
MANUAL

PCP Debugger Reference

PCP Debugger Reference

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 ICD In-Circuit Debugger .. 

 Processor Architecture Manuals .. 

 TriCore .. 

 PCP Debugger Reference .. 1

 Warning .. 6

 Introduction ... 7

 Brief Overview of Documents for New Users 7

 Demo and Start-up Scripts 7

 PCP Debugger Implementations 8

 Quick Start ... 9

 Quick Start for OCDS-L1 Debugger 9

 1. Prepare the Start 9

 2.Configure the TriCore ICD for Debugging 9

 3. Select the CPU Type to load the CPU specific Settings 10

 4. Enter Debug Mode 10

 5. Load symbols for your Application Program 10

 6. Write a Start-up Script 11

 Quick Start for Tracing with OCDS-L2 Trace (Analyzer) 12

 1. Prepare the Debugger 12

 2. Connect the PreProcessor to the Trace Connector on the Target 12

 3. Delegate Trace Control 12

 4. Fine Tuning 12

 5. Start and Stop Tracing 13

 6. View the Results 13

 Quick Start for Tracing with OCDS-L3 Trace (On-chip Trace) 14

 1. Prepare the Debugger 14

 2. Configure the On-chip Trace 14

 5. Start and Stop Tracing 14

 6. View the Results 14

 OCDS-L1 Debugger ... 15

 Troubleshooting 15

 SYStem.Up Errors 15
PCP Debugger Reference | 2©1989-2024 Lauterbach

 Memory Classes 16

 Breakpoints 17

 OCDS Trace ... 18

 OCDS-L2 Flow Trace (Analyzer) 18

 Supported Features 18

 Trace Hardware 18

 Troubleshooting for OCDS-L2 Trace 18

 No Trace 18

 Flow Errors 19

 OCDS-L3 On-chip Trace 20

 Supported Features 20

 Trace Control 20

 Additional information 20

 Simple Trace Control .. 21

 Coupling of PCP and Host-core Debugger ... 22

 Modify TRACE32 configuration files 22

 Start PowerView instances 22

 Synchronous Break 22

 Synchronous Step or Go 24

 FAQ ... 25

 Commands ... 26

 SYStem.CONFIG Configure debugger according to target topology 26

 Daisy-Chain Example 28

 TapStates 29

 SYStem.CONFIG.CORE Assign core to TRACE32 instance 30

 SYStem.CONFIG.PortSHaRing Control sharing of debug port with other tool 31

 SYStem.CPU Select CPU 31

 SYStem.JtagClock Set the JTAG frequency 33

 SYStem.LOCK Tristate the JTAG port 34

 SYStem.MemAccess Select run-time memory access method 35

 SYStem.Mode Establish the communication with the CPU 36

 SYStem.Option CPU specific commands 37

 SYStem.Option.BreakSig Generate break signal 37

 SYStem.Option.CodeBASE PCODE base address 37

 SYStem.Option.CodeSIZE PCP PRAM size 37

 SYStem.Option.CPUREQ CPU request address 38

 SYStem.Option.DAC Disable all channels on break 38

 SYStem.Option.DIAG Diagnosis function 38

 SYStem.Option.DUALPORT Run-time memory access for all windows 39

 SYStem.Option.PramBASE PRAM base address 39

 SYStem.Option.PermanentBP Enable breakpoints when single stepping 39

 SYStem.Option.PramSIZE PCP PRAM size 40
PCP Debugger Reference | 3©1989-2024 Lauterbach

 SYStem.Option.RegBASE PCP configuration register base address 41

 SYStem.Option.TB1766FIX Bug fix for some TC1766 TriBoards 42

 CPU specific TriggerOnchip Commands .. 43

 Internal Break Bus (JTAG) 43

 Trace Break Signals (OCDS-L2) 43

 TrOnchip.BreakIN Connect break target PCP to BreakBus 44

 TrOnchip.BreakOUT Connect break source PCP to BreakBus 44

 TrOnchip.CONVert Not relevant for the PCP architecture 44

 TrOnchip.RESet Reset settings for the on-chip trigger unit 44

 TrOnchip.SusTarget Connect PCP to the suspend bus 45

 CPU specific BenchMarkCounter Commands .. 46

 BMC.<counter>.ATOB Advise counter to count within AB-range 46

 JTAG Connector .. 47

 Trace Connector .. 47
PCP Debugger Reference | 4©1989-2024 Lauterbach

PCP Debugger Reference

Version 06-Jun-2024
PCP Debugger Reference | 5©1989-2024 Lauterbach

Warning

WARNING: To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1. Disconnect the Debug Cable from the target while the target power is
off.

2. Connect the host system, the TRACE32 hardware and the Debug
Cable.

3. Power ON the TRACE32 hardware.

4. Start the TRACE32 software to load the debugger firmware.

5. Connect the Debug Cable to the target.

6. Switch the target power ON.

7. Configure your debugger e.g. via a start-up script.

Power down:

1. Switch off the target power.

2. Disconnect the Debug Cable from the target.

3. Close the TRACE32 software.

4. Power OFF the TRACE32 hardware.
PCP Debugger Reference | 6©1989-2024 Lauterbach

Introduction

This document describes the processor specific settings and features for the ICD PCP and the Trace
extensions.

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

ICD PCP requires the ICD of the main core to be running and in SYStem.Mode Up. Currently PCP is only
implemented in TriCore chips.

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

TriCore debugging:

• “TriCore Debugger and Trace” (debugger_tricore.pdf): General information about the ICD TriCore

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known PCP based hardware.
PCP Debugger Reference | 7©1989-2024 Lauterbach

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:

• Type at the command line: WELCOME.SCRIPTS

• or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/pcp/ subfolder of the system directory of TRACE32.

