LAUTERBACH A

PCP Debugger Reference

PCP Debugger Reference

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... r—~
0 I 0o T = r=
PCP Debugger RefErenceoiccceciiiiiimmriie s s s s ssmms s s ssmss s sssssmmss s s ssmmsnnnas 1
A= T T ' 6

Y e Yo 11T £ o) o T 7

Brief Overview of Documents for New Users 7

Demo and Start-up Scripts 7

PCP Debugger Implementations 8

L@ T T 1R - o 9
Quick Start for OCDS-L1 Debugger 9

1. Prepare the Start 9
2.Configure the TriCore ICD for Debugging 9

3. Select the CPU Type to load the CPU specific Settings 10

4. Enter Debug Mode 10

5. Load symbols for your Application Program 10

6. Write a Start-up Script 11

Quick Start for Tracing with OCDS-L2 Trace (Analyzer) 12

1. Prepare the Debugger 12

2. Connect the PreProcessor to the Trace Connector on the Target 12

3. Delegate Trace Control 12

4. Fine Tuning 12

5. Start and Stop Tracing 13

6. View the Results 13

Quick Start for Tracing with OCDS-L3 Trace (On-chip Trace) 14

1. Prepare the Debugger 14

2. Configure the On-chip Trace 14

5. Start and Stop Tracing 14

6. View the Results 14
L0101 LS I I 0 =T o TF T T =T 15
Troubleshooting 15
SYStem.Up Errors 15
©1989-2024 Lauterbach PCP Debugger Reference | 2

Memory Classes 16
Breakpoints 17

L0 T 0 1S I - T 18
OCDS-L2 Flow Trace (Analyzer) 18
Supported Features 18
Trace Hardware 18
Troubleshooting for OCDS-L2 Trace 18

No Trace 18

Flow Errors 19
OCDS-L3 On-chip Trace 20
Supported Features 20
Trace Control 20
Additional information 20
Simple Trace CONrolccccciiiiiiiiririir s n e mm e s 21
Coupling of PCP and Host-core Debuggercccocivrmmimnnnsmnnimsnsssssrsssssssssssssssssssssnsns 22
Modify TRACES32 configuration files 22
Start PowerView instances 22
Synchronous Break 22
Synchronous Step or Go 24
O 25
L0 11112 7= T -3 26
SYStem.CONFIG Configure debugger according to target topology 26
Daisy-Chain Example 28
TapStates 29
SYStem.CONFIG.CORE Assign core to TRACE32 instance 30
SYStem.CONFIG.PortSHaRing Control sharing of debug port with other tool 31
SYStem.CPU Select CPU 31
SYStem.JtagClock Set the JTAG frequency 33
SYStem.LOCK Tristate the JTAG port 34
SYStem.MemAccess Select run-time memory access method 35
SYStem.Mode Establish the communication with the CPU 36
SYStem.Option CPU specific commands 37
SYStem.Option.BreakSig Generate break signal 37
SYStem.Option.CodeBASE PCODE base address 37
SYStem.Option.CodeSIZE PCP PRAM size 37
SYStem.Option.CPUREQ CPU request address 38
SYStem.Option.DAC Disable all channels on break 38
SYStem.Option.DIAG Diagnosis function 38
SYStem.Option.DUALPORT Run-time memory access for all windows 39
SYStem.Option.PramBASE PRAM base address 39
SYStem.Option.PermanentBP Enable breakpoints when single stepping 39
SYStem.Option.PramSIZE PCP PRAM size 40
©1989-2024 Lauterbach PCP Debugger Reference 3

SYStem.Option.RegBASE PCP configuration register base address 41

SYStem.Option. TB1766FIX Bug fix for some TC1766 TriBoards 42
CPU specific TriggerOnchip Commandsccccceiiimmiismminmsmissmssss s s ssssasssssses 43
Internal Break Bus (JTAG) 43
Trace Break Signals (OCDS-L2) 43
TrOnchip.BreakIN Connect break target PCP to BreakBus 44
TrOnchip.BreakOUT Connect break source PCP to BreakBus 44
TrOnchip.CONVert Not relevant for the PCP architecture 44
TrOnchip.RESet Reset settings for the on-chip trigger unit 44
TrOnchip.SusTarget Connect PCP to the suspend bus 45
CPU specific BenchMarkCounter COmMmandsccccceuivmmmnnmsminsnmsssssisssssssssssssssssssnes 46
BMC.<counter>.ATOB Advise counter to count within AB-range 46
8 X R 0o Ty T 1= o o T 47
B T = 07013 1= (o 47

©1989-2024 Lauterbach PCP Debugger Reference | 4

PCP Debugger Reference

Version 06-Jun-2024

4k Trece32 PCP [Power Debug usa 1 @) I ——UUTTTT e e

File Edit Wiew Var

Break Run CPU Misc

Trace

Perf Cov Window Help

Imm[+ee»nE e

B::Data.List

=

#u B:Onchip.Chart.sYmbol /Track

=]
» Go]&Feah

M step || Over] JNext (¢ Retum|[& up | Setup... |(1il Goups... [2% Gnfip... (13 Goto...][#3 Find... |[«4» In [4.0t M Full
addr/1ine |code [1a Imnemomc -176950
= ShITE LEDs r'1gﬁ1: TeFt =
Tother) gy
lvoid __interrupt(1) _cppn(l) channell(veid) { =61 0ha'_PCP_channell i |
static int nInit = 1; @ |l fr12d_pep_channs1s\nInitg i
27| if (nInit) { pcp_channels'\kBrightest | -

_pep_channe] = kBarkest s il |
P:0000000F |20400000 . 1, 20x0 - Ted_pcp_channel s\ kDarkEj| - |
P:00000011 [924000FF 1d1.91 rl,20xFF led_pcp_channels'.kNormal gj| i
P:00000013 [s8Cs and r7,rl,cc_uc led_pcp_channels\kBrightfsl | 7000 - .
P:00000014 |92400100 1d1.11 r1,20x100 Pl @ (] »
P:00000016 |6FCE or r7,rl,cc_uc
P:00000017 |4540 comp. pi rs,#0x0
P:00000018 [E5400079 C. 0x79,cc_z

8 (Darkest. oiED = owans] B::Onchip.Chart TASKSRV /Track
P :0000001A |9941 1d.3 rs, #03(1
P: 00000018 (20400000 1d1.4u r1,20x0 P ET .|| Goto... HFIﬂd Eﬁfﬁﬂft AP In || b4 Out MM Full
P:0000001D |924000FF 1d1.11 ri1,20xFF S -175000
4 m L3 L

o B:PER, /SpotLight

l

=

FCP_CIC 00000000 PLGDIS Stop when PCP is Idle
PCP_ID 0020C006 MODNUM 0020 ID32BIT €O REVNUM 06
PCP_Cs 00000000 ESR 00 CWT 00 Disabled

