LAUTERBACH A

dsPIC33 Debugger

dsPIC33 Debugger

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index
TRACE32 DOCUMENTS ciceeiiiiiiiemns s inisess s snnsss s s rassss e e s s e s ee e m s e e ea s m s e b e a s mn e e R e a s annn e nnnnnn
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns
Processor Architecture Manuals ...

L] o 052

VERURR VAN

L E=1 2 102 JC 0 0 7T o ¥ Lo T 1= N

—

L 1= (o
L= o 1 '

) 4o Lo 11 ez {0 Y o R
Brief Overview of Documents for New Users
Demo and Start-up Scripts

L0 o o) 1T 11 = 11 To o R
System Overview

L@ T TG -
Start a New Debug Session
Programming a Productive Application Binary

- © © 000 Noo a »H

—

QLo 18] o == 0 T To7 £ 3V

-
>
['»)
- -
H W

dsPIC33 Specific Implementations ... ————
dsPIC33 Debug Monitor
Breakpoints
Software Breakpoints
On-chip Breakpoints for Instructions
On-chip Breakpoints for Data
Memory Classes
Programming the On-chip FLASH of the dsPIC33
Special Hints, Restrictions, and Known Problems
Special Hints
Restrictions
Known Problems

S G U U (U U (I G QI Gy
O 00 0 0 0 N O O 0o o1 &

CPU specific SYStem Settingscccccvvcmmiininmimnsninsssss s s ssmssnnnas
SYStem.CLockPrescaler Select the prescaler for the debug clock 19

[y
©

©1989-2024 Lauterbach dsPIC33 Debugger | 2

SYStem.CONFIG.state Display target confguration 19
SYStem.CONFIG Configure debugger according to target topology 20
<parameters> describing the “DebugPort” 20
System.CPU Select the used CPU 21
SYStem.LOCK Tristate the debug port 21
SYStem.MemAccess Select run-time memory access method 22
SYStem.Mode Establish the communication with the target 23
SYStem.Option Special setup 24
SYStem.Option.BReakonWDT Enable break on watchdog time-out 24
SYStem.Option.CLockSWitch Enable clock group switch 24
SYStem.Option.ENableWDT Enable watchdog timer 24
SYStem.Option.FastRC Use FRC as debug port clock 25
SYStem.Option.FreezePer Freeze peripherals on break or breakpoint 25
SYStem.Option.IMASKASM Disable interrupts while single stepping 25
SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 26
SYStem.Option.PARTitionconfig Configure the Flash partitions 26
SYStem.Option.PoWeRSaVe Enable PWRSAYV instruction 26
SYStem.state Display SYStem.state window 27
CPU specific TrOnchip Commandsccccccemmmniismmmmmnnsssrmnsssssssss s s ssssssssas 28
LK 1o 1= 07X = o £ o T 29
Probe Cables 29
Connector Type and Pinout 29
©1989-2024 Lauterbach dsPIC33 Debugger | 3

dsPIC33 Debugger

Version 06-Jun-2024

History

20-Nov-19 Initial version.

©1989-2024 Lauterbach dsPIC33 Debugger | 4

Warning

WARNING:

To prevent debugger and target from damage it is recommended to connect or
disconnect the debug cable only while the target power is OFF.

Recommendation for the software start:

1.

N o o A~

Disconnect the debug cable from the target while the target power is
off.

Connect the host system, the TRACES32 hardware and the debug
cable.

Power ON the TRACE32 hardware.

Start the TRACE32 software to load the debugger firmware.
Connect the debug cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:

1.

2
3.
4

Switch off the target power.

Disconnect the debug cable from the target.
Close the TRACES32 software.

Power OFF the TRACES32 hardware.

©1989-2024 Lauterbach

dsPIC33 Debugger |

5

Introduction

This manual serves as a guideline for debugging dsPIC33C/E cores and describes all processor-specific
TRACES2 settings and features.

