
MANUAL

R8051XC Debugger

R8051XC Debugger

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 ICD In-Circuit Debugger .. 

 Processor Architecture Manuals .. 

 8051XC ... 

 R8051XC Debugger .. 1

 Introduction ... 5

 Brief Overview of Documents for New Users 5

 Warning .. 6

 Quick Start ... 7

 Troubleshooting .. 9

 SYStem.Up Errors 9

 KEIL OMF-51 and OMF2 10

 Debugging with Low Target Frequencies 10

 Mapping Memory 11

 FAQ ... 11

 Configuration ... 12

 CPU specific SYStem Settings and Restrictions ... 13

 SYStem.state Open system window 13

 SYStem.CONFIG.state Display target configuration 13

 SYStem.CONFIG Configure debugger according to target topology 14

 Daisy-Chain Example 16

 TapStates 17

 SYStem.CONFIG.CORE Assign core to TRACE32 instance 18

 SYStem.CPU Select CPU 19

 SYStem.JtagClock Define JTAG clock 20

 SYStem.LOCK Lock and tristate the debug port 20

 SYStem.MemAccess Select run-time memory access method 21

 SYStem.Mode Establish communication with the target 21

 SYStem.Option.IMASKASM Disable interrupts while single stepping 23

 SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 23

 SYStem.Option.LittleEndian Treat memory as little endian 23

 SYStem.Option.DPTREXT Selects the address of DPS register 23
R8051XC Debugger | 2©1989-2024 Lauterbach

 SYStem.Option.PRDELAY Set delay time after RESET 24

 Memory Classes 24

 SYMbol Commands ... 25

 Special Function Register (SFR) symbols 25

 PUBSFR section in KEIL OMF-251 25

 R8051XC SFR Symbol Definition with PRACTICE 26

 TrOnchip Commands .. 27

 TrOnchip.state Display on-chip trigger window 27

 TrOnchip.CONVert Adjust range breakpoint in on-chip resource 27

 TrOnchip.RESet Set on-chip trigger to default state 27

 TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource 28

 JTAG Connectors .. 29

 LAUTERBACH Adapters 29

 ARM 20-pin Adapter 29
R8051XC Debugger | 3©1989-2024 Lauterbach

R8051XC Debugger

Version 06-Jun-2024
R8051XC Debugger | 4©1989-2024 Lauterbach

Introduction

This document describes the processor specific settings and features of the TRACE32 debugger for the
CAST, Inc. / Evatronix SA “R8051XC” IP core CPU family.

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.
R8051XC Debugger | 5©1989-2024 Lauterbach

Warning

WARNING: To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1. Disconnect the Debug Cable from the target while the target power is
off.

2. Connect the host system, the TRACE32 hardware and the Debug
Cable.

3. Power ON the TRACE32 hardware.

4. Start the TRACE32 software to load the debugger firmware.

5. Connect the Debug Cable to the target.

6. Switch the target power ON.

7. Configure your debugger e.g. via a start-up script.

Power down:

1. Switch off the target power.

2. Disconnect the Debug Cable from the target.

3. Close the TRACE32 software.

4. Power OFF the TRACE32 hardware.
R8051XC Debugger | 6©1989-2024 Lauterbach

Quick Start

Starting up the debugger is done as follows:

1. Select the device prompt for the ICD Debugger and reset the system.

The device prompt B:: is normally already selected in the TRACE32 command line. If this is not the
case, enter B:: to set the correct device prompt. The RESet command is only necessary if you do
not start directly after booting the TRACE32 development tool.

2. Specify the CPU specific settings.

The default values of all other options are set to values that should allow to start work without
modification. Please consider that these values are possibly not the best configuration for your target.

3. Set up the JTAG electrical interface clock speed.

The default frequency is 10 MHz, but please note that the actually usable frequency depends on your
chip/FPGA design. If your JTAG connection does not support the RESET signal, please press your
target board reset button before the next command to ensure a HARD RESET.

4. Enter debug mode.

This command resets the CPU and enters debug mode. After this command is executed, it is possible
to access memory and registers.

5. Load your application program.

The format of the Data.LOAD command depends on the file format generated by the compiler. It is
recommended to use the option /Verify that verifies all written data. This test spots any problems with
the electrical connection, wrong chip configurations or linker command file settings.

