
MANUAL

Arm Debugger

Arm Debugger

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 ICD In-Circuit Debugger .. 

 Processor Architecture Manuals .. 

 Arm/CORTEX/XSCALE .. 

 Arm Debugger .. 1

 History .. 9

 Warning .. 10

 Introduction ... 11

 Brief Overview of Documents for New Users 11

 Demo and Start-up Scripts 12

 Quick Start of the JTAG Debugger .. 13

 FAQ ... 14

 Troubleshooting .. 15

 Communication between Debugger and Processor cannot be established 15

 Trace Extensions ... 16

 Symmetric Multiprocessing ... 17

 Arm Specific Implementations ... 18

 TrustZone Technology 18

 Debug Permission 18

 Checking Debug Permission 19

 Checking Secure State 19

 Changing the Secure State from within TRACE32 19

 Accessing Memory 19

 Accessing Coprocessor CP15 Register 20

 Accessing Cache and TLB Contents 20

 Vector Catch Register and Secure Modes 20

 Breakpoints and Secure Modes 20

 big.LITTLE 21

 Debugger Setup 21

 Consequence for Debugging 22

 Requirements for the Target Software 22
Arm Debugger | 2©1989-2024 Lauterbach

 big.LITTLE MP 22

 Breakpoints 23

 Software Breakpoints 23

 On-chip Breakpoints for Instructions 23

 On-chip Breakpoints for Data 23

 Hardware Breakpoints (Bus Trace only) 25

 Example for Standard Breakpoints 26

 Complex Breakpoints 32

 Direct ICE Breaker Access 32

 Example for ETM Stopping Breakpoints 33

 Access Classes 34

 Coprocessors 42

 Accessing Memory at Run-time 45

 Semihosting 49

 SVC (SWI) Emulation Mode 49

 DCC Communication Mode (DCC = Debug Communication Channel) 51

 Virtual Terminal 53

 Large Physical Address Extension (LPAE) 54

 Consequence for Debugging 54

 Virtualization Extension, Hypervisor 55

 Consequence for Debugging 55

 Run-time Measurements 55

 Trigger 55

 Arm specific SYStem Commands .. 56

 SYStem.CLOCK Inform debugger about core clock 56

 SYStem.CONFIG.state Display target configuration 56

 SYStem.CONFIG Configure debugger according to target topology 57

 <parameters> describing the “DebugPort” 68

 <parameters> describing the “JTAG” scan chain and signal behavior 73

 <parameters> describing a system level TAP “MultiTap” 77

 <parameters> configuring a CoreSight Debug Access Port “AP” 79

 <parameters> describing debug and trace “Components” 88

 <parameters> which are “Deprecated” 100

 SYStem.CONFIG.EXTWDTDIS Disable external watchdog 105

 SYStem.CONFIG.SMMU Internal use 106

 SYStem.CPU Select the used CPU 108

 SYStem.JtagClock Define the frequency of the debug port 108

 SYStem.LOCK Tristate the JTAG port 111

 SYStem.MemAccess Select run-time memory access method 112

 SYStem.Mode Establish the communication with the target 118

 SYStem.Option Special setup 120

 SYStem.Option.ABORTFIX Do not access memory area from 0x0 to 0x1f 120

 SYStem.Option.AMBA Select AMBA bus mode 120
Arm Debugger | 3©1989-2024 Lauterbach

 SYStem.Option.ASYNCBREAKFIX Asynchronous break bugfix 121

 SYStem.Option.BUGFIX Breakpoint bug fix 121

 SYStem.Option.BUGFIXV4 Asynch. break bug fix for ARM7TDMI-S REV4 122

 SYStem.Option.BigEndian Define byte order (endianness) 123

 SYStem.Option.BOOTMODE Define boot mode 123

 SYStem.Option.CINV Invalidate the cache after memory modification 124

 SYStem.Option.CFLUSH FLUSH the cache before step/go 124

 SYStem.Option.CacheParam Define external cache 124

 SYStem.Option.CorePowerDetection Set methods to detect core power 124

 SYStem.Option.DACRBYPASS Ignore DACR access permission settings 126

 SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP 127

 SYStem.Option.DAP2DBGPWRUPREQ Force debug power in DAP2 127

 SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP 128

 SYStem.Option.DAP2SYSPWRUPREQ Force system power in DAP2 129

 SYStem.Option.DAPNOIRCHECK No DAP instruction register check 130

 SYStem.Option.DAPREMAP Rearrange DAP memory map 130

 SYStem.Option.DBGACK DBGACK active on debugger memory accesses 130

 SYStem.Option.DBGNOPWRDWN DSCR bit 9 will be set in debug mode 131

 SYStem.Option.DBGUNLOCK Unlock debug register via OSLAR 131

 SYStem.Option.DCDIRTY Bugfix for erroneously cleared dirty bits 131

 SYStem.Option.DCFREEZE Disable data cache linefill in debug mode 132

 SYStem.Option.DEBUGPORTOptions Options for debug port handling 132

 SYStem.Option.DIAG Activate more log messages 133

 SYStem.Option.DisMode Define disassembler mode 134

 SYStem.Option.DynVector Dynamic trap vector interpretation 135

 SYStem.Option.EnReset Allow the debugger to drive nRESET (nSRST) 135

 SYStem.Option.ETBFIXMarvell Read out on-chip trace data 135

 SYStem.Option.ETMFIX Shift data of ETM scan chain by one 136

 SYStem.Option.ETMFIXWO Bugfix for write-only ETM register 136

 SYStem.Option.ETMFIX4 Use only every fourth ETM data package 136

 SYStem.Option.EXEC EXEC signal can be used by bustrace 136

 SYStem.Option.EXTBYPASS Switch off the fake TAP mechanism 137

 SYStem.Option.FASTBREAKDETECTION Fast core halt detection 137

 SYStem.Option.HRCWOVerRide Enable override mechanism 137

 SYStem.Option.ICEBreakerETMFIXMarvell Lock on-chip breakpoints 138

 SYStem.Option.ICEPICK Enable/disable assertions and wait-in-reset 138

 SYStem.Option.IMASKASM Disable interrupts while single stepping 138

 SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 139

 SYStem.Option.INTDIS Disable all interrupts 139

 SYStem.Option.IRQBREAKFIX Break bugfix by using IRQ 139

 SYStem.Option.KEYCODE Define key code to unsecure processor 140

 SYStem.Option.L2Cache L2 cache used 140

 SYStem.Option.L2CacheBase Define base address of L2 cache register 140
Arm Debugger | 4©1989-2024 Lauterbach

 SYStem.Option.LOCKRES Go to 'Test-Logic Reset' when locked 141

 SYStem.Option.MACHINESPACES Address extension for guest OSes 142

 SYStem.Option.MDMAP Set debug option controlled by NXP MDM-AP 143

 SYStem.Option.MemStatusCheck Check status bits during memory access 144

 SYStem.Option.MMUPhysLogMemaccess Memory access preferences 144

 SYStem.Option.MMUSPACES Separate address spaces by space IDs 145

 SYStem.Option.MonitorHoldoffTime Delay between monitor accesses 146

 SYStem.Option.MPUBYPASS Ignore MPU access permission settings 146

 SYStem.Option.MultiplesFIX No multiple loads/stores 146

 SYStem.Option.NODATA No data connected to the trace 146

 SYStem.Option.NOIRCHECK No JTAG instruction register check 147

 SYStem.Option.NoPRCRReset Do not cause reset by PRCR 147

 SYStem.Option.NoRunCheck No check of the running state 147

 SYStem.Option.NoSecureFix Do not switch to secure mode 148

 SYStem.Option.OVERLAY Enable overlay support 149

 SYStem.Option.PALLADIUM Extend debugger timeout 149

 SYStem.Option.PC Define address for dummy fetches 150

 SYStem.Option.ProgramAccessFix Program memory access bug fix 150

 SYStem.Option.PROTECTION Sends an unsecure sequence to the core 150

 SYStem.Option.PWRCHECK Check power and clock 151

 SYStem.Option.PWRCHECKFIX Check power and clock 151

 SYStem.Option.PWRDWN Allow power-down mode 151

 SYStem.Option.PWRDWNRecover Mode to handle special power recovery 152

 SYStem.Option.PWRDWNRecoverTimeOut Timeout for power recovery 152

 SYStem.Option.PWROVR Specifies power override bit 152

 SYStem.Option.ResBreak Halt the core after reset 153

 SYStem.Option.ResetDetection Choose method to detect a target reset 154

 SYStem.Option.RESetREGister Generic software reset 154

 SYStem.Option.RESTARTFIX Wait after core restart 155

 SYStem.Option.RisingTDO Target outputs TDO on rising edge 155

 SYStem.Option.ShowError Show data abort errors 156

 SYStem.Option.SLaVeSOFTRESet Allow soft reset of slave cores 156

 SYStem.Option.SOFTLONG Use 32-bit access to set breakpoint 156

 SYStem.Option.SOFTQUAD Use 64-bit access to set breakpoint 157

 SYStem.Option.SOFTWORD Use 16-bit access to set breakpoint 157

 SYStem.Option.SPLIT Access memory depending on CPSR 157

 SYStem.Option.StandByTraceDelaytime Trace activation after reset 158

 SYStem.Option.STEPSOFT Use software breakpoints for ASM stepping 158

 SYStem.Option.SYSPWRUPREQ Force system power 158

 SYStem.Option.TIDBGEN Activate initialization for TI derivatives 159

 SYStem.Option.TIETMFIX Bug fix for customer specific ASIC 159

 SYStem.Option.TIDEMUXFIX Bug fix for customer specific ASIC 159

 SYStem.Option.TraceStrobe Deprecated command 159
Arm Debugger | 5©1989-2024 Lauterbach

 SYStem.Option.TRST Allow debugger to drive TRST 160

 SYStem.Option.TURBO Speed up memory access 160

 SYStem.Option.WaitIDCODE IDCODE polling after deasserting reset 161

 SYStem.Option.WaitReset Wait with JTAG activities after deasserting reset 162

 SYStem.Option.WATCHDOG Disable watchdog while debugging 163

 SYStem.Option.ZoneSPACES Enable symbol management for Arm zones 164

 Overview of Debugging with Zones 165

 Operation System Support - Defining a Zone-specific OS Awareness 168

 SYStem.Option.ZYNQJTAGINDEPENDENT Configure JTAG cascading 170

 SYStem.RESetOut Assert nRESET/nSRST on JTAG connector 170

 SYStem.state Display SYStem window 171

 Arm specific Functions ... 172

 SYStem.Option.HRCWOVerRide() 172

 Arm Specific Benchmarking Commands .. 173

 BMC.EXPORT Export benchmarking events from event bus 173

 BMC.EXTEND Define benchmark counter event 174

 BMC.MODE Define the operating mode of the benchmark counter 175

 BMC.<counter>.EVENT Configure the performance monitor 176

 Functions 179

 BMC.PRESCALER Prescale the measured cycles 179

 BMC.TARA Calibrate the benchmark counter 179

 Arm Specific TrOnchip Commands ... 180

 TrOnchip.A Programming the ICE breaker module 180

 TrOnchip.A.Value Define data selector 181

 TrOnchip.A.Size Define access size for data selector 181

 TrOnchip.A.CYcle Define access type 182

 TrOnchip.A.Address Define address selector 183

 TrOnchip.A.Trans Define access mode 184

 TrOnchip.A.Extern Define the use of EXTERN lines 184

 TrOnchip.AddressMask Define an address mask 185

 TrOnchip.ContextID Enable context ID comparison 185

 TrOnchip.CONVert Allow extension of address range of breakpoint 186

 TrOnchip.MachineID Extend on-chip breakpoint/trace filter by machine ID 187

 TrOnchip.MatchASID Extend on-chip breakpoint/trace filter by ASID 188

 TrOnchip.MatchMachine Extend on-chip breakpoint/trace filter by machine 188

 TrOnchip.MatchZone Extend on-chip breakpoint/trace filter by zone 189

 TrOnchip.Mode Configure unit A and B 190

 TrOnchip.RESet Reset on-chip trigger settings 190

 TrOnchip.Set Set bits in the vector catch register 191

 TrOnchip.StepVector Step into exception handler 191

 TrOnchip.StepVectorResume Catch exceptions and resume single step 192

 TrOnchip.TEnable Define address selector for bus trace 193
Arm Debugger | 6©1989-2024 Lauterbach

 TrOnchip.TCYcle Define cycle type for bus trace 194

 TrOnchip.VarCONVert Convert breakpoints on scalar variables 195

 TrOnchip.state Display on-chip trigger window 196

 CPU specific MMU Commands .. 197

 MMU.DUMP Page wise display of MMU translation table 197

 MMU.List Compact display of MMU translation table 201

 MMU.SCAN Load MMU table from CPU 204

 CPU specific SMMU Commands .. 206

 SMMU Hardware system MMU (SMMU) 206

 SMMU.ADD Define a new hardware system MMU 216

 SMMU.Clear Delete an SMMU 218

 SMMU.CtxtDescTable List a context descriptor table 218

 SMMU.DumpQueue.<queue> Dump entries of a queue 219

 SMMU.DumpQueue.CMD Dump cmd queue entries 221

 SMMU.DumpQueue.Event Dump event queue entries 222

 SMMU.Register Peripheral registers of an SMMU 223

 SMMU.Register.ContextBank Display registers of context bank 224

 SMMU.Register.Global Display global registers of SMMU 225

 SMMU.Register.MMUregs Display MMU specific registers 225

 SMMU.Register.S1Context Display stage 1 context descriptor registers 226

 SMMU.Register.StreamTblEntry Display stream table entry registers 226

 SMMU.Register.StreamMapRegGrp Display registers of an SMRG 227

 SMMU.RESet Delete all SMMU definitions 228

 SMMU.SSDtable Display security state determination table 229

 SMMU.StreamMapRegGrp Access to stream map table entries 230

 SMMU.StreamMapRegGrp.ContextReg Display context bank registers 231

 SMMU.StreamMapRegGrp.Dump Page-wise display of SMMU page table 233

 SMMU.StreamMapRegGrp.list List page table entries 235

 SMMU.StreamTable Display a stream table 236

 Display of Global Faults or Global Errors in an SMMU 247

 Finding streams which are in a fault / error state 248

 SMMU.StreamTblEntry Access to a stream table entry 248

 SMMU.StreamTblEntry.Dump Page-wise display of SMMU page table 250

 SMMU.StreamTblEntry.list List page table entries 251

 SMMU.StreamTblEntry.Register Display STE or CD registers 252

 Target Adaption ... 253

 Probe Cables 253

 Interface Standards JTAG, Serial Wire Debug, cJTAG 253

 Connector Type and Pinout 253

 Debug Cable 253

 CombiProbe 253

 Preprocessor 254
Arm Debugger | 7©1989-2024 Lauterbach

Arm Debugger | 8©1989-2024 Lauterbach

Arm Debugger

Version 06-Jun-2024

History

06-Mar-2024 New command SYStem.Option.SLaVeSOFTRESet.

19-Aug-2022 Link to manual XCP Debug Back-End added in chapter' Brief Overview of Documents for
New Users'.

15-Jun-2022 New subchapter ‘XCP Specific Commands’, describes the XCP subcommands of
SYStem.CONFIG.

22-Apr-2022 New command SYStem.Option.MDMAP.

08-Apr-2022 New command SYStem.Option.ProgramAccessFix.

02-Feb-2022 New function SYStem.Option.HRCWOVerRide().
Arm Debugger | 9©1989-2024 Lauterbach

Warning

WARNING: To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1. Disconnect the Debug Cable from the target while the target power is
off.

2. Connect the host system, the TRACE32 hardware and the Debug
Cable.

3. Power ON the TRACE32 hardware.

4. Start the TRACE32 software to load the debugger firmware.

5. Connect the Debug Cable to the target.

6. Switch the target power ON.

7. Configure your debugger e.g. via a start-up script.

Power down:

1. Switch off the target power.

2. Disconnect the Debug Cable from the target.

3. Close the TRACE32 software.

4. Power OFF the TRACE32 hardware.
Arm Debugger | 10©1989-2024 Lauterbach

Introduction

This document describes the processor specific settings and functions for Cortex-A/R (Armv7, 32-bit),
as well as for the legacy architectures Arm7, Arm9 and Arm11.

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

• This manual does not cover the Cortex-A/R (Armv8 and Armv9, 32/64-bit) cores. If you are using
these processor architectures, please refer to “Armv8-A/R and Armv9 Debugger”
(debugger_armv8a.pdf).

• This manual does not cover the Cortex-M processor architecture. If you are using this processor
architecture, please refer to “Cortex-M Debugger” (debugger_cortexm.pdf) for details.

• “XCP Debug Back-End” (backend_xcp.pdf): This manual describes how to debug a target over a
3rd-party tool using the XCP protocol.
Arm Debugger | 11©1989-2024 Lauterbach

To get started with the most important manuals, use the Welcome to TRACE32! dialog (WELCOME.view):

Demo and Start-up Scripts

Lauterbach provides ready-to-run PRACTICE start-up scripts for public known architecture hardware.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:

• Type at the command line: WELCOME.SCRIPTS

• or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/arm/ subfolder of the system directory of TRACE32.
Arm Debugger | 12©1989-2024 Lauterbach

Quick Start of the JTAG Debugger

Starting up the debugger is done as follows:

1. Reset the debugger.

The RESet command ensures that no debugger setting remains from a former debug session. All
settings get their default value. RESet is not required if you start the debug session directly after
booting the TRACE32 development tool. RESet does not reset the target.

2. Select the chip or core you intend to debug.

Based on the selected chip the debugger sets the SYStem.CONFIG and SYStem.Option
commands the way which should be most appropriate for debugging this chip. Ideally no further setup
is required.

If you select a Cortex-A or Cortex-R core instead of a chip (e.g. “SYStem.CPU CortexR4”) then
you need to specify the base address of the debug register block:

3. Connect to target.

This command establishes the JTAG communication to the target. It resets the processor and enters
debug mode (halts the processor; ideally at the reset vector). After this command is executed, it is
possible to access memory and registers.

Some devices can not communicate via JTAG while in reset or you might want to connect to a
running program without causing a target reset. In this case use

instead. A “Break” will halt the processor.

4. Load the program you want to debug.

This loads the executable to the target and the debug/symbol information to the debugger’s host. If
the program is already on the target then load with /NoCODE option.

RESet

SYStem.CPU <cpu_type>

SYStem.CONFIG.COREDEBUG.Base <address>

SYStem.Up

SYStem.Mode Attach

Data.LOAD armle.axf
Arm Debugger | 13©1989-2024 Lauterbach

An example of a start sequence is shown below. This sequence can be written to a PRACTICE script file
(*.cmm, ASCII format) and executed with the command DO <file>.

*) These commands open windows on the screen. The window position can be specified with the WinPOS
command.

FAQ

Please refer to https://support.lauterbach.com/kb.

WinCLEAR ; Clear all windows

SYStem.CPU ARM940T ; Select the core type

MAP.BOnchip 0x100000++0xfffff ; Specify where FLASH/ROM is

SYStem.Up ; Reset the target and enter debug mode

Data.LOAD armle.axf ; Load the application

Register.Set pc main ; Set the PC to function main

Register.Set r13 0x8000 ; Set the stack pointer to address 8000

PER.view ; Show clearly arranged peripherals
; in window *)

List.Mix ; Open source code window *)

Register.view /SpotLight ; Open register window *)

Frame.view /Locals /Caller ; Open the stack frame with
; local variables *)

Var.Watch var1 var2 ; Open watch window for variables *)

Break.Set 0x1000 /Program ; Set software breakpoint to address
; 1000 (address 1000 outside of BOnchip
; range)

Break.Set 0x101000 /Program ; Set on-chip breakpoint to address
; 101000 (address 101000 is within
; BOnchip range)
Arm Debugger | 14©1989-2024 Lauterbach

https://support.lauterbach.com/kb

Troubleshooting

Communication between Debugger and Processor cannot be established

Typically the SYStem.Up command is the first command of a debug session where communication with the
target is required. If you receive error messages like “debug port fail” or “debug port time out” while executing
this command, this may have the reasons below. “target processor in reset” is just a follow-up error
message. Open the AREA.view window to view all error messages.

• The target has no power or the debug cable is not connected to the target. This results in the
error message “target power fail”.

• You did not select the correct core type SYStem.CPU <type>.

• There is an issue with the JTAG interface. See “Arm JTAG Interface Specifications”
(app_arm_jtag.pdf) and the manuals or schematic of your target to check the physical and
electrical interface. Maybe there is the need to set jumpers on the target to connect the correct
signals to the JTAG connector.

• There is the need to enable (jumper) the debug features on the target. It will e.g. not work if
nTRST signal is directly connected to ground on target side.

• The target is in an unrecoverable state. Re-power your target and try again.

• The target can not communicate with the debugger while in reset. Try SYStem.Mode Attach
followed by “Break” instead of SYStem.Up or use SYStem.Option.EnReset OFF.

• The default frequency of the JTAG/SWD/cJTAG debug port is too high, especially if you emulate
your core or if you use an FPGA-based target. In this case try SYStem.JtagClock 50kHz and
optimize the speed when you got it working.

• Your core needs adaptive clocking. Use the RTCK mode: SYStem.JtagClock RTCK.

• The core is used in a multicore system and the appropriate multicore settings for the debugger
are missing. See for example SYStem.CONFIG.IRPRE. This is the case if you get a value
IR_Width > 5 when you enter “DIAG 3400” and “AREA”. If you get IR_Width = 4 (Arm7, Arm9,
Cortex) or IR_Width = 5 (Arm11), then you have just your core and you do not need to set these
options. If the value can not be detected, then you might have a JTAG interface issue.

• The core has no clock.

• The core is kept in reset.

• There is a watchdog which needs to be deactivated.

• Your target needs special debugger settings. Check the directory ~~\demo\arm\hardware if there
is an suitable script file *.cmm for your target.
Arm Debugger | 15©1989-2024 Lauterbach

Trace Extensions

There are two types of trace extensions available on the Arm:

• Arm-ETM: an Embedded Trace Macrocell or Program Trace Macrocell is integrated into the core.
The Embedded Trace Macrocell provides program and data flow information plus trigger and filter
features. The Program Trace Macrocell provide similar features but no data trace. The TRACE32
does not distinguish between ETM and PTM. The ETM command group is used for both.

Please refer to the online help books “Arm ETM Trace” (trace_arm_etm.pdf) and “Arm ETM
Programming Dialog” (trace_arm_etm_dialog.pdf) for detailed information about the usage of
Arm ETM/PTM.

Please note that in case of CoreSight ETM/PTM you need to inform the debugger about the
CoreSight trace system on the chip. If you can select the chip you are using (e.g. ‘SYStem.CPU
OMAP4430’) then this is automatically done. If you select a core (e.g. ‘SYStem.CPU CortexA9’)
then you need to configure the debugger in your start-up script by using commands like:

- SYStem.CONFIG.ETM.Base

- SYStem.CONFIG.FUNNEL.Base

- SYStem.CONFIG.TPIU.Base

- SYStem.CONFIG.FUNNEL.ATBSource

- SYStem.CONFIG.TPIU.ATBSource

In case a HTM or ITM/STM module is available and shall be used you need also settings for that.

• Arm7 Bus Trace: the Preprocessor for Arm7 family samples the external address and data bus.
The features for the Bus Trace are described in this book.

The commands for the Arm7 bus trace are:

- SYStem.Option.AMBA

- SYStem.Option.NODATA

- TrOnchip.TEnable and TrOnchip.TCYcle
Arm Debugger | 16©1989-2024 Lauterbach

Symmetric Multiprocessing

A multi-core system used for Asymmetric Multiprocessing (AMP) has specialized cores which are used
for specific tasks. To debug such a system you need to open separate TRACE32 graphical user interfaces
(GUI) one for each core. On each GUI you debug the application which is assigned to this core and will
never be executed on another core. The GUIs can be synchronized regarding program start and halt in order
to debug the cores interaction.

ARM11 MPCore and Cortex-A9 MPCore are examples for multi-core architectures which allow Symmetric
Multiprocessing (SMP). The included cores of identical type are connected to a single shared main
memory. Typically a proper SMP real-time operating system assigns the tasks to the cores. You will not know
on which core the task you are interested in will be executed.

To debug an SMP system, you need to start only one TRACE32 PowerView GUI.

The selection of the proper SMP chip (e.g. ’CNS3420’ or ’OMAP4430’) causes the debugger to connect to
all included SMP-able cores on start-up (e.g. by ’SYStem.Up’). If you have an SMP-able core type selected
(e.g. ’ARM11MPCore’ or ’CortexA9MPCore’) you need to specify the number of cores you intend to SMP-
debug by SYStem.CONFIG CoreNumber <number>.

On a selected SMP chip (e.g. ’CNS3420’ or ’OMAP4430’) the CONFIG parameters of all cores are typically
known by the debugger. For an SMP-able core type you need to set them yourself (e.g. DAPIRPRE,
COREDEBUG.Base, ...). Where needed multiple parameters are possible (e.g.
’SYStem.CONFIG.COREDEBUG.Base 0x80001000 0x80003000’.

System options and selected JTAG clock affect all cores.

All cores will be started, stepped and halted together. An exception is the assembler single-step which will
affect only one core.

TRACE32 takes care that software and on-chip breakpoints will have effect on whatever core the task will
run.

When the task halts, e.g. due to a breakpoint hit, the TRACE32 PowerView GUI shows the core on which
the debug event has happened. The core number is shown in the state line at the bottom of the main
window. You can switch the GUIs perspective to the other cores when you right-click on the core number
there. Alternatively you can use the command CORE.select <number>.
Arm Debugger | 17©1989-2024 Lauterbach

Arm Specific Implementations

TrustZone Technology

The Cortex-A and ARM1176 processor integrate Arm’s TrustZone technology, a hardware security
extension, to facilitate the development of secure applications.

It splits the computing environment into two isolated worlds. Most of the code runs in the ‘non-secure’ world,
whereas trusted code runs in the ‘secure’ world. There are core operations that allow you to switch between
the secure and non-secure world. For switching purposes, TrustZone introduces a new secure ‘monitor’
mode. Reset enters the secure world:

Only when the core is in the secure world, core and debugger can access the secure memory. There are
some CP15 registers accessible in secure state only, and there are banked CP15 registers, with both secure
and non-secure versions.

Debug Permission

Debugging is strictly controlled. It can be enabled or disabled by the SPIDEN (Secure Privileged Invasive
Debug Enable) input signal and SUIDEN (Secure User Invasive Debug Enable) bit in SDER (Secure Debug
Enable Register):

• SPIDEN=0, SUIDEN=0: debug in non-secure world, only

• SPIDEN=0, SUIDEN=1: debug in non-secure world and secure user mode

• SPIDEN=1: debug in non-secure and secure world

SPIDEN is a chip internal signal and it’s level can normally not be changed. The SUIDEN bit can be
changed in secure privileged mode, only.

Debug mode can not be entered in a mode where debugging is not allowed. Breakpoints will not work there.
A Break command or a SYStem.Up will work the moment a mode is entered where debugging is allowed.

Normal mode
user mode

Normal mode
privileged modes

Monitor
mode

Secure model
user mode

Secure world
privileged modes

Secure worldNon-secure world

Secure state
Arm Debugger | 18©1989-2024 Lauterbach

Checking Debug Permission

The DBGDSCR (Debug Status and Control Register) bit 16 shows the signal level of SPIDEN. In the SDER
(Secure Debug Enable Register) you can see the SUIDEN flag assuming you are in the secure state which
allows reading the SDER register.

Checking Secure State

In the peripheral file, the DBGDSCR register bit 18 (NS) shows the current secure state. You can also see it
in the Register.view window if you scroll down a bit. On the left side you will see ‘sec’ which means the core
is in the secure state, ‘nsec’ means the core is in non-secure state. Both reflect the bit 0 (NS) of the SCR
(Secure Control Register). However SCR is only accessible in secure state.

In monitor mode, which is also indicated in the Register.view window, the core is always in secure state
independent of the NS bit (non-secure bit) described above. However, in monitor mode, you can access the
secure CP15 register if NS=secure. And you can access the non-secure CP15 register if NS=non-secure.

Changing the Secure State from within TRACE32

From the TRACE32 PowerView GUI, you can switch between secure mode (0) and non-secure mode (1) by
toggling the ‘sec’, ‘nsec’ indicator in the Register.view window or by executing this command:

It sets or clears the NS (Non-Secure) bit in the SCR register. You will get a ‘emulator function blocked by
device security’ message in case you are trying to switch to secure mode although debugging is not allowed
in secure mode.

This way you can also inspect the register of the other world. Please note that a change in state affects
program execution. Remember to set the bit back to its original value before continuing the application
program.

Accessing Memory

If you do not specify otherwise, the debugger shows you the memory of the secure state the core is currently
in.

• The access class ‘Z:’ indicates secure mode (‘Z’ -> trustZone, ‘S’ -> Supervisor)

• The access class ‘N:’ indicates non-secure mode.

By preceding an address with the ‘Z:’ and ‘N:’ access class, you can force a certain memory view for all
memory operations.

Register.Set NS 0 ;secure mode
Register.Set NS 1 ;non-secure mode
Arm Debugger | 19©1989-2024 Lauterbach

Accessing Coprocessor CP15 Register

The peripheral file and ‘C15:’ access class will show you the CP15 register bank of the secure mode the
core is currently in. When you try to access registers in non-secure world which are accessible in secure
world only, the debugger will show you ‘????????’.

You can force to see the other bank by using access class “ZC15:” for secure, “NC15:” for non-secure
respectively.

Accessing Cache and TLB Contents

Reading cache and TLB (Translation Look-aside Buffer) contents is only possible if the debugger is allowed
to debug in secure state. You get a ‘function blocked by device security’ message otherwise.

However, a lot of devices do not provide this debug feature at all. Then you get the message ‘function not
supported by this device’.

Vector Catch Register and Secure Modes

Vector catch debug events (TrOnchip.Set …) can individually be activated for secure state, non-secure
state, and monitor mode.

Breakpoints and Secure Modes

The security concept of the Arm architecture allows to specify breakpoints that cause a halt event only for a
certain secure mode (secure/non-secure/hypervisor).

Software breakpoints will be set in secure or non-secure memory depending on the current secure mode of
the core. Alternatively, software breakpoints can explicitly be placed in a certain secure mode by preceding
an address with the access class “Z:” (secure) or “N:” (non-secure).

On-chip breakpoints will halt the core in any secure mode by default. Break.CONFIG.MatchZone ON
enables the breakpoints to be conditional on the security state of the processor.

Please refer to the chapter about secure, non-secure and hypervisor breakpoints to get additional
information.
Arm Debugger | 20©1989-2024 Lauterbach

big.LITTLE

Arm big.LITTLE processing is an energy savings method where high-performance cores get paired together
in a cache-coherent combination. Software execution will dynamically be transitioned between these cores
depending on performance needs.

The OS kernel scheduler sees each pair as a single virtual core. The big.LITTLE software works as an
extension to the power-versa-performance management. It can switch the execution context between the
big and the LITTLE core.

Qualified for pairing is Cortex-A15 (as ‘big’) and Cortex-A7 (as ‘LITTLE’).

Debugger Setup

Example for a symmetric big.LITTLE configuration (2 Cortex-A15, 2 Cortex-A7):

SYStem.CPU CORTEXA15A7
SYStem.CONFIG CoreNumber 4.
CORE.ASSIGN BIGLITTLE 1. 2. 3. 4.
SYStem.CONFIG.COREDEBUG.Base <CA15_1> <CA7_2> <CA15_3> <CA7_4>

CPU
0

CPU
1

CPU
n

OS Kernel

S
ch

ed
ul

er

P
o

w
er

 v
er

sa
 P

er
fo

rm
an

ce
 M

an
ag

em
en

t

big

LITTLE

big

LITTLE

big

LITTLE

task

measure workload

toggle

measure workload

toggle

measure workload

toggle

task

task

.

.

.

Arm Debugger | 21©1989-2024 Lauterbach

Example for a non-symmetric big.LITTLE configuration (1 Cortex-A15, 2 Cortex-A7):

Consequence for Debugging

The shown core numbers are extended by ‘b’ = ‘big’ or ‘l’ = ‘LITTLE’.

The core status (active or powered down) can be checked with CORE.SHOWACTIVE or in the state line of
the TRACE32 main window, where you can switch between the cores.

The debugger assumes that one core of the pair is inactive.

The OS Awareness sees each pair as one virtual core.

The peripheral file respects the core type (Cortex-A15 or Cortex-A7).

Requirements for the Target Software

The routine (OS on target) which switches between the cores needs to take care of (copying) transferring the
on-chip debug settings to the core which wakes up.

This needs also to be done when waking up a core pair. In this case you copy the settings from an already
active core.

big.LITTLE MP

Another logical use-model is (‘MP’ = Multi-Processing). It allows both the big and the LITTLE core to be
powered on and to simultaneously execute code.

From the debuggers point of view, this is not a big.LITTLE system in the narrow sense. There are no pairs of
cores. It is handled like a normal multicore system but with mixed core types.

Therefore for the setup, we need SYStem.CPU CORTEXA15A7, but we use CORE.ASSIGN instead of
CORE.ASSIGN BIGLITTLE.

Example for a symmetric big.LITTLE MP configuration (2 Cortex-A15, 2 Cortex-A7):

SYStem.CPU CORTEXA15A7
SYStem.CONFIG CoreNumber 4.
CORE.ASSIGN BIGLITTLE 1. 2. NONE 4.
SYStem.CONFIG.COREDEBUG.Base <CA15_1> <CA7_2> <dummy_3> <CA7_4>

SYStem.CPU CORTEXA15A7
SYStem.CONFIG CoreNumber 4.
CORE.ASSIGN 1. 2. 3. 4.
SYStem.CONFIG.COREDEBUG.Base <CA15_1> <CA7_2> <CA15_3> <CA7_4>
Arm Debugger | 22©1989-2024 Lauterbach

Breakpoints

Software Breakpoints

If a software breakpoint is used, the original code at the breakpoint location is patched by a breakpoint code.

While software breakpoints are used one of the two ICE breaker units is programmed with the breakpoint
code (on Arm7 and Arm9, except ARM9E variants). This means whenever a software breakpoint is set only
one ICE unit breakpoint is remaining for other purposes. There is no restriction in the number of software
breakpoints.

On-chip Breakpoints for Instructions

If on-chip breakpoints are used, the resources to set the breakpoints are provided by the CPU. For the Arm
architecture the on-chip breakpoints are provided by the “ICEbreaker” unit. on-chip breakpoints are usually
needed for instructions in FLASH/ROM.

With the command MAP.BOnchip <range> it is possible to tell the debugger where you have ROM / FLASH
on the target. If a breakpoint is set into a location mapped as BOnchip one ICEbreaker unit is automatically
programmed.

On-chip Breakpoints for Data

To stop the CPU after a read or write access to a memory location on-chip breakpoints are required. In the
Arm notation these breakpoints are called watchpoints. A watchband may use one or two ICEbreaker units.

The number of on-chip breakpoints for data accesses can be extended by using the ETM Address and Data
comparators. Refer to ETM.StoppingBreakPoints.

Overview

• On-chip breakpoints: Total amount of available on-chip breakpoints.

• Instruction breakpoints: Number of on-chip breakpoints that can be used to set program
breakpoints into ROM/FLASH/EPROM.

• Read/Write breakpoints: Number of on-chip breakpoints that can be used as Read or Write
breakpoints.

• Data breakpoint: Number of on-chip data breakpoints that can be used to stop the program
when a specific data value is written to an address or when a specific data value is read from an
address.
Arm Debugger | 23©1989-2024 Lauterbach

Program Breakpoints Read/Write
Breakpoints

Data Value
Breakpoints

ARM7
ARM9

Onchip breakpoints:
up to 2, but address
range only as bit mask
(Reduced to 1 if soft-
ware breakpoints are
used)

ETM breakpoints:
up to 2 exact address
ranges

Onchip breakpoints:
up to 2, but address
range only as bit mask

ETM breakpoints:
up to 2 exact address
ranges

Onchip Breakpoint:
up to 2, but address range
only as bit mask

ETM breakpoints:
up to 2 data value breakpoints
for exact address ranges

ARM11 Onchip breakpoints:
6, but only single
addresses

ETM breakpoints:
up to 2 exact address
ranges possible

Onchip breakpoints:
2, but only single
addresses

ETM breakpoints:
up to 2 exact address
ranges possible

Onchip breakpoints:
no data value breakpoints
possible

ETM breakpoints:
up to 2 data value breakpoints
for exact address ranges

Cortex-A5 Onchip breakpoints:
3, but only single
addresses

ETM breakpoints:
up to 2 exact address
ranges

Onchip breakpoints:
2, but address range
only as bit mask

ETM breakpoints:
up to 2 exact address
ranges

Onchip breakpoints:
no data value breakpoints
possible

ETM breakpoints:
up to 2 data value breakpoints
for exact address ranges

Cortex-A7
Cortex-R7

Onchip breakpoints:
6, but only single
addresses

ETM breakpoints:
up to 2 exact address
ranges

Onchip breakpoints:
4, but address range
only as bit mask

ETM breakpoints:
up to 2 exact address
ranges

Onchip breakpoints:
no data value breakpoints
possible

ETM breakpoints:
up to 2 data value breakpoints
for exact address ranges

Cortex-A8 Onchip breakpoints:
6, but address range
only as bit mask

ETM breakpoints:
up to 2 exact address
ranges

Onchip breakpoints:
2, but address range
only as bit mask

ETM breakpoints:
up to 2 exact address
ranges

Onchip breakpoints:
no data value breakpoints
possible

ETM breakpoints:
up to 2 data value breakpoints
for exact address ranges
Arm Debugger | 24©1989-2024 Lauterbach

Hardware Breakpoints (Bus Trace only)

When a Preprocessor for Arm7 family is used, hardware breakpoints are available to filter the trace
information. Refer to TrOnchip.TEnable for more information.

If a hardware breakpoint is used the resources to set the breakpoint are provided by the TRACE32
development tool.

Cortex-R4
Cortex-R5

Onchip breakpoints:
2..8, but address
range only as bit mask

ETM breakpoints:
up to 2 exact address
ranges

Onchip breakpoints:
1..8, but address
range only as bit mask

ETM breakpoints:
up to 2 exact address
ranges

Onchip breakpoints:
no data value breakpoints
possible

ETM breakpoints:
up to 2 data value breakpoints
for exact address ranges

Cortex-A9
Cortex-A15
Cortex-A17

Onchip breakpoints:
6, but only single
addresses

ETM breakpoints:
2 exact address ranges

Onchip breakpoints:
4, but address range
only as bit mask

ETM breakpoints:
—

Onchip breakpoints:
no data value breakpoints
possible

ETM breakpoints:
—

Program Breakpoints Read/Write
Breakpoints

Data Value
Breakpoints
Arm Debugger | 25©1989-2024 Lauterbach

Example for Standard Breakpoints

Assume you have a target with

• FLASH from 0x0--0xfffff

• RAM from 0x100000--0x11ffff

The command to configure TRACE32 correctly for this configuration is:

The following standard breakpoint combinations are possible.

1. Unlimited breakpoints in RAM and one breakpoint in ROM/FLASH

2. Unlimited breakpoints in RAM and one breakpoint on a read or write access

3. Two breakpoints in ROM/FLASH

4. Two breakpoints on a read or write access

Map.BOnchip 0x0--0xfffff

Break.Set 0x100000 /Program ; Software breakpoint 1

Break.Set 0x101000 /Program ; Software breakpoint 2

Break.Set addr /Program ; Software breakpoint 3

Break.Set 0x100 /Program ; On-chip breakpoint

Break.Set 0x100000 /Program ; Software breakpoint 1

Break.Set 0x101000 /Program ; Software breakpoint 2

Break.Set addr /Program ; Software breakpoint 3

Break.Set 0x108000 /Write ; On-chip breakpoint

Break.Set 0x100 /Program ; On-chip breakpoint 1

Break.Set 0x200 /Program ; On-chip breakpoint 2

Break.Set 0x108000 /Write ; On-chip breakpoint 1

Break.Set 0x108010 /Read ; On-chip breakpoint 2
Arm Debugger | 26©1989-2024 Lauterbach

5. One breakpoint in ROM/FLASH and one breakpoint on a read or write access

Break.Set 0x100 /Program ; On-chip breakpoint 1

Break.Set 0x108010 /Read ; On-chip breakpoint 2
Arm Debugger | 27©1989-2024 Lauterbach

Secure, Non-Secure, Hypervisor Breakpoints

TRACE32 will set any breakpoint to work in any secure and non-secure mode. As of build 59483, TRACE32
distinguishes between secure, non-secure, and hypervisor breakpoints. The support for these kinds of
breakpoints is disabled per default, i.e. all breakpoints are set for all secure/non-secure modes.

Enable and Use Secure, Non-Secure and Hypervisor Breakpoints

To make use of this feature, you have to enable the symbol management for Arm zones first with the
SYStem.Option.ZoneSPACES command:

Usually TRACE32 will then set the secure/non-secure breakpoint automatically if it has enough information
about the secure/non-secure properties of the loaded application and its symbols. This means the user has
to tell TRACE32 if a program code runs in secure/non-secure or hypervisor mode when the code is loaded:

Please refer to the SYStem.Option.ZoneSPACES command for additional code loading examples.

Now breakpoints can be uses as usual, i.e. TRACE32 will automatically take care of the secure type when a
breakpoint is set. This depends on how the application/symbols were loaded:

SYStem.Option.ZoneSPACES ON ; Enable symbol management
; for Arm zones

Data.LOAD.ELF armf Z: ; Load application, symbols for secure mode

Data.LOAD.ELF armf N: ; Load application, symbols for non-secure mode

Data.LOAD.ELF armf H: ; Load application, symbols for hypervisor mode

Break.Set main ; Set breakpoint on main() function, Z:, N: or
 ; H: access class is automatically set

Var.Break.Set struct1 ; Set Read/Write breakpoints to the whole
 ; structure struct1. The breakpoint is either
 ; a secure/non-secure or hypervisor type.
Arm Debugger | 28©1989-2024 Lauterbach

Example 1 - Load Secure Application and Set Breakpoints

First the symbol management is enabled. An application is loaded and TRACE32 is advised by the access
class “Z:” at the end of the Data.LOAD.Elf command that this application runs in secure mode.

