LAUTERBACH A

RX Debugger

RX Debugger

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... r—~
Q0 1= ¢ T T T = r—
G 1= 0T T o[- 1

L o Yo 11T o) 4

Brief Overview of Documents for New Users 4

Demo and Start-up Scripts 5
L= T 1 ' 6

/Y o] o2 e 1o o T 1 Lo | (- 7
Location of Debug Connector 7

Reset Line 7
Enable Debug Mode 8
Enable AUD Trace lines 8

QUICK STart JTAGcccceeiicrcecerresssscerrssssmsersassssmesresssssseseassssmessesssanmeneesssansnneesssnnennesssnnnnness 9
TroubleShOOtiNGcccccciiiiicr s 11
SYStem.Up Errors 11

Trace Errors 12

£ 12

Lo o) 1o 11 = 11T o R 13
System Overview 13

CPU specific SYStem Settingscccccciriiiiiisminis s s ssssssnsnns 14
SYStem.CONFIG Configure debugger according to target topology 14
Daisy-Chain Example 16
TapStates 17
SYStem.CONFIG.CORE Assign core to TRACE32 instance 18
SYStem.CONFIG.state Display target configuration 19
SYStem.CPU CPU type selection 19
SYStem.JtagClock JTAG clock selection 19
SYStem.LOCK JTAG lock 20
SYStem.MemAccess Select run-time memory access method 20
SYStem.Mode System mode selection 21
©1989-2024 Lauterbach RX Debugger 2

SYStem.Option.BigEndian Define byte order (endianness) 21

SYStem.Option.IMASKASM Interrupt disable 22
SYStem.Option.IMASKHLL Interrupt disable 22
SYStem.Option.KEYCODE Keycode 22
== 1o T T] L 23
Software Breakpoints 23
On-chip Breakpoints 23
Breakpoint in ROM 24
Example for Breakpoints 24
QIO T e o 1T 0B 00T 1 1 F- T4 o £ 25
TrOnchip.CONVert Adjust range breakpoint in on-chip resource 25
TrOnchip.RESet Set on-chip trigger to default state 25
TrOnchip.SEQ Sequential breakpoints 26
TrOnchip.state Display on-chip trigger window 26
L= 4 o YA 07 - o T 27
- o= 28
AUD-Trace 28
Selection of Branch and Data Trace Recording 28
SYStem.Option.AUDBT AUD branch trace enable 29
SYStem.Option.AUDDT AUD data trace enable 29
SYStem.Option.AUDRTT AUD real time trace enable 29
SYStem.Option.AUDClock AUD clock select 29
On-chip Trace 30
Onchip.Mode.ProgramTrace Program flow trace enable 30
Onchip.Mode.DataTrace Data trace enable 30
On-chip Performance ANAlYSiScccccoccrrrrrrsmrrrssscrrrssssmerrsssssmmsssessssmessessssmmesessssmmsnneas 31
Runtime Measurement ... s s s ssmmmmmn e 32
017 Y 0o T3 T 1= o 33
AUD Trace CONNECIONcccociiiicecerrisccerresssmme s rssssmme s s s s s smmm e e e s s smme s e e s s smmn e e e s s sammneeessmmnnneas 34

©1989-2024 Lauterbach RX Debugger | 3

RX Debugger

Version 06-Jun-2024

Introduction

This document describes the processor specific settings and features for TRACE32-ICD for the following

CPU families:
. RX61x
. RX62x
. RX63x

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

If some of the described functions, options, signals or connections in this Processor Architecture Manual are
only valid for a single CPU or for specific families, the name(s) of the family(ies) is added in brackets.

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACES2 debugger.

. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

J “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

©1989-2024 Lauterbach RX Debugger | 4

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known RX based hardware.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:
. Type at the command line: WELCOME.SCRIPTS
. or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo /rx/ subfolder of the system directory of TRACE32.

©1989-2024 Lauterbach RX Debugger | 5

Warning

Signal Level

Debug signals are driven with the same voltage level as the target voltage.