PCP Debugger Implementations

Lauterbach has implemented two different approaches for a PCP debugger:

• Integrated PCP Debugger

The first approach was the Integrated or Internal PCP Debugger which is integrated into ICD
TriCore. At that point of time it was technically the only solution, although it has various
restrictions. For example an Inline Assembler, HLL support, source file listing or powerful trace
analysis is not possible.

• External PCP Debugger

Various improvements of the PCP tool chain, such as a C/C++ compiler, the requirement of
displaying source code or the integration of third-party tools as the VAST simulator required
outsourcing of the PCP debugger into its own PowerView instance.

Note that the Integrated PCP Debugger is discontinued.
PCP Debugger Reference | 8©1989-2024 Lauterbach

Quick Start

This chapter helps you to prepare your Debugger for PCP. Depending on your application not all steps might
be necessary. It is assumed that you are using a TC1766 B-Step on an Infineon TriBoard.

For some applications additional steps might be necessary that are not described here. See “Demo and
Start-up Scripts”, page 7, for more details.

Quick Start for OCDS-L1 Debugger

1. Prepare the Start

Connect the Debug Cable to your target. Check the orientation of the connector. Pin 1 of the debug cable is
marked with a small triangle next to the nose of the target connector.

Power up your TRACE32 system (not necessary on PODPC).

Start a PowerView instance for the host-core (TriCore in this example) and for PCP (see also Coupling of
PCP and Host-core Debugger):

• Start the TRACE32 Debugger Software for TriCore. Make sure the configuration file for the
TriCore Instance (e.g. config_tricore.t32) contains the line CORE=1.

• Start the TRACE32 Debugger Software for PCP. Make sure the configuration file for the PCP
Instance (e.g. config_pcp.t32) contains the line CORE=2.

Power up your Target.

2.Configure the TriCore ICD for Debugging

Refer to “TriCore Debugger and Trace” (debugger_tricore.pdf) for information on how to do this.

Since PCP needs to be initialized by the TriCore CPU, execute your application so that PCP code and data
is loaded into PCPmemory. This is usually done by executing the TriCore startup code until the main label.

Remember that these steps have to be performed on the TriCore PowerView instance.

To prevent damage please take care to follow this sequence all the time
you are preparing a start.
PCP Debugger Reference | 9©1989-2024 Lauterbach

3. Select the CPU Type to load the CPU specific Settings

It is strongly recommended to select the specific CPU instead of PCP1 or PCP2 which are only dedicated for
hardware configurations not known by TRACE32.

4. Enter Debug Mode

Reset CPU and enter debug mode. After this command is executed, it is possible to access memory and
registers.

ICD PCP requires an ICD TriCore which is configured and up. SYStem.Mode Up will fail for PCP if ICD
TriCore is in SYStem.Mode Down.

5. Load symbols for your Application Program

The options of the Data.LOAD command depend on the file format generated by the compiler. A detailed
description of the Data.LOAD command is given in “General Commands Reference”.

Since the PCP code is normally loaded by the TriCore application only the symbols have to be loaded.

SYStem.CPU TC1766

SYStem.Up

Data.LOAD.Elf myprog.elf /NoCODE
/NOREG

; ELF specifies the format, myprog
is the file name
PCP Debugger Reference | 10©1989-2024 Lauterbach

6. Write a Start-up Script

Now the quick start is done. If you were successful you can start to debug. It is recommended to prepare a
PRACTICE script file (*.cmm, ASCII format) to be able to do all the necessary actions with only one
command.

 Here is a typical start sequence:

*) These commands open windows on the screen. The window position can be specified with the WinPOS
command.

For information about how to create a PRACTICE script file (*.cmm file), refer to “Training Basic
Debugging” (training_debugger.pdf). There you can also find some information on basic actions with the
debugger.

WinCLEAR ; clear all windows

SYStem.CPU TC1766 ; select CPU

SYStem.Up ; reset target and enter debug mode

Data.LOAD.Elf myprog.elf
/NoCODE /NoRegister

; load symbols for PCP application

Data.List ; open disassembly window *)

Register.view /SpotLight ; open register window *)

Frame.view /Locals /Caller ; open the stack frame with
; local variables *)

Var.Watch %Spotlight flags ast ; open watch window for variables *)

PER.view ; open window with peripheral
; register *)

Break.Set main ; set breakpoint to function main

Break.Set P:0x0200 /Program ; set software breakpoint to address
; P:0x0200
PCP Debugger Reference | 11©1989-2024 Lauterbach

Quick Start for Tracing with OCDS-L2 Trace (Analyzer)

It is assumed that you are tracing a TC1766 B-Step on an Infineon TriBoard-TC1766.300 or above.

1. Prepare the Debugger

Load your application and prepare for debug. See “Quick Start for OCDS-L1 Debugger” for more details.

Make sure that the TriCore debugger is also prepared for debugging. If required by the target, it is especially
necessary to set up the trace port correctly. It is recommends to set it up on ICD TriCore. See ”Quick Start
for Tracing with OCDS-L2 Trace (Analyzer)” in “TriCore Debugger and Trace” (debugger_tricore.pdf)
for more information on how to do this.

2. Connect the PreProcessor to the Trace Connector on the Target

Plug the PreProcessor into the trace connector on the target board. In case of an AMP40 connector you
need to care for the correct orientation of the connector. Check for Pin 1.

3. Delegate Trace Control

With the ICD PCP, two PowerView instances are active which share the same trace module and the same
pre-processor. By default, both instances try to control them which results in undefined behavior. Since the
TriCore chip only outputs either TriCore or PCP trace data, the solution is to disable the unused trace.

To do so, change to the PowerView instance which should not record, and disable the Analyzer. E.g. if PCP
should be traced, change to ICD TriCore and execute the following command:

Use Analyzer.OFF to re-enable the Analyzer.

4. Fine Tuning

The preprocessor uses a compression algorithm which affects the accuracy of the timestamp information.
For improving the accuracy by the factor 4, specify the CPU clock frequency.