A detailed description of the Data.LOAD command and all available options is given in the
“General Commands Reference”.

b::

SYStem.CPU <cpu_type>

SYStem.JtagClock <frequency>

SYStem.Up

Data.LOAD.OMF2 myprogram /Verify ; OMF2 specifies the format,
; myprogram is the file name
R8051XC Debugger | 7©1989-2024 Lauterbach

The start-up can be automated using the programming language PRACTICE. A typical start sequence for
R8051XC-based CPUs is shown below. This sequence can be written to a PRACTICE script file (*.cmm,
ASCII format) and executed with the command DO <file>.

b:: ; Select the ICD device prompt

WinClear ; Clear all windows

SYStem.CPU R8051XC ; Select CPU

SYStem.UP ; Reset the target and enter debug mode

Data.LOAD.OMF2 APP.OM2 /VERIFY ; Load the application, verify the
; process

Go main ; Run and break at main()

Data.List ; Open source window

Register.view /SpotLight ; Open register window

Var.Local ; Open window with local variables
R8051XC Debugger | 8©1989-2024 Lauterbach

Troubleshooting

SYStem.Up Errors

The SYStem.Up command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command this may have the following reasons.

• The JTAG lines are not connected correctly.

• The target has no power.

• The pull-up resistor between the JTAG[VTREF] pin and the target VCC is too large.

• The target is in reset:

The debugger controls the processor reset and use the RESET line to reset the CPU on every
SYStem.Up. Additionally it executes an R8051XC soft reset. If you have no RESET line
connected, please make sure you manually hard-reset the target board before continuing.

• There is logic added to the JTAG state machine:

The debugger is configured at start-up to expect only one R8051XC core in the JTAG chain.
Please use the SYStem.CONFIG command (“CONFIG” button) to configure the JTAG chain
position of the core in a multi-core configuration.

• There are additional loads or capacities on the JTAG lines

• The core you want to debug has to be started first by another core, or target board has additional
RESET delay logic. Please use SYStem.Option.PRDELAY.

• You have additional logic on your board that requires special handling of JTAG lines during or at
the end of system RESET. Please make sure the JTAG port is enabled correctly.
R8051XC Debugger | 9©1989-2024 Lauterbach

KEIL OMF-51 and OMF2

• For R8051XC debugging, the KEIL compiler currently supports only the “Intel MCS-51 Object
Module Format” (OMF-51/OMF-251). KEIL extended this format to store some additional
information within the OMF file, e.g. to support banking.

• The KEIL linkers can generate OMF (OMF-51) and OMF2 (OMF-251) format, depending on your
project settings. Please select the appropriate TRACE32 command for loading OMF or OMF2.

Load your OMF-51 application program with:

Load your OMF2 application program with:

A detailed description of the Data.LOAD command and all available options is given in the
“General Commands Reference”.

• OMF-51 specifies source files by name only, and does not include directories.

If your project is split into several subdirectories, and your HLL source code is not found, please
either provide a list of source directories using the Data.LOAD /PATH option, or by using the
sYmbol.SourcePATH.SetRecurseDir command.

Debugging with Low Target Frequencies

When designing and testing your new chip design with the R8051XC IP core, your design (or an ASIC
emulator) might support only a fraction of normal JTAG and processor frequencies. In this case:

• You can reduce the update rate of the TRACE32-PowerView GUI with

SETUP.URATE <rate per second | time>

• You can cache program and data areas with

MAP.UpdateOnce P:0--0FFFFF

Please remember to access your data with the correct memory type specifiers (D:, I:, P:, X:), do
not use C:. The cache is invalidated with each STEP or GO command.

• Please restrict data windows to the minimum required address ranges.
E.g. instead of “d d:0” and “d i:0”, use “d d:80--0FF” and “d i:00--0FF”.

• Minimizing windows you don’t currently need also reduces the amount of data that has to be
transferred between host and target.

Data.LOAD.OMF myprogram /verify ; OMF specifies the format,
; myprogram is the file name

Data.LOAD.OMF2 myprogram /verify ; OMF2 specifies the format,
; myprogram is the file name
R8051XC Debugger | 10©1989-2024 Lauterbach

Mapping Memory

• Processor designs with Harvard architecture, such as the R8051XC, have separate program and
data memory buses.