As a next step, two breakpoints are set but the user does not need to care about any access classes. The
Break.List window shows that the breakpoints are automatically configured to be of the secure type. This is
shown by the “Z:” access class that is set at the beginning of the breakpoint addresses:

Set Breakpoints and Enforce Secure Mode

TRACE32 allows the user to specify whether a breakpoint should be set for secure, non-secure or
hypervisor mode. This means the user has to specify an access class when the breakpoint is set:

Breakpoints on variables need the variable name and the access class to be enclosed in round brackets:

SYStem.Option.ZoneSPACES ON ; Enable symbol management

// Load demo application and tell TRACE32 that it is secure
Data.LOAD.ELF ~~/demo/arm/compiler/arm/armle.axf Z:

// Set a breakpoint on the sieve() function start
Break.Set sieve

// Set a read breakpoint to the global variable mstatic1
Var.Break.Set mstatic1 /Read

Break.List ; Show breakpoints

Break.Set Z:main ; Enforce secure breakpoint on main()

Break.Set N:main ; Enforce non-secure breakpoint on main()

Break.Set H:main ; Enforce hypervisor breakpoint on main()

Var.Break.Set (Z:struct1) ; Enforce secure read/write breakpoint

Var.Break.Set (N:struct1) ; Enforce non-secure read/write breakpoint

Var.Break.Set (H:struct1) ; Enforce hypervisor read/write breakpoint

Secure breakpoint(s)
Arm Debugger | 29©1989-2024 Lauterbach

Example 2 - Load Secure Application and Set Hypervisor Breakpoint

First, the symbol management is enabled. An application is loaded and TRACE32 is advised by the “Z:” at
the end of the Data.LOAD.Elf command that this application runs in secure mode.

As a next step, four breakpoints are set. Two of them do not have any access class specified, so TRACE32
will use the symbol information to make it a secure breakpoint. The other two breakpoints are defined as
hypervisor breakpoints using the “H:” access class. In this case the symbol information is explicitly
overwritten. The Break.List now shows a mixed breakpoint setup:

SYStem.Option.ZoneSPACES ON ; Enable symbol management

// Load demo application and tell TRACE32 that it is secure
Data.LOAD.ELF ~~/demo/arm/compiler/arm/armle.axf Z:

// Set secure breakpoint (auto-configured) on function main()
Break.Set main

// Explicitly set hypervisor breakpoint on function sieve()
Break.Set H:sieve

// Set secure read breakpoint (auto-configured) on variable mstatic1
Var.Break.Set mstatic1 /Read

// Explicitly set hypervisor write breakpoint on variable vtdef1
Var.Break.Set (H:vtdef1) /Write

Break.List ; Show breakpoints

NOTE: If a breakpoint is explicitly set in another mode, there might be no symbol
information loaded for this mode. This means that the Break.List can only display
the address of the breakpoint but not the corresponding symbol.

Secure breakpoint Hypervisor breakpointHypervisor breakpoint No symbol information
Arm Debugger | 30©1989-2024 Lauterbach

Summary of Breakpoint Configuration

TRACE32 can show you a summary of the set breakpoints in a Break.List window. Furthermore, which
breakpoint will be active is also indicated in the List.auto window. A Register.view window will show you the
current secure state of the CPU. This example uses only addresses and no symbols. The use of symbols is
also possible as shown in Example 1 and Example 2:

Configuration of the Target CPU

The configuration of the onchip breakpoints will be placed in the breakpoint/watchpoint registers of the Arm
CPU. If Break.CONFIG.MatchZone is ON, the debugger takes care of the correct values in the
configuration register so that the breakpoint becomes only active when the CPU operates in the given
secure/non-secure mode.

NOTE: The CPU might stop at a software breakpoint although there is not breakpoint
shown in the List.auto window. This happens because all software breakpoints are
always written at the given memory address.

CPU is secure

Only secure breakpoint is shown

Non-secure breakpoints

Secure breakpointHypervisor breakpoint
Arm Debugger | 31©1989-2024 Lauterbach

Complex Breakpoints

To use the advanced features of the ICE breaker unit the TrOnchip command group is possible. These
commands provide full access to both ICE breaker units called A and B in the TRACE32 system. For an
example of complex breakpoint usage please refer to the chapter TrOnchip Example. Most features can
also be used by setting advanced breakpoints (e.g. task selective breakpoints, exclude breakpoints).
Ranged breakpoints use multiple breakpoint resources to better fit the range when the resources are
available.

Direct ICE Breaker Access

It is possible to program the complete ICE breaker unit directly, by using the access class ICE. E.g. the
command Data.Set ICE:10 %Long 12345678 writes the value 12345678 to the Watchpoint 1
Address Value Register. The following table lists the addresses of the relevant registers.

For more details please refer to the Arm data sheet. It is recommended to use the Break.Set or TrOnchip
commands instead of direct programming, because then no special ICEbreaker knowledge is required.

Address Register

ICE:8 Watchpoint 0 Address Value

ICE:9 Watchpoint 0 Address Mask

ICE:0A Watchpoint 0 Data Value

ICE:0B Watchpoint 0 Data Mask

ICE:0C Watchpoint 0 Control Value

ICE:0D Watchpoint 0 Control Mask

ICE:10 Watchpoint 1 Address Value

ICE:11 Watchpoint 1 Address Mask

ICE:12 Watchpoint 1 Data Value

ICE:13 Watchpoint 1 Data Mask

ICE:14 Watchpoint 1 Control Value

ICE:15 Watchpoint 1 Control Mask
Arm Debugger | 32©1989-2024 Lauterbach

Example for ETM Stopping Breakpoints

The default on-chip breakpoints either allow you to just set an instruction breakpoint on a single address or
to apply a mask to get a rough range. In case of a mask, the given range is extended to the next range limits
that fit the mask, i.e. the breakpoint may cover a wider address range than initially anticipated.

ETM stopping breakpoints allow you to set a true address range for instructions, i.e. the end and the start
address of the breakpoint really match your expectations. This only works if the CPU provides an ETM with
the necessary resources, e.g. the address comparators.

Prerequisites for ETM stopping breakpoints:

• Make sure that an ETM base address is configured. Otherwise TRACE32 will assume that there
is no ETM.

• If your CPU has its own CTI, it is recommended that you specify the CTI as well. Dependant on
the specific core implementation, the CTI might be needed to receive the ETM stop events:

It’s recommended to add both configuration commands to your PRACTICE start-up script (*.cmm). If you
selected a known SoC, e.g. with SYStem.CPU <cpu>, these settings are already configured.

To set ETM stopping breakpoints:

1. Activate the ETM Stopping breakpoints support:

2. Set the instruction range breakpoints, e.g.:

The Break.List window provides an overview of all set breakpoints.

For more information, see ETM.StoppingBreakPoints in “Arm ETM Trace” (trace_arm_etm.pdf).

SYStem.CONFIG ETM Base DAP:<etm_base> ; Make ETM available

SYStem.CONFIG CTI Base DAP:<cti_base>

ETM.StoppingBreakpoints ON

Break.Set func10 ; Set address range breakpoint on
 ; the address range of function
 ; func10

Break.Set 0xEC009008++0x58 ; Set address range breakpoint with
 ; precise start and end address
Arm Debugger | 33©1989-2024 Lauterbach

Access Classes

This section describes the available Arm access classes and provides background information on how to
create valid access class combinations in order to avoid syntax errors.

For background information about the term access class, see “TRACE32 Concepts”
(trace32_concepts.pdf).

In this section:

• Description of the Individual Access Classes

• Combinations of Access Classes

• How to Create Valid Access Class Combinations

• Access Class Expansion by TRACE32

Description of the Individual Access Classes

Access Class Description

A Absolute addressing (physical address)

AHB, AHB2 See DAP description in this table.

APB, APB2 See DAP description in this table.

AXI, AXI2 See DAP description in this table.

C “Current”. Do not use this access class. It might be shown by the debugger
if it is unknown what access class shall be used. Then the access class
derives from the current processor mode.

C14 Access to C14-Coprocessor register. Its recommended to only use this in
AArch32 mode.

C15 Access to C15-Coprocessor register. Its recommended to only use this in
AArch32 mode.

D Data Memory
Arm Debugger | 34©1989-2024 Lauterbach

DAP, DAP2,
AHB, AHB2, ...,
APB, APB2, ...,
AXI, AXI2, ...

Memory access through bus masters that are called Memory Access
Ports (MEM-AP) provided by a Debug Access Port (DAP). The DAP is a
CoreSight component that is mandatory on Cortex-based devices. The
MEM-APs are addressed and configured differently depending on whether
you have a CoreSight SoC-400 or CoreSight SoC-600 based system on
chip.

Which bus master (MEM-AP) is used by which access class (e.g. AHB) is
defined by assigning a MEM-AP number (SoC-400) or base address
(SoC-600) to the access class:

CoreSight SoC-400:
SYStem.CONFIG.DEBUGAP1.Port <mem_ap#> -> “DAP”
SYStem.CONFIG.AHBAP1.Port <mem_ap#> -> “AHB”
SYStem.CONFIG.APBAP1.Port <mem_ap#> -> “APB”
SYStem.CONFIG.AXIAP1.Port <mem_ap#> -> “AXI”

CoreSight SoC-600:
SYStem.CONFIG.AHBAP1.Base <address> -> “AHB”
SYStem.CONFIG.APBAP1.Base <address> -> “APB”
SYStem.CONFIG.AXIAP1.Base <address> -> “AXI”

For an example, see Configuration examples for memory access ports
and a CoreSight component.

“DAP” should be the memory access port where the debug registers are
located, which is typically an APB MEM-AP (AHB MEM-AP on a Cortex-
M). This is because it is the default access class in debugger
configurations (SYStem.CONFIG ...) if you use an address without access
class. “DAP” is not available for a SoC-600 system.

For a CoreSight SoC-400 system, a second set of access classes (DAP2,
AHB2, APB2, AXI2) and configuration commands (e.g.,
SYStem.CONFIG.DEBUGAP2.Port <mem_ap#>) is available in case
there are two DAPs that need to be controlled by the debugger. For a
CoreSight SoC-600 system, more than two access classes of the same
type are possible and configurable (APB, APB2, APB3, ...), all controlled
by the same DAP.

DP The Debug Port access class is used to address the first memory bus
(APB) that you directly access with a SoC-600 DAPs debug interface
(JTAG, SWD).

E Run-time memory access
(see SYStem.CpuAccess and SYStem.MemAccess)

M
Armv8-A only

EL3 Mode (TrustZone devices). This access class only refers to the 64-bit
EL3 mode. It does not refer to the 32-bit monitor mode. If an Armv8 based
device is in 32-bit only mode, any entered “M” access class will be
converted to a “ZS” access class.

H EL2/Hypervisor Mode (devices having Virtualization Extension)

Access Class Description
Arm Debugger | 35©1989-2024 Lauterbach

Combinations of Access Classes

Combinations of access classes are possible as shown in the example illustration below:

The access class “A” in the red path means “physical access”, i.e. it will only bypass the MMU but consider
the cache content. The access class “NC” in the yellow path means “no cache”, so it will bypass the cache
but not the MMU, i.e. a virtual access is happening.

I Intermediate address. Available on devices having Virtualization
Extension.

J Java Code (8-bit)

N EL0/1 Non-Secure Mode (TrustZone devices)

P Program Memory

R AArch32 Arm Code (A32, 32-bit instr. length)

S Supervisor Memory (privileged access)

SPR
Armv8/Armv9 only

Access to System Register, Special Purpose Registers and System
Instructions. Its recommended to only use this in AArch64 mode.

T AArch32 Thumb Code (T32, 16-bit instr. length)

U User Memory (non-privileged access)
not yet implemented; privileged access will be performed.

USR Access to Special Memory via User-Defined Access Routines

JSEQ: Access data via JTAG sequences registered with
JTAG.SEQuence.MemAccess.ADD

VM Virtual Memory (memory on the debug system)

X
Armv8-A only

AArch64 Arm64 Code (A64, 32-bit instr. length)

Z Secure Mode (TrustZone devices)

Access Class Description

CPU CacheMMU Memory
NC

A

ANC
Arm Debugger | 36©1989-2024 Lauterbach

If both access classes “A” and “NC” are combined to “ANC”, this means that the properties of both access
classes are summed up, i.e. both the MMU and the cache will be bypassed on a memory access.

The blue path is an example of a virtual access which is done when no access class is specified.

The access classes “A” and “NC” are not the only two access classes that can be combined. An access
class combination can consist of up to five access class specifiers. But any of the five specifiers can also be
omitted.

Three specifiers: Let’s assume you want to view a secure memory region that contains 32-bit Arm code.
Furthermore, the access is translated by the MMU, so you have to pick the correct CPU mode to avoid a
translation fail. In our example it should be necessary to access the memory in Arm supervisor mode. To
ensure a secure access, use the access class specifier “Z”. To switch the CPU to supervisor mode during
the access, use the access class specifier “S”. And to make the debugger disassemble the memory content
as 32-bit Arm code use “R”. When you put all three access class specifiers together, you will obtain the
access class combination “ZSR”.

One specifier: Let’s imagine a physical access should be done. To accomplish that, start with the “A”
access class specifier right away and omit all other possible specifiers.

No specifiers: Let’s now consider what happens when you omit all five access class specifiers. In this case
the memory access by the debugger will be a virtual access using the current CPU context, i.e. the
debugger has the same view on memory as the CPU.

Using no or just a single access class specifier is easy. Combining at least two access class specifiers is
slightly more challenging because access class specifiers cannot be combined in an arbitrary order. Instead
you have to take the syntax of the access class specifiers into account.

If we refer to the above example “ZSR” again, it would not be possible to specify the access class
combination as “SZR” or “RZS”, etc. You have to follow certain rules to make sure the syntax of the access
class specifiers is correct. This will be illustrated in the next section.

List.Mix ZSR:0x10000000 // View 32-bit Arm code in secure memory

Data.dump A:0x80000000 // Physical memory dump at address 0x80000000

Data.dump 0xFB080000 // Virtual memory dump at address 0xFB080000
Arm Debugger | 37©1989-2024 Lauterbach

How to Create Valid Access Class Combinations

The illustrations below will show you how to combine access class specifiers for frequently-used access
class combinations.

Rules to create a valid access class combination:

• From each column of an illustration block, select only one access class specifier.

• You may skip any column - but only if the column in question contains an empty square.

• Do not change the original column order. Recommendation: Put together a valid combination by
starting with the left-most column, proceeding to the right.

Memory Access through CPU (CPU View)

The debugger uses the CPU to access memory and peripherals like UART or DMA controllers. This means
the CPU will carry out the accesses requested by debugger. Examples would be virtual, physical, secure, or
non-secure memory accesses. Some options are only available since Armv8.4.

Example combinations:

AD View physical data (current CPU mode)

AH View physical data or program code while CPU is in hypervisor mode

ED Access data at run-time

NUX View A64 instruction code at non-secure virtual address location, e.g. code of the user
application.

ZSD View data in secure supervisor mode at virtual address location

AZHD Physical secure hypervisor access. ArmV8.4-A only.

ZI Secure intermediate access. ArmV8.4-A only.

E A N

Z

U

S

D

P

X

R

T

TE

H

A
rm

V8
.4

E A M D

P

X

R

T

TE

H

A
rm

V8
.0

-8
.3

I

E D

P

X

R

T

TE

N

Z

A
rm

V8
.4
Arm Debugger | 38©1989-2024 Lauterbach

Illegal access class combinations when ArmV8.4-A secure hypervisor is not implemented:

Illegal access class combinations when ArmV8.4-A secure hypervisor is implemented:

Peripheral Register Access

This is used to access core ID and configuration/control registers.

Example combinations:

ZH, NH Illegal; Secure hypervisor is not supported by CPU

ZI, NI Illegal; Secure intermediate addresses are not supported by CPU

ZHR, NHR
ZHT, NHT
ZHTE, NHTE

The ArmV8.4-A extension does not include a secure AArch32 hypervisor.
Therefore any 32-bit access class specifiers (R, T, TE) are illegal in combination
with “NH” or “ZH”.

ZIR, NIR
ZIT, NIT
ZITE, NITE

The ArmV8.4-A extension does not include a secure AArch32 intermediate
addresses. Therefore any 32-bit access class specifiers (R, T, TE) are illegal in
combination with “NH” or “ZH”.

NC15 Access non-secure banked coprocessor 15 register (AArch32 mode)

C15 Access coprocessor 15 register in current secure mode (AArch32 mode)

SPR Access system register (AArch64 mode)

MSPR Access system registers in EL3 (AArch64) mode

HSPR Access system registers in EL2 (AArch64) mode

ZSPR Access system registers in secure EL1 (AArch64) mode

E

N

Z

H

C15

E SPR

N

Z

H

M E C14
Arm Debugger | 39©1989-2024 Lauterbach

CoreSight Access

These accesses are typically used to access the CoreSight busses APB, AHB and AXI directly through the
DAP bypassing the CPU. For example, this could be used to view physical memory at run-time.

Example combinations:

Cache and Virtual Memory Access

Used to access the TRACE32 virtual memory (VM:) or the data and instruction caches or to bypass them.

Example combinations:

EZAXI Access secure memory location via AXI during run-time

DAP Access debug access port (e.g. core debug registers)

VM Access virtual memory using current CPU context

AVM Access virtual memory ignoring current CPU context

HVMR Access virtual memory that is banked in hypervisor mode and disassemble memory
content as 32-bit Arm instruction code

NC Bypass all cache levels during memory access

ANC Bypass MMU and all cache levels during memory access

E N

Z

AXI

AXI2

AHB

AHB2

E DAP

DAP2

APB

APB2

VM

X

R

T

TE

A

N

Z

H

M

E A NC

NCL

IC

DC

N

Z

H

Arm Debugger | 40©1989-2024 Lauterbach

Access Class Expansion by TRACE32

If you omit access class specifiers in an access class combination, then TRACE32 will make an educated
guess to fill in the blanks. The access class is expanded based on:

• The current CPU context (architecture specific)

• The used window type (e.g. Data.dump window for data or List.Mix window for code)

• Symbol information of the loaded application (e.g. combination of code and data)

• Segments that use different instruction sets

• Debugger specific settings (e.g. SYStem.Option.*)

Examples: Memory Access through CPU

Let’s assume the CPU is in non-secure supervisor mode, executing 32-bit code.

Your input, here List.Mix at the TRACE32 command line, remains unmodified. TRACE32 performs an
access class expansion and visualizes the result in the window you open, here in the List.Mix window.

User input at the
command line

Expansion
by TRACE32

These access classes are added because...

List.Mix

(see also illustration
below)

NSR: N: … the CPU is in non-secure mode.
S: … the CPU is in supervisor mode.
R: … code is viewed (not data) and the CPU uses 32-
bit instructions.

Data.dump A:0x0 ANSD:0x0 N: … the CPU is in non-secure mode.
S: … the CPU is in supervisor mode.
D: … data is viewed (not code).

Data.dump Z:0x0 ZSD:0x0 S: … the CPU is in supervisor mode.
D: … data is viewed (not code).

NOTE: ‘E’ and ‘A’ are not automatically added because the debugger cannot know if you intended a
run-time or physical access.

A TRACE32 makes an educated guess to expand your omitted access class to “NSR”.

B Indicates that the CPU is in non-secure supervisor mode.

A

B

Arm Debugger | 41©1989-2024 Lauterbach

Coprocessors

The following coprocessors can be accessed if available in the processor:

Coprocessor 14. Please refer to the chapter Virtual Terminal and to your Arm documentation for details. On
Cortex-A and Cortex-R the debug register can be accessed by ’C14’ access class and the address is the
address offset in the debug register block divided by 4. Recommended is to use the ’DAP:’ or ’EDAP:’
access class, but then the address is the address offset plus the base address of the debug register block
which is 0xd4011000.

Coprocessor 15, which allows the control of basic CPU functions. This coprocessor can be accessed with
the access class C15. For the detailed definition of the CP15 registers, please refer to the Arm data sheet.
The CP15 registers can also be controlled in the PER window.

The TRACE32 address is composed of the CRn, CRm, op1, op2 fields of the corresponding coprocessor
register command
<MCR|MRC> p15, <op1>, Rd, CRn, CRm, <op2>

BIT0-3:CRn, BIT4-7:CRm, BIT8-10:<op2>, BIT12-14:<op1>, Bit16=0 (32-bit
access)

<MCRR|MRRC> p15, <op1>, <Rd1>, <Rd2>, <CRm>

BIT0-3: -, BIT4-7:CRm, BIT8-10: -, BIT12-14:<op1>, Bit16=1 (64-bit access)

is the corresponding TRACE32 address (one nibble for each field).
Arm Debugger | 42©1989-2024 Lauterbach

Coprocessor Converter Dialog

The demo directory offers a Coprocessor converter dialog, which assists in calculating the C15 address
class offsets.

To display the Coprocessor converter dialog, run this command:

Alternatively, you can open the converter from the Misc menu:

On Cortex-A/R or ARM11 you can access other available coprocessors by using the same addressing
scheme. The access class is then e.g. “C10:” instead of “C15”. You need to secure that access to this
coprocessor is permitted in the Coprocessor Access Control Register.

The “C15:” access class provides the view of the mode the core currently is in. On devices having
“TrustZone” (ARM1176, Cortex-A) there are some banked CP15 register, one for secure and one for non-
secure mode. With “ZC15:” and “NC15:” you can access the secure / non-secure bank independent of the
current core mode. On devices having a “Hypervisor” mode (e.g. Cortex-A7, -A15) there are CP15 register
which are only available in hypervisor mode or in monitor mode with NS bit set. With “HC15:” you can
access these register independent of the current core mode.

Coprocessor access in per file

Usually per files use the “C1x” class to access coprocessors, and the “AD:” access class to access other
peripherals that are directly memory mapped.

DO ~~/demo/arm/etc/coprocessor/coprocessor_converter.cmm

A Edit Coprocessor parameters here.

B Open Data.dump window at current 32-bit Coprocessor address.

C Assemble MRC/MCR instruction at current PC location.

D Open Data.dump window at current 64-bit Coprocessor address.

E Assemble MRRC/MCRR instruction at current PC location.

A

B

D

E

C

Arm Debugger | 43©1989-2024 Lauterbach

All these accesses may be done in non-secure or secure mode, dependant on the SoC implementation. The
non-secure/secure access is automatically selected, so per default PER shows the content using the current
CPU secure mode.

Sometimes coprocessors or peripherals might only show “????????” if the access is not possible in the
current CPU secure mode.

In this case you can enforce the secure mode with the /Secure or /NonSecure option.

The /Secure or /NonSecure can be combined with /DualPort option (run-time access), example:

PER , /Secure
PER , /NonSecure

// always use “ZC1x” or “AZD” in per file
// always use “NC1x” or “AND” in per file

PER , /DualPort /Secure

NOTE: Non-intrusive run-time accesses are not possible for coprocessors. Peripherals
that are directly memory mapped need to be mapped to either the AXI or AHB
in a 1:1 fashion to make a non-intrusive run-time access possible. For more
information about intrusive and non-intrusive run-time accesses, please see
Accessing Memory at Run-time.
Arm Debugger | 44©1989-2024 Lauterbach

Accessing Memory at Run-time

This sections describes how memory can be accessed at run-time. It gives an overview of all available
methods for Arm based devices.

In this section:

• Intrusive and Non-intrusive Run-time Access

• Cache Coherent Non-intrusive Run-time Access

• Performing Intrusive and Non-intrusive Run-time Accesses with TRACE32

• Performing Cache Coherent Non-intrusive Run-time Accesses with TRACE32

• Additional Considerations

Intrusive and Non-intrusive Run-time Access

Intrusive run-time access

Intrusive means that the CPU is periodically stopped and restarted, so that the debugger can access the
memory content through the CPU using load / store commands.

The debugger will see memory the same way the CPU does; however, real-time constraints may be broken.

Non-intrusive run-time access

Non-intrusive means that the CPU is not stopped during the memory access.

The debugger cannot read through the CPU while it is running and continuously accessing memory.
Therefore the debugger has to use a DAP access, i.e. the AHB or AXI bus. The CPU is bypassed, which will
equal a physical memory access. This way the real-time constrains are preserved. This access method only
works if an AHB or AXI is present and if the busses are properly mapped to memory.

CPU

stopped

Debugger load / store Memoryaccess

Debugger CPU

running

Memory

DAP access via AHB or AXI
Arm Debugger | 45©1989-2024 Lauterbach

Cache Coherent Non-intrusive Run-time Access

A non-intrusive run-time access through the AHB/AXI bus will bypass caches. In the example below,
“myVar” is only updated in the cache but not in memory. Hence its current state is invisible to the debugger.

An example of such a cache would be a write-back cache. For the debugger to see the current value of
“myVar”, a run-time access has to trigger a cache flush, so that “myVar” is written back to memory.

In this example, the cache coherency is maintained by the Snoop Control Unit (SCU). During an AXI access,
the SCU can be instructed to trigger a write of “myVar” back to memory. This feature is not supported for the
AHB. It is implementation-defined whether this is available for AXI transactions.

Performing Intrusive and Non-intrusive Run-time Accesses with TRACE32

All of the previously mentioned access methods can be carried out in TRACE32.

To access memory at run-time, add the access class “E” as a prefix. “E” means run-time access and can
be combined with most access classes that access memory. E.g. “Data.dump NSD:<address>” can be
extended to “Data.dump ENSD:<address>”.

Intrusive run-time access

To activate intrusive memory accesses, use the command SYStem.MemAccess.StopAndGo.

SYStem.MemAccess.StopAndGo ; Intrusive run-time memory access, CPU
 ; is periodically stopped / restarted
Data.dump E:0x100 ; Intrusive access via CPU. Prefix “E”
Var.view %E myVar ; is required to read 0x100 or myVar

Debugger CPU

running

DAP access via AHB or AXI

MemoryCache

myVar myVar

Debugger CPU

running

AXI access

MemoryCache

myVar myVarwrite-back

SCU
Arm Debugger | 46©1989-2024 Lauterbach

Non-intrusive run-time access: Direct DAP access

You can directly specify an access to memory via the AHB or AXI bus using an access class. This requires
that the AHB or AXI is defined as a valid access port. If you select a known chip with SYStem.CPU,
then TRACE32 configures this setting automatically. Please see the following example for the AXI:

Non-intrusive run-time access: Indirect DAP access

It is not very convenient or even not always possible to use an AXI or AHB access class specifier. In most
cases you should let the debugger decide which access to use. Use the command SYStem.MemAccess
DAP to activate non-intrusive run-time accesses via AHB or AXI. TRACE32 will then redirect access to the
AHB or AXI bus. This requires that the AHB or AXI is defined as a valid access port.

Performing Cache Coherent Run-time Accesses with TRACE32

So far there is not guarantee that the run-time accesses via AHB / AXI will be coherent. This means, you
might not see the current value of e.g. a variable because the value is in the cache but not updated in
memory.

The AXI may allow you to select whether an access should be performed as a coherent transaction or not.
To activate this feature, use SYStem.Option.AXIACEEnable ON

SYStem.CONFIG MEMORYACCESSPORT 1. ; Define memory access port and AXI
SYStem.CONFIG AXIACCESSPORT 1. ; access port (e.g. port number 1)

Data.dump EAXI:<address> ; Run-time access via AXI. Prefix “E”
Data.dump EAXI:myVar ; is optional but recommended to read
 ; myVarn via the DAP

SYStem.CONFIG MEMORYACCESSPORT 1. ; Define memory access port and AHB
// SYStem.CONFIG AHBACCESSPORT 1. ; or AXI access port
SYStem.CONFIG AXIACCESSPORT 1.

SYStem.MemAccess DAP ; Non-intrusive access via AHB / AXI

Data.dump E:0x100 ; Run-time access via DAP. Prefix “E”
Var.view %E myVar ; is required to read 0x100 or myVar

SYStem.CONFIG.MEMORYACCESSPORT 1. ; Define memory access port and AXI
SYStem.CONFIG.AXIACCESSPORT 1. ; access port (e.g. port number 1)

SYStem.Option.AXIACEEnable ON ; Enable cache coherent transactions
SYStem.MemAccess DAP ; Non-intrusive access via AXI

Data.dump E:0x100 ; Run-time access via AXI. Prefix “E”
Var.view %E myVar ; is required to read 0x100 or myVar
Arm Debugger | 47©1989-2024 Lauterbach

Coherent cache accesses without AXI coherency support

The AXI may not provide cache coherent transactions or there may only be an AHB available. In this case
you can still perform non-intrusive cache-coherent run-time memory accesses. But this requires that you
change the configuration of your target application in one of the following ways:

• Configure the address range of interest as “non-cacheable”

• Configure the address range of interest as “write-through”

• Configure the entire cache as “write-through” (global setting)

• Make the CPU periodically flush the cache lines of interest

• Disable the cache

• Use a monitor program that accesses the memory address range of interest through the cache
(CPU view) and provides the result to the debugger, e.g. via shared memory or DCC. This
requires a code instrumentation of the target application.

Additional Considerations

Non-intrusive run-time access with active MMU

If the run-time access involves virtual addresses that do not directly map to physical addresses, the
debugger has to be made aware of the proper virtual-to-physical address translations. For more information
about address translations, refer to the descriptions of the following commands:

NOTE: • Support for cache coherent AXI transactions is implementation-defined.
Therefore SYStem.Option.AXIACEEnable ON may be without effect.

• The AHB does not provide such a coherency mechanism.

TRANSlation.Create If the CPU has never stopped, set the translation manually.

MMU.SCAN Scan static page tables into the debugger while the CPU is stopped.

TRANSlation.TableWalk Use if CPU stops and page tables are modified frequently (e.g. by
OS).
Arm Debugger | 48©1989-2024 Lauterbach

Semihosting

Semihosting is a technique for an application program running on an Arm processor to communicate with
the host computer of the debugger. This way the application can use the I/O facilities of the host computer
like keyboard input, screen output, and file I/O. This is especially useful if the target platform does not yet
provide these I/O facilities or in order to output additional debug information in printf() style.

A semihosting call from the application causes an exception by a SVC (SWI) instruction together with a
certain SVC number to indicate a semihosting request. The type of operation is passed in R0. R1 points to
the other parameters. On Cortex-M semihosting is implemented using the BKPT instead of SVC instruction.

Normally semihosting is invoked by code within the C library functions of the Arm RealView compiler like
printf() and scanf(). The application can also invoke the operations used for keyboard input, screen output,
and file I/O directly. The operations are described in the RealView Compilation Tools Developer Guide from
Arm in the chapter “Semihosting Operations”.

The debugger which needs to interface to the I/O facilities on the host provides two ways to handle a
semihosting request which results in a SVC (SWI) or BKPT exception:

SVC (SWI) Emulation Mode

A breakpoint placed on the SVC exception entry stops the application. The debugger handles the request
while the application is stopped, provides the required communication with the host, and restarts the
application at the address which was stored in the link register R14 on the SVC exception call. Other as for
the DCC mode the SVC parameter has to be 0x123456 to indicate a semihosting request.

This mode is enabled by TERM.METHOD ARMSWI [<address>] and by opening a TERM.GATE window for
the semihosting screen output. The handling of the semihosting requests is only active when the
TERM.GATE window is existing.

On Arm7 an on-chip or software breakpoint needs to be set at address 8 (SWI exception entry). On other
Arm cores also the vector catch register can be used: TrOnchip.Set SWI ON. The Cortex-M does not need
a breakpoint because it already uses the breakpoint instruction BKPT for the semihosting request.

When using the <address> option of the TERM.METHOD ARMSWI <address>, any memory location with a
breakpoint on it can be used as a semihosting service entry instead of the SVC call at address 8. The
application just needs to jump to that location. After servicing the request the program execution continues at
that address (not at the address in the link register R14). You could for example place a ’BX R14’ command
at that address and hand the return address in R14. Since this method does not use the SVC command no
parameter (0x123456) will be checked to identify a semihosting call.
Arm Debugger | 49©1989-2024 Lauterbach

TERM.HEAPINFO defines the system stack and heap location. The C library reads these memory
parameters by a SYS_HEAPINFO semihosting call and uses them for initialization. An example can be
found in ~~/demo/arm/etc/semihosting_arm_emulation/swisoft_<x>.cmm.
Arm Debugger | 50©1989-2024 Lauterbach

DCC Communication Mode (DCC = Debug Communication Channel)

A semihosting exception handler will be called by the SVC (SWI) exception. It uses the Debug
Communication Channel based on the JTAG interface to communicate with the host. The target application
will not be stopped, but the semihosting exception handler needs to be loaded or linked to the application.
The Cortex-M does not provide a DCC, therefore this mode can not be used.

This mode is enabled by TERM.METHOD DCC3 and by opening a TERM.GATE window for the
semihosting screen output. The handling of the semihosting requests is only active when the TERM.GATE
window is existing. TERM.HEAPINFO defines the system stack and heap location. The Arm C library reads
these memory parameters by a SYS_HEAPINFO semihosting call and uses them for initialization. An
example (swidcc_x.cmm) and the source of the Arm compatible semihosting handler (t32swi.c,
t32helper_x.c) can be found in ~~/demo/arm/etc/semihosting_arm_dcc
Arm Debugger | 51©1989-2024 Lauterbach

In case the Arm library for semihosting is not used, you can alternatively use the native TRACE32 format for
the semihosting requests. Then the SWI handler (t32swi.c) is not required. You can send the requests
directly via DCC. Find examples and source codes in ~~/demo/arm/etc/semihosting_trace32_dcc
Arm Debugger | 52©1989-2024 Lauterbach

Virtual Terminal

The command TERM opens a terminal window which allows to communicate with the Arm core over the
Debug Communications Channel (DCC). All data received from the comms channel are displayed and all
data inputs to this window are sent to the comms channel. Communication occurs byte wide or up to four
bytes per transfer. The following modes can be used:

The TERM.METHOD command selects which mode is used (DCC, DCC3, DCC4A or DCC4B).

The communication mechanism is described e.g. in the ARM7TDMI data sheet in chapter 9.11. Only three
move to/from coprocessor 14 instructions are necessary.

The TRACE32 ~~/demo/arm/etc/virtual_terminal directory contains examples for the different Arm families
which demonstrate how the communication works.

DCC Use the DCC port of the JTAG interface to transfer 1 byte at once.

DCC3 Three byte mode. Allows binary transfers of up to 3 bytes per DCC transfer.
The upper byte defines how many bytes are transferred (0 = one byte, 1 = two
bytes, 2 = three bytes). This is the preferred mode of operation, as it combines
arbitrary length messages with high bandwidth.

DCC4A Four byte ASCII mode. Does not allow to transfer the byte 00. Each non-zero byte of
the 32-bit word is a character in this mode.

DCC4B Four byte binary mode. Used to transfer non-ASCII 32-bit data (e.g. to or from a
file).
Arm Debugger | 53©1989-2024 Lauterbach

Large Physical Address Extension (LPAE)

LPAE is an optional extension for the Armv7-AR architecture. It allows physical addresses above 32-bit. The
instructions still use 32-bit addresses, but the extended memory management unit can map the address
within a 40-bit physical memory range.

It is for example implemented on Cortex-A7 and Cortex-A15.

Consequence for Debugging

We have extended only the physical address, because the virtual address is still 32-bit.

Example: Memory dump starting at physical address 0x0280004000.
 “A:” = absolute address = physical address.

Unfortunately the above command will result in a bus error (‘????????’) on a real chip because the debug
interface does not support physical accesses beyond the 4GByte. It will work on the TRACE32 Instruction
Set Simulator and on virtual platforms.

In case the Debug Access Port (DAP) of the chip provides an AXI MEM-AP then the debugger can act as a
bus master on the AXI, and you can access the physical memory independent of TLB entries.

However this does not show you the cache contents in case of a write-back cache. For a cache coherent
access you need to set:

This requires that the CPU debug logic supports this setting. If the debug logic does not support coherent
AXI accesses, this option is will be without effect.

Data.dump A:02:80004000

Data.dump AXI:02:80004000

SYStem.Option.AXIACEEnable ON

Virtual address
(32-bit)

Physical address
(40-bit)

Extended
MMU
Arm Debugger | 54©1989-2024 Lauterbach

Virtualization Extension, Hypervisor

The ‘Virtualization Extension’ is an optional extension in Armv7-A. It can for example be found on Cortex-A7
and Cortex-A15. It adds a ‘Hypervisor’ processor mode used to switch between different guest operating
systems. The extension assumes LPAE and TrustZone. It adds a second stage address translation.

Consequence for Debugging

The debugger shows you the memory view of the mode the core is currently in. The address translation and
therefore the view can/will be different for secure mode, non-secure mode, and hypervisor mode.

You can force a certain view/translation by switching to another mode or by using the access classes “Z:”
(secure), “N:” (non-secure) or “H:” (hypervisor).

If you want to perform an access addressed by an intermediate address, you can use the ‘I:’ access class.

OS Awareness for multiple operating systems is under development. At the moment you can have only one
OS Awareness at a time.

Run-time Measurements

The RunTime command group allows run-time measurements based on polling the CPU run status by
software. Therefore the result will be about a few milliseconds higher than the real value.

If the signal DBGACK on the JTAG connector is available, the measurement will automatically be based on
this hardware signal which delivers very exact results. Please do not disable the option
SYStem.Option.DBGACK. The run-time of the debugger accesses while the CPU is halted would also be
measured, otherwise.

Trigger

A bidirectional trigger system allows the following two events:

• Trigger an external system (e.g. logic analyzer) if the program execution is stopped.

• Stop the program execution if an external trigger is asserted.

For more information, refer to the TrBus command group.

Virtual address
(32-bit)

Intermediate address
(40-bit)

Physical address
(40-bit)

MMU
(stage 2)

MMU
(stage 1)
Arm Debugger | 55©1989-2024 Lauterbach

Arm specific SYStem Commands

SYStem.CLOCK Inform debugger about core clock

Informs the debugger about the core clock frequency. This information is used for analysis functions
where the core frequency needs to be known. This command is only available if the debugger is used
as front-end for virtual prototyping.

SYStem.CONFIG.state Display target configuration

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are not included in the SYStem.CONFIG.state window.

Format: SYStem.CLOCK <frequency>

Format: SYStem.CONFIG.state [/<tab>]

<tab>: DebugPort | Jtag | MultiTap | AP | COmponents

<tab> Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.

DebugPort
(default)

The DebugPort tab informs the debugger about the debug connector
type and the communication protocol it shall use.

For descriptions of the commands on the DebugPort tab, see
DebugPort.
Arm Debugger | 56©1989-2024 Lauterbach

SYStem.CONFIG Configure debugger according to target topology

Jtag The Jtag tab informs the debugger about the position of the Test Access
Ports (TAP) in the JTAG chain which the debugger needs to talk to in
order to access the debug and trace facilities on the chip.

For descriptions of the commands on the Jtag tab, see Jtag.

MultiTap Informs the debugger about the existence and type of a System/Chip
Level Test Access Port. The debugger might need to control it in order to
reconfigure the JTAG chain or to control power, clock, reset, and security
of different chip components.

For descriptions of the commands on the MultiTap tab, see MultiTap.

AP This tab informs the debugger about an Arm CoreSight Access Port (AP)
and about how to control the AP to access chip-internal memory busses
(AHB, APB, AXI) or chip-internal JTAG interfaces.

For a descriptions of a corresponding commands, refer to AP.

COmponents The COmponents tab informs the debugger (a) about the existence and
interconnection of on-chip CoreSight debug and trace modules and (b)
informs the debugger on which memory bus and at which base address
the debugger can find the control registers of the modules.

For descriptions of the commands on the COmponents tab, see
COmponents.

Format: SYStem.CONFIG <parameter>
SYStem.MultiCore <parameter> (deprecated)

<parameter>:
(DebugPort)

CJTAGFLAGS <flags>
CJTAGTCA <value>
CONNECTOR [MIPI34 | MIPI20T]
CORE <core> <chip>
CoreNumber <number>
DEBUGPORT [DebugCable0 | DebugCableA | DebugCableB]
DEBUGPORTTYPE [JTAG | SWD | CJTAG]
NIDNTTRSTTORST [ON | OFF]
NIDNTPSRISINGEDGE [ON | OFF]
NIDNTRSTPOLARITY [High | Low]
PortSHaRing [ON | OFF | Auto]
Arm Debugger | 57©1989-2024 Lauterbach

<parameter>:
(DebugPort cont.)

Slave [ON | OFF]
SWDP [ON | OFF]
SWDPIDLEHIGH [ON | OFF]
SWDPTargetSel <value>
DAP2SWDPTargetSel <value>
TriState [ON | OFF]

<parameter>:
(JTAG)

CHIPDRLENGTH <bits>
CHIPDRPATTERN [Standard | Alternate <pattern>]
CHIPDRPOST <bits>
CHIPDRPRE <bits>
CHIPIRLENGTH <bits>
CHIPIRPATTERN [Standard | Alternate <pattern>]
CHIPIRPOST<bits>
CHIPIRPRE <bits>

DAP2DRPOST <bits>
DAP2DRPRE <bits>
DAP2IRPOST <bits>
DAP2IRPRE <bits>
DAPDRPOST <bits>
DAPDRPRE <bits>
DAPIRPOST <bits>
DAPIRPRE <bits>

DRPOST <bits>
DRPRE <bits>

ETBDRPOST <bits>
ETBDRPRE <bits>
ETBIRPOST <bits>
ETBIRPRE <bits>

IRPOST<bits>
IRPRE <bits>

NEXTDRPOST <bits>
NEXTDRPRE <bits>
NEXTIRPOST<bits>
NEXTIRPRE <bits>

RTPDRPOST <bits>
RTPDRPRE <bits>
RTPIRPOST <bits>
RTPIRPRE <bits>

Slave [ON | OFF]
TAPState <state>
TCKLevel <level>
TriState [ON | OFF]
Arm Debugger | 58©1989-2024 Lauterbach

<parameter>:
(MultiTap)

CFGCONNECT <code>
DAP2TAP <tap>
DAPTAP <tap>
DEBUGTAP <tap>
ETBTAP <tap>
MULTITAP [NONE | IcepickA | IcepickB | IcepickC | IcepickD | IcepickBB |
 IcepickBC | IcepickCC | IcepickDD | STCLTAP1 | STCLTAP2 |
 STCLTAP3 |
 MSMTAP <irlength> <irvalue> <drlength> <drvalue>
 JtagSEQuence <sub_cmd>]
NJCR <tap>
RTPTAP <tap>
SLAVETAP <tap>

<parameter>:
(AccessPorts
)

AHBAPn.Base <address>
AHBAPn.HPROT [<value> | <name>]
AHBAPn.Port <port>
AHBAPn.RESet
AHBAPn.view
AHBAPn.XCPTRI <tri>
AHBAPn.XtorName <name>

APBAPn.Base <address>
APBAPn.Port <port>
APBAPn.RESet
APBAPn.view
APBAPn.XCPTRI <tri>
APBAPn.XtorName <name>

AXIAPn.ACEEnable [ON | OFF]
AXIAPn.Base <address>
AXIAPn.CacheFlags <value>
AXIAPn.HPROT [<value> | <name>]
AXIAPn.Port <port>
AXIAPn.RESet
AXIAPn.view
AXIAPn.XCPTRI <tri>
AXIAPn.XtorName <name>

DAP2JTAGPORT <port>
DAPNAME <name>
DAP2NAME <name>

DEBUGAPn.Port <port>
DEBUGAPn.RESet
DEBUGAPn.view
DEBUGAPn.XtorName <name>
Arm Debugger | 59©1989-2024 Lauterbach

<parameter>:
(AccessPorts
cont.)