The trace is now configured.

Analyzer.DISable ; disables the Analyzer for the
ICD where it is executed on

Analyzer.Clock 20.0MHz ; specify CPU clock
PCP Debugger Reference | 12©1989-2024 Lauterbach

5. Start and Stop Tracing

Recording is stopped when the TriCore halts, e.g. when a breakpoint was hit.

6. View the Results

Go ; start tracing

Break ; stop tracing

Analyzer.List ; view recorded trace data
PCP Debugger Reference | 13©1989-2024 Lauterbach

Quick Start for Tracing with OCDS-L3 Trace (On-chip Trace)

It is assumed that you are tracing a TC1766ED B-Step on an Infineon TriBoard-TC1766.

1. Prepare the Debugger

Load your application and prepare for debug. See “Quick Start for OCDS-L1 Debugger” for more details.

Make sure that the TriCore debugger is also prepared for debugging. See ”Quick Start for Tracing with
OCDS-L3 Trace (Analyzer)” in “TriCore Debugger and Trace” (debugger_tricore.pdf) for more
information on how to do this.

2. Configure the On-chip Trace

Specifies the size of the on-chip trace memory. The given value is auto corrected to possible sizes. Note that
the size for ICD TriCore and ICD PCP is always the same.

5. Start and Stop Tracing

Note that tracing can also be stopped by a breakpoint.

6. View the Results

Onchip.SIZE 262144. ; select trace memory size

Go ; start tracing

Break ; stop tracing

Onchip.List ; view recorded trace data
PCP Debugger Reference | 14©1989-2024 Lauterbach

OCDS-L1 Debugger

Troubleshooting

SYStem.Up Errors

The SYStem.Up command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command this may have the following reasons.

• ICD TriCore is not yet Up.
PCP Debugger Reference | 15©1989-2024 Lauterbach

Memory Classes

The following memory classes are available:

Prepending an E as attribute to the memory class will make memory accesses possible even when the CPU
is running. See SYStem.MemAccess and SYStem.CpuAccess for more information.

SYStem.Option.DUALPORT will enable the runtime update of almost all windows, the memory class
attribute E is not necessary. Although the core is not stopped for accessing the memory this can slow down
program execution since the CPU and debugger both access the FPI bus.

Memory Class Description

P Program

D Data

EEC Emulation Memory on EEC. Only available on TriCore Emulation Devices for
accessing the Emulation Extension Chip

FPI FPI Bus address space. Provides a view on the internal buses as seen by
the debugger through the FPI bus. Some bus devices such as internal
memories may have a different address mappings as usually. The debugger
does not do any address remapping as the host CPU debugger does.
PCP Debugger Reference | 16©1989-2024 Lauterbach

Breakpoints

PCP currently only supports software breakpoints. So only program breakpoints are possible. You can check
your currently set breakpoints with the command Break.List .

Examples for Breakpoints

• Example for instruction breakpoint:

Break.Set P:0x01F8 /Program ; software breakpoint on
instruction
PCP Debugger Reference | 17©1989-2024 Lauterbach

OCDS Trace

OCDS-L2 Flow Trace (Analyzer)

Use Trace.METHOD Analyzer for selecting the Analyzer.

Supported Features

• Program Flow Trace for PCP

• Timestamps

Trace Hardware

The trace hardware for PCP is the very same as for TriCore. See the appropriate chapters in “TriCore
Debugger and Trace” (debugger_tricore.pdf) for more information.

Troubleshooting for OCDS-L2 Trace

No Trace

There are different reasons possible:

• CPU trace port not mapped.

On many chips the trace port shares its functionality with another peripheral. In this case, one or
more dedicated registers have to be set correctly. For TriCore, see also the demo scripts in the
TRACE32 installation directory: ~~/demo/tricore/hardware/*.

• Reference voltage not set up correctly (new trace hardware only).

- Reference voltage pin on trace connector connected?

- Value set to the middle of the trace signal?

• Poor trace/clock signal (new trace hardware only).

Change termination setting.

Note that it is not possible to trace TriCore and PCP at the same time.
PCP Debugger Reference | 18©1989-2024 Lauterbach

Flow Errors

There are different reasons possible:

• CPU trace port not mapped.

Mostly the trace port shares its functionality with another peripheral. In this case, one or more
dedicated registers have to be set correctly. See the host CPU’s demo scripts.

• Reference voltage not set up correctly (new trace hardware only).

- Reference voltage pin on trace connector connected?

- Value set to the middle of the trace signal?

• Poor trace/clock signal (new trace hardware only).

Change termination setting.

• Setup/hold time violation.

- 3 ns setup / 1 ns hold time needed.

- sample point: falling edge.

• Code modification during runtime.

Self modifying code is not supported.
PCP Debugger Reference | 19©1989-2024 Lauterbach

OCDS-L3 On-chip Trace

On-chip Tracing is only possible with an Infineon Emulation Device.

Use Trace.METHOD Onchip for selecting the on-chip trace.

Supported Features

• Program Flow Trace for PCP

• Data Trace for TriCore and PCP

• Ownership Trace for PCP

• Timestamps

• Simple Trace Control

Trace Control

The On-chip settings can be done with the Onchip commands, e.g. from the Onchip.view window. The
settings affect both TriCore and PCP Trace.

The trace results for TriCore can be viewed in the TriCore PowerView instance, the trace results for PCP in
the PCP PowerView instance.

To correlate TriCore and PCP trace records with the /Track option see the InterCom commands in
“PowerView Command Reference” (ide_ref.pdf) commands.

Additional information

For additional information in OCDS-L3 trace see chapter OCDS-L3 On-chip Trace in “TriCore Debugger
and Trace” (debugger_tricore.pdf).

A trace source can either be TriCore, PCP or both at the same time.
It is not possible to enable a trace stream (e.g. Program Flow or Data
Trace) for only one trace source when both are enabled.
Tracing TriCore is set up in ICD TriCore.