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Brief Overview of Documents for New Users

Architecture-independent information:

J “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACERS2 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

J “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your debug cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

. To get started with the most important manuals, use the Welcome to TRACE32! dialog
(WELCOME.view):
£3) Welcome to TRACE32! [s

TRACE32 PowerView for PIC / PowerDebug USB 3.0

Before you can start debugaging, the debug environment needs to be set up.
This setup is usually done by a start-up script. Click "Start with examples” to
search for an example start-up script for your target.

Example scripts can be modified to fit your exact system setup and configuration.

Related manuals

@ dsPIC33C Debugger
@ Debugger Basics - Training
@ Training Script Language PRACTICE

[show this dialog at start T Help | | $3Start with examples

Re-open dialog via menu Help -> Welcome to TRACE32

©1989-2024 Lauterbach dsPIC33 Debugger | 6

Demo and Start-up Scripts

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:
. Type at the command line: WELCOME.SCRIPTS

. or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

#3 Search for scripts... E@

Search Selection Manuals

@ Mk 12 demo files found.

Fitter
@®none Ochip O Board

Search for newest scripts at https://www.luterbach.com/scripts.html

&% conFIG | | & Tree view | |28 LISTCONFIG

Title

mo Slave Core—selup Tor dsgie33CHY12* derivalives
Programming program memory example script for dsE33CH slave cores
Demo Master Core-setup for ds| 33CH128 derivatives
Demo Slave Core-setup for ds| 33CH128* derivatives
Demo Master Core-setup for ds| 33CH512 derivatives
Flash programming example script for ds 33030 internal flash.
Demo Single Core-setup fTor ds[@E33CK256 derivatives Explorer 16/32
Demo Single Core-setup for ds[Bl833CK64 deriwvatives Explorer 16/32
Display JPEG images with the Data.IMAGE command - -
Display bitmap images with the Data.IMAGE command - -
Display warious image formats with the Data.IMAGE command - -
Display warious image formats with the Data.IMAGE command - -

Board |
Explorer 16/37

Explorer 16/32
Explorer 16/32
Explorer 16/32

You can also manually navigate in the ~~/demo /pic/ subfolder of the system directory of TRACE32.

©1989-2024 Lauterbach dsPIC33 Debugger

7

Configuration

System Overview

Example configuration for a single core debugger.

PC or
Workstation

Target

I —1
[Ep— —T powen besuG Uss INTERFACE /UsB 3 — Debug Cable
LAUTERBACH. -

P Il

Cable

Debug
Connector

POWER DEBUG INTERFACE / USB 3

Wall Mount
L
Power Supply

Please consider the tips given in the chapter “Connector Type and Pinout”, page 26.

©1989-2024 Lauterbach dsPIC33 Debugger | 8

Quick Start

Start a New Debug Session

Starting up the debugger is done as follows:

1. Select the device prompt B (BDM debugger) and reset TRACE32.

B::

RESet

The device prompt B: : is normally already selected in the TRACE32 command line. If this is not the
case, enter B: : to set the correct device prompt. The RESet command is only necessary if you do
not start directly after booting the TRACE32 development tool.

2. Specify the CPU specific settings.

SYStem.CPU DSPIC33CH128MP508

This command selects the CPU type. In case the exact type of CPU is not known, the command
SYStem.DETECT.CPU can be used to detect the connected target.

3. Reset the target and enter debug mode.

SYStem.Mode Up

This command resets the CPU on the target, enables On-Chip-Debug Mode and halts at the first
instruction.The CPU stops executing any instruction, and the user is able to download and test the
code. After this command is executed, it is possible to access memory and registers.

If this command results in an error, the target might not be prepared for debugging with TRACES32.
Either it is configured in productive mode where the program in the flash is executed right after the
reset, or an incompatible debug monitor is programmed. In these cases use following command to
prepare the target before entering the debug mode.