JTAGAPn.Base <address>
JTAGAPn.Port <port>
JTAGAPn.CorePort <port>
JTAGAPn.RESet
JTAGAPn.view
JTAGAPn.XtorName <name>

MEMORYAPn.HPROT [<value> | <name>]
MEMORYAPn.Port <port>
MEMORYAPn.RESet
MEMORYAPn.view
MEMORYAPn.XtorName <name>

<parameter>:
(COmponents)

AMU.Base <address>
AMU.RESet
AMU.view

BMC.Base <address>
BMC.RESet
BMC.view

COREDEBUG.Base <address>
COREDEBUG.RESet
COREDEBUG.view

CTI.Base <address>
CTI.Config <interconnection>
CTI.RESet
CTI.view

DRM.Base <address>
DRM.RESet
DRM.view

DTM.RESet
DTM.Type [None | Generic]
DTM.view
Arm Debugger | 60©1989-2024 Lauterbach

<parameter>:
(COmponents
cont.)

DWT.Base <address>
DWT.RESet

EPM.Base <address>
EPM.RESet
EPM.view

ETB2AXI.Base <address>
ETB2AXI.RESet
ETB2AXI.view

ETB.ATBSource <source>
ETB.Base <address>
ETB.Name <string>
ETB.NoFlush [ON | OFF]
ETB.RESet
ETB.Size <size>
ETB.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL

STOP | FULLCTI]
ETB.view

ETF.ATBSource <source>
ETF.Base <address>
ETF.Name <string>
ETF.NoFlush [ON | OFF]
ETF.RESet
ETF.Size <size>
ETF.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL

STOP | FULLCTI]
ETF.view

ETM.Base <address>
ETM.RESet
ETM.view

ETR.ATBSource <source>
ETR.CATUBase <address>
ETR.Base <address>
ETR.Name <string>
ETR.NoFlush [ON | OFF]
ETR.RESet
ETR.Size <size>
ETR.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL

STOP | FULLCTI]
ETR.view
Arm Debugger | 61©1989-2024 Lauterbach

<parameter>:
(COmponents
cont.)

ETS.ATBSource <source>
ETS.Base <address>
ETS.Name <string>
ETS.NoFlush [ON | OFF]
ETS.RESet
ETS.Size <size>
ETS.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL

STOP | FULLCTI]
ETS.view

FUNNEL.ATBSource <sourcelist>
FUNNEL.Base <address>
FUNNEL.Name <string>
FUNNEL.PROGrammable [ON | OFF]
FUNNEL.RESet
FUNNEL.view

HSM.Base <address>
HSM.RESet

HTM.Base <address>
HTM.RESet
HTM.Type [CoreSight | WPT]

ICE.Base <address>
ICE.RESet

ITM.Base <address>
ITM.Name <string>
ITM.RESet

L2CACHE.Base <address>
L2CACHE.RESet
L2CACHE.Type [NONE | Generic | L210 | L220 | L2C-310 | AURORA |
 AURORA2]
L2CACHE.view

MPAM.Base <address>
MPAM.RESet
MPAM.view
Arm Debugger | 62©1989-2024 Lauterbach

<parameter>:
(COmponents
cont.)

OCP.Base <address>
OCP.RESet
OCP.TraceID <id>
OCP.Type <type>

PMI.Base <address>
PMI.RESet
PMI.TraceID <id>

RAS.Base <address>
RAS.RESet
RAS.view

REP.ATBSource <source>
REP.Base <address>
REB.Name <string>
REP.RESet
REP.view

RTP.Base <address>
RTP.PerBase <address>
RTP.RamBase <address>
RTP.RESet
RTP.view

SC.Base <address>
SC.RESet
SC.TraceID <id>

SDC.Base <address>
SDC.RESet

STM.Base <address>
STM.Mode [NONE | XTIv2 | SDTI | STP | STP64 | STPv2]
STM.RESet
STM.Type [None | GenericARM | SDTI | TI]

TBR.ATBSource <source>
TBR.Base <address>
TBR.Name <string>
TBR.NoFlush [ON | OFF]
TBR.RESet
Arm Debugger | 63©1989-2024 Lauterbach

<parameter>:
(Components
cont.)

TBR.Size <size>
TBR.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL

STOP | FULLCTI]
TBR.view

TISCTM.Base <address>
TISCTM.RESet
TISCTM.view

TPIU.ATBSource <source>
TPIU.Base <address>
TPIU.Name <string>
TPIU.RESet
TPIU.Type [CoreSight | Generic]
TPIU.view
Arm Debugger | 64©1989-2024 Lauterbach

<parameter>:
(Deprecated)

AHBACCESSPORT <port>
APBACCESSPORT <port>
AXIACCESSPORT <port>
BMCBASE <address>
BYPASS <seq>
COREBASE <address>
COREJTAGPORT <port>
CTIBASE <address>
CTICONFIG [NONE | ARMV1 | ARMPostInit | OMAP3 | TMS570 | CortexV1 |
 QV1]
DAP2AHBACCESSPORT <port>
DAP2APBACCESSPORT <port>
DAP2AXIACCESSPORT <port>
DAP2COREJTAGPORT <port>
DAP2DEBUGACCESSPORT <port>
DEBUGACCESSPORT <port>
DEBUGBASE <address>
DTMCONFIG [ON | OFF]
DTMETBFUNNELPORT <port>
DTMFUNNEL2PORT <port>
DTMFUNNELPORT <port>
DTMTPIUFUNNELPORT <port>
DWTBASE <address>
ETB2AXIBASE <address>
ETBBASE <address>
ETBFUNNELBASE <address>
ETFBASE <address>
ETMBASE <address>
ETMETBFUNNELPORT <port>
ETMFUNNEL2PORT <port>
ETMFUNNELPORT <port>
ETMTPIUFUNNELPORT <port>
FILLDRZERO [ON | OFF]
FUNNEL2BASE <address>
FUNNELBASE <address>
HSMBASE <address>
HTMBASE <address>
HTMETBFUNNELPORT <port>
HTMFUNNEL2PORT <port>
HTMFUNNELPORT <port>
HTMTPIUFUNNELPORT <port>
ITMBASE <address>
ITMETBFUNNELPORT <port>
Arm Debugger | 65©1989-2024 Lauterbach

The SYStem.CONFIG commands inform the debugger about the available on-chip debug and trace
components and how to access them.

In many cases, selecting the chip under debug with the SYStem.CPU command is sufficient. TRACE32
recognizes the available on-chip debug and trace components and can configure them accordingly.

If the components require configuration using the SYStem.CONFIG commands, you must first set the chip
under debug using the SYStem.CPU command. Then, configure the components with the
SYStem.CONFIG commands. Finally, start the debug session e.g. with the SYStem.Up command.

Syntax Remarks

The commands are not case-sensitive. Capital letters indicate how the command can be abbreviated.
Example: “SYStem.CONFIG.DWT.Base 0x1000” -> “SYS.CONFIG.DWT.B 0x1000”

The dots after “SYStem.CONFIG” can alternatively be replaced with a space.
Example: “SYStem.CONFIG.DWT.Base 0x1000” or “SYStem.CONFIG DWT Base 0x1000”.

More Information on the Deprecated Commands

General information on deprecated commands and command parameters can be found here.

The table “Mapping Deprecated to New Commands”, page 1 provides a mapping of the deprecated
command parameters to the new command parameters.

<parameter>:
(Deprecated cont.)

ITMFUNNEL2PORT <port>
ITMFUNNELPORT <port>
ITMTPIUFUNNELPORT <port>
JTAGACCESSPORT <port>
MEMORYACCESSPORT <port>
PERBASE <address>
RAMBASE <address>
RTPBASE <address>
SDTIBASE <address>
STMBASE <address>
STMETBFUNNELPORT<port>
STMFUNNEL2PORT<port>
STMFUNNELPORT<port>
STMTPIUFUNNELPORT<port>
TIDRMBASE <address>
TIEPMBASE <address>
TIICEBASE <address>
TIOCPBASE <address>
TIOCPTYPE <type>
TIPMIBASE <address>
TISCBASE <address>
TISTMBASE <address>
TPIUBASE <address>
TPIUFUNNELBASE <address>
view
Arm Debugger | 66©1989-2024 Lauterbach

A detailed description of the deprecated command parameterss can be found in “<parameters> which are
“Deprecated””, page 1.
Arm Debugger | 67©1989-2024 Lauterbach

<parameters> describing the “DebugPort”

CJTAGFLAGS <flags> Activates bug fixes for “cJTAG” implementations.
Bit 0: Disable scanning of cJTAG ID.
Bit 1: Target has no “keeper”.
Bit 2: Inverted meaning of SREDGE register.
Bit 3: Old command opcodes.
Bit 4: Unlock cJTAG via APFC register.

Default: 0.

CJTAGTCA <value> Selects the TCA (TAP Controller Address) to address a device in a
cJTAG Star-2 configuration. The Star-2 configuration requires a
unique TCA for each device on the debug port.

CONNECTOR
[MIPI34 | MIPI20T]

Specifies the connector “MIPI34” or “MIPI20T” on the target. This
is mainly needed in order to notify the trace pin location.

Default: MIPI34 if CombiProbe is used, MIPI20T if µTrace
(MicroTrace) is used.

CORE <core> <chip> The command helps to identify debug and trace resources which
are commonly used by different cores. The command might be
required in a multicore environment if you use multiple debugger
instances (multiple TRACE32 PowerView GUIs) to simultaneously
debug different cores on the same target system.

Because of the default setting of this command

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=1 <chip>=2
...

each debugger instance assumes that all notified debug and trace
resources can exclusively be used.

But some target systems have shared resources for different
cores, for example a common trace port. The default setting
causes that each debugger instance controls the same trace port.
Sometimes it does not hurt if such a module is controlled twice.
But sometimes it is a must to tell the debugger that these cores
share resources on the same <chip>. Whereby the “chip” does not
need to be identical with the device on your target board:

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=2 <chip>=1
Arm Debugger | 68©1989-2024 Lauterbach

CORE <core> <chip>

(cont.)

For cores on the same <chip>, the debugger assumes that the
cores share the same resource if the control registers of the
resource have the same address.

Default:
<core> depends on CPU selection, usually 1.
<chip> If you start multiple debugger instances with
TargetSystem.NewInstance, you get ascending values (1, 2, 3,...).

CoreNumber <number> Number of cores to be considered in an SMP (symmetric
multiprocessing) debug session. There are core types like
ARM11MPCore, CortexA5MPCore, CortexA9MPCore and
Scorpion which can be used as a single core processor or as a
scalable multicore processor of the same type. If you intend to
debug more than one such core in an SMP debug session you
need to specify the number of cores you intend to debug.

Default: 1.

DEBUGPORT
[DebugCable0 | DebugCa-
bleA | DebugCableB]

It specifies which probe cable shall be used e.g. “DebugCableA” or
“DebugCableB”. At the moment only the CombiProbe allows to
connect more than one probe cable.

Default: depends on detection.

DEBUGPORTTYPE
[JTAG | SWD | CJTAG]

It specifies the used debug port type “JTAG”, “SWD”, “CJTAG”,
“CJTAG-SWD”. It assumes the selected type is supported by the
target.

Default: JTAG.

What is NIDnT?

NIDnT is an acronym for “Narrow Interface for Debug and Test”.
NIDnT is a standard from the MIPI Alliance, which defines how to
reuse the pins of an existing interface (like for example a microSD
card interface) as a debug and test interface.

To support the NIDnT standard in different implementations,
TRACE32 has several special options:
Arm Debugger | 69©1989-2024 Lauterbach

NIDNTPSRISINGEDGE
[ON | OFF]

Send data on rising edge for NIDnT PS switching.

NIDnT specifies how to switch, for example, the microSD card
interface to a debug interface by sending in a special bit sequence
via two pins of the microSD card.

TRACE32 will send the bits of the sequence incident to the falling
edge of the clock, because TRACE32 expects that the target
samples the bits on the rising edge of the clock.

Some targets will sample the bits on the falling edge of the clock
instead. To support such targets, you can configure TRACE32 to
send bits on the rising edge of the clock by using
SYStem.CONFIG NIDNTPSRISINGEDGE ON

NOTE: Only enable this option right before you send the NIDnT
switching bit sequence.
Make sure to DISABLE this option, before you try to connect to the
target system with for example SYStem.Up.

NIDNTRSTPOLARITY
[High | Low]

Usually TRACE32 requires that the system reset line of a target
system is low active and has a pull-up on the target system.

When connecting via NIDnT to a target system, the reset line
might be a high-active signal.
To configure TRACE32 to use a high-active reset signal, use
SYStem.CONFIG NIDNTRSTPOLARITY High

This option must be used together with
SYStem.CONFIG NIDNTTRSTTORST ON
because you also have to use the TRST signal of an Arm debug
cable as reset signal for NIDnT in this case.

NIDNTTRSTTORST
[ON | OFF]

Usually TRACE32 requires that the system reset line of a target
system is low active and has a pull-up on the target system.
This is how the system reset line is usually implemented on regular
Arm-based targets.

When connecting via NIDnT (e.g. a microSD card slot) to the
target system, the reset line might not include a pull-up on the
target system.
To circumvent problems, TRACE32 allows to drive the target reset
line via the TRST signal of an Arm debug cable.

Enable this option if you want to use the TRST signal of an Arm
debug cable as reset signal for a NIDnT.
Arm Debugger | 70©1989-2024 Lauterbach

PortSHaRing [ON | OFF |
Auto]

Configure if the debug port is shared with another tool, e.g. an
ETAS ETK.

OFF: Default. Communicate with the target without sending
requests.

ON: Request for access to the debug port and wait until the access
is granted before communicating with the target.

Auto: Automatically detect a connected tool on next
SYStem.Mode Up, SYStem.Mode Attach or SYStem.Mode Go. If
a tool is detected switch to mode ON else switch to mode OFF.

The current setting can be obtained by the PORTSHARING()
function, immediate detection can be performed using
SYStem.DETECT PortSHaRing.

Slave [ON | OFF] If several debugger instances share the same debug port, all
except one must have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the
signals nTRST and nSRST (nRESET). The other debuggers need
to have the setting Slave ON.

Default: OFF for the first debugger instance.
Default: ON for all further debugger instances you open with
TargetSystem.NewInstance.

SWDP [ON | OFF] With this command you can change from the normal JTAG
interface to the serial wire debug mode. SWDP (Serial Wire Debug
Port) uses just two signals instead of five. It is required that the
target and the debugger hard- and software supports this
interface.

Default: OFF.

SWDPIdleHigh
[ON | OFF]

Keep SWDIO line high when idle. Only for Serialwire Debug mode.
Usually the debugger will pull the SWDIO data line low, when no
operation is in progress, so while the clock on the SWCLK line is
stopped (kept low).

You can configure the debugger to pull the SWDIO data line
high, when no operation is in progress by using
SYStem.CONFIG SWDPIdleHigh ON

Default: OFF.

SWDPTargetSel <value> Device address in case of a multidrop serial wire debug port.

Default: none set (any address accepted).
Arm Debugger | 71©1989-2024 Lauterbach

DAP2SWDPTargetSel
<value>

Device address of the second CoreSight DAP (DAP2) in case of a
multidrop serial wire debug port (SWD).

Default: none set (any address accepted).

TriState [ON | OFF] TriState has to be used if several debug cables are connected to a
common JTAG port. TAPState and TCKLevel define the TAP state
and TCK level which is selected when the debugger switches to
tristate mode.
Please note:
• nTRST must have a pull-up resistor on the target.
• TCK can have a pull-up or pull-down resistor.
• Other trigger inputs need to be kept in inactive state.

Default: OFF.
Arm Debugger | 72©1989-2024 Lauterbach

<parameters> describing the “JTAG” scan chain and signal behavior

With the JTAG interface you can access a Test Access Port controller (TAP) which has implemented a state
machine to provide a mechanism to read and write data to an Instruction Register (IR) and a Data Register
(DR) in the TAP. The JTAG interface will be controlled by 5 signals:

• nTRST (reset)

• TCK (clock)

• TMS (state machine control)

• TDI (data input)

• TDO (data output)

Multiple TAPs can be controlled by one JTAG interface by daisy-chaining the TAPs (serial connection). If you
want to talk to one TAP in the chain, you need to send a BYPASS pattern (all ones) to all other TAPs. For this
case the debugger needs to know the position of the TAP it wants to talk to. The TAP position can be defined
with the first four commands in the table below.

… DRPOST <bits> Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TDI signal and the TAP you are describing. In
BYPASS mode, each TAP contributes one data register bit. See possible
TAP types and example below.

Default: 0.

… DRPRE <bits> Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TAP you are describing and the TDO signal. In
BYPASS mode, each TAP contributes one data register bit. See possible
TAP types and example below.

Default: 0.

… IRPOST <bits> Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between TDI signal and
the TAP you are describing. See possible TAP types and example below.

Default: 0.

… IRPRE <bits> Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between the TAP you are
describing and the TDO signal. See possible TAP types and example
below.

Default: 0.

NOTE: If you are not sure about your settings concerning IRPRE, IRPOST, DRPRE,
and DRPOST, you can try to detect the settings automatically with the
SYStem.DETECT.DaisyChain command.
Arm Debugger | 73©1989-2024 Lauterbach

NOTE: There are rarely implemented DAP (Debug Access Port) TAPs, having an 8-bit
wide instruction register (IR) instead of 4-bit. They can be identified with the
SYStem.DETECT.DaisyChain command. Their IDCODE is 0x?ba03477 or
0x?ba07477. They require you to set (or add) SYStem.CONFIG DAPIRPOST 4.

CHIPDRLENGTH
<bits>

Number of Data Register (DR) bits which needs to get a certain BYPASS
pattern.

CHIPDRPATTERN
[Standard | Alter-
nate <pattern>]

Data Register (DR) pattern which shall be used for BYPASS instead of
the standard (1...1) pattern.

CHIPIRLENGTH
<bits>

Number of Instruction Register (IR) bits which needs to get a certain
BYPASS pattern.

CHIPIRPATTERN
[Standard | Alter-
nate <pattern>]

Instruction Register (IR) pattern which shall be used for BYPASS instead
of the standard pattern.

Slave [ON | OFF] If several debuggers share the same debug port, all except one must
have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the signals
nTRST and nSRST (nRESET). The other debuggers need to have the
setting Slave OFF.

Default: OFF for the first debugger instance.
Default: ON for all further debugger instances you open with
TargetSystem.NewInstance.
Arm Debugger | 74©1989-2024 Lauterbach

TAP types:

Core TAP providing access to the debug register of the core you intend to debug.
-> DRPOST, DRPRE, IRPOST, IRPRE.

DAP (Debug Access Port) TAP providing access to the debug register of the core you intend to debug. It
might be needed additionally to a Core TAP if the DAP is only used to access memory and not to access the
core debug register.
-> DAPDRPOST, DAPDRPRE, DAPIRPOST, DAPIRPRE.

DAP2 (Debug Access Port) TAP in case you need to access a second DAP to reach other memory
locations.
-> DAP2DRPOST, DAP2DRPRE, DAP2IRPOST, DAP2IRPRE.

TAPState <state> This is the state of the TAP controller when the debugger switches to
tristate mode. All states of the JTAG TAP controller are selectable.

0 Exit2-DR
1 Exit1-DR
2 Shift-DR
3 Pause-DR
4 Select-IR-Scan
5 Update-DR
6 Capture-DR
7 Select-DR-Scan
8 Exit2-IR
9 Exit1-IR
10 Shift-IR
11 Pause-IR
12 Run-Test/Idle
13 Update-IR
14 Capture-IR
15 Test-Logic-Reset

Default: 7 = Select-DR-Scan.

TCKLevel <level> Level of TCK signal when all debuggers are tristated. Normally defined
by a pull-up or pull-down resistor on the target.

Default: 0.

TriState [ON | OFF] TriState has to be used if several debug cables are connected to a common
JTAG port. TAPState and TCKLevel define the TAP state and TCK level
which is selected when the debugger switches to tristate mode.
Please note:
• nTRST must have a pull-up resistor on the target.
• TCK can have a pull-up or pull-down resistor.
• Other trigger inputs need to be kept in inactive state.

Default: OFF.
Arm Debugger | 75©1989-2024 Lauterbach

ETB (Embedded Trace Buffer) TAP if the ETB has its own TAP to access its control register (typical with
Arm11 cores).
-> ETBDRPOST, ETBDRPRE, ETBIRPOST, ETBIRPRE.

NEXT: If a memory access changes the JTAG chain and the core TAP position then you can specify the new
values with the NEXT... parameter. After the access for example the parameter NEXTIRPRE will replace the
IRPRE value and NEXTIRPRE becomes 0. Available only on ARM11 debugger.
-> NEXTDRPOST, NEXTDRPRE, NEXTIRPOST, NEXTIRPRE.

RTP (RAM Trace Port) TAP if the RTP has its own TAP to access its control register.
-> RTPDRPOST, RTPDRPRE, RTPIRPOST, RTPIRPRE.

CHIP: Definition of a TAP or TAP sequence in a scan chain that needs a different Instruction Register
(IR) and Data Register (DR) pattern than the default BYPASS (1...1) pattern.
-> CHIPDRPOST, CHIPDRPRE, CHIPIRPOST, CHIPIRPRE.

Example:

SYStem.CONFIG IRPRE 15.
SYStem.CONFIG DRPRE 3.
SYStem.CONFIG DAPIRPOST 16.
SYStem.CONFIG DAPDRPOST 3.
SYStem.CONFIG ETBIRPOST 5.
SYStem.CONFIG ETBDRPOST 1.
SYStem.CONFIG ETBIRPRE 11.
SYStem.CONFIG ETBDRPRE 2.

ARM11 TAP

IR: 5bit

ETB TAP

IR: 4bit

DAP TAP

IR: 4bit

TDI TDO
OfNoInterest TAP

IR: 7bit
Arm Debugger | 76©1989-2024 Lauterbach

<parameters> describing a system level TAP “MultiTap”

A “Multitap” is a system level or chip level test access port (TAP) in a JTAG scan chain. It can for example
provide functions to re-configure the JTAG chain or view and control power, clock, reset and security of
different chip components.

At the moment the debugger supports three types and its different versions:
Icepickx, STCLTAPx, MSMTAP:

Example:

CFGCONNECT <code> The <code> is a hexadecimal number which defines the JTAG
scan chain configuration. You need the chip documentation to
figure out the suitable code. In most cases the chip specific
default value can be used for the debug session.

Used if MULTITAP=STCLTAPx.

DAPTAP <tap> Specifies the TAP number which needs to be activated to get the
DAP TAP in the JTAG chain.

Used if MULTITAP=Icepickx.

DAP2TAP <tap> Specifies the TAP number which needs to be activated to get a
2nd DAP TAP in the JTAG chain.

Used if MULTITAP=Icepickx.

 TDO

 TMS

 TCK

 nTRST

Arm11
TAP

DAP
TAP

ETB
TAP

MULTITAP IcepickC
DEBUGTAP
DAPTAP
ETBTAB

Multitap
“IcepickC”

JTAG

1
4
5

 TDI
Arm Debugger | 77©1989-2024 Lauterbach

DEBUGTAP <tap> Specifies the TAP number which needs to be activated to get the
core TAP in the JTAG chain. E.g. ARM11 TAP if you intend to
debug an ARM11.

Used if MULTITAP=Icepickx.

ETBTAP <tap> Specifies the TAP number which needs to be activated to get the
ETB TAP in the JTAG chain.

Used if MULTITAP=Icepickx. ETB = Embedded Trace Buffer.

MULTITAP
[NONE | IcepickA | IcepickB
| IcepickC | IcepickD |
IcepickM |
IcepickBB | IcepickBC |
IcepickCC | IcepickDD |
STCLTAP1 | STCLTAP2 |
STCLTAP3 | MSMTAP
<irlength> <irvalue>
<drlength> <drvalue>
JtagSEQuence <sub_cmd>]

Selects the type and version of the MULTITAP.

In case of MSMTAP you need to add parameters which specify
which IR pattern and DR pattern needed to be shifted by the
debugger to initialize the MSMTAP. Please note some of these
parameters need a decimal input (dot at the end).

IcepickXY means that there is an Icepick version “X” which
includes a subsystem with an Icepick of version “Y”.

For a description of the JtagSEQuence subcommands, see
SYStem.CONFIG.MULTITAP JtagSEQuence.

NJCR <tap> Number of a Non-JTAG Control Register (NJCR) which shall be
used by the debugger.

Used if MULTITAP=Icepickx.

RTPTAP <tap> Specifies the TAP number which needs to be activated to get the
RTP TAP in the JTAG chain.

Used if MULTITAP=Icepickx. RTP = RAM Trace Port.

SLAVETAP <tap> Specifies the TAP number to get the Icepick of the sub-system in
the JTAG scan chain.

Used if MULTITAP=IcepickXY (two Icepicks).
Arm Debugger | 78©1989-2024 Lauterbach

<parameters> configuring a CoreSight Debug Access Port “AP”

An Access Port (AP) is a CoreSight module from Arm which provides access via its debug link (JTAG,
cJTAG, SWD, USB, UDP/TCP-IP, GTL, PCIe...) to:

1. Different memory buses (AHB, APB, AXI). This is especially important if the on-chip debug
register needs to be accessed this way. You can access the memory buses by using certain
access classes with the debugger commands: “AHB:”, “APB:”, “AXI:”, “DP:”, “E:”. The interface to
these buses is called Memory Access Port (MEM-AP).

2. Other, chip-internal JTAG interfaces. This is especially important if the core you intend to debug
is connected to such an internal JTAG interface. The module controlling these JTAG interfaces is
called JTAG Access Port (JTAG-AP). Each JTAG-AP can control up to 8 internal JTAG interfaces.
A port number between 0 and 7 denotes the JTAG interfaces to be addressed.

3. A transactor name for virtual connections to AMBA bus level transactors can be configured by
the property SYStem.CONFIG.*APn.XtorName <name>. A JTAG or SWD transactor must be
configured for virtual connections to use the property “Port” or “Base” (with “DP:” access) in case
XtorName remains empty.

Example 1: SoC-400

SoC-400

Memory
Access Port
(MEM-AP)

Debug
Port
(DP)

Memory
Access Port
(MEM-AP)

JTAG
Access Port
(JTAG-AP)

CoreSight
Component

ROM table

ROM table

CoreSight
Component

DAP
Arm Debugger | 79©1989-2024 Lauterbach

Example 2: SoC-600

SoC-600

Debug
link(s)

Memory System 3

ROM table

ROM table

CoreSight
Component

CoreSight
Component

Memory System 2

ROM table

CoreSight
Component

CoreSight
ComponentMEM-AP

Memory System 1

ROM table

CoreSight
Component

MEM-AP

MEM-AP

D
P (32/64-bit)

32/64-bit

32/64-bit

(expected)

(possible)
Arm Debugger | 80©1989-2024 Lauterbach

Configuration examples for memory access ports and a CoreSight component

System
Memory

TRACE32
SYStem.CONFIG AHBAP1.Port 0.
SYStem.CONFIG APBAP1.Port 1.
SYStem.CONFIG <module>.Base APB:0x2000

JTAG or
cJTAG or

SWD

Arm

0

1

A
H

B

A
P

B

0x2000

Memory
Access Port
(MEM-AP)

Memory
Access Port
(MEM-AP)

-400

TRACE32
SYStem.CONFIG AXIAP1 .Base DP:0x1000
SYStem.CONFIG APBAP1.Base DP:0x3000
SYStem.CONFIG APBAP2.Base APB1:0xA000
SYStem.CONFIG <module>.Base APB2:0x8000

JTAG or
cJTAG or

SWD

D
P

A
P

B
1

Memory
Access

Port
(MEM-AP)

0x3000

0xA000

Memory
Access

Port
(MEM-AP)

A
P

B
2 0x8000

-600

Memory
Access

Port
(MEM-AP)

0x1000 A
X

I

Arm Debugger | 81©1989-2024 Lauterbach

The below offered selection options are all non-bufferable. Alternatively you can enter a <value>, where
value[5:4] determines the Domain bits and value[3:0] the Cache bits.

AHBAPn.HPROT [<value> |
<name>]
SYStem.Option.AHBH-
PROT [<value> | <name>]
(deprecated)

Default: 0.
Selects the value used for the HPROT bits in the Control Status
Word (CSW) of a CoreSight AHB Access Port, when using the AHB:
memory class.

AXIAPn.HPROT [<value> |
<name>]
SYStem.Option.AXIHPROT
[<value> | <name>]
(deprecated)

Default: 0.
This option selects the value used for the HPROT bits in the Control
Status Word (CSW) of a CoreSight AXI Access Port, when using
the AXI: memory class.

MEMORYAPn.HPROT
[<value> | <name>]
SYStem.Option.MEMO-
RYHPROT [<value> |
<name>] (deprecated)

Default: 0.
This option selects the value used for the HPROT bits in the Control
Status Word (CSW) of a CoreSight Memory Access Port, when
using the E: memory class.

AXIAPn.ACEEnable [ON |
OFF]
SYStem.Option.AXIACEEn-
able [ON | OFF] (deprecated)

Default: OFF.
Enables ACE transactions on the AXI-AP, including barriers. This
does only work if the debug logic of the target CPU implements
coherent accesses. Otherwise this option will be without effect.

AXIAPn.CacheFlags
<value>
SYStem.Option.AXI-
CACHEFLAGS <value>
(deprecated)

Default: DeviceSYStem (=0x30: Domain=0x3, Cache=0x0).
This option configures the value used for the Cache and Domain
bits in the Control Status Word (CSW[27:24]->Cache, CSW[14:13]-
>Domain) of an Access Port, when using the AXI: memory class.

<name> Description

DeviceSYStem =0x30: Domain=0x3, Cache=0x0

NonCacheableSYStem =0x32: Domain=0x3, Cache=0x2

ReadAllocateNonShareable =0x06: Domain=0x0, Cache=0x6

ReadAllocateInnerShareable =0x16: Domain=0x1, Cache=0x6

ReadAllocateOuterShareable =0x26: Domain=0x2, Cache=0x6
Arm Debugger | 82©1989-2024 Lauterbach

WriteAllocateNonShareable =0x0A: Domain=0x0, Cache=0xA

WriteAllocateInnerShareable =0x1A: Domain=0x1, Cache=0xA

WriteAllocateOuterShareable =0x2A: Domain=0x2, Cache=0xA

ReadWriteAllocateNonShareable =0x0E: Domain=0x0, Cache=0xE

ReadWriteAllocateInnerShareable =0x1E: Domain=0x1, Cache=0xE

ReadWriteAllocateOuterShareable =0x2E: Domain=0x2, Cache=0xE
Arm Debugger | 83©1989-2024 Lauterbach

AHBAPn.XtorName
<name>
AHBNAME <name>
(deprecated)
DAP2AHBNAME <name>
(deprecated)

AHB bus transactor name that shall be used for “AHBn:” access
class.

APBAPn.XtorName <name>
APBNAME <name>
(deprecated)
DAP2APBNAME <name>
(deprecated)

APB bus transactor name that shall be used for “APBn:” access
class.

AXIAPn.XtorName <name>
AXINAME <name>
(deprecated)
DAP2AXINAME <name>
(deprecated)

AXI bus transactor name that shall be used for “AXIn:” access
class.

DEBUGAPn.XtorName
<name>
DEBUGBUSNAME <name>
(deprecated)
DAP2DEBUGBUSNAME
<name> (deprecated)

APB bus transactor name identifying the bus where the debug
register can be found. Used for “DAP:” access class.

MEMORYAPn.XtorName
<name>
MEMORYBUSNAME
<name> (deprecated)
DAP2MEMORYBUSNAME
<name> (deprecated)

AHB bus transactor name identifying the bus where system
memory can be accessed even during runtime. Used for “E:”
access class while running, assuming “SYStem.MemAccess
DAP”.

DAPNAME <name> DAP transactor name that shall be used for DAP access ports.

DAP2NAME <name> DAP transactor name that shall be used for DAP access ports of
2nd order.

... .RESet Undo the configuration for this access port. This does not cause
a physical reset for the access port on the chip.

... .view Opens a window showing the current configuration of the access
port.
Arm Debugger | 84©1989-2024 Lauterbach

SoC-400 Specific Commands

AHBAPn.Port <port>
AHBACCESSPORT <port>
(deprecated)
DAP2AHBACCESSPORT
<port> (deprecated)

Access Port Number (0-255) of a SoC-400 system which shall be
used for “AHBn:” access class. Default: <port>=0.

APBAPn.Port <port>
APBACCESSPORT <port>
(deprecated)
DAP2APBACCESSPORT
<port> (deprecated)

Access Port Number (0-255) of a SoC-400 system which shall be
used for “APBn:” access class. Default: <port>=1.

AXIAPn.Port <port>
AXIACCESSPORT <port>
(deprecated)
DAP2AXIACCESSPORT
<port> (deprecated)

Access Port Number (0-255) of a SoC-400 system which shall be
used for “AXIn:” access class. Default: port not available.

DAP2JTAGPORT <port> JTAG-AP port number (0-7) for an (other) DAP which is
connected to a JTAG-AP.

DEBUGAPn.Port <port>
DEBUGACCESSPORT
<port> (deprecated)
DAP2DEBUGACCESS-
PORT <port> (deprecated)

AP access port number (0-255) of a SoC-400 system where the
debug register can be found (typically on APB). Used for “DAP:”
access class. Default: <port>=1.

JTAGAPn.CorePort <port>
COREJTAGPORT <port>
(deprecated)
DAP2COREJTAGPORT
<port> (deprecated)

JTAG-AP port number (0-7) connected to the core which shall be
debugged.

JTAGAPn.Port <port>
JTAGACCESSPORT <port>
(deprecated)

Access port number (0-255) of a SoC-400 system of the JTAG
Access Port.

MEMORYAPn.Port <port>
MEMORYACCESSPORT
<port> (deprecated)
DAP2MEMORYACCESS-
PORT <port> (deprecated)

AP access port number (0-255) of a SoC-400 system where
system memory can be accessed even during runtime (typically
an AHB). Used for “E:” access class while running, assuming
“SYStem.MemAccess DAP”. Default: <port>=0.
Arm Debugger | 85©1989-2024 Lauterbach

SoC-600 Specific Commands

AHBAPn.Base <address> This command informs the debugger about the start address of
the register block of the “AHBAPn:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.AHBAP1.Base DP:0x80002000
Meaning: The control register block of the AHB access ports
starts at address 0x80002000.

APBAPn.Base <address> This command informs the debugger about the start address of
the register block of the “APBAPn:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.APBAP1.Base DP:0x80003000
Meaning: The control register block of the APB access ports
starts at address 0x80003000.

AXIAPn.Base <address> This command informs the debugger about the start address of
the register block of the “AXIAPn:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.AXIAP1.Base DP:0x80004000
Meaning: The control register block of the AXI access ports
starts at address 0x80004000.

JTAGAPn.Base <address> This command informs the debugger about the start address of
the register block of the “JTAGAPn:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.JTAGAP1.Base DP:0x80005000
Meaning: The control register block of the JTAG access ports
starts at address 0x80005000.
Arm Debugger | 86©1989-2024 Lauterbach

XCP Specific Commands

The following commands are used with the XCP backend to configure access to target resources via the
XCP slave. If the value is not set, the debugger will fall back to a method that might have less performance.

Normally, these values can be set automatically using SYStem.DETECT.XCPTRI. For Details, see “Target
Resources” in XCP Debug Back-End, page 7 (backend_xcp.pdf)

AHBAPn.XCPTRI <tri> Configures the debugger to use the target resource
identifier <tri> (0 to 255) for AHB accesses. Default: not set.

APBAPn.XCPTRI <tri> Configures the debugger to use the target resource
identifier <tri> (0 to 255) for APB accesses. Default: not set.

AXIAPn.XCPTRI <tri> Configures the debugger to use the target resource
identifier <tri> (0 to 255) for AXI accesses. Default: not set.
Arm Debugger | 87©1989-2024 Lauterbach

<parameters> describing debug and trace “Components”

On the Components tab in the SYStem.CONFIG.state window, you can comfortably add the debug and
trace components your chip includes and which you intend to use with the debugger’s help.

Each configuration can be done by a command in a script file as well. Then you do not need to enter
everything again on the next debug session. If you press the button with the three dots you get the
corresponding command in the command line where you can view and maybe copy it into a script file.
Arm Debugger | 88©1989-2024 Lauterbach

You can have several of the following components: CMI, ETB, ETF, ETR, FUNNEL, STM.
Example: FUNNEL1, FUNNEL2, FUNNEL3,...

The <address> parameter can be just an address (e.g. 0x80001000) or you can prepend the access class
(e.g. AHB:0x80001000). Without an access class, it gets the command-specific default access class, which
in most cases is “EDAP:”. For a configuration example using access classes, see Configuration examples
for memory access ports and a CoreSight component.

Example:

SYStem.CONFIG.COREDEBUG.Base 0x80010000 0x80012000
SYStem.CONFIG.BMC.Base 0x80011000 0x80013000
SYStem.CONFIG.ETM.Base 0x8001c000 0x8001d000
SYStem.CONFIG.STM1.Base EAHB:0x20008000
SYStem.CONFIG.STM1.Type ARM
SYStem.CONFIG.STM1.Mode STPv2
SYStem.CONFIG.FUNNEL1.Base 0x80004000
SYStem.CONFIG.FUNNEL2.Base 0x80005000
SYStem.CONFIG.TPIU.Base 0x80003000
SYStem.CONFIG.FUNNEL1.ATBSource ETM.0 0 ETM.1 1
SYStem.CONFIG.FUNNEL2.ATBSource FUNNEL1 0 STM1 7
SYStem.CONFIG.TPIU.ATBSource FUNNEL2

ETM

ETM

STM

Core

Core

FUNNEL

TPIUFUNNEL

0

1
0

7

Arm Debugger | 89©1989-2024 Lauterbach

… .ATBSource <source> Specify for components collecting trace information from where the
trace data are coming from. This way you inform the debugger
about the interconnection of different trace components on a
common trace bus.

You need to specify the “... .Base <address>” or other attributes
that define the amount of existing peripheral modules before you
can describe the interconnection by “... .ATBSource <source>”.

A CoreSight trace FUNNEL has eight input ports (port 0-7) to
combine the data of various trace sources to a common trace
stream. Therefore you can enter instead of a single source a list
of sources and input port numbers.

Example:
SYStem.CONFIG FUNNEL.ATBSource ETM 0 HTM 1 STM 7

Meaning: The funnel gets trace data from ETM on port 0, from
HTM on port 1 and from STM on port 7.

In an SMP (Symmetric MultiProcessing) debug session where
you used a list of base addresses to specify one component per
core you need to indicate which component in the list is meant:
Arm Debugger | 90©1989-2024 Lauterbach

Example: Four cores with ETM modules.
SYStem.CONFIG ETM.Base 0x1000 0x2000 0x3000 0x4000
SYStem.CONFIG FUNNEL1.ATBSource ETM.0 0 ETM.1 1
ETM.2 2 ETM.3 3
"...2" of "ETM.2" indicates it is the third ETM module which has
the base address 0x3000. The indices of a list are 0, 1, 2, 3,...
If the numbering is accelerating, starting from 0, without gaps,
like the example above then you can shorten it to
SYStem.CONFIG FUNNEL1.ATBSource ETM

Example: Four cores, each having an ETM module and an ETB
module.
SYStem.CONFIG ETM.Base 0x1000 0x2000 0x3000 0x4000
SYStem.CONFIG ETB.Base 0x5000 0x6000 0x7000 0x8000
SYStem.CONFIG ETB.ATBSource ETM.2 2
The third "ETM.2" module is connected to the third ETB. The last
"2" in the command above is the index for the ETB. It is not a port
number which exists only for FUNNELs.

For a list of possible components including a short description
see Components and Available Commands.

… .BASE <address> This command informs the debugger of the start address for the
component's register block, thereby notifying it of the
component's existence. An on-chip debug and trace component
typically includes a control register block that the debugger must
access to control the component.

Example: SYStem.CONFIG ETM.Base APB:0x8011c000

Meaning: The control register block of the Embedded Trace
Macrocell (ETM) starts at address 0x8011c000 and is accessible
via APB bus.

In an SMP (Symmetric MultiProcessing) debug session you can
enter for the components BMC, COREBEBUG, CTI, ETB, ETF,
ETM, ETR a list of base addresses to specify one component per
core.

Example assuming four cores: SYStem.CONFIG
COREDEBUG.Base 0x80001000 0x80003000 0x80005000
0x80007000

For a list of possible components including a short description
see Components and Available Commands.
Arm Debugger | 91©1989-2024 Lauterbach

... .Name The name is a freely configurable identifier to describe how many
instances exists in a target systems chip. TRACE32 PowerView
GUI shares with other opened PowerView GUIs settings and the
state of components identified by the same name and component
type. Components using different names are not shared. Other
attributes as the address or the type are used when no name is
configured.

Example 1: Shared None-Programmable Funnel:
PowerView1:
SYStem.CONFIG.FUNNEL.PROGramable OFF
SYStem.CONFIG.FUNNEL.Name "shared-funnel-1"
PowerView2:
SYStem.CONFIG.FUNNEL.PROGramable OFF
SYStem.CONFIG.FUNNEL.Name "shared-funnel-1"
SYStem.CONFIG.Core 2. 1. ; merge configuration to describe a
target system with one chip containing a single none-
programmable FUNNEL.

Example 2: Cluster ETFs:
1. Configures the ETF base address and access for each core
SYStem.CONFIG.ETF.Base DAP:0x80001000 \

APB:0x80001000 DAP:0x80001000 APB:0x80001000

2. Tells the system the core 1 and 3 share cluster-etf-1 and core
2 and 4 share cluster-etf-2 despite using the same address for all
ETFs
SYStem.CONFIG.ETF.Name "cluster-etf-1" "cluster-etf-2" \

"cluster-etf-1" "cluster-etf-2"

... .NoFlush [ON | OFF] Deactivates a component flush request at the end of the trace
recording. This is a workaround for a bug on a certain chip. You
will loose trace data at the end of the recording. Don’t use it if not
needed. Default: OFF.

