LAUTERBACH A

Meta Debugger

Meta Debugger

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... r—~
1o - r=
1= 2= T D T o ¥ o o = 1

L o T 11T o) 5

Brief Overview of Documents for New Users 5

Demo and Start-up Scripts 6
L= T 1 ' 6
Quick Start of the DebUgQErc.ccccciicerrnssrisssrrssssrsssmssssssssssmssssssssssmsssssssssssnsssssnsssssnes 8

QLo 18] o == 0 T To7 £ 3V 10
Communication between Debugger and Processor can not be established 10

O 10
Meta specific Implementations ... ————— 11

Meta Configuration 11
Access Classes 12
Breakpoints 13
Software Breakpoints 13

On-chip Breakpoints 13

On-chip Watchpoints 13
SYStem.CONFIG Configure debugger according to target topology 15
<parameters> describing the “DebugPort” 16
<parameters> describing the “JTAG” scan chain and signal behavior 18
SYStem.CONFIG.state Display target configuration 21
SYStem.CPU Select the used CPU 21
SYStem.JtagClock Define JTAG frequency 21
SYStem.LOCK Lock and tristate the debug port 22
SYStem.MemAccess Select run-time memory access method 23
SYStem.Mode Establish communication with target 24
SYStem.Option.IMASKASM Disable interrupts while single stepping 24
SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 26
SYStem.Option.MINIM Map execution- to storage address range 26
©1989-2024 Lauterbach Meta Debugger 2

SYStem.state Display SYStem.state window 26

TrOnchip.RESet Set on-chip trigger to default state 27
TrOnchip.state Display on-chip trigger window 27
Target Adaption ... 28
Interface Standards JTAG, Serial Wire Debug, cJTAG 28
Connector Type and Pinout 28
Debug Cable 28

©1989-2024 Lauterbach Meta Debugger | 3

Meta Debugger

Version 06-Jun-2024

©1989-2024 Lauterbach Meta Debugger | 4

Introduction

This manual serves as a guideline for debugging Meta cores and describes all processor-specific
TRACES2 settings and features.

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Brief Overview of Documents for New Users

Architecture-independent information:

J “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

J “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

. “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

To get started with the most important manuals, use the Welcome to TRACE32! dialog (WELCOME.view):

©1989-2024 Lauterbach Meta Debugger | 5

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known Meta-based hardware.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:
. Type at the command line: WELCOME.SCRIPTS

. or choose File menu > Search for Script.
You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo /meta/ subfolder of the system directory of TRACES32.

Warning

WARNING: To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1. Disconnect the Debug Cable from the target while the target power is
off.

2. Connect the host system, the TRACE32 hardware and the Debug
Cable.

Power ON the TRACE32 hardware.
Start the TRACES32 software to load the debugger firmware.
Connect the Debug Cable to the target.

Switch the target power ON.

N o oo oA W

Configure your debugger e.g. via a start-up script.

Power down:

—

Switch off the target power.
Disconnect the Debug Cable from the target.

Close the TRACE32 software.

P 0D

Power OFF the TRACE32 hardware.

©1989-2024 Lauterbach Meta Debugger |

Quick Start of the Debugger

Starting up the debugger is done as follows:

1. Reset the debugger.

RESet

The RESet command is only necessary if you do not start directly after booting the TRACE32
development tool.

2. Set the target CPU to configure the debugger.

SYStem.CPU <cpu>

The default values of all other options are set in such a way that it should be possible to work without
modifications. Please consider that this may not be the best configuration for your target.

3. Establish the communication to the target.

SYStem.Up

This command resets the target and tries to stop it. After this command is executed, it is possible to
access memory and registers.

4. Load the program into the memory.

Data.LOAD.Elf sieve.elf ; .ELF specifies the file format
; sieve.elf is the file name

A typical start sequence is shown below. This sequence can be written to a PRACTICE script file (*.cmm,
ASCII format) and executed with the command DO <file>.

RESet ; Reset the debugger

System.CPU META-MTP ; Set target CPU, here the generic
; META-MTP to configure the debugger

SYStem.Up ; Establish communication to target
Data.LOAD.E1f sieve.elf ; Load the application program
WinCLEAR ; Remove all windows

List.Mix ; Open source window *)
Register.view ; Open register window *)

©1989-2024 Lauterbach Meta Debugger | 7

*) These commands open windows on the screen. The window position can be specified with the WinPOS
command.