• For various purposes it may be useful or necessary to map data space to program space and
vice versa. Sometimes during development a read-writable data memory area is mirrored into a
read-only program memory area, or e.g. program flash is mapped to a read-only data area.

• An “unlimited” number of software breakpoints can only be set within read-writable memory. For
read-only memory only a very limited number of hardware on-chip breakpoints can be used.

• If you have a read-writable data area that is mapped into read-only program space, you can
redirect the debugger breakpoint setting from program memory to data memory with the
TRANSlation command.

TRANSlation.Create <logical_range> [<physical_range>] [/<option>]

Example:

MAP.BOnchip <addressrange>

Example:

FAQ

Please refer to https://support.lauterbach.com/kb.

TRANSlation.Create P:0100--0FFFF X:4100

TRANSlation.ON

MAP.BOnchip P:0--0FF
R8051XC Debugger | 11©1989-2024 Lauterbach

https://support.lauterbach.com/kb

Configuration

Example configuration for an R8051XC debugger.

The processor type must be selected by the SYStem.CPU command before issuing any other target related
commands.

��������	

POWER DEBUG USB INTERFACE / USB 3

POWER DEBUG INTERFACE / USB 3

PC or
Workstation

USB
Cable

Target

D
eb

ug
C

on
ne

ct
or

Debug Cable
R8051XC Debugger | 12©1989-2024 Lauterbach

CPU specific SYStem Settings and Restrictions

SYStem.state Open system window

Opens a window with settings of CPU specific system commands. Settings can also be changed here.

SYStem.CONFIG.state Display target configuration

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are not included in the SYStem.CONFIG.state window.

Format: SYStem.state

Format: SYStem.CONFIG.state [/<tab>]

<tab>: DebugPort | Jtag

<tab> Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.
R8051XC Debugger | 13©1989-2024 Lauterbach

SYStem.CONFIG Configure debugger according to target topology

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger about the
TAP controller position in the JTAG chain, if there is more than one core in the JTAG chain (e.g. Arm + DSP).
The information is required before the debugger can be activated e.g. by a SYStem.Up. See Daisy-chain
Example.
For some CPU selections (SYStem.CPU) the above setting might be automatically included, since the
required system configuration of these CPUs is known.

TriState has to be used if several debuggers (“via separate cables”) are connected to a common JTAG port
at the same time in order to ensure that always only one debugger drives the signal lines. TAPState and
TCKLevel define the TAP state and TCK level which is selected when the debugger switches to tristate
mode. Please note: nTRST must have a pull-up resistor on the target, TCK can have a pull-up or pull-down
resistor, other trigger inputs need to be kept in inactive state.

DebugPort Informs the debugger about the debug connector type and the
communication protocol it shall use.

Jtag Informs the debugger about the position of the Test Access Ports (TAP) in
the JTAG chain which the debugger needs to talk to in order to access
the debug and trace facilities on the chip.

Format: SYStem.CONFIG <parameter> <number_or_address>
SYStem.MultiCore <parameter> <number_or_address> (deprecated)

<parameter>: CORE <core>

<parameter>:
(JTAG):

DRPRE <bits>
DRPOST <bits>
IRPRE <bits>
IRPOST <bits>
TAPState <state>
TCKLevel <level>
TriState [ON | OFF]
Slave [ON | OFF]

Multicore debugging is not supported for the DEBUG INTERFACE (LA-7701).
R8051XC Debugger | 14©1989-2024 Lauterbach

CORE For multicore debugging one TRACE32 PowerView GUI has to be started
per core. To bundle several cores in one processor as required by the
system this command has to be used to define core and processor
coordinates within the system topology.
Further information can be found in SYStem.CONFIG.CORE.

DRPRE (default: 0) <number> of TAPs in the JTAG chain between the core of
interest and the TDO signal of the debugger. If each core in the system
contributes only one TAP to the JTAG chain, DRPRE is the number of
cores between the core of interest and the TDO signal of the debugger.

DRPOST (default: 0) <number> of TAPs in the JTAG chain between the TDI signal
of the debugger and the core of interest. If each core in the system
contributes only one TAP to the JTAG chain, DRPOST is the number of
cores between the TDI signal of the debugger and the core of interest.