… .RESet Undo the configuration for this component. This does not cause a
physical reset for the component on the chip.

For a list of possible components including a short description
see Components and Available Commands.

… .Size <size> Specifies the size of the component. The component size can
normally be read out by the debugger. Therefore this command
is only needed if this can not be done for any reason.
Arm Debugger | 92©1989-2024 Lauterbach

… .STackMode [NotAvailbale
| TRGETM | FULLTIDRM |
NOTSET | FULLSTOP |
FULLCTI]

Specifies the which method is used to implement the Stack mode
of the on-chip trace.
NotAvailable: stack mode is not available for this on-chip trace.
TRGETM: the trigger delay counter of the onchip-trace is used. It
starts by a trigger signal that must be provided by a trace source.
Usually those events are routed through one or more CTIs to the
on-chip trace.
FULLTIDRM: trigger mechanism for TI devices.
NOTSET: the method is derived by other GUIs or hardware.
detection.
FULLSTOP: on-chip trace stack mode by implementation.
FULLCTI: on-chip trace provides a trigger signal that is routed
back to on-chip trace over a CTI.

… .view Opens a window showing the current configuration of the
component.

For a list of possible components including a short description
see Components and Available Commands.

… .TraceID <id> Identifies from which component the trace packet is coming from.
Components which produce trace information (trace sources) for a
common trace stream have a selectable “.TraceID <id>”.

If you miss this SYStem.CONFIG command for a certain trace
source (e.g. ETM) then there is a dedicated command group for
this component where you can select the ID (ETM.TraceID <id>).

The default setting is typically fine because the debugger uses
different default trace IDs for different components.

For a list of possible components including a short description
see Components and Available Commands.
Arm Debugger | 93©1989-2024 Lauterbach

CTI.Config <type> Informs about the interconnection of the core Cross Trigger
Interfaces (CTI). Certain ways of interconnection are common
and these are supported by the debugger e.g. to cause a
synchronous halt of multiple cores.

NONE: The CTI is not used by the debugger.
ARMV1: This mode is used for Arm7/9/11 cores which support
synchronous halt, only.
ARMPostInit: Like ARMV1 but the CTI connection differs from the
Arm recommendation.
OMAP3: This mode is not yet used.
TMS570: Used for a certain CTI connection used on a TMS570
derivative.
CortexV1: The CTI will be configured for synchronous start and
stop via CTI. It assumes the connection of DBGRQ, DBGACK,
DBGRESTART signals to CTI are done as recommended by
Arm. The CTIBASE must be notified. “CortexV1” is the default
value if a Cortex-A/R core is selected and the CTIBASE is
notified.
QV1: This mode is not yet used.

CTICH01: Channel 0 and 1 of the CTM are used to distribute
start/stop events from and to the CTIs. Armv8/Armv9 only.
CTICH23: Channel 2 and 3 of the CTM are used to distribute
start/stop events from and to the CTIs. Armv8/Armv9 only.
ARMV8V3: Channel 0, 1 and 2 of the CTM are used to distribute
start/stop events. Implemented on request. Armv8/Armv9 only.

DTM.Type [None | Generic] Informs the debugger that a customer proprietary Data Trace
Message (DTM) module is available. This causes the debugger
to consider this source when capturing common trace data.
Trace data from this module will be recorded and can be
accessed later but the unknown DTM module itself will not be
controlled by the debugger.

ETR.CATUBase <address> Base address of the CoreSight Address Translation Unit (CATU).

FUNNEL.Name <string> It is possible that different funnels have the same address for
their control register block. This assumes they are on different
buses and for different cores. In this case it is needed to give the
funnel different names to differentiate them.
Arm Debugger | 94©1989-2024 Lauterbach

FUNNEL.PROGrammable
[ON | OFF]

Default is ON. If set to ON the peripheral is controlled by
TRACE32 in order to route ATB trace data through the ATB bus
network. If PROGrammable is configured to value OFF then
TRACE32 will not access the FUNNEL registers and the base
address doesn't need to be configured. This can be useful for
FUNNELs that don't have registers or when those registers are
read-only. TRACE32 need still be aware of the connected ATB
trace sources and sink in order to know the ATB topology. To
build a complete topology across multiple instances of
PowerView the property Name should be set at all instances to a
chip wide unique identifier.

HTM.Type [CoreSight | WPT] Selects the type of the AMBA AHB Trace Macrocell (HTM).
CoreSight is the type as described in the Arm CoreSight
manuals. WPT is a NXP proprietary trace module.

L2CACHE.Type [NONE |
Generic | L210 | L220 | L2C-
310 | AURORA | AURORA2]

Selects the type of the level2 cache controller. L210, L220, L2C-
310 are controller types provided by Arm. AURORAx are Marvell
types. The ‘Generic’ type does not need certain treatment by the
debugger.

OCP.Type <type> Specifies the type of the OCP module. The <type> is just a
number which you need to figure out in the chip documentation.

RTP.PerBase <address> PERBASE specifies the base address of the core peripheral
registers which accesses shall be traced. PERBASE is needed
for the RAM Trace Port (RTP) which is available on some
derivatives from Texas Instruments. The trace packages include
only relative addresses to PERBASE and RAMBASE.

RTP.RamBase <address> RAMBASE is the start address of RAM which accesses shall be
traced. RAMBASE is needed for the RAM Trace Port (RTP)
which is available on some derivatives from Texas Instruments.
The trace packages include only relative addresses to PERBASE
and RAMBASE.

STM.Mode [NONE | XTIv2 |
SDTI | STP | STP64 | STPv2]

Selects the protocol type used by the System Trace Module (STM).

STM.Type [None | Generic |
ARM | SDTI | TI]

Selects the type of the System Trace Module (STM). Some types
allow to work with different protocols (see STM.Mode).

TPIU.Type [CoreSight |
Generic]

Selects the type of the Trace Port Interface Unit (TPIU).

CoreSight: Default. CoreSight TPIU. TPIU control register
located at TPIU.Base <address> will be handled by the
debugger.

Generic: Proprietary TPIU. TPIU control register will not be
handled by the debugger.
Arm Debugger | 95©1989-2024 Lauterbach

Components and Available Commands

See the description of the commands above. Please note that there is a common description for
ATBSource,Base, ,RESet,TraceID.

BMC.Base <address>
BMC.RESet
Performance Monitor Unit (PMU) - Arm debug module, e.g. on Cortex-A/R
Bench-Mark-Counter (BMC) is the TRACE32 term for the same thing.
The module contains counter which can be programmed to count certain events (e.g. cache hits).

CMI.Base <address>
CMI.RESet
CMI.TraceID <id>
Clock Management Instrumentation (CMI) - Texas Instruments
Trace source delivering information about clock status and events to a system trace module.

COREDEBUG.Base <address>
COREDEBUG.RESet
Core Debug Register - Arm debug register, e.g. on Cortex-A/R
Some cores do not have a fix location for their debug register used to control the core. In this case it is
essential to specify its location before you can connect by e.g. SYStem.Up.

CTI.Base <address>
CTI.Config <interconnection>
Cross Trigger Interface (CTI) - Arm CoreSight module
If notified the debugger uses it to synchronously halt (and sometimes also to start) multiple cores.

DRM.Base <address>
DRM.RESet
Debug Resource Manager (DRM) - Texas Instruments
It will be used to prepare chip pins for trace output.

DTM.RESet
DTM.Type [None | Generic]
Data Trace Module (DTM) - generic, CoreSight compliant trace source module
If specified it will be considered in trace recording and trace data can be accessed afterwards.
DTM module itself will not be controlled by the debugger.

DWT.Base <address>
DWT.RESet
Data Watchpoint and Trace unit (DWT) - Arm debug module on Cortex-M cores
Normally fix address at 0xE0001000 (default).
Arm Debugger | 96©1989-2024 Lauterbach

EPM.Base <address>
EPM.RESet
Emulation Pin Manager (EPM) - Texas Instruments
It will be used to prepare chip pins for trace output.

ETB2AXI.Base <address>
ETB2AXI.RESet
ETB to AXI module
Similar to an ETR.

ETB.ATBSource <source>
ETB.Base <address>
ETB.RESet
ETB.Size <size>
Embedded Trace Buffer (ETB) - Arm CoreSight module
Enables trace to be stored in a dedicated SRAM. The trace data will be read out through the debug port after
the capturing has finished.

ETF.ATBSource <source>
ETF.Base <address>
ETF.RESet
Embedded Trace FIFO (ETF) - Arm CoreSight module
On-chip trace buffer used to lower the trace bandwidth peaks.

ETM.Base <address>
ETM.RESet
Embedded Trace Macrocell (ETM) - Arm CoreSight module
Program Trace Macrocell (PTM) - Arm CoreSight module
Trace source providing information about program flow and data accesses of a core.
The ETM commands will be used even for PTM.

ETR.ATBSource <source>
ETR.CATUBase <address>
ETR.Base <address>
ETR.RESet
Embedded Trace Router (ETR) - Arm CoreSight module
Enables trace to be routed over an AXI bus to system memory or to any other AXI slave.

ETS.ATBSource <source>
ETS.Base <address>
ETS.RESet
Embedded Trace Streamer (ETS) - Arm CoreSight module

FUNNEL.ATBSource <sourcelist>
FUNNEL.Base <address>
FUNNEL.Name <string>
FUNNEL.PROGrammable [ON | OFF]
FUNNEL.RESet
CoreSight Trace Funnel (CSTF) - Arm CoreSight module
Combines multiple trace sources onto a single trace bus (ATB = AMBA Trace Bus)
Arm Debugger | 97©1989-2024 Lauterbach

REP.ATBSource <sourcelist>
REP.Base <address>
REP.Name <string>
REP.RESet
CoreSight Replicator - Arm CoreSight module
This command group is used to configure Arm Coresight Replicators with programming interface. After the
Replicator(s) have been defined by the base address and optional names the ATB sources REPlicatorA and
REPlicatorB can be used from other ATB sinks to connect to output A or B to the Replicator.

HSM.Base <address>
HSM.RESet
Hardware Security Module (HSM) - Infineon

HTM.Base <address>
HTM.RESet
HTM.Type [CoreSight | WPT]
AMBA AHB Trace Macrocell (HTM) - Arm CoreSight module
Trace source delivering trace data of access to an AHB bus.

ICE.Base <address>
ICE.RESet
ICE-Crusher (ICE) - Texas Instruments

ITM.Base <address>
ITM.RESet
Instrumentation Trace Macrocell (ITM) - Arm CoreSight module
Trace source delivering system trace information e.g. sent by software in printf() style.

L2CACHE.Base <address>
L2CACHE.RESet
L2CACHE.Type [NONE | Generic | L210 | L220 | L2C-310 | AURORA | AURORA2]
Level 2 Cache Controller
The debugger might need to handle the controller to ensure cache coherency for debugger operation.

OCP.Base <address>
OCP.RESet
OCP.TraceID <id>
OCP.Type <type>
Open Core Protocol watchpoint unit (OCP) - Texas Instruments
Trace source module delivering bus trace information to a system trace module.

PMI.Base <address>
PMI.RESet
PMI.TraceID <id>
Power Management Instrumentation (PMI) - Texas Instruments
Trace source reporting power management events to a system trace module.

RTP.Base <address>
RTP.PerBase <address>
RTP.RamBase <address>
Arm Debugger | 98©1989-2024 Lauterbach

RTP.RESet
RAM Trace Port (RTP) - Texas Instruments
Trace source delivering trace data about memory interface usage.

SC.Base <address>
SC.RESet
SC.TraceID <id>
Statistic Collector (SC) - Texas Instruments
Trace source delivering statistic data about bus traffic to a system trace module.

SDC.Base <address>
SDC.RESet
Secure Debug Channel (SDC) - Arm CoreSight module
Communication module sdc600_apbcom_ext for debug authentication.

STM.Base <address>
STM.Mode [NONE | XTIv2 | SDTI | STP | STP64 | STPv2]
STM.RESet
STM.Type [None | Generic | ARM | SDTI | TI]
System Trace Macrocell (STM) - MIPI, Arm CoreSight, others
Trace source delivering system trace information e.g. sent by software in printf() style.

TPIU.ATBSource <source>
TPIU.Base <address>
TPIU.RESet
TPIU.Type [CoreSight | Generic]
Trace Port Interface Unit (TPIU) - Arm CoreSight module
Trace sink sending the trace off-chip on a parallel trace port (chip pins).
Arm Debugger | 99©1989-2024 Lauterbach

<parameters> which are “Deprecated”

In recent years, chips and their debug and trace architectures have become much more complex. The
CoreSight trace components and their interconnection on a common trace bus, in particular, necessitated a
revision of our commands. The new commands can handle even the most complex structures.

… BASE <address> This command informs the debugger about the start address of
the register block of the component. And this way it notifies the
existence of the component. An on-chip debug and trace
component typically provides a control register block which
needs to be accessed by the debugger to control this
component.

Example: SYStem.CONFIG ETMBASE APB:0x8011c000

Meaning: The control register block of the Embedded Trace
Macrocell (ETM) starts at address 0x8011c000 and is accessible
via APB bus.

In an SMP (Symmetric MultiProcessing) debug session you can
enter for the components BMC, CORE, CTI, ETB, ETF, ETM, ETR a
list of base addresses to specify one component per core.

Example assuming four cores: “SYStem.CONFIG COREBASE
0x80001000 0x80003000 0x80005000 0x80007000”.

COREBASE (old syntax: DEBUGBASE): Some cores e.g. Cortex-
A or Cortex-R do not have a fix location for their debug register
which are used for example to halt and start the core. In this case it
is essential to specify its location before you can connect by e.g.
SYStem.Up.

PERBASE and RAMBASE are needed for the RAM Trace Port
(RTP) which is available on some derivatives from Texas
Instruments. PERBASE specifies the base address of the core
peripheral registers which accesses shall be traced, RAMBASE
is the start address of RAM which accesses shall be traced. The
trace packages include only relative addresses to PERBASE and
RAMBASE.

For a list of possible components including a short description
see Components and Available Commands.
Arm Debugger | 100©1989-2024 Lauterbach

… PORT <port> Informs the debugger about which trace source is connected to
which input port of which funnel. A CoreSight trace funnel
provides 8 input ports (port 0-7) to combine the data of various
trace sources to a common trace stream.

Example: SYStem.CONFIG STMFUNNEL2PORT 3

Meaning: The System Trace Module (STM) is connected to input
port #3 on FUNNEL2.

On an SMP debug session some of these commands can have a
list of <port> parameter.

In case there are dedicated funnels for the ETB and the TPIU
their base addresses are specified by ETBFUNNELBASE,
TPIUFUNNELBASE respectively. And the funnel port number for
the ETM are declared by ETMETBFUNNELPORT,
ETMTPIUFUNNELPORT respectively.

For a list of possible components including a short description
see Components and Available Commands.

BYPASS <seq> With this option it is possible to change the JTAG bypass
instruction pattern for other TAPs. It works in a multi-TAP JTAG
chain for the IRPOST pattern, only, and is limited to 64 bit. The
specified pattern (hexadecimal) will be shifted least significant bit
first. If no BYPASS option is used, the default value is “1” for all
bits.

CTICONFIG <type> Informs about the interconnection of the core Cross Trigger
Interfaces (CTI). Certain ways of interconnection are common
and these are supported by the debugger e.g. to cause a
synchronous halt of multiple cores.

NONE: The CTI is not used by the debugger.
ARMV1: This mode is used for Arm7/9/11 cores which support
synchronous halt, only.
ARMPostInit: Like ARMV1 but the CTI connection differs from the
Arm recommendation.
OMAP3: This mode is not yet used.
TMS570: Used for a certain CTI connection used on a TMS570
derivative.
CortexV1: The CTI will be configured for synchronous start and
stop via CTI. It assumes the connection of DBGRQ, DBGACK,
DBGRESTART signals to CTI are done as recommended by
Arm. The CTIBASE must be notified. “CortexV1” is the default
value if a Cortex-A/R core is selected and the CTIBASE is
notified.
QV1: This mode is not yet used.
Arm Debugger | 101©1989-2024 Lauterbach

Mapping Deprecated to New Commands

In the following you find the list of deprecated commands which can still be used for compatibility reasons
and the corresponding new command.

SYStem.CONFIG <parameter>

DTMCONFIG [ON | OFF] Informs the debugger that a customer proprietary Data Trace
Message (DTM) module is available. This causes the debugger
to consider this source when capturing common trace data.
Trace data from this module will be recorded and can be
accessed later but the unknown DTM module itself will not be
controlled by the debugger.

FILLDRZERO [ON | OFF] This changes the bypass data pattern for other TAPs in a multi-
TAP JTAG chain. It changes the pattern from all “1” to all “0”. This
is a workaround for a certain chip problem. It is available on the
Arm9 debugger, only.

TIOCPTYPE <type> Specifies the type of the OCP module from Texas Instruments
(TI).

view Opens a window showing most of the SYStem.CONFIG settings
and allows to modify them.

<parameter>:
(Deprecated)

<parameter>:
(New)

BMCBASE <address> BMC.Base <address>

BYPASS <seq> CHIPIRPRE <bits>
CHIPIRLENGTH <bits>
CHIPIRPATTERN.Alternate <pattern>

COREBASE <address> COREDEBUG.Base <address>

CTIBASE <address> CTI.Base <address>

CTICONFIG <type> CTI.Config <type>

DEBUGBASE <address> COREDEBUG.Base <address>

DTMCONFIG [ON | OFF] DTM.Type.Generic

DTMETBFUNNELPORT <port> FUNNEL4.ATBSource DTM <port> (1)

DTMFUNNEL2PORT <port> FUNNEL2.ATBSource DTM <port> (1)

DTMFUNNELPORT <port> FUNNEL1.ATBSource DTM <port> (1)

DTMTPIUFUNNELPORT <port> FUNNEL3.ATBSource DTM <port> (1)

DWTBASE <address> DWT.Base <address>

ETB2AXIBASE <address> ETB2AXI.Base <address>
Arm Debugger | 102©1989-2024 Lauterbach

ETBBASE <address> ETB1.Base <address>

ETBFUNNELBASE <address> FUNNEL4.Base <address>

ETFBASE <address> ETF1.Base <address>

ETMBASE <address> ETM.Base <address>

ETMETBFUNNELPORT <port> FUNNEL4.ATBSource ETM <port> (1)

ETMFUNNEL2PORT <port> FUNNEL2.ATBSource ETM <port> (1)

ETMFUNNELPORT <port> FUNNEL1.ATBSource ETM <port> (1)

ETMTPIUFUNNELPORT <port> FUNNEL3.ATBSource ETM <port> (1)

FILLDRZERO [ON | OFF] CHIPDRPRE 0
CHIPDRPOST 0
CHIPDRLENGTH <bits_of_complete_dr_path>
CHIPDRPATTERN.Alternate 0

FUNNEL2BASE <address> FUNNEL2.Base <address>

FUNNELBASE <address> FUNNEL1.Base <address>

HSMBASE <address> HSM.Base <address>

HTMBASE <address> HTM.Base <address>

HTMETBFUNNELPORT <port> FUNNEL4.ATBSource HTM <port> (1)

HTMFUNNEL2PORT <port> FUNNEL2.ATBSource HTM <port> (1)

HTMFUNNELPORT <port> FUNNEL1.ATBSource HTM <port> (1)

HTMTPIUFUNNELPORT <port> FUNNEL3.ATBSource HTM <port> (1)

ITMBASE <address> ITM.Base <address>

ITMETBFUNNELPORT <port> FUNNEL4.ATBSource ITM <port> (1)

ITMFUNNEL2PORT <port> FUNNEL2.ATBSource ITM <port> (1)

ITMFUNNELPORT <port> FUNNEL1.ATBSource ITM <port> (1)

ITMTPIUFUNNELPORT <port> FUNNEL3.ATBSource ITM <port> (1)

PERBASE <address> RTP.PerBase <address>

RAMBASE <address> RTP.RamBase <address>

RTPBASE <address> RTP.Base <address>

SDTIBASE <address> STM1.Base <address>
STM1.Mode SDTI
STM1.Type SDTI

STMBASE <address> STM1.Base <address>
STM1.Mode STPV2
STM1.Type ARM

STMETBFUNNELPORT <port> FUNNEL4.ATBSource STM1 <port> (1)

STMFUNNEL2PORT <port> FUNNEL2.ATBSource STM1 <port> (1)

STMFUNNELPORT <port> FUNNEL1.ATBSource STM1 <port> (1)

STMTPIUFUNNELPORT <port> FUNNEL3.ATBSource STM1 <port> (1)
Arm Debugger | 103©1989-2024 Lauterbach

(1) Further “<component>.ATBSource <source>” commands might be needed to describe the full trace data
path from trace source to trace sink.

TIDRMBASE <address> DRM.Base <address>

TIEPMBASE <address> EPM.Base <address>

TIICEBASE <address> ICE.Base <address>

TIOCPBASE <address> OCP.Base <address>

TIOCPTYPE <type> OCP.Type <type>

TIPMIBASE <address> PMI.Base <address>

TISCBASE <address> SC.Base <address>

TISTMBASE <address> STM1.Base <address>
STM1.Mode STP
STM1.Type TI

TPIUBASE <address> TPIU.Base <address>

TPIUFUNNELBASE <address> FUNNEL3.Base <address>

view state
Arm Debugger | 104©1989-2024 Lauterbach

SYStem.CONFIG.EXTWDTDIS Disable external watchdog

Default for Automotive/Automotive PRO Debug Cable: High.
Default for XCP: OFF.

Controls the WDTDIS pin of the debug port. This configuration is only available for tools with an Automotive
Connector (e.g., Automotive Debug Cable, Automotive PRO Debug Cable) and XCP.

Format: SYStem.CONFIG.EXTWDTDIS <option>

<option>: OFF
High
Low
HighwhenStopped
LowwhenStopped

OFF The WDTDIS pin is not driven. (XCP only)

High The WDTDIS pin is permanently driven high.

Low The WDTDIS pin is permanently driven low.

HighwhenStopped The WDTDIS pin is driven high when program is stopped (not XCP).

LowwhenStopped The WDTDIS pin is driven low when program is stopped (not XCP).
Arm Debugger | 105©1989-2024 Lauterbach

SYStem.CONFIG.SMMU Internal use

For some CPUs with SMMUs, TRACE32 configures the SMMUs parameters automatically after you have
selected a CPU with the SYStem.CPU command.

Format: SYStem.CONFIG.SMMU<x> <sub_cmd>

<x>: 1 … 20

<sub_cmd>: Base <base_address>
Type MMU400 | MMU401 | MMU500
Name "<name>"
RESet

NOTE: For a manual SMMU configuration, use the SMMU.ADD command.
Arm Debugger | 106©1989-2024 Lauterbach

You can access the automatically configured SMMUs through the CPU menu > SMMU submenu in
TRACE32. The individual SMMU configurations can be viewed in the SYStem.CONFIG.state /COmponent
window.

<x> Serial number of the SMMU.

Base Logical or physical base address of the memory-mapped SMMU register
space.

Type Defines the type of the Arm system MMU IP block:
MMU400, MMU401, or MMU500.

Name Assigns a user-defined name to an SMMU.

RESet Resets the configuration of an SMMU specified with <x>.
Arm Debugger | 107©1989-2024 Lauterbach

SYStem.CPU Select the used CPU

Selects the processor type. If your ASIC is not listed, select the type of the integrated Arm core.

Default selection:

• ARM7TDMI if the JTAG Debugger for Arm7 is used.

• ARM9TDMI if the JTAG Debugger for Arm9 is used.

• JANUS2 if the JTAG Debugger for JANUS is used.

• ARM1020E if the JTAG Debugger for Arm10 is used.

• ARM1136J if the JTAG Debugger for Arm11 is used.

• CORTEXA8 if the JTAG Debugger for Cortex-A is used.

• CORTEXM3 if the JTAG Debugger for Cortex-M is used.

SYStem.JtagClock Define the frequency of the debug port

Default frequency: 10 MHz.

Selects the frequency (TCK/SWCLK) used by the debugger to communicate with the processor in JTAG,
SWD or cJTAG mode. The frequency affects e.g. the download speed. It could be required to reduce the
JTAG frequency if there are buffers, additional loads or high capacities on the debug port signals or if VTREF
is very low. A very high frequency will not work on all systems and will result in an erroneous data transfer.
Therefore we recommend to use the default setting if possible.

Format: SYStem.CPU <cpu>

<cpu>: ARM7TDMI | ARM740TD | … (JTAG Debugger Arm7)
ARM9TDMI | ARM920T | ARM940T |… (JTAG Debugger Arm9)
JANUS2 (JTAG Debugger Janus)
ARM1020E | ARM1022E | ARM1026EJ |…(JTAG Debugger Arm10)
ARM1136J | ARM1136JF |… (JTAG Debugger Arm11)
CORTEXA8 | SCORPION |…(JTAG Debugger Cortex-A)
CORTEXM3 |…(JTAG Debugger Cortex-M)

Format: SYStem.JtagClock [<frequency> | RTCK | ARTCK <frequency> |
 CTCK <frequency> | CRTCK <frequency>]

SYStem.BdmClock (deprecated)

<frequency>: 4 kHz…100 MHz
Arm Debugger | 108©1989-2024 Lauterbach

<frequency> • The debugger cannot select all frequencies accurately. It chooses
the next possible frequency and displays the real value in the
SYStem.state window.

• Besides a decimal number like “100000.” short forms like “10kHz”
or “15MHz” can also be used. The short forms imply a decimal
value, although no “.” is used.

RTCK The debug clock is controlled by the RTCK signal (Returned TCK).
On some processor derivatives (e.g. ArmxxxE-S) there is the need to
synchronize the processor clock and the JTAG clock. In this case RTCK shall
be selected. Synchronization is maintained, because the debugger does not
progress to the next TCK/SWCLK edge until after an RTCK edge is
received.

In case you have a processor derivative requiring a synchronization of the
processor clock and the debug clock, but your target does not provide an
RTCK signal, you need to select a fix debug clock below 1/6 of the processor
clock (Arm7, Arm9), below 1/8 of the processor clock (Arm11), respectively.

When RTCK is selected, the frequency depends on the processor clock and
on the propagation delays. The maximum reachable frequency is about
16 MHz.

SYStem.JtagClock RTCK

ARTCK Accelerated method to control the debug clock by the RTCK signal
(Accelerated Returned TCK). This option is only relevant for JTAG debug
ports.

The RTCK mode allows theoretical frequencies up to 1/6 (Arm7, Arm9) or
1/8 (Arm11) of the processor clock. For designs using a very low processor
clock we offer a different mode (ARTCK) which does not work as
recommended by Arm and might not work on all target systems.

In ARTCK mode, the debugger uses a fixed frequency for TCK, independent
of the RTCK signal. This frequency must be specified by the user and has to
be below 1/3 of the processor clock speed. TDI and TMS will be delayed by
1/2 TCK clock cycle. TDO will be sampled with RTCK.
Arm Debugger | 109©1989-2024 Lauterbach

CTCK With this option higher debug port speeds can be reached. The
TDO/SWDIO signal will be sampled by a signal which derives from
TCK/SWCLK, but which is timely compensated regarding the debugger-
internal driver propagation delays (Compensation by TCK). This feature
can be used with a debug cable version 3 or newer. If it is selected,
although the debug cable is not suitable, a fixed frequency will be
selected instead (minimum of 10 MHz and selected clock).

CRTCK With this option higher debug port speeds can be reached. The
TDO/SWDIO signal will be sampled by the RTCK signal. This compensates
the debugger-internal driver propagation delays, the delays on the cable and
on the target (Compensation by RTCK). This feature requires that the target
provides an RTCK signal. In contrast to the RTCK option, the TCK/SWCLK
is always output with the selected, fixed frequency.
Arm Debugger | 110©1989-2024 Lauterbach

SYStem.LOCK Tristate the JTAG port

Default: OFF.

If the system is locked, no access to the JTAG port will be performed by the debugger. While locked, the
JTAG connector of the debugger is tristated. The intention of the SYStem.LOCK command is, for example,
to give JTAG access to another tool. The process can also be automated, see SYStem.CONFIG TriState.

It must be ensured that the state of the Arm core JTAG state machine remains unchanged while the system
is locked. To ensure correct hand-over, the options SYStem.CONFIG TAPState and SYStem.CONFIG
TCKLevel must be set properly. They define the TAP state and TCK level which is selected when the
debugger switches to tristate mode. Please note: nTRST must have a pull-up resistor on the target,
EDBGRQ must have a pull-down resistor.

Format: SYStem.LOCK [ON | OFF]
Arm Debugger | 111©1989-2024 Lauterbach

SYStem.MemAccess Select run-time memory access method

Default: Denied.

If SYStem.MemAccess is not Denied, it is possible to read from memory, to write to memory and to set
software breakpoints while the CPU is executing the program. For more information, see
SYStem.CpuBreak and SYStem.CpuSpot.

Format: SYStem.MemAccess <mode>

<mode>: AHB | AXI | APB | … (SoC-600)
DAP (SoC-400)

Cerberus
Enable
NEXUS
TSMON3
TSMON
PTMON3
PTMON
QMON
UDMON3
UDMON
RealMON
TrkMON
GdbMON
Denied
StopAndGo

AHB, AXI, APB, … Depending on which memory access ports are available on the chip, the
memory access is done through the specified bus.

Cerberus The memory access is done through an Infineon proprietary Cerberus
module. This memory access is only available and selectable on a few
Infineon processors and only by script or in the command line.

DAP For SoC-600, DAP must not be used anymore. Use AXI or AHB instead,
depending on what the chip offers.
A run-time memory access is done via the Arm SoC-400 Debug Access
Port (DAP). This is only possible if a DAP is available on the chip and if
the memory bus is connected to it (Cortex, CoreSight).
NOTE: The debugger accesses the memory bus and cannot see caches.

Run-time memory access via the DAP is not possible on the TRACE32
Instruction Set Simulator.
Arm Debugger | 112©1989-2024 Lauterbach

Enable
CPU (deprecated)

Used to activate the memory access while the CPU is running on the
TRACE32 Instruction Set Simulator and on debuggers which do not have
a fixed name for the memory access method.

NEXUS The memory access is done through the Nexus interface which is only
available on MAC7xxx processors.

TSMON3
TSMON

TSMON uses a data format which shall not be used anymore. It still
works for compatibility reasons. TSMON3 shall be used.

A run-time memory access is done via a Time Sharing Monitor.

The application is responsible for calling the monitor code periodically.
The call is typically included in a periodic interrupt or in the idle task of
the kernel. See the example in the directory
~~/demo/arm/etc/runtime_memory_access.

Besides run-time memory access TSMON3 would allow run mode
debugging. But manual break is not possible with TSMON3 and could
only be emulated by polling the DCC port. Therefore better use UDMON3
(or RealMON, TrkMON, GdbMON) for this purpose.
Arm Debugger | 113©1989-2024 Lauterbach

PTMON3
PTMON

PTMON uses a data format which shall not be used anymore. It still
works for compatibility reasons. PTMON3 shall be used.

A run-time memory access is done via a Pulse Triggered Monitor.

Whenever the debugger wants to perform a memory access while the
program is running, the debugger generates a trigger for the trigger bus.
If the trigger bus is configured appropriate (TrBus), this trigger is output
via the TRIGGER connector of the TRACE32 development tool. The
TRIGGER output can be connected to an external interrupt in order to
call a monitor. See the example in the directory
~~/demo/arm/etc/runtime_memory_access.

Besides run-time memory access PTMON3 would allow run mode
debugging. But manual break is not possible with PTMON3 and could
only be emulated by polling the DCC port. Therefore better use UDMON3
(or RealMON, TrkMON, GdbMON) for this purpose.

QMON Select QNX monitor (pdebug) for Run Mode Debugging of embedded
QNX. Ethernet is used as communication interface. For more
information, “Run Mode Debugging Manual QNX” (rtos_qnx_run.pdf).
Arm Debugger | 114©1989-2024 Lauterbach

A run-time access can be done by using the access class prefix “E”. At first sight it is not clear, whether this
causes a read access through the CPU, the AHB/AXI bypassing the CPU, or no read access at all. The
following tables will summarize this effect. “E” can be combined with various access classes. The following
example uses the access class “A” (physical access) to illustrate the effect of “E”.

UDMON3
UDMON

UDMON uses a data format which shall not be used anymore. It still
works for compatibility reasons. UDMON3 shall be used.

A run-time memory access is done via a Usermode Debug Monitor.

The application is responsible for calling the monitor code periodically.
The call is typically included in a periodic interrupt or in the idle task of
the kernel. For run-time memory access UDMON3 behaves exactly as
TSMON3. See the example in the directory
~~/demo/arm/etc/runtime_memory_access and see the picture at
TSMON3.

Besides run-time memory access UDMON3 allows run mode debugging.
Handling of interrupts when the application is stopped is possible when
the background monitor is activated. On-chip breakpoints and manual
program break are only possible when the application runs in user (USR)
mode. See also the example in the directory
~~/demo/arm/etc/background_monitor.

RealMON Run-time memory access and run mode debugging is done via the
RealMonitor from Arm. The RealMonitor target software is supplied with Arm
Firmware Suite.

TrkMON Select TRK for Run Mode Debugging of Symbian OS. DCC is used as
communication interface.

GdbMON Select T32server (extended gdbserver) for Run Mode Debugging of
embedded Linux. DCC is used as communication interface. For more
information refer to “Run Mode Debugging Manual Linux”
(rtos_linux_run.pdf).

Denied No memory access is possible while the CPU is executing the program.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.
For more information, see below.
Arm Debugger | 115©1989-2024 Lauterbach

CPU stopped

CPU running

*) Cortex-M: The "CPU" access uses the AHB/AXI access path instead, due to the debug interface design.

SYStem.CpuSpot Enabled

SYS.MA.
Access class

Denied DAP
(SoC-400 only)

[AHB | AXI]
(SoC-600 only)

StopAndGo

EA CPU* AHB/AXI AHB/AXI CPU*

A CPU* CPU* CPU* CPU*

AHB or AXI AHB/AXI AHB/AXI AHB/AXI AHB/AXI

EAHB or EAXI AHB/AXI AHB/AXI AHB/AXI AHB/AXI

SYStem.CpuSpot [Denied | Target | SINGLE]

SYS.MA.
Access class

Denied DAP
(SoC-400 only)

[AHB | AXI]
(SoC-600 only)

StopAndGo

EA CPU* AHB/AXI AHB/AXI not allowed

A CPU* CPU* CPU* not allowed

AHB or AXI AHB/AXI AHB/AXI AHB/AXI not allowed

EAHB or EAXI AHB/AXI AHB/AXI AHB/AXI not allowed

SYStem.CpuSpot Enabled

SYS.MA.
Access class

Denied DAP
(SoC-400 only)

[AHB | AXI]
(SoC-600 only)

StopAndGo

EA no access AHB/AXI AHB/AXI CPU* (spotted)

A no access no access no access no access

AHB or AXI no access no access no access no access

EAHB or EAXI AHB/AXI AHB/AXI AHB/AXI AHB/AXI

SYStem.CpuSpot [Denied | Target | SINGLE]

SYS.MA.
Access class

Denied DAP
(SoC-400 only)

[AHB | AXI]
(SoC-600 only)

StopAndGo

EA no access AHB/AXI AHB/AXI not allowed

A no access no access no access not allowed

AHB or AXI no access no access no access not allowed

EAHB or EAXI AHB/AXI AHB/AXI AHB/AXI not allowed
Arm Debugger | 116©1989-2024 Lauterbach

If SYStem.MemAccess StopAndGo is set, it is possible to read from memory, to write to memory and to
set software breakpoints while the CPU is executing the program. To make this possible, the program
execution is shortly stopped by the debugger. Each stop takes some time depending on the speed of the
JTAG port and the operations that should be performed. A white S against a red background in the
TRACE32 state line warns you that the program is no longer running in real-time:

To update specific windows that display memory or variables while the program is running, select the
memory class E: or the format option %E.

Data.dump E:0x100

Var.View %E first

No real-time
Arm Debugger | 117©1989-2024 Lauterbach

SYStem.Mode Establish the communication with the target
[SYStem.state window > Mode]

Default: Down.

Configures how the debugger connects to the target and how the target is handled.

Format: SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Down
NoDebug
Prepare
Go
Attach
StandBy
Up

Down Disables the debugger. The state of the CPU remains unchanged. The
JTAG port is tristated.

NoDebug Disables the debugger. The state of the CPU remains unchanged. The
JTAG port is tristated.

Prepare Resets the target. This can be done via the reset line or CPU specific
reset registers, see also SYStem.Option.RESetREGister. Afterwards
direct access to the CoreSight DAP interface is provided. For a reset, the
reset line has to be connected to the debug connector.

The debugger initializes the debug port (JTAG, SWD, cJTAG) and
CoreSight DAP interface, but does not connect to the CPU.
This debug mode is used if the CPU shall not be debugged or bypassed,
i.e. the debugger can access the memory busses, such as AXI, AHB and
APB, directly through the memory access ports of the CoreSight DAP.

Typical use cases:
• The debugger accesses (physical) memory and bypasses the CPU

if a mapping exists. Memory might require initialization before it can
be accessed.

• The debugger accesses peripherals, e.g. for configuring registers
prior to stopping the CPU in debug mode. Peripherals might need to
be clocked and powered before they can be accessed.

• Third-party software or proprietary debuggers use the TRACE32
API (application programming interface) to access the debug port
and DAP via the TRACE32 debugger hardware.
Arm Debugger | 118©1989-2024 Lauterbach

Go Resets the target via the reset line, initializes the debug port (JTAG, SWD,
cJTAG), and starts the program execution. For a reset, the reset line has to
be connected to the debug connector.
Program execution can, for example, be stopped by the Break command.

Attach No reset happens, the mode of the core (running or halted) does not
change. The debug port (JTAG, SWD, cJTAG) will be initialized.
After this command has been executed, the user program can, for
example, be stopped with the Break command.

StandBy Keeps the target in reset via the reset line and waits until power is
detected. For a reset, the reset line has to be connected to the debug
connector.

Once power has been detected, the debugger restores as many debug
registers as possible (e.g. on-chip breakpoints, vector catch events, trace
control) and releases the CPU from reset to start the program execution.

When a CPU power-down is detected, the debugger switches
automatically back to the StandBy mode. This allows debugging of a
power cycle because debug registers will be restored on power-up.

NOTE: Usually only on-chip breakpoints and vector catch events can be
set while the CPU is running. To set a software breakpoint, the CPU has to
be stopped.

Up Resets the target via the reset line, initializes the debug port (JTAG, SWD,
cJTAG), stops the CPU, and enters debug mode.
For a reset, the reset line has to be connected to the debug connector.
The current state of all registers is read from the CPU.
Arm Debugger | 119©1989-2024 Lauterbach

SYStem.Option Special setup
[SYStem.state window > Option]

The SYStem.Option commands are used to control special features of the debugger or to configure the
target. It is recommended to execute the SYStem.Option commands before the emulation is activated by a
SYStem.Up or SYStem.Mode command.

SYStem.Option.ABORTFIX Do not access memory area from 0x0 to 0x1f

Default: OFF.

Workaround for a special customer configuration. It suppresses all debugger accesses to the memory area
from 0x0 to 0x1f. This feature is only available on Arm7 family.

SYStem.Option.AMBA Select AMBA bus mode

This option is only necessary if a ARM7 Bus Trace is used.

Default: OFF.

This option should be set according to the bus mode of the ASIC.

Format: SYStem.Option.ABORTFIX [ON | OFF]

Format: SYStem.Option.AMBA [ON | OFF]
Arm Debugger | 120©1989-2024 Lauterbach

SYStem.Option.ASYNCBREAKFIX Asynchronous break bugfix

This option is required for Cortex-A9, Cortex-A9MPCore r0p0, r0p1, r1p0, r1p1.

Default: OFF.

CPSR.T and CPSR.J bits can be corrupted on an asynchronous break. The fix causes the debugger to
replace the asynchronous break by a synchronous break via breakpoint register. Breaks via external
DBGRQ signal e.g. from CTI still fail and may not be used.

SYStem.Option.BUGFIX Breakpoint bug fix

Default: OFF.

Breakpoint bug fix required on ARM7TDMI-S Rev2:

You need to activate this option when having an ARM7TDMI-S Rev2. The bug is fixed on Rev3 and
following. With this option activated and ARM7TDMIS selected as CPU type, we enable the software
breakpoint workaround as described in the Arm errata of ARM7TDMI-S Rev2 (“consecutive breakpoint”
bug). Software breakpoints are set as undefined opcodes that cause the core to enter the undefined opcode
handler. The debugger tries to set a breakpoint at the undef vector (either software or on-chip). When a
breakpoint is reached the core will take the undefined exception and stop at the vector. The debugger
detects this state and displays the correct registers and CPU state. This workaround is only suitable where
undefined instruction trap handling is not being used.

Breakpoint bug fix required on Arm946E-S Rev0, Rev1 and Arm966E-S Rev0, Rev1:
(This is a different bug fix as for the Arm7.) This option will automatically be activated by the TRACE32
software, since the core revision will be read out. On the above revisions the breakpoint code normally used
for software breakpoints behave wrong. Having this option active an undefined opcode is used together with
an on-chip comparator instead of the breakpoint code.

This option is available on Arm7 and on Arm9, but it has a different meaning.

Format: SYStem.Option.ASYNCBREAKFIX [ON | OFF]

Format: SYStem.Option.BUGFIX [ON | OFF]
Arm Debugger | 121©1989-2024 Lauterbach

SYStem.Option.BUGFIXV4 Asynch. break bug fix for ARM7TDMI-S REV4

Default: OFF.

This option is available on Arm7. You need to activate this option when having an Arm7TDMI-S Rev4.

With this option activated, we replace an asynchronous break, e.g. caused by the “break” command, by a
break caused by an on-chip breakpoint range. If the bugfix is not activated when using an Arm7TDMI-S
Rev4, the application might be restarted at a wrong address.

There is no known workaround to secure correct behavior of the external DBGRQ input and a program halt
caused by an ETM trigger condition. Therefore do not use these features on an Arm7TDMI-S Rev4.

Format: SYStem.Option.BUGFIXV4 [ON | OFF]
Arm Debugger | 122©1989-2024 Lauterbach

SYStem.Option.BigEndian Define byte order (endianness)

Default: OFF.

This option selects the byte ordering mechanism. For correct operation the following three settings must
correspond:

• This option

• The compiler setting (-li or -bi compiler option)

• The level of the Arm BIGEND input pin (on Arm7x0T and Arm9x0T and JANUS2 the bit in the
CP15 control register)

This option is used for derivatives of the ARM7 and Arm9 family.
The endianness is auto-detected for Arm11.
This option does not apply to Cortex-A/R cores.

