
MANUAL                                                       

XC2000/XC16x/C166CBC 
Debugger



XC2000/XC16x/C166CBC Debugger

TRACE32 Online Help  

TRACE32 Directory  

TRACE32 Index  

TRACE32 Documents  ...................................................................................................................... 

   ICD In-Circuit Debugger  ................................................................................................................ 

      Processor Architecture Manuals  .............................................................................................. 

         C166 Family  ............................................................................................................................. 

            XC2000/XC16x/C166CBC Debugger  ................................................................................... 1

               Introduction  ....................................................................................................................... 6

                  ICD/AICD 6

                  Brief Overview of Documents for New Users 6

                  Demo and Start-up Scripts 7

               Warning  .............................................................................................................................. 8

               Monitor Routine  ................................................................................................................. 9

               Quick Start  ......................................................................................................................... 11

                  Quick Start for Tracing with MCDS On-chip Trace 13

                     1. Start and Stop Tracing 13

                     2. Specify Trace Source and Recording Options 13

                     3. Start and Stop Tracing 13

                     4. View the Results 13

               Memory Classes  ................................................................................................................ 14

               CPU specific SYStem Commands  ................................................................................... 15

                  SYStem.CPU Select the CPU 15

                  SYStem.JtagClock Define the JTAG frequency 16

                  SYStem.MemAccess Select run-time memory access method 16

                  SYStem.Mode Establish the communication with the CPU 17

                  SYStem.LOCK Lock and tristate the debug port 18

                  SYStem.CONFIG.state Display target configuration 18

                  SYStem.CONFIG Configure debugger according to target topology 19

                     Daisy-Chain Example 22

                     TapStates 23

                  SYStem.CONFIG.CORE Assign core to TRACE32 instance 24

                  SYStem.CONFIG.DAP Define mapping for DAP pins 25

                  SYStem.CONFIG.DAP.BreakPIN Define mapping of break pins 25

                  SYStem.CONFIG.DAP.DAPENable Enable DAP mode on PORST 25
XC2000/XC16x/C166CBC Debugger     |    2©1989-2024   Lauterbach                                                        



                  SYStem.CONFIG.DAP.USERn Configure and set USER pins 26

                  SYStem.CONFIG.DEBUGPORTTYPE Set debug cable interface mode 26

                  SYStem.Option.DUALPORT Run-time memory access for all windows 27

                  SYStem.Option.IDLEFIX Periodically activate/deactivate JTAG connection 27

                  SYStem.Option.IMASKASM Disable interrupts while single stepping 27

                  SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 27

                  SYStem.Option.MonBase Define start address of debug monitor 28

                  SYStem.Option.PERSTOP Enable global peripheral suspend signal 28

                  SYStem.Option.PERSTOPFIX Break CPU via ONCHIP break register 28

                  SYStem.Option.BRKOUT Activates BRKOUT signal 29

                  SYStem.Option.WATCHDOG Disable or serve watchdog 29

                  SYStem.Option.TRACEENABLE Disable traceport 29

                  SYStem.Option.DebugLevel Debug level 29

                  SYStem.Option.BootModeIndex BootModeIndex 30

                  SYStem.Option.ICFLUSH Flush instruction cache 31

                  SYStem.Option.IDLEDEBUG Debug in IDLE state 31

                  SYStem.Option.WaitReset Delay between PORST and JTAG shifts 31

               MCDS Onchip Trace  .......................................................................................................... 32

                  MCDS Onchip Trace Features 32

                  Supported Features 32

                  Trace Control 32

                  Simple Trace Control 32

                     Examples 33

               BenchMarkCounter  ........................................................................................................... 36

                  BMC.CNTx.EVENT Configure the performance monitor 36

               Useful Features  ................................................................................................................. 37

               Breakpoints  ........................................................................................................................ 38

                  Software Breakpoints on Instructions 38

                  On-chip Breakpoints 38

                  On-chip Breakpoints in FLASH/ROM 38

                  Example for Breakpoints 39

               TrOnchip Commands  ........................................................................................................ 41

                  TrOnchip.state Display on-chip trigger window 41

                  TrOnchip.CONVert Adjust range breakpoint in on-chip resource 41

                  TrOnchip.RESet Set on-chip trigger to default state 41

                  TrOnchip.TEnable Set filter for the trace 42

                  TrOnchip.TOFF Switch the sampling to the trace to OFF 42

                  TrOnchip.TON Switch the sampling to the trace to “ON” 42

                  TrOnchip.TTrigger Set a trigger for the trace 42

                  TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource 43

                  TrOnchip.Address Define address selector 43

                  TrOnchip.CYcle Define access type 43
XC2000/XC16x/C166CBC Debugger     |    3©1989-2024   Lauterbach                                                        