ESD Protection

1.

N o oo A W

—

P 0D

WARNING: To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

Disconnect the Debug Cable from the target while the target power is
off.

Connect the host system, the TRACE32 hardware and the Debug
Cable.

Power ON the TRACE32 hardware.

Start the TRACES32 software to load the debugger firmware.
Connect the Debug Cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:

Switch off the target power.

Disconnect the Debug Cable from the target.
Close the TRACE32 software.

Power OFF the TRACES32 hardware.

©1989-2024 Lauterbach

RX Debugger |

Application Note

Location of Debug Connector

Locate the JTAG connector as close as possible to the processor to minimize the capacitive influence of
the trace length and cross coupling of noise onto the BDM signals.

Reset Line

Ensure that the debugger signal RESET is connected directly to the RESET of the processor. This will
provide the ability for the debugger to drive and sense the status of RESET.

Reset circuit of debugger VCC

10 kQ

Reset Sense CPU_RES#

Force Reset

©1989-2024 Lauterbach RX Debugger |

7

Enable Debug Mode

The debugger hardware forces the signal EMLE (emulation enable) to VCC. Same can be done on the
target board by a switch or jumper. In that case there is no need to connect the EMLE signal to the debug
connector.

Enable AUD Trace lines

For some CPUs the AUD trace lines are shared with port lines. The AUD signals have to be enabled by the
appropriate port function registers.

Use command: Data.Set <register_address> Y%<register_width> <register_value>

©1989-2024 Lauterbach RX Debugger | 8

Quick Start JTAG

Starting up the Debugger is done as follows:

1.

Select the device prompt B: for the ICD Debugger, if the device prompt is not active after the
TRACERS2 software was started.

b:
Select the CPU type to load the CPU specific settings.

SYStem.CPU RX6108

If the TRACE32-ICD hardware is installed properly, the following CPU is the default setting:
RX6108
Tell the debugger where’s FLASH/ROM on the target.

MAP.BOnchip OxXFFE00000++0xFFFFFFFF

This command is necessary for the use of on-chip breakpoints.

Enter debug mode

SYStem.Up

This command resets the CPU and enters debug mode. After this command is executed, it is possible
to access the registers. Set the chip selects to get access to the target memory.

Data.Set ..

Load the program.

Data.LOAD.ELF diabc.elf ; elf specifies the format, diabc.elf
; 1s the file name

The option of the Data.LOAD command depends on the file format generated by the compiler. A
detailed description of the Data.LOAD command is given in the “General Commands Reference”.

©1989-2024 Lauterbach RX Debugger | 9

The start-up can be automated using the programming language PRACTICE. A typical start sequence is
shown below. This sequence can be written to a PRACTICE script file (*.cmm, ASCII format) and executed
with the command DO <file>.

[BER: ; Select the ICD device prompt
WinCLEAR ; Delete all windows
MAP.BOnchip ; Specify where’s FLASH/ROM

OxFFEOOOOO++0OxOfffffffff

SYStem.CPU RX6108 ; Select the processor type
SYStem.Up ; Reset the target and enter debug

; mode
Data.LOAD example.elf ; Load the application
Register.Set PC main ; Set the PC to function main
List.Mix ; Open disassembly window 2
Register.view /SpotLight ; Open register window 2
Frame.view /Locals /Caller ; Open the stack frame with

; local variables *)
Var.Watch %Spotlight flags ast ; Open watch window for variables *)
PER.view ; Open window with peripheral

; register 2
Break.Set sieve ; Set breakpoint to function sieve
Break.Set 0x1000 /Program ; Set software breakpoint to address

; 1000 (address 1000 is in RAM)

*) These commands open windows on the screen. The window position can be specified with the WinPOS
command.

©1989-2024 Lauterbach RX Debugger | 10

Troubleshooting

SYStem.Up Errors

The SYStem.Up command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command this may have the following reasons.

All The target has no power.
All EMLE pin not at VCC level.
All The target is in reset:

The debugger controls the processor reset and use the RESET line to reset the
CPU on every SYStem.Up.