FLASH.UNSECUREerase

If the CPU DSPIC33XXXX is selected, TRACES32 tries to detect the CPU type of the connected target
before the system is brought up.

©1989-2024 Lauterbach dsPIC33 Debugger | 9

4. Load the program into the program memory.

DO ~~/demo/pic/flash/dspic33cxxxx.cmm

A typical start sequence of the PIC is shown below. This sequence can be written to a PRACTICE script file
(*.cmm, ASCII format) and executed with the command DO <file>.

B::

RESet
WinCLEAR
SYStem.Up
DO

~~/demo/pic/flash/<script>.cm
m

PER.view

List.Mix
Register.view /SpotLight

Frame.view /Locals /Caller

Var.Watch %$SpotLight flags ast

Break.Set 0x101000 /Program
/Onchip

’

I

Select the ICD device prompt

Reset the TRACE32 software

Clear all windows

Reset the target and enter debug mode
Load the target application with the

family specific script

Set the stack pointer to address 8000

Show clearly arranged peripherals

in window %)
Open source code window)
Open register window *)

Open the stack frame with
local variables *)

Open watch window for variables *)

Set on-chip breakpoint
to address 101000

*) These commands open windows on the screen. The window position can be specified with the WinPOS

command.

NOTE:

Due to the architecture of the dsPIC33 microcontroller, the on-chip breakpoints
halt the target two instructions after the program counter (PC) reached the
address of an on-chip breakpoint. This is called skid.

©1989-2024 Lauterbach

dsPIC33 Debugger | 10

Programming a Productive Application Binary

To write an application where the debug access is disabled to the program memory, a different approach
must be used. In this case, the target is configured to be in productive mode so that the loaded program is
executed right after a reset.

1. Select the device prompt B (BDM debugger) and reset TRACE32.
IBE

RESet

The device prompt B: : is normally already selected in the TRACE32 command line. If this is not the
case, enter B: : to set the correct device prompt. The RESet command is only necessary if you do
not start directly after booting the TRACE32 development tool.

2. Specify the CPU specific settings by selecting the appropriate script and prepare the program
memory

DO ~~/demo/pic/flash/dspic33cxxxx.cmm PREPAREONLY

©1989-2024 Lauterbach dsPIC33 Debugger | 11

3. Reset the target and enter prepare mode.

SYStem.Mode Prepare

This command resets the CPU on the target, and enables program memory access.

4. Write the configuration information first.

FLASH.ReProgram 2.
Data.LOAD.auto * P:0x2B800++0x7FF

FLASH.ReProgram off

The address range given in the Data.LOAD.auto command must be modified to point to the last
flash page of the target which includes the configuration memory space.

5. Write the remaining program memory.

FLASH.ReProgram 1.
Data.LOAD.auto *

FLASH.ReProgram off

The program binary selected for the Data.LOAD.auto command should be the same as in the
previous step.

6. Reset target

SYStem.RESet

©1989-2024 Lauterbach dsPIC33 Debugger | 12

Troubleshooting

Error Message Event Reason
Target power fail SYStem.Mode.Up See below.
No clock signal SYStem.Mode.Up See below.
detected.

Target processor in SYStem.Down See below.

reset

The number of
<number> accessed
bytes in memory is not a
multiple of the access
size <size> bytes.

No special event

Internal error, please consult your
Lauterbach representative.

Memory address
<address>is not aligned
to access size <size>.

No special event

Internal error, please consult your
Lauterbach representative.

Invalid memory access
size: <size> bytes (@
address <address>)

No special event

Internal error, please consult your
Lauterbach representative.

Memory access timeout:
Reading from address
<address>

No special event

Corrupted debug connection. Check
debug hardware and settings.

©1989-2024 Lauterbach

dsPIC33 Debugger |

13

Typically the SYStem.Up command is the first command of a debug session where communication with
target is required. If you receive error messages like “debug port fail” or “debug port time out” while executing
this command, this may have the reasons below. “target processor in reset” is just a follow-up error
message.