                  TrOnchip.Data Define data selector 44

                  TrOnchip.NoMatch Define match or nomatch comparison 44

                  TrOnchip.TaskID Define task ID comparison 44

               Connectors  ........................................................................................................................ 45

                  JTAG Connector 45

                  DAP Connector 46

               Troubleshooting  ................................................................................................................ 47

                  SYStem.Up Errors 47

               FAQ  ..................................................................................................................................... 47

               Technical Data  ................................................................................................................... 48

                  Operation Voltage 48
XC2000/XC16x/C166CBC Debugger     |    4©1989-2024   Lauterbach                                                        



XC2000/XC16x/C166CBC Debugger

Version 06-Jun-2024
XC2000/XC16x/C166CBC Debugger     |    5©1989-2024   Lauterbach                                                        



Introduction

This document describes the processor specific settings and features for the debugger ICD-166CBC and 
the debugger ICD-166SV2. (You can find the description of ROM Monitors for 80C166 family at “C166 
Monitor” (monitor_c166.pdf)

ICD-166CBC supports processors based on the C166CBC and C166SV1 core, like PMB2850 (E-GOLD), 
PMB6850 (E-GOLD+), PMB7850 (E-GOLD+V3), SDA6000 (M2), INKA, C165UTAH, C161U, PEF20580 
(DOLCE), …

ICD-166SV2 supports processors based on the C166SV2 core, like XC161CJ, XC164CS, …

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the 
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by 
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your 
first choice. 

ICD/AICD

In the following we use the short form ICD (In-Circuit Debugger) for debug systems running on the debug 
box “Debug Interface” and AICD (Active In-Circuit Debugger) for debug systems running on the debug box 
“Power Debug Interface”, “Power Debug Ethernet” and “Power Trace”.

For installation and to make you familiar with the main features of the debugger see the manual “Quick 
Installation and Tutorial”.

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a 
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances 
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.
XC2000/XC16x/C166CBC Debugger     |    6©1989-2024   Lauterbach                                                        



Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the 
processor architecture supported by your Debug Cable. To access the manual for your processor 
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating 
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the 
OS-aware debugging. 

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known XC2000/XC16x/C166CBC based hardware.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:

• Type at the command line: WELCOME.SCRIPTS

• or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts 
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/c166/ subfolder of the system directory of TRACE32.
XC2000/XC16x/C166CBC Debugger     |    7©1989-2024   Lauterbach                                                        



Warning

WARNING: To prevent debugger and target from damage it is recommended to connect or 
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1. Disconnect the Debug Cable from the target while the target power is 
off.

2. Connect the host system, the TRACE32 hardware and the Debug 
Cable.

3. Power ON the TRACE32 hardware.

4. Start the TRACE32 software to load the debugger firmware.

5. Connect the Debug Cable to the target.

6. Switch the target power ON.

7. Configure your debugger e.g. via a start-up script.

Power down:

1. Switch off the target power.

2. Disconnect the Debug Cable from the target.

3. Close the TRACE32 software.

4. Power OFF the TRACE32 hardware.
XC2000/XC16x/C166CBC Debugger     |    8©1989-2024   Lauterbach                                                        



Monitor Routine

The monitor routine is required for ICD-166CBC, only. There is no monitor routine when using ICD-
166SV2.

The following resources are used by the debugger:

• Stack Memory: 8 bytes of memory on the current stack.

• Program Memory: 32 bytes of program memory for a exception routine.

• A TRAP vector (4 bytes) at 20H.

The exception routine will be loaded automatically by the debugger on a SYStem.Up at the address which is 
selectable by the SYStem.Option.MONBASE command. Also the jump command will be written 
automatically to 20H.

You must do all settings (e.g. BUSCON register) to make write access to these locations possible. If there is 
ROM, you must place the exception routine and trap vector in the ROM yourself and you must inform the 
debugger by using the SYStem.Option.MONBASE command about the location. Exception: see 
SYStem.MODE Prepare.

The command sequence of the exception routine is depending on the option   
SYStem.Option.WATCHDOG.

WATCHDOG = ON: 

The binary code is:

push r0
bset psw.0x6
loop:srvwdt
jb psw.0x6,loop
pop r0
push dpp3
mov dpp3,#0x3
atomic #4
mov dpp3:0x30fc,zeros
bclr tfr.0xc
pop dpp3
reti

0xEC, 0xF0, 0x6F, 0x88, 0xA7, 0x58, 0xA7, 0xA7,
0x8A, 0x88, 0xFC, 0x60, 0xFC, 0xF0, 0xEC, 0x03,
0xE6, 0x03, 0x03, 0x00, 0xD1, 0x30, 0xF6, 0x8E,
0xFC, 0xF0, 0xCE, 0xD6, 0xFC, 0x03, 0xFB, 0x88
XC2000/XC16x/C166CBC Debugger     |    9©1989-2024   Lauterbach                                                        