Onchip.AutoArm has only an effect on TriCore and not on PCP. Always
make sure that PCP is running when arming the trace.
PCP Debugger Reference | 20©1989-2024 Lauterbach

Simple Trace Control

Simple Trace Control is currently not supported for PCP.
PCP Debugger Reference | 21©1989-2024 Lauterbach

Coupling of PCP and Host-core Debugger

PCP is an Auxiliary Processing Unit, a sub-core which depends on the system it is implemented in.
Currently it is included in chips with a TriCore CPU as host-core.

For each core in a multi-core scenario, an instance of the TRACE32 PowerView software has to be started
although the low-level debug driver runs on the same Power Debug module. This chapter describes the
necessary steps for configuring both PowerView instances via a config file. The Windows software
“T32Start” (app_t32start.pdf) provides an easy way to configure this.

The following examples use the TriCore Debugger in case PCP is included within a TriCore chip. For more
information on TRACE32 configuration files see chapter “Configuration File” in TRACE32 Installation
Guide, page 35 (installation.pdf).

Modify TRACE32 configuration files

• Add the line CORE=1 to the TriCore configuration file (e.g. config_tricore.t32)

• Add the line CORE=2 to the PCP configuration file (e.g. config_pcp.t32)

This step has to be done only once.

Start PowerView instances

Always start the TriCore instance first and wait until it has started completely before starting the PCP
instance:

• t32mtc.exe -c config_tricore.t32

• t32mpcp.exe -c config_pcp.t32

An optional startup script can be specified after the config file, separated by a comma:

• t32mtc.exe -c config_tricore.t32 -c start_tc.cmm

• t32mpcp.exe -c config_pcp.t32 -c start_pcp.cmm

Synchronous Break

TriCore and PCP can be programmed to break synchronously when a debug event happens on TriCore or
PCP. By using the TrOnchip commands the break event can be distributed via a Break Bus:
PCP Debugger Reference | 22©1989-2024 Lauterbach

Distribute Break Signal from PCP to TriCore

• PCP Debugger Instance

• TriCore Debugger Instance

Distribute Break Signal from TriCore to PCP

• TriCore Debugger Instance

• PCP Debugger Instance

TrOnchip.BreakOUT ENable ; enable PCP break signal
generation

TrOnchip.BreakOUT BreakBus0 ; distribute PCP break signal on
Break Bus 0

TrOnchip.BreakIN.TriCore BreakBus0 ; sense for break signal on Break
Bus 0

TrOnchip.EXTernal ON ; halt when break signal is
detected on Break Bus

Note that TrOnchip.EXTernal ON disables OCDS-L2 Break Actions.
TriCore will stop instead of triggering the Break Action.

TrOnchip.BreakOUT.TriCore BreakBus1 ; distribute TriCore break
signal on Break Bus 1

TrOnchip.BreakIN BreakBus1 ; sense for break signal on
Break Bus 1

TrOnchip.BreakIN ENable ; halt when break signal is
detected on Break Bus

Note that PCP will ignore the Break Signal in case it is currently in Idle
Mode. In this case configure PCP as Suspend Target by
TrOnchip.SuspTarget.PCP ON. As long as the suspend is active
PCP will stop execution. On a suspended PCP, no Break, Step or Go
command can be performed.
PCP Debugger Reference | 23©1989-2024 Lauterbach

Synchronous Step or Go

The Debuggers of PCP and TriCore provide a mechanism to perform a synchronous start of both cores, e.g.
for a Step or Go.

Setup Debugger communication via InterCom Interface

InterCom has to be enabled in the configuration file already:

• TriCore Debugger Instance:

• PCP Debugger Instance:

Setup Synchronous MultiCore Start via InterCom Interface

The following example assumes that both TriCore and PCP PowerView Instances run on the same PC or
Workstation. See chapter SYnch in “General Commands Reference Guide S” (general_ref_s.pdf) for
more details on MultiCore Synchronization.

• TriCore Debugger Instance

• PCP Debugger Instance

IC=NETASSIST
PORT=20000

IC=NETASSIST
PORT=20001

SYnch.Connect localhost:20001 ; synch with PCP Instance

SYnch.MasterGo ON ; when Go is performed on this
(TriCore) Instance, distribute Go
event to PCP Instance

SYnch.SlaveGo ON ; perform Go when Go event is
signaled from PCP instance

SYnch.Connect localhost:20000 ; synch with TriCore Instance

SYnch.MasterGo ON ; when Go is performed on this
(PCP) Instance, distribute Go event
to TriCore Instance

SYnch.SlaveGo ON ; perform Go when Go event is
signaled from TriCore instance
PCP Debugger Reference | 24©1989-2024 Lauterbach

FAQ

Please refer to https://support.lauterbach.com/kb.

Do not enable the Break Target PCP in case HALTEN is enabled for
TriCore and TriCore is Break Source to the same Break Bus where PCP
is Break Target. In this case the Synchronous MultiCore Start will fail.
PCP Debugger Reference | 25©1989-2024 Lauterbach

https://support.lauterbach.com/kb

Commands

SYStem.CONFIG Configure debugger according to target topology

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger about the
TAP controller position in the JTAG chain, if there is more than one core in the JTAG chain (e.g. Arm + DSP).
The information is required before the debugger can be activated e.g. by a SYStem.Up. See Daisy-chain
Example.
For some CPU selections (SYStem.CPU) the above setting might be automatically included, since the
required system configuration of these CPUs is known.

TriState has to be used if several debuggers (“via separate cables”) are connected to a common JTAG port
at the same time in order to ensure that always only one debugger drives the signal lines. TAPState and
TCKLevel define the TAP state and TCK level which is selected when the debugger switches to tristate
mode. Please note: nTRST must have a pull-up resistor on the target, TCK can have a pull-up or pull-down
resistor, other trigger inputs need to be kept in inactive state.