SYStem.Option.BOOTMODE Define boot mode

Default: 0.

This option selects a boot mode for the chip.

The command is only available on a few chips providing this feature.

Format: SYStem.Option.BigEndian [ON | OFF]

Format: SYStem.Option.BOOTMODE <mode>
Arm Debugger | 123©1989-2024 Lauterbach

SYStem.Option.CINV Invalidate the cache after memory modification

Default: OFF.

If this option is ON the cache is invalidated after memory modifications even when memory is modified by
the EPROM Simulator (ESI). This is necessary to maintain software breakpoint consistency.

SYStem.Option.CFLUSH FLUSH the cache before step/go
[SYStem.state window > CFLUSH]

Default: ON.

If this option is ON, the cache is invalidated automatically before each Step or Go command. This is
necessary to maintain software breakpoint consistency.

SYStem.Option.CacheParam Define external cache
Only available for: Arm7

Define the <address_range> and the <size> of an external cache.

SYStem.Option.CorePowerDetection Set methods to detect core power

Sets and configures methods to detect the power of a core.

Format: SYStem.Option.CINV [ON | OFF]

Format: SYStem.Option.CFLUSH [ON | OFF]

Format: SYStem.Option.CacheParam <address_range> <size>

Format: SYStem.Option.CorePowerDetection <method>

<method>: JtagSEQuence <seq_name> | none
Arm Debugger | 124©1989-2024 Lauterbach

The core power is detected when SYStem.Mode Up is active or is entered. If a core is not powered, the
debugger stays in system mode “Up” but displays the state “running (no power)” in the TRACE32 state line.

At the moment only the method JtagSEQuence is available.

Example:

JtagSEQuence
<seq_name>

Enables the detection of the core power via a specified JTAG sequence.
The specified JTAG sequence is periodically executed by the debug
driver.
You can create a JTAG sequence with the command
JTAG.SEQuence.Create.
The debug driver assumes that the core is powered when the JTAG
sequence returns zero in the variable Result0.
In case of an SMP system, use the environment variable PhysicalCORE
within your JTAG sequence.

JtagSequence none Disables the detection of the core power via a JTAG sequence.

SYStem.RESet ; resets SYStem settings (unlocks all used JTAG sequences)
SYStem.CPU ARC-HS

; create JTAG sequence for power detection
JTAG.SEQuence.Delete myCorePowerCheck ; delete old sequence
JTAG.SEQuence.Create myCorePowerCheck ; create new sequence
JTAG.SEQuence.Add , PrePostRelative +4. -4. +1. -1.
JTAG.SEQuence.Add , RawShift 4. 0x03 0x00
JTAG.SEQuence.Add , ShiftIrAndExit 4. 0x07
JTAG.SEQuence.Add , RawShift 4. 0x03 0x00
JTAG.SEQuence.Add , ShiftDrAndExit 16. 0x00 Result0
JTAG.SEQuence.Add , RawShift 2. 0x01 0x00
JTAG.SEQuence.Add , ASSIGN Result0 = ~ Result0 & 0x0001

; use the new JTAG sequence for detecting the core power
SYStem.Option.CorePowerDetection.JtagSEQuence myCorePowerCheck

; connect to all cores of the chip
SYStem.Mode Attach
Arm Debugger | 125©1989-2024 Lauterbach

SYStem.Option.DACRBYPASS Ignore DACR access permission settings

Default: OFF.

Derivatives having a Domain Access Control Registers (DACR) do not allow the debugger to access
memory if the location does not have the appropriate access permission. If this option is activated, the
debugger temporarily modifies the access permission to get access to any memory location.

Format: SYStem.Option.DACRBYPASS [ON | OFF]
SYStem.Option.DACR [ON | OFF] (deprecated)
Arm Debugger | 126©1989-2024 Lauterbach

SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP

Default: ON.

This option controls the DBGPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port (DAP)
before and after the debug session. Debug power will always be requested by the debugger on a debug
session start because debug power is mandatory for debugger operation.

Use case:

Imagine an AMP session consisting of at least of two TRACE32 PowerView GUIs, where one GUI is the
master and all other GUIs are slaves. If the master GUI is closed first, it releases the debug power. As a
result, a debug port fail error may be displayed in the remaining slave GUIs because they cannot access the
debug interface anymore.

To keep the debug interface active, it is recommended that SYStem.Option.DAPDBGPWRUPREQ is set to
AlwaysON.

This option is for target processors having a Debug Access Port (DAP) e.g., Cortex-A or Cortex-R.

SYStem.Option.DAP2DBGPWRUPREQ Force debug power in DAP2

Default: ON.

Format: SYStem.Option.DAPDBGPWRUPREQ [ON | AlwaysON | OFF]

ON Debug power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The debug power is released at the end of the debug session, and the
control bit is set to 0.

AlwaysON Debug power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The debug power is not released at the end of the debug session, and the
control bit is set to 0.

OFF Only for test purposes: Debug power is not requested and not checked by
the debugger. The control bit is set to 0.

Format: SYStem.Option.DAP2DBGPWRUPREQ [ON | AlwaysON]
Arm Debugger | 127©1989-2024 Lauterbach

This option controls the DBGPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port 2 (DAP2)
before and after the debug session. Debug power will always be requested by the debugger on a debug
session start.

Use case:

Imagine an AMP session consisting of at least of two TRACE32 PowerView GUIs, where one GUI is the
master and all other GUIs are slaves. If the master GUI is closed first, it releases the debug power. As a
result, a debug port fail error may be displayed in the remaining slave GUIs because they cannot access the
debug interface anymore.

To keep the debug interface active, it is recommended that SYStem.Option.DAP2DBGPWRUPREQ is set
to AlwaysON.

SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP

Default: ON.

ON Debug power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The debug power is released at the end of the debug session, and the
control bit is set to 0.

AlwaysON Debug power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The debug power is not released at the end of the debug session, and the
control bit is set to 0.

OFF Debug power is not requested and not checked by the debugger.
The control bit is set to 0.

Format: SYStem.Option.DAPSYSPWRUPREQ [AlwaysON | ON | OFF]
Arm Debugger | 128©1989-2024 Lauterbach

This option controls the SYSPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port (DAP)
during and after the debug session

This option is for target processors having a Debug Access Port (DAP) e.g., Cortex-A or Cortex-R.

SYStem.Option.DAP2SYSPWRUPREQ Force system power in DAP2

Default: ON.

This option controls the SYSPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port 2 (DAP2)
during and after the debug session

AlwaysON System power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The system power is not released at the end of the debug session, and the
control bit remains at 1.

ON System power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The system power is released at the end of the debug session, and the
control bit is set to 0.

OFF System power is not requested by the debugger on a debug session start,
and the control bit is set to 0.

Format: SYStem.Option.DAP2SYSPWRUPREQ [AlwaysON | ON | OFF]

AlwaysON System power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The system power is not released at the end of the debug session, and the
control bit remains at 1.

ON System power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The system power is released at the end of the debug session, and the
control bit is set to 0.

OFF System power is not requested by the debugger on a debug session start,
and the control bit is set to 0.
Arm Debugger | 129©1989-2024 Lauterbach

SYStem.Option.DAPNOIRCHECK No DAP instruction register check

Default: OFF.

Bug fix for derivatives which do not return the correct pattern on a DAP (Arm CoreSight Debug Access Port)
instruction register (IR) scan. When activated, the returned pattern will not be checked by the debugger.

SYStem.Option.DAPREMAP Rearrange DAP memory map

The Debug Access Port (DAP) can be used for memory access during runtime. If the mapping on the DAP is
different than the processor view, then this re-mapping command can be used

SYStem.Option.DBGACK DBGACK active on debugger memory accesses

Default: ON.

If this option is on the DBGACK signal remains active during memory accesses in debug mode. If the
DBGACK signal is used to freeze timers or to disable other peripherals it is strictly recommended to enable
this option.

Disabling of this option may be useful for triggering on memory accesses from debug mode (only useful for
hardware developers).

This option is not available on the Arm10.

Format: SYStem.Option.DAPNOIRCHECK [ON | OFF]

Format: SYStem.Option.DAPREMAP {<address_range> <address>}

NOTE: Up to 16 <address_range>/<address> pairs are possible. Each pair has to contain
an address range followed by a single address.

Format: SYStem.Option.DBGACK [ON | OFF]
Arm Debugger | 130©1989-2024 Lauterbach

SYStem.Option.DBGNOPWRDWN DSCR bit 9 will be set in debug mode

Default: OFF.

If this option is on DSCR[9] will be set while the core is in debug mode and cleared while the user application
is running. SYStem.Option.PWRDWN will be ignored.

This option is normally not useful. It was implemented for a special customer design.

This option is available on the Arm11.

SYStem.Option.DBGUNLOCK Unlock debug register via OSLAR

Default: ON.

This option allows the debugger to unlock the debug register by writing to the Operating System Lock
Access Register (OSLAR) when a debug session will be started. If it is switched off the operating system is
expected to unlock the register access, otherwise debugging is not possible.

This option is only available on the Cortex-R and Cortex-A.

SYStem.Option.DCDIRTY Bugfix for erroneously cleared dirty bits

Default: OFF.

This is a workaround for a chip bug which erroneously clears the dirty bits of a data cache line if there is any
write-through forced by the debugger in this line. When the option is active the debugger does not use write-
through mode in general. It only forces write through on a program memory write.

This option is only available on the Arm1176, Cortex-R, Cortex-A.

Format: SYStem.Option.DBGNOPWRDWN [ON | OFF]

Format: SYStem.Option.DBGUNLOCK [ON | OFF]

Format: SYStem.Option.DCDIRTY [ON | OFF]
Arm Debugger | 131©1989-2024 Lauterbach

SYStem.Option.DCFREEZE Disable data cache linefill in debug mode

Default: ON.

This option disables the data cache linefill while the processor is in debug mode. This avoids that the data
cache contents is altered on memory read accesses performed by the debugger. This is especially required
if you want to inspect the data cache contents. You can disable this option if you want to cause a burst
memory access (e.g. on a data.test command) which only occurs on a cache linefill.

This option is available on Arm11, only.

SYStem.Option.DEBUGPORTOptions Options for debug port handling

Default: SWITCHTOSWD.TryAll, SWDTRSTKEEP.DEFault.

See Arm CoreSight manuals to understand the used terms and abbreviations and what is going on here.

SWITCHTOSWD tells the debugger what to do in order to switch the debug port to serial wire mode:

Format: SYStem.Option.DCFREEZE [ON | OFF]

Format: SYStem.Option.DEBUGPORTOptions <option>

<option>: SWITCHTOSWD.[TryAll | None | JtagToSwd | LuminaryJtagToSwd | Dor-
mantToSwd | JtagToDormantToSwd]
SWDTRSTKEEP.[DEFault | LOW | HIGH]

TryAll Try all switching methods in the order they are listed below. This is
the default. Normally it does not hurt to try improper switching
sequences. Therefore this succeeds in most cases.

None There is no switching sequence required. The SW-DP is ready
after power-up. The debug port of this device can only be used as
SW-DP.

JtagToSwd Switching procedure as it is required on SWJ-DP without a
dormant state. The device is in JTAG mode after power-up.

LuminaryJtagToSwd Switching procedure as it is required on devices from
LuminaryMicro. The device is in JTAG mode after power-up.
Arm Debugger | 132©1989-2024 Lauterbach

SWDTRSTKEEP tells the debugger what to do with the nTRST signal on the debug connector during serial
wire operation. This signal is not required for the serial wire mode but might have effect on some target
boards, so that it needs to have a certain signal level.

SYStem.Option.DIAG Activate more log messages

Default: OFF.

Adds more information to the report in the SYStem.LOG.List window.

DormantToSwd Switching procedure which is required if the device starts up in
dormant state. The device has a dormant state but does not
support JTAG.

JtagToDormantToSwd Switching procedure as it is required on SWJ-DP with a dormant
state. The device is in JTAG mode after power-up.

DEFault Use nTRST the same way as in JTAG mode which is typically a low-pulse
on debugger start-up followed by keeping it high.

LOW Keep nTRST low during serial wire operation.

HIGH Keep nTRST high during serial wire operation

Format: SYStem.Option.DIAG [ON | OFF]
Arm Debugger | 133©1989-2024 Lauterbach

SYStem.Option.DisMode Define disassembler mode

 Default: AUTO.

This command specifies the selected disassembler.

Format: SYStem.Option.DisMode <option>

<option>: AUTO
ACCESS
ARM
THUMB
THUMBEE

AUTO The information provided by the compiler output file is used for the
disassembler selection. If no information is available it has the same
behavior as the option ACCESS.

ACCESS The selected disassembler depends on the T bit in the CPSR or on the
selected access class. (e.g. Data.List SR:0 for Arm mode or
Data.List ST:0 for THUMB mode).

ARM Only the Arm disassembler is used (highest priority).

THUMB Only the THUMB disassembler is used (highest priority).

THUMBEE Only the THUMB disassembler is used which supports the Thumb-2
Execution Environment extension (highest priority).
Arm Debugger | 134©1989-2024 Lauterbach

SYStem.Option.DynVector Dynamic trap vector interpretation

This option is only available on XScale.

Default: OFF.

If this option is ON and a trap occurs the trap vector is read from memory and the trap vector is executed out
of the memory.

The vector tables have be overloaded by the debugger to place the debug vector instead of the reset vector.
If the application changes the vector during run-time the overloaded vector table in the mini instruction cache
of the debugger remains active and a trap will jump to unintended position.
With SYStem.Option.DynVector trap vector contents are read at run-time and the memory is executed.
Executing an application with SYStem.Option.DynVector ON has disadvantage on run-time, so that it
makes sense to switch off the option after the table has changed and afterwards remains unchanged. We
have implemented this by an explicit option to be non intrusive on normal operation.

SYStem.Option.EnReset Allow the debugger to drive nRESET (nSRST)
[SYStem.state window> EnReset]

Default: ON.

If this option is disabled the debugger will never drive the nRESET (nSRST) line on the JTAG connector. This
is necessary if nRESET (nSRST) is no open collector or tristate signal.

From the view of the core, it is not necessary that nRESET (nSRST) becomes active at the start of a debug
session (SYStem.Up), but there may be other logic on the target which requires a reset.

SYStem.Option.ETBFIXMarvell Read out on-chip trace data

Default: OFF

Format: SYStem.Option.DynVector [ON | OFF]

Format: SYStem.Option.EnReset [ON | OFF]

Format: SYStem.Option.ETBFIXMarvell [ON | OFF]
Arm Debugger | 135©1989-2024 Lauterbach

Bugfix for 88FR111 from Marvell. At least the first core revisions have an issue with the ETB read/write
pointer. ON activates a different method to read out the on-chip trace data.

SYStem.Option.ETMFIX Shift data of ETM scan chain by one

Default: OFF.

Bug fix for ETM7 implementations showing a wrong shift behavior. The ETM register data will be shifted by
one bit otherwise. This feature is only available on the Arm7 family.

SYStem.Option.ETMFIXWO Bugfix for write-only ETM register

Default: OFF.

Bug fix for a customer device where ETM registers can not be read. This fix is only useful on this certain
device.

SYStem.Option.ETMFIX4 Use only every fourth ETM data package

Default: OFF.

Bug fix for a customer device where each ETM data package was sent out four times.

SYStem.Option.EXEC EXEC signal can be used by bustrace

Default: OFF.

Format: SYStem.Option.ETMFIX [ON | OFF]

Format: SYStem.Option.ETMFIXWO [ON | OFF]

Format: SYStem.Option.ETMFIX4 [ON | OFF]

Format: SYStem.Option.EXEC [ON | OFF]
Arm Debugger | 136©1989-2024 Lauterbach

Defines whether the EXEC line is available to the bustrace or not. The EXEC signal indicates if a fetched
command has been executed. The bustrace can work without EXEC signal, but it is not possible to show the
condition code pass/fail for conditional instructions. The option has no effect when no bustrace is available.
This command has no meaning for the ETM trace.

SYStem.Option.EXTBYPASS Switch off the fake TAP mechanism

Default: ON.

Bugfix for DB8500 V1. It allows you to switch off the fake TAP mechanism of the modem.

SYStem.Option.FASTBREAKDETECTION Fast core halt detection

Default: OFF.

It advises the debugger to do a permanent polling via JTAG to check if the core has halted. This allows a
faster detection and generation of trigger signal for other tools like PowerIntegrator, especially if the
hardware signal DBGACK is not available on the JTAG connector. It causes a high payload on the JTAG
interface which will be a disadvantage e.g. if other debuggers use the same JTAG interface (multicore
debugging).

This option is available on Arm9, only.

SYStem.Option.HRCWOVerRide Enable override mechanism

Default: OFF.

Enables the Hardcoded Reset Configuration Word override mechanism for NXP/Freescale
Layerscape/QorIQ devices. The feature is required e.g. to program the flash in cases where the flash
content is empty or corrupted.

In order to use this functionality, please contact Lauterbach for more details.

Format: SYStem.Option.EXTBYPASS [ON | OFF]

Format: SYStem.Option.FASTBREAKDETECTION [ON | OFF]

Format: SYStem.Option.HRCWOVerRide [ON | OFF] [/NONE | /PORESET]
Arm Debugger | 137©1989-2024 Lauterbach

SYStem.Option.ICEBreakerETMFIXMarvell Lock on-chip breakpoints

Default: OFF.

Bugfix for 88FR111 from Marvell. ON locks the usage of read-only/write-only on-chip breakpoints. They do
not work on the 88FR111, at least not on the first core revisions.

SYStem.Option.ICEPICK Enable/disable assertions and wait-in-reset

Default: SystemReset.ON WaitInReset.ON may be preset with the correct parameters for known SoCs in
TRACE32.

SYStem.Option.IMASKASM Disable interrupts while single stepping
[SYStem.state window > IMASKASM]

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After a single step, the interrupt mask bits are
restored to the value before the step.

Format: SYStem.Option.ICEBreakerETMFIXMarvell [ON | OFF]

Format: SYStem.Option.ICEPICK <option>

<option>: SystemReset.[ON | OFF]
WaitInReset.[ON | OFF]

SystemReset Enables/disables the assertions of SystemReset using the TI-ICEPick.
• ON: Enables the assertion of SystemReset.
• OFF: Disables the assertion of SystemReset.

WaitInReset Enables/disables the TI-ICEPick Wait-In-Reset functionality. This flag
allows depending on the SoC implementation to hold a core on the reset
vector.
• ON: Enables the Wait-In-Reset.
• OFF: Disables the Wait-In-Reset.

Format: SYStem.Option.IMASKASM [ON | OFF]
Arm Debugger | 138©1989-2024 Lauterbach

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
[SYStem.state window > IMASKHLL]

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After a single step, the interrupt mask bits are restored
to the value before the step.

SYStem.Option.INTDIS Disable all interrupts

Default: OFF.

If this option is ON, all interrupts on the Arm core are disabled.

SYStem.Option.IRQBREAKFIX Break bugfix by using IRQ

The bug shows up on Cortex-A9, Cortex-A9MPCore r0p0, r0p1, r1p0, r1p1.

Default: 0 = OFF.

CPSR.T and CPSR.J bits can be corrupted on an asynchronous break. The bug fix is intended for an SMP
multicore debug session where hardware based synchronous break is required. Instead causing an
asynchronous break via CTI an IRQ is requested via CTI. There needs to be a breakpoint at the end of the
IRQ routine handling this case. The fix causes the debugger to replace the program counter value by the
IRQ link register R14_irq - 4 and the CPSR register by SPSR_irq if the core halts at <address>. Everything
else like initializing the IRQ and CTI needs to be done by a user script.

Format: SYStem.Option.IMASKHLL [ON | OFF]

Format: SYStem.Option.INTDIS [ON | OFF]

Format: SYStem.Option.IRQBREAKFIX <address>
Arm Debugger | 139©1989-2024 Lauterbach

SYStem.Option.KEYCODE Define key code to unsecure processor

Default: 0, means no key required.

Some processors have a security feature and require a key to un-secure the processor in order to allow
debugging. The processor will use the specified key on the next debugger start-up (e.g. SYStem.Up) and
forgets it immediately. For the next start-up the key code must be specified again.

This option is for example used on TMS570 derivatives to send a 128-bit key code (<key>: two 64-bit words,
LSB will be sent first) to the Advanced JTAG Security Module (AJSM) to unlock JTAG if the device was
secured.

The same option is also used on older Arm9 based derivatives having a different security mechanism.

SYStem.Option.L2Cache L2 cache used

Default: OFF, means no L2 cache is used.

On certain Marvell derivatives the debugger can not detect if an (optional) level 2 cache is available and
used. The information is needed to activate L2 cache coherency operations.

This option is available on Marvell Arm9, Cortex-A.

SYStem.Option.L2CacheBase Define base address of L2 cache register

Default: 0, means no L2 cache implemented.

In case the L2 cache from Arm (L210, L220 and PL310) is available and active on the chip, then the
debugger needs to flush and invalidate the L2 cache when patching the program e.g. when setting a
software breakpoint. Therefore it needs to know the (physical) base address of the L2 register block.

This option is available on Arm9, Arm11, Cortex-R, Cortex-A.

Format: SYStem.Option.KEYCODE <key>

Format: SYStem.Option.L2Cache [ON | OFF] (deprecated)
Use SYStem.CONFIG.L2CACHE.Type instead.

Format: SYStem.Option.L2CacheBase <base_address> (deprecated)
Use SYStem.CONFIG.L2CACHE.Base instead.
Arm Debugger | 140©1989-2024 Lauterbach

SYStem.Option.LOCKRES Go to "Test-Logic Reset" when locked

This command is only available on obsolete ICD hardware. The state machine of the JTAG TAP controller is
switched to Test-Logic Reset state (ON) or to Run-Test/Idle state (OFF) before a SYStem.LOCK ON is
executed.

Format: SYStem.Option.LOCKRES [ON | OFF]
Arm Debugger | 141©1989-2024 Lauterbach

SYStem.Option.MACHINESPACES Address extension for guest OSes

Default: OFF

Enables the TRACE32 support for debugging virtualized systems. Virtualized systems are systems running
under the control of a hypervisor.

After loading a Hypervisor Awareness, TRACE32 is able to access the context of each guest machine. Both
currently active and currently inactive guest machines can be debugged.

Machine IDs (0 and > 0)

• On Arm CPUs with hardware virtualization, guest machines are running in the non-secure zone
(N:) and use machine IDs > 0.

• The hypervisor functionality is usually running in the hypervisor zone (H:) and uses machine ID
0.

• Software running in the secure monitor mode (Z: for Arm32) or EL3 mode (M: for Arm64) is also
using machine ID 0.

Format: SYStem.Option.MACHINESPACES [ON | OFF | HOSTREMAP]

ON Addresses are extended with an identifier called machine ID. The
machine ID clearly specifies to which host or guest machine the address
belongs.
The host machine always uses machine ID 0. Guests have a machine ID
larger than 0. TRACE32 currently supports machine IDs up to 30.
The debugger address translation (MMU and TRANSlation command
groups) can be individually configured for each virtual machine.
Individual symbol sets can be loaded for each virtual machine.

OFF The machine ID support is disabled.

HOSTREMAP
Hypervisor FIASCO

HOSTREMAP is only relevant for a hypervisor where:
• The hypervisor itself uses tasks and
• The tasks behave like virtual machines.
If SYStem.Option.MACHINESPACES is set to HOSTREMAP, then such
hypervisor tasks are assigned space IDs instead of machine IDs,
whereas the real guest machines are assigned machine IDs.

NOTE: This option requires a suitable Hypervisor Awareness which
supports HOSTREMAP. You must also set SYStem.Option.MMUSPACES
to ON.
Arm Debugger | 142©1989-2024 Lauterbach

SYStem.Option.MDMAP Set debug option controlled by NXP MDM-AP
[build 121894 - DVD 09/2022]

Allows to set different debug option controlled by the NXP MDM-AP inside devices, where it is implemented.

Format: SYStem.Option.MDMAP <option>

<option>: DestructiveReset [ON | OFF]
FunctionalReset [ON | OFF]
HaltAfterPoWeRUP [ON | OFF]
DBGRSTFASTPAD [ON | OFF]
DBGRSTSLOWPAD [ON | OFF]
PORWDGDIS [ON | OFF]
WFIFIX [ON | OFF]

DestructiveReset
[ON | OFF]

Default: OFF.

Generates a destructive reset during SYSem.Up or SYStem.Mode.Go.

FunctionalReset
[ON | OFF]

Default: OFF.

Generates a functional (warm) reset during SYSem.Up or
SYStem.Mode.Go.

HaltAfterPoWeRUP
[ON | OFF]

Default: OFF.

Can be used to stop the master core on the first instruction after reset
from a power-up transition using SYStem.Mode.StandBy. This ensures,
that no code has been executed on the target, when first powering on the
target board.

DBGRSTFASTPAD
[ON | OFF]

Default: OFF.

Turning on the fast IO pins using for tracing.

DBGRSTSLOWPAD
[ON | OFF]

Default: OFF.

Turning on the slow IO pins using for tracing.
Arm Debugger | 143©1989-2024 Lauterbach

SYStem.Option.MemStatusCheck Check status bits during memory access

Default: OFF

Enables status flags check during a memory access. The debugger checks if the CPU is ready to
receive/provide new data. Usually this is not needed. Only slow targets (like emulations systems) may need
a status check.

SYStem.Option.MMUPhysLogMemaccess Memory access preferences

Controls whether TRACE32 prefers a cached logical memory access over a (potentially uncached) physical
memory access to keep caches updated and coherent.

PORWDGDIS [ON |
OFF]

Default: OFF.

Disabling the power watchdog inside the device.

WFIFIX [ON | OFF] Default: ON.

Workaround for WFI/WFE entrance of Cortex-M7 cores in some NXP
S32 devices. In case the debugger is disconnected from the target using
SYStem.Down, the set WFIFIX option ensures, that the Cortex-M7 still
can wake-up correctly from WFI/WFE state.

Format: SYStem.Option.MemStatusCheck [ON | OFF]

Format: SYStem.Option.MMUPhysLogMemaccess [ON | OFF]

NOTE: This option should usually not be changed.

ON A cached logical memory access is used.

This option is enabled by default for Armv7 and older cores.

OFF A (potentially uncached) physical memory access is used.

This option is disabled by default for Armv8 because the physical memory
can usually be accessed while the caches are still kept coherent.
Arm Debugger | 144©1989-2024 Lauterbach

SYStem.Option.MMUSPACES Separate address spaces by space IDs

Default: OFF.

Enables the use of space IDs for logical addresses to support multiple address spaces.

For an explanation of the TRACE32 concept of address spaces (zone spaces, MMU spaces, and machine
spaces), see “TRACE32 Concepts” (trace32_concepts.pdf).

Examples:

Format: SYStem.Option.MMUSPACES [ON | OFF]
SYStem.Option.MMUspaces [ON | OFF] (deprecated)
SYStem.Option.MMU [ON | OFF] (deprecated)

NOTE: SYStem.Option.MMUSPACES should not be set to ON if only one translation
table is used on the target.

If a debug session requires space IDs, you must observe the following
sequence of steps:

1. Activate SYStem.Option.MMUSPACES.

2. Load the symbols with Data.LOAD.

Otherwise, the internal symbol database of TRACE32 may become
inconsistent.

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x012A:
Data.dump D:0x012A:0xC00208A

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x0203:
Data.dump D:0x0203:0xC00208A
Arm Debugger | 145©1989-2024 Lauterbach

SYStem.Option.MonitorHoldoffTime Delay between monitor accesses

Default: 0.

It specifies the minimum delay between two access to the target debug client in case of run-mode
debugging.

SYStem.Option.MPUBYPASS Ignore MPU access permission settings

Default: OFF.

Derivatives having a memory protection unit do not allow the debugger to access memory if the location
does not have the appropriate access permission. If this option is activated, the debugger temporarily
modifies the access permission to get access to the memory location.

SYStem.Option.MultiplesFIX No multiple loads/stores

Default: OFF.

Bug fix for derivatives (e.g. Arm946 V1.1) which do not handle multiple loads (LDM) and multiple store
(STM) commands properly in debug mode. When activated only single loads/stores are used by the
debugger.

SYStem.Option.NODATA No data connected to the trace

This option is only necessary if a Bus Trace is used.

Format: SYStem.Option.MonitorHoldoffTime <time>

Format: SYStem.Option.MPUBYPASS [ON | OFF]
SYStem.Option.MPU [ON | OFF] (deprecated)

Format: SYStem.Option.MultiplesFIX [ON | OFF]

Format: SYStem.Option.NODATA [ON | OFF]
Arm Debugger | 146©1989-2024 Lauterbach

Default: OFF.

It should be ON, if a trace is connected and data information can not be recorded. Otherwise undefined data
will be displayed in the trace records.

SYStem.Option.NOIRCHECK No JTAG instruction register check

Default: OFF.

Bug fix for derivatives which do not return the correct pattern on a JTAG instruction register (IR) scan. When
activated the returned pattern will not be checked by the debugger. On Arm7 also the check of the return
pattern on a scan chain selection is disabled.

This option is only available on Arm7 and Arm9.

The option is automatically activated when using SYStem.Option.TURBO.

SYStem.Option.NoPRCRReset Do not cause reset by PRCR

Default: OFF.

It causes the debugger not to (additionally) use the soft reset via DBGPRCR register on functions like
SYStem.Up, SYStem.Mode Go, SYStem.RESetOut.

SYStem.Option.NoRunCheck No check of the running state

Default: OFF.

Format: SYStem.Option.NOIRCHECK [ON | OFF]

Format: SYStem.Option.NoPRCRReset [ON | OFF]

Format: SYStem.Option.NoRunCheck [ON | OFF]
Arm Debugger | 147©1989-2024 Lauterbach

If this option is ON, it advises the debugger not to do any running check. In this case the debugger does not
even recognize that there will be no response from the processor. Therefore there always is the message
“running”, independent of whether the core is in power down or not. This can be used to overcome power
saving modes in case users know when a power saving mode happens and that they can manually de-
activate and re-activate the running check.

SYStem.Option.NoSecureFix Do not switch to secure mode

Default: OFF.

This is a bugfix for customer specific devices which do not allow the debugger to temporarily switch to
secure mode while the application is in non-secure mode.

NOTE: This command will affect the setting of SYStem.POLLING <stopped_mode>.

Format: SYStem.Option.NoSecureFix [ON | OFF]
Arm Debugger | 148©1989-2024 Lauterbach

SYStem.Option.OVERLAY Enable overlay support

Default: OFF.

Example:

SYStem.Option.PALLADIUM Extend debugger timeout

Default: OFF.

The debugger uses longer timeouts as might be needed when used on a chip emulation system like the
Palladium from Cadence.

This option will only extend some timeouts by a fixed factor. It is recommended to extend all timeouts. This
can be done with SYStem.CONFIG.DEBUGTIMESCALE.

Format: SYStem.Option.OVERLAY [ON | OFF | WithOVS]

ON Activates the overlay extension and extends the address scheme of the
debugger with a 16 bit virtual overlay ID. Addresses therefore have the
format <overlay_id>:<address>. This enables the debugger to handle
overlaid program memory.

OFF Disables support for code overlays.

WithOVS Like option ON, but also enables support for software breakpoints. This
means that TRACE32 writes software breakpoint opcodes to both, the
execution area (for active overlays) and the storage area. This way, it is
possible to set breakpoints into inactive overlays. Upon activation of the
overlay, the target’s runtime mechanisms copies the breakpoint opcodes to
the execution area. For using this option, the storage area must be readable
and writable for the debugger.

SYStem.Option.OVERLAY ON
Data.List 0x2:0x11c4 ; Data.List <overlay_id>:<address>

Format: SYStem.Option.PALLADIUM [ON | OFF] (deprecated)
Use SYStem.CONFIG.DEBUGTIMESCALE instead.
Arm Debugger | 149©1989-2024 Lauterbach

SYStem.Option.PC Define address for dummy fetches

Default address: 0

After each load or store operation from debug mode the Arm core makes some instruction fetches from
memory. These fetches are not necessary for the debugger, but it is not possible to suppress them.

This option allows to specify the base address of these fetches. The fetch address is anywhere within a
64 KByte block that begins at the specified base address. It is necessary to modify this option if these
fetches go to aborted memory locations.

This option is not available/required on the Arm10 and Arm11. There are no dummy-fetches on Arm10 and
Arm11.

SYStem.Option.ProgramAccessFix Program memory access bug fix

Default: OFF.

Program memory bug fix implemented for a certain core.

SYStem.Option.PROTECTION Sends an unsecure sequence to the core

This option was made for certain Arm9 derivatives having a protected access to the debug features. It sends
the key pattern in the file in a certain way to the core in order to gain the right to debug the core.

This option is available on Arm9.

Format: SYStem.Option.PC <address>

Format: SYStem.Option.ProgramAccessFix [ON | OFF]

Format: SYStem.Option.PROTECTION <file>
Arm Debugger | 150©1989-2024 Lauterbach

SYStem.Option.PWRCHECK Check power and clock

Default: ON.

In case of a chip level TAP (SYStem.CONFIG MULTITAP) this option decides if power, clock and secure
state will be checked or not.

This option is only available on Arm11, Cortex-R, Cortex-A.

SYStem.Option.PWRCHECKFIX Check power and clock

Default: OFF.

Fix for a certain chip bug: It uses the OSLK bit instead of the SPD bit of the PRSR register to detect power
down.

This option is only available on Cortex-R, Cortex-A.

SYStem.Option.PWRDWN Allow power-down mode

Default: OFF.

Arm11: If this option is OFF, the debugger sets the external signal DBGNOPWRDWN high in order to force
the system power controller in emulate mode. Otherwise the communication to the debugger gets lost when
entering power down state.

Some OMAPxxxx derivatives: If this option is OFF, the debugger forces the OMAP to keep clock and keep
power.

Cortex-R, Cortex-A: Controls the PWRDWN bit in device power-down and reset control register (PRCR).

This option is only available on Arm11, Cortex-R, Cortex-A.

Format: SYStem.Option.PWRCHECK [ON | OFF]

Format: SYStem.Option.PWRCHECKFIX [ON | OFF]

Format: SYStem.Option.PWRDWN [ON | OFF]
Arm Debugger | 151©1989-2024 Lauterbach

SYStem.Option.PWRDWNRecover Mode to handle special power recovery

Default: OFF.

Assumes SYStem.JtagClock RTCK is selected.

When the target core is running and RTCK stops working for longer than specified by
SYStem.Option.PWRDWNRecoverTimeout it is assumed power is gone. In this case “running (power
down)” will be shown. On power recovery the target logic ensures the core immediately enters debug mode
by asserting DBGRQ signal. The debugger detects the recovery, restores all debug register and restarts the
program execution.

This option is only available on Arm9.

SYStem.Option.PWRDWNRecoverTimeOut Timeout for power recovery

Specifies a timeout period as a limit to decide if just a sleep mode was entered (stopped RTCK) or a real
power down happened which requires the debug registers to be restored on a power recovery. See
command SYStem.Option.PWRDWNRecover.

This option is only available on Arm9.

SYStem.Option.PWROVR Specifies power override bit

Specifies the power override bit when a certain derivative providing this function is selected.

This option is only available on certain Arm9 and Arm11 derivatives.

Format: SYStem.Option.PWRDWNRecover [ON | OFF]

Format: SYStem.Option.PWRDWNRecoverTimeOut <time>

Format: SYStem.Option.PWROVR [ON | OFF] (deprecated)
Arm Debugger | 152©1989-2024 Lauterbach

SYStem.Option.ResBreak Halt the core after reset

Default: ON.

This option has to be disabled if the nTRST line is connected to the nRESET / nSRST line on the target. In
this case the CPU executes some cycles while the SYStem.Up command is executed. The reason for this
behavior is the fact that it is necessary to halt the core (enter debug mode) by a JTAG sequence. This
sequence is only possible while nTRST is inactive. In the following figure the marked time between the
deassertion of reset and the entry into debug mode is the time of this JTAG sequence plus a time delay
selectable by SYStem.Option.WaitReset (default = 3 msec).

If nTRST is available and not connected to nRESET/nSRST it is possible to force the CPU directly after
reset (without cycles) into debug mode. This is also possible by pulling nTRST fixed to VCC (inactive), but
then there is the problem that it is normally not ensured that the JTAG port is reset in normal operation. If the
ResBreak option is enabled the debugger first deasserts nTRST, then it executes a JTAG sequence to set
the DBGRQ bit in the ICE breaker control register and then it deasserts nRESET/nSRST.

Format: SYStem.Option.ResBreak [ON | OFF]

nSRST

nTRST

CPU State reset running debugconfig

JTAG
OK

Power
OK

Register
OK

CTI

CTI
OK

JTAG ID DAP register

reset debug

nSRST

nTRST

CPU State config

JTAG
OK

Power
OK

Register
OK

CTI

CTI
OK

DAP registerJTAG ID
Arm Debugger | 153©1989-2024 Lauterbach

SYStem.Option.ResetDetection Choose method to detect a target reset

Default: nSRST

Selects the method how an external target reset can be detected by the debugger.

SYStem.Option.RESetREGister Generic software reset

Specifies a register on the target side, which allows the debugger to assert a software reset, in case no
nReset line is present on the JTAG header. The reset is asserted on SYStem.Up, SYStem.Mode.Go,
SYStem.Mode Prepare and SYStem.RESetOut. The specified address needs to be accessible during
runtime (for example E, DAP, AXI, AHB, APB).

Format: SYStem.Option.ResetDetection <method>

<method>: nSRST | None

nSRST Detects a reset if nSRST (nRESET) line on the debug connector is pulled
low.

None Detection of external resets is disabled.

Format: SYStem.Option.RESetRegister NONE
SYStem.Option.RESetRegister <address>
 <mask>
 <assert_value>
 <deassert_value>
 [/<width>]

<width>: Byte | Word | Long | Quad

<address> Specifies the address of the target reset register.

<mask> The <assert_value> and <deassert_value> are written in a read-modify-
write operation. The mask specifies which bits are changed by the
debugger. Bits of the mask value which are ‘1’ are not changed inside the
reset register.

<assert_value> Value that is written to assert reset.
Arm Debugger | 154©1989-2024 Lauterbach

SYStem.Option.RESTARTFIX Wait after core restart

Default: OFF.

Bug fix for a certain customer derivative. When activated the debugger keeps the JTAG state machine on
every restart for 10 µs in Run-Test/Idle state before the JTAG communication will be continued. This option is
available on Arm7 and will be ignored on other debuggers.

SYStem.Option.RisingTDO Target outputs TDO on rising edge

Default: OFF.

Bug fix for chips which output the TDO on the rising edge instead of on the falling.

<deassert_value> Value that is written to deassert reset.

<width> Width used for register access. See also “Keywords for <width>”
(general_ref_d.pdf).

NOTE: The debugger will not perform the default warm reset via the PRCR if this option
is set.

Format: SYStem.Option.RESTARTFIX [ON | OFF]

Format: SYStem.Option.RisingTDO [ON | OFF]
Arm Debugger | 155©1989-2024 Lauterbach

SYStem.Option.ShowError Show data abort errors

Default: ON.

If the ABORT (if AMBA: BERROR) line becomes active during a system speed access the Arm core can
change to ABORT mode. When this option is on this change of mode is indicated by the warning 'emulator
berr error'.

This option is not available on the Arm10 and Arm11 (always shown).

SYStem.Option.SLaVeSOFTRESet Allow soft reset of slave cores
[build 167397 - DVD 09/2024]

Default: OFF.

Allow the debugger to do a soft reset of a slave core during SYStem.Up. the availability of this soft reset
mechanism depends on the target core type and is also implementation defined. Only set to ON when the
reset event on a slave core is not distributed to other cores, e.g. by a reset controller.

SYStem.Option.SOFTLONG Use 32-bit access to set breakpoint

Default: OFF.

Instructs the debugger to use 32-bit accesses to patch the software breakpoint code.

Format: SYStem.Option.ShowError [ON | OFF]

Format: SYStem.Option.SLaVeSOFTRESet [ON | OFF]

NOTE: This option is ignored and the soft reset is not executed if
SYStem.Option.RESetREGister is configured.

Format: SYStem.Option.SOFTLONG [ON | OFF]
Arm Debugger | 156©1989-2024 Lauterbach

SYStem.Option.SOFTQUAD Use 64-bit access to set breakpoint

Default: OFF.

Activate this option if software breakpoints should be written by 64-bit accesses. This was implemented in
order not to corrupt ECC.

SYStem.Option.SOFTWORD Use 16-bit access to set breakpoint

Default: OFF.

Instructs the debugger to use 16-bit accesses to patch the software breakpoint code.

SYStem.Option.SPLIT Access memory depending on CPSR

Default: OFF.

If this option is ON, the debugger does privileged or non-privileged memory access depending on the
current CPU mode (CPSR register). If this option is OFF, the debugger accesses the memory in privileged
mode except another access mode is requested. This feature is only available if a DEBUG INTERFACE (LA-
7701) is used for the Arm7.

Format: SYStem.Option.SOFTQUAD [ON | OFF]

Format: SYStem.Option.SOFTWORD [ON | OFF]

Format: SYStem.Option.SPLIT [ON | OFF]
Arm Debugger | 157©1989-2024 Lauterbach

SYStem.Option.StandByTraceDelaytime Trace activation after reset

Default: 0.

Only when standby mode is active you can specify a time delay where the debugger waits after reset is
deasserted before it activates the trace. This option is available on Arm9 only.

SYStem.Option.STEPSOFT Use software breakpoints for ASM stepping

Default: OFF.

If set to ON, software breakpoints are used for single stepping on assembler level (advanced users only).

SYStem.Option.SYSPWRUPREQ Force system power

Default: ON.

This option controls the SYSPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port (DAP). If
the option is ON, system power will be requested by the debugger on a debug session start.

This option is for target processors having a Debug Access Port (DAP).

Format: SYStem.Option.StandByTraceDelaytime <delay_in_us>

Format: SYStem.Option.STEPSOFT [ON | OFF]

Format: SYStem.Option.SYSPWRUPREQ [ON | OFF] (deprecated)
Use SYStem.Option.DAPSYSPWRUPREQ instead.
Arm Debugger | 158©1989-2024 Lauterbach

SYStem.Option.TIDBGEN Activate initialization for TI derivatives

Default: OFF.

If this option is active the debugger sends a special initialization sequence, which is required for some
derivatives from Texas Instruments (TI) to enable the on-chip debug support. When a TI CPU type (e.g.
“OMAP1510”) is selected, this option is automatically set.