All There is logic added to the JTAG state machine:

By default the debugger supports only one processor on one JTAG chain.

If the processor is member of a JTAG chain the debugger has to be informed
about the target JTAG chain configuration. See Multicore Debugging.

All There are additional loads or capacities on the JTAG lines.

©1989-2024 Lauterbach RX Debugger | 11

Trace Errors

There are several reasons for Trace Errors.
1. AUD pins not enabled:

For some CPUs the AUD trace lines are shared with port lines. The AUD signals have to be enabled
by the appropriate port function registers.

2. Hardware problems with AUD trace interface:

The TRACE32 AUD trace is designed for up to 200 MHz AUDCLK. Take care about the layout of your
target especially the routing of AUDCLK. In case of Trace Errors try lower AUDCLK speeds with
command SYStem.Option.AUDCLK 1/1, 1/2, 1/4 1/8.

3. AUD protocol errors

In case of RealTimeTrace mode (SYStem.Option. AUDRTT ON) it might happen the CPU executes
program quicker than the AUD interface can transfer its information. In this case the current AUD
transfer is skipped, trace information gets lost and as a result it is not possible to calculate the correct
program flow. To prevents this kind of error the AUD clock should be as high as possible. If this does
not solve the problem you have to switch OFF the RealTimeTrace mode (SYStem.Option.AUDRTT
OFF)

4. Calculation Error

The trace listing is calculated in conjunction of the trace records plus the memory contents. If the
memory content has changed (self modified code, different chipselect setting, MMU ...) in between
run time and calculation time there will be mismatches of the trace records compared to the current
program in memory.

FAQ

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach RX Debugger | 12

https://support.lauterbach.com/kb

Configuration

System Overview

PODPC
PODPAR
PODETH

PODBUS Cable u

Debug
Interface

Basic

EPROM
Simulator
(optional)

[

—Debug Cable

|

)
CPU CLK

Target Connector

Target

EPROM

1
¢—RESET
¢—INT

configuration for the BDM Interface

©1989-2024 Lauterbach

RX Debugger

13

CPU specific SYStem Settings

SYStem.CONFIG Configure debugger according to target topology

Format: SYStem.CONFIG <parameter> <number_or_address>
SYStem.MultiCore <parameter> <number_or_address> (deprecated)

<parameter>: CORE <core>
<parameter>: DRPRE <bits>
(JTAG): DRPOST <bits>

IRPRE <bits>
IRPOST <bits>
TAPState <state>
TCKLevel <level>
TriState [ON | OFF]
Slave [ON | OFF]

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger about the
TAP controller position in the JTAG chain, if there is more than one core in the JTAG chain (e.g. Arm + DSP).
The information is required before the debugger can be activated e.g. by a SYStem.Up. See Daisy-chain
Example.

For some CPU selections (SYStem.CPU) the above setting might be automatically included, since the
required system configuration of these CPUs is known.

TriState has to be used if several debuggers (“via separate cables”) are connected to a common JTAG port
at the same time in order to ensure that always only one debugger drives the signal lines. TAPState and
TCKLevel define the TAP state and TCK level which is selected when the debugger switches to tristate
mode. Please note: nTRST must have a pull-up resistor on the target, TCK can have a pull-up or pull-down
resistor, other trigger inputs need to be kept in inactive state.

Multicore debugging is not supported for the DEBUG INTERFACE (LA-7701).

CORE For multicore debugging one TRACE32 PowerView GUI has to be started
per core. To bundle several cores in one processor as required by the
system this command has to be used to define core and processor
coordinates within the system topology.

Further information can be found in SYStem.CONFIG.CORE.

©1989-2024 Lauterbach RX Debugger | 14

DRPRE (default: 0) <number> of TAPs in the JTAG chain between the core of
interest and the TDO signal of the debugger. If each core in the system
contributes only one TAP to the JTAG chain, DRPRE is the number of
cores between the core of interest and the TDO signal of the debugger.