WATCHDOG = OFF:  

The binary code is:

At the location 20H a jump to this function has to be placed (if address = 1FFFC0H):

The binary code is (if address = 1FFFC0H): 

push r0
bset psw.0x6
loop: diswdt
jb psw.0x6,loop
pop r0
push dpp3
mov dpp3,#0x3
atomic #4
mov dpp3:0x30fc,zeros
bclr tfr.0xc
pop dpp3
reti

0xEC, 0xF0, 0x6F, 0x88, 0xA5, 0x5A, 0xA5, 0xA5,
0x8A, 0x88, 0xFC, 0x60, 0xFC, 0xF0, 0xEC, 0x03,
0xE6, 0x03, 0x03, 0x00, 0xD1, 0x30, 0xF6, 0x8E,
0xFC, 0xF0, 0xCE, 0xD6, 0xFC, 0x03, 0xFB, 0x88

jmps 0x1f,0x0ffc0

0xfa, 0x1f, 0xc0, 0xff
XC2000/XC16x/C166CBC Debugger     |    10©1989-2024   Lauterbach                                                        



Quick Start

Check if there is a suitable script file for your hardware in ~~/demo/c166/etc/. Read the comments in the 
script file.

After finishing the preparations (see Monitor) starting up the debugger is done as follows:

1. Select the device prompt B: for the ICD Debugger.

If you are working with the PODPC card device b:: is already selected.

2. Select the CPU type to load the CPU specific settings.

If you are working with the PODPC card, the correct CPU family is selected automatically after start-
up. 

3. Tell the debugger where’s ROM on the target. 

This command is necessary for the use of on-chip breakpoints.

4. Enter debug mode

This command resets the CPU and enters debug mode. After this command is executed, it is possible 
to access memory and registers.

5. Load your application program.

The option of the Data.LOAD command depends on the file format generated by the compiler. A 
detailed description of the Data.LOAD command is given in the “General Commands Reference”.

b:

SYStem.CPU PMB2850

MAP.BOnchip 0x100000++0x0fffff

SYStem.Up

Data.LOAD.IEEE PROG166 ; IEEE specifies the format, PROG166 is
; the file name
XC2000/XC16x/C166CBC Debugger     |    11©1989-2024   Lauterbach                                                        



The start-up can be automated using the programming language PRACTICE. An example of a start-up 
sequence is shown below. This sequence can be written to a PRACTICE script file (*.cmm, ASCII format) 
and executed with the command DO <file>.     

*) These commands open windows on the screen. The window position can be specified with the WinPOS 
command.

B:: ; Select the ICD device prompt

WinCLEAR ; Clear all windows

MAP.BOnchip 0x100000++0x0fffff ; Specify where’s ROM

SYStem.cpu PMB2850 ; Select the processor type

SYStem.Up ; Reset the target and enter debug
; mode

Data.LOAD.IEEE PROG166 ; Load the application

Register.Set PC main ; Set the PC to function main

List.Mix ; Open disassembly window         *)

Register.view /SpotLight ; Open register window            *)

Frame.view /Locals /Caller ; Open the stack frame with 
; local variables                 *)

Var.Watch %Spotlight flags ast ; Open watch window for variables *)

PER.view ; Open window with peripheral register
;                                 *)

Break.Set sieve ; Set breakpoint to function sieve

Break.Set 0x1000 /Program ; Set software breakpoint to address
; 1000 (address 1000 is in RAM)

Break.Set 0x101000 /Program ; Set on-chip breakpoint to address
; 101000 (address 101000 is in ROM)
; See restrictions in On-chip
; Breakpoints.)
XC2000/XC16x/C166CBC Debugger     |    12©1989-2024   Lauterbach                                                        



Quick Start for Tracing with MCDS On-chip Trace

It is assumed that you are tracing a XC2000ED.

1. Start and Stop Tracing

Load your application and prepare for debug. 

2. Specify Trace Source and Recording Options

Select the source what should be recorded (e.g. Program Flow and Timestamps). When enabling 
Timestamps, the CPU clock has to be added also.

3. Start and Stop Tracing

Note that tracing can also be stopped by a breakpoint.

4. View the Results

SYStem.CPU XC2000ED ; select XC2000ED CPU

MCDS.SOURCE C166 FlowTrace ON ; enable TriCore program flow
; trace

MCDS.TimeStamp TICKS ; enable Ticks as timestamps

MCDS.CLOCK SYStem 80.0MHz ; configure CPU clock for correct
; timestamp evaluation

Go ; start tracing

Break ; stop tracing

Onchip.List ; view recorded trace data
XC2000/XC16x/C166CBC Debugger     |    13©1989-2024   Lauterbach                                                        



Memory Classes

The following memory classes are available:

Since C166CBC has von Neumann architecture there is no difference in the use of these memory classes.