IRPRE (default: 0) <number> of instruction register bits in the JTAG chain
between the core of interest and the TDO signal of the debugger. This is
the sum of the instruction register length of all TAPs between the core of
interest and the TDO signal of the debugger.

IRPOST (default: 0) <number> of instruction register bits in the JTAG chain
between the TDI signal and the core of interest. This is the sum of the
instruction register lengths of all TAPs between the TDI signal of the
debugger and the core of interest.

TAPState (default: 7 = Select-DR-Scan) This is the state of the TAP controller when
the debugger switches to tristate mode. All states of the JTAG TAP
controller are selectable.

TCKLevel (default: 0) Level of TCK signal when all debuggers are tristated.

TriState (default: OFF) If several debuggers share the same debug port, this
option is required. The debugger switches to tristate mode after each
debug port access. Then other debuggers can access the port. JTAG:
This option must be used, if the JTAG line of multiple debug boxes are
connected by a JTAG joiner adapter to access a single JTAG chain.

Slave (default: OFF) If more than one debugger share the same debug port, all
except one must have this option active.
JTAG: Only one debugger - the “master” - is allowed to control the signals
nTRST and nSRST (nRESET).
R8051XC Debugger | 15©1989-2024 Lauterbach

Daisy-Chain Example

Below, configuration for core C.

Instruction register length of

• Core A: 3 bit

• Core B: 5 bit

• Core D: 6 bit

SYStem.CONFIG.IRPRE 6. ; IR Core D

SYStem.CONFIG.IRPOST 8. ; IR Core A + B

SYStem.CONFIG.DRPRE 1. ; DR Core D

SYStem.CONFIG.DRPOST 2. ; DR Core A + B

SYStem.CONFIG.CORE 0. 1. ; Target Core C is Core 0 in Chip 1

Core A Core B Core C Core D TDOTDI

Chip 0 Chip 1
R8051XC Debugger | 16©1989-2024 Lauterbach

TapStates

0 Exit2-DR

1 Exit1-DR

2 Shift-DR

3 Pause-DR

4 Select-IR-Scan

5 Update-DR

6 Capture-DR

7 Select-DR-Scan

8 Exit2-IR

9 Exit1-IR

10 Shift-IR

11 Pause-IR

12 Run-Test/Idle

13 Update-IR

14 Capture-IR

15 Test-Logic-Reset
R8051XC Debugger | 17©1989-2024 Lauterbach

SYStem.CONFIG.CORE Assign core to TRACE32 instance

Default core_index: depends on the CPU, usually 1. for generic chips

Default chip_index: derived from CORE= parameter of the configuration file (config.t32). The CORE
parameter is defined according to the start order of the GUI in T32Start with ascending values.

To provide proper interaction between different parts of the debugger, the systems topology must be
mapped to the debugger’s topology model. The debugger model abstracts chips and sub cores of these
chips. Every GUI must be connect to one unused core entry in the debugger topology model. Once the
SYStem.CPU is selected, a generic chip or non-generic chip is created at the default chip_index.

Non-generic Chips

Non-generic chips have a fixed number of sub cores, each with a fixed CPU type.

Initially, all GUIs are configured with different chip_index values. Therefore, you have to assign the
core_index and the chip_index for every core. Usually, the debugger does not need further information to
access cores in non-generic chips, once the setup is correct.

Generic Chips

Generic chips can accommodate an arbitrary amount of sub-cores. The debugger still needs information
how to connect to the individual cores e.g. by setting the JTAG chain coordinates.

Start-up Process

The debug system must not have an invalid state where a GUI is connected to a wrong core type of a non-
generic chip, two GUIs are connected to the same coordinate or a GUI is not connected to a core. The initial
state of the system is valid since every new GUI uses a new chip_index according to its CORE= parameter
of the configuration file (config.t32). If the system contains fewer chips than initially assumed, the chips must
be merged by calling SYStem.CONFIG.CORE.