DRPOST (default: 0) <number> of TAPs in the JTAG chain between the TDI signal
of the debugger and the core of interest. If each core in the system
contributes only one TAP to the JTAG chain, DRPOST is the number of
cores between the TDI signal of the debugger and the core of interest.

IRPRE (default: 0) <number> of instruction register bits in the JTAG chain
between the core of interest and the TDO signal of the debugger. This is
the sum of the instruction register length of all TAPs between the core of
interest and the TDO signal of the debugger.

IRPOST (default: 0) <number> of instruction register bits in the JTAG chain
between the TDI signal and the core of interest. This is the sum of the
instruction register lengths of all TAPs between the TDI signal of the
debugger and the core of interest.

TAPState (default: 7 = Select-DR-Scan) This is the state of the TAP controller when
the debugger switches to tristate mode. All states of the JTAG TAP
controller are selectable.

TCKLevel (default: 0) Level of TCK signal when all debuggers are tristated.

TriState (default: OFF) If several debuggers share the same debug port, this
option is required. The debugger switches to tristate mode after each
debug port access. Then other debuggers can access the port. JTAG:
This option must be used, if the JTAG line of multiple debug boxes are
connected by a JTAG joiner adapter to access a single JTAG chain.

Slave (default: OFF) If more than one debugger share the same debug port, all
except one must have this option active.
JTAG: Only one debugger - the “master” - is allowed to control the signals
NnTRST and nSRST (nRESET).

©1989-2024 Lauterbach RX Debugger | 15

Daisy-Chain Example

TDl——-® Core A —Core B p Core C—» Core D +—» TDO

Chip 0 Chip 1

Below, configuration for core C.

Instruction register length of
. Core A: 3 bit
. Core B: 5 bit
. Core D: 6 bit

SYStem.CONFIG.IRPRE 6. ; IR Core D

SYStem.CONFIG.IRPOST 8. ; IR Core A + B
SYStem.CONFIG.DRPRE 1. ; DR Core D

SYStem.CONFIG.DRPOST 2. ; DR Core A + B

SYStem.CONFIG.CORE 0. 1. ; Target Core C i1s Core 0 in Chip 1

©1989-2024 Lauterbach RX Debugger | 16

TapStates

0 Exit2-DR
Exit1-DR
Shift-DR
Pause-DR
Select-IR-Scan
Update-DR
Capture-DR
Select-DR-Scan
Exit2-IR
Exit1-IR
Shift-IR
Pause-IR
Run-Test/Idle
Update-IR
Capture-IR

© 00 N o 0o~ W N =

—_ - e e —d
o A~ WO N =+ O

Test-Logic-Reset

©1989-2024 Lauterbach RX Debugger | 17

SYStem.CONFIG.CORE Assign core to TRACE32 instance

Format: SYStem.CONFIG.CORE <core_index> <chip_index>
SYStem.MultiCore.CORE <core_index> <chip_index> (deprecated)

<chip_index>: 1.0

<core_index>: 1...k

Default core_index: depends on the CPU, usually 1. for generic chips

Default chip_index: derived from CORE= parameter of the configuration file (config.t32). The CORE
parameter is defined according to the start order of the GUI in T32Start with ascending values.

To provide proper interaction between different parts of the debugger, the systems topology must be
mapped to the debugger’s topology model. The debugger model abstracts chips and sub cores of these
chips. Every GUI must be connect to one unused core entry in the debugger topology model. Once the
SYStem.CPU is selected, a generic chip or non-generic chip is created at the default chip_index.

Non-generic Chips
Non-generic chips have a fixed number of sub cores, each with a fixed CPU type.

Initially, all GUIs are configured with different chip_index values. Therefore, you have to assign the
core_index and the chip_index for every core. Usually, the debugger does not need further information to
access cores in non-generic chips, once the setup is correct.

Generic Chips

Generic chips can accommodate an arbitrary amount of sub-cores. The debugger still needs information
how to connect to the individual cores e.g. by setting the JTAG chain coordinates.

