
MANUAL

dsPIC33 Debugger

dsPIC33 Debugger

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 ICD In-Circuit Debugger .. 

 Processor Architecture Manuals .. 

 dsPIC33 .. 

 dsPIC33 Debugger ... 1

 History .. 4

 Warning .. 5

 Introduction ... 6

 Brief Overview of Documents for New Users 6

 Demo and Start-up Scripts 7

 Configuration ... 8

 System Overview 8

 Quick Start ... 9

 Start a New Debug Session 9

 Programming a Productive Application Binary 11

 Troubleshooting .. 13

 FAQ ... 14

 dsPIC33 Specific Implementations .. 15

 dsPIC33 Debug Monitor 15

 Breakpoints 15

 Software Breakpoints 15

 On-chip Breakpoints for Instructions 16

 On-chip Breakpoints for Data 16

 Memory Classes 17

 Programming the On-chip FLASH of the dsPIC33 18

 Special Hints, Restrictions, and Known Problems 18

 Special Hints 18

 Restrictions 18

 Known Problems 18

 CPU specific SYStem Settings ... 19

 SYStem.CLockPrescaler Select the prescaler for the debug clock 19
dsPIC33 Debugger | 2©1989-2024 Lauterbach

 SYStem.CONFIG.state Display target confguration 19

 SYStem.CONFIG Configure debugger according to target topology 20

 <parameters> describing the “DebugPort” 20

 System.CPU Select the used CPU 21

 SYStem.LOCK Tristate the debug port 21

 SYStem.MemAccess Select run-time memory access method 22

 SYStem.Mode Establish the communication with the target 23

 SYStem.Option Special setup 24

 SYStem.Option.BReakonWDT Enable break on watchdog time-out 24

 SYStem.Option.CLockSWitch Enable clock group switch 24

 SYStem.Option.ENableWDT Enable watchdog timer 24

 SYStem.Option.FastRC Use FRC as debug port clock 25

 SYStem.Option.FreezePer Freeze peripherals on break or breakpoint 25

 SYStem.Option.IMASKASM Disable interrupts while single stepping 25

 SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 26

 SYStem.Option.PARTitionconfig Configure the Flash partitions 26

 SYStem.Option.PoWeRSaVe Enable PWRSAV instruction 26

 SYStem.state Display SYStem.state window 27

 CPU specific TrOnchip Commands ... 28

 Target Adaption ... 29

 Probe Cables 29

 Connector Type and Pinout 29
dsPIC33 Debugger | 3©1989-2024 Lauterbach

dsPIC33 Debugger

Version 06-Jun-2024

History

20-Nov-19 Initial version.
dsPIC33 Debugger | 4©1989-2024 Lauterbach

Warning

WARNING: To prevent debugger and target from damage it is recommended to connect or
disconnect the debug cable only while the target power is OFF.

Recommendation for the software start:

1. Disconnect the debug cable from the target while the target power is
off.

2. Connect the host system, the TRACE32 hardware and the debug
cable.

3. Power ON the TRACE32 hardware.

4. Start the TRACE32 software to load the debugger firmware.

5. Connect the debug cable to the target.

6. Switch the target power ON.

7. Configure your debugger e.g. via a start-up script.

Power down:

1. Switch off the target power.

2. Disconnect the debug cable from the target.

3. Close the TRACE32 software.

4. Power OFF the TRACE32 hardware.
dsPIC33 Debugger | 5©1989-2024 Lauterbach

Introduction

This manual serves as a guideline for debugging dsPIC33C/E cores and describes all processor-specific
TRACE32 settings and features.

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your debug cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• To get started with the most important manuals, use the Welcome to TRACE32! dialog
(WELCOME.view):
dsPIC33 Debugger | 6©1989-2024 Lauterbach

Demo and Start-up Scripts

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:

• Type at the command line: WELCOME.SCRIPTS

• or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/pic/ subfolder of the system directory of TRACE32.
dsPIC33 Debugger | 7©1989-2024 Lauterbach

Configuration

System Overview

Example configuration for a single core debugger.

Please consider the tips given in the chapter “Connector Type and Pinout”, page 26.