©1989-2024 Lauterbach Meta Debugger | 8

Troubleshooting

Communication between Debugger and Processor can not be established

Typically the SYStem.Up command is the first command of a debug session where communication with the
target is required. If you receive error messages like “debug port fail” or “debug port time out” while executing
this command, this may have the reasons described below. “target processor in reset” is just a follow-up
error message. Open the AREA.view window to view all error messages.

FAQ

The target has no power or the debug cable is not connected to the target or the target reference
voltage is not connected to the debug connector. This results in the error message “target power
fail”.

The target is in reset.
The target is in an unrecoverable state. Re-power your target and try again.
You have selected the incorrect CPU with SYStem.CPU.

There is an issue with the JTAG interface. See “Arm JTAG Interface Specifications”
(app_arm_jtag.pdf) and the manuals or schematic of your target to check the physical and
electrical interface. Maybe there is the need to set jumpers on the target to connect the correct
signals to the JTAG connector.

The default JTAG clock speed is too fast, especially if you emulate your core or if you use an
FPGA-based target. In this case try SYStem.JtagClock 50kHz and optimize the speed when you
got it working.

You might have several TAP controllers in a JTAG-chain. Example: You have a multicore system
with chained TAPs. In this case you have to check your pre- and post-bit configuration. See
SYStem.CONFIG IRPRE or SYStem.CONFIG DRPRE.

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach Meta Debugger | 9

https://support.lauterbach.com/kb

Meta specific Implementations

Meta Configuration

For code compression the Meta architecture provides a so-called MiniM instruction set. But unlike to other
architectures the HLL debug information are not created for this reduced -, but for the expanded program
code. So the Meta tool chain creates an additional output file with the extension *.Idr which includes the
Minim code without debug information and a storage address which is different to the linker execution
address.

This file must be loaded with the command Data.load.LDR <file_name> which will also enable the MiniM
operating mode in the Core, by setting the MinimEnable flag in the TXPRIVEXT register.

To provide HLL debugging capabilities for this concept the T32 Lauterbach SW is reading the MiniM
opcodes from the storage- and encodes it to the linker execution address. The HLL debug information are
disposed by additionally loading the referring *.elf file with the /NoCODE option. To get this working the
storage and execution memory range must be declared by the System.Option.MINIM command. HLL
debugging is working as usual and breakpoints are automatically mapped to storage memory.

NOTE: Loading the *.elf file code, compiled for MiniM usage, to the target will fail,
because tit is linked in a way that parts of the instruction memory will be
overloaded by the .data section!

©1989-2024 Lauterbach Meta Debugger | 10

Access Classes

Access classes are used to specify which memory to access. For background information about the term
access class, see “TRACE32 Glossary” (glossary.pdf).

The following common access classes have the same meaning for all CPUs of the Meta architecture.

Access Class Description

P Program or data memory access. Target implementation defined.
D Data memory access

ROA Data Unit DO DSP RAM Block A.

ROB Data Unit DO DSP RAM Block B.

R1A Data Unit D1 DSP RAM Block A.

R1B Data Unit D1 DSP RAM Block B.

DBG Special, virtual memory. Target implementation defined.

E Prefix: Run-time access specifier.

VM Virtual Memory. Memory on the debug host system.

To perform an access with a certain access class, write the class in front of the address.
Examples:

List P:0x80000

List EP:0x120000
Data.dump D:0x4--0x7
PRINT Data.Long (ROB:0x6)

©1989-2024 Lauterbach Meta Debugger | 11

Breakpoints

For general information about setting breakpoints, refer to the Break.Set command.

Software Breakpoints

If a software breakpoint is used, the original code at the breakpoint location is temporarily patched by a
breakpoint code (Meta switch instruction). There is no restriction in the number of software breakpoints.
Software breakpoints are break before make.

On-chip Breakpoints

If on-chip breakpoints are used, the resources to set the breakpoints are provided by the hardware of the
core itself. The Meta supports up to 8 program on-chip breakpoints. The debugger is able to detect the
number of available on-chip breakpoints by analyzing the contents of the Meta core revision register.

If programmed, the breakpoint hardware compares its breakpoint address and the current program counter.
If they are equal, a breakpoint exception is raised which in general will set the Meta core into debug mode.
On-chip breakpoints are break before make.