Start-up Process

The debug system must not have an invalid state where a GUI is connected to a wrong core type of a non-
generic chip, two GUIs are connected to the same coordinate or a GUI is not connected to a core. The initial
state of the system is valid since every new GUI uses a new chip_index according to its CORE= parameter
of the configuration file (config.t32). If the system contains fewer chips than initially assumed, the chips must
be merged by calling SYStem.CONFIG.CORE.

©1989-2024 Lauterbach RX Debugger | 18

SYStem.CONFIG.state Display target configuration

Format: SYStem.CONFIG.state

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

SYStem.CPU CPU type selection
Format: SYStem.CPU <cpu>
<cpus: AUTO | RX6108 | RX62N7 ...

Default selection: RX6108.

Selects the CPU type. AUTO: Automatic CPU detection during SYStem.UP. The JTAG clock has to be
less/equal 5 MHz. The detected CPU type can be checked with the function CPU().

SYStem.JtagClock JTAG clock selection

Format: SYStem.JtagClock [<frequency> | EXT/x]
SYStem.BdmClock [<frequency> | EXT/x] (deprecated)

Default frequency: 10 MHz.

Selects the JTAG port frequency (TCK). The RX-Core is designed for a maximum TCK clockspeed of
20 MHz!

Any frequency can be entered, it will be generated by the debuggers internal PLL.

There is an additional plug on the debug cable on the debugger side. This plug can be used as an external
clock input. With setting EXT/x the external clock input (divided by x) is used as JTAG port frequency.

If there are buffers, additional loads or high capacities on the JTAG/COP
lines, reduce the debug speed.

©1989-2024 Lauterbach RX Debugger | 19

SYStem.LOCK JTAG lock

Format: SYStem.LOCK [ON | OFF]

Default: OFF.

If the system is locked (ON) no access to the JTAG port will be performed by the debugger. All JTAG
connector signals of the debugger are tristated.

This command is useful if there are additional CPUs (Cores) on the target which have to use the same JTAG
lines for debugging. By locking the T32 debugger lines, a different debugger can own mastership of the
JTAG interface.

It must be ensured that the state of the RX-core JTAG state machine remains unchanged while the system

is locked. To ensure correct hand-over between two debuggers, a pull-down resistor on TCK and a pull-up
resistor on /TRST is required.

SYStem.MemAccess Select run-time memory access method

Format: SYStem.MemAccess Enable | StopAndGo | Denied
SYStem.ACCESS (deprecated)

Enable Memory access during program execution to target is enabled.
CPU (deprecated)

Denied (default) Memory access during program execution to target is disabled.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

For more information, see below.

If MemAccess is set to Enable, setting breakpoints and memory accesses (access class “E”) is possible
even if the core is running.

©1989-2024 Lauterbach RX Debugger | 20

SYStem.Mode System mode selection

Format: SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)

SYStem.Down (alias for SYStem.Mode Down)

SYStem.Up (alias for SYStem.Mode Up)
<mode>: Down

Go

Up

Down Disables the Debugger.

Go Resets the target with debug mode enabled and prepares the CPU for
debug mode entry. After this command the CPU is in the system.up
mode and running. Now, the processor can be stopped with the break
command or until any break condition occurs.

Up Resets the target and sets the CPU to debug mode. After execution of
this command the CPU is stopped and prepared for debugging. All
register are set to the default value.

Attach Not supported.

NoDebug Not supported.

StandBy Not supported.

SYStem.Option.BigEndian Define byte order (endianness)
Format: SYStem.Option.BigEndian [ON | OFF]
Default: OFF.

This option selects the byte ordering mechanism.

©1989-2024 Lauterbach

RX Debugger | 21

SYStem.Option.IMASKASM Interrupt disable

Format: SYStem.Option.IMASKASM [ON | OFF]

Mask interrupts during assembler single steps. Useful to prevent interrupt disturbance during assembler

single stepping.
SYStem.Option.IMASKHLL Interrupt disable
Format: SYStem.Option.IMASKHLL [ON | OFF]

Mask interrupts during HLL single steps. Useful to prevent interrupt disturbance during HLL single stepping.