��������	

POWER DEBUG USB INTERFACE / USB 3

POWER DEBUG INTERFACE / USB 3

PC or
Workstation

USB
Cable

Target

D
eb

ug
C

on
ne

ct
or

Debug Cable
dsPIC33 Debugger | 8©1989-2024 Lauterbach

Quick Start

Start a New Debug Session

Starting up the debugger is done as follows:

1. Select the device prompt B (BDM debugger) and reset TRACE32.

The device prompt B:: is normally already selected in the TRACE32 command line. If this is not the
case, enter B:: to set the correct device prompt. The RESet command is only necessary if you do
not start directly after booting the TRACE32 development tool.

2. Specify the CPU specific settings.

This command selects the CPU type. In case the exact type of CPU is not known, the command
SYStem.DETECT.CPU can be used to detect the connected target.

3. Reset the target and enter debug mode.

This command resets the CPU on the target, enables On-Chip-Debug Mode and halts at the first
instruction.The CPU stops executing any instruction, and the user is able to download and test the
code. After this command is executed, it is possible to access memory and registers.

If this command results in an error, the target might not be prepared for debugging with TRACE32.
Either it is configured in productive mode where the program in the flash is executed right after the
reset, or an incompatible debug monitor is programmed. In these cases use following command to
prepare the target before entering the debug mode.

If the CPU DSPIC33XXXX is selected, TRACE32 tries to detect the CPU type of the connected target
before the system is brought up.

B::

RESet

SYStem.CPU DSPIC33CH128MP508

SYStem.Mode Up

FLASH.UNSECUREerase
dsPIC33 Debugger | 9©1989-2024 Lauterbach

4. Load the program into the program memory.

A typical start sequence of the PIC is shown below. This sequence can be written to a PRACTICE script file
(*.cmm, ASCII format) and executed with the command DO <file>.

*) These commands open windows on the screen. The window position can be specified with the WinPOS
command.

DO ~~/demo/pic/flash/dspic33cxxxx.cmm

B:: ; Select the ICD device prompt

RESet ; Reset the TRACE32 software

WinCLEAR ; Clear all windows

SYStem.Up ; Reset the target and enter debug mode

DO
~~/demo/pic/flash/<script>.cm
m

; Load the target application with the
; family specific script

; Set the stack pointer to address 8000

PER.view ; Show clearly arranged peripherals
; in window *)

List.Mix ; Open source code window *)

Register.view /SpotLight ; Open register window *)

Frame.view /Locals /Caller ; Open the stack frame with
; local variables *)

Var.Watch %SpotLight flags ast ; Open watch window for variables *)

Break.Set 0x101000 /Program
/Onchip

; Set on-chip breakpoint
; to address 101000

NOTE: Due to the architecture of the dsPIC33 microcontroller, the on-chip breakpoints
halt the target two instructions after the program counter (PC) reached the
address of an on-chip breakpoint. This is called skid.
dsPIC33 Debugger | 10©1989-2024 Lauterbach

Programming a Productive Application Binary

To write an application where the debug access is disabled to the program memory, a different approach
must be used. In this case, the target is configured to be in productive mode so that the loaded program is
executed right after a reset.

1. Select the device prompt B (BDM debugger) and reset TRACE32.

The device prompt B:: is normally already selected in the TRACE32 command line. If this is not the
case, enter B:: to set the correct device prompt. The RESet command is only necessary if you do
not start directly after booting the TRACE32 development tool.

2. Specify the CPU specific settings by selecting the appropriate script and prepare the program
memory

B::

RESet

DO ~~/demo/pic/flash/dspic33cxxxx.cmm PREPAREONLY
dsPIC33 Debugger | 11©1989-2024 Lauterbach

3. Reset the target and enter prepare mode.

This command resets the CPU on the target, and enables program memory access.

4. Write the configuration information first.

The address range given in the Data.LOAD.auto command must be modified to point to the last
flash page of the target which includes the configuration memory space.

5. Write the remaining program memory.

The program binary selected for the Data.LOAD.auto command should be the same as in the
previous step.