FAQ

Open the AREA.view window to display all error messages.

If the target has no power or the debug cable is not connected to the target, this results in the
error message “target power fail”.

Did you select the correct core type with SYStem.CPU <cpu>?

There is an issue with the debug interface. Maybe there is the need to set jumpers on the target
to connect the correct signals to the debug connector. The debugger will not work, for example, if
PGEC signal is directly connected to ground on target side.

The target is in an unrecoverable state. Re-power your target and try again.

The default debug clock prescaler is too low. In this case try SYStem.CLockPrescaler 0xA0 and
optimize the speed when you got it working.

The target was not prepared for debugging with TRACES32. In this case try
FLASH.UNSECUREerase.

There are no pull-down resistors connected to the communication lines. For further information
see the chapter “Connector Type and Pinout”, page 26.

The core has no clock.
The core is kept in reset.

There is a watchdog which needs to be deactivated.

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach dsPIC33 Debugger | 14

https://support.lauterbach.com/kb

dsPIC33 Specific Inplementations

dsPIC33 Debug Monitor

In order to debug a dsPIC33C/E target, a debug monitor is required. The debug monitor is a software
program which executes on the target whenever the target receives a halt request, e.g. by a breakpoint or a
user initiated break. The debug monitor then communicates with the debugger, which allows access to the
target system. Therefore, the debug monitor capabilities have a direct influence on the debugger capabilities.

Lauterbach provides debug monitors which are not compatible with the debug tools of other manufacturers.
The debug monitor is designed to support all basic and advanced debug features offered by a certain
dsPIC33 family.

The Lauterbach debug monitors require up to 2.908 Bytes of memory and must be loaded to the address
P:0x800000. This is a separate area in the flash memory and does not affect the space available for user
programs. In general, the debug monitor code must be present in the target memory before the debugger
can be used. To load the suitable Lauterbach debug monitor into the target’s flash memory, the command
FLASH.UNSECUREerase should be used. This command erases the user code memory and configures
the currently used debug port, too.

NOTE: The application loaded for debugging must reserve 80 bytes of data memory
at the address D:0x1000, which must not be modified by the program. This area
is used by the debug monitor to save register data, etc. Modifying the data in
this area might cause the debugger to crash.

Please check if your tools automatically reserve this area while linking the
program binary.

Breakpoints

Software Breakpoints

The Microchip dsPIC33 architecture does support unlimited software breakpoints. But their usage is not
recommended as setting them will partially rewrite the flash memory and therefore reduces the number of
flash erase cycles. The default breakpoints are On-chip breakpoints.

©1989-2024 Lauterbach dsPIC33 Debugger | 15

On-chip Breakpoints for Instructions

On

Most Microchip dsPIC33 MCUs support a total of up to eight on-chip breakpoint registers which can be used
as program breakpoints to stop and debug the program which executes always in the Flash. When
debugging the slave core of a dsPIC33CH derivative only three breakpoints are available. Please consider
the skid of two assembler instructions when using on-chip breakpoints. That means, the core usually halts
two instructions after the on-chip breakpoint.

NOTE: One of the on-chip breakpoints of a dsPIC33CH slave core can also be used as
data breakpoint. When debugging other core types, even five data breakpoints
are possible. If data breakpoints are used, the total number of program
breakpoints is reduced.

chip Breakpoints for Data

Data breakpoints are used to analyze the read and write accesses to global variables. The data breakpoints
can be triggered with respect to the data address or access type, i.e. read, write or both, or the data value.
Up to five on-chip breakpoints of dsPIC33 MCUs can be used as data breakpoints. On the slave core of a
dsPIC33CH derivative one data breakpoint is available.