SYStem.Option.KEYCODE Keycode

Format: SYStem.Option.KEYCODE [<76x_8bit_values>]

Has to be the same value as present in CPU Flash at address OxFFFFFFAQ--OxFFFFFFAF

The KEYCODE is sent to the CPU during system up to unlock the ID-Code-Protection unit. A matching
KEYCODE is a must to get debug control. More details on ID-Code-Protection can be found in the CPU-
Users-Manual.

©1989-2024 Lauterbach RX Debugger | 22

Breakpoints

There are two types of breakpoints available: Software breakpoints (SW-BP) and on-chip breakpoints (HW-

BP).

Software Breakpoints

Software breakpoints are the default breakpoints. A special breakcode is patched to memory so it only can
be used in RAM or FLASH areas.There is no restriction in the number of software breakpoints.

On-chip Breakpoints

The following list gives an overview of the usage of the on-chip breakpoints by TRACE32-ICD..

CPU Family Number of Number of Sequential
Address Breakpoints Data Breakpoints Breakpoints
RX 8 4

©1989-2024 Lauterbach

RX Debugger | 23

Breakpoint in ROM

With the command MAP.BOnchip <range> it is possible to inform the debugger about ROM
(FLASH,EPROM) address ranges in target. If a breakpoint is set within the specified address range the
debugger uses automatically the available on-chip breakpoints.

Example for Breakpoints

Assume you have a target with FLASH from 0 to 0xFFFFF and RAM from 0x100000 to 0x11FFFF. The
command to configure TRACES32 correctly for this configuration is:

Map .BOnchip 0x0--0xOFFFFF

The following breakpoint combinations are possible.

Software breakpoints:

Break.Set 0x100000 /Program ; Software Breakpoint 1
Break.Set 0x101000 /Program ; Software Breakpoint 2
Break.Set 0Oxx /Program ; Software Breakpoint 3

On-chip breakpoints:

Break.Set 0x100 /Program ; On-chip Breakpoint 1

Break.Set 0x0ff00 /Program ; On-chip Breakpoint 2

©1989-2024 Lauterbach RX Debugger | 24

TrOnchip Commands

TrOnchip.CONVert Adjust range breakpoint in on-chip resource

Format: TrOnchip.CONVert [ON | OFF] (deprecated)
Use Break.CONFIG.InexactAddress instead

The onchip breakpoints can only cover specific ranges. If a range cannot be programmed into the breakpoint
it will automatically be converted into a single address breakpoint when this option is active. This is the
default. Otherwise an error message is generated.

TrOnchip.CONVert ON

Break.Set 0x1000--0x17ff /Write ; sets breakpoint at range

Break.Set 0x1001--0x17ff /Write ;1000--17ff sets single breakpoint
; at address 1001

TrOnchip.CONVert OFF ; sets breakpoint at range

Break.Set 0x1000--0x17ff /Write ; 1000--17ff

Break.Set 0x1001--0x17ff /Write ; gives an error message
TrOnchip.RESet Set on-chip trigger to default state

Format: TrOnchip.RESet

Sets the TrOnchip settings and trigger module to the default settings.

©1989-2024 Lauterbach RX Debugger | 25

TrOnchip.SEQ Sequential breakpoints

Format: TrOnchip.SEQ <mode>
<mode>: OFF

CcDh

BCD

ABCD

This trigger-on-chip command selects sequential breakpoints.

OFF Sequential break off.

BA, CD Sequential break, first condition, then second condition.

BCD, CBA Sequential break, first condition, then second condition, then third
condition.

ABCD, DCBA Sequential break, first condition, then second condition, then third

condition and the fourth condition.

Break.Set sieve /Charly /Program
Var .Break.Set flags[3] /Delta /Write

TrOnchip.SEQ CD

TrOnchip.state Display on-chip trigger window

Format: TrOnchip.state

Opens the TrOnchip.state window.