FPS 00 E No Full

ETE Disabled RCE Resume RS Stopped

RST No EN Di
PCP_ES O00EO110 EPC O0OE EFN 01 PPC No CWD No

ME No DBEE Yes TIAE No [DCR No

I0P No BER No
PCP_ICR 00060101 FPONECYC 2 PARBCYC 4 PIPW 06 CPPN 01 3
PCPITR 00000000 ITL 0 ITP 00 g aEsmgHtest 4 A
PCPICON 00000324 IPJE No IPZE Na IPAE Yes IPOC Yes

PST 3 P2T 2 PIT 1 © Mbirection - o
PCP_SSR 00000000 ST 00 ST Not sta]]ed o5 0 ss 00 3 keragnt = C
PCPFTD 00000000 ERCO No IICA OK - nLE

FRiC 3 PCOE Ne THE Ne © Mbirection -]

DCS0 No DNI No DCRO No = kNormal = (
FCP_SRCO 00001000 SRR No SRE Yes TO5 CPU SRPN 0O - nLED = @,
PCPTSRCL 00001000 SRR No SRE Yes 7105 CPU SRPN 00 | - nDirection = @)
PCP_SRC2 00001400 SRR No SRE Yes TOS5 PCP SRPN 00 = kDark = (
PCP_SRC3 00001400 SRR No SRE Yes TO5 PCP SRPN 00 - nlED = &,
PCPTSRC4 00001000 SRR No SRE Yes TO5 CPU SRPN 00 - nDirection = 1)
PCP_SRCS 00001000 SRR No SRE Yes 105 CPU SRPN 00 = kDarkest = (
PCP_SRCG 00001000 SRR No SRE Yes TO5 CPU SRPN 0O - nLED
PCPSRCT 00001000 SRR No SRE Yes TOS CPU SRPN 00 - - nDirection =

B::Onchip.List /Track

A

&} B=VAR Frame

Wie: Rag.star/:;potught \El @

[&sew..)[4 Goto...)[#1 Find... [A chart |[% More || X

-176953

Ox0E, cc_uc
P:0000000E ptrac

Static tKitt kDarkest;

Initialize on first run.

record run [address lcycle [data syml

[ic , 0x71C, cc_nz

93
L 1dl.iu r6,£0x500
exit EC=0,5T=0, INT=0,EP=0,cc_uc
-176979 D:00000028 wr-data 00DA0160 ..intmem\Global_PCP__context_a0
176974 D:0000002A wr-data 00000000 ..em\Global, PCP_ context 40+0x2
-176968 D:0000002C wr-data 00000004 ..em\Global_PCP__context_40+0x4
-176965 D:0000002E wr-data 00000100 ..em\Global_PCP_context_a0+0x6
-176960 P:0000022F ptrace
176958 channel 0001
— context switch Oxl

-176956 P:00000002 ptrace

- TPPN Shift LEDs right/left.
t.Up | ¥ Down KD n o100 Sepn B < e
TR s Tos oD void _interrupt(1) _cppn(1) channelifvoid) {
;Z m3 FF CNTL PP static int nInit = 1;
N1Z _ R4 43 DPTR 1 27 if (nInit
T T —2 L 1d.i. r5,20x0
EN € RE OL0000FF CHAN 1 1dl.iu rilzoxo
R7 000E0160 PC OE ~ 1d1.i1 r1,20xFF
< 3 N n 3
[ematate_] [J [geviess J[tmee][Data J[var][st][PERF][svstem][Step J[Go | [Break |[Register | [sYmbol FPU MMU - [previous |
[c-T: 176954 |stopped at breakpoint | | mx jup

©1989-2024 Lauterbach

PCP Debugger Reference

5

Warning

WARNING:

To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1.

N o o A~

Disconnect the Debug Cable from the target while the target power is
off.

Connect the host system, the TRACES32 hardware and the Debug
Cable.

Power ON the TRACE32 hardware.

Start the TRACE32 software to load the debugger firmware.
Connect the Debug Cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:

1.

2
3.
4

Switch off the target power.

Disconnect the Debug Cable from the target.
Close the TRACES32 software.

Power OFF the TRACES32 hardware.

©1989-2024 Lauterbach

PCP Debugger Reference |

6

Introduction

This document describes the processor specific settings and features for the ICD PCP and the Trace
extensions.

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

ICD PCP requires the ICD of the main core to be running and in SYStem.Mode Up. Currently PCP is only
implemented in TriCore chips.

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.
J “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

J “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

TriCore debugging:

. “TriCore Debugger and Trace” (debugger_tricore.pdf): General information about the ICD TriCore

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known PCP based hardware.

©1989-2024 Lauterbach PCP Debugger Reference | 7

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:
. Type at the command line: WELCOME.SCRIPTS

. or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/pcp/ subfolder of the system directory of TRACES2.

PCP Debugger Implementations

Lauterbach has implemented two different approaches for a PCP debugger:

. Integrated PCP Debugger

The first approach was the Integrated or Internal PCP Debugger which is integrated into ICD
TriCore. At that point of time it was technically the only solution, although it has various
restrictions. For example an Inline Assembler, HLL support, source file listing or powerful trace
analysis is not possible.

. External PCP Debugger

Various improvements of the PCP tool chain, such as a C/C++ compiler, the requirement of
displaying source code or the integration of third-party tools as the VAST simulator required
outsourcing of the PCP debugger into its own PowerView instance.

Note that the Integrated PCP Debugger is discontinued.

©1989-2024 Lauterbach PCP Debugger Reference | 8

Quick Start

This chapter helps you to prepare your Debugger for PCP. Depending on your application not all steps might
be necessary. It is assumed that you are using a TC1766 B-Step on an Infineon TriBoard.

For some applications additional steps might be necessary that are not described here. See “Demo and
Start-up Scripts”, page 7, for more details.

Quick Start for OCDS-L1 Debugger

1. Prepare the Start

Connect the Debug Cable to your target. Check the orientation of the connector. Pin 1 of the debug cable is
marked with a small triangle next to the nose of the target connector.

Power up your TRACES32 system (not necessary on PODPC).

Start a PowerView instance for the host-core (TriCore in this example) and for PCP (see also Coupling of
PCP and Host-core Debugger):

J Start the TRACES32 Debugger Software for TriCore. Make sure the configuration file for the
TriCore Instance (e.g. config_tricore.t32) contains the line CORE=1.

