the debugger-internal

translation table.

©1989-2024 Lauterbach

SH2, SH3 and SH4 Debugger | 43

Memory Classes and Cache Handling

Memory Classes (SH2)

The following memory classes are available:

Memory Class Description
P Program
D Data

Memory Classes (SH3, SH4, ST40)

The following memory classes are available:

Memory Class Description

P Program

D Data

IC Instruction Cache

DC Data Cache

NC No Cache (only physically memory)

If caching is disabled via the appropriate hardware registers, memory accesses to the memory classes IC or
DC are realized by TRACE32-ICD as reads and writes to physical memory.

©1989-2024 Lauterbach

SH2, SH3 and SH4 Debugger

44

Cache Handling(SH3, SH4, ST40)

Memory Coherency

If data will be set to DC, IC, NC, D or P memory class, the Data-Cache, Instruction-Cache or physical

memory will be updated.

Data Cache Instruction Cache Physical Memory

write to DC: updated - updated if write
through mode

write to IC: -- -- updated

write to NC: -- -- updated

write to D: updated - updated if write
through mode

write to P: -- -- updated

©1989-2024 Lauterbach

SH2, SH3 and SH4 Debugger

45

SYStem Commands

SYStem.Option.ICFLUSH Cache invalidation option

Format: SYStem.Option.ICFLUSH [ON | OFF]

Default: ON. Invalidates the instruction cache before starting the target program (Step or Go). This is
required if the CACHEs are enabled and software breakpoints are set to a cached location.

SYStem.Option.DCFREEZE Freeze data cache contents

not supported

SYStem.Option.DCCOPYBACK Cache copy back

Format: SYStem.Option.DCCOPYBACK [ON | OFF]

forces a Cache Copy Back action in case of physical memory access (memory class A:).

This option should be switched ON if the data cache is configured for copyback mode. Before accessing
physical memory the cache contents are copied back to target memory.

SYStem.Option.ICREAD Cache read option

Format: SYStem.Option.ICREAD [ON | OFF]

Data.List window and Data.dump window for memory class P: displays the memory value of the |-cache if
valid. If I-cache is disabled or not valid the physical memory will be read.

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 46

SYStem.Option.DCREAD Cache read option

Format: SYStem.Option.DCREAD [ON | OFF]

Data.dump windows for memory class D: displays the memory value of the d-cache if valid. If d-cache
is disabled or not valid the physical memory will be read.

The following table describes how DCREAD and ICREAD influence the behavior of the debugger
commands that are used to display memory.

DC: IC: NC: D: P:

ICREAD off D-Cache I-Cache phys. mem. phys. mem. phys. mem.
DCREAD off

ICREAD on D-Cache I-Cache phys. mem. phys. mem. I-Cache
DCREAD off

ICREAD off D-Cache [-Cache phys. mem. D-Cache phys. mem.
DCREAD on

ICREAD on D-Cache [-Cache phys. mem. D-Cache I-Cache
DCREAD on

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 47

Trace

Analysis of the program history is supported in different ways.

FIFO Trace (SH2A, SH3, SH4, ST40)

This CPUs includes a 8-stage branch trace. This trace holds the source and destination address of the last
eight program flow changes.

The ICD command “FIFO” opens a window which displays the content of the branch trace.

This trace method does not slow down program execution!

Analysis of the program history is supported in different ways.

SYStem.Option.FIFO

FIFO trace configuration

SH4, ST40, SH7705, SH7294

Format:

<mode>:

SYStem.Option.FIFO <mode>

OFF
eXception
Subroutine
ALL

Selects the kind of program-flow-change which should be traced in FIFO trace mode.

OFF
eXception

Subroutine

ALL

FIFO disabled
trace on exceptions, interrupts and RTE instructions

trace on exceptions, interrupts and on RTE, BSR, BSRF, JSR, RTS
instructions

trace any change in program flow

©1989-2024 Lauterbach

SH2, SH3 and SH4 Debugger

48

LOGGER Trace (SH4, ST40, SH7705)

This method offers a much deeper trace than the FIFO method with the disadvantage of being time and
target memory intrusive.