©1989-2024 Lauterbach RX Debugger | 26

Memory Classes

The following memory classes are available:

Memory Class Description
P Program
D Data

©1989-2024 Lauterbach

RX Debugger

27

Trace

Analysis of the program history is supported as AUD-Trace and Onchip-Trace.

AUD-Trace

The AUD trace interface supports the branch trace function and the window data trace function.

Each change in program flow caused by execution or interruption of branch instructions are detected and
branch destination and branch source address are output.

The data trace function is for outputting memory access information. Two data-addresses (ranges) are
supported.

Selection of Branch and Data Trace Recording

Trace recording is defined by four debugger settings.
J SYStem.Option.AUDBT (Branch Trace enable)
J SYStem.Option.AUDDT (Data Trace enable)

J Break Action setting “TRaceEnable”
. Break Action setting “TRaceData”
TRaceEna TRaceData AUDBT AUDDT ProgTrace DataTrace
0 0 0 0
0 0 0 1 all data
0 0 1 0 all program
0 0 1 1 all program all data
0 1 0 X selective
0 1 1 X all program selective
1 X X X selective

The BreakAction “TRaceEnable” has highes priority to get selective DataTrace recording only.

The BreakAction “TTraceData” comes next to enable selective DataTrace. Depending on
SYStem.Option.AUDBT also the program flow will be traced.

©1989-2024 Lauterbach RX Debugger |

SYStem.Option.AUDBT AUD branch trace enable

Format: SYStem.Option.AUDBT [ON | OFF]

If ON all changes in program flow are output on the AUD trace port. By default this option is enabled.

SYStem.Option.AUDDT AUD data trace enable

Format: SYStem.Option.AUDDT [ON | OFF]

If ON all accesses to data range A and/or range B are output on the AUD trace port. By default this option is
OFF.

SYStem.Option.AUDRTT AUD real time trace enable

Format: SYStem.Option.AUDRTT [ON | OFF]

AUD full-trace / real-time-trace selection.

If OFF all trace information is output on the AUD trace port. In case of overrun of the AUD interface the CPU
is stopped till overrun condition is no more present. This way all trace records contain valid data.

If ON application runtime is not influenced by the AUD interface. In case of overrun of the AUD interface
there might be missing or not valid trace cycles which cause a buggy trace listing.

Default setting is OFF.

SYStem.Option.AUDClock AUD clock select

Format: SYStem.Option.AUDClock [1/1 1 1/211/4 | 1/8]

Selects the clockspeed of the AUD interface. CPU system clock divided by 1,2,4 or 8.

The AUD clock should be as fast as possible to prevent AUD overrun condition.

©1989-2024 Lauterbach RX Debugger | 29

On-chip Trace

The RX core devices are equipped with an onchip trace buffer. Depending on the device in use it can cover
up to 256 branch and/or data records.

The trace functionality is equal to an AUD trace. It requires no extra pins and has no influence on the
performance of program execution.

See also: AUD-Trace.

Onchip.Mode.ProgramTrace Program flow trace enable
Format: Onchip.Mode.ProgramTrace [ON | OFF]
Default: ON

Enables tracing of program flow activity.

Onchip.Mode.DataTrace Data trace enable
Format: Onchip.Mode.DataTrace [ON | OFF]
Default: OFF

Enables tracing of the data-cylces. This setting is ignored if selective trace (TraceEnable) is active.

©1989-2024 Lauterbach RX Debugger | 30

On-chip Performance Analysis

The RX-Core supports two performance counters. This counters can be configured to count a wide range of
different events.

©1989-2024 Lauterbach RX Debugger | 31

Runtime Measurement

The RX debug interface includes one signal which gives information about the program-run-status
(application code running). This status line is sensed by the ICD debugger with a resolution of 100ns.

The debuggers RUNTIME window gives detailed information about the complete run-time of the application
code and the run-time since the last GO/STEP/STEP-OVER command.