. Start the TRACE32 Debugger Software for PCP. Make sure the configuration file for the PCP
Instance (e.g. config_pcp.t32) contains the line CORE=2.

Power up your Target.

To prevent damage please take care to follow this sequence all the time
you are preparing a start.

2.Configure the TriCore ICD for Debugging

Refer to “TriCore Debugger and Trace” (debugger_tricore.pdf) for information on how to do this.

Since PCP needs to be initialized by the TriCore CPU, execute your application so that PCP code and data
is loaded into PCPmemory. This is usually done by executing the TriCore startup code until the main label.

Remember that these steps have to be performed on the TriCore PowerView instance.

©1989-2024 Lauterbach PCP Debugger Reference | 9

3. Select the CPU Type to load the CPU specific Settings

SYStem.CPU TC1766

It is strongly recommended to select the specific CPU instead of PCP1 or PCP2 which are only dedicated for
hardware configurations not known by TRACES32.

4. Enter Debug Mode

SYStem.Up

Reset CPU and enter debug mode. After this command is executed, it is possible to access memory and
registers.

ICD PCP requires an ICD TriCore which is configured and up. SYStem.Mode Up will fail for PCP if ICD
TriCore is in SYStem.Mode Down.

5. Load symbols for your Application Program

Data.LOAD.El1f myprog.elf /NoCODE ; ELF specifies the format, myprog
/NOREG is the file name

The options of the Data.LOAD command depend on the file format generated by the compiler. A detailed
description of the Data.LOAD command is given in “General Commands Reference”.

Since the PCP code is normally loaded by the TriCore application only the symbols have to be loaded.

©1989-2024 Lauterbach PCP Debugger Reference | 10

6. Write a Start-up Script

Now the quick start is done. If you were successful you can start to debug. It is recommended to prepare a
PRACTICE script file (*.cmm, ASCII format) to be able to do all the necessary actions with only one
command.

Here is a typical start sequence:

WinCLEAR ; clear all windows

SYStem.CPU TC1l766 ; select CPU

SYStem.Up ; reset target and enter debug mode
Data.LOAD.El1f myprog.elf ; load symbols for PCP application

/NoCODE /NoRegister

Data.List ; open disassembly window %)
Register.view /SpotLight ; open register window)
Frame.view /Locals /Caller ; open the stack frame with

; local variables *)
Var.Watch %$Spotlight flags ast ; open watch window for variables *)
PER.view ; open window with peripheral

; register)
Break.Set main ; set breakpoint to function main
Break.Set P:0x0200 /Program ; set software breakpoint to address

; P:0x0200

*) These commands open windows on the screen. The window position can be specified with the WinPOS
command.

For information about how to create a PRACTICE script file (*.cmm file), refer to “Training Basic
Debugging” (training_debugger.pdf). There you can also find some information on basic actions with the
debugger.

©1989-2024 Lauterbach PCP Debugger Reference | 11

Quick Start for Tracing with OCDS-L2 Trace (Analyzer)

It is assumed that you are tracing a TC1766 B-Step on an Infineon TriBoard-TC1766.300 or above.

1. Prepare the Debugger

Load your application and prepare for debug. See “Quick Start for OCDS-L1 Debugger” for more details.

Make sure that the TriCore debugger is also prepared for debugging. If required by the target, it is especially
necessary to set up the trace port correctly. It is recommends to set it up on ICD TriCore. See "Quick Start
for Tracing with OCDS-L2 Trace (Analyzer)” in “TriCore Debugger and Trace” (debugger_tricore.pdf)
for more information on how to do this.

2. Connect the PreProcessor to the Trace Connector on the Target

Plug the PreProcessor into the trace connector on the target board. In case of an AMP40 connector you
need to care for the correct orientation of the connector. Check for Pin 1.

3. Delegate Trace Control

With the ICD PCP, two PowerView instances are active which share the same trace module and the same
pre-processor. By default, both instances try to control them which results in undefined behavior. Since the
TriCore chip only outputs either TriCore or PCP trace data, the solution is to disable the unused trace.

To do so, change to the PowerView instance which should not record, and disable the Analyzer. E.g. if PCP
should be traced, change to ICD TriCore and execute the following command:

Analyzer.DISable ; disables the Analyzer for the
ICD where it is executed on

Use Analyzer.OFF to re-enable the Analyzer.

4. Fine Tuning

Analyzer.Clock 20.0MHz ; specify CPU clock

The preprocessor uses a compression algorithm which affects the accuracy of the timestamp information.
For improving the accuracy by the factor 4, specify the CPU clock frequency.

The trace is now configured.

©1989-2024 Lauterbach PCP Debugger Reference | 12

5. Start and Stop Tracing

Go ; start tracing

Break ; stop tracing

Recording is stopped when the TriCore halts, e.g. when a breakpoint was hit.

6. View the Results

Analyzer.List ; view recorded trace data

©1989-2024 Lauterbach PCP Debugger Reference | 13

Quick Start for Tracing with OCDS-L3 Trace (On-chip Trace)

It is assumed that you are tracing a TC1766ED B-Step on an Infineon TriBoard-TC1766.

1. Prepare the Debugger

Load your application and prepare for debug. See “Quick Start for OCDS-L1 Debugger” for more details.

Make sure that the TriCore debugger is also prepared for debugging. See "Quick Start for Tracing with
OCDS-L3 Trace (Analyzer)” in “TriCore Debugger and Trace” (debugger_tricore.pdf) for more
information on how to do this.

2. Configure the On-chip Trace

Onchip.SIZE 262144. ; select trace memory size

Specifies the size of the on-chip trace memory. The given value is auto corrected to possible sizes. Note that
the size for ICD TriCore and ICD PCP is always the same.

5. Start and Stop Tracing

Go ; start tracing

Break ; stop tracing

Note that tracing can also be stopped by a breakpoint.

6. View the Results

Onchip.List ; view recorded trace data

©1989-2024 Lauterbach PCP Debugger Reference | 14

OCDS-L1 Debugger

Troubleshooting

SYStem.Up Errors

The SYStem.Up command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command this may have the following reasons.

. ICD TriCore is not yet Up.

©1989-2024 Lauterbach PCP Debugger Reference | 15

Memory Classes

The following memory classes are available:

Memory Class Description

P Program

D Data

EEC Emulation Memory on EEC. Only available on TriCore Emulation Devices for

accessing the Emulation Extension Chip

FPI FPI Bus address space. Provides a view on the internal buses as seen by
the debugger through the FPI bus. Some bus devices such as internal
memories may have a different address mappings as usually. The debugger
does not do any address remapping as the host CPU debugger does.