This option is only available on Arm9.

SYStem.Option.TIETMFIX Bug fix for customer specific ASIC

SYStem.Option.TIDEMUXFIX Bug fix for customer specific ASIC

SYStem.Option.TraceStrobe Deprecated command

Format: SYStem.Option.TIDBGEN [ON | OFF]

Format: SYStem.Option.TIETMFIX [ON | OFF]

Format: SYStem.Option.TIDEMUXFIX [ON | OFF]

Format: SYStem.Option.TraceStrobe [CE | OE | CE+OE | STR | STR-] (deprecated)
Arm Debugger | 159©1989-2024 Lauterbach

SYStem.Option.TRST Allow debugger to drive TRST
[SYStem.state window > TRST]

Default: ON.

If this option is disabled, the nTRST line is never driven by the debugger (permanent high). Instead five
consecutive TCK pulses with TMS high are asserted to reset the TAP controller which have the same effect.

SYStem.Option.TURBO Speed up memory access

Default: OFF.

If TURBO is disabled the CPU checks after each system speed memory access in debug mode if the CPU
has finished the corresponding cycle. This check will significantly reduce the down- and upload speed (30-
40%).

If TURBO is enabled the CPU will make no checks. This may result in unpredictable errors if the memory
interface is slow. Therefore it is recommended to use this option only for a program download and in case
you know that the memory interface is fast enough to take the data with the speed they are provided by the
debugger.

This option is not available on the Arm10.

Format: SYStem.Option.TRST [ON | OFF]

Format: SYStem.Option.TURBO [ON | OFF]
Arm Debugger | 160©1989-2024 Lauterbach

SYStem.Option.WaitIDCODE IDCODE polling after deasserting reset
[

Default: OFF = disabled.

Allows to add additional busy time after reset. The command is limited to systems that use an Arm DAP.

If SYStem.Option.WaitIDCODE is enabled and SYStem.Option.ResBreak is disabled, the debugger
starts to busy poll the JTAG/SWD IDCODE until it is readable. For systems where JTAG/SWD is disabled
after RESET and e.g. enabled by the BootROM, this allows an automatic adjustment of the connection delay
by busy polling the IDCODE.

After deasserting nSRST and nTRST the debugger waits the time configured by
SYStem.Option.WaitReset till it starts to busy poll the JTAG/SWD IDCODE. As soon as the IDCODE is
readable, the regular connection sequence continues.

Example: The following figure shows a scenario with SYStem.Option.ResBreak disabled and
SYStem.Option.WaitIDCODE enabled. The polling mechanism tries to minimize the delay between the
JTAG/SWD disabled and debug state.

Format: SYStem.Option.WaitIDCODE [ON | OFF | <time>]

ON 1 second busy polling

OFF Disabled

<time> Configurable polling time, max. 30 sec, use ’us’, ’ms, ’s’ as units.

nSRST

nTRST

CPU State

JTAG/SWD State disabled enabled

reset running wait for JTAG ID config debug

Polling Polling Power
OK

Register
OK

CTI

CTI
OK

DAP register
Arm Debugger | 161©1989-2024 Lauterbach

SYStem.Option.WaitReset Wait with JTAG activities after deasserting reset
[SYStem.state window > WaitReset]

Default: OFF = 3 msec.

Allows to add additional wait time after reset.

If SYStem.Option.ResBreak is enabled, SYStem.Option.WaitReset should be set to OFF.

If SYStem.Option.ResBreak is disabled, SYStem.Option.WaitReset can be used to specify a waiting time
between the deassertion of nSRST and nTRST and the first JTAG activity. During this time the core may
execute some code, e.g to enable the JTAG port.

If SYStem.Option.WaitReset is disabled (OFF) and SYStem.Option.ResBreak is disabled, the debugger
waits 3 ms after the deassertion of nSRST and nTRST before the first JTAG/SWD activity.

If SYStem.Option.WaitReset <time> is specified and SYStem.Option.ResBreak is disabled, the debugger
waits the specified <time> after the deassertion of nSRST and nTRST before the first JTAG/SWD activity.

If SYStem.Option.WaitReset is enabled (ON) and SYStem.Option.ResBreak is disabled, the debugger
waits for at least 1 s, then it waits until nSRST is released from target side; the max. wait time is 35 s (see
picture below).

If the chip additionally supports soft reset methods then the wait time can happen more than once.

Format: SYStem.Option.WaitReset [ON | OFF | <time>]

ON 1 sec delay

OFF 3 msec delay

<time> Selectable time delay, min. 50 usec, max. 30 sec, use ’us’, ’ms, ’s’ as units.

nTRST

nRESET (nSRST)

CPU State reset running debug

>1 s (ON)
Arm Debugger | 162©1989-2024 Lauterbach

SYStem.Option.WATCHDOG Disable watchdog while debugging

Default: DEFault

Enables/disables the internal watchdog on some devices on connection time, e.g. during SYStem.Up. The
option is available on some Spansion/Cypress S6J devices. Please refer to the example scripts if the option
is available.

Format: SYStem.Option.WATCHDOG [DEFault | OFF]

DEFault Does not modify the watchdog configuration.

OFF Disables the watchdog when connecting.
Arm Debugger | 163©1989-2024 Lauterbach

SYStem.Option.ZoneSPACES Enable symbol management for Arm zones

Default: OFF.

The SYStem.Option.ZoneSPACES command must be set to ON if an Arm CPU with TrustZone or
VirtualizationExtension is debugged. In these Arm CPUs, the processor has two or more CPU operation
modes called:

• Non-secure mode

• Secure mode

• Hypervisor mode

• 64-bit EL3/Monitor mode (Armv8-A only)

Within TRACE32, these CPU operation modes are referred to as zones.

In each CPU operation mode (zone), the CPU uses separate MMU translation tables for memory accesses
and separate register sets. Consequently, in each zone, different code and data can be visible on the same
logical addresses.

To ease debug-scenarios where the CPU operation mode switches between non-secure, secure or
hypervisor mode, it is helpful to load symbol sets for each used zone.

Format: SYStem.Option.ZoneSPACES [ON | OFF]

NOTE: For an explanation of the TRACE32 concept of address spaces (zone spaces,
MMU spaces, and machine spaces), see “TRACE32 Concepts”
(trace32_concepts.pdf).

OFF TRACE32 does not separate symbols by access class. Loading two or more
symbol sets with overlapping address ranges will result in unpredictable
behavior. Loaded symbols are independent of Arm zones.

ON Separate symbol sets can be loaded for each zone, even with
overlapping address ranges. Loaded symbols are specific to one of the
Arm zones - each symbol carries one of the access classes N:, Z:, H: or
M:
For details and examples, see below.
Arm Debugger | 164©1989-2024 Lauterbach

Overview of Debugging with Zones

If SYStem.Option.ZoneSPACES is enabled (ON), TRACE32 enforces any memory address specified in a
TRACE32 command to have an access class which clearly indicates to which zone the memory address
belongs. The following access classes are supported:

If an address specified in a command is not clearly attributed to N: Z:, H: or M:, the access class of the
current PC context is used to complete the addresses’ access class.

Every loaded symbol is attributed to either non-secure (N:), secure (Z:), hypervisor (H:) or EL3/monitor (M:)
zone. If a symbol is referenced by name, the associated access class (N:, Z:, H: or M:) will be used
automatically, so that the memory access is done within the correct CPU mode context. As a result, the
symbol’s logical address will be translated to the physical address with the correct MMU translation table.

N Non-secure mode
Example: Linux user application

Z Secure mode
Example: Secure crypto routine

H Hypervisor mode
Example: XEN hypervisor

M
Armv8-A only

64-bit EL3/Monitor mode
Example: Trusted boot stage / monitor

NOTE: The loaded symbols and their associated access class can be examined with
command sYmbol.List or sYmbol.Browse or sYmbol.INFO.
Arm Debugger | 165©1989-2024 Lauterbach

Example: Symbols Loading

Example: Symbolic Memory Access

Example: Deleting Zone-specific Symbols

To delete a complete symbol set belonging to a specific zone, e.g. the non-secure zone, use the following
command to delete all symbols in the specified address range.

SYStem.Option.ZoneSPACES ON

; 1. Load the vmlinux symbols for non-secure mode (access classes N:, NP:
; and ND: are used for the symbols) with offset 0x0:
Data.LOAD.Elf vmlinux N:0x0 /NoCODE

; 2. Load the sysmon symbols for secure mode (access classes Z:, ZP: and
; ZD: are used for the symbols) with offset 0x0:
Data.LOAD.Elf sysmon Z:0x0 /NoCODE

; 3. Load the xen-syms symbols for hypervisor mode (access classes H:,
; HP: and HD: are used for the symbols) but without offset:
Data.LOAD.Elf xen-syms H: /NoCODE

; 4. Load the sieve symbols without specification of a target access
; class and address:
Data.LOAD.Elf sieve /NoCODE
; Assuming that the current CPU mode is non-secure in this example, the
; symbols of sieve will be assigned the access classes N:, NP: and ND:
; during loading.

; dump the address on symbol swapper_pg_dir which belongs
; to the non-secure symbol set "vmlinux" we have loaded above:

Data.dump swapper_pg_dir

; This will automatically use access class N: for the memory access,
; even if the CPU is currently not in non-secure mode.

sYmbol.Delete N:0x0--0xffffffff ; non-secure mode (access classes N:)
Arm Debugger | 166©1989-2024 Lauterbach

Example: Zone-specific Debugger Address Translation Setup

If the option ZoneSPACES is enabled and the debugger address translation is used (TRANSlation
commands), a strict zone separation of the address translations is enforced. Also, common address ranges
created with TRANSlation.COMMON will always be specific for a certain zone.

This script shows how to define separate translations for the zones N: and H:

SYStem.Option.ZoneSPACES ON

Data.LOAD.Elf sysmon Z:0 /NoCODE
Data.LOAD.Elf usermode N:0 /NoCODE /NoClear

; set up address translation for secure mode
TRANSlation.Create Z:0xC0000000++0x0fffffff A:0x10000000

; set up address translation for non-secure mode
TRANSlation.Create N:0xC0000000++0x1fffffff A:0x40000000

; enable address translation and table walk
TRANSlation.ON

; check the complete translation setup
TRANSlation.List
Arm Debugger | 167©1989-2024 Lauterbach

Operation System Support - Defining a Zone-specific OS Awareness

If the CPU’s virtualization extension is used to virtualize one or more guest systems, the hypervisor always
runs in the CPU’s hypervisor mode (zone H:), and the current guest system (if a ready-to-run guest is
configured at all by the hypervisor) will run in the CPU’s non-secure mode (zone N:).

Often, an operation system (such as a Linux kernel) runs in the context of the guest system.

In such a setup with hypervisor and guest OS, it is possible to load both the hypervisor symbols to H: and all
OS-related symbols to N:

A TRACE32 OS Awareness can be loaded in TRACE32 to support the work with the OS in the guest
system. This is done as follows:

1. Configure the OS Awareness as for a non-virtualized system. See:

- “Training Linux Debugging” (training_rtos_linux.pdf)

- TASK.CONFIG command

2. Additionally set the default access class of the OS Awareness to the non-secure zone:

The TRACE32 OS Awareness is now configured to find guest OS kernel symbols in the non-secure
zone.

TASK.ACCESS N:

NOTE: This debugger setup, which is based on the option ZoneSPACES, allows work with
only one guest system simultaneously.
If the hypervisor has configured more than one guest, only the guest that is active in
the non-secure CPU mode is visible.
To work with another guest, the system must continue running until an inactive
guest becomes the active guest.

With SYStem.Option.MACHINESPACES enabled, TRACE32 also supports
concurrent debugging of a virtualized system with hypervisor and multiple
guests.

the CPU specific zones N: Z: H: and M: will be extended by machine specific
zones. Each of these zones is identified by a machine ID. Each guest has its
own zone because it uses a separate translation table and a separate register
set.
Arm Debugger | 168©1989-2024 Lauterbach

Example: Setup for a Guest OS and a Hypervisor

In this script, the hypervisor is configured to run in zone H: and a Linux kernel with OS Awareness as
current guest OS in zone N:

Any task-related command, such as MMU.List.TaskPageTable <task_name>, will automatically refer to
tasks running in the same zone as the OS Awareness.

SYStem.Option.ZoneSPACES ON

; within the OS Awareness we need the space ID to separate address spaces
; of different processes / tasks
SYStem.Option.MMUSPACES ON

; here we let the target system boot the hypervisor. The hypervisor will
; set up the guest and boot Linux on the guest system.
...

; load the hypervisor symbols
Data.LOAD.Elf xen-syms H:0 /NoCODE
Data.LOAD.Elf usermode N:0 /NoCODE /NoClear

; set up the Linux OS Awareness
TASK.CONFIG ~~/demo/arm/kernel/linux/linux-3.x/linux3.t32
MENU.ReProgram ~~/demo/arm/kernel/linux/linux-3.x/linux.men

; instruct the OS Awareness to access all OS-related symbols with
; access class N:
TASK.ACCESS N:

; set up the debugger address translation for the guest OS

; Note that the default address translation in the following command
; defines a translation of the logical kernel addresses range
; N:0xC0000000++0xFFFFFFF to the intermediate address range
; starting at I:0x40000000
MMU.FORMAT linux swapper_pg_dir N:0xC0000000++0xFFFFFFF I:0x40000000

; define the common address range for the guest kernel symbols
TRANSlation.COMMON N:0xC0000000--0xFFFFFFFF

; enable the address translation and the table walk
TRANSlation.TableWalk ON
TRANSlation.ON

NOTE: If SYStem.Option.MMUSPACES ON is used, all addresses for all zones will
show a space ID (such as N:0x024A:0x00320100), even if the OS Awareness
runs only in one zone (as defined with command TASK.ACCESS).
Arm Debugger | 169©1989-2024 Lauterbach

SYStem.Option.ZYNQJTAGINDEPENDENT Configure JTAG cascading

Default: OFF

This option is for a Zynq Ultrascale+ device using JTAG Boot mode. There are two cases:

1. Device operates in cascaded mode. The Arm DAP and TAP controllers both use the PL JTAG
interface, i.e. forming a JTAG daisy chain.

2. Device operates in independent mode. The TAP controller is accessed via the PL JTAG interface.
The Arm DAP is connected to the MIO or EMIO JTAG interface.

This command controls whether the debugger connects to the device in independent or cascaded mode.
This depends on the used JTAG interface.

SYStem.RESetOut Assert nRESET/nSRST on JTAG connector
[SYStem.state window > RESetOut]

If possible (nRESET/nSRST is open collector), this command asserts the nRESET/nSRST line on the JTAG
connector. While the CPU is in debug mode, this function will be ignored. Use the SYStem.Up command if
you want to reset the CPU in debug mode.

Format: SYStem.Option.ZYNQJTAGINDEPENDENT [ON | OFF]

ON The Arm DAP is accessed through the MIO or EMIO JTAG interface. No
JTAG chain configuration is required by the debugger.

NOTE: Please set this option to ON if JTAG is connected via the
independent JTAG (e.g. via MIO or EMIO via FPGA) lines.

OFF The Arm DAP is accessed through the PL JTAG interface and has to be
chained with the TAP controller by the debugger.

Format: SYStem.RESetOut
Arm Debugger | 170©1989-2024 Lauterbach

SYStem.state Display SYStem window

Displays the SYStem.state window for Arm.

Format: SYStem.state
Arm Debugger | 171©1989-2024 Lauterbach

Arm specific Functions

SYStem.Option.HRCWOVerRide()
[build 144077 - DVD 02/2022]

Returns current setting of SYStem.Option.HRCWOVerRide.

Return Value Type: Boolean.

Return Value and Description:

Syntax: SYStem.Option.HRCWOVerRide()

TRUE SYStem.Option.HRCWOVerRide ON has been set.

FALSE SYStem.Option.HRCWOVerRide OFF has been set.
Arm Debugger | 172©1989-2024 Lauterbach

Arm Specific Benchmarking Commands

The BMC (BenchMark Counter) commands provide control of the on-chip performance monitor unit (PMU).
The PMU consists of a group of counters that can be configured to count certain events in order to get
statistics on the operation of the processor and the memory system.

The counters of Cortex-A/R cores can be read at run-time. The counters of Arm11 cores can only be read
while the target application is halted. This group of counters is not available for Arm7 to Arm10 cores.

For information about architecture-independent BMC commands, refer to “BMC” (general_ref_b.pdf).

For information about architecture-specific BMC commands, see command descriptions below.

BMC.EXPORT Export benchmarking events from event bus

Enable / disable the export of the benchmarking events from the event bus. If enabled, it allows an external
monitoring tool, such as an ETM to trace the events. For further information please refer to the target
processor manual under the topic performance monitoring.

Default: OFF

The figure below depicts an example configuration comprising the PMU and ETM:

In case ETM1 or ETM2 are selected for event counting, BMC.EXPORT will automatically be switched on.
Furthermore the according extended external input selectors of the ETM will be set accordingly.

Format: BMC.EXPORT [ON | OFF]
Arm Debugger | 173©1989-2024 Lauterbach

BMC.EXTEND Define benchmark counter event

CortexA15 only. SoC manufacturers can define their own events to be counted on CortexA15 devices.
These custom events can be placed within ID range 0xC0 - 0xFF.

Event names may differ between manufacturers (or even between devices from the same manufacturer), so
these IDs will appear as event names in the pulldown list and command path.

Format: BMC.EXTEND [ON | OFF]
Arm Debugger | 174©1989-2024 Lauterbach

BMC.MODE Define the operating mode of the benchmark counter

This command only applies to some Arm9 based derivatives from Texas Instruments.

The Benchmark Counter - short BMC - is a hardware counter. It collects information about the throughput of
the target processor, like instruction or data cache misses. This information may be helpful in finding
bottlenecks and tuning the application.

Format: BMC.MODE <mode>

<mode>: OFF
ICACHE
DCACHE
SYSIF
CLOCK
TIME

OFF Switch off the benchmark counter.

ICACHE Counts Instructions CACHE misses, in relation to total instruction access.

DCACHE Counts Data CACHE misses, in relation to total data access.

SYSIF Counts if SYStem bus InterFace is busy, in relation to total system bus
access.

CLOCK Incremented for each CPU clock.

TIME TIME is measured by counting CLOCK. The translation to TIME is done
by using the CPU frequency. For this reason, the CPU frequency has to
be entered with the command BMC.CLOCK.
Arm Debugger | 175©1989-2024 Lauterbach

BMC.<counter>.EVENT Configure the performance monitor
[Example]

The command is available on Arm1136, Arm1176 and Cortex cores. This description applies to Arm1136.
All available events are described in detail in the technical reference guide of the Arm cores.

Performance Monitors - short PMN - are implemented as 32-bit hardware counter. They collect information
about the throughput of the target processor and its pipeline stages. They count certain events, like cache
misses or CPU cycles. Further, they deliver information about the efficiency of the instruction or data cache,
the TLBs (translation look aside buffers) and some other performance values. This information may be
helpful in finding bottlenecks and tuning the application.

Format: BMC.<counter>.EVENT <event>

<counter>: PMN0
PMN1

<event>: OFF | INST | BINST | BMIS | PC | ICMISS | ITLBMISS | ISTALL | DACCESS |
DCACHE | DCMISS | DTBLMISS | DSTALL | DFULL | DCWB | WBDRAIN |
TLBMISS | EMEM | ETMEXTOUT0 | ETMEXTOUT1 | Delta | Echo | CLOCK |
TIME | NONE | …

<event> For a description of the <events>, refer to the Technical Reference
Manual (TRM) of the respective core, chapter “Performance Monitor Unit”
(PMU).

For a description of some selected <events>, see below.

OFF Switch off the performance monitor.

INST The selected counter counts executed instructions.

BINST Counts executed branch instructions.

BMIS Counts branches which were mispredicted by the core (for static) or
prefetch unit (for dynamic) branch prediction. A branch misprediction
causes the pipeline to be flushed, and the correct instruction to be
fetched.

PC Counts changes of the PC by the program e.g. as in a MOV or LDR
instruction with PC as destination.

ICMISS Counts instruction cache misses which requires a instruction fetch from
the external memory.

ITLBMISS Counts misses of the instruction MicroTLB.
Arm Debugger | 176©1989-2024 Lauterbach

ISTALL ISTALL increments the counter by 1 for every cycle the condition is valid.
The CPU is stalled when the instruction buffer cannot deliver an
instruction. This happens as a result of an instruction cache miss or an
instruction MicroTLB miss.

DACCESS DACCESS is incremented by 1 for every nonsequential data access,
regardless of whether or not the item is cached or not.

DCACHE DCACHE is incremented for each access to the data cache.

DCMISS DCMISS counts for missing data in the data cache.

DTBLMISS Counts misses in the data MicroTLB.

DSTALL In a data dependency conflict the CPU is stalled. DSTALL increments the
counter by one for every cycle the stall persists.

DFULL If the pipeline of load store unit is full, the counter will be incremented by
one for each clock the condition is met.

DCWB Data cache write back occurs for each half line of four words that are
written back from cache to memory.

WBDRAIN Write buffer drains force all buffered data writes to be written to external
memory. WBDRAIN will count all that drains which are done because of a
data synchronization barrier or strongly ordered operations.

TBLMISS Counts main TLB misses.

EMEM Incremented for each explicit external data access. That includes cache
refills, non-cashable and write-through access. It does not include
instruction cache fills or data write backs.

ETMEXTOUT0 The counter is incremented, if the ETMEXTOUT0-signal is asserted for a
cycle. The ETM can be programmed to rise that signal on behalf / as
result of certain events, like a counter overflow or an address compare.

EMTEXTOUT1 The counter is incremented, if the ETMEXTOUT1-signal is asserted for a
cycle. The ETM can be programmed to rise that signal on behalf of
certain events, like a counter overflow or an address compare.

Delta Counts hits of the Delta-Marker, if specified.

Echo Counts hits of the Echo-Marker, if specified.

CLOCK The counter is incremented for every cpu clock.
Arm Debugger | 177©1989-2024 Lauterbach

Example 1: To count for branches taken, in relation to mispredicted branches, use the following commands:

Example 2: To count for data access in relation to data cache misses:

TIME TIME is measured by counting CLOCK. The transaction to TIME is done
by using the cpu frequency. For this reason, the CPU frequency has to be
entered with the command BMC.CLOCK.

INIT Reset the benchmark counter to zero.

BMC.RESet ; Reset the BMC settings

BMC.state ; Display the BMC window

BMC.PMN0.EVENT BINST ; Set the first (PMN0) performance counter
; to count all taken branches

BMC.PMN1.EVENT BMIS ; Set the second (PMN1) performance counter
; to mispredicted branches

BMC.PMN0.RATIO PMN1/PMN0 ; Calculate the ratio between branches
; taken and branches mispredicted

Go sieve ; Go to the function sieve

BMC.Init ; Initialize the benchmark counter to start
; the measurement of function sieve

Go.Return ; Go to the last instruction of the function
; sieve

BMC.RESet ; Reset the BMC settings

BMC.state ; Display the BMC window

BMC.PMN0.EVENT DCACCESS ; Set the first (PMN0) performance counter
; to count all data accesses

BMC.PMN1.EVENT DCMISS ; Set the second (PMN1) performance counter
; to count data cache misses

BMC.PMN0.RATIO PMN1/PMN0 ; Calculate the ratio between data access
; and cache misses

Go sieve ; Go to the function sieve

BMC.Init ; Initialize the benchmark counter

Go.Return ; Go to the last instruction of the function
; sieve
Arm Debugger | 178©1989-2024 Lauterbach

Functions

Benchmark counter values can be returned with the function BMC.COUNTER().

BMC.PRESCALER Prescale the measured cycles

If ON, the cycle counter register, which counts for the cpu cycles which is used to measure the elapsed time,
will be divided (prescaled) by 64. The display of the time will be corrected accordingly.

BMC.TARA Calibrate the benchmark counter

Due to restricted technical feasibility, the benchmark counter will start counting before the application runs.
To improve the exactness of the result you can perform BMC.Init, single step an assembler command and
execute BMC.TARA. On following measurements the obtained result will be subtracted from the benchmark
counter.

Format: BMC.PRESCALER [ON | OFF]

Format: BMC.TARA
Arm Debugger | 179©1989-2024 Lauterbach

Arm Specific TrOnchip Commands

The TrOnchip command group provides low-level access to the on-chip debug register.

Deprecated vs. New Commands

For information about architecture-specific TrOnchip commands, refer to the command descriptions in this
chapter.

TrOnchip.A Programming the ICE breaker module

Available for Arm7 and Arm9 family.

NOTE: A number of commands from the TrOnchip command group have been
renamed to Break.CONFIG.<sub_cmd>.

In addition, these Break.CONFIG commands are now architecture-independent
commands, and as such they have been moved to general_ref_b.pdf.

Previously in this manual: Now in general_ref_b.pdf:

TrOnchip.CONVert (deprecated) Break.CONFIG.InexactAddress

TrOnchip.MatchASID (deprecated) Break.CONFIG.MatchASID

TrOnchip.MatchMachine (deprecated) Break.CONFIG.MatchMachine

TrOnchip.MatchZone (deprecated) Break.CONFIG.MatchZone

TrOnchip.ContextID (deprecated) Break.CONFIG.UseContextID

TrOnchip.MachineID (deprecated) Break.CONFIG.UseMachineID

TrOnchip.VarCONVert (deprecated) Break.CONFIG.VarConvert
Arm Debugger | 180©1989-2024 Lauterbach

Example: Assume there is a byte variable called 'flag' and you want to trigger if the value 59 is written to the
variable.

TrOnchip.A.Value Define data selector

Defines the two data selectors of ICE breaker as hex or binary mask (x means don't care). If you want to
trigger on a certain byte or word access you must specify the mask according to the address of the access.
E.g. you make a byte access on address 2 and you want to trigger on the value 33, then the necessary mask
is 0xx33xxxx.

Available for Arm7 and Arm9 family.

TrOnchip.A.Size Define access size for data selector

Defines on which access size when ICE breaker stops the program execution.

Break.Set flag /Alpha ; set an alpha breakpoint to the address
; of the variable flag

TrOnchip.A Address Alpha ; enable alpha break for on-chip trigger

TrOnchip.A Value 0xxxxxx59 ; specify data pattern; this example
; assumes that the address of flags is on
; an address dividable by 4 and you have
; little endian byte ordering (lowest byte
; on data bus)

TrOnchip.A Cycle Write ; specify that you want to trigger only on
; a write access

TrOnchip.A Size Byte ; specify that you want to trigger only on
; byte access

Format: TrOnchip.A.Value <hexmask> | <bitmask>
TrOnchip.B.Value <hexmask> | <bitmask>

Format: TrOnchip.A.Size <size>
TrOnchip.B.Size <size>

<size>: OFF
Byte
Word
Long
Arm Debugger | 181©1989-2024 Lauterbach

Available for Arm7 and Arm9 family.

TrOnchip.A.CYcle Define access type

Defines on which cycle the ICE breaker stops the program execution.

Available for Arm7 and Arm9 family.

Format: TrOnchip.A.CYcle <cycle>
TrOnchip.B.CYcle <cycle>

<cycle>: OFF
Read
Write
Access
Execute

OFF Cycle type does not matter.

Read Stop the program execution on a read access.

Write Stop the program execution on a write access.

Access Stop the program execution on a read or write access.

Execute Stop the program execution on an instruction is executed.
Arm Debugger | 182©1989-2024 Lauterbach

TrOnchip.A.Address Define address selector

The address/range for an address selector can not be defined directly. Set an breakpoint of the type Alpha,
Beta or Charly to the address/range.

Example 1:

Example 2:

Available for Arm7 and Arm9 family.

Format: TrOnchip.A.Address <selector>
TrOnchip.B.Address <selector>

<selector>: OFF
Alpha
Beta
Charly

Break.Set 1000 /Alpha
TrOnchip.A.Address Alpha

; set an Alpha breakpoint to 1000
; use Alpha breakpoint as address
; selector for the unit A

Var.Break.Set flags[3] /Beta
TrOnchip.B.Address Beta

; set a Beta breakpoint to flags[3]
; use Beta breakpoint as address
; selector for the unit B
Arm Debugger | 183©1989-2024 Lauterbach

TrOnchip.A.Trans Define access mode

Defines in which mode ICE breaker should stop the program execution.

Available for Arm7 and Arm9 family.

TrOnchip.A.Extern Define the use of EXTERN lines

Defines if the EXTERN lines are considered by unit A or unit B.

Available for Arm7 and Arm9 family.

Format: TrOnchip.A.Trans <mode>
TrOnchip.B.Trans <mode>

<mode>: OFF
User
Svc

OFF Mode doesn’t matter.

User Stop the program execution only in user mode.

Svc Stop the program execution only in supervisor mode.

Format: TrOnchip.A.Extern <mode>
TrOnchip.B.Extern <mode>

<mode>: OFF
Low
High
Arm Debugger | 184©1989-2024 Lauterbach

TrOnchip.AddressMask Define an address mask

TrOnchip.ContextID Enable context ID comparison

If the debug unit provides breakpoint registers with ContextID comparison capability, TrOnchip.ContextID
has to be set to ON in order to set task/process specific breakpoints that work in real-time.

Example:

Format: TrOnchip.AddressMask <value> | <bitmask>

Format: TrOnchip.ContextID [ON | OFF] (deprecated)
Use Break.CONFIG.UseContextID instead

TrOnchip.ContextID ON

Break.Set VectorSwi /Program /Onchip /TASK EKern.exe:Thread1
Arm Debugger | 185©1989-2024 Lauterbach

TrOnchip.CONVert Allow extension of address range of breakpoint

Controls for all on-chip read/write breakpoints whether the debugger is allowed to change the user-defined
address range of a breakpoint (see Break.Set <address_range> in the figure below).

The debug logic of a processor may be implemented in one of the following three ways:

1. The debug logic does not allow to set range breakpoints, but only single address breakpoints.
Consequently the debugger cannot set range breakpoints and returns an error message.

2. The debugger can set any user-defined range breakpoint because the debug logic accepts this
range breakpoint.

3. The debug logic accepts only certain range breakpoints. The debugger calculates the range that
comes closest to the user-defined breakpoint range (see “modified range” in the figure above).

Format: TrOnchip.CONVert [ON | OFF] (deprecated)
Use Break.CONFIG.InexactAddress instead

Range fits
to debug

logic?
No

Break.Set <addr_range>

Program
debug logic

Yes

Yes unmodified range

TrOnchip.
CONVert

OFF

ON
modified range

No

Error
Arm Debugger | 186©1989-2024 Lauterbach

The TrOnchip.CONVert command covers case 3. For case 3) the user may decide whether the debugger is
allowed to change the user-defined address range of a breakpoint or not by setting TrOnchip.CONVert to
ON or OFF.

In the Break.List window, you can view the requested address range for all breakpoints, whereas in the
Break.List /Onchip window you can view the actual address range used for the on-chip breakpoints.

TrOnchip.MachineID Extend on-chip breakpoint/trace filter by machine ID

If the debug unit provides breakpoint registers with Machine ID comparison capability, TrOnchip.MachineID
has to be set to ON in order to set machine specific breakpoints that work in real-time.

ON
(default)

If TrOnchip.Convert is set to ON and a breakpoint is set to a range which
cannot be exactly implemented, this range is automatically extended to
the next possible range. In most cases, the breakpoint now marks a wider
address range (see “modified range” in the figure above).

OFF If TrOnchip.Convert is set to OFF, the debugger will only accept
breakpoints which exactly fit to the debug logic (see “unmodified range”
in the figure above).
If the user enters an address range that does not fit to the debug logic, an
error will be returned by the debugger.

Format: TrOnchip.MachineID [ON | OFF] (deprecated)
Use Break.CONFIG.UseMachineID instead
Arm Debugger | 187©1989-2024 Lauterbach

TrOnchip.MatchASID Extend on-chip breakpoint/trace filter by ASID

TrOnchip.MatchMachine Extend on-chip breakpoint/trace filter by machine

Format: TrOnchip.MatchASID [ON | OFF] (deprecated)
TrOnchip.ASID [ON | OFF] (deprecated)
Use Break.CONFIG.MatchASID instead

OFF
(default)

Stop the program execution at on-chip breakpoint if the address matches.
Trace filters and triggers become active if the address matches.

ON Stop the program execution at on-chip breakpoint if both the address and
the ASID match.
Trace filters and triggers become active if both the address and the ASID
match.

Format: TrOnchip.MatchMachine [ON | OFF] (deprecated)
Use Break.CONFIG.MatchMachine instead

OFF
(default)

Stop the program execution at on-chip breakpoint if the address matches.
Trace filters and triggers become active if the address matches.

ON Stop the program execution at on-chip breakpoint if both the address and
the machine match.
Trace filters and triggers become active if both the address and the
machine match.
Arm Debugger | 188©1989-2024 Lauterbach

TrOnchip.MatchZone Extend on-chip breakpoint/trace filter by zone

Example: In these two demo code snippets, let’s compare the setting TrOnchip.MatchZone ON and
OFF for an on-chip breakpoint at address 0x100 in zone Z (= secure memory).

Format: TrOnchip.MatchZone [ON | OFF] (deprecated)
Use Break.CONFIG.MatchZone instead

OFF Stop the program execution at on-chip breakpoint if the address matches.
Trace filters and triggers become active if the address matches.

ON
(default)

Stop the program execution at on-chip breakpoint if both the address and
the zone match.
Trace filters and triggers become active if both the address and the zone
match.

NOTE: SYStem.Option.ZoneSPACES must be set to ON for TrOnchip.MatchZone ON
to take effect.

However, the setting TrOnchip.MatchZone ON is not supported by all Arm
cores nor by all ETMs.

SYStem.Option.ZoneSPACES ON

;create an on-chip breakpoint in secure memory
Break.Set ZSR:0x100 /Onchip

TrOnchip.MatchZone ON ;observe the zones for on-chip breakpoints

;--> application execution will stop at the on-chip breakpoint
; only if both conditions are fulfilled:
; a) the address is 0x100 and
; b) the zone is Z (= secure memory)

SYStem.Option.ZoneSPACES ON

;create an on-chip breakpoint in secure memory
Break.Set ZSR:0x100 /Onchip

TrOnchip.MatchZone OFF ;ignore the zones for on-chip breakpoints

;--> now application execution will stop at address 0x100
; irrespective of the zone
Arm Debugger | 189©1989-2024 Lauterbach

TrOnchip.Mode Configure unit A and B

Defines the way in which unit A and B are used together.

Available for Arm7 and Arm9 family.

TrOnchip.RESet Reset on-chip trigger settings

Resets all TrOnchip settings.

Format: TrOnchip.Mode <mode>

<mode>: AORB
AANDB
BAFTERA
WATCH

AORB Stop the program execution if unit A or unit B match.

AANDB Stop the program execution if both units match.

BAFTERA Stop the program execution if first unit A and then unit B match.

WATCH Cause assertion of the internal watchpoint signal on a match.

Format: TrOnchip.RESet
Arm Debugger | 190©1989-2024 Lauterbach

TrOnchip.Set Set bits in the vector catch register

Default: DABORT, PABORT, UNDEF, RESET ON, others OFF.

On devices having TrustZone you can specify for most exceptions if the vector catch shall take effect only in
non-secure (N...), secure (S...) or monitor mode (M...), on devices having a Hypervisor mode also in
hypervisor mode (H...).

TrOnchip.StepVector Step into exception handler

Default: OFF.

Format: TrOnchip. Set <item> [ON | OFF]

<item> : ARM9, ARM11, Cortex-A/-R:
[FIQ | IRQ | DABORT | PABORT | SWI | UNDEF | RESET]

Devices having TrustZone (ARM1176, Cortex-A) additionally:
[NFIQ | NIRQ | NDABORT | NPABORT | NSWI | NUNDEF |
SFIQ | SIRQ | SDABORT | SPABORT | SSWI | SUNDEF | SRESET |
MAFIC | MIRQ | MDABORT | MPABORT | MSWI]

Devices having a Hypervisor mode (e.g. Cortex-A7, -A15) additionally:
[HFIQ | HIRQ | HDABORT | HPABORT | HSWI | HUNDEF | HENTRY]

FIQ, ...
HENTRY

Sets/resets the corresponding bits in the vector catch register of the core. If the
bit of a vector is set and the corresponding exception occurs, the processor
enters debug state as if there had been a breakpoint set on an instruction fetch
from that exception vector.

StepVector
(deprecated)

Please see TrOnchip.StepVector.

Format: TrOnchip.StepVector [ON | OFF]

ON Step into exception handler.

OFF Step over exception handler.
Arm Debugger | 191©1989-2024 Lauterbach

TrOnchip.StepVectorResume Catch exceptions and resume single step

Default: OFF.

When this command is set to ON, the debugger will catch exceptions and resume the single step.

Format: TrOnchip.StepVector [ON | OFF]
Arm Debugger | 192©1989-2024 Lauterbach

TrOnchip.TEnable Define address selector for bus trace

Defines a filter for the trace. The Preprocessor for the Arm7 family (bus trace) provides 1 address
comparator that is implemented as a comparator (bit mask). Since this comparator is provided by the
TRACE32 development tools, it is listed as a Hardware Breakpoint.

Example 1: Sample only entries to the function sieve.

Example 2: Sample all read and write accesses to the variable flags[3].

Format: TrOnchip.TEnable <mode>

<mode>: ALL
Alpha
Beta
Charly
Delta
Echo

Break.Set sieve /Charly
TrOnchip.TEnable Charly
TrOnchip.TCYcle Fetch

Var.Break.Set flags[3] /Alpha
TrOnchip.TEnable Alpha
TrOnchip.TCYcle Access
Arm Debugger | 193©1989-2024 Lauterbach

TrOnchip.TCYcle Define cycle type for bus trace

Defines the cycle type for the bus trace address selector.

Format: TrOnchip.TCYcle <cycle>

<cycle>: ANY
Read
Write
Access
Fetch
Soft

ANY Cycle type doesn't matter.

Read Record only read accesses.

Write Record only write accesses.

Access Record only data accesses.

Fetch Record only instruction fetches.

Soft Not used now.
Arm Debugger | 194©1989-2024 Lauterbach

TrOnchip.VarCONVert Convert breakpoints on scalar variables
f

Controls for all scalar variables whether the debugger sets an HLL breakpoint with Var.Break.Set only on
the start address of the scalar variable or on the entire address range covered by this scalar variable.

Format: TrOnchip.VarCONVert [ON | OFF] (deprecated)
Use Break.CONFIG.VarConvert instead

Program
debug logicYes

Yes unmodified range

Range fits
to debug

logic?

TrOnchip.
VarCONVert

ON
single address

TrOnchip.
CONVert

Var.Break.Set <scalar>

ON
modified range

O
F

F

No

OFF

ad
dr

ra
ng

e

No

OFF

Error
Arm Debugger | 195©1989-2024 Lauterbach

In the Break.List window, you can view the requested address range for all breakpoints, whereas in the
Break.List /Onchip window you can view the actual address range used for the on-chip breakpoints.

TrOnchip.state Display on-chip trigger window

Opens the TrOnchip.state window.

ON If TrOnchip.VarCONVert is set to ON and a breakpoint is set to a scalar
variable (int, float, double), then the breakpoint is set only to the start
address of the scalar variable.
• Allocates only one single on-chip breakpoint resource.
• Program will not stop on accesses to the variable’s address space.

OFF
(default)

If TrOnchip.VarCONVert is set to OFF and a breakpoint is set to a scalar
variable (int, float, double), then the breakpoint is set to the entire address
range that stores the scalar variable value.
• The program execution stops also on any unintentional accesses

to the variable’s address space.
• Allocates up to two on-chip breakpoint resources for a single

range breakpoint.
NOTE: The address range of the scalar variable may not fit to the debug
logic and has to be converted by the debugger, see TrOnchip.CONVert.

Format: TrOnchip.state
Arm Debugger | 196©1989-2024 Lauterbach

CPU specific MMU Commands

MMU.DUMP Page wise display of MMU translation table

Displays the contents of the CPU specific MMU translation table.

• If called without parameters, the complete table will be displayed.

• If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

Format: MMU.DUMP <table> [<range> | <address> | <range> <root> |
 <address> <root>] [/<option>]
MMU.<table>.dump (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

<option>: MACHINE <machine_magic> | <machine_id> | <machine_name>
Fulltranslation

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display
a page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process or a specific
machine if a space ID and/or a machine ID is given.

PageTable Displays the entries of an MMU translation table.
• if <range> or <address> have a space ID and/or machine ID: dis-

plays the translation table of the specified process and/or machine
• else, this command displays the table the CPU currently uses for

MMU translation.

KernelPageTable Displays the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and displays its table entries.
Arm Debugger | 197©1989-2024 Lauterbach

CPU-specific Tables in MMU.DUMP <table>

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Displays the MMU translation table entries of the given process. Specify
one of the TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and displays its table entries.
• For information about the first three parameters, see “What to

know about the Task Parameters” (general_ref_t.pdf).
• See also the appropriate OS Awareness Manuals.

MACHINE
<machine_magic> |
<machine_id> |
<machine_name>

The following options are only available if
SYStem.Option.MACHINESPACES is set to ON.

Dumps a page table of a virtual machine. The MACHINE option applies
to PageTable and KernelPageTable and some <cpu_specific_tables>.

The parameters <machine_magic>, <machine_id> and
<machine_name> are displayed in the TASK.List.MACHINES window.

Fulltranslation For page tables of guest machines both the intermediate address and the
physical address is displayed in the MMU.DUMP window.

The physical address is derived from a table walk using the guest’s
intermediate page table.

ITLB Displays the contents of the Instruction Translation Lookaside Buffer. For
column descriptions, click here.

DTLB Displays the contents of the Data Translation Lookaside sBuffer. For column
descriptions, click here.

TLB0 Displays the contents of the Translation Lookaside Buffer 0. For column
descriptions, click here.

TLB1 Displays the contents of the Translation Lookaside Buffer 1. For column
descriptions, click here.

NonSecPageTable Displays the translation table used if the CPU is in non-secure mode and in
privilege level PL0 or PL1. This is the table pointed to by MMU registers
TTBR0 and TTBR1 in non-secure mode. This option is only visible if the
CPU has the TrustZone and/or Virtualization Extension.

SecPageTable Displays the translation table used if the CPU is in secure mode. This is the
table pointed to by MMU registers TTBR0 and TTBR1 in secure mode. This
option is only visible if the CPU has the TrustZone Extension.
Arm Debugger | 198©1989-2024 Lauterbach

Description of Columns in the ITLB, DTLB, andTLB<x> Dump Window
[Back]

HypPageTable Displays the translation table used by the MMU when the CPU is in HYP
mode. This is the table pointed to by MMU register HTTBR.
This table is only available in CPUs with Virtualization Extension.