In case of an on-chip data breakpoint, every load and store instruction is checked with respect to the
breakpoint address, access type and the value. The data breakpoints are especially useful to find out when
a global variable is written with a certain value. It is not possible to implement a similar breakpoint in software
without affecting the real-time behavior of the system. Since the load and store instructions work on RAM,
data breakpoints always point to addresses on RAM.

©1989-2024 Lauterbach dsPIC33 Debugger | 16

Memory Classes

The dsPIC33 architecture is a Harvard-type processor architecture. Therefore, following different memory

access classes are available:

Access Class Description
D Data
P Program

To access a memory class, write the class in front of the address. For example, use D to access the data

memory:

Data.dump D:0x00

The following examples return different results, since the dsPIC architecture uses the Harvard Architecture.

Data.dump D:0x100

Data.dump P:0x100

©1989-2024 Lauterbach

dsPIC33 Debugger

17

Programming the On-chip FLASH of the dsPIC33

The PRACTICE script for programming of the on-chip FLASH of a dsPIC33 can be found in the TRACE32
demo folder ~~/demo/pic/flash/.

For programming the program memory of a dsPIC33E core, the script dspic33epxxx.cmm should be used.
For programming the program memory of a dsPIC33C master core with a single partition, the script
dspic33cxxxx.cmm should be used. For dual partition configurations of a dsPIC33C core, the script
dspic33cxxxx_dual.cmm is suitable. The dspic33chxxxslave.cmm is intended for flashing a dsPIC33CH
slave core.

Please be aware that these are just example scripts. They might need some adaption to fit your MCU.

To debug only the slave core of a dsPIC33CH target, the FLASH of the master core must be programmed at
least with a stub function including the hardware configuration words for the master and slave core.
Afterwards the slave core can be programmed. For further details see the scripts mentioned above.

Additionally, an application can be flashed to the chip’s program memory where the debug ports of the target
are disabled. To do so, the target must be brought to Prepare mode before the binary is written to flash
memory. In this case, the scripts mentioned above will fail.

Special Hints, Restrictions, and Known Problems

Special Hints
J Due to the architecture of the dsPIC33 microcontrollers, the target will always halt two assembler
instructions after an on-chip breakpoint’s address. This can lead to imprecisions when doing HLL
steps.
Restrictions
J The use of SW breakpoints is discouraged as setting them leads to faster reduction of the

target’s number of flash erase cycles.

. Go.Return will stop the target right after the current function is left. Because of the on-chip
breakpoint implementation, the debugger can not stop the target at the function epilog.

Known Problems

. Stack frames not correctly shown when entering library functions.

NOTE: All problems will be fixed in one of the next SW versions without notice!

©1989-2024 Lauterbach dsPIC33 Debugger | 18

CPU specific SYStem Settings

SYStem.CLockPrescaler Select the prescaler for the debug clock

Format: SYStem.CLockPrescaler <value>

Default: 0x03.

Selects the prescaler for the clock used by the debug port. For a satisfying performance of the debug
communication, this value should only be set to a higher value if the debug communication fails.

SYStem.CONFIG.state Display target confguration
Format: SYStem.CONFIG.state [/<tab>]
<tab>: DebugPort

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are notincluded in the SYStem.CONFIG.state window.

<tab> Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.

DebugPort The DebugPort tab informs the debugger about the debug connector

(default) type and the communication protocol it shall use.

For descriptions of the commands on the DebugPort tab, see
DebugPort.

©1989-2024 Lauterbach dsPIC33 Debugger | 19

SYStem.CONFIG

Configure debugger according to target topology

Format: SYStem.CONFIG <parameter>

<parameter>: DEBUGPORT [DebugCable0 | DebugCableA | DebugCableB]
(DebugPort) DEBUGPORTTYPE [SPI]

Slave [ONIOFF]

TriState [ONIOFF]

The SYStem.CONFIG commands inform the debugger about the available on-chip debug and trace
components and how to access them.