6. Reset target

SYStem.Mode Prepare

FLASH.ReProgram 2.

Data.LOAD.auto * P:0x2B800++0x7FF

FLASH.ReProgram off

FLASH.ReProgram 1.

Data.LOAD.auto *

FLASH.ReProgram off

SYStem.RESet
dsPIC33 Debugger | 12©1989-2024 Lauterbach

Troubleshooting

Error Message Event Reason

Target power fail SYStem.Mode.Up See below.

No clock signal
detected.

SYStem.Mode.Up See below.

Target processor in
reset

SYStem.Down See below.

The number of
<number> accessed
bytes in memory is not a
multiple of the access
size <size> bytes.

No special event Internal error, please consult your
Lauterbach representative.

Memory address
<address> is not aligned
to access size <size>.

No special event Internal error, please consult your
Lauterbach representative.

Invalid memory access
size: <size> bytes (@
address <address>)

No special event Internal error, please consult your
Lauterbach representative.

Memory access timeout:
Reading from address
<address>

No special event Corrupted debug connection. Check
debug hardware and settings.
dsPIC33 Debugger | 13©1989-2024 Lauterbach

Typically the SYStem.Up command is the first command of a debug session where communication with
target is required. If you receive error messages like “debug port fail” or “debug port time out” while executing
this command, this may have the reasons below. “target processor in reset” is just a follow-up error
message.

• Open the AREA.view window to display all error messages.

• If the target has no power or the debug cable is not connected to the target, this results in the
error message “target power fail”.

• Did you select the correct core type with SYStem.CPU <cpu>?

• There is an issue with the debug interface. Maybe there is the need to set jumpers on the target
to connect the correct signals to the debug connector. The debugger will not work, for example, if
PGEC signal is directly connected to ground on target side.

• The target is in an unrecoverable state. Re-power your target and try again.

• The default debug clock prescaler is too low. In this case try SYStem.CLockPrescaler 0xA0 and
optimize the speed when you got it working.

• The target was not prepared for debugging with TRACE32. In this case try
FLASH.UNSECUREerase.

• There are no pull-down resistors connected to the communication lines. For further information
see the chapter “Connector Type and Pinout”, page 26.

• The core has no clock.

• The core is kept in reset.

• There is a watchdog which needs to be deactivated.

FAQ

Please refer to https://support.lauterbach.com/kb.
dsPIC33 Debugger | 14©1989-2024 Lauterbach

https://support.lauterbach.com/kb

dsPIC33 Specific Implementations

dsPIC33 Debug Monitor

In order to debug a dsPIC33C/E target, a debug monitor is required. The debug monitor is a software
program which executes on the target whenever the target receives a halt request, e.g. by a breakpoint or a
user initiated break. The debug monitor then communicates with the debugger, which allows access to the
target system. Therefore, the debug monitor capabilities have a direct influence on the debugger capabilities.

Lauterbach provides debug monitors which are not compatible with the debug tools of other manufacturers.
The debug monitor is designed to support all basic and advanced debug features offered by a certain
dsPIC33 family.

The Lauterbach debug monitors require up to 2.908 Bytes of memory and must be loaded to the address
P:0x800000. This is a separate area in the flash memory and does not affect the space available for user
programs. In general, the debug monitor code must be present in the target memory before the debugger
can be used. To load the suitable Lauterbach debug monitor into the target’s flash memory, the command
FLASH.UNSECUREerase should be used. This command erases the user code memory and configures
the currently used debug port, too.

Breakpoints

Software Breakpoints

The Microchip dsPIC33 architecture does support unlimited software breakpoints. But their usage is not
recommended as setting them will partially rewrite the flash memory and therefore reduces the number of
flash erase cycles. The default breakpoints are On-chip breakpoints.