Examples:
Break.Set 0x80000024 /Program ; Configures an on-chip breakpoint
/Onchip ; which activates when the program
; counter matches 0x80000024
Break.Set 0x80000024 /Onchip ; Same as above, since the default

; for breakpoints is /Program

On-chip Watchpoints

If on-chip watchpoints are used, the resources to set the watchpoints are provided by the hardware of the
core itself. The Meta supports up to 8 data on-chip watchpoints. The debugger is able to detect the number
of available on-chip watchpoints by analyzing the contents of the Meta core revision register.

On-chip watchpoints compare their programmed address and their read, write or read-write access
condition with addresses of load and store instructions. If addresses and conditions match, a watchpoint
exception is raised which in general will set the M core into debug mode. On-chip watchpoints are break
before make.

In TRACE32, the on-chip watchpoint functionality is mapped to data address breakpoints. That means to set
a watchpoint, the Break.Set command is used in conjunction with the Read, Write or ReadWrite options.

©1989-2024 Lauterbach Meta Debugger | 12

Examples:

Break.Set 0x80001000

Break.Set 0x80001000

Break.Set 0x80001000

Break.Set 0x80001000

/Read /Onchip

/Read

/Write

/ReadWrite

Configures an on-chip read
watchpoint which activates when
a load instruction accesses
address 0x80001000

Same as above, since read
breakpoints are always on-chip

Write watchpoint for store
instructions

ReadWrite watchpoint for load and
store instructions

©1989-2024 Lauterbach

Meta Debugger | 13

SYStem.CONFIG Configure debugger according to target topology

Format: SYStem.CONFIG <parameter>

<parameter>: CORE <core> <chip>

(DebugPort) DEBUGPORT [DebugCable0]
DEBUGPORTTYPE [JTAG]
Slave [ON | OFF]

TriState [ON | OFF]

<parameter>: DRPOST <bits>

(JTAG) DRPRE <bits>
IRPOST <bits>
IRPRE <bits>
Slave [ON | OFF]

TAPState <state>
TCKLevel </evel>
TriState [ON | OFF]

The SYStem.CONFIG commands inform the debugger about the available on-chip debug and trace
components and how to access them.

The SYStem.CONFIG command information shall be provided after the SYStem.CPU command, which
might be a precondition to enter certain SYStem.CONFIG commands, and before you start up the debug
session, e.g. by SYStem.Up.

Syntax Remarks

The commands are not case sensitive. Capital letters show how the command can be shortened.
Example: “SYStem.CONFIG.TriState ON” -> “SYStem.CONFIG.TS ON”

The dots after “SYStem.CONFIG” can alternatively be a blank.
Example:
“SYStem.CONFIG.TriState ON” or “SYStem.CONFIG TriState ON”

©1989-2024 Lauterbach Meta Debugger | 14

<parameters> describing the “DebugPort”

CORE <core>
<chip>

CORE <core>
<chip>

(cont.)

DEBUGPORT
[DebugCable0]

DEBUGPORTTYPE
[JTAG]

The command helps to identify debug and trace resources which are
commonly used by different cores. The command might be required in a
multicore environment if you use multiple debugger instances (multiple
TRACE32 PowerView GUIs) to simultaneously debug different cores on
the same target system.

Because of the default setting of this command

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=1 <chip>=2

each debugger instance assumes that all notified debug resources can
exclusively be used.

But some target systems have shared resources for different cores, for
example a common trace port. The default setting causes that each
debugger instance controls the same trace port. Sometimes it does not
hurt if such a module is controlled twice. But sometimes it is a must to tell
the debugger that these cores share resources on the same <chip>.
Whereby the “chip” does not need to be identical with the device on your
target board:

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=2 <chip>=1

For cores on the same <chip>, the debugger assumes that the cores
share the same resource if the control registers of the resource have the
same address.

Default:

<core> depends on CPU selection, usually 1.

<chip> derives from the CORE= parameter in the configuration file
(config.t32), usually 1. If you start multiple debugger instances with the
help of t32start.exe, you will get ascending values (1, 2, 3,...).

It specifies which probe cable shall be used e.g. “DebugCable0”.
Default: depends on detection.

It specifies the used debug port type “JTAG”. It assumes the selected
type is supported by the target.

Default: JTAG.