The SH4 branch trace is configured to generate a TRACE-exception after one/six valid branch trace entries.
Program is stopped then, the branch trace contents are copied to a predefined area in user memory and
finally the program is restarted.

The following script should be used to initialize the LOGGER-Trace. For further details please refer to the
LOGGER online help or training manuals.

Run this script after(!) initialization of target memory.

logger .mode create on ; enable automatic Logger-Structure
; generation
logger.mode flowtrace all ; define the kind of program-flow-changes

; to be traced

logger.address 0ac020000 ; define startaddress of trace in user

; memory
logger.size 512. ; define trace depth (number of records)
logger.timestamp.up ; define count direction of timestamp
logger.timestamp.rate ; define frequency of timestamp counter
100000000.
logger.init ; enable Logger

The influence on runtime depends on the target program. With fewer changes in program flow the runtime
relation between target-program to logger-trace-program becomes better. With estimated program-flow-
changes every five instructions the complete runtime will increase about x5.

NOTE: CPU internal WatchDogTimer are stopped during logger-trace-program execution!
The required target memory size can be calculated this way:

Logger-Memory-Size = 32 Byte + (Logger.Size x 16 Byte)

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 49

AUD-Trace (SH2A, SH4, ST40)

The AUD trace interface supports the branch trace function and the window data trace function.

Each change in program flow caused by execution or interruption of branch instructions are detected and
branch destination and branch source address are output.

The data trace function is for outputting memory access information. Two data-addresses (ranges) are
supported.

Selection of Branch and Data Trace Recording

Trace recording is defined by four debugger settings.
J SYStem.Option.AUDBT (Branch Trace enable)
J SYStem.Option.AUDDT (Data Trace enable)

U Break Action setting “TRaceEnable”
. Break Action setting “TRaceData”
TRaceEna TRaceData AUDBT AUDDT ProgTrace DataTrace
0 0 0 0
0 0 0 1 all data
0 0 1 0 all program
0 0 1 1 all program all data
0 1 0 X selective
0 1 1 X all program selective
1 X X X selective

The BreakAction “TRaceEnable” has highes priority to get selectiv DataTrace recording only.

The BreakAction “TTraceData” comes next to enable selective DataTrace. Depending on
SYStem.Option.AUDBT also the program flow will be traced.

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger |

SYStem.Option.AUDBT AUD branch trace enable

Format: SYStem.Option.AUDBT [ON | OFF]

If ON all changes in program flow are output on the AUD trace port. By default this option is enabled.

SYStem.Option.AUDDT AUD data trace enable

Format: SYStem.Option.AUDDT [ON | OFF]

If ON all accesses to data range A and/or range B are output on the AUD trace port. By default this option is
OFF.

SYStem.Option.AUDRTT AUD real time trace enable

Format: SYStem.Option.AUDRTT [ON | OFF]

AUD full-trace / real-time-trace selection.

If OFF all trace information is output on the AUD trace port. In case of overrun of the AUD interface the CPU
is stopped till overrun condition is no more present. This way all trace records contain valid data.

If ON application runtime is not influenced by the AUD interface. In case of overrun of the AUD interface
there might be missing or not valid trace cycles which cause a buggy trace listing.

Default setting is OFF.

SYStem.Option.AUDClock AUD clock select

Format: SYStem.Option.AUDClock [1/1 1 1/211/4 | 1/8]

Selects the clockspeed of the AUD interface. CPU system clock divided by 1,2,4 or 8.

The AUD clock should be as fast as possible to prevent AUD overrun condition.

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 51

SYStem.Option.AUD8 AUD 8-bit enable

Format: SYStem.Option.AUD8 [ON | OFF]

This option informs the TRACES32 software to use the AUD 8bit algorithm to reconstruct the program flow.
Default setting is OFF (4-bit mode).

See also application note: Enable 8-bit AUD Trace Interface of SH4-202

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 52

AUD-Trace (SH3)

The AUD trace interface of the SH3 family supports the branch trace function.