IntermedPageTable Displays the translation table used by the MMU for the second stage
translation of a guest machine (intermediate address to physical address).
This is the table pointed to by MMU register VTTBR.
This table is only available in CPUs with Virtualization Extension.

Logical Logical address.

Physical Physical address.

Vmid Virtual machine ID.

Asid Address space ID.

Glb Global flag.

Sec Non-secure identifier for physical address.

idx Index of the TLB entry.

pagesize Page size.

Hyp Hypervisor entry flag.

V Valid flag.

L Locked flag.

I Inner shareability flag.

O Outer shareability flag.

M Indicates if the line was brought in when MMU was enabled.

D Domain ID.

Attributes Memory Attributes (check design manual of respective architecture for
the format).

Tablewalk Table walk information.
Arm Debugger | 199©1989-2024 Lauterbach

Examples for Page Tables in Virtualized Systems

Example 1:

Example 2:

Example 3:

SYStem.Option.MACHINESPACES ON

; your code to load Hypervisor Awareness and define guest machine setup.

; <machine_id>
MMU.DUMP.PageTable /MACHINE 2.

; <machine_name>
MMU.DUMP.PageTable /MACHINE "Dom0"

SYStem.Option.MACHINESPACES ON

; your code to load Hypervisor Awareness and define guest machine setup.

; <machine_name>:::<task_name>
MMU.DUMP.TaskPageTable "Dom0:::swapper"

SYStem.Option.MACHINESPACES ON

;your code to load Hypervisor Awareness and define guest machine setup.

;a) dumps the current guest page table of the current machine, showing
; the intermediate addresses.
; Without the option /Fulltranslation the column "physical" is hidden.
MMU.DUMP.PageTable 0x400000

;b) With the option /Fulltranslation the intermediate addresses
; are translated to physical addresses and shown in column "physical"
MMU.DUMP.PageTable 0x400000 /Fulltranslation

;c) dumps the current page table of machine 2
; <machine_id>
MMU.DUMP.PageTable /MACHINE 2. /Fulltranslation
Arm Debugger | 200©1989-2024 Lauterbach

Results for 3 a) and 3 b)

MMU.List Compact display of MMU translation table

Lists the address translation of the CPU-specific MMU table.
In contrast to MMU.DUMP, multiple consecutive page table entries with identical page attributes are listed as
a single line, showing the total mapped address range.

• If called without address or range parameters, the complete table will be displayed.

• If called without a table specifier, this command shows the debugger-internal translation table.
See TRANSlation.List.

• If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

Format: MMU.List <table> [<range> | <address> | <range> <root> | <address> <root>]
 [/<option>]
MMU.<table>.List (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

<option>: MACHINE <machine_magic> | <machine_id> | <machine_name>
Fulltranslation

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.
Arm Debugger | 201©1989-2024 Lauterbach

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process or a specific
machine if a space ID and/or a machine ID is given.

PageTable Lists the entries of an MMU translation table.
• if <range> or <address> have a space ID and/or machine ID: list

the translation table of the specified process and/or machine
• else, this command lists the table the CPU currently uses for MMU

translation.

KernelPageTable Lists the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and lists its address translation.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Lists the MMU translation of the given process. Specify one of the
TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and lists its address translation.
• For information about the first three parameters, see “What to

know about the Task Parameters” (general_ref_t.pdf).
• See also the appropriate OS Awareness Manuals.

<option> For description of the options, see MMU.DUMP.
Arm Debugger | 202©1989-2024 Lauterbach

CPU-specific Tables in MMU.List <table>

NonSecPageTable Displays the translation table used if the CPU is in non-secure mode and in
privilege level PL0 or PL1. This is the table pointed to by MMU registers
TTBR0 and TTBR1 in non-secure mode. This option is only visible if the
CPU has the TrustZone and/or Virtualization Extension.
This option is only enabled if Exception levels EL0 or EL1 use AArch32
mode.

SecPageTable Displays the translation table used if the CPU is in secure mode. This is the
table pointed to by MMU registers TTBR0 and TTBR1 in secure mode. This
option is only visible if the CPU has the TrustZone Extension.
This option is only enabled if the Exception level EL1 uses AArch32
mode.

HypPageTable Displays the translation table used by the MMU when the CPU is in HYP
mode. This is the table pointed to by MMU register HTTBR.
This table is only available in CPUs with Virtualization Extension.

IntermedPageTable Displays the translation table used by the MMU for the second stage
translation of a guest machine (intermediate address to physical address).
This is the table pointed to by MMU register VTTBR.
This table is only available in CPUs with Virtualization Extension.
Arm Debugger | 203©1989-2024 Lauterbach

MMU.SCAN Load MMU table from CPU

Loads the CPU-specific MMU translation table from the CPU to the debugger-internal static translation table.

• If called without parameters, the complete page table will be loaded. The list of static address
translations can be viewed with TRANSlation.List.

• If the command is called with either an address range or an explicit address, page table entries
will only be loaded if their logical address matches with the given parameter.

Use this command to make the translation information available for the debugger even when the program
execution is running and the debugger has no access to the page tables and TLBs. This is required for the
real-time memory access. Use the command TRANSlation.ON to enable the debugger-internal MMU table.

Format: MMU.SCAN <table> [<range> <address>] [/<option>]
MMU.<table>.SCAN (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
ALL
<cpu_specific_tables>

<option>: MACHINE <machine_magic> | <machine_id> | <machine_name>
Fulltranslation

PageTable Loads the entries of an MMU translation table and copies the address
translation into the debugger-internal static translation table.
• if <range> or <address> have a space ID and/or machine ID: loads

the translation table of the specified process and/or machine
• else, this command loads the table the CPU currently uses for

MMU translation.

KernelPageTable Loads the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
table of the kernel and copies its address translation into the debugger-
internal static translation table.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Loads the MMU address translation of the given process. Specify one of
the TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and copies its address translation into the debugger-internal static
translation table.
• For information about the first three parameters, see “What to

know about the Task Parameters” (general_ref_t.pdf).
• See also the appropriate OS Awareness Manual.
Arm Debugger | 204©1989-2024 Lauterbach

CPU-specific Tables in MMU.SCAN <table>

ALL Loads all known MMU address translations.
This command reads the OS kernel MMU table and the MMU tables of all
processes and copies the complete address translation into the
debugger-internal static translation table.
See also the appropriate OS Awareness Manual.

<option> For description of the options, see MMU.DUMP.

OEMAddressTable Loads the OEM Address Table from the CPU to the debugger-internal
translation table.

NonSecPageTable Displays the translation table used if the CPU is in non-secure mode and in
privilege level PL0 or PL1. This is the table pointed to by MMU registers
TTBR0 and TTBR1 in non-secure mode. This option is only visible if the
CPU has the TrustZone and/or Virtualization Extension.
This option is only enabled if Exception levels EL0 or EL1 use AArch32
mode.

SecPageTable Displays the translation table used if the CPU is in secure mode. This is the
table pointed to by MMU registers TTBR0 and TTBR1 in secure mode. This
option is only visible if the CPU has the TrustZone Extension.
This option is only enabled if the Exception level EL1 uses AArch32
mode.

HypPageTable Loads the translation table used by the MMU when the CPU is in HYP mode.
This is the table pointed to by MMU register HTTBR.
This table is only available in CPUs with Virtualization Extension.

IntermedPageTable Loads the translation table used by the MMU for the second stage translation
of a guest machine (intermediate address to physical address). This is the
table pointed to by MMU register VTTBR.
This table is only available in CPUs with Virtualization Extension.
Arm Debugger | 205©1989-2024 Lauterbach

CPU specific SMMU Commands

SMMU Hardware system MMU (SMMU)

Using the SMMU command group, you can analyze the current setup of up to 20 system MMU instances.
Selecting a CPU with a built-in SMMU activates the SMMU command group.

Some SoC CPU types have already SMMUs predefined as component, visible in the SYStem.CONFIG
component dialog window.

TRACE32 supports the SMMU types MMU-400, MMU-401 and MMU-500 (based on the Arm SMMU
architecture specification v2, short SMMU-v2) and MMU-600 (based on the Arm SMMU architecture
specification v3, short SMMU-v3).

The TRACE32 SMMU support visualizes most of the configuration settings of an SMMU. These
visualizations include:

• The Stream Table with all Stream Map Register Groups (SMRG, for SMMU-v2) or all Stream
Table Entries (STE, for SMMU-v3)

• Access to both the non-secure and the secure SMMU view

• Tabular overview over principal data of each SMRG or STE listed in the Stream Table such as

- Stream matching register settings (for SMMU-v2)

- Translation context type (stage 1 / stage 2 enabled / bypass / fault)

- The context’s stream world of a SMRG (HYPC and MONC flags) or STE (EL1/EL2/EL3)

- Stage 1 / stage 2 context bank indices (for SMMU-v2)

- The availability of stage1 and stage 2 page tables, their format and the MMU-enable/disableT
state for the stage 1 and/or stage 2 address translation

- VMID and the number of stage 1 Context Descriptors for a STE (for SMMU-v3)

• The stage 1 Context Descriptor Table for a given STE (for SMMU-v3)

• Page table lists or dumps for stage 1 and/or stage 2 address translation contexts

• A quick indication of contexts where a fault has occurred or contexts that are stalled (SMMU-v2)

• A quick indication of the global SMMU fault status

• CMD Queue and Event Queue dumps with filtering options (for SMMU-v3)

SYStem.CPU CortexA53 ;for example, the ‘CortexA53’ CPU is SMMU-capable

SMMU.ADD ... ;you can now define an SMMU, e.g. an SMMU for a
 ;graphics processing unit (GPU)
Arm Debugger | 206©1989-2024 Lauterbach

• Peripheral register view:

- Global Configuration Registers of the SMMU

- The SMRG / STE Registers

- The Context Bank Registers (SMMU-v2) / Context Descriptor Registers (SMMU-v3)

- MMU-specific Registers such as Performance Measurement Unit Registers, Translation
Control Unit Registers or Translation Buffer Unit Registers (for SMMU-v3)

A good way to familiarize yourself with the SMMU command group is to start with:

• The SMMU.ADD command

• The SMMU.StreamTable command which offers GUI-based access to almost all SMMU data

• The guide Overview - How To

• Glossary - SMMU

• Arguments in SMMU Commands

The SMMU.StreamTable command and the window of the same name serve as your SMMU command
and control center in TRACE32. The right-click popup menu in the SMMU.StreamTable window allows you
to execute all frequently-used SMMU commands through the user interface TRACE32 PowerView.

The other SMMU commands are designed primarily for use in PRACTICE scripts (*.cmm) and for users
accustomed to working with the command line.

Overview - How To

This chapter is a brief guide which commands can be used to perform common tasks. The guide is split into
two parts: one for MMU-400, MMU-401 and MMU-500 which follow the SMMU-v2 specification and one for
MMU-600 and newer which follow the SMMU-v3 specification.

NOTE: The primary table of streams is called Stream Map Table in the SMMU-v2
architecture specification, whereas it is called Stream Table in the SMMU-v3
architecture specification.

To keep the TRACE32 user interface simple, a single unified command,
SMMU.StreamTable, is used to access the table of streams for all supported
SMMU architecture versions.

SMMU.StreamTable replaces the deprecated command
SMMU.StreamMapTable which was used for SMMU-v2 Stream Map Table
access in older TRACE32 versions. However, SMMU.StreamMapTable
remains an accepted command in scripts to preserve backward compatibility.
Arm Debugger | 207©1989-2024 Lauterbach

MMU-400, MMU-401 and MMU-500:

How To... GUI action or commands

Define a new SMMU SMMU.Add

To get the non-secure/secure SMMU view, specify
a non-secure/secure base address.

View the Stream Table with all SMRGs

View the stream configurations and see the
context bank indices of stage 1 and stage 2

SMMU.StreamTable

List or dump stage 1 or stage 2 page tables of a
stream

In SMMU.StreamTable window: use popup
menu or double click on column stage 1
pagetbl. fmt or stage 2 pagetbl. fmt

SMMU.StreamMapRegGrp.list
SMMU.StreamMapRegGrp.Dump

View a stream’s SMRG registers In SMMU.StreamTable window: use popup
menu or double click on any column of stream
matching or context type

SMMU.StreamMapRegGrp.Register
SMMU.Register.StreamMapRegGrp

View stage 1 or stage 2 context bank registers In SMMU.StreamTable window: use popup
menu or double click on column stage 1 cbndx
or stage 2 cbndx

SMMU.StreamMapRegGrp.ContextReg
SMMU.Register.ContextBank

View global SMMU registers In SMMU.StreamTable window: use popup
menu or double click status line

SMMU.Register.Global

View global SMMU fault flags Fault flags are displayed in the status line at the
bottom of the SMMU.StreamTable window.

Alternatively, open the global SMMU registers with
SMMU.Register.Global and view register
SMMU_GFSR / SMMU_sGFSR (non-sec/sec)

Check if an SMMU stream is in a fault state Open the SMMU.StreamTable window:
Streams in fault/stall/multi state have red F/S/M
marks in column stage 1 state or stage 2 state

View Security State Determination Table (SSD) In SMMU.StreamTable window: use popup
menu

SMMU.SSDtable
Arm Debugger | 208©1989-2024 Lauterbach

MMU-600 and newer:

How To... GUI action or commands

Define a new SMMU SMMU.Add

Use a secure base address.
Default SMMU view is non-secure. Switch to
secure view with option /SECure in most
commands or use check box Show secure
entries in the header of most SMMU windows.

View the Stream Table with all valid STEs

View the stream configuration, VMID, stream
world, stage 2 page table format, number of CDs

SMMU.StreamTable

View the Context Descriptor Table of a STE with a
list of all valid substreams (CDs)

View the ASID, stage 1 page table format and
TT0/TT1 translation enable state of substreams

In SMMU.StreamTable window: use popup
menu or click on the STE’s list CDT button in the
S1 PT fmt column to open the Context Descriptor
Table window.

SMMU.CtxtDescTable

List or dump stage 2 page tables of a STE In SMMU.StreamTable window: use popup
menu or double click on column S2 PT fmt or
stage 2 pagetbl. fmt

SMMU.StreamTblEntry.list
SMMU.StreamTblEntry.Dump

List or dump stage 1 page tables of a STE/CD If STE has only one CD: use popup menu in
SMMU.StreamTable window or double click on
column S1 PT fmt to view the CD’s page table.

If STE has more than one CD: click on the STE’s
list CDT button in the S1 PT fmt column to open
the Context Descriptor Table window. Here, use
popup menu or double click on column S1 PT fmt.

SMMU.StreamTblEntry.list
SMMU.StreamTblEntry.Dump

View a stream’s STE registers In SMMU.StreamTable window: use popup
menu or double click on column configuration

SMMU.StreamTblEntry.Register
SMMU.Register.StreamTblEntry
Arm Debugger | 209©1989-2024 Lauterbach

View the stage 1 CD registers for a substream If STE has only one CD: use popup menu in
SMMU.StreamTable window or double click on
column ASID to view the CD registers.

If STE has more than one CD: click on the STE’s
list CDT button in the S1 PT fmt column to open
the Context Descriptor Table window. Here, use
popup menu or double click on column ASID.

SMMU.Register.S1Context

View global SMMU registers In SMMU.StreamTable window: use popup
menu or double click status line

SMMU.Register.Global

View global SMMU fault flags Fault flags are displayed in the status line at the
bottom of the SMMU.StreamTable window.

Alternatively, open the global SMMU registers with
SMMU.Register.Global and view register
SMMU_GERROR / SMMU_S_GERROR

Check if an SMMU stream or substream is in a
fault state

Dump Event Queue entries

In the SMMU.StreamTable or the
SMMU.CtxtDescTable window:

• either use popup menu Dump Queue
Entries - Event Queue to dump all Event
Queue entries

• or, with mouse over STE or CD of
interest, use popup menu Dump
associated Queue Entries - Event
Queue to dump Event Queue entries
filtered by Stream ID and Substream ID

SMMU.DumpQueue.Event

Dump CMD Queue entries In the SMMU.StreamTable or the
SMMU.CtxtDescTable window:

• either use popup menu Dump Queue
Entries - CMD Queue to dump all CMD
Queue entries

• or, with mouse over STE or CD of
interest, use popup menu Dump
associated Queue Entries - CMD
Queue to dump CMD Queue entries
filtered by Stream ID and Substream ID

SMMU.DumpQueue.CMD

How To... GUI action or commands
Arm Debugger | 210©1989-2024 Lauterbach

Glossary - SMMU

The following two figures illustrate a few SMMU terms. For explanations of the illustrated SMMU terms and
other important SMMU terms not shown here, see below.

MMU-400, MMU-401 and MMU-500:

MMU-600 and newer:

A See stream table.

B Each row stands for a stream map register group (SMRG).

C Index of a translation context bank.

D Data from stream matching registers, see stream matching.

A See stream table.

B Each row stands for a stream table entry (STE).

C Stream configuration and stage 2 context.

D Substream data and either stage 1 context or button to view the STE’s Context Descriptor Table.

A

D B

C C

A

C BD
Arm Debugger | 211©1989-2024 Lauterbach

Context Descriptor (CD)

MMU-600 and newer only
A data structure in memory containing register fields which describe a stage 1 translation context, including
a pointer to the stage 1 translation table. A CD is identified by its substream ID and by the stream ID of the it
belongs to.

Context Descriptor Table (CDT)

MMU-600 and newer only
A table in memory with one or two levels which holds a number of Context Descriptors. Each Context
Descriptor Table belongs to one Stream Table Entry.

A CDT can be displayed using command SMMU.CtxtDescTable.

Memory Transaction Stream

A stream of memory access transactions sent from a device through the SMMU to the system memory bus.
The stream consists of the address to be accessed and a number of design specific memory attributes such
as the privilege, cacheability, security attributes or other attributes.

The streams carry a stream ID which the SMMU uses to determine a translation context for the memory
transaction stream. As a result, the SMMU may or may not translate the address and/or the memory
attributes of the stream before it is forwarded to the system memory bus.

Queue

MMU-600 and newer only
Data structure consisting of a circular buffer in memory which holds queue entries. Queue entries may hold
commands for the SMMU (in the CMD Queue) or events generated by the SMMU (in the Event Queue).
Queues can be viewed using command SMMU.DumpQueue.

Security State Determination Table (SSD Table)

MMU-400, MMU-401 and MMU-500 only
If the SMMU supports two security states (secure and non-secure) an SSD index qualifies memory
transactions sent to the SMMU. The SSD index is a hardware signal which is used by the SMMU to decide
whether the incoming memory transaction belongs to the secure or the non-secure domain.

The information whether a SSD index belongs to the secure or to the non-secure domain is contained in the
SMMU’s SSD table.
Arm Debugger | 212©1989-2024 Lauterbach

Stream ID

Peripheral devices connected to an SMMU issue memory transaction streams. Every incoming memory
transaction stream carries a Stream Identifier which is used by the SMMU to associate a translation context
to the transaction stream. The streams are stored in the Stream Table of the SMMU.

Stream Map Register Group (SMRG)

MMU-400, MMU-401 and MMU-500 only
A group of SMMU registers determining the translation context for a memory transaction stream. The
Stream Table holds the SMRGs.

Stream Table (ST) / Stream Mapping Table (SMT)

An SMMU table which describes what to do with an incoming memory transaction stream from a peripheral
device. In particular, this table associates an incoming memory transaction stream with a translation context,
using the stream ID of the stream as selector of a translation context.

In MMU-400, MMU-401 and MMU-500 (Arm SMMU-v2 specification based), this table of streams is referred
to as Stream Mapping Table. In MMU-600 and newer (Arm SMMU-v3 specification based), this table of
streams is referred to as Stream Table. The Stream (Mapping) Table is the central table of the SMMU.

• MMU-400, MMU-401 and MMU-500): each Stream Mapping Table entry consists of a group of
registers, called Stream Map Register Group, which describe the translation context. In case an
SMMU supports stream matching, TRACE32 also displays the stream matching registers
associated with an entry’s stream map register group.

• MMU-600 and newer: the stream table is a data structure in memory and consists of Stream
Table Entries which describe the translation context type, the stage 2 translation tables and points
to a Context Descriptor Table which holds stage 1 translation contexts.

A Stream Table can be displayed using command SMMU.StreamTable.

Stream Matching

MMU-400, MMU-401 and MMU-500 only
In an SMMU which supports stream matching, the stream ID of an incoming memory transaction stream
undergoes a matching process to determine which entry of the Stream Table will used to specify the
translation context for the stream.
TRACE32 displays the reference ID and the bit mask used by the SMMU to perform the Stream ID matching
process in the SMMU.StreamTable window.

Stream Table Entry (STE)

MMU-600 and newer only
A data structure in memory describing the translation context for each stream. This data structure register
contains fields which describe the type of context, the stage 2 translation context, including a pointer to the
stage 2 translation table and a pointer to a Context Descriptor Table holding stage 1 contexts. Each STE is
identified by its Stream ID.

Note: for MMU-400, MMU-401 and MMU-500 the entries of the Stream Table are called Stream Map
Register Group.
Arm Debugger | 213©1989-2024 Lauterbach

Substream ID

Peripheral devices connected to an SMMU issue memory transaction streams. Every incoming memory
transaction stream carries a Stream Identifier which is used by the SMMU to associate a translation context
to the transaction stream. The streams are stored in the Stream Table of the SMMU.

Translation Context

A translation context describes the translation process of a incoming memory transaction stream. An
incoming memory transaction stream may undergo a stage 1 address translation and/or a stage 2 address
translation. Further, the memory attributes of the incoming memory transaction stream may be changed. It is
also possible that an incoming memory transaction stream is rendered as fault.

The Stream Table determines which translation context is applied to an incoming memory transaction
stream.

Translation Context Bank (short: Context Bank)

MMU-400, MMU-401 and MMU-500 only
A group of SMMU registers specifying the translation context for an incoming memory transaction stream.
The registers carry largely the same names and contain the same information as the core’s MMU registers
describing the address translation process.

The registers of a translation context bank describe the translation table base address, the memory
attributes to be used during the translation table walk and translation attribute remapping.
Arm Debugger | 214©1989-2024 Lauterbach

Arguments in SMMU Commands

This table provides an overview of frequently-used arguments in SMMU commands. Arguments that are
only used in one SMMU command are described together with that SMMU command.

<name> User-defined name of an SMMU.
Use the SMMU.ADD command to define an SMMU and its name. This
name will be used to identify an SMMU in all other SMMU commands.

<smrg_index> Index of a stream map register group, e.g. 0x04. The indices are listed in
the index column of the SMMU.StreamTable.
The <smrg_index> is equivalent to the <stream_id> used in MMU-600
and newer.
Only applicable for MMU-400, MMU-401 and MMU-500.

<cbndx> Index of a translation context bank.
Only applicable for MMU-400, MMU-401 and MMU-500.

<stream_id> |
<range>

Index of a StreamTable Entry or a range of Stream Table Entries. The
indices are listed in the index column of the SMMU.StreamTable.
The <stream_id> is equivalent to the <smrg_index> used in MMU-400,
MMU-401 and MMU-500.
Only applicable for MMU-600 and newer.

<substream_id> |
<range>

Index of a Context Descriptor Table Entry or a range of Context
Descriptor Table Entries.
Only applicable for MMU-600 and newer.

<address> | <range> Logical address or logical address range describing the start address or
the address range to be displayed in the SMMU page table list or dump
windows.

IntermediatePT Used to switch between stage 1 and stage 2 page table or register view:
• Omit this option to view the translation table entries or registers of

stage 1.
• Include this option to view the translation table entries or registers of

stage 2.

SECure Used to switch between the non-secure and the secure SMMU content.
• Omit this option to view the non-secure table entries or registers
• Include this option to view the secure table entries or registers
Only applicable for MMU-600 and newer.
Arm Debugger | 215©1989-2024 Lauterbach

SMMU.ADD Define a new hardware system MMU

Defines a new SMMU (a hardware system MMU). A maximum of 20 SMMUs can be defined.

Arguments:

Format: SMMU.ADD "<name>" <smmu_type> <base_address>

<smmu_
type>:

MMU400 | MMU401 | MMU500 | MMU600

NOTE: For some CPUs with SMMUs, TRACE32 will automatically configure the SMMU
parameters, so that you can immediately work with the SMMUs and do not
need to manually configure them.
After selecting the CPU type, check one of the following locations in TRACE32
to see if there are any pre-configured SMMUs:
• The CPU menu > SMMU popup menu
• The SYStem.CONFIG.state /COmponents window

<name> User-defined name of an SMMU. The name must be unique and can be
max. 9 characters long.

NOTE:
• For the SMMU.ADD command, the name must be quoted.
• For all other SMMU commands, omit the quotation marks from the

name identifying an SMMU. See also PRACTICE script example
below.

<smmu_type> Defines the type of the Arm system MMU IP block:

• SMMUv2 based: MMU400, MMU401 or MMU500

• SMMUv3 based: MMU600
Arm Debugger | 216©1989-2024 Lauterbach

Example:

<base_address> Logical or physical base address of the memory-mapped SMMU register
space.

NOTE for MMU400, MMU401, MMU500:
If the SMMU supports two security states (secure and non-secure), not all
SMMU registers are visible from the non-secure domain.
• If you specify a secure address as the SMMU base address, you

will see the secure view of the SMMU.
• If you specify a non-secure address as the SMMU base address,

you will only see the non-secure SMMU view. Secure SMMU regis-
ters will not be visible.

To specify a secure address, precede the base address with an access
class such as AZSD: or ZSD:

Always specify either a secure or a non-secure base address so that the
SMMU security view is clearly determined.
When executing command SMMU.ADD, an access class with ambiguous
security status will be augmented to either secure or non-secure,
according to the current CPU security status and a warning message will
be printed.
Access classes with a distinct security status will be left unchanged, e.g.
the access classes NSD:, NUD:, HD: etc.

NOTE for MMU600 and newer:
if CPU supports two security states, always specify the SMMU base
address as a secure address (e.g. ZSD: or AZSD:) so that TRACE32 can
access both the secure and non-secure SMMU registers.

;define a new SMMU named "myGPU" for a graphics processing unit
SMMU.ADD "myGPU" MMU600 AZSD:0x50000000

;display the stream table of the SMMU named “myGPU”
SMMU.StreamTable myGPU
Arm Debugger | 217©1989-2024 Lauterbach

SMMU.Clear Delete an SMMU

Deletes an SMMU definition, which was created with the SMMU.ADD command of TRACE32. The
SMMU.Clear command does not affect your target SMMU.

To delete all SMMU definitions created with the SMMU.ADD command of TRACE32, use SMMU.RESet.

Argument:

Example:

SMMU.CtxtDescTable List a context descriptor table
MMU-600 and newer only

Opens a window and lists all valid stage 1 Context Descriptors in the Context Descriptor Table of the
Stream Table Entry specified by <stream_id>. Specify option /SECure to select the secure SMMU view. A
description of the columns is given in this table. The status line of the window shows the global error flags
which are currently set for the SMMU.

If you want to limit the Substream IDs displayed in the window, you can specify a numeric <substream_id>
as lower limit for the displayed SubstreamIDs. Alternatively, you can specify a range as <substream_id> to
set a lower and an upper limit to the displayed Substream IDs.

Format: SMMU.Clear <name>

<name> For a description of <name>, click here.

SMMU.Clear myGPU ;deletes the SMMU named myGPU

Format: SMMU.CtxtDescTable <args>

<args> : <name> <stream_id> [<substream_id> | <range>] [/SECure]
Arm Debugger | 218©1989-2024 Lauterbach

Examples:

SMMU.DumpQueue.<queue> Dump entries of a queue
MMU-600 and newer only

Using the SMMU.DumpQueue command group, you can dump entries of SMMU Queues. Analyzing
entries of the Event Queue is important to find error conditions of SMMU streams - in addition to global error
flags of the SMMU.

The commands SMMU.DumpQueue.CMD and SMMU.DumpQueue.Event open a window which shows
all valid entries of the queue in the sequence of their creation.

;define a new SMMU named "myGPU" for a graphics processing unit
SMMU.ADD "myGPU" MMU600 AZSD:0x50000000

;list the context descriptors of the stream table with Stream ID 0x6B9743
of the SMMU named “myGPU”
SMMU.CtxtDescTable myGPU 0x6B9743

;same as above, but limit the listing to Substream IDs >= 0x1000
SMMU.CtxtDescTable myGPU 0x6B9743 0x1000

;list the context descriptors of the stream table with secure Stream ID
0x1D73D281 of the SMMU named “myGPU”. List only Substream ID in the range
0x1000--0x1FFF
SMMU.CtxtDescTable myGPU 0x1D73D281 0x1000--0x1FFF /SECure

SMMU.DumpQueue.CMD Dump entries of the Cmd Queue

SMMU.DumpQueue.Event Dump entries of the Event Queue
Arm Debugger | 219©1989-2024 Lauterbach

Description of Columns and Status Line

The dump queue windows displays the following columns:

The status line of the window shows the following information:

• the number of entries the queue can hold, i.e. its size

• the number of valid entries it holds currently

• the current producer index

• the current consumer index

• if the queue is full, a message “Queue is FULL” is displayed.

Column Description

index Index of the entry. Entries are dumped in the sequence of their creation.
The oldest entry always carries index 0 in the dump window. This is the
entry pointed to by the queue’s Consumer Index register. The newest
entry has the largest index in the dump window. This is the entry pointed
to by the queue’s Producer Index register.

entry type Decoded type of the queue entry.

secure
(CMD queue only)

Indicates the state of the SSec bit in the queue entry. If secure is 1, the
entry targets the secure SMMU view, otherwise the non-secure view.

streamID Shows the content of the entry’s Stream ID field. Blank if the entry has no
Stream ID field.

substr.ID Shows the content of the entry’s Substream ID field.Blank if the entry has
no Substream ID field.
For the CMD queue, UNKNOWN is displayed if the entry has a Substream
ID field but the entry’s SSV (SubStream Valid) bit is 0.

additional qualifiers Depending on the event type, additional event record fields such as
addresses and flags are decoded and printed in this column.
Note: it is not supported to filter entries by additional qualifier fields.

address of entry Displays the physical address of the queue table entry record.

NOTE: Use the popup menu to quickly open SMMU.StreamTable or
SMMU.CtxtDescrTable window. This conveniently allows to view the Stream Table
Entry or Context Descriptor associated with the queue entry underneath the mouse
pointer.
Arm Debugger | 220©1989-2024 Lauterbach

Filter options

As queues can hold a very large number of entries, command SMMU.DumpQueue.<queue> offers filter
options allowing dump only entries satisfying certain criteria. The following filter options are available:

Note that for sake of Stream ID and/or Substream ID filtering, TRACE32 evaluates the event record fields
StreamID, SubStreamID and SSV regardless of the queue entry type.

SMMU.DumpQueue.CMD Dump cmd queue entries
MMU-600 and newer only

Opens the SMMU.DumpQueue window and dumps all valid entries of the non-secure or the secure
Cmd Queue. See SMMU.DumpQueue for a description of the dump queue window.

Filter option Description

/QETYPE <qe_type> Dump only queue entries with entry type <qe_type>
The values allowed for <qe_type> are specific to the queue type and the
SMMU type.

/StreamID
<stream_id> |
<range>

Dump only entries with a certain Stream ID.
<stream_id> can either be a single numeric value or a numeric range. If it
is a range, only those queue entries will be dumped if their Stream ID field
falls into the specified range.

/SubStreamID
<substream_id> |
<range>

Dump only entries with a certain Substream ID.
<substream_id> can either be a single numeric value or a numeric range.
If it is a range, only those queue entries will be dumped if their Substream
ID field falls into the specified range.
In event queue, entries where the SSV (SubStream Valid) bit is 0 are not
dumped at all if the /SubStreamID filter is active.

Format: SMMU.DumpQueue.CMD <name> [<entry_idx> | <range>] [/SECure]
[<filter_opts>]

<entry_idx> |
<range>

Starts the dump with <entry_index> or dumps only entries with index in
<range>

<filter_opts>: [/QETYPE <qe_type>] [/StreamID <stream_id>] [/SubstreamID
<substream_id>]
Arm Debugger | 221©1989-2024 Lauterbach

SMMU.DumpQueue.Event Dump event queue entries
MMU-600 and newer only

Opens the SMMU.DumpQueue window and dumps all valid entries of the non-secure or the secure
Event Queue. See SMMU.DumpQueue for a description of the dump queue window.

Examples:

Format: SMMU.DumpQueue.Event <name> [<entry_idx> | <range>] [/SECure]
[<filter_opts>]

<entry_idx> |
<range>

Starts the dump with <entry_index> or dumps only entries with index in
<range>

<filter_opts>: [/QETYPE <qe_type>] [/StreamID <stream_id>] [/SubstreamID
<substream_id>]

;define a new SMMU named "myGPU" for a graphics processing unit
SMMU.ADD "myGPU" MMU600 AZSD:0x50000000

;open the event queue dump window for the non-secure SMMU view and dump
all entries
SMMU.DumpQueue.Event myGPU

;open the queue dump window for the secure SMMU view and dump all entries
starting with index 0x200
SMMU.DumpQueue.Event myGPU 0x200 /SECure

;dump only entries of type F_TRANSLATION
SMMU.DumpQueue.Event myGPU /QETYPE F_TRANSLATION

;dump only entries where the Stream ID field is in the range 0x5000--
0x5FFF
SMMU.DumpQueue.Event myGPU /StreamID 0x5000--0x5FFF

;dump only entries where the Stream ID field is 0x6BE900 and the
SubStream ID field is in the range 0x140--0x17F
SMMU.DumpQueue.Event myGPU /StreamID 0x6BE900 /SubStreamID 0x140--0x17F
Arm Debugger | 222©1989-2024 Lauterbach

SMMU.Register Peripheral registers of an SMMU

Using the SMMU.Register command group, you can view and modify the peripheral registers of an SMMU.
The command group provides the following commands:

Example:

SMMU.Register.Global Display the global registers of an SMMU

SMMU.Register.ContextBank Display the registers of a context bank
MMU-400, MMU-401 and MMU-500 only.

SMMU.Register.StreamMapRegGrp Display the registers of an SMRG
MMU-400, MMU-401 and MMU-500 only.

SMMU.Register.StreamTableEntry Display the registers of a Stream Table Entry.
MMU-600 and newer only.

SMMU.Register.Stage1Context Display the registers of a Context Descriptor Table
Entry (the stage 1 context of a substream).
MMU-600 and newer only.

;open the SMMU.Register.StreamMapRegGrp window of SMMU “myGPU” and show
the registers of Stream Table Entry with Stream ID 0x02010A
SMMU.Register.StreamTableEntry myGPU 0x02010A

;highlight changes in orange in any SMMU.Register.* window
SETUP.Var %SpotLight.on
Arm Debugger | 223©1989-2024 Lauterbach

SMMU.Register.ContextBank Display registers of context bank
MMU-400, MMU-401 and MMU-500 only

Opens the peripheral register window SMMU.Register.ContextBank. This window displays the registers of
the specified context bank. These are listed under the section heading Context Bank Registers.

Argument:

Example:

Format: SMMU.Register.ContextBank <name> <cbndx>

A Register name and content.

B Names of the register bit fields and bit field values.

NOTE: The commands SMMU.Register.ContextBank and
SMMU.StreamMapRegGrp.ContextReg are similar.

The difference between the two commands is:
• The first command expects a <cbndx> as an argument and allows to

view an arbitrary context bank.
• The second command expects an <smrg_index> with an optional Inter-

mediatePT as arguments and displays either a stage 1 or stage 2 con-
text bank associated with the <smrg_index>.

<name> For a description of <name>, etc., click here.

SMMU.Register.ContextBank myGPU 0x16

A B
Arm Debugger | 224©1989-2024 Lauterbach

SMMU.Register.Global Display global registers of SMMU

Opens the peripheral register window SMMU.Register.Global. This window displays the global registers of
the specified SMMU. These are listed under the section heading Global Configuration Registers.

Argument:

Example:

To display the global registers of an SMMU via the user interface TRACE32 PowerView:

• In the SMMU.StreamTable window, right-click an SMRG, and then select Peripherals > Global
Configuration Registers from the popup menu.

SMMU.Register.MMUregs Display MMU specific registers
MMU-600 and newer only

Opens the peripheral register window and shows the MMU specific register blocks which are not part of
the SMMU architectural registers. Examples for MMU specific registers are registers for the SMMU
Translation Control Unit (TCU), Translation Buffer Unit (TBU) and Performance Measurement Unit
(PMU) described in the Arm MMU-600 specification.

Format: SMMU.Register.Global <name>

A Register name and content.

B Names of the register bit fields and bit field values.

<name> For a description of <name>, click here.

SMMU.Register.Global myGPU

Format: SMMU.Register.MMUregs <name>

A B
Arm Debugger | 225©1989-2024 Lauterbach

SMMU.Register.S1Context Display stage 1 context descriptor registers
MMU-600 and newer only

Opens the peripheral register window for the SMMU named <name> and displays the registers of a
stage 1 Context Descriptor specified by <stream_id> and <substream_id>.

If the Stream Table Entry specified by <stream_id> has only one Context Descriptor, you can omit option
/SubstreamID <substream_id>. In this case, the Context Descriptor with Substream ID 0 will be displayed.

Specify option /SECure to select the secure SMMU view.

SMMU.Register.StreamTblEntry Display stream table entry registers
MMU-600 and newer only

Opens the peripheral register window for the SMMU named <name> and displays the registers of the
Stream Table Entry which is specified by <stream_id>.

Specify option /SECure to select the secure SMMU view.

Example:

Format: SMMU.Register.S1Context <args>

<args>: <name> <stream_id> [/SubstreamID <substream_id>] [/SECure]

Format: SMMU.Register.StreamTblEntry <args>

<args> : <name> <stream_id> [/SECure]

;define a new SMMU named "myGPU" for a graphics processing unit
SMMU.ADD "myGPU" MMU600 AZSD:0x50000000

;list the Stream Table Entry with Stream ID 0x6B9743 from the secure
Stream Table of SMMU “myGPU”
SMMU.StreamTable myGPU 0x6B9743 /SECure
Arm Debugger | 226©1989-2024 Lauterbach

SMMU.Register.StreamMapRegGrp Display registers of an SMRG
MMU-400, MMU-401 and MMU-500 only

Opens the peripheral register window SMMU.Register.StreamMapRegGrp. This window displays the
registers of the specified SMRG. These are listed under the gray section heading Stream Map Register
Group.

Arguments:

Example:

Format: SMMU.Register.StreamMapRegGrp <args>
SMMU.StreamMapRegGrp.Register <args> (as an alias)

<args>: <name> <smrg_index>

A 0x0D is the <smrg_index> of the selected SMRG.

B Register name and content.

C Names of the register bit fields and bit field values.

Compare also to SMMU.StreamMapRegGrp.ContextReg.

<name> For a description of <name>, etc., click here.

SMMU.StreamMapRegGrp.Register myGPU 0x06

B C

A

Arm Debugger | 227©1989-2024 Lauterbach

To view the registers of an SMRG via the user interface TRACE32 PowerView:

• In the SMMU.StreamTable window, right-click an SMRG, and then select Peripherals > Stream
Mapping Registers from the popup menu.

SMMU.RESet Delete all SMMU definitions

Deletes all SMMU definitions created with SMMU.ADD from TRACE32. The SMMU.RESet command does
not affect your target SMMU.

To delete an individual SMMU created with SMMU.ADD, use SMMU.Clear.

Format: SMMU.RESet
Arm Debugger | 228©1989-2024 Lauterbach

SMMU.SSDtable Display security state determination table
MMU-400, MMU-401 and MMU-500 only

Displays the security state determination table (SSD table) as a bit field consisting of s (secure) or ns
(non-secure) entries. If the SMMU has no SSD table defined, you receive an error message in the AREA
window.

Format: SMMU.SSDtable <name> [<start_index>]

A In the SSD table, the black arrow indicates the <start_index>, here 0x00B

B Right-click to dump the SSD table raw data in memory.

For each SSD index of an incoming memory transaction stream, the SSD table indicates whether
the outgoing memory transaction stream accesses the secure (s) or non-secure (ns) memory
domain.

You may find the SSD table easier to interpret by reducing the width of the SMMU.SSDtable
window. Example for the raw data 0x68 in the SSD table:

C In the Data.dump window, the black arrow indicates the dumped raw data from the SSD table.

D The 1st white column (00 to 07) relates to the 1st raw data column.
The 2nd white column (08 to 0F) relates to the 2nd raw data column, etc.

A

B

C

D D

1
ns

0y 0
s

1
ns

0
s

1
ns

0
s

0
s

0
s

0x 6 8

0=s
1=ns
Arm Debugger | 229©1989-2024 Lauterbach

Arguments:

Example:

To view the SSD table via the user interface TRACE32 PowerView:

• In the SMMU.StreamTable window, right-click any SMRG, and then select Security State
Determination Table (SSD) from the popup menu.

SMMU.StreamMapRegGrp Access to stream map table entries
MMU-400, MMU-401 and MMU-500 only

The SMMU.StreamMapRegGrp command group allows to view the details of the translation context
associated with stage 1 and/or stage 2 of an SMRG. Every SMRG is identified by its <smrg_index>.

The SMMU.StreamMapRegGrp command group provides the following commands:

<name> For a description of <name>, click here.

<start_index> Starts the display of the SSD table at the specified SSD index.
See SSD index column in the SMMU.SSDtable window.

;display the SSD table starting at the SSD index 0x000B
SMMU.SSDtable myGPU 0x000B

NOTE: The menu item is grayed out if the SMMU does not support the two security
states s (secure) or ns (non-secure).

SMMU.StreamMapRegGrp.ContextReg Shows the registers of the context bank associated with
the stage 1 and/or stage 2 translation.

SMMU.StreamMapRegGrp.Dump Dumps the page table associated with the stage 1 and/or
stage 2 translation page wise.

SMMU.StreamMapRegGrp.list Lists the page table entries associated with the stage 1
and/or stage 2 translation in a compact format.
Arm Debugger | 230©1989-2024 Lauterbach

SMMU.StreamMapRegGrp.ContextReg Display context bank registers
MMU-400, MMU-401 and MMU-500 only

Opens the peripheral register window SMMU.StreamMapRegGrp.ContextReg, displaying the context
bank registers of stage 1 or stage 2 of the specified <smrg_index> [A]. The context bank index (cbndx) of the
shown context bank registers is printed in the gray section heading Context Bank Registers [C].