Prepending an E as attribute to the memory class will make memory accesses possible even when the CPU
is running. See SYStem.MemAccess and SYStem.CpuAccess for more information.

SYStem.Option.DUALPORT will enable the runtime update of almost all windows, the memory class
attribute E is not necessary. Although the core is not stopped for accessing the memory this can slow down
program execution since the CPU and debugger both access the FPI bus.

©1989-2024 Lauterbach PCP Debugger Reference | 16

Breakpoints

PCP currently only supports software breakpoints. So only program breakpoints are possible. You can check
your currently set breakpoints with the command Break.List .

Examples for Breakpoints

J Example for instruction breakpoint:

Break.Set P:0x01F8 /Program ; software breakpoint on
instruction

©1989-2024 Lauterbach PCP Debugger Reference | 17

OCDS Trace

OCDS-L2 Flow Trace (Analyzer)

Use Trace.METHOD Analyzer for selecting the Analyzer.

Supported Features

J Program Flow Trace for PCP

. Timestamps

Note that it is not possible to trace TriCore and PCP at the same time.

O

Trace Hardware

The trace hardware for PCP is the very same as for TriCore. See the appropriate chapters in “TriCore
Debugger and Trace” (debugger_tricore.pdf) for more information.

Troubleshooting for OCDS-L2 Trace

No Trace

There are different reasons possible:

o CPU trace port not mapped.

On many chips the trace port shares its functionality with another peripheral. In this case, one or
more dedicated registers have to be set correctly. For TriCore, see also the demo scripts in the
TRACES3?2 installation directory: ~~/demo/tricore/hardware/*.

. Reference voltage not set up correctly (new trace hardware only).
- Reference voltage pin on trace connector connected?
- Value set to the middle of the trace signal?

. Poor trace/clock signal (new trace hardware only).

Change termination setting.

©1989-2024 Lauterbach PCP Debugger Reference | 18

Flow Errors

There are different reasons possible:

J CPU trace port not mapped.

Mostly the trace port shares its functionality with another peripheral. In this case, one or more
dedicated registers have to be set correctly. See the host CPU’s demo scripts.

. Reference voltage not set up correctly (new trace hardware only).
- Reference voltage pin on trace connector connected?
- Value set to the middle of the trace signal?
. Poor trace/clock signal (new trace hardware only).
Change termination setting.
. Setup/hold time violation.
- 3 ns setup / 1 ns hold time needed.
- sample point: falling edge.
. Code modification during runtime.

Self modifying code is not supported.

©1989-2024 Lauterbach PCP Debugger Reference | 19

OCDS-L3 On-chip Trace

On-chip Tracing is only possible with an Infineon Emulation Device.

Use Trace.METHOD Onchip for selecting the on-chip trace.

Supported Features

Program Flow Trace for PCP
Data Trace for TriCore and PCP
Ownership Trace for PCP
Timestamps

Simple Trace Control

A trace source can either be TriCore, PCP or both at the same time.
It is not possible to enable a trace stream (e.g. Program Flow or Data
Trace) for only one trace source when both are enabled.

Tracing TriCore is set up in ICD TriCore.

Trace Control

The On-chip settings can be done with the Onchip commands, e.g. from the Onchip.view window. The
settings affect both TriCore and PCP Trace.

The trace results for TriCore can be viewed in the TriCore PowerView instance, the trace results for PCP in

the PCP PowerView instance.

To correlate TriCore and PCP trace records with the /Track option see the InterCom commands in
“PowerView Command Reference” (ide_ref.pdf) commands.

Onchip.AutoArm has only an effect on TriCore and not on PCP. Always
make sure that PCP is running when arming the trace.

O

Additional information

For additional information in OCDS-L3 trace see chapter OCDS-L3 On-chip Trace in “TriCore Debugger

and Trace” (debugger_tricore.pdf).

©1989-2024 Lauterbach PCP Debugger Reference

Simple Trace Control

Simple Trace Control is currently not supported for PCP.

©1989-2024 Lauterbach PCP Debugger Reference | 21

Coupling of PCP and Host-core Debugger

PCP is an Auxiliary Processing Unit, a sub-core which depends on the system it is implemented in.
Currently it is included in chips with a TriCore CPU as host-core.

For each core in a multi-core scenario, an instance of the TRACE32 PowerView software has to be started
although the low-level debug driver runs on the same Power Debug module. This chapter describes the
necessary steps for configuring both PowerView instances via a config file. The Windows software
“T32Start” (app_t32start.pdf) provides an easy way to configure this.

The following examples use the TriCore Debugger in case PCP is included within a TriCore chip. For more
information on TRACE32 configuration files see chapter “Configuration File” in TRACES32 Installation
Guide, page 35 (installation.pdf).

Modify TRACE32 configuration files

J Add the line CORE=1 to the TriCore configuration file (e.g. config_tricore.t32)

o Add the line CORE=2 to the PCP configuration file (e.g. config_pcp.t32)

This step has to be done only once.

Start PowerView instances

Always start the TriCore instance first and wait until it has started completely before starting the PCP

instance:
. t32mtc.exe -c config_tricore.t32
. t32mpcp.exe -c config pcp.t32

An optional startup script can be specified after the config file, separated by a comma:
. t32mtc.exe -c config_tricore.t32 -c¢ start_tc.cmm

. t32mpcp.exe -c config pcp.t32 -c start_pcp.cmm

Synchronous Break

TriCore and PCP can be programmed to break synchronously when a debug event happens on TriCore or
PCP. By using the TrOnchip commands the break event can be distributed via a Break Bus:

©1989-2024 Lauterbach PCP Debugger Reference | 22

Distribute Break Signal from PCP to TriCore

J PCP Debugger Instance

TrOnchip.BreakOUT ENable ; enable PCP break signal
generation
TrOnchip.BreakOUT BreakBus0 ; distribute PCP break signal on

Break Bus 0

. TriCore Debugger Instance
TrOnchip.BreakIN.TriCore BreakBus0 ; sense for break signal on Break
Bus 0
TrOnchip.EXTernal ON ; halt when break signal is

detected on Break Bus

Note that TrOnchip.EXTernal ON disables OCDS-L2 Break Actions.
TriCore will stop instead of triggering the Break Action.