Each change in program flow caused by execution or interruption of branch instructions are detected and
branch destination and branch source address are output.

SYStem.Option.AUDRTT AUD real time trace enable

Format: SYStem.Option.AUDRTT [ON | OFF]

AUD full-trace / real-time-trace selection.

If OFF all trace information is output on the AUD trace port. In case of overrun of the AUD interface the CPU
is stopped till overrun condition is no more present. This way all trace records contain valid data.

If ON application runtime is not influenced by the AUD interface. In case of overrun of the AUD interface
there might be missing or not valid trace cycles which cause a buggy trace listing.

Default setting is OFF.

SYStem.Option.AUDClock AUD clock select

Format: SYStem.Option.AUDClock [1/1 11/211/4 1 1/8]

Selects the clockspeed of the AUD interface. Frequency of clock generator divided by 1,2,4 or 8.

The preprocessor of the SH-AUD trace contains a clock generator circuit which easily can be changed to fit
for your application.

The maximum frequency of AUDCK is that of the CPU clock or less. Furthermore it must be less then
100 MHz!

The AUD clock should be as fast as possible to prevent AUD overrun condition.

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 53

On-chip Trace SH2A

Some of the SH2A core devices are equipped with an onchip trace buffer. Depending on the device in use it
can cover up to 1024 branch and/or data records.

The trace functionality is equal to an AUD trace. It requires no extra pins and has no influence on the
performance of program execution.

See also: AUD-Trace (SH2A, SH4, ST40)

The onchip trace supports tracing of the M-Bus and/or |-Bus activity. The I-Bus-Master flags can be
displayed in the Trace.List window with command:

Onchip.List IADMA IDMA ICPU def

Trigger and trace control on I-Bus activity is enabled by setting a breakpoint with option /Alpha, /Beta,
/Charly or /Delta. The /Alpha, /Beta, /Charly or /Delty activity has to be defined in the Trigger Onchip
window (TrOnchip.A.IBUS). Two onchip breakpoints can be used for I-Bus trigger and trace control. There
is only one I-Bus breakpoint available if I-Bus and M-Bus tracing is enabled.

Onchip.Mode.MBusTrace Mbus trace enable
Format: Onchip.Mode.MBusTrace [ON | OFF]
Default: ON

Enables tracing of the MBus activity (ProgramTrace, DataReadTrace and DataWriteTrace).

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 54

Onchip.Mode.IBusTrace Ibus trace enable

Format: Onchip.Mode.IBusCpuTrace [ON | OFF]

Format: Onchip.Mode.IBusDmaTrace [ON | OFF]

Format: Onchip.Mode.IBusAdmaTrace [ON | OFF]
Default: OFF

Enables tracing of the I-Bus activity (CPU-, DMA-, ADMA-busmaster).

NOTE: If tracing of M-Bus and I-Bus activity is enabled, the onchip trace buffer is
split. Each bus can be traced with a maximum of TraceBufferSize/2 records.

Onchip.Mode.ProgramTrace Program flow trace enable
Format: Onchip.Mode.ProgramTrace [ON | OFF]
Default: ON

Enables tracing of program flow activity of the M-Bus.

Onchip.Mode.DataReadTrace Data read trace enable
Format: Onchip.Mode.DataReadTrace [ON | OFF]
Default: OFF

Enables read-cycle tracing of the enabled busses (M-Bus and/or I-Bus). This setting is ignored if selective
trace (TraceEnable) is active.

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 55

Onchip.Mode.DataWriteTrace Data write trace enable

Format: Onchip.Mode.DataWriteTrace [ON | OFF]

Default: OFF

Enables write-cycle tracing of the enabled busses (M-Bus and/or |-Bus). This setting is ignored if selective
trace (TraceEnable) is active.

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 56

On-chip Performance Analysis (SH4, ST40)

The SH4/ST40-Core supports two performance counters. This counters can be configured to count a wide
range of different events.