Format: SYStem.CONFIG.CORE <core_index> <chip_index>
SYStem.MultiCore.CORE <core_index> <chip_index> (deprecated)

<chip_index>: 1 … i

<core_index>: 1 … k
R8051XC Debugger | 18©1989-2024 Lauterbach

SYStem.CPU Select CPU

Selects the processor type. The available types depend on your adapter type and license.

Format: SYStem.CPU <cpu>

<cpu>: R8051XC

<cpu>: S8051XC3
R8051XC Debugger | 19©1989-2024 Lauterbach

SYStem.JtagClock Define JTAG clock

Selects the JTAG port frequency (TCK) used by the debugger to communicate with the processor. The
frequency affects e.g. the download speed. It may be required to reduce the JTAG frequency if there are
buffers, additional loads or high capacities on the JTAG lines or if VTREF is very low. A very high frequency
will not work on all systems and will result in an erroneous data transfer.

When the debugger is not working correctly (e.g. memory display flickers), decrease the JtagClock.

SYStem.LOCK Lock and tristate the debug port

Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give
debug access to another tool.

Format: SYStem.JtagClock [<frequency>]
SYStem.BdmClock [<frequency>] (deprecated)

<frequency>: 1.0MHz | 5.0MHz | 10.0MHz | <other>

<frequency> • Default is 10MHz
• <other> is 6kHz … 80MHz
The debugger cannot select all frequencies accurately. It chooses the next
possible frequency and displays the real value in the SYStem.state window.
Instead of decimal numbers like “100000.”, short forms like “10kHz” or
“15MHz” may be used. The short forms imply a decimal value, although no
“.” is used.

Format: SYStem.LOCK [ON | OFF]
R8051XC Debugger | 20©1989-2024 Lauterbach

SYStem.MemAccess Select run-time memory access method

SYStem.Mode Establish communication with the target

Format: SYStem.MemAccess <mode>

<mode>: Enable | Denied | StopAndGo

Enable
CPU (deprecated)

The mode “CPU” cannot be selected, because there is no way to do runtime
access to the memory while the R8051XC core is running.

Denied The mode “Enable” cannot be selected, because there is no way to do
runtime access to the memory while the R8051XC core is running.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

Format: SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Down
NoDebug
Go
Attach
Up

Down The CPU is held in reset (if the RESET signal is attached), debug mode
is not active. Default state and state after fatal errors.

NoDebug Disables the debugger. The state of the CPU remains unchanged. The
JTAG port is tri-stated.

Go Resets the target and enables the debugger and start the program
execution. Program execution can be stopped by the break command or
if any break condition occurs.
R8051XC Debugger | 21©1989-2024 Lauterbach

Attach User program remains running (no reset) and the debug mode is
activated. After this command the user program can be stopped with the
break command or if any break condition occurs.

Up Resets the target, sets the CPU to debug mode and stops the CPU. After
the execution of this command the CPU is stopped and all registers are
set to the default level.

StandBy Not supported.
R8051XC Debugger | 22©1989-2024 Lauterbach

SYStem.Option.IMASKASM Disable interrupts while single stepping

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After single step the interrupt mask bits are
restored to the value before the step.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After single step the interrupt mask bits are restored.

SYStem.Option.LittleEndian Treat memory as little endian

Default: OFF.

Treats memory as little endian.

SYStem.Option.DPTREXT Selects the address of DPS register

Default: OFF.

Must be enabled if DPTR extension is implemented. Then the DPS register is located at address 0x86 and
otherwise at 0x92. Only S8051XC3

Format: SYStem.Option.IMASKASM [ON | OFF]

Format: SYStem.Option.IMASKHLL [ON | OFF]

Format: SYStem.Option.LittleEndian [ON | OFF]

Format: SYStem.Option.DPTREXT [ON | OFF]
R8051XC Debugger | 23©1989-2024 Lauterbach

SYStem.Option.PRDELAY Set delay time after RESET

Set a wait time after releasing the RESET signal before JTAG communication with the target is continued.
Useful for target boards with an on-board reset delay unit, or if another core has to enable the target core
before JTAG communication is possible.

Instead of decimal numbers like “1000.”, abbreviated forms like “1s” or “500ms” may be used. This command
always implies a decimal value, although no “.” is used. Fractional values can be entered (e.g. “1000.250”)
but the fractional part is ignored.