©1989-2024 Lauterbach RX Debugger | 32

JTAG Connector

Signal Pin Pin Signal
TCK 1 2 GND
TRST- 3 4 (EMLE)
TDO 5 6 (MDE)
(MD1) 7 8 VCC
TMS 9 10 (MDO)
TDI 11 12 GND
RESET- 13 14 GND
JTAG Connector Signal Description CPU Signal
TMS Jtag-TMS, TMS
output of debugger
TDI Jtag-TDlI, TDI
output of debugger
TCK Jtag-TCK, TCK
output of debugger
/TRST Jtag-TRST, TRST#
output of debugger
TDO Jtag-TDO, TDO
input for debugger
/ASEBRK Break Acknowledge, ASEBRK,BRKACK
input/output for debugger
/RESET RESET /RESET
input/output for debugger
EMLE Emulation mode enable EMLE
input/output of debugger
Default setting: output HIGH
MDO..2 CPU mode pins MDO..2
input/output of debugger
Default setting: Input

©1989-2024 Lauterbach

RX Debugger

33

AUD Trace Connector

Signal Pin Pin Signal
(MDE) 1 2 (MDO)
(EMLE) 3 4 N/C
N/C 5 6 AUDCK
N/C 7 8 (MD1)
RESET- 9 10 N/C
TDO 11 12 N/C
N/C 13 14 VCC
TCK 15 16 N/C
TMS 17 18 N/C
TDI 19 20 N/C
TRST- 21 22 N/C
N/C 23 24 AUDATA3
N/C 25 26 AUDATA2
N/C 27 28 AUDATA1
N/C 29 30 AUDATAO
N/C 31 32 AUDSYNC-
N/C 33 34 N/C
N/C 35 36 N/C
N/C 37 38 N/C
Mictor Connector Signal Description CPU Signal
AUDCK AUD clock, AUDCK

output of cpu

AUDSYNC- AUD sync, AUDSYNC-
output of cpu

AUDATAO..3 AUD data, AUDATAO..3
output of cpu

All other signals are described in chapter JTAG Connector.

©1989-2024 Lauterbach RX Debugger

	RX Debugger
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Warning
	Application Note
	Location of Debug Connector
	Reset Line
	Enable Debug Mode
	Enable AUD Trace lines

	Quick Start JTAG
	Troubleshooting
	SYStem.Up Errors
	Trace Errors

	FAQ
	Configuration
	System Overview

	CPU specific SYStem Settings
	SYStem.CONFIG Configure debugger according to target topology
	Daisy-Chain Example
	TapStates

	SYStem.CONFIG.CORE Assign core to TRACE32 instance
	SYStem.CONFIG.state Display target configuration
	SYStem.CPU CPU type selection
	SYStem.JtagClock JTAG clock selection
	SYStem.LOCK JTAG lock
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode System mode selection
	SYStem.Option.BigEndian Define byte order (endianness)
	SYStem.Option.IMASKASM Interrupt disable
	SYStem.Option.IMASKHLL Interrupt disable
	SYStem.Option.KEYCODE Keycode

	Breakpoints
	Software Breakpoints
	On-chip Breakpoints
	Breakpoint in ROM
	Example for Breakpoints

	TrOnchip Commands
	TrOnchip.CONVert Adjust range breakpoint in on-chip resource
	TrOnchip.RESet Set on-chip trigger to default state
	TrOnchip.SEQ Sequential breakpoints
	TrOnchip.state Display on-chip trigger window

	Memory Classes
	Trace
	AUD-Trace
	Selection of Branch and Data Trace Recording

	SYStem.Option.AUDBT AUD branch trace enable
	SYStem.Option.AUDDT AUD data trace enable
	SYStem.Option.AUDRTT AUD real time trace enable
	SYStem.Option.AUDClock AUD clock select
	On-chip Trace
	Onchip.Mode.ProgramTrace Program flow trace enable
	Onchip.Mode.DataTrace Data trace enable

	On-chip Performance Analysis
	Runtime Measurement
	JTAG Connector
	AUD Trace Connector