Distribute Break Signal from TriCore to PCP

J TriCore Debugger Instance

TrOnchip.BreakOUT.TriCore BreakBusl ; distribute TriCore break
signal on Break Bus 1

J PCP Debugger Instance

TrOnchip.BreakIN BreakBusl ; sense for break signal on
Break Bus 1

TrOnchip.BreakIN ENable ; halt when break signal is
detected on Break Bus

Note that PCP will ignore the Break Signal in case it is currently in Idle
Mode. In this case configure PCP as Suspend Target by
TrOnchip.SuspTarget.PCP ON. As long as the suspend is active
PCP will stop execution. On a suspended PCP, no Break, Step or Go
command can be performed.

©1989-2024 Lauterbach PCP Debugger Reference | 23

Synchronous Step or Go

The Debuggers of PCP and TriCore provide a mechanism to perform a synchronous start of both cores, e.g.
for a Step or Go.

Setup Debugger communication via InterCom Interface

InterCom has to be enabled in the configuration file already:

. TriCore Debugger Instance:

IC=NETASSIST
PORT=20000

J PCP Debugger Instance:

IC=NETASSIST
PORT=20001

Setup Synchronous MultiCore Start via InterCom Interface

The following example assumes that both TriCore and PCP PowerView Instances run on the same PC or
Workstation. See chapter SYnch in “General Commands Reference Guide S” (general_ref_s.pdf) for
more details on MultiCore Synchronization.

J TriCore Debugger Instance
SYnch.Connect localhost:20001 ; synch with PCP Instance
SYnch.MasterGo ON ; when Go is performed on this
(TriCore) Instance, distribute Go
event to PCP Instance
SYnch.SlaveGo ON ; perform Go when Go event is

signaled from PCP instance

. PCP Debugger Instance

SYnch.Connect localhost:20000 ; synch with TriCore Instance

SYnch.MasterGo ON ; when Go is performed on this
(PCP) Instance, distribute Go event
to TriCore Instance

SYnch.SlaveGo ON ; perform Go when Go event is
signaled from TriCore instance

©1989-2024 Lauterbach PCP Debugger Reference | 24

Do not enable the Break Target PCP in case HALTEN is enabled for
TriCore and TriCore is Break Source to the same Break Bus where PCP
is Break Target. In this case the Synchronous MultiCore Start will fail.

FAQ

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach PCP Debugger Reference | 25

https://support.lauterbach.com/kb

Commands

SYStem.CONFIG Configure debugger according to target topology

Format: SYStem.CONFIG <parameter> <number_or_address>
SYStem.MultiCore <parameter> <number_or_address> (deprecated)

<parameter>: CORE <core>
<parameter>: DRPRE <bits>
(JTAG): DRPOST <bits>

IRPRE <bits>
IRPOST <bits>
TAPState <state>
TCKLevel <level>
TriState [ON | OFF]
Slave [ON | OFF]

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger about the
TAP controller position in the JTAG chain, if there is more than one core in the JTAG chain (e.g. Arm + DSP).
The information is required before the debugger can be activated e.g. by a SYStem.Up. See Daisy-chain
Example.

For some CPU selections (SYStem.CPU) the above setting might be automatically included, since the
required system configuration of these CPUs is known.

TriState has to be used if several debuggers (“via separate cables”) are connected to a common JTAG port
at the same time in order to ensure that always only one debugger drives the signal lines. TAPState and
TCKLevel define the TAP state and TCK level which is selected when the debugger switches to tristate
mode. Please note: nTRST must have a pull-up resistor on the target, TCK can have a pull-up or pull-down
resistor, other trigger inputs need to be kept in inactive state.

Multicore debugging is not supported for the DEBUG INTERFACE (LA-7701).

CORE For multicore debugging one TRACE32 PowerView GUI has to be started
per core. To bundle several cores in one processor as required by the
system this command has to be used to define core and processor
coordinates within the system topology.

Further information can be found in SYStem.CONFIG.CORE.

©1989-2024 Lauterbach PCP Debugger Reference | 26

DRPRE (default: 0) <number> of TAPs in the JTAG chain between the core of
interest and the TDO signal of the debugger. If each core in the system
contributes only one TAP to the JTAG chain, DRPRE is the number of
cores between the core of interest and the TDO signal of the debugger.

DRPOST (default: 0) <number> of TAPs in the JTAG chain between the TDI signal
of the debugger and the core of interest. If each core in the system
contributes only one TAP to the JTAG chain, DRPOST is the number of
cores between the TDI signal of the debugger and the core of interest.

IRPRE (default: 0) <number> of instruction register bits in the JTAG chain
between the core of interest and the TDO signal of the debugger. This is
the sum of the instruction register length of all TAPs between the core of
interest and the TDO signal of the debugger.

IRPOST (default: 0) <number> of instruction register bits in the JTAG chain
between the TDI signal and the core of interest. This is the sum of the
instruction register lengths of all TAPs between the TDI signal of the
debugger and the core of interest.

TAPState (default: 7 = Select-DR-Scan) This is the state of the TAP controller when
the debugger switches to tristate mode. All states of the JTAG TAP
controller are selectable.

TCKLevel (default: 0) Level of TCK signal when all debuggers are tristated.

TriState (default: OFF) If several debuggers share the same debug port, this
option is required. The debugger switches to tristate mode after each
debug port access. Then other debuggers can access the port. JTAG:
This option must be used, if the JTAG line of multiple debug boxes are
connected by a JTAG joiner adapter to access a single JTAG chain.

Slave (default: OFF) If more than one debugger share the same debug port, all
except one must have this option active.
JTAG: Only one debugger - the “master” - is allowed to control the signals
NnTRST and nSRST (nRESET).

©1989-2024 Lauterbach PCP Debugger Reference | 27

Daisy-Chain Example

TDl——-® Core A —Core B p Core C—» Core D +—» TDO

Chip 0 Chip 1

Below, configuration for core C.

Instruction register length of
. Core A: 3 bit
. Core B: 5 bit
. Core D: 6 bit

SYStem.CONFIG.IRPRE 6. ; IR Core D

SYStem.CONFIG.IRPOST 8. ; IR Core A + B
SYStem.CONFIG.DRPRE 1. ; DR Core D

SYStem.CONFIG.DRPOST 2. ; DR Core A + B

SYStem.CONFIG.CORE 0. 1. ; Target Core C i1s Core 0 in Chip 1

©1989-2024 Lauterbach PCP Debugger Reference | 28

TapStates

0 Exit2-DR
Exit1-DR
Shift-DR
Pause-DR
Select-IR-Scan
Update-DR
Capture-DR
Select-DR-Scan
Exit2-IR
Exit1-IR
Shift-IR
Pause-IR
Run-Test/Idle
Update-IR
Capture-IR

© 00 N o 0o~ W N =

—_ - e e —d
a A~ WO N = O

Test-Logic-Reset

©1989-2024 Lauterbach PCP Debugger Reference | 29

SYStem.CONFIG.CORE Assign core to TRACE32 instance

Format: SYStem.CONFIG.CORE <core_index> <chip_index>
SYStem.MultiCore.CORE <core_index> <chip_index> (deprecated)

<chip_index>: 1.0

<core_index>: 1...k

Default core_index: depends on the CPU, usually 1. for generic chips

Default chip_index: derived from CORE= parameter of the configuration file (config.t32). The CORE
parameter is defined according to the start order of the GUI in T32Start with ascending values.