Memory Classes

The following memory classes are available:

The low 128 bytes of the internal data memory are mirrored in the memory classes I and D.
The upper 128 bytes in the memory class D represent the Special Function Registers SFR.

If the peripheral configuration of your chip supports SFR banking, then the banked SFR contents are visible
in the address range beyond 0x80--0xFF.
E.g. the SFR Bank 5 would be visible in the upper 128 bytes of D:0500--05FF.

Format: SYStem.Option.PRDELAY [<time>]

<time>: 0 … 60000ms

<time> Default is 0us

Memory Class Description

P Program

X External data (XRAM)

I Internal RAM (Indirect Address)

D Special Function Registers + Internal RAM (Direct Address)
R8051XC Debugger | 24©1989-2024 Lauterbach

SYMbol Commands

Special Function Register (SFR) symbols

Special Function Registers (SFRs) for all 8051 derivatives are located within the memory range D:80--FF
and accessed via MOV ’direct’ memory opcodes.

All SFRs with an address where bits [2..0] are not set (e.g. D:80, D:88, D:90, D:98, etc.) are bit-
adressable like the memory in the range D:20--2F.

One problem for disassembly is to distinguish “normal” addresses and constants in the range 0x80..0xFF
from SFR and SFR bit definitions. Some registers (A, B, PSW) are available on all 8051 derivatives. For
these, default names and addresses (that can be overwritten by an external definition) are hard-coded into
the disassembler. But the majority of platforms will have different peripherals located on different addresses.

PUBSFR section in KEIL OMF-251

KEILs OMF-251 (OMF2) format contains a special PUBSFR section for SFR and SBIT definitions.

Here is an example for a KEIL definition for the PSW and its bit flags:
sfr PSW = 0xD0; // Program Status Word
sbit P = 0xD0; // Parity Flag
sbit F1 = 0xD1; // General Purpose Flag 1
sbit OV = 0xD2; // Overflow Flag
sbit RS0 = 0xD3; // Register Bank Select 0
sbit RS1 = 0xD4; // Register Bank Select 1
sbit F0 = 0xD5; // General Purpose Flag 0
sbit AC = 0xD6; // Auxiliary Carry Flag
sbit CY = 0xD7; // Carry Flag

When such a definition is included in a C or ASM source file and the output format is set to OMF2, the
compiler/linker emits this definition in the ABS file.

After symbol load the special function register is available in the dis/assembler.

Pure symbol definitions (and no code) can be loaded from an OMF-251 file with:
DATA.LOAD.OMF2 my_symbols.om2 /NoCODE
R8051XC Debugger | 25©1989-2024 Lauterbach

R8051XC SFR Symbol Definition with PRACTICE

For R8051XC cores, SFR symbols can be created in PRACTICE with the D: and B: addressing modes.

D:00xx addresses (xx=0x80--0xFF) are SFR byte definitions, B:0yyy bit addresses are computed by
multiplying the SFR base address with 8 and then adding the bit offset.

Example: For the PSW at address 0xD0, the PSW_3 bit address (RS0) is (0xD0 * 8) + 3 = 0x683.

This is the PRACTICE definition for the R8051XC PSW:

sYmbol.CREATE.RESet ; erase all user-defined symbols
sYmbol.CREATE ; start symbol creation
sYmbol.NEW PSW D:00D0 ; Program Status Word
sYmbol.NEW P B:0680 ; Parity Flag (0xD0 * 8 + 0)
sYmbol.NEW F1 B:0681 ; General Purpose Flag 1 (0xD0 * 8 + 1)
sYmbol.NEW OV B:0682 ; Overflow Flag (0xD0 * 8 + 2)
sYmbol.NEW RS0 B:0683 ; Register Bank Select 0 (0xD0 * 8 + 3)
sYmbol.NEW RS1 B:0684 ; Register Bank Select 1 (0xD0 * 8 + 4)
sYmbol.NEW F0 B:0685 ; General Purpose Flag 0 (0xD0 * 8 + 5)
sYmbol.NEW AC B:0686 ; Auxiliary Carry Flag (0xD0 * 8 + 6)
sYmbol.NEW CY B:0687 ; Carry Flag (0xD0 * 8 + 7)
sYmbol.CREATE.Done ; finish symbol creation

NOTE: If the SYStem.CPU selection is not set to an R8051XC or M8051EW derivative, all
D:xxxx definitions will be mapped to I:xxxx definitions. These do not represent SFR
addresses.
R8051XC Debugger | 26©1989-2024 Lauterbach

TrOnchip Commands

TrOnchip.state Display on-chip trigger window

Opens the TrOnchip.state window.