Format: SYStem.CONFIG <parameter> <number_or_address>
SYStem.MultiCore <parameter> <number_or_address> (deprecated)

<parameter>: CORE <core>

<parameter>:
(JTAG):

DRPRE <bits>
DRPOST <bits>
IRPRE <bits>
IRPOST <bits>
TAPState <state>
TCKLevel <level>
TriState [ON | OFF]
Slave [ON | OFF]

Multicore debugging is not supported for the DEBUG INTERFACE (LA-7701).

CORE For multicore debugging one TRACE32 PowerView GUI has to be started
per core. To bundle several cores in one processor as required by the
system this command has to be used to define core and processor
coordinates within the system topology.
Further information can be found in SYStem.CONFIG.CORE.
PCP Debugger Reference | 26©1989-2024 Lauterbach

DRPRE (default: 0) <number> of TAPs in the JTAG chain between the core of
interest and the TDO signal of the debugger. If each core in the system
contributes only one TAP to the JTAG chain, DRPRE is the number of
cores between the core of interest and the TDO signal of the debugger.

DRPOST (default: 0) <number> of TAPs in the JTAG chain between the TDI signal
of the debugger and the core of interest. If each core in the system
contributes only one TAP to the JTAG chain, DRPOST is the number of
cores between the TDI signal of the debugger and the core of interest.

IRPRE (default: 0) <number> of instruction register bits in the JTAG chain
between the core of interest and the TDO signal of the debugger. This is
the sum of the instruction register length of all TAPs between the core of
interest and the TDO signal of the debugger.

IRPOST (default: 0) <number> of instruction register bits in the JTAG chain
between the TDI signal and the core of interest. This is the sum of the
instruction register lengths of all TAPs between the TDI signal of the
debugger and the core of interest.

TAPState (default: 7 = Select-DR-Scan) This is the state of the TAP controller when
the debugger switches to tristate mode. All states of the JTAG TAP
controller are selectable.

TCKLevel (default: 0) Level of TCK signal when all debuggers are tristated.

TriState (default: OFF) If several debuggers share the same debug port, this
option is required. The debugger switches to tristate mode after each
debug port access. Then other debuggers can access the port. JTAG:
This option must be used, if the JTAG line of multiple debug boxes are
connected by a JTAG joiner adapter to access a single JTAG chain.

Slave (default: OFF) If more than one debugger share the same debug port, all
except one must have this option active.
JTAG: Only one debugger - the “master” - is allowed to control the signals
nTRST and nSRST (nRESET).
PCP Debugger Reference | 27©1989-2024 Lauterbach

Daisy-Chain Example

Below, configuration for core C.

Instruction register length of

• Core A: 3 bit

• Core B: 5 bit

• Core D: 6 bit

SYStem.CONFIG.IRPRE 6. ; IR Core D

SYStem.CONFIG.IRPOST 8. ; IR Core A + B

SYStem.CONFIG.DRPRE 1. ; DR Core D

SYStem.CONFIG.DRPOST 2. ; DR Core A + B

SYStem.CONFIG.CORE 0. 1. ; Target Core C is Core 0 in Chip 1

Core A Core B Core C Core D TDOTDI

Chip 0 Chip 1
PCP Debugger Reference | 28©1989-2024 Lauterbach

TapStates

0 Exit2-DR

1 Exit1-DR

2 Shift-DR

3 Pause-DR

4 Select-IR-Scan

5 Update-DR

6 Capture-DR

7 Select-DR-Scan

8 Exit2-IR

9 Exit1-IR

10 Shift-IR

11 Pause-IR

12 Run-Test/Idle

13 Update-IR

14 Capture-IR

15 Test-Logic-Reset
PCP Debugger Reference | 29©1989-2024 Lauterbach

SYStem.CONFIG.CORE Assign core to TRACE32 instance

Default core_index: depends on the CPU, usually 1. for generic chips

Default chip_index: derived from CORE= parameter of the configuration file (config.t32). The CORE
parameter is defined according to the start order of the GUI in T32Start with ascending values.

To provide proper interaction between different parts of the debugger, the systems topology must be
mapped to the debugger’s topology model. The debugger model abstracts chips and sub cores of these
chips. Every GUI must be connect to one unused core entry in the debugger topology model. Once the
SYStem.CPU is selected, a generic chip or non-generic chip is created at the default chip_index.

Non-generic Chips

Non-generic chips have a fixed number of sub cores, each with a fixed CPU type.

Initially, all GUIs are configured with different chip_index values. Therefore, you have to assign the
core_index and the chip_index for every core. Usually, the debugger does not need further information to
access cores in non-generic chips, once the setup is correct.

Generic Chips

Generic chips can accommodate an arbitrary amount of sub-cores. The debugger still needs information
how to connect to the individual cores e.g. by setting the JTAG chain coordinates.

Start-up Process

The debug system must not have an invalid state where a GUI is connected to a wrong core type of a non-
generic chip, two GUIs are connected to the same coordinate or a GUI is not connected to a core. The initial
state of the system is valid since every new GUI uses a new chip_index according to its CORE= parameter
of the configuration file (config.t32). If the system contains fewer chips than initially assumed, the chips must
be merged by calling SYStem.CONFIG.CORE.

Format: SYStem.CONFIG.CORE <core_index> <chip_index>
SYStem.MultiCore.CORE <core_index> <chip_index> (deprecated)

<chip_index>: 1 … i

<core_index>: 1 … k
PCP Debugger Reference | 30©1989-2024 Lauterbach

SYStem.CONFIG.PortSHaRing Control sharing of debug port with other tool

Configure if the debug port is shared with another tool, e.g., an ETAS ETK.

The current setting can be obtained by the PORTSHARING() function, immediate detection can be
performed using SYStem.DETECT.PortSHaRing.

SYStem.CPU Select CPU

Default: TC1797.