The SYStem.CONFIG command information shall be provided after the SYStem.CPU command, which
might be a precondition to enter certain SYStem.CONFIG commands, and before you start up the debug

session e.g. by SYStem.Up.

<parameters> describing the “DebugPort”

DEBUGPORT
[DebugCableO | DebugCa-
bleA | DebugCableB]

DEBUGPORTTYPE
[SPI]

Slave [ON | OFF]

TriState [ON | OFF]

It specifies which probe cable shall be used e.g. “DebugCableA” or
“DebugCableB”. At the moment only the CombiProbe allows to
connect more than one probe cable.

Default: depends on detection

It specifies the used debug port type “SPI”. At the moment only
“SPI” is selectable.

Default: SPI.

If several debuggers share the same debug port, all except one
must have this option active.

Default: OFF.
Default: ON if CORE=... >1 in the configuration file (e.g. config.t32).

TriState has to be used if several debug cables are connected to a
common debug port.

Default: OFF.

©1989-2024 Lauterbach

dsPIC33 Debugger | 20

System.CPU Select the used CPU

Format: SYStem.CPU <cpu>

<cpu>: DSPIC33CH512MP508 | DSPIC33CK32MP102 | ...

Default: DSPIC33XXX.

Selects the processor type. Most of the current Microchip dsPIC33C and dsPIC33E MCU cores are
supported.

SYStem.LOCK Tristate the debug port

Format: SYStem.LOCK [ON | OFF]

Default: OFF

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
connector of the debugger is tristated. The intention of the SYStem.LOCK command is, for example, to give
debug access to another tool. The process can also be automated, see SYStem.CONFIG TriState

©1989-2024 Lauterbach dsPIC33 Debugger | 21

SYStem.MemAccess Select run-time memory access method

Format: SYStem.MemAccess <mode>
<mode>: Denied
StopAndGo

Default: Denied.

Denied No memory access is possible while the CPU is executing the program.

StopAndGo Temporarily halts the core to perform the memory access. Each stop
takes some time depending on the speed of the debug port and the
operations that should be performed.

For more information, see below.

If SYStem.MemAccess StopAndGo is set, it is possible to read from memory, to write to memory and to
set software breakpoints while the CPU is executing the program. To make this possible, the program
execution is shortly stopped by the debugger. Each stop takes some time depending on the currently active
debug port clock prescaler and the operations that should be performed. A white S against a red
background in the TRACERB2 state line warns you that the program is no longer running in real-time:

No real-time
/
][Frame | [Register | [FPU Knt}m{ | [pravious
running | | MIX [uP

To update specific windows that display memory or variables while the program is running, select the
memory class E: or the format option %E.

Data.dump E:0x100

Var.View %E first

©1989-2024 Lauterbach dsPIC33 Debugger | 22

SYStem.Mode

Establish the communication with the target

Format:

<mode>:

SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

Down
NoDebug
Prepare

Go

Attach

Up

Default: Down.

Down

NoDebug

Prepare

Go

Attach

Up

StandBy

Disables the debugger. The CPU is reseted.

Disables the debugger. The state of the CPU remains unchanged. The
debug port is tristated.

Resets the target. The debugger initializes the debug port, but does not
connect to the CPU. This debug mode is used if the CPU shall not be
debugged but programmed with an application binary intended for
productive use.

Resets the target, initializes the debug port, and starts program
execution.

Initializes the debug interface and connects to core while program
remains running.

After this command the user program can be stopped with the break
command or by any other break condition (e.g a breakpoints).

Resets the target and stops the CPU at the reset vector.

Not available for this architecture.

©1989-2024 Lauterbach

dsPIC33 Debugger | 23

SYStem.Option Special setup

[SYStem.state window > Option]

The SYStem.Option commands are used to control special features of the debugger or to configure the
target. It is recommended to execute the SYStem.Option commands before the emulation is activated by a

SYStem.Up or SYStem.Mode command.