TrOnchip.PMCTRx Performance counter configuration
Format: TrOnchip.PMCTRx <mode>
<mode> function count/time measurement
Init Clear performance counter
OARC Operand Access Read with Cache count
OAWC Operand Access Write with Cache count
UTLBM UTLB Miss count
OCRM Operand Cache Read Miss count
OCWM Operand Cache Write Miss count
IFC Instruction Fetch with Cache (*2) count
ITLBM Instruction TLB Miss count
ICM Instruction Cache Miss count
AOA All Operand Access count
AIF All Instruction Fetch (*2) count
OROA On-chip RAM Operand Access count
OIOA On-chip I/0 Access count
OA Operand Access with Cache count
OCM Operand Cache Miss count
Bl Branch Instruction Issued count
BT Branch Instruction Taken count

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 57

SRI Subroutine Instruction Issued count
I Instruction Issued count
21l Two Instructions Issued count
FPUI FPU Instruction Issued count
INT Interrupt Normal count
NMI Interrupt NMI count
TRAPA TRAPA Instruction count
UBCA UBC A Match count
UBCB UBC B Match count
ICF Instruction Cache Fill time
OCF Operand Cache Fill time
TIME Elapsed Time time
PFCMI Pipeline Freeze by Cache Miss time
Instruction
PFCMD Pipeline Freeze by Cache Miss time
Data
PFBI Pipeline Freeze by Branch time
Instruction
PFCPU Pipeline Freeze by CPU Register time
PFFPU Pipeline Freeze by FPU time

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 58

Runtime Measurement

The SH debug interface includes one signal which gives information about the program-run-status
(application code running). This status line is sensed by the ICD debugger with a resolution of 100ns.

The debuggers RUNTIME window gives detailed information about the complete run-time of the application
code and the run-time since the last GO/STEP/STEP-OVER command.

©1989-2024 Lauterbach SH2, SH3 and SH4 Debugger | 59

JTAG Connector

Signal Pin Pin Signal
TCK 1 2 GND
TRST- 3 4 GND
TDO 5 6 GND
ASEBRK- 7 8 N/C
TMS 9 10 GND
TDI 11 12 GND
RESET- 13 14 GND
JTAG Connector Signal Description CPU Signal
T™MS Jtag-TMS, T™MS
output of debugger
TDI Jtag-TDlI, TDI
output of debugger
TCK Jtag-TCK, SHx: TCK
output of debugger ST40: DCLK
/TRST Jtag-TRST, TRST#
output of debugger
TDO Jtag-TDO, TDO
input for debugger
/ASEBRK Break Acknowledge, SH4: ASEBRK,BRKACK
input/output for debugger SH3: /ASEBRKAK
SH2: /ASEBRKAK
ST40: /ASEBRK,BRKACK
/RESET RESET SH4: /RESET
input/output for debugger SH3: /RESETP
SH2: /RES
ST40: /RST
/DebugMode CPU debug mode enable SH4: GND (not used)
GND-output of debugger SH3: /ASEMDO0
SH7047: /DBGMD
ST40: GND (not used)

©1989-2024 Lauterbach

SH2, SH3 and SH4 Debugger

60

	SH2, SH3 and SH4 Debugger
	History
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Warning
	Application Note
	Location of Debug Connector
	Reset Line
	Enable JTAG Mode SH2
	Enable JTAG Mode SH3
	SH7710/12 Solution Engine
	Enable AUD Trace lines of SH7760
	Memory Mapping of SH7615/ SH7616 BusControlRegisters
	Enable 8-bit AUD Trace Interface of SH4-202

	Quick Start JTAG
	Troubleshooting
	SYStem.Up Errors
	Trace Errors

	FAQ
	Configuration
	System Overview

	CPU specific SYStem Settings
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	Daisy-Chain Example
	TapStates