Selects which PCP version to debug. It is possible either to select a generic PCP core or a specific chip
where PCP is included in.

The recommended way is to select the appropriate chip, e.g. TriCore TC1797. The debugger knows the
implementation details and configures all specific settings automatically.

Format: SYStem.CONFIG.PortSHaRing [ON | OFF | Auto]

ON Request for access to the debug port and wait until the access is granted
before communicating with the target.

OFF Communicate with the target without sending requests.

Auto Automatically detect a connected tool on next SYStem.Mode Up,
SYStem.Mode Attach or SYStem.Mode Go. If a tool is detected switch to
mode ON else switch to mode OFF.

Format: SYStem.CPU <cpu>

<cpu> For a list of supported CPUs, use the command SYStem.CPU * or refer
to the chip search on the Lauterbach website.

NOTE: In case your device is listed on the website but not listed in the SYStem.CPU *
list, you may require a software update. Please contact your responsible
Lauterbach representative.
PCP Debugger Reference | 31©1989-2024 Lauterbach

PCP1 and PCP2 are generic PCP cores. Implementation specific details, such as the base address for the
PCP control registers, the base addresses for code and parameter memory, sizes, etc. have to be done
manually. Note that special features such as on-chip trace or synchronization with the main core are not
supported by the generic cores.
PCP Debugger Reference | 32©1989-2024 Lauterbach

SYStem.JtagClock Set the JTAG frequency

Default: 10.0 MHz.

Selects the frequency for the JTAG clock. This influences the speed of data transmission between target and
debugger.

Not all values in between the frequency range can be generated by the debugger. The debugger will select
and display the possible value if it can not generate the exact value.
It is also possible to enter units, e.g. 10.0 MHz.

SYStem.JtagClock EXT is not supported by PCP.

SYStem.BdmClock is an obsolete alias for this command.

Format: SYStem.JtagClock <rate>
SYStem.BdmClock (deprecated)

<rate>: 10000. … 50000000.

The JTAG clock must be lower or equal to the CPU clock. Otherwise JTAG
communication will fail.
PCP Debugger Reference | 33©1989-2024 Lauterbach

SYStem.LOCK Tristate the JTAG port

Default: OFF.

If the system is locked, no access to the JTAG port will be performed by the debugger. While locked the
JTAG connector of the debugger is tristated. The intention of the SYStem.LOCK command is, for example,
to give JTAG access to another tool. The process can also be automated, see SYStem.CONFIG TriState.

It must be ensured that the state of the TriCore JTAG state machine remains unchanged while the system is
locked. To ensure correct hand-over, the options SYStem.CONFIG TAPState and SYStem.CONFIG
TCKLevel must be set properly. They define the TAP state and TCK level which is selected when the
debugger switches to tristate mode. Please note: nTRST must have a pull-up resistor on the target.

Format: SYStem.LOCK [ON | OFF]

There is a single cable contact on the casing of the debug cable which can
be used to detect if the JTAG connector of the debugger is tristated. If
tristated also this signal is tristated, otherwise it is pulled low.
PCP Debugger Reference | 34©1989-2024 Lauterbach

SYStem.MemAccess Select run-time memory access method

Default: Enable.

This option declares if and how a non-intrusive memory access can take place while the CPU is executing
code. Although the CPU is not halted, run-time memory access creates an additional load on the
processor’s internal data bus. The MemAccess mode is printed in the state line.

The run-time memory access has to be activated for each window by using the memory class E: (e.g.
Data.dump ED:0xA1000000) or by using the format option %E (e.g. Var.View %E var1). It is also possible to
enable non-intrusive memory access for all memory areas displayed by setting
SYStem.Option.DUALPORT ON.

Format: SYStem.MemAccess <mode>
SYStem.ACCESS (deprecated)

<mode>: Enable | Denied | StopAndGo

Enable
CPU (deprecated)

The debugger performs non-intrusive memory accesses via the CPU
internal buses (FPI Bus).

Denied Non-intrusive memory access is disabled while the CPU is executing
code. Instead intrusive accesses can be configured with
SYStem.CpuAccess.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.
PCP Debugger Reference | 35©1989-2024 Lauterbach

SYStem.Mode Establish the communication with the CPU

Initial Mode: Down.

The SYStem Modes are not only commands to bring the debugger in a certain debug state, they also reflect
the current debug state of the target. SYStem Modes Attach and Go are only transitional states which will
result in an Up state on success. Any critical failure will transition the debug state to SYStem Mode Down
immediately

The “Emulate” LED on the debug module is ON when the debug mode is active and the CPU is running.

Format: SYStem.Mode <mode>

<mode>: Down
NoDebug
Go
Attach
Up

Down Debug mode is not active. Default state and state after fatal errors.

NoDebug Debug mode is not active, debug port is tristate. In this mode PCP
behaves as if the debugger is not connected.

Attach User program remains running (no reset) and the debug mode is
activated. After this command the user program can be stopped with the
break command or if any break condition occurs. The debugger should
be in NoDebug mode when performing an Attach.

Go The CPU is running. Debug mode is active. After this command the CPU
can be stopped with the break command or if any break condition occurs.

Up The CPU is not in reset but halted. Debug mode is active. In this mode
the CPU can be started and stopped. This is the most typical way to
activate debugging.
PCP Debugger Reference | 36©1989-2024 Lauterbach

SYStem.Option CPU specific commands

The SYStem.Options are a class of architecture and CPU specific commands.

SYStem.Option.BreakSig Generate break signal

Default: ON.

When enabled, PCP generates a hardware signal on execution break. This signal can be made visible on
the Debug Port (nBRKOUT pin), and it can be used to break other on-chip resources, e.g. the TriCore CPU.

See Coupling of PCP and Host-core Debugger and the TrOnchip commands for more information on
how to distribute this signal.