NOTE: The application loaded for debugging must reserve 80 bytes of data memory
at the address D:0x1000, which must not be modified by the program. This area
is used by the debug monitor to save register data, etc. Modifying the data in
this area might cause the debugger to crash.
Please check if your tools automatically reserve this area while linking the
program binary.
dsPIC33 Debugger | 15©1989-2024 Lauterbach

On-chip Breakpoints for Instructions

Most Microchip dsPIC33 MCUs support a total of up to eight on-chip breakpoint registers which can be used
as program breakpoints to stop and debug the program which executes always in the Flash. When
debugging the slave core of a dsPIC33CH derivative only three breakpoints are available. Please consider
the skid of two assembler instructions when using on-chip breakpoints. That means, the core usually halts
two instructions after the on-chip breakpoint.

On-chip Breakpoints for Data

Data breakpoints are used to analyze the read and write accesses to global variables. The data breakpoints
can be triggered with respect to the data address or access type, i.e. read, write or both, or the data value.
Up to five on-chip breakpoints of dsPIC33 MCUs can be used as data breakpoints. On the slave core of a
dsPIC33CH derivative one data breakpoint is available.

In case of an on-chip data breakpoint, every load and store instruction is checked with respect to the
breakpoint address, access type and the value. The data breakpoints are especially useful to find out when
a global variable is written with a certain value. It is not possible to implement a similar breakpoint in software
without affecting the real-time behavior of the system. Since the load and store instructions work on RAM,
data breakpoints always point to addresses on RAM.

NOTE: One of the on-chip breakpoints of a dsPIC33CH slave core can also be used as
data breakpoint. When debugging other core types, even five data breakpoints
are possible. If data breakpoints are used, the total number of program
breakpoints is reduced.
dsPIC33 Debugger | 16©1989-2024 Lauterbach

Memory Classes

The dsPIC33 architecture is a Harvard-type processor architecture. Therefore, following different memory
access classes are available:

To access a memory class, write the class in front of the address. For example, use D to access the data
memory:

The following examples return different results, since the dsPIC architecture uses the Harvard Architecture.

Access Class Description

D Data

P Program

Data.dump D:0x00

Data.dump D:0x100

Data.dump P:0x100
dsPIC33 Debugger | 17©1989-2024 Lauterbach

Programming the On-chip FLASH of the dsPIC33

The PRACTICE script for programming of the on-chip FLASH of a dsPIC33 can be found in the TRACE32
demo folder ~~/demo/pic/flash/.

For programming the program memory of a dsPIC33E core, the script dspic33epxxx.cmm should be used.
For programming the program memory of a dsPIC33C master core with a single partition, the script
dspic33cxxxx.cmm should be used. For dual partition configurations of a dsPIC33C core, the script
dspic33cxxxx_dual.cmm is suitable. The dspic33chxxxslave.cmm is intended for flashing a dsPIC33CH
slave core.

Please be aware that these are just example scripts. They might need some adaption to fit your MCU.

To debug only the slave core of a dsPIC33CH target, the FLASH of the master core must be programmed at
least with a stub function including the hardware configuration words for the master and slave core.
Afterwards the slave core can be programmed. For further details see the scripts mentioned above.

Additionally, an application can be flashed to the chip’s program memory where the debug ports of the target
are disabled. To do so, the target must be brought to Prepare mode before the binary is written to flash
memory. In this case, the scripts mentioned above will fail.

Special Hints, Restrictions, and Known Problems

Special Hints

• Due to the architecture of the dsPIC33 microcontrollers, the target will always halt two assembler
instructions after an on-chip breakpoint’s address. This can lead to imprecisions when doing HLL
steps.

Restrictions

• The use of SW breakpoints is discouraged as setting them leads to faster reduction of the
target’s number of flash erase cycles.

• Go.Return will stop the target right after the current function is left. Because of the on-chip
breakpoint implementation, the debugger can not stop the target at the function epilog.

Known Problems

• Stack frames not correctly shown when entering library functions.

NOTE: All problems will be fixed in one of the next SW versions without notice!
dsPIC33 Debugger | 18©1989-2024 Lauterbach

CPU specific SYStem Settings

SYStem.CLockPrescaler Select the prescaler for the debug clock

Default: 0x03.

Selects the prescaler for the clock used by the debug port. For a satisfying performance of the debug
communication, this value should only be set to a higher value if the debug communication fails.

SYStem.CONFIG.state Display target confguration

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are not included in the SYStem.CONFIG.state window.