If you use the memory classes E, EP or ED the memory is accessed even if the target CPU is running. 
There is no difference in the use of E, EP and ED. The JTAG debugger use the Debug Peripheral Event 
Controller (DPEC) to access memory. This acts like a cycle stealing DMA. If a Data.Dump window is opened 
by using one of these memory classes, the window contents will also be refreshed while the processor is 
running (see also SYStem.Option.DUALPORT). Please note that in this case the program will not be 
executed at full speed.

Memory Class Description

P Program

D Data
XC2000/XC16x/C166CBC Debugger     |    14©1989-2024   Lauterbach                                                        



CPU specific SYStem Commands

SYStem.CPU     Select the CPU
 

Default: PMB2850 (ICD-166CBC), C166SV2 (ICD-166SV2)
Selects the processor type.

Format: SYStem.CPU <cpu>

<cpu>: PMB2850 | PMB6850 | PMB7850 | PEF20580 | SDA6000 | C165UTAH | INKA 
| …(ICD-166CBC)
XC161CJ, …,XC2287, …XE167F, …XC2000ED, …(ICD-166SV2) 
XC2000/XC16x/C166CBC Debugger     |    15©1989-2024   Lauterbach                                                        



SYStem.JtagClock     Define the JTAG frequency

Default 5 MHz (ICD), 10 MHz (AICD).

Selects the frequency for the JTAG clock. This influences the speed of data transmission between target and 
debugger.

EXT selects the clock on the pin CPUCLOCK of the JTAG connector as clock source.

Attention: The frequency of the JTAG clock must be lower than the system clock frequency!

Not all values in between the frequency range can be generated by the debugger. The debugger will select 
and display the possible value if it can not generate the exact value.

SYStem.MemAccess     Select run-time memory access method

Format: SYStem.JtagClock <rate>
SYStem.BdmClock  (deprecated)

<rate>: EXT | 1000. … 10000000. (ICD)
10000. … 50000000. (AICD)

Format: SYStem.MemAccess Enable | StopAndGo | Denied
SYStem.ACCESS (deprecated)

Enable
CPU (deprecated)

Memory access during program execution to target is enabled.

Denied (default) Memory access during program execution to target is disabled.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop 
takes some time depending on the speed of the JTAG port, the number of 
the assigned cores, and the operations that should be performed.
For more information, see below.
XC2000/XC16x/C166CBC Debugger     |    16©1989-2024   Lauterbach                                                        



SYStem.Mode     Establish the communication with the CPU

Default: Down

Selects the target operating mode.

“Debug mode is active” means the communication channel via debug port (JTAG) is established. The 
features of the “on-chip debug support” (OCDS) are enabled and available.

Format: SYStem.Mode <mode> 

SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Attach
Down
Go
NoDebug
Prepare
StandBy
Up

Attach User program remains running (no reset). Debug mode is active. This 
mode can be entered from state “NoDebug”, if debugging should be 
enabled without a target reset. After this command the user program can 
be stopped with the break command or if any break condition occurs.
XC2xxx: Attach is only possible if a pull-up resistor is on TRST pin.

Down The CPU is in reset. Debug mode is not active. Default state and state 
after fatal errors.

Go The user application is running. Debug mode is active. After this 
command the program can be stopped with the break command or if any 
break condition occurs.

NoDebug The user application is running. Debug mode is not active. Debug port is 
tristate. In this mode the target should behave as if the debugger is not 
connected.

Prepare ICD-166CBC: The CPU is halted. Communication to CPU is established. 
In this mode memory access is possible, run control (step, go, break) is 
not available. This command can be entered in the command line, only. A 
valid user program after power on is not required. 
See “~~/demo/c166/etc/egold/demo.cmm”.
ICD-166SV2: Behaves as UP
XC2000/XC16x/C166CBC Debugger     |    17©1989-2024   Lauterbach                                                        



If the mode “Go” or “Attach” or “Prepare” is selected, this mode will be entered, but the control button in the 
SYStem window jumps to the mode “UP”.

The “Emulate” LED on the debug module is on when the debug mode is active and the CPU is running.

XC2xxx: If the routing of the JTAG pins is changed (Register DBGPRR), only mode “Attach” and “Go” are 
possible. 

SYStem.LOCK     Lock and tristate the debug port

Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the 
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give 
debug access to another tool.

SYStem.CONFIG.state     Display target configuration

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target 
configuration settings. The configuration settings tell the debugger how to communicate with the chip on 
the target board and how to access the on-chip debug and trace facilities in order to accomplish the 
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the 
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG 
commands for settings that are not included in the SYStem.CONFIG.state window.

StandBy This mode is not supported.