©1989-2024 Lauterbach

Meta Debugger | 15

Slave [ON | OFF]

TriState [ON | OFF]

If several debuggers share the same debug port, all except one must
have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the signals
NTRST and nSRST (nNRESET). The other debuggers need to have the
setting Slave OFF.

Default: OFF.
Default: ON if CORE=... >1 in the configuration file (e.g. config.t32).

TriState has to be used if several debug cables are connected to a common
JTAG port. TAPState and TCKLevel define the TAP state and TCK level
which is selected when the debugger switches to tristate mode.

Please note:

. nTRST must have a pull-up resistor on the target.

. TCK can have a pull-up or pull-down resistor.

. Other trigger inputs need to be kept in inactive state.
Default: OFF.

©1989-2024 Lauterbach

Meta Debugger |

16

<parameters> describing the “JTAG” scan chain and signal behavior

With the JTAG interface you can access a Test Access Port controller (TAP) which has implemented a state
machine to provide a mechanism to read and write data to an Instruction Register (IR) and a Data Register
(DR) in the TAP. The JTAG interface will be controlled by 5 signals:

NTRST(reset)
TCK (clock)

TMS (state machine control)

TDI (data input)
TDO (data output)

Multiple TAPs can be controlled by one JTAG interface by daisy-chaining the TAPs (serial connection). If you
want to talk to one TAP in the chain, you need to send a BYPASS pattern (all ones) to all other TAPs. For this
case the debugger needs to know the position of the TAP it wants to talk to. The TAP position can be defined
with the first four commands in the table below.

DRPOST <bits>

DRPRE <bits>

IRPOST <bits>

IRPRE <bits>

Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TDI signal and the TAP you are describing. In
BYPASS mode, each TAP contributes one data register bit. See example
below.

Default: 0.

Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TAP you are describing and the TDO signal. In
BYPASS mode, each TAP contributes one data register bit. See example
below.

Default: 0.

Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between TDI signal and
the TAP you are describing. See example below.

Default: 0.

Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between the TAP you are
describing and the TDO signal. See example below.

Default: 0.

NOTE: If you are not sure about your settings concerning IRPRE, IRPOST, DRPRE,
and DRPOST, you can try to detect the settings automatically with the
SYStem.DETECT.DaisyChain command.

©1989-2024 Lauterbach

Meta Debugger | 17

Slave [ON | OFF] If several debuggers share the same debug port, all except one must
have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the signals
NTRST and nSRST (nNRESET). The other debuggers need to have the
setting Slave OFF.

Default: OFF.
Default: ON if CORE=... >1 in the configuration file (e.g. config.t32).

TAPState <state> This is the state of the TAP controller when the debugger switches to
tristate mode. All states of the JTAG TAP controller are selectable.

0 Exit2-DR

1 Exit1-DR

2 Shift-DR

3 Pause-DR

4 Select-IR-Scan
5 Update-DR

6 Capture-DR

7 Select-DR-Scan
8 Exit2-IR

9 Exit1-IR

10 Shift-IR

11 Pause-IR

12 Run-Test/Idle
13 Update-IR

14 Capture-IR

15 Test-Logic-Reset

Default: 7 = Select-DR-Scan.

TCKLevel <level> Level of TCK signal when all debuggers are tristated. Normally defined
by a pull-up or pull-down resistor on the target.

Default: 0.

TriState [ON | OFF] TriState has to be used if several debug cables are connected to a common
JTAG port. TAPState and TCKLevel define the TAP state and TCK level
which is selected when the debugger switches to tristate mode.

Please note:

] NTRST must have a pull-up resistor on the target.

] TCK can have a pull-up or pull-down resistor.

. Other trigger inputs need to be kept in inactive state.

Default: OFF.

©1989-2024 Lauterbach Meta Debugger | 18

Daisy-Chain Example

IRPOST IRPRE
I 1 I 1
TAP1 TAP2 TAP3 TAP4
. R | 4 IR | 3 IR | 5 Core R | 6 .
DR/ 1 DR/ 1 DR | 1 DR | 1
L I | I
DRPOST DRPRE

IR: Instruction register length DR: Data register length Core: The core you want to debug

Daisy chains can be configured using a PRACTICE script (*.cmm) or the SYStem.CONFIG.state window.

&2 B::SYStem.CONFIG state /Jtag =n| Wl <
DebugPort Jtag MultiTap DAP | COmponents
IRPOST IRPRE
12, 6.
TDI kk — DRPOST M| core | M- DRPRE ke TDO
3. P] [S 1.