To provide proper interaction between different parts of the debugger, the systems topology must be
mapped to the debugger’s topology model. The debugger model abstracts chips and sub cores of these
chips. Every GUI must be connect to one unused core entry in the debugger topology model. Once the
SYStem.CPU is selected, a generic chip or non-generic chip is created at the default chip_index.

Non-generic Chips
Non-generic chips have a fixed number of sub cores, each with a fixed CPU type.

Initially, all GUIs are configured with different chip_index values. Therefore, you have to assign the
core_index and the chip_index for every core. Usually, the debugger does not need further information to
access cores in non-generic chips, once the setup is correct.

Generic Chips

Generic chips can accommodate an arbitrary amount of sub-cores. The debugger still needs information
how to connect to the individual cores e.g. by setting the JTAG chain coordinates.

Start-up Process

The debug system must not have an invalid state where a GUI is connected to a wrong core type of a non-
generic chip, two GUIs are connected to the same coordinate or a GUI is not connected to a core. The initial
state of the system is valid since every new GUI uses a new chip_index according to its CORE= parameter
of the configuration file (config.t32). If the system contains fewer chips than initially assumed, the chips must
be merged by calling SYStem.CONFIG.CORE.

©1989-2024 Lauterbach PCP Debugger Reference | 30

SYStem.CONFIG.PortSHaRing Control sharing of debug port with other tool

Format: SYStem.CONFIG.PortSHaRing [ON | OFF | Auto]

Configure if the debug port is shared with another tool, e.g., an ETAS ETK.

ON Request for access to the debug port and wait until the access is granted
before communicating with the target.

OFF Communicate with the target without sending requests.
Auto Automatically detect a connected tool on next SYStem.Mode Up,

SYStem.Mode Attach or SYStem.Mode Go. If a tool is detected switch to
mode ON else switch to mode OFF.

The current setting can be obtained by the PORTSHARING() function, immediate detection can be
performed using SYStem.DETECT.PortSHaRing.

SYStem.CPU Select CPU

Format: SYStem.CPU <cpu>

Default: TC1797.

Selects which PCP version to debug. It is possible either to select a generic PCP core or a specific chip
where PCP is included in.

<cpu> For a list of supported CPUs, use the command SyStem.CPU * or refer
to the chip search on the Lauterbach website.

NOTE: In case your device is listed on the website but not listed in the sSyStem.CPU *
list, you may require a software update. Please contact your responsible
Lauterbach representative.

The recommended way is to select the appropriate chip, e.g. TriCore TC1797. The debugger knows the
implementation details and configures all specific settings automatically.

©1989-2024 Lauterbach PCP Debugger Reference | 31

PCP1 and PCP2 are generic PCP cores. Implementation specific details, such as the base address for the
PCP control registers, the base addresses for code and parameter memory, sizes, etc. have to be done
manually. Note that special features such as on-chip trace or synchronization with the main core are not

supported by the generic cores.

©1989-2024 Lauterbach PCP Debugger Reference | 32

SYStem.JtagClock Set the JTAG frequency

Format: SYStem.JtagClock <rate>
SYStem.BdmClock (deprecated)

<rate>: 10000. ... 50000000.

Default: 10.0 MHz.

Selects the frequency for the JTAG clock. This influences the speed of data transmission between target and
debugger.

Not all values in between the frequency range can be generated by the debugger. The debugger will select
and display the possible value if it can not generate the exact value.
It is also possible to enter units, e.g. 10.0 MHz.

SYStem.JtagClock EXT is not supported by PCP.

SYStem.BdmClock is an obsolete alias for this command.

The JTAG clock must be lower or equal to the CPU clock. Otherwise JTAG
communication will fail.

©1989-2024 Lauterbach PCP Debugger Reference | 33

SYStem.LOCK Tristate the JTAG port

Format: SYStem.LOCK [ON | OFF]

Default: OFF.

If the system is locked, no access to the JTAG port will be performed by the debugger. While locked the
JTAG connector of the debugger is tristated. The intention of the SYStem.LOCK command is, for example,
to give JTAG access to another tool. The process can also be automated, see SYStem.CONFIG TriState.

It must be ensured that the state of the TriCore JTAG state machine remains unchanged while the system is
locked. To ensure correct hand-over, the options SYStem.CONFIG TAPState and SYStem.CONFIG
TCKLevel must be set properly. They define the TAP state and TCK level which is selected when the
debugger switches to tristate mode. Please note: nTRST must have a pull-up resistor on the target.

There is a single cable contact on the casing of the debug cable which can
be used to detect if the JTAG connector of the debugger is tristated. If
tristated also this signal is tristated, otherwise it is pulled low.

.

[V
A \\\/\

©1989-2024 Lauterbach PCP Debugger Reference | 34

SYStem.MemAccess Select run-time memory access method

Format: SYStem.MemAccess <mode>
SYStem.ACCESS (deprecated)

<mode>: Enable | Denied | StopAndGo

Default: Enable.

This option declares if and how a non-intrusive memory access can take place while the CPU is executing
code. Although the CPU is not halted, run-time memory access creates an additional load on the
processor’s internal data bus. The MemAccess mode is printed in the state line.

The run-time memory access has to be activated for each window by using the memory class E: (e.g.
Data.dump ED:0xA1000000) or by using the format option %E (e.g. Var.View %E var1). It is also possible to
enable non-intrusive memory access for all memory areas displayed by setting
SYStem.Option.DUALPORT ON.

Enable The debugger performs non-intrusive memory accesses via the CPU

CPU (deprecated) internal buses (FPI Bus).

Denied Non-intrusive memory access is disabled while the CPU is executing
code. Instead intrusive accesses can be configured with
SYStem.CpuAccess.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop

takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

©1989-2024 Lauterbach PCP Debugger Reference | 35

SYStem.Mode Establish the communication with the CPU

Format: SYStem.Mode <mode>

<mode>: Down

NoDebug
Go
Attach
Up

Down Debug mode is not active. Default state and state after fatal errors.