SYStem.Option.CodeBASE PCODE base address

Defines at which base address within the FPI bus the PCP instruction memory is located.

The use of this option is only required for the generic CPUs PCP1 and PCP2. For other CPUs it is already
configured correctly.

SYStem.Option.CodeSIZE PCP PRAM size

Defines the size of the instruction memory in bytes.

The use of this option is only required for the generic CPUs PCP1 and PCP2. For other CPUs it is already
configured correctly.

Format: SYStem.Option.BreakSig [ON | OFF]

Format: SYStem.Option.CodeBASE <address>

Format: SYStem.Option.CodeSIZE <size>
PCP Debugger Reference | 37©1989-2024 Lauterbach

SYStem.Option.CPUREQ CPU request address

A PCP channel can only be started via a trigger from the CPU. This option defines the trigger register to use
for. The address must be in FPI bus address space.

The use of this option is only required for the generic CPUs PCP1 and PCP2. For other CPUs it is already
configured correctly.

SYStem.Option.DAC Disable all channels on break

Default: ON.

When enabled, the execution of all PCP channels is stopped if one channel is stopped by a break or
breakpoint. DAC is for “Disable All Channels”.

SYStem.Option.DIAG Diagnosis function

System Diagnosis functions. Execute only when demanded by Lauterbach support engineer. Functionality is
undocumented, can change without any notice and may bring the debugger software into an unstable state.
Do not use in script files.

Format: SYStem.Option.CPUREQ <address>

Format: SYStem.Option.DAC [ON | OFF]

Format: SYStem.Option.DIAG [<value>] [<param>] [<param>] [<param>]
PCP Debugger Reference | 38©1989-2024 Lauterbach

SYStem.Option.DUALPORT Run-time memory access for all windows

Default: OFF.

Enable permanent non-intrusive memory access for all windows and memory accesses. Memory class E:
does not have to be specified any more. This only works when SYStem.MemAccess is set to CPU.

SYStem.Option.PramBASE PRAM base address

Defines at which base address within the FPI bus the PCP data memory is located.

The use of this option is only required for the generic CPUs PCP1 and PCP2. For other CPUs it is already
configured correctly.

SYStem.Option.PermanentBP Enable breakpoints when single stepping

Default: ON.

The generic, architecture-independent behavior of the TRACE32 PowerView software is that no breakpoints
are set on the target while a single-step is performed.

Due to the special channel-based and interrupt-triggered design of the PCP architecture and its debug
features, other channels might run invisibly before the single-step is executed. For enabling the user to catch
such a channel execution this option instructs the debugger to set all breakpoints when a single-step is
executed.

Format: SYStem.Option.DUALPORT [ON | OFF]

When this option is enabled, no Data.dump or Data.List windows must
be opened while programming the on-chip flash. Otherwise flash
programming will fail.

Format: SYStem.Option.PramBASE <address>

Format: SYStem.Option.PermanentBP [ON | OFF]
PCP Debugger Reference | 39©1989-2024 Lauterbach

SYStem.Option.PramSIZE PCP PRAM size

Defines the size of the data memory in bytes.

The use of this option is only required for the generic CPUs PCP1 and PCP2. For other CPUs it is already
configured correctly.

Format: SYStem.Option.PramSIZE <size>
PCP Debugger Reference | 40©1989-2024 Lauterbach

SYStem.Option.RegBASE PCP configuration register base address

Defines at which base address within the FPI bus the PCP Register Module is located. Note that with PCP
Registers the PCP Configuration Registers are referred, and not the PCP Core registers.

The use of this option is only required for the generic CPUs PCP1 and PCP2. For other CPUs it is already
configured correctly.

Format: SYStem.Option.RegBASE <address>
PCP Debugger Reference | 41©1989-2024 Lauterbach

SYStem.Option.TB1766FIX Bug fix for some TC1766 TriBoards

Default: OFF.

Bug fix only required for some TriBoards TC1766. On those, two trace pins are swapped. The debugger
switches these signals for a correct decoding.

Format: SYStem.Option.TB1766FIX [ON | OFF]
PCP Debugger Reference | 42©1989-2024 Lauterbach

CPU specific TriggerOnchip Commands

Internal Break Bus (JTAG)

PCP has no dedicated Break Buses, instead it is connected to the Break Buses of TriCore. Refer to
“Internal Break Bus (JTAG)” in “TriCore Debugger and Trace” (debugger_tricore.pdf) for more details.

The Break Buses can be uses to distribute break signals from a Break Source to one or more Break Targets.
For example TriCore can be stopped concurrently when PCP breaks.

Suspend Switch

PCP has no dedicated Suspend Switch or Suspend Bus. It can be connected to the TriCore Suspend
Bus.Refer to “Internal Break Bus (JTAG)” in “TriCore Debugger and Trace” (debugger_tricore.pdf) for
more details.

Trace Break Signals (OCDS-L2)

Trace Break Signals as known from TriCore are not available for PCP.

Note that the current PCP implementations do not react on a break signal in
case their current state is idle. Then the break is ignored and new channels
are triggered.
In case PCP should only be prevented from triggering new channels
Lauterbach recommends to suspend PCP instead.

Lauterbach recommends not to enable PCP to react on a signal from a
Break Bus when PCP is programmed to be suspended when suspend bus is
active. This can lead to unpredictable results.
PCP Debugger Reference | 43©1989-2024 Lauterbach

TrOnchip.BreakIN Connect break target PCP to BreakBus

Default: DISable, BreakBus0.

When enabled, PCP reacts on a signal from the selected Break Bus.

TrOnchip.BreakOUT Connect break source PCP to BreakBus

Default: DISable, BreakBus0.

When enabled, PCP generates a break signal to the selected Break Bus.

TrOnchip.CONVert Not relevant for the PCP architecture

This command has no relevance for the PCP architecture.

TrOnchip.RESet Reset settings for the on-chip trigger unit

Resets the settings for the trigger on-chip unit to default.