Example: This script explains how to obtain the individual IR and DR values for the above daisy chain.

SYStem.CONFIG.state /Jtag ; optional: open the window

SYStem.CONFIG IRPRE 6. ; IRPRE: There is only one TAP.
; So type just the IR bits of TAP4, i.e. 6.

SYStem.CONFIG IRPOST 12. ; IRPOST: Add up the IR bits of TAPl, TAP2
; and TAP3, i.e. 4. + 3. + 5. = 12.
SYStem.CONFIG DRPRE 1. ; DRPRE: There is only one TAP which is

; 1in BYPASS mode.
; So type just the DR of TAP4, i.e. 1.

SYStem.CONFIG DRPOST 3. ; DRPOST: Add up one DR bit per TAP which
; 1s in BYPASS mode, i.e. 1. + 1. + 1. = 3.
; This completes the configuration.

NOTE: In many cases, the number of TAPs equals the number of cores. But in many
other cases, additional TAPs have to be taken into account; for example, the
TAP of an FPGA or the TAP for boundary scan.

©1989-2024 Lauterbach Meta Debugger | 19

SYStem.CONFIG.state Display target configuration

Format: SYStem.CONFIG.state

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

SYStem.CPU Select the used CPU
Format: SYStem.CPU <cpu>
<cpus: META-MTP | MSR1-DRPU

The choice of the CPU will determine pre-configurations made by the debugger. It will also determine the
supported debug monitor.

META-MTP Generic CPU for Meta-MTP targets.
MSR1-DRPU Meta core DRPU on the MSR1 board
SYStem.JtagClock Define JTAG frequency
Format: SYStem.JtagClock [<frequency>]
<frequency>: 10000. ... 40000000.

Default frequency: 5 MHz.

©1989-2024 Lauterbach Meta Debugger | 20

Selects the JTAG port frequency (TCK) used by the debugger to communicate with the processor. The
frequency affects e.g. the download speed. It could be required to reduce the JTAG frequency if there are
buffers, additional loads or high capacities on the JTAG lines or if VTREF is very low. A very high frequency
will not work on all systems and will result in an erroneous data transfer.

<frequency> The debugger cannot select all frequencies accurately. It chooses the
next possible frequency and displays the real value in the SYStem.state
window.
Besides a decimal number like “100000.” short forms like “10kHz” or
“15MHz” can also be used. The short forms imply a decimal value

although no “ is used.

SYStem.LOCK Lock and tristate the debug port

Format: SYStem.LOCK [ON | OFF]

Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give
debug access to another tool.

©1989-2024 Lauterbach Meta Debugger | 21

SYStem.MemAccess Select run-time memory access method

Format: SYStem.MemAccess <mode>

<mode>: Enable | Denied | StopAndGo

Default: Enable.

If SYStem.MemAccess is not Denied, it is possible to read from memory, to write to memory and to set
software breakpoints while the CPU is executing the program.

Enable Run-time memory access is done via the instruction bus of the CPU.
CPU (deprecated)

Denied No memory access is possible while the CPU is executing the program.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

For more information, see below.

Exampile: If specific windows that display memory or variables should be updated while the program is
running, select the access class prefix E or the format option %E.

SYStem.MemAccess Enable
Data.dump EP:0x100
List E:

Var.View %E varl

©1989-2024 Lauterbach Meta Debugger | 22

SYStem.Mode

Establish communication with target

Format: SYStem.Mode <mode>
SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)
<mode>: Down
Attach
Up
Go
NoDebug

Attach No reset happens, the mode of the core (running or halted) does not
change. The debug port (JTAG) will be initialized.

After this command has been executed, a possible running user program
can, for example, be stopped with the Break command.

Down Disables the debugger. The state of the CPU remains unchanged. The
JTAG port is tristated.

Up Resets the target via the reset line, initializes the debug port (JTAG),
performs a core (soft) reset and enters debug mode. The core stops at
the exception base address (EBA).

For a reset via the JTAG line, the reset line has to be connected to the
debug connector.

Go Start code execution from reset vector.

Actually the debugger performs the same actions than on
SYStem.Mode.Up followed by Go.direct.

NoDebug The debug adapter gets tristated.

The state of the CPU remains unchanged. Debug mode is not active.
In this mode the target behaves as if the debugger is not connected.

StandBy Not available.