Up The CPU runs in debug monitor routine (ICD-166CBC) or is in halt mode 
(ICD-166SV2). Debug mode is active. In this mode the user application 
can be started and stopped. This is the most typical way to activate 
debugging.

Format: SYStem.LOCK [ON | OFF]

Format: SYStem.CONFIG.state [/<tab>] 

<tab>: DebugPort | Jtag 
XC2000/XC16x/C166CBC Debugger     |    18©1989-2024   Lauterbach                                                        



        

SYStem.CONFIG     Configure debugger according to target topology

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger about the 
TAP controller position in the JTAG chain, if there is more than one core in the JTAG chain (e.g. Arm + DSP). 
The information is required before the debugger can be activated e.g. by a SYStem.Up. See Daisy-chain 
Example.
For some CPU selections (SYStem.CPU) the above setting might be automatically included, since the 
required system configuration of these CPUs is known. 

<tab> Opens the SYStem.CONFIG.state window on the specified tab. For tab 
descriptions, see below.

DebugPort Informs the debugger about the debug connector type and the 
communication protocol it shall use.

Jtag Informs the debugger about the position of the Test Access Ports (TAP) in 
the JTAG chain which the debugger needs to talk to in order to access 
the debug and trace facilities on the chip.

Format: SYStem.CONFIG   <parameter> <number_or_address>
SYStem.MultiCore <parameter> <number_or_address> (deprecated)

<parameter>: CORE       <core>

<parameter>:
(JTAG):

DRPRE     <bits>
DRPOST   <bits>
IRPRE      <bits>
IRPOST    <bits>
TAPState  <state>
TCKLevel <level>
TriState     [ON | OFF]
Slave        [ON | OFF]
XC2000/XC16x/C166CBC Debugger     |    19©1989-2024   Lauterbach                                                        



TriState has to be used if several debuggers (“via separate cables”) are connected to a common JTAG port 
at the same time in order to ensure that always only one debugger drives the signal lines. TAPState and 
TCKLevel define the TAP state and TCK level which is selected when the debugger switches to tristate 
mode. Please note: nTRST must have a pull-up resistor on the target, TCK can have a pull-up or pull-down 
resistor, other trigger inputs need to be kept in inactive state.

  

Multicore debugging is not supported for the DEBUG INTERFACE (LA-7701).

CORE For multicore debugging one TRACE32 PowerView GUI has to be started 
per core. To bundle several cores in one processor as required by the 
system this command has to be used to define core and processor 
coordinates within the system topology.
Further information can be found in SYStem.CONFIG.CORE.

DRPRE (default: 0) <number> of TAPs in the JTAG chain between the core of 
interest and the TDO signal of the debugger. If each core in the system 
contributes only one TAP to the JTAG chain, DRPRE is the number of 
cores between the core of interest and the TDO signal of the debugger.

DRPOST (default: 0) <number> of TAPs in the JTAG chain between the TDI signal 
of the debugger and the core of interest. If each core in the system 
contributes only one TAP to the JTAG chain, DRPOST is the number of 
cores between the TDI signal of the debugger and the core of interest. 

IRPRE (default: 0) <number> of instruction register bits in the JTAG chain 
between the core of interest and the TDO signal of the debugger. This is 
the sum of the instruction register length of all TAPs between the core of 
interest and the TDO signal of the debugger. 

IRPOST (default: 0) <number> of instruction register bits in the JTAG chain 
between the TDI signal and the core of interest. This is the sum of the 
instruction register lengths of all TAPs between the TDI signal of the 
debugger and the core of interest. 

TAPState (default: 7 = Select-DR-Scan) This is the state of the TAP controller when 
the debugger switches to tristate mode. All states of the JTAG TAP 
controller are selectable.

TCKLevel (default: 0) Level of TCK signal when all debuggers are tristated.

TriState (default: OFF) If several debuggers share the same debug port, this 
option is required. The debugger switches to tristate mode after each 
debug port access. Then other debuggers can access the port. JTAG: 
This option must be used, if the JTAG line of multiple debug boxes are 
connected by a JTAG joiner adapter to access a single JTAG chain.
XC2000/XC16x/C166CBC Debugger     |    20©1989-2024   Lauterbach                                                        



Slave (default: OFF) If more than one debugger share the same debug port, all 
except one must have this option active.
JTAG: Only one debugger - the “master” - is allowed to control the signals 
nTRST and nSRST (nRESET).
XC2000/XC16x/C166CBC Debugger     |    21©1989-2024   Lauterbach                                                        



Daisy-Chain Example

Below, configuration for core C.