	SYStem.CONFIG.CORE Assign core to TRACE32 instance
	SYStem.CPU CPU type selection
	SYStem.JtagClock JTAG clock selection
	SYStem.LOCK JTAG lock
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode System mode selection
	SYStem.Option.EnReset Allow the debugger to drive nRESET
	SYStem.Option.HOOK Compare PC to hook address
	SYStem.Option.IMASKASM Interrupt disable
	SYStem.Option.IMASKHLL Interrupt disable
	SYStem.Option.JtagWait JTAG wait enable
	SYStem.Option.KEYCODE Keycode SH7144/45
	SYStem.Option.MMUSPACES Separate address spaces by space IDs
	SYStem.Option.NoRunCheck No check of the running state
	SYStem.Option.SLOWRESET Slow reset enable
	SYStem.Option.SOFTLONG Use LONG access for softbreak patching
	SYStem.Option.SOFTSLOT Prevent softbreak in slot-instruction
	SYStem.Option.STEPSOFT Use software breakpoints for ASM stepping
	SYStem.Option.LittleEnd Selection of little endian mode
	SYStem.RESetOut Reset target without reset of debug port
	SYStem.Option.VBR Vector base address (SH3/4 only)
	Multicore Debugging

	Breakpoints
	Software Breakpoints
	On-chip Breakpoints
	On-chip Breakpoints SH7047, SH7144, SH7145
	On-chip Breakpoints SH72513
	Breakpoint in ROM
	Example for Breakpoints

	CPU specific BenchMarkCounter Commands
	BMC.<counter>.ATOB Advise counter to count within AB-range

	CPU specific TrOnchip Commands
	TrOnchip.CONVert Adjust range breakpoint in on-chip resource
	TrOnchip.IOB I/O breakpoints (SH4, ST40)
	TrOnchip.LDTLB LDTLB breakpoints
	TrOnchip.A.IBUS I-bus breakpoints (SH2A)
	TrOnchip.RESet Set on-chip trigger to default state
	TrOnchip.RPE Reset sequential trigger on reset point
	TrOnchip.SEQ Sequential breakpoints (SH4, ST40)
	TrOnchip.SIZE Trigger on byte, word, long memory accesses
	TrOnchip.state Display on-chip trigger window

	CPU specific MMU Commands
	MMU.DUMP Page wise display of MMU translation table
	MMU.List Compact display of MMU translation table
	MMU.SCAN Load MMU table from CPU

	Memory Classes and Cache Handling
	Memory Classes (SH2)
	Memory Classes (SH3, SH4, ST40)
	Cache Handling(SH3, SH4, ST40)
	Memory Coherency

	SYStem Commands
	SYStem.Option.ICFLUSH Cache invalidation option
	SYStem.Option.DCFREEZE Freeze data cache contents
	SYStem.Option.DCCOPYBACK Cache copy back
	SYStem.Option.ICREAD Cache read option
	SYStem.Option.DCREAD Cache read option

	Trace
	FIFO Trace (SH2A, SH3, SH4, ST40)
	SYStem.Option.FIFO FIFO trace configuration
	LOGGER Trace (SH4, ST40, SH7705)
	AUD-Trace (SH2A, SH4, ST40)
	Selection of Branch and Data Trace Recording

	SYStem.Option.AUDBT AUD branch trace enable
	SYStem.Option.AUDDT AUD data trace enable
	SYStem.Option.AUDRTT AUD real time trace enable
	SYStem.Option.AUDClock AUD clock select
	SYStem.Option.AUD8 AUD 8-bit enable
	AUD-Trace (SH3)
	SYStem.Option.AUDRTT AUD real time trace enable
	SYStem.Option.AUDClock AUD clock select
	On-chip Trace SH2A
	Onchip.Mode.MBusTrace Mbus trace enable
	Onchip.Mode.IBusTrace Ibus trace enable
	Onchip.Mode.ProgramTrace Program flow trace enable
	Onchip.Mode.DataReadTrace Data read trace enable
	Onchip.Mode.DataWriteTrace Data write trace enable

	On-chip Performance Analysis (SH4, ST40)
	TrOnchip.PMCTRx Performance counter configuration

	Runtime Measurement
	JTAG Connector