Format: SYStem.CLockPrescaler <value>

Format: SYStem.CONFIG.state [/<tab>]

<tab>: DebugPort

<tab> Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.

DebugPort
(default)

The DebugPort tab informs the debugger about the debug connector
type and the communication protocol it shall use.

For descriptions of the commands on the DebugPort tab, see
DebugPort.
dsPIC33 Debugger | 19©1989-2024 Lauterbach

SYStem.CONFIG Configure debugger according to target topology

The SYStem.CONFIG commands inform the debugger about the available on-chip debug and trace
components and how to access them.

The SYStem.CONFIG command information shall be provided after the SYStem.CPU command, which
might be a precondition to enter certain SYStem.CONFIG commands, and before you start up the debug
session e.g. by SYStem.Up.

<parameters> describing the “DebugPort”

Format: SYStem.CONFIG <parameter>

<parameter>:
(DebugPort)

DEBUGPORT [DebugCable0 | DebugCableA | DebugCableB]
DEBUGPORTTYPE [SPI]
Slave [ON|OFF]
TriState [ON|OFF]

DEBUGPORT
[DebugCable0 | DebugCa-
bleA | DebugCableB]

It specifies which probe cable shall be used e.g. “DebugCableA” or
“DebugCableB”. At the moment only the CombiProbe allows to
connect more than one probe cable.

Default: depends on detection

DEBUGPORTTYPE
[SPI]

It specifies the used debug port type “SPI”. At the moment only
“SPI” is selectable.

Default: SPI.

Slave [ON | OFF] If several debuggers share the same debug port, all except one
must have this option active.

Default: OFF.
Default: ON if CORE=... >1 in the configuration file (e.g. config.t32).

TriState [ON | OFF] TriState has to be used if several debug cables are connected to a
common debug port.

Default: OFF.
dsPIC33 Debugger | 20©1989-2024 Lauterbach

System.CPU Select the used CPU

Default: DSPIC33XXX.

Selects the processor type. Most of the current Microchip dsPIC33C and dsPIC33E MCU cores are
supported.

SYStem.LOCK Tristate the debug port

Default: OFF

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
connector of the debugger is tristated. The intention of the SYStem.LOCK command is, for example, to give
debug access to another tool. The process can also be automated, see SYStem.CONFIG TriState

Format: SYStem.CPU <cpu>

<cpu>: DSPIC33CH512MP508 | DSPIC33CK32MP102 | …

Format: SYStem.LOCK [ON | OFF]
dsPIC33 Debugger | 21©1989-2024 Lauterbach

SYStem.MemAccess Select run-time memory access method

Default: Denied.

If SYStem.MemAccess StopAndGo is set, it is possible to read from memory, to write to memory and to
set software breakpoints while the CPU is executing the program. To make this possible, the program
execution is shortly stopped by the debugger. Each stop takes some time depending on the currently active
debug port clock prescaler and the operations that should be performed. A white S against a red
background in the TRACE32 state line warns you that the program is no longer running in real-time:

To update specific windows that display memory or variables while the program is running, select the
memory class E: or the format option %E.

Format: SYStem.MemAccess <mode>

<mode>: Denied
StopAndGo

Denied No memory access is possible while the CPU is executing the program.

StopAndGo Temporarily halts the core to perform the memory access. Each stop
takes some time depending on the speed of the debug port and the
operations that should be performed.
For more information, see below.

Data.dump E:0x100

Var.View %E first

No real-time
dsPIC33 Debugger | 22©1989-2024 Lauterbach

SYStem.Mode Establish the communication with the target

Default: Down.

Format: SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Down
NoDebug
Prepare
Go
Attach
Up

Down Disables the debugger. The CPU is reseted.

NoDebug Disables the debugger. The state of the CPU remains unchanged. The
debug port is tristated.

Prepare Resets the target. The debugger initializes the debug port, but does not
connect to the CPU. This debug mode is used if the CPU shall not be
debugged but programmed with an application binary intended for
productive use.

Go Resets the target, initializes the debug port, and starts program
execution.

Attach Initializes the debug interface and connects to core while program
remains running.