Format: TrOnchip.BreakIN [ENable | DISable]
TrOnchip.BreakIN [BreakBus0 | BreakBus1]

Format: TrOnchip.BreakOUT [ENable | DISable]
TrOnchip.BreakOUT [BreakBus0 | BreakBus1]

Format: TrOnchip.CONVert [ON | OFF]

Format: TrOnchip.RESet
PCP Debugger Reference | 44©1989-2024 Lauterbach

TrOnchip.SusTarget Connect PCP to the suspend bus

Default: DISable.

When enabled, PCP is suspended when the Suspend Bus gets active. The PCP pipeline gets stalled and no
debug actions are possible.

Format: TrOnchip.SusTarget.PCP [ON | OFF]
PCP Debugger Reference | 45©1989-2024 Lauterbach

CPU specific BenchMarkCounter Commands

The benchmark counters can be read at run-time.

For information about the architecture-independent BMC commands, refer to “BMC” (general_ref_b.pdf).

For information about architecture-specific BMC command(s), see command description(s) below.

BMC.<counter>.ATOB Advise counter to count within AB-range

Advise the counter to count the specified event only in AB-range. Alpha and Beta markers are used to
specify the AB-range.

Example to measure the time used by the function sieve:

Format: BMC.<counter>.ATOB [ON | OFF]

BMC.<counter> ClockCylces ; <counter> counts clock cycles

BMC.CLOCK 450.Mhz ; core is running at 450.MHz

Break.Set sieve /Alpha ; set a marker Alpha to the entry
; of the function sieve

Break.Set V.END(sieve)-1 /Beta ; set a marker Beta to the exit
; of the function sieve

BMC.<counter>.ATOB ON ; advise <counter> to count only
; in AB-range
PCP Debugger Reference | 46©1989-2024 Lauterbach

JTAG Connector

Debug access is always performed via the Debug Port of the main core debugger. Currently PCP is only
implemented in the TriCore Architecture.

In case of TriCore, this is the JTAG connector. For detailed information see chapter “JTAG Connector”
(debugger_tricore.pdf) and “Application Note Debug Cable TriCore” (app_tricore_ocds.pdf).

Trace Connector

Off-chip Trace Data is always received via the Trace Port of the main core. Currently PCP is only
implemented in the TriCore Architecture.

In case of TriCore, this is the OCDS-L2 connector. For detailed information see chapter “Trace Connector”
(debugger_tricore.pdf).
PCP Debugger Reference | 47©1989-2024 Lauterbach

	PCP Debugger Reference
	Warning
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts
	PCP Debugger Implementations

	Quick Start
	Quick Start for OCDS-L1 Debugger
	1. Prepare the Start
	2.Configure the TriCore ICD for Debugging
	3. Select the CPU Type to load the CPU specific Settings
	4. Enter Debug Mode
	5. Load symbols for your Application Program
	6. Write a Start-up Script

	Quick Start for Tracing with OCDS-L2 Trace (Analyzer)
	1. Prepare the Debugger
	2. Connect the PreProcessor to the Trace Connector on the Target
	3. Delegate Trace Control
	4. Fine Tuning
	5. Start and Stop Tracing
	6. View the Results

	Quick Start for Tracing with OCDS-L3 Trace (On-chip Trace)
	1. Prepare the Debugger
	2. Configure the On-chip Trace
	5. Start and Stop Tracing
	6. View the Results

	OCDS-L1 Debugger
	Troubleshooting
	SYStem.Up Errors

	Memory Classes
	Breakpoints

	OCDS Trace
	OCDS-L2 Flow Trace (Analyzer)
	Supported Features
	Trace Hardware
	Troubleshooting for OCDS-L2 Trace
	No Trace
	Flow Errors

	OCDS-L3 On-chip Trace
	Supported Features
	Trace Control
	Additional information

	Simple Trace Control
	Coupling of PCP and Host-core Debugger
	Modify TRACE32 configuration files
	Start PowerView instances
	Synchronous Break
	Synchronous Step or Go

	FAQ
	Commands
	SYStem.CONFIG Configure debugger according to target topology
	Daisy-Chain Example
	TapStates

	SYStem.CONFIG.CORE Assign core to TRACE32 instance
	SYStem.CONFIG.PortSHaRing Control sharing of debug port with other tool
	SYStem.CPU Select CPU
	SYStem.JtagClock Set the JTAG frequency
	SYStem.LOCK Tristate the JTAG port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the CPU
	SYStem.Option CPU specific commands
	SYStem.Option.BreakSig Generate break signal
	SYStem.Option.CodeBASE PCODE base address
	SYStem.Option.CodeSIZE PCP PRAM size
	SYStem.Option.CPUREQ CPU request address
	SYStem.Option.DAC Disable all channels on break
	SYStem.Option.DIAG Diagnosis function
	SYStem.Option.DUALPORT Run-time memory access for all windows
	SYStem.Option.PramBASE PRAM base address
	SYStem.Option.PermanentBP Enable breakpoints when single stepping
	SYStem.Option.PramSIZE PCP PRAM size
	SYStem.Option.RegBASE PCP configuration register base address
	SYStem.Option.TB1766FIX Bug fix for some TC1766 TriBoards

	CPU specific TriggerOnchip Commands
	Internal Break Bus (JTAG)
	Suspend Switch
	Trace Break Signals (OCDS-L2)
	TrOnchip.BreakIN Connect break target PCP to BreakBus
	TrOnchip.BreakOUT Connect break source PCP to BreakBus
	TrOnchip.CONVert Not relevant for the PCP architecture
	TrOnchip.RESet Reset settings for the on-chip trigger unit
	TrOnchip.SusTarget Connect PCP to the suspend bus

	CPU specific BenchMarkCounter Commands
	BMC.<counter>.ATOB Advise counter to count within AB-range

	JTAG Connector
	Trace Connector