NoDebug Debug mode is not active, debug port is tristate. In this mode PCP
behaves as if the debugger is not connected.

Attach User program remains running (no reset) and the debug mode is
activated. After this command the user program can be stopped with the
break command or if any break condition occurs. The debugger should
be in NoDebug mode when performing an Attach.

Go The CPU is running. Debug mode is active. After this command the CPU
can be stopped with the break command or if any break condition occurs.

Up The CPU is not in reset but halted. Debug mode is active. In this mode

Initial Mode: Down.

the CPU can be started and stopped. This is the most typical way to
activate debugging.

The SYStem Modes are not only commands to bring the debugger in a certain debug state, they also reflect
the current debug state of the target. SYStem Modes Attach and Go are only transitional states which will
result in an Up state on success. Any critical failure will transition the debug state to SYStem Mode Down

immediately

The “Emulate” LED on the debug module is ON when the debug mode is active and the CPU is running.

©1989-2024 Lauterbach

PCP Debugger Reference | 36

SYStem.Option CPU specific commands

The SYStem.Options are a class of architecture and CPU specific commands.

SYStem.Option.BreakSig Generate break signal
Format: SYStem.Option.BreakSig [ON | OFF]
Default: ON.

When enabled, PCP generates a hardware signal on execution break. This signal can be made visible on
the Debug Port (nBRKOUT pin), and it can be used to break other on-chip resources, e.g. the TriCore CPU.

See Coupling of PCP and Host-core Debugger and the TrOnchip commands for more information on
how to distribute this signal.

SYStem.Option.CodeBASE PCODE base address

Format: SYStem.Option.CodeBASE <address>

Defines at which base address within the FPI bus the PCP instruction memory is located.

The use of this option is only required for the generic CPUs PCP1 and PCP2. For other CPUs it is already
configured correctly.

SYStem.Option.CodeSIZE PCP PRAM size

Format: SYStem.Option.CodeSIZE <size>

Defines the size of the instruction memory in bytes.

The use of this option is only required for the generic CPUs PCP1 and PCP2. For other CPUs it is already
configured correctly.

©1989-2024 Lauterbach PCP Debugger Reference | 37

SYStem.Option.CPUREQ CPU request address

Format: SYStem.Option.CPUREQ <address>

A PCP channel can only be started via a trigger from the CPU. This option defines the trigger register to use
for. The address must be in FPI bus address space.

The use of this option is only required for the generic CPUs PCP1 and PCP2. For other CPUs it is already
configured correctly.

SYStem.Option.DAC Disable all channels on break
Format: SYStem.Option.DAC [ON | OFF]
Default: ON.

When enabled, the execution of all PCP channels is stopped if one channel is stopped by a break or
breakpoint. DAC is for “Disable All Channels”.

SYStem.Option.DIAG Diagnosis function

Format: SYStem.Option.DIAG [<value>] [<param>] [<param>] [<param>]

System Diagnosis functions. Execute only when demanded by Lauterbach support engineer. Functionality is
undocumented, can change without any notice and may bring the debugger software into an unstable state.
Do not use in script files.

©1989-2024 Lauterbach PCP Debugger Reference | 38

SYStem.Option.DUALPORT Run-time memory access for all windows

Format: SYStem.Option.DUALPORT [ON | OFF]

Default: OFF.

Enable permanent non-intrusive memory access for all windows and memory accesses. Memory class E:
does not have to be specified any more. This only works when SYStem.MemAccess is set to CPU.

When this option is enabled, no Data.dump or Data.List windows must
be opened while programming the on-chip flash. Otherwise flash
programming will fail.

9,
SYStem.Option.PramBASE PRAM base address
Format: SYStem.Option.PramBASE <address>

Defines at which base address within the FPI bus the PCP data memory is located.

The use of this option is only required for the generic CPUs PCP1 and PCP2. For other CPUs it is already
configured correctly.

SYStem.Option.PermanentBP Enable breakpoints when single stepping
Format: SYStem.Option.PermanentBP [ON | OFF]
Default: ON.

The generic, architecture-independent behavior of the TRACE32 PowerView software is that no breakpoints
are set on the target while a single-step is performed.

Due to the special channel-based and interrupt-triggered design of the PCP architecture and its debug
features, other channels might run invisibly before the single-step is executed. For enabling the user to catch
such a channel execution this option instructs the debugger to set all breakpoints when a single-step is
executed.

©1989-2024 Lauterbach PCP Debugger Reference | 39

SYStem.Option.PramSIZE PCP PRAM size

Format: SYStem.Option.PramSIZE <size>

Defines the size of the data memory in bytes.

The use of this option is only required for the generic CPUs PCP1 and PCP2. For other CPUs it is already
configured correctly.

©1989-2024 Lauterbach PCP Debugger Reference | 40

SYStem.Option.RegBASE PCP configuration register base address

Format: SYStem.Option.RegBASE <address>

Defines at which base address within the FPI bus the PCP Register Module is located. Note that with PCP
Registers the PCP Configuration Registers are referred, and not the PCP Core registers.

The use of this option is only required for the generic CPUs PCP1 and PCP2. For other CPUs it is already
configured correctly.

©1989-2024 Lauterbach PCP Debugger Reference | 41

SYStem.Option.TB1766FIX Bug fix for some TC1766 TriBoards

Format: SYStem.Option.TB1766FIX [ON | OFF]

Default: OFF.

Bug fix only required for some TriBoards TC1766. On those, two trace pins are swapped. The debugger
switches these signals for a correct decoding.

©1989-2024 Lauterbach PCP Debugger Reference | 42

CPU specific TriggerOnchip Commands

Internal Break Bus (JTAG)

PCP has no dedicated Break Buses, instead it is connected to the Break Buses of TriCore. Refer to
“Internal Break Bus (JTAG)” in “TriCore Debugger and Trace” (debugger_tricore.pdf) for more details.

The Break Buses can be uses to distribute break signals from a Break Source to one or more Break Targets.
For example TriCore can be stopped concurrently when PCP breaks.

Note that the current PCP implementations do not react on a break signal in
case their current state is idle. Then the break is ignored and new channels
are triggered.

In case PCP should only be prevented from triggering new channels
Lauterbach recommends to suspend PCP instead.

Lauterbach recommends not to enable PCP to react on a signal from a
Break Bus when PCP is programmed to be suspended when suspend bus is
active. This can lead to unpredictable results.

Suspend Switch

PCP has no dedicated Suspend Switch or Suspend Bus. It can be connected to the TriCore Suspend
Bus.Refer to “Internal Break Bus (JTAG)” in “TriCore Debugger and Trace” (debugger_tricore.pdf) for
more details.