SYStem.Option.BReakonWDT Enable break on watchdog time-out
Format: SYStem.Option.BReakonWDT [ON | OFF]
Default: OFF.

If enabled, the program execution halts on a Watchdog time-out. If the CPU is in running mode and this
option is disabled, a Watchdog time-out resets the CPU.

NOTE: If the program execution is already halted due to a breakpoint or break
command, a Watchdog time-out is ignored. See: SYStem.Option.EnableWDT

SYStem.Option.CLockSWitch Enable clock group switch
Format: SYStem.Option.CLockSWitch [ON | OFF]
Default: ON.

If enabled, a loaded program can switch the clock group used by the CPU. Otherwise a break occurs.

SYStem.Option.ENableWDT Enable watchdog timer
Format: System.Option.ENableWDT [ON | OFF]
Default: ON.

This option enables a global Watchdog timer. The system’s reaction to a Watchdog time-out can be
configured by using SYStem.Option.BReakonWDT.

©1989-2024 Lauterbach dsPIC33 Debugger | 24

NOTE: If the program execution is already halted due to a breakpoint or break
command, a Watchdog time-out is ignored.

SYStem.Option.FastRC Use FRC as debug port clock
Format: SYStem.Option.FastRC [ON | OFF]
Default: ON.

If enabled, the debug port runs on the Fast RC Oscillator instead of the system clock.

SYStem.Option.FreezePer Freeze peripherals on break or breakpoint
Format: SYStem.Option.FreezePer [ON | OFF]
Default: OFF.

The on-chip peripherals of a dsPIC33 chip have can be configured to freeze when the program execution is
interrupted. Several of those peripherals have no separate FREEZE bit in the configuration registers. All the
peripherals lacking such a FREEZE are globally controlled by this configuration bit.

If enabled, the peripherals freeze when the program execution is interrupted. If disabled, the peripherals run
normally when a breakpoint or break command occurs.

SYStem.Option.IMASKASM Disable interrupts while single stepping
Format: SYStem.Option.IMASKASM [ON | OFF]
Default: ON.

If enabled, the interrupt enable flag of the EFLAGS register will be cleared during assembler single-step
operations. After the single step, the interrupt enable flag is restored to the value it had before the step. It is
turned on to make sure that no interrupt routine is serviced between Break and Go states.

©1989-2024 Lauterbach dsPIC33 Debugger | 25

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

Format: SYStem.Option.IMASKHLL [ON | OFF]

Default: ON.

If enabled, the interrupt enable flag of the EFLAGS register will be cleared during HLL single-step
operations. After the single step, the interrupt enable flag is restored to the value it had before the step.

SYStem.Option.PARTitionconfig Configure the Flash partitions

Format: SYStem.Option.PARTitionconfig [SinglePARTition | DUALpartition
| PROTectedDualpart | PRIVilegedDualpart]

Default: SinglePARTi tion.

SinglePARTition The Flash memory will be used as one partition.

DUALpartition The Flash memory will be split in two partitions.
Both partitions have the same size but will be loaded with different
program code according to the binary file.

PROTectedDualpart The Flash memory will be split in one protected and one normal partition.
Similar to the previous configuration but partition 1 will be permanently
erase/write-protected. Partition 2 can still be altered.

PRIVilegedDualpart The Flash memory will be split in two partitions. The Boot Segment
limitation has special protection to prevent changes. This option is not
supported by all dsPIC33 MCUs.

Several dsPIC33 MCUs support an on-chip Flash memory which can be split into two partitions. The active
partition begins at address 0x000000 and in case of a dual partition configuration, the inactive partition
begins at address 0x400000. Depending on the used target, the size of the partitions can vary. For further
details please refer to the target chip’s data sheet.

SYStem.Option.PoWeRSaVe Enable PWRSAV instruction
Format: SYStem.Option.PoWeRSaVe [ON | OFF]
Default: ON.