After this command the user program can be stopped with the break
command or by any other break condition (e.g a breakpoints).

Up Resets the target and stops the CPU at the reset vector.

StandBy Not available for this architecture.
dsPIC33 Debugger | 23©1989-2024 Lauterbach

SYStem.Option Special setup
[SYStem.state window > Option]

The SYStem.Option commands are used to control special features of the debugger or to configure the
target. It is recommended to execute the SYStem.Option commands before the emulation is activated by a
SYStem.Up or SYStem.Mode command.

SYStem.Option.BReakonWDT Enable break on watchdog time-out

Default: OFF.

If enabled, the program execution halts on a Watchdog time-out. If the CPU is in running mode and this
option is disabled, a Watchdog time-out resets the CPU.

SYStem.Option.CLockSWitch Enable clock group switch

Default: ON.

If enabled, a loaded program can switch the clock group used by the CPU. Otherwise a break occurs.

SYStem.Option.ENableWDT Enable watchdog timer

Default: ON.

This option enables a global Watchdog timer. The system’s reaction to a Watchdog time-out can be
configured by using SYStem.Option.BReakonWDT.

Format: SYStem.Option.BReakonWDT [ON | OFF]

NOTE: If the program execution is already halted due to a breakpoint or break
command, a Watchdog time-out is ignored. See: SYStem.Option.EnableWDT

Format: SYStem.Option.CLockSWitch [ON | OFF]

Format: System.Option.ENableWDT [ON | OFF]
dsPIC33 Debugger | 24©1989-2024 Lauterbach

SYStem.Option.FastRC Use FRC as debug port clock

Default: ON.

If enabled, the debug port runs on the Fast RC Oscillator instead of the system clock.

SYStem.Option.FreezePer Freeze peripherals on break or breakpoint

Default: OFF.

The on-chip peripherals of a dsPIC33 chip have can be configured to freeze when the program execution is
interrupted. Several of those peripherals have no separate FREEZE bit in the configuration registers. All the
peripherals lacking such a FREEZE are globally controlled by this configuration bit.

If enabled, the peripherals freeze when the program execution is interrupted. If disabled, the peripherals run
normally when a breakpoint or break command occurs.

SYStem.Option.IMASKASM Disable interrupts while single stepping

Default: ON.

If enabled, the interrupt enable flag of the EFLAGS register will be cleared during assembler single-step
operations. After the single step, the interrupt enable flag is restored to the value it had before the step. It is
turned on to make sure that no interrupt routine is serviced between Break and Go states.

NOTE: If the program execution is already halted due to a breakpoint or break
command, a Watchdog time-out is ignored.

Format: SYStem.Option.FastRC [ON | OFF]

Format: SYStem.Option.FreezePer [ON | OFF]

Format: SYStem.Option.IMASKASM [ON | OFF]
dsPIC33 Debugger | 25©1989-2024 Lauterbach

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

Default: ON.

If enabled, the interrupt enable flag of the EFLAGS register will be cleared during HLL single-step
operations. After the single step, the interrupt enable flag is restored to the value it had before the step.

SYStem.Option.PARTitionconfig Configure the Flash partitions

Default: SinglePARTition.

Several dsPIC33 MCUs support an on-chip Flash memory which can be split into two partitions. The active
partition begins at address 0x000000 and in case of a dual partition configuration, the inactive partition
begins at address 0x400000. Depending on the used target, the size of the partitions can vary. For further
details please refer to the target chip’s data sheet.

SYStem.Option.PoWeRSaVe Enable PWRSAV instruction
ON

Default: ON.

Format: SYStem.Option.IMASKHLL [ON | OFF]

Format: SYStem.Option.PARTitionconfig [SinglePARTition | DUALpartition
| PROTectedDualpart | PRIVilegedDualpart]

SinglePARTition The Flash memory will be used as one partition.

DUALpartition The Flash memory will be split in two partitions.
Both partitions have the same size but will be loaded with different
program code according to the binary file.

PROTectedDualpart The Flash memory will be split in one protected and one normal partition.
Similar to the previous configuration but partition 1 will be permanently
erase/write-protected. Partition 2 can still be altered.