Instruction register length of 

• Core A: 3 bit

• Core B: 5 bit

• Core D: 6 bit

SYStem.CONFIG.IRPRE  6. ; IR Core D

SYStem.CONFIG.IRPOST 8. ; IR Core A + B

SYStem.CONFIG.DRPRE  1. ; DR Core D

SYStem.CONFIG.DRPOST 2. ; DR Core A + B

SYStem.CONFIG.CORE 0. 1. ; Target Core C is Core 0 in Chip 1

Core A Core B Core C Core D TDOTDI

Chip 0 Chip 1
XC2000/XC16x/C166CBC Debugger     |    22©1989-2024   Lauterbach                                                        



TapStates

0 Exit2-DR

1 Exit1-DR

2 Shift-DR

3 Pause-DR

4 Select-IR-Scan

5 Update-DR

6 Capture-DR

7 Select-DR-Scan

8 Exit2-IR

9 Exit1-IR

10 Shift-IR

11 Pause-IR

12 Run-Test/Idle

13 Update-IR

14 Capture-IR

15 Test-Logic-Reset
XC2000/XC16x/C166CBC Debugger     |    23©1989-2024   Lauterbach                                                        



SYStem.CONFIG.CORE     Assign core to TRACE32 instance

Default core_index: depends on the CPU, usually 1. for generic chips

Default chip_index: derived from CORE= parameter of the configuration file (config.t32). The CORE 
parameter is defined according to the start order of the GUI in T32Start with ascending values.

To provide proper interaction between different parts of the debugger, the systems topology must be 
mapped to the debugger’s topology model. The debugger model abstracts chips and sub cores of these 
chips. Every GUI must be connect to one unused core entry in the debugger topology model. Once the 
SYStem.CPU is selected, a generic chip or non-generic chip is created at the default chip_index.

Non-generic Chips

Non-generic chips have a fixed number of sub cores, each with a fixed CPU type.

Initially, all GUIs are configured with different chip_index values. Therefore, you have to assign the 
core_index and the chip_index for every core. Usually, the debugger does not need further information to 
access cores in non-generic chips, once the setup is correct.

Generic Chips

Generic chips can accommodate an arbitrary amount of sub-cores. The debugger still needs information 
how to connect to the individual cores e.g. by setting the JTAG chain coordinates.

Start-up Process

The debug system must not have an invalid state where a GUI is connected to a wrong core type of a non-
generic chip, two GUIs are connected to the same coordinate or a GUI is not connected to a core. The initial 
state of the system is valid since every new GUI uses a new chip_index according to its CORE= parameter 
of the configuration file (config.t32). If the system contains fewer chips than initially assumed, the chips must 
be merged by calling SYStem.CONFIG.CORE.

Format: SYStem.CONFIG.CORE <core_index> <chip_index>
SYStem.MultiCore.CORE <core_index> <chip_index> (deprecated)

<chip_index>: 1 … i

<core_index>: 1 … k
XC2000/XC16x/C166CBC Debugger     |    24©1989-2024   Lauterbach                                                        



SYStem.CONFIG.DAP     Define mapping for DAP pins

The SYStem.CONFIG.DAP commands are used to map the unused JTAG pins for additional features.

SYStem.CONFIG.DAP.BreakPIN     Define mapping of break pins

Default: PortONLY.

This command maps a Break Bus to either a GPIO port pin or an unused JTAG pin. It is dependent on the 
selected debug port type which Break Bus can be mapped to which pin:

SYStem.CONFIG.DAP.DAPENable     Enable DAP mode on PORST

Default: TARGET.

Defines if the DAP Interface of the CPU is enabled during a Power On Reset (PORST). This command 
requires that the debugger DAP Interface is enabled by SYStem.CONFIG.DEBUGPORTTYPE before.

For target boards where a pull-up resistor on nTRST line permanently enables the DAP Interface the 
TARGET setting is required.

In case the CPU DAP Interface should not be enabled although a debugger is attached to the target board, 
the OFF setting is recommended. When performing a SYStem.Mode Go or SYStem.Mode Up, the 
debugger enables the CPU DAP Interface automatically when performing the PORST. Note that a  
SYStem.Mode Attach is not possible in this case.

Format: SYStem.CONFIG.DAP.BPIN [PortPort | TdiPort | PortTdo | TdiTdo]

Break Bus 0 Break Bus 1

PortPort GPIO port pin GPIO port pin

TdiPort TDI pin GPIO port pin

PortTDO GPIO port pin TDO pin

TdiTdo TDI pin TDO pin

Format: SYStem.CONFIG.DAP.DAPEN [TARGET | ON | OFF]
XC2000/XC16x/C166CBC Debugger     |    25©1989-2024   Lauterbach                                                        



If the CPU DAP Interface should be enabled as long as the debugger is attached, the ON setting is required. 
All  SYStem.Mode options are possible in this case, including hot attach.

See “Application Note Debug Cable TriCore” (app_tricore_ocds.pdf) for details.

SYStem.CONFIG.DAP.USERn     Configure and set USER pins

• Default for USER0: In.

• Default for USER1: Out and Low.