The cbndx columns in the SMMU.StreamTable window tell you which context bank is associated with
stage 1 or stage 2: If there is no context bank defined for stage 1 or stage 2, then the respective cbndx cell
is empty. In this case, the peripheral register window SMMU.StreamMapRegGrp.ContextReg does not
open.

Arguments:

Format: SMMU.StreamMapRegGrp.ContextReg <args>

<args>: <name> <smrg_index> [/IntermediatePT]

A 0x0A is the <smrg_index> of the selected SMRG.

B The option IntermediatePT is used to display the context bank registers of stage 2.

C 0x15 is the index from the cbndx column of a stage 2 context bank. See example below.

Compare also to SMMU.StreamMapRegGrp.Register.

NOTE: The commands SMMU.Register.ContextBank and
SMMU.StreamMapRegGrp.ContextReg are similar.

The difference between the two commands is:
• The first command expects a <cbndx> as an argument and allows to

view an arbitrary context bank.
• The second command expects an <smrg_index> with an optional Inter-

mediatePT as arguments and displays either a stage 1 or stage 2 con-
text bank associated with the <smrg_index>.

<name> For a description of <name>, etc., click here.

A

B

C

Arm Debugger | 231©1989-2024 Lauterbach

PRACTICE Script Example and Illustration of the Context Bank Look-up:

To display the context bank registers via the user interface TRACE32 PowerView:

• In the SMMU.StreamTable window, right-click an SMRG, and then select Peripherals > Context
Bank Registers of Stage 1 or 2 from the popup menu.

SMMU.StreamMapRegGrp.ContextReg myGPU 0x06 /IntermediatePT
Arm Debugger | 232©1989-2024 Lauterbach

SMMU.StreamMapRegGrp.Dump Page-wise display of SMMU page table
MMU-400, MMU-401 and MMU-500 only

Opens the SMMU.StreamMapRegGrp.Dump window for the specified SMRG, displaying the page table
entries of the SMRG page wise. If no valid translation context is defined, the window displays the error
message “registerset undefined”.

Arguments:

Example:

To display an SMMU page table page-wise via the user interface TRACE32 PowerView:

• In the SMMU.StreamTable window, right-click an SMRG, and then select from the popup menu:

- Stage 1 Page Table > Dump or

- Stage 2 Page Table > Dump

Format: SMMU.StreamMapRegGrp.Dump <args>

<args>: <name> <smrg_index> [<address> | <range> [<ttb_address>]] [/<option>]

A To view the details of the page table walk, scroll to the right-most column of the window.
For a description of the columns in the SMMU.StreamMapRegGrp.Dump window, click here.

<name> For a description of <name>, etc., click here.

<address> | <range> If specified, start the dump with <address> or, alternatively, limit the
dumped address range to address to <range>.

<ttb_address> If specified, <ttb_address> will be used as page table base address. The
other page table parameters are still extracted from the SMRG context.

IntermediatePT Omit this option to view translation table entries of stage 1.
Include this option to view translation table entries of stage 2.

In SMMUs that support only stage 2 page tables, this option can be
omitted.

SMMU.StreamMapRegGrp.Dump myGPU 0x0C

A

Arm Debugger | 233©1989-2024 Lauterbach

Description of Columns

This table describes the columns of the following windows:

• SMMU.StreamMapRegGrp.list / SMMU.StreamTblEntry.list

• SMMU.StreamMapRegGrp.Dump / SMMU.StreamTblEntry.Dump

Column Description

logical Logical page address range

physical Physical page address range

sec Security state of entry (s=secure, ns=non-secure, sns=non-secure entry in
secure page table)

d Domain

size Size of mapped page in bytes

permissions Access permissions (P=privileged, U=unprivileged, exec=execution
allowed)

glb Global page

shr Shareability (no=non-shareable, yes=shareable, inn=inner shareable,
out=outer shareable)

pageflags Memory attributes (see Description of the memory attributes.)

tablewalk Only for SMMU.StreamMapRegGrp.Dump:
• Details of table walk for logical page address (one sub column for

each table level, showing the table base address, entry index, entry
width in bytes and value of table entry)
Arm Debugger | 234©1989-2024 Lauterbach

SMMU.StreamMapRegGrp.list List page table entries
MMU-400, MMU-401 and MMU-500 only

Opens the SMMU.StreamMapRegGrp.list window for the specified SMMU, listing the page table entries
of a stream map group. If no valid translation context is defined, the window displays an error message.

For a description of the columns in the SMMU.StreamMapRegGrp.list window, click here.

Arguments:

Example:

To list the page table entries via the user interface TRACE32 PowerView:

• In the SMMU.StreamTable window, right-click an SMRG, and then select from the popup menu:

- Stage 1 Page Table > List or

- Stage 2 Page Table > List

Format: SMMU.StreamMapRegGrp.list <args>

<args>: <name> <smrg_index> [<address> | <range> [<ttb_address>]] [/Intermedi-
atePT]

<name> For a description of <name>, etc., click here.

<address> | <range> If specified, start the page table list with <address> or, alternatively, limit
the listed address range to address to <range>.

<ttb_address> If specified, <ttb_address> will be used as page table base address. The
other page table parameters are still extracted from the SMRG context.

IntermediatePT Omit this option to view translation table entries of stage 1.
Include this option to view translation table entries of stage 2.

In SMMUs that support only stage 2 page tables, this option can be
omitted.

SMMU.StreamMapRegGrp.list myGPU 0x0C
Arm Debugger | 235©1989-2024 Lauterbach

SMMU.StreamTable Display a stream table
[About the Window] [Popup Menu] [Columns] [Values] [Global Faults] [Example]

Opens the SMMU.StreamTable window for the SMMU that has the specified <name>. The content and
popup menu depends on the SMMU type for which the SMMU.StreamTable window is opened. The two
variants of the window are described as follows:

MMU-400, MMU-401, MMU-500:
The window lists all Stream Map Register Groups of the secure or non-secure view of the SMMU. The
window provides an overview of the secure or non-secure SMMU configuration.

Format: SMMU.StreamTable <args>

SMMU.StreamMapTable <args> (as an alias)

<args>: <name> [/StreamID <value>]
(for MMU-400, MMU-401 and MMU-500)

<name> [<stream_id>] [/SECure]
(for MMU-600 and newer)

A The gray window status bar displays the <smmu_type> and the SMMU <base_address>.
In addition, the window status bar informs you of global faults in the SMMU, if there are any faults.

A

Arm Debugger | 236©1989-2024 Lauterbach

MMU-600 and newer:
The window lists all valid Stream Table Entries of either the secure or the non-secure view of the SMMU. The
security status of the view can be changed using option /SECure or, alternatively, using the Show secure
entries checkbox in the window header.

The Stream ID range displayed can be limited if argument <stream_id> is used. You can either specify a
number as start value or a range.

Arguments

A The gray window status bar displays the <smmu_type> and the SMMU <base_address>.
In addition, the window status bar informs you of global faults in the SMMU, if there are any faults.

B For STEs with more than one substream, click the button list CDT to view the substreams.

<name> For a description of <name>, click here.

StreamID <value>

(MMU-400, MMU-401
and MMU-500 only)

Only available for SMMUs that support stream ID matching. The StreamID
option highlights all SMRGs in yellow that match the specified stream ID
<value>. SMRGs highlighted in yellow help you identify incorrect settings
of the stream matching registers.

For <value>, specify the stream ID of an incoming memory transaction
stream.

• The highlighted SMRG indicates which stream map table entry will
be used to translate the incoming memory transaction stream.

• More than one highlighted row indicates a potential, global SMMU
fault called stream match conflict fault.

The stream ID matching algorithm of TRACE32 mimics the SMMU stream
matching on the real hardware.

The reference ID, mask and validity fields of the stream match register are
listed in the ref. id, id mask and valid columns.

<stream_id>

(MMU-600 and newer
only)

Either the start point (if a single number is given) or numeric range (if a
numeric range is given) of Stream IDs that are displayed in the window.

A

B

Arm Debugger | 237©1989-2024 Lauterbach

Examples

[Back to Top]
MMU-400, MMU-401, MMU-500:
This PRACTICE script example shows how to define an SMMU with the SMMU.ADD command. Then the
script opens the SMMU in the SMMU.StreamTable window, searches for the <stream_id> 0x324A and
highlights the matching SMRG 0x024A in yellow.

The row highlighted in yellow in the SMMU.StreamTable window is a correct match for the Stream
ID 0x324A we searched for.

See also function SMMU.StreamID2SMRG() in “General Function Reference” (general_func.pdf).

MMU-600 and newer:
This PRACTICE script example shows how to define an SMMU with the SMMU.ADD command. Then the
script opens the SMMU in the SMMU.StreamTable window starting with Stream ID 0x10000

;define a new SMMU named "myGPU" for a graphics processing unit
SMMU.ADD "myGPU" MMU500 AZSD:0x50000000

;open the window and highlight the matching SMRG in yellow
SMMU.StreamTable myGPU /StreamID 0x324A

NOTE: At first glance, the Stream ID 0x324A does not seem to match the SMRG
0x024A.

However, if you take the ID mask 0x7000 (= 0y0111_0000_0000_0000) into
account, the match is correct.

;define a new SMMU named "myGPU" for a graphics processing unit
SMMU.ADD "myGPU" MMU600 AZSD:0x50000000

;open the Stream Table window, showing entries starting with
Stream ID 0x10000
SMMU.StreamTable myGPU 0x10000
Arm Debugger | 238©1989-2024 Lauterbach

About the SMMU.StreamTable Window

[Back to Top]
By right-clicking an entry or double-clicking certain cells of an entry, you can open additional windows to
receive more information about the selected entry.

• Right-clicking opens the Popup Menu.

MMU-400, MMU-401, MMU-500:

• Double-clicking an entry in the columns ref. id, id mask, valid, or context type opens the
SMMU.StreamMapRegGrp.Register window.

• Double-clicking an SMRG in the two columns pagetbl. fmt opens the
SMMU.StreamMapRegGrp.list window, displaying the page table for stage 1 or stage 2.

• Double-clicking an SMRG in the two cbndx columns or the two state columns opens the
SMMU.StreamMapRegGrp.ContextReg window, displaying the context bank registers for
stage 1 or stage 2.

MMU-600 and newer:

• Double-clicking an entry in the columns configuration, VMID, stream world, or # sstrms opens
the SMMU.StreamTblEntry.Register window showing the stream entry registers.

• Double-clicking an entry in the column S2 PT fmt opens the SMMU.StreamTblEntry.list window,
displaying the stage 2 page table.

If an entry has only one stage 1 context descriptor:

• Double-clicking valid data in columns ASID or state ttb0/1 opens the SMMU.Register.S1Context
window, displaying the stage 1 context registers.

• Double-clicking valid data in column S1 PT fmt opens the SMMU.StreamTblEntry.list window,
displaying the stage 1 page table.

If an entry has more than one stage 1 context descriptor:

• Click on the list CDT button in column S1 PT fmt to open the SMMU.CtxtDescTable window,
listing all valid Context Descriptors for the stream entry. The SMMU.CtxtDescTable window
allows to view the registers and stage 1 page tables associated with each Context Descriptor.
Arm Debugger | 239©1989-2024 Lauterbach

Popup Menu: Show MMU-<type>

[Back to Top]

The entries visible in the popup menus depend on the capabilities of the SMMU such as the capability to
support stage 1 or stage 2 and if the SMMU supports two security states.

The popup menu in the SMMU.StreamTable window provides convenient shortcuts to the following
commands:

MMU-400, MMU-401 and MMU-500:

A Example popup menu for MMU-400, MMU-401 and MMU-500

B Example popup menu for MMU-600 and newer

Popup Menu Command

Stage 1 Page Table >
Stage 2 Page Table >

(--)

• List
• Dump

• SMMU.StreamMapRegGrp.list
• SMMU.StreamMapRegGrp.Dump

Peripherals > (--)

• Global Configuration Registers
• Stream Mapping Registers
• Context Bank Registers of Stage 1 and

Context Bank Registers of Stage 2

• SMMU.Register.Global
• SMMU.Register.StreamMapRegGrp
• SMMU.Register.ContextBank

Security State Determination Table (SSD) SMMU.SSDtable

A B
Arm Debugger | 240©1989-2024 Lauterbach

MMU-600 and newer:

Popup Menu Command

Stage 1 Context Descriptor Table SMMU.CtxtDescTable

Stage 1 Page Table >
Stage 2 Page Table >

(--)

• List
• Dump

• SMMU.StreamTblEntry.list
• SMMU.StreamTblEntry.Dump

Peripherals > (--)

• Global Configuration Registers
• MMU specific Registers
• Stream Table Entry Registers
• Stage 1 Context Descriptor Registers

• SMMU.Register.Global
• SMMU.Register.MMU
• SMMU.Register.StreamTblEntry
• SMMU.Register.S1Context

Dump Queue >
Dump associated Queue Entries >

(--)

• Event Queue
• Cmd Queue

• SMMU.DumpQueue.Event
• SMMU.DumpQueue.CMD
Arm Debugger | 241©1989-2024 Lauterbach

Description of Columns: SMMU.StreamTable Window

[Back to Top]

MMU-400, MMU-401 and MMU-500:

Column Name Description

stream map reg.
grp

• visibility: The column is only visible if the SMMU supports the two
security states secure and non-secure.

The label sec/nsec indicates that the SMRG is visible to secure and
non-secure accesses.

The label sec only indicates that the SMRG is visible to secure
accesses only.

• index: The index numbers start at 0x00 and are incremented by 1 per
SMRG.

stream matching See description of the columns ref. id, id mask, and valid below.

ref. id,
id mask,
and valid

If the SMMU supports stream matching, then the following columns are
visible: ref. id, id mask, and valid.
Otherwise, these columns are hidden.

context type Depending on the translation context of a stream mapping register group, the
following values are displayed [Description of Values]:
• s2 translation only
• s1 trsl - s2 trsl
• s1 trsl - s2 fault
• s1 trsl - s2 byp
• fault (s1 trsl-s2 trsl)
• fault (s1 trsl-s2 flt)
• fault (s1 trsl-s2 byp)
• fault
• bypass mode
• reserved
• HYPC or MONC

stage 1
pagetbl. fmt
or
stage 2
pagetbl. fmt

Displays the page table format of stage 1 or stage 2 [Description of Values]:
• Short descr. (32-bit Arm architecture only)
• Long descr. (32-bit Arm architecture only)
• AArch32 Short (64-bit Arm architecture only)
• AArch32 Long (64-bit Arm architecture only)
• AArch64 Long (64-bit Arm architecture only)

cbndx Displays the context bank index (cbndx) associated with the translation
context of stage 1 or stage 2.
Arm Debugger | 242©1989-2024 Lauterbach

MMU-600 and newer:

state Displays whether the MMU of stage 1 or stage 2 is enabled (ON) or disabled
(OFF) and whether a fault has occurred in a translation context bank:
• F: any single fault
• M: multiple faults
• S: the SMMU is stalled

The letters F, M, and S are highlighted in red in the SMMU.StreamTable
window (example).

The information about the faults is derived from the register
SMMU_CBn_FSR (fault status register of the context bank).

Double-click the respective state cell to open the
SMMU.StreamMapRegGrp.ContextReg window. The register
SMMU_CBn_FSR provides details about the fault.

Column Name Description

configuration Depending on the translation context of a stream entry, the following values
are displayed [Description of Values]:
• s1 translation only
• s2 translation only
• s1 trsl - s2 trsl
• bypass
• abort
A misconfiguration of the stream entry is indicated by a display of ILLEGAL.

S2 PT fmt
or
S1 PT fmt

Displays the page table format of stage 2 or stage 1:
• AArch32
• AArch64

VMID Displays the VMID of the stream table entry stage 2 registers

stream world Depending of the stream world of a stream entry, the following values are
displayed:
• NS-EL1
• EL2
• EL2-E2H
• EL3
• Secure
• Reserved

sstrms Displays the max. number of stage 1 context descriptors for the stream table
entry, as configured in the S1CDMAX field

ASID Displays the ASID of a stage 1 context descriptor

Column Name Description
Arm Debugger | 243©1989-2024 Lauterbach

S1 PT fmt If only a single context descriptor entry exists in the CDT associated with the
stream table entry, it’s stage 1page table format is displayed (AArch32 or
AArch64).
If the CDT contains more than one entry, a button labelled list CDT is
displayed which directly opens the CDT.

state ttb0/1 Displays the state of the stage 1 context tt0 / tt1 translation table disable bits,
where
tt0 refers to the address translation of the lower address range.
tt1 refers to the address translation of the upper address range.

Possible values for: tt0 / tt1
• on means the translation for the tt0 / tt1 address range is enabled
• off means the translation for the tt0 / tt1 address range is disabled

address of stream
table entries
or
address of con-
text desciptor
table entries

Displays table walk details, i.e. the physical addresses of the level 1 and/or
level 2 table entries.
If the table has only one level, one address is displayed, for a 2-level table two
addresses are displayed.

Column Name Description
Arm Debugger | 244©1989-2024 Lauterbach

Description of Values

[Back to Top]

MMU-400, MMU-401 and MMU-500:

Values in the Column
“context type”

Description

s2 translation only Context defines a stage 2 translation only

s1 trsl - s2 trsl Context defines a stage 1 translation, followed by a stage 2
translation (nested translation)

s1 trsl - s2 fault Context defines a stage 1 translation followed by a stage 2 fault

s1 trsl - s2 byp Context defines a stage 1 translation followed by a stage 2 bypass

fault (s1 trsl-s2 trsl) Context defines a stage 1 translation followed by a stage 2
translation, but SMMU has no stage 1 (SMMU configuration fault)

fault (s1 trsl-s2 flt) Context defines a stage 1 translation followed by a stage 2 fault, but
SMMU has no stage 1 (SMMU configuration fault)

fault (s1 trsl-s2 byp) Context defines a stage 1 translation followed by a stage 2 bypassn,
but SMMU has no stage 1 (SMMU configuration fault)

fault Context defines a fault

bypass mode Context defines bypass mode

reserved Context type is improperly defined

HYPC Is displayed on the right-hand side of the column if the context is a
hypervisor context.

MONC Is displayed on the right-hand side of the column if the context is a
monitor context.

Values in the Columns
“stage 1 pagetbl. fmt”
“stage 2 pagetbl. fmt”

Description

Short descr. Page table uses the 32-bit short descriptor format
(32-bit targets only)

Long descr. Page table uses the 32-bit long descriptor (LPAE) format
(32-bit targets only)

AArch32 Short Page table uses the 32-bit short descriptor format
(64-bit targets only)

AArch32 Long Page table uses the 32-bit long descriptor (LPAE) format
(64-bit targets only)

AArch64 Long Page table uses the 64-bit long descriptor (LPAE) format
(64-bit targets only)
Arm Debugger | 245©1989-2024 Lauterbach

MMU-600 and newer:

Values in the Column
“configuration”

Description

s1 translation only Context defines a stage 1 translation only

s2 translation only Context defines a stage 2 translation only

s1 trsl - s2 trsl Context defines a stage 1 translation, followed by a stage 2
translation

bypass Context defines bypass mode, no translation is performed.

abort Context defines an abort condition.

ILLEGAL (s1 trsl only) Misconfiguration of the stream table entry:
stage 1 translation is configured but not supported

ILLEGAL (s2 trsl only) Misconfiguration of the stream table entry:
stage 2 translation is configured but not supported

ILLEGAL (s1 + s2 trsl) Misconfiguration of the stream table entry:
stage 1+2 translations are configured but not supported

ILLEGAL (secure+s2 trsl) Misconfiguration of the stream table entry:
stage 2 translation is configured in a secure stream table entry
Arm Debugger | 246©1989-2024 Lauterbach

Display of Global Faults or Global Errors in an SMMU
[Back to Top]

Codes in the gray window status bar at the bottom of the SMMU.StreamTable window indicate the current
global fault / global error status of the SMMU:

MMU-400, MMU-401, MMU-500:
These codes for the global faults are MULTI, UUT, PF, EF, CAF, UCIF, UCBF, SMCF, USF, ICF [A].
These flags correspond to the flags of the SMMU_sGFSR register.

To view the descriptions of the global faults, double-click the gray window status bar to open the
SMMU.Register.Global window [A]. Scroll down to the SMMU_sGFSR [B] or the SMMU_GERROR
register. The global faults are described in the column on the right [C].

A Codes of global faults (for MMU-500 in this screen shot).

B The information about the global faults is derived from the register SMMU_sGFSR (secure global
fault status register).

C Descriptions of the global faults in the SMMU.Register.Global window.

C

B

A

Arm Debugger | 247©1989-2024 Lauterbach

MMU-600 and newer:
These codes for the global errors are SFM, MSI_GERROR, MSI_PRIQ, MSI_EVENTQ, MSI_CMDQ,
PRIQ, EVENTQ, CMDQ [A].
These flags correspond to the flags of the SMMU_GERROR register.

Finding streams which are in a fault / error state

MMU-400, MMU-401 and MMU-500:
A red letter in a stage 1 cbndx state column or a stage 2 state column of the SMMU.StreamTable window
indicates a fault in a context bank. For descriptions of these faults, see state column.

MMU-600 and newer:
Use the Event Queue Window SMMU.DumpQueue.Event to view error events.
The command supplies options to filter and view events for a certain <stream_id> and/or <substream_id>
range and it is possible to filter certain event types.

In SMMU.StreamTable or SMMU.CtxtDescTable window, use the popup menu entry Dump associated
Queue Entries to dump queue entries for specific stream entry or context descriptor table entry.

SMMU.StreamTblEntry Access to a stream table entry
MMU-600 and newer only

The SMMU.StreamTblEntry command group allows to view the details of the translation context associated
with a Stream Table Entry and/or a stage 1 Context Descriptor. Every STE is identified by its <stream_id>. A
CD is identified by both a <stream_id> and a <substream_id>. In case a stream table entry supports only a
single stage 1 CD the <substream_id> can be omitted.

A Codes of global error flags (for MMU-600 in this screen shot).

B The information about the global error flags set is derived from an XOR operation for the registers
SMMU_GERROR and SMMU_GERRORN.

C Descriptions of the global error flags in the SMMU.Register.Global window.

A

B

C

Arm Debugger | 248©1989-2024 Lauterbach

The SMMU.StreamTblEntry command group provides the following commands:

The three SMMU.StreamTblEntry commands feature common options:

• /SUBstream <substream_id>: apply the command for a CD with the <substream_id>

• /SECure: target the secure SMMU entries with the command

SMMU.StreamTblEntry.Register Shows the registers of a STE or a CD.

SMMU.StreamTblEntry.list Lists the page table associated with stage 1 or stage 2
translation in a compact format.

SMMU.StreamTblEntry.Dump Dumps the page table entries associated with stage 1 or
stage 2 translation page wise.
Arm Debugger | 249©1989-2024 Lauterbach

SMMU.StreamTblEntry.Dump Page-wise display of SMMU page table
MMU-600 and newer only

Opens the SMMU.StreamTblEntry.Dump window for the specified <stream_id>. This window dumps the
page table content page-wise. If you prefer a compact view, use command SMMU.StreamTblEntry.list

If option /SECure is specified, the command targets the secure SMMU view.

You can dump any stage 1 or the stage 2 page table associated with the STE specified by <stream_id>.

To dump the stage 2 page table of the STE, specify only option /IntermediatePT.

To dump the stage 1 page table defined by a Context Descriptor of the STE, you must additionally specify
the Substream ID of the Context Descriptor using option /SubStreamID <substream_id>.

If no valid translation context is defined, the window displays the error message “registerset undefined”.

For a description of the columns in the SMMU.StreamTableEntry.Dump window, click here.

Arguments:

Format: SMMU.StreamTableEntry.Dump <args>

<args>: <name> <stream_id> [<address> | <range> [<ttb_address>]] [/SubStreamID
<substream_id>] [/IntermediatePT] [/SECure]

<name> For a description of <name>, etc., click here.

<stream_id> Defines the STE of which a page table has to be dumped.

<address> | <range> If specified, start the dump with <address> or, alternatively, limit the
dumped address range to address to <range>.

<ttb_address> If specified, <ttb_address> will be used as page table base address. The
other page table parameters are still extracted from the STE and/or CD
context.

/SubStreamID
<substream_id>

Omit this option to view translation table entries of stage 2.
Include this option to view the stage 1 translation table entries of the Context
Descriptor with substream <substream_id>.

If the STE has only one Context Descriptor, you can omit option
/SubStreamID <substream_id>. In this case, the stage 1 page table of
the Context Descriptor with substream 0 will be displayed. I

IntermediatePT Omit this option to view translation table entries of stage 1.
Include this option to view translation table entries of stage 2.

In SMMUs that support only stage 2 page tables, this option can be
omitted.
Arm Debugger | 250©1989-2024 Lauterbach

Examples:

To display an SMMU page table page-wise via the user interface TRACE32 PowerView, see here.

SMMU.StreamTblEntry.list List page table entries
MMU-600 and newer only

Opens the SMMU.StreamTblEntry.list window for the specified <stream_id>. This window shows a
compact list of consecutive address ranges in the page table which have a uniform, valid translation.

The syntax and arguments are identical to command SMMU.StreamTblEntry.Dump and are described
there.

;Dump the stage 2 page table of the STE with Stream ID 0x6BE974B for SMMU
“myGPU”
SMMU.StreamTblEntry.Dump myGPU 0x6BE974B /IntermediatePE

;Dump the stage 1 page table of Substream ID 0x2 which belongs to the STE
with Stream ID 0x6BE974B.
SMMU.StreamTblEntry.Dump myGPU 0x6BE974B /SubStreamID 0x2

;As above, but start dumping at address 0x80000000
SMMU.StreamTblEntry.Dump myGPU 0x6BE974B 0x80000000 /SubStreamID 0x2

Format: SMMU.StreamTableEntry.list<args>

<args>: <name> <stream_id> [<address> | <range> [<ttb_address>]] [/SubStreamID
<substream_id>] [/IntermediatePT] [/SECure]
Arm Debugger | 251©1989-2024 Lauterbach

SMMU.StreamTblEntry.Register Display STE or CD registers
MMU-600 and newer only

If specified without option /SubStreamID <substream_id>, this is an alias for command
SMMU.Register.StreamTblEntry. It opens the peripheral register window for the SMMU named
<name> and displays the registers of the Stream Table Entry which is specified by <stream_id>.

If specified with option /SubStreamID <substream_id>, this command opens the peripheral register
window for the SMMU named <name> and displays the registers of the Context Descriptor with
substream <substream_id>, belonging to the Stream Table Entry with <stream_id>.

If option /SECure is specified, the command targets the secure SMMU view.

Example:

Format: SMMU.Register.StreamTblEntry <args>

<args> : <name> <stream_id> [/SubStreamID <substream_id>] [/SECure]

;list the registers of the Stream Table Entry with Stream ID 0x6B9743
from the secure Stream Table of SMMU “myGPU”
SMMU.StreamTable myGPU 0x6B9743 /SECure

;list the registers of the Context Descriptor with Substream ID 0x3,
belonging to the secure Stream Table Entry with Stream ID 0x6B9743
SMMU.StreamTable myGPU 0x6B9743 /SubStreamID 0x3 /SECure
Arm Debugger | 252©1989-2024 Lauterbach

Target Adaption

Probe Cables

For debugging two kind of probe cable can be used to connect the debugger to the target:
“Debug Cable” and “CombiProbe”

For off-chip program and data trace an additional trace probe cable “Preprocessor” is needed.

Interface Standards JTAG, Serial Wire Debug, cJTAG

Debug Cable and CombiProbe support JTAG (IEEE 1149.1), Serial Wire Debug (CoreSight ARM), and
Compact JTAG (IEEE 1149.7, cJTAG) interface standards. The different modes are supported by the same
connector. Only some signals get a different function. The mode can be selected by debugger commands.
This assumes of course that your target supports this interface standard.

Serial Wire Debug is activated/deactivated by SYStem.CONFIG DEBUGPORTTYPE [SWD | JTAG]. In a
multidrop configuration you need to specify the address of your debug client by SYStem.CONFIG
SWDPTARGETSEL.

cJTAG is activated/deactivated by SYStem.CONFIG DEBUGPORTTYPE [CJTAG | JTAG]. Your system
might need bug fixes which can be activated by SYStem.CONFIG CJTAGFLAGS.

Serial Wire Debug (SWD) and Compact JTAG (cJTAG) require a Debug Cable version V4 or newer
(delivered since 2008) or a CombiProbe (any version) and one of the newer base modules (Power Debug
Pro, Power Debug Interface USB 2.0/USB 3.0, Power Debug Ethernet, PowerTrace or Power Debug II).

Connector Type and Pinout

Debug Cable

Adaptation for ARM Debug Cable: See https://www.lauterbach.com/adarmdbg.html.

For details on logical functionality, physical connector, alternative connectors, electrical characteristics,
timing behavior and printing circuit design hints refer to “Arm Debug and Trace Interface Specification”
(app_arm_target_interface.pdf).

CombiProbe

Adaptation for ARM CombiProbe: See https://www.lauterbach.com/adarmcombi.html.
Arm Debugger | 253©1989-2024 Lauterbach

https://www.lauterbach.com/adarmdbg.html
https://www.lauterbach.com/adarmcombi.html

The CombiProbe will always be delivered with 10-pin, 20-pin, 34-pin connectors. The CombiProbe can not
detect which one is used. If you use the trace of the CombiProbe you need to inform about the used
connector because the trace signals can be at different locations: SYStem.CONFIG CONNECTOR [MIPI34
| MIPI20T].

If you use more than one CombiProbe cable (twin cable is no standard delivery) you need to specify which
one you want to use by SYStem.CONFIG DEBUGPORT [DebugCableA | DebugCableB]. The
CombiProbe can detect the location of the cable if only one is connected.

Preprocessor

Adaptation for ARM ETM Preprocessor Mictor: See https://www.lauterbach.com/adetmmictor.html.

Adaptation for ARM ETM Preprocessor MIPI-60: See https://www.lauterbach.com/adetmmipi60.html.

Adaptation for ARM ETM Preprocessor HSSTP: See https://www.lauterbach.com/adetmhsstp.html.
Arm Debugger | 254©1989-2024 Lauterbach

https://www.lauterbach.com/adetmmictor.html
https://www.lauterbach.com/adetmmipi60.html
https://www.lauterbach.com/adetmhsstp.html

	Arm Debugger
	History
	Warning
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Quick Start of the JTAG Debugger
	FAQ
	Troubleshooting
	Communication between Debugger and Processor cannot be established

	Trace Extensions
	Symmetric Multiprocessing
	Arm Specific Implementations
	TrustZone Technology
	Debug Permission
	Checking Debug Permission
	Checking Secure State
	Changing the Secure State from within TRACE32
	Accessing Memory
	Accessing Coprocessor CP15 Register
	Accessing Cache and TLB Contents
	Vector Catch Register and Secure Modes
	Breakpoints and Secure Modes

	big.LITTLE
	Debugger Setup
	Consequence for Debugging
	Requirements for the Target Software
	big.LITTLE MP

	Breakpoints
	Software Breakpoints
	On-chip Breakpoints for Instructions
	On-chip Breakpoints for Data
	Hardware Breakpoints (Bus Trace only)
	Example for Standard Breakpoints
	Complex Breakpoints
	Direct ICE Breaker Access
	Example for ETM Stopping Breakpoints

	Access Classes
	Coprocessors
	Accessing Memory at Run-time
	Semihosting
	SVC (SWI) Emulation Mode
	DCC Communication Mode (DCC = Debug Communication Channel)

	Virtual Terminal
	Large Physical Address Extension (LPAE)
	Consequence for Debugging

	Virtualization Extension, Hypervisor
	Consequence for Debugging

	Run-time Measurements
	Trigger

	Arm specific SYStem Commands
	SYStem.CLOCK Inform debugger about core clock
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	<parameters> describing the “DebugPort”
	<parameters> describing the “JTAG” scan chain and signal behavior
	<parameters> describing a system level TAP “MultiTap”
	<parameters> configuring a CoreSight Debug Access Port “AP”
	<parameters> describing debug and trace “Components”
	<parameters> which are “Deprecated”

	SYStem.CONFIG.EXTWDTDIS Disable external watchdog
	SYStem.CONFIG.SMMU Internal use
	SYStem.CPU Select the used CPU
	SYStem.JtagClock Define the frequency of the debug port
	SYStem.LOCK Tristate the JTAG port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the target
	SYStem.Option Special setup
	SYStem.Option.ABORTFIX Do not access memory area from 0x0 to 0x1f
	SYStem.Option.AMBA Select AMBA bus mode
	SYStem.Option.ASYNCBREAKFIX Asynchronous break bugfix
	SYStem.Option.BUGFIX Breakpoint bug fix
	SYStem.Option.BUGFIXV4 Asynch. break bug fix for ARM7TDMI-S REV4
	SYStem.Option.BigEndian Define byte order (endianness)
	SYStem.Option.BOOTMODE Define boot mode
	SYStem.Option.CINV Invalidate the cache after memory modification
	SYStem.Option.CFLUSH FLUSH the cache before step/go
	SYStem.Option.CacheParam Define external cache
	SYStem.Option.CorePowerDetection Set methods to detect core power
	SYStem.Option.DACRBYPASS Ignore DACR access permission settings
	SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP
	SYStem.Option.DAP2DBGPWRUPREQ Force debug power in DAP2
	SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP
	SYStem.Option.DAP2SYSPWRUPREQ Force system power in DAP2
	SYStem.Option.DAPNOIRCHECK No DAP instruction register check
	SYStem.Option.DAPREMAP Rearrange DAP memory map
	SYStem.Option.DBGACK DBGACK active on debugger memory accesses
	SYStem.Option.DBGNOPWRDWN DSCR bit 9 will be set in debug mode
	SYStem.Option.DBGUNLOCK Unlock debug register via OSLAR
	SYStem.Option.DCDIRTY Bugfix for erroneously cleared dirty bits
	SYStem.Option.DCFREEZE Disable data cache linefill in debug mode
	SYStem.Option.DEBUGPORTOptions Options for debug port handling
	SYStem.Option.DIAG Activate more log messages
	SYStem.Option.DisMode Define disassembler mode
	SYStem.Option.DynVector Dynamic trap vector interpretation
	SYStem.Option.EnReset Allow the debugger to drive nRESET (nSRST)
	SYStem.Option.ETBFIXMarvell Read out on-chip trace data
	SYStem.Option.ETMFIX Shift data of ETM scan chain by one
	SYStem.Option.ETMFIXWO Bugfix for write-only ETM register
	SYStem.Option.ETMFIX4 Use only every fourth ETM data package
	SYStem.Option.EXEC EXEC signal can be used by bustrace
	SYStem.Option.EXTBYPASS Switch off the fake TAP mechanism
	SYStem.Option.FASTBREAKDETECTION Fast core halt detection
	SYStem.Option.HRCWOVerRide Enable override mechanism
	SYStem.Option.ICEBreakerETMFIXMarvell Lock on-chip breakpoints
	SYStem.Option.ICEPICK Enable/disable assertions and wait-in-reset
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.INTDIS Disable all interrupts
	SYStem.Option.IRQBREAKFIX Break bugfix by using IRQ
	SYStem.Option.KEYCODE Define key code to unsecure processor
	SYStem.Option.L2Cache L2 cache used
	SYStem.Option.L2CacheBase Define base address of L2 cache register
	SYStem.Option.LOCKRES Go to "Test-Logic Reset" when locked
	SYStem.Option.MACHINESPACES Address extension for guest OSes
	SYStem.Option.MDMAP Set debug option controlled by NXP MDM-AP
	SYStem.Option.MemStatusCheck Check status bits during memory access
	SYStem.Option.MMUPhysLogMemaccess Memory access preferences
	SYStem.Option.MMUSPACES Separate address spaces by space IDs
	SYStem.Option.MonitorHoldoffTime Delay between monitor accesses
	SYStem.Option.MPUBYPASS Ignore MPU access permission settings
	SYStem.Option.MultiplesFIX No multiple loads/stores
	SYStem.Option.NODATA No data connected to the trace
	SYStem.Option.NOIRCHECK No JTAG instruction register check
	SYStem.Option.NoPRCRReset Do not cause reset by PRCR
	SYStem.Option.NoRunCheck No check of the running state
	SYStem.Option.NoSecureFix Do not switch to secure mode
	SYStem.Option.OVERLAY Enable overlay support
	SYStem.Option.PALLADIUM Extend debugger timeout
	SYStem.Option.PC Define address for dummy fetches
	SYStem.Option.ProgramAccessFix Program memory access bug fix
	SYStem.Option.PROTECTION Sends an unsecure sequence to the core
	SYStem.Option.PWRCHECK Check power and clock
	SYStem.Option.PWRCHECKFIX Check power and clock
	SYStem.Option.PWRDWN Allow power-down mode
	SYStem.Option.PWRDWNRecover Mode to handle special power recovery
	SYStem.Option.PWRDWNRecoverTimeOut Timeout for power recovery
	SYStem.Option.PWROVR Specifies power override bit
	SYStem.Option.ResBreak Halt the core after reset
	SYStem.Option.ResetDetection Choose method to detect a target reset
	SYStem.Option.RESetREGister Generic software reset
	SYStem.Option.RESTARTFIX Wait after core restart
	SYStem.Option.RisingTDO Target outputs TDO on rising edge
	SYStem.Option.ShowError Show data abort errors
	SYStem.Option.SLaVeSOFTRESet Allow soft reset of slave cores
	SYStem.Option.SOFTLONG Use 32-bit access to set breakpoint
	SYStem.Option.SOFTQUAD Use 64-bit access to set breakpoint
	SYStem.Option.SOFTWORD Use 16-bit access to set breakpoint
	SYStem.Option.SPLIT Access memory depending on CPSR
	SYStem.Option.StandByTraceDelaytime Trace activation after reset
	SYStem.Option.STEPSOFT Use software breakpoints for ASM stepping
	SYStem.Option.SYSPWRUPREQ Force system power
	SYStem.Option.TIDBGEN Activate initialization for TI derivatives
	SYStem.Option.TIETMFIX Bug fix for customer specific ASIC
	SYStem.Option.TIDEMUXFIX Bug fix for customer specific ASIC
	SYStem.Option.TraceStrobe Deprecated command
	SYStem.Option.TRST Allow debugger to drive TRST
	SYStem.Option.TURBO Speed up memory access
	SYStem.Option.WaitIDCODE IDCODE polling after deasserting reset
	SYStem.Option.WaitReset Wait with JTAG activities after deasserting reset
	SYStem.Option.WATCHDOG Disable watchdog while debugging
	SYStem.Option.ZoneSPACES Enable symbol management for Arm zones
	Overview of Debugging with Zones
	Operation System Support - Defining a Zone-specific OS Awareness

	SYStem.Option.ZYNQJTAGINDEPENDENT Configure JTAG cascading
	SYStem.RESetOut Assert nRESET/nSRST on JTAG connector
	SYStem.state Display SYStem window

	Arm specific Functions
	SYStem.Option.HRCWOVerRide()

	Arm Specific Benchmarking Commands
	BMC.EXPORT Export benchmarking events from event bus
	BMC.EXTEND Define benchmark counter event
	BMC.MODE Define the operating mode of the benchmark counter
	BMC.<counter>.EVENT Configure the performance monitor
	Functions

	BMC.PRESCALER Prescale the measured cycles
	BMC.TARA Calibrate the benchmark counter

	Arm Specific TrOnchip Commands
	TrOnchip.A Programming the ICE breaker module
	TrOnchip.A.Value Define data selector
	TrOnchip.A.Size Define access size for data selector
	TrOnchip.A.CYcle Define access type
	TrOnchip.A.Address Define address selector
	TrOnchip.A.Trans Define access mode
	TrOnchip.A.Extern Define the use of EXTERN lines
	TrOnchip.AddressMask Define an address mask
	TrOnchip.ContextID Enable context ID comparison
	TrOnchip.CONVert Allow extension of address range of breakpoint
	TrOnchip.MachineID Extend on-chip breakpoint/trace filter by machine ID
	TrOnchip.MatchASID Extend on-chip breakpoint/trace filter by ASID
	TrOnchip.MatchMachine Extend on-chip breakpoint/trace filter by machine
	TrOnchip.MatchZone Extend on-chip breakpoint/trace filter by zone
	TrOnchip.Mode Configure unit A and B
	TrOnchip.RESet Reset on-chip trigger settings
	TrOnchip.Set Set bits in the vector catch register
	TrOnchip.StepVector Step into exception handler
	TrOnchip.StepVectorResume Catch exceptions and resume single step
	TrOnchip.TEnable Define address selector for bus trace
	TrOnchip.TCYcle Define cycle type for bus trace
	TrOnchip.VarCONVert Convert breakpoints on scalar variables
	TrOnchip.state Display on-chip trigger window

	CPU specific MMU Commands
	MMU.DUMP Page wise display of MMU translation table
	MMU.List Compact display of MMU translation table
	MMU.SCAN Load MMU table from CPU

	CPU specific SMMU Commands
	SMMU Hardware system MMU (SMMU)
	SMMU.ADD Define a new hardware system MMU
	SMMU.Clear Delete an SMMU
	SMMU.CtxtDescTable List a context descriptor table
	SMMU.DumpQueue.<queue> Dump entries of a queue
	SMMU.DumpQueue.CMD Dump cmd queue entries
	SMMU.DumpQueue.Event Dump event queue entries
	SMMU.Register Peripheral registers of an SMMU
	SMMU.Register.ContextBank Display registers of context bank
	SMMU.Register.Global Display global registers of SMMU
	SMMU.Register.MMUregs Display MMU specific registers
	SMMU.Register.S1Context Display stage 1 context descriptor registers
	SMMU.Register.StreamTblEntry Display stream table entry registers
	SMMU.Register.StreamMapRegGrp Display registers of an SMRG
	SMMU.RESet Delete all SMMU definitions
	SMMU.SSDtable Display security state determination table
	SMMU.StreamMapRegGrp Access to stream map table entries
	SMMU.StreamMapRegGrp.ContextReg Display context bank registers
	SMMU.StreamMapRegGrp.Dump Page-wise display of SMMU page table
	SMMU.StreamMapRegGrp.list List page table entries
	SMMU.StreamTable Display a stream table
	Display of Global Faults or Global Errors in an SMMU
	Finding streams which are in a fault / error state

	SMMU.StreamTblEntry Access to a stream table entry
	SMMU.StreamTblEntry.Dump Page-wise display of SMMU page table
	SMMU.StreamTblEntry.list List page table entries
	SMMU.StreamTblEntry.Register Display STE or CD registers

	Target Adaption
	Probe Cables
	Interface Standards JTAG, Serial Wire Debug, cJTAG
	Connector Type and Pinout
	Debug Cable
	CombiProbe
	Preprocessor