PRIVilegedDualpart The Flash memory will be split in two partitions. The Boot Segment
limitation has special protection to prevent changes. This option is not
supported by all dsPIC33 MCUs.

Format: SYStem.Option.PoWeRSaVe [ON | OFF]
dsPIC33 Debugger | 26©1989-2024 Lauterbach

If enabled, the PWRSAV instruction will cause the chip to enter Idle or Sleep mode. Otherwise the program
execution will be interrupted.

SYStem.state Display SYStem.state window

Displays the SYStem.state window for system settings that configure debugger and target behavior.

Format: SYStem.state
dsPIC33 Debugger | 27©1989-2024 Lauterbach

CPU specific TrOnchip Commands

The TrOnchip command group is not available for the dsPIC33 debugger.
dsPIC33 Debugger | 28©1989-2024 Lauterbach

Target Adaption

Probe Cables

For debugging a dsPIC33 single or master core, the following kinds of probe cables can be used to connect
the debugger to the target:

• AUTO26 Debug Cable V2/V3

• AUTO26 Whisker for CombiProbe

The debug logic of the dsPIC33CH family only allows to debug a single core at a time. Debugging the
second core requires either a second Debug Cable with a second tool set or a CombiProbe with two
Whiskers.

Connector Type and Pinout

Debug Cable

A standard 1 x 8 pin header (pin-to-pin spacing: 0.1 inch = 2.54 mm) is required on the target.

• Do not connect the N/C pins. Even if pins 7 and 8 are present on the provided adapter (LA-2773).

• If there are dsPIC33 derivatives which can be debugged via JTAG, the future use pinout will be
used.

• VTREF is the processor power supply voltage. It is used to detect if target power is on and it is
used to supply the output buffers of the debugger. That means the output voltage of the debugger
signals (PGD, PGC) depends directly on this signal.

• If not already present on the target board, consider the use of a pull-up resistor on pin 1 and pull-
down resistors on pin 4 and 5, with approximately 5.1 kOhms each. The most stable debug
connection is achieved when the pull-down resistors are as close as possible to the board’s pin
header and connected to pin 3 and pin 4, and to pin 3 and pin 5, respectively.

Microchip ICSP JTAG (future use only)

Pin Signal Signal
1 RESET- N/C
2 VTREF VREF-DEBUG
3 GND GND
4 PGD TDO
5 PGC TCK
6 N/C RESET-
7 N/C TDI
8 N/C TMS
dsPIC33 Debugger | 29©1989-2024 Lauterbach

	dsPIC33 Debugger
	History
	Warning
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Configuration
	System Overview

	Quick Start
	Start a New Debug Session
	Programming a Productive Application Binary

	Troubleshooting
	FAQ
	dsPIC33 Specific Implementations
	dsPIC33 Debug Monitor
	Breakpoints
	Software Breakpoints
	On-chip Breakpoints for Instructions
	On-chip Breakpoints for Data

	Memory Classes
	Programming the On-chip FLASH of the dsPIC33
	Special Hints, Restrictions, and Known Problems
	Special Hints
	Restrictions
	Known Problems

	CPU specific SYStem Settings
	SYStem.CLockPrescaler Select the prescaler for the debug clock
	SYStem.CONFIG.state Display target confguration
	SYStem.CONFIG Configure debugger according to target topology
	<parameters> describing the “DebugPort”

	System.CPU Select the used CPU
	SYStem.LOCK Tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the target
	SYStem.Option Special setup
	SYStem.Option.BReakonWDT Enable break on watchdog time-out
	SYStem.Option.CLockSWitch Enable clock group switch
	SYStem.Option.ENableWDT Enable watchdog timer
	SYStem.Option.FastRC Use FRC as debug port clock
	SYStem.Option.FreezePer Freeze peripherals on break or breakpoint
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.PARTitionconfig Configure the Flash partitions
	SYStem.Option.PoWeRSaVe Enable PWRSAV instruction
	SYStem.state Display SYStem.state window

	CPU specific TrOnchip Commands
	Target Adaption
	Probe Cables
	Connector Type and Pinout