SYStem.Option.IMASKASM Disable interrupts while single stepping

Format: SYStem.Option.IMASKASM [ON | OFF]

©1989-2024 Lauterbach

Meta Debugger | 23

Default: OFF.

ON The Global Interrupt Enable Bits will be cleared during assembler single-step
operations. The interrupt routine is not executed during single-step
operations. After single step the Global Interrupt Enable bits will be restored
to the value before the step.

OFF A pending interrupt will be executed on a single-step, but it does not halt
there. The specific interrupt handler is completely executed even if single
steps are done, i.e. step over is forced per default. If the core should halt in
the interrupt routine, use TrOnchip.StepVector ON.

©1989-2024 Lauterbach Meta Debugger | 24

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

Format: SYStem.Option.IMASKHLL [ON | OFF]
Default: OFF.
ON The Global Interrupt Enable Bits will be cleared during high-level-language

single-step operations. The interrupt routine is not executed during single-
step operations. After single step, the Global Interrupt Enable bit will be
restored to the value before the step.

OFF A pending interrupt will be executed on a single-step, but it does not halt
there, i.e. the interrupt handler is always stepped over.

SYStem.Option.MINIM Map execution- to storage address range

Format: SYStem.Option.MiniM {<execution_range><storage_range>}

For expanding the compressed *.Idr file correctly the T32 MiniM SW encoder need the address range where
the compressed datas are stored on the target memory <storage_range> and at which address they are

linked to for execution. <execution range>.

NOTE 1: Due to code compression rate 1:2 the execution range must always have twice
the size of the storage range!

NOTE 2: This command is only needed for Large Minim address ranges!
Small Minim handling is done automatically in T32 Software without defining
Minim address ranges.

SYStem.state Display SYStem.state window

Format: SYStem.state

Displays the SYStem.state window for system settings that configure debugger and target behavior.

©1989-2024 Lauterbach Meta Debugger | 25

TrOnchip.RESet Set on-chip trigger to default state

Format: TrOnchip.RESet

Sets the TrOnchip settings and trigger module to the default settings.

TrOnchip.state Display on-chip trigger window

Format: TrOnchip.state

Opens the TrOnchip.state window.

©1989-2024 Lauterbach Meta Debugger | 26

Target Adaption

Interface Standards JTAG, Serial Wire Debug, cJTAG

The Debug Cable supports the JTAG (IEEE 1149.1) interface standard.

Connector Type and Pinout

Debug Cable

Adaption for ARM Debug Cable: See https://www.lauterbach.com/adarmdbg.html. These adaptations
also cover the Meta possibilities.

Mechanical description of the 20-pin Debug Cable:

Signal Pin Pin Signal
VREF-DEBUG 1 2 VSUPPLY (not used)

TRST- 3 4 GND
TDI 5 6 GND
TMSITMSCISWDIO 7 8 GND
TCKITCKCISWCLK 9 10 GND
RTCK 11 12 GND
TDOI-ISWO 13 14 GND
RESET- 15 16 GND
DBGRQ 17 18 GND
DBGACK 19 20 GND

For details on logical functionality, physical connector, alternative connectors, electrical characteristics,
timing behavior and printing circuit design hints, refer to “ARM JTAG Interface Specifications”
(app_arm_jtag.pdf).

©1989-2024 Lauterbach Meta Debugger | 27

https://www.lauterbach.com/adarmdbg.html

	Meta Debugger
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Warning
	Quick Start of the Debugger
	Troubleshooting
	Communication between Debugger and Processor can not be established

	FAQ
	Meta specific Implementations
	Meta Configuration
	Access Classes
	Breakpoints
	Software Breakpoints
	On-chip Breakpoints
	On-chip Watchpoints

	SYStem.CONFIG Configure debugger according to target topology
	<parameters> describing the “DebugPort”
	<parameters> describing the “JTAG” scan chain and signal behavior

	SYStem.CONFIG.state Display target configuration
	SYStem.CPU Select the used CPU
	SYStem.JtagClock Define JTAG frequency
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish communication with target
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.MINIM Map execution- to storage address range
	SYStem.state Display SYStem.state window
	TrOnchip.RESet Set on-chip trigger to default state
	TrOnchip.state Display on-chip trigger window

	Target Adaption
	Interface Standards JTAG, Serial Wire Debug, cJTAG
	Connector Type and Pinout
	Debug Cable