TrOnchip.CONVert Adjust range breakpoint in on-chip resource

The on-chip breakpoints can only cover specific ranges. If a range cannot be programmed into the
breakpoint, it will automatically be converted into a single address breakpoint when this option is active. This
is the default. Otherwise an error message is generated.

TrOnchip.RESet Set on-chip trigger to default state

Sets the TrOnchip settings and trigger module to the default settings.

Format: TrOnchip.state

Format: TrOnchip.CONVert [ON | OFF] (deprecated)
Use Break.CONFIG.InexactAddress instead

TrOnchip.CONVert ON
Break.Set 0x1000--0x17ff /Write
Break.Set 0x1001--0x17ff /Write
…

TrOnchip.CONVert OFF
Break.Set 0x1000--0x17ff /Write
Break.Set 0x1001--0x17ff /Write

; sets breakpoint at range
; 1000--17ff sets single breakpoint
; at address 1001

; sets breakpoint at range
; 1000--17ff
; gives an error message

Format: TrOnchip.RESet
R8051XC Debugger | 27©1989-2024 Lauterbach

TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource

The on-chip breakpoints can only cover specific ranges. If you want to set a marker or breakpoint to a
complex variable, the on-chip break resources of the CPU may be not powerful enough to cover the whole
structure. If the option TrOnchip.VarCONVert is set to ON, the breakpoint will automatically be converted
into a single address breakpoint. This is the default setting. Otherwise an error message is generated.

Format: TrOnchip.VarCONVert [ON | OFF] (deprecated)
Use Break.CONFIG.VarConvert instead
R8051XC Debugger | 28©1989-2024 Lauterbach

JTAG Connectors

These are designed by the users of the R8051XC core, i.e. the SoC and PCB designers. If publishable
R8051XC JTAG connector pinouts become available, they will be listed here.

For ideas how to layout your own JTAG connector(s), please refer to the next section.

LAUTERBACH Adapters

These are the pin assignments of the LAUTERBACH ARM and R8051XC debug cables:

ARM 20-pin Adapter

Signal Pin Pin Signal
VREF-DEBUG 1 2 VSUPPLY (not used)

TRST- 3 4 GND
TDI 5 6 GND

TMS|TMSC|SWDIO 7 8 GND
TCK|TCKC|SWCLK 9 10 GND

RTCK 11 12 GND
TDO|-|SWO 13 14 GND

RESET- 15 16 GND
DBGRQ 17 18 GND

DBGACK 19 20 GND
R8051XC Debugger | 29©1989-2024 Lauterbach

	R8051XC Debugger
	Introduction
	Brief Overview of Documents for New Users

	Warning
	Quick Start
	Troubleshooting
	SYStem.Up Errors
	KEIL OMF-51 and OMF2
	Debugging with Low Target Frequencies
	Mapping Memory

	FAQ
	Configuration
	CPU specific SYStem Settings and Restrictions
	SYStem.state Open system window
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	Daisy-Chain Example
	TapStates

	SYStem.CONFIG.CORE Assign core to TRACE32 instance
	SYStem.CPU Select CPU
	SYStem.JtagClock Define JTAG clock
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish communication with the target
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.LittleEndian Treat memory as little endian
	SYStem.Option.DPTREXT Selects the address of DPS register
	SYStem.Option.PRDELAY Set delay time after RESET
	Memory Classes

	SYMbol Commands
	Special Function Register (SFR) symbols
	PUBSFR section in KEIL OMF-251
	R8051XC SFR Symbol Definition with PRACTICE

	TrOnchip Commands
	TrOnchip.state Display on-chip trigger window
	TrOnchip.CONVert Adjust range breakpoint in on-chip resource
	TrOnchip.RESet Set on-chip trigger to default state
	TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource

	JTAG Connectors
	LAUTERBACH Adapters
	ARM 20-pin Adapter