Configures the USER0 and USER1 pins of the 10 pin DAP Debug Connector as input or output. The output 
level can be Low or High.

Use the functions DAP.USER0() and DAP.USER1() for reading the current status.

The availability of the USER pins depends on the Debug Cable, the selected Interface Mode and the DAP 
Enabling Mode. See “Application Note Debug Cable TriCore” (app_tricore_ocds.pdf) for details.

SYStem.CONFIG.DEBUGPORTTYPE     Set debug cable interface mode

Default: JTAG.

This command is used to configure the Interface Mode used by the Debugger. Both CPU and Debug Cable 
must support this mode, see “Application Note Debug Cable TriCore” (app_tricore_ocds.pdf) for details.

Format: SYStem.CONFIG.DAP.USER0 [In | Out | Set <level>]
SYStem.CONFIG.DAP.USER1 [In | Out | Set <level>]

<level>: Low | High

Format: SYStem.CONFIG.DEBUGPORTTYPE [JTAG | DAP2 | SPD]
SYStem.CONFIG.Interface [JTAG | DAP2 | SPD  (deprecated)
XC2000/XC16x/C166CBC Debugger     |    26©1989-2024   Lauterbach                                                        



SYStem.Option.DUALPORT     Run-time memory access for all windows

Default: OFF.

The JTAG debugger use the Debug Peripheral Event Controller (DPEC) to access memory. This acts like a 
cycle stealing DMA. Therefore memory access can be done even while the CPU is running. On activating 
this option the opened data windows will also be refreshed while a user program is running. Please consider 
that in this mode the user program will not be executed at full speed.

SYStem.Option.IDLEFIX     Periodically activate/deactivate JTAG connection

Default: OFF.

This is a bug fix for PMB7850 which is only available on obsolete ICD hardware. The permanent JTAG 
connection did not allow the processor to switch to idle mode which was required for flash programming.

SYStem.Option.IMASKASM     Disable interrupts while single stepping

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The 
interrupt routine is not executed during single-step operations. After single step the interrupt mask bits are 
restored to the value before the step.

SYStem.Option.IMASKHLL     Disable interrupts while HLL single stepping

Default: OFF.

Format: SYStem.Option.DUALPORT [ON | OFF]

Format: SYStem.Option.IDLEFIX [ON | OFF]

Format: SYStem.Option.IMASKASM [ON | OFF]

Format: SYStem.Option.IMASKHLL [ON | OFF]
XC2000/XC16x/C166CBC Debugger     |    27©1989-2024   Lauterbach                                                        



If enabled, the interrupt mask bits of the CPU will be set during HLL single-step operations. The interrupt 
routine is not executed during single-step operations. After single step the interrupt mask bits are restored to 
the value before the step.

SYStem.Option.MonBase     Define start address of debug monitor

ICD-166CBC only. Default: 0x1fffc0.

This is the start address where the exception routine is or will be loaded. The size of the exception routine is 
at the moment 32/48 (ICD/AICD) bytes.

SYStem.Option.PERSTOP     Enable global peripheral suspend signal

Default: OFF.

This controls the operation mode of the peripherals (e.g. timer), when a debug event is raised. A debug 
event causes the peripherals to suspend, if this option is activated and the suspend enable bit in the 
peripheral module is set.

SYStem.Option.PERSTOPFIX     Break CPU via ONCHIP break register

Default: OFF.

If asynchronous Break is used and  SYStem.Option.PERSTOP is set, then this option should be set, too. 
Workaround to use complete functionality of peripheral suspend (XC2xxx and XC16x)

Format: SYStem.Option.MonBase <start_address>

Format: SYStem.Option.PERSTOP [ON | OFF]

Format: SYStem.Option.PERSTOPFIX [ON | OFF]
XC2000/XC16x/C166CBC Debugger     |    28©1989-2024   Lauterbach                                                        



SYStem.Option.BRKOUT     Activates BRKOUT signal

Default: OFF.

Activates the BRKOUT signal on the DEBUG connector. Must be connected to the CPU pin.

SYStem.Option.WATCHDOG     Disable or serve watchdog

Default: OFF.

This controls if the watchdog is active (on) during the debug session or not (off). See also chapter Monitor 
Routine.

SYStem.Option.TRACEENABLE     Disable traceport

Only PMB7890 and XGOLD110.

Default: OFF with Debugger. ON with Combiprobe

Disable/enable trace port from the PMB7890 and XGOLD110.

SYStem.Option.DebugLevel     Debug level

Only CPUs with C166SV2 core

Format: SYStem.Option.BRKOUT [ON | OFF]

Format: SYStem.Option.WATCHDOG [ON | OFF]

Format: SYStem.Option.TRACEENABLE [ON | OFF]

Format: SYStem.Option.DebugLevel <level>

<level>: 1. … 15. TRAP ATOMIC
XC2000/XC16x/C166CBC Debugger     |    29©1989-2024   Lauterbach                                                        



Default: TRAP

The CPU can be interrupted. The debug level defined the level, where all lower and equal level interrupts are 
breaked.