©1989-2024 Lauterbach dsPIC33 Debugger | 26

If enabled, the PWRSAV instruction will cause the chip to enter Idle or Sleep mode. Otherwise the program
execution will be interrupted.

SYStem.state Display SY Stem.state window

Format: SYStem.state

Displays the SYStem.state window for system settings that configure debugger and target behavior.

©1989-2024 Lauterbach dsPIC33 Debugger | 27

CPU specific TrOnchip Commands

The TrOnchip command group is not available for the dsPIC33 debugger.

©1989-2024 Lauterbach dsPIC33 Debugger | 28

Target Adaption

Probe Cables

For debugging a dsPIC33 single or master core, the following kinds of probe cables can be used to connect

the debugger to the target:
. AUTO26 Debug Cable V2/V3
o AUTO26 Whisker for CombiProbe

The debug logic of the dsPIC33CH family only allows to debug a single core at a time. Debugging the
second core requires either a second Debug Cable with a second tool set or a CombiProbe with two

Whiskers.

Connector Type and Pinout

Debug Cable

Microchip ICSP

Signal
RESET-
VTREF
GND
PGD
PGC
N/C
N/C
N/C

3
5

Q0| | O U1 B[WO | =

JTAG (future use only)
Signal

N/C

VREF-DEBUG

GND

TDO

TCK

RESET-

TDI

TMS

A standard 1 x 8 pin header (pin-to-pin spacing: 0.1 inch = 2.54 mm) is required on the target.

. Do not connect the N/C pins. Even if pins 7 and 8 are present on the provided adapter (LA-2773).

J If there are dsPIC33 derivatives which can be debugged via JTAG, the future use pinout will be
used.
J VTREEF is the processor power supply voltage. It is used to detect if target power is on and it is

used to supply the output buffers of the debugger. That means the output voltage of the debugger

signals (PGD, PGC) depends directly on this signal.

. If not already present on the target board, consider the use of a pull-up resistor on pin 1 and pull-
down resistors on pin 4 and 5, with approximately 5.1 kOhms each. The most stable debug
connection is achieved when the pull-down resistors are as close as possible to the board’s pin
header and connected to pin 3 and pin 4, and to pin 3 and pin 5, respectively.

©1989-2024 Lauterbach

dsPIC33 Debugger | 29

	dsPIC33 Debugger
	History
	Warning
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Configuration
	System Overview

	Quick Start
	Start a New Debug Session
	Programming a Productive Application Binary

	Troubleshooting
	FAQ
	dsPIC33 Specific Implementations
	dsPIC33 Debug Monitor
	Breakpoints
	Software Breakpoints
	On-chip Breakpoints for Instructions
	On-chip Breakpoints for Data

	Memory Classes
	Programming the On-chip FLASH of the dsPIC33
	Special Hints, Restrictions, and Known Problems
	Special Hints
	Restrictions
	Known Problems

	CPU specific SYStem Settings
	SYStem.CLockPrescaler Select the prescaler for the debug clock
	SYStem.CONFIG.state Display target confguration
	SYStem.CONFIG Configure debugger according to target topology
	<parameters> describing the “DebugPort”

	System.CPU Select the used CPU
	SYStem.LOCK Tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the target
	SYStem.Option Special setup
	SYStem.Option.BReakonWDT Enable break on watchdog time-out
	SYStem.Option.CLockSWitch Enable clock group switch
	SYStem.Option.ENableWDT Enable watchdog timer
	SYStem.Option.FastRC Use FRC as debug port clock
	SYStem.Option.FreezePer Freeze peripherals on break or breakpoint
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.PARTitionconfig Configure the Flash partitions
	SYStem.Option.PoWeRSaVe Enable PWRSAV instruction
	SYStem.state Display SYStem.state window

	CPU specific TrOnchip Commands
	Target Adaption
	Probe Cables
	Connector Type and Pinout