Trace Break Signals (OCDS-L2)

Trace Break Signals as known from TriCore are not available for PCP.

©1989-2024 Lauterbach PCP Debugger Reference | 43

TrOnchip.BreakiN Connect break target PCP to BreakBus

Format: TrOnchip.BreakIN [ENable | DISable]
TrOnchip.BreakIN [BreakBusO | BreakBus1]

Default: DISable, BreakBusO.

When enabled, PCP reacts on a signal from the selected Break Bus.

TrOnchip.BreakOUT Connect break source PCP to BreakBus

Format: TrOnchip.BreakOUT [ENable | DISable]
TrOnchip.BreakOUT [BreakBusO | BreakBus1]

Default: DISable, BreakBusO.

When enabled, PCP generates a break signal to the selected Break Bus.

TrOnchip.CONVert Not relevant for the PCP architecture

Format: TrOnchip.CONVert [ON | OFF]

This command has no relevance for the PCP architecture.

TrOnchip.RESet Reset settings for the on-chip trigger unit

Format: TrOnchip.RESet

Resets the settings for the trigger on-chip unit to default.

©1989-2024 Lauterbach PCP Debugger Reference | 44

TrOnchip.SusTarget Connect PCP to the suspend bus

Format: TrOnchip.SusTarget.PCP [ON | OFF]

Default: DISable.

When enabled, PCP is suspended when the Suspend Bus gets active. The PCP pipeline gets stalled and no
debug actions are possible.

©1989-2024 Lauterbach PCP Debugger Reference | 45

CPU specific BenchMarkCounter Commands

The benchmark counters can be read at run-time.
For information about the architecture-independent BMC commands, refer to “BMC” (general_ref_b.pdf).

For information about architecture-specific BMC command(s), see command description(s) below.

BMC.<counter>.ATOB Advise counter to count within AB-range

Format: BMC.<counter>.ATOB [ON | OFF]

Advise the counter to count the specified event only in AB-range. Alpha and Beta markers are used to
specify the AB-range.

Example to measure the time used by the function sieve:

BMC.<counter> ClockCylces
BMC.CLOCK 450.Mhz

Break.Set sieve /Alpha

Break.Set V.END(sieve)-1 /Beta

BMC.<counter>.ATOB ON

<counter> counts clock cycles
core i1s running at 450.MHz

set a marker Alpha to the entry
of the function sieve

set a marker Beta to the exit
of the function sieve

advise <counter> to count only
in AB-range

©1989-2024 Lauterbach

PCP Debugger Reference |

JTAG Connector

Debug access is always performed via the Debug Port of the main core debugger. Currently PCP is only
implemented in the TriCore Architecture.

In case of TriCore, this is the JTAG connector. For detailed information see chapter “JTAG Connector”
(debugger_tricore.pdf) and “Application Note Debug Cable TriCore” (app_tricore_ocds.pdf).

Trace Connector

Off-chip Trace Data is always received via the Trace Port of the main core. Currently PCP is only
implemented in the TriCore Architecture.

In case of TriCore, this is the OCDS-L2 connector. For detailed information see chapter “Trace Connector”
(debugger_tricore.pdf).

©1989-2024 Lauterbach PCP Debugger Reference | 47

	PCP Debugger Reference
	Warning
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts
	PCP Debugger Implementations

	Quick Start
	Quick Start for OCDS-L1 Debugger
	1. Prepare the Start
	2.Configure the TriCore ICD for Debugging
	3. Select the CPU Type to load the CPU specific Settings
	4. Enter Debug Mode
	5. Load symbols for your Application Program
	6. Write a Start-up Script

	Quick Start for Tracing with OCDS-L2 Trace (Analyzer)
	1. Prepare the Debugger
	2. Connect the PreProcessor to the Trace Connector on the Target
	3. Delegate Trace Control
	4. Fine Tuning
	5. Start and Stop Tracing
	6. View the Results

	Quick Start for Tracing with OCDS-L3 Trace (On-chip Trace)
	1. Prepare the Debugger
	2. Configure the On-chip Trace
	5. Start and Stop Tracing
	6. View the Results

	OCDS-L1 Debugger
	Troubleshooting
	SYStem.Up Errors

	Memory Classes
	Breakpoints

	OCDS Trace
	OCDS-L2 Flow Trace (Analyzer)
	Supported Features
	Trace Hardware
	Troubleshooting for OCDS-L2 Trace
	No Trace
	Flow Errors

	OCDS-L3 On-chip Trace
	Supported Features
	Trace Control
	Additional information

	Simple Trace Control
	Coupling of PCP and Host-core Debugger
	Modify TRACE32 configuration files
	Start PowerView instances
	Synchronous Break
	Synchronous Step or Go

	FAQ
	Commands
	SYStem.CONFIG Configure debugger according to target topology
	Daisy-Chain Example
	TapStates

	SYStem.CONFIG.CORE Assign core to TRACE32 instance
	SYStem.CONFIG.PortSHaRing Control sharing of debug port with other tool
	SYStem.CPU Select CPU
	SYStem.JtagClock Set the JTAG frequency
	SYStem.LOCK Tristate the JTAG port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the CPU
	SYStem.Option CPU specific commands
	SYStem.Option.BreakSig Generate break signal
	SYStem.Option.CodeBASE PCODE base address
	SYStem.Option.CodeSIZE PCP PRAM size
	SYStem.Option.CPUREQ CPU request address
	SYStem.Option.DAC Disable all channels on break
	SYStem.Option.DIAG Diagnosis function
	SYStem.Option.DUALPORT Run-time memory access for all windows
	SYStem.Option.PramBASE PRAM base address
	SYStem.Option.PermanentBP Enable breakpoints when single stepping
	SYStem.Option.PramSIZE PCP PRAM size
	SYStem.Option.RegBASE PCP configuration register base address
	SYStem.Option.TB1766FIX Bug fix for some TC1766 TriBoards

	CPU specific TriggerOnchip Commands
	Internal Break Bus (JTAG)
	Suspend Switch
	Trace Break Signals (OCDS-L2)
	TrOnchip.BreakIN Connect break target PCP to BreakBus
	TrOnchip.BreakOUT Connect break source PCP to BreakBus
	TrOnchip.CONVert Not relevant for the PCP architecture
	TrOnchip.RESet Reset settings for the on-chip trigger unit
	TrOnchip.SusTarget Connect PCP to the suspend bus

	CPU specific BenchMarkCounter Commands
	BMC.<counter>.ATOB Advise counter to count within AB-range

	JTAG Connector
	Trace Connector