SYStem.Option.BootModeIndex     BootModeIndex

Only XC2xxxLE and XC2xxxULE CPUs

Selects the Debug Interface which is programmed via ASC with the SYStem.Mode Prepare

JTAG1 Mode:  TCK=P2.9  TMS=P5.4   TDI=P5.2   TDO=P10.12

JTAG2 Mode:  TCK=P2.9  TMS=P5.4   TDI=P10.10 TDO=P10.12

JTAG3 Mode:  TCK=P2.9  TMS=P10.11 TDI=P5.2   TDO=P10.12

JTAG4 Mode:  TCK=P2.9  TMS=P10.11 TDI=P10.10 TDO=P10.12

JTAG5 Mode:  TCK=P10.9 TMS=P5.4   TDI=P5.2   TDO=P10.12

JTAG6 Mode:  TCK=P10.9 TMS=P5.4   TDI=P10.10 TDO=P10.12

JTAG7 Mode:  TCK=P10.9 TMS=P10.11 TDI=P5.2   TDO=P10.12

JTAG8 Mode:  TCK=P10.9 TMS=P10.11 TDI=P10.10 TDO=P10.12

DAP1 Mode:  DAP0=P2.9   DAP1=P10.12

DAP2 Mode:  DAP0=P10.9   DAP1=P10.12

SPD Mode:  at P10.12

 

Format: SYStem.Option.BootModeIndex <interface>

<interface>: JTAG1 | JTAG2 | JTAG3 | JTAG4 | JTAG5 | JTAG6 | JTAG7 | JTAG8 | 
DAP1 | DAP2 | SPD
XC2000/XC16x/C166CBC Debugger     |    30©1989-2024   Lauterbach                                                        



SYStem.Option.ICFLUSH     Flush instruction cache 

Default: ON.

If enabled, the InstructionCache will be flushed before GO or Step operations. This is required to enforce 
consistency between cache and external program memory when the program memory was updated (e.g. 
for setting software breakpoints). Typically the option shall be left enabled except when debugging cache 
consistency problems in the target. The option is only relevant for XC22xxI, XC23xxE and XC27x8X 
because they have a program cache.

SYStem.Option.IDLEDEBUG     Debug in IDLE state

Only XGOLD110 ES2

If enabled, it is possible to break the aplication if the CPU is in IDLE state. Access to the peripheral register 
via real-time access is also possible.

SYStem.Option.WaitReset     Delay between PORST and JTAG shifts

Only XC2xxx and XE16x.

Default: 1750.ms. 

Change the delay between the rising edge of the POST line and the first shifts from the Debugger. Only 
necessary to change the delay if a SYStem.Mode Up does not stop at the reset vector. 

Format: SYStem.Option.ICFLUSH [ON | OFF]

Format: SYStem.Option.IDLEDEBUG [ON | OFF]

Format: SYStem.Option.WaitReset <time>

<time>: 800.ms ... 5000.ms
XC2000/XC16x/C166CBC Debugger     |    31©1989-2024   Lauterbach                                                        



MCDS Onchip Trace

MCDS Onchip Trace Features

Onchip tracing is only possible with an Infineon Emulation Device (ED), offering the MCDS (MultiCore 
Debug Solution) for implementing trace triggers, filters and generation of trace messages (MCDS 
messages).

Use Trace.METHOD Onchip for selecting the onchip trace. 

Supported Features

• Program Flow Trace

• Data Trace

• Ownership Trace

• Timestamps

• Simple Trace Control

See the Onchip.Mode commands for a general setup of the on-chip trace, and the MCDS commands for a 
detailed setup of the on-chip MCDS resources.

Trace Control

The On-chip settings can be done with the Onchip commands, e.g. from the Onchip.view window. .

Simple Trace Control

Additionally triggers and filters on data address and data value can be configured.

• Trace all

• Trace to

• Trace from

• Trace from to

• Trigger

• Enable
XC2000/XC16x/C166CBC Debugger     |    32©1989-2024   Lauterbach                                                        



Examples

A successfully loaded target application is needed for the following examples.

Example 1: Trace function sieve() only

Enable the trace as long as the function sieve() is executed. Execution in sub-functions is not recorded.

Example 2: Trace function sieve() and sub-functions

Trace the complete function sieve(), including execution in any sub-function.

MCDS uses compression to efficiently use the limited amount of on-chip trace 
memory. TRACE32 requires a synchronization point to decode all consecutive 
trace messages. 

MCDS.view ; show MCDS setup window

MCDS.SOURCE C166 FlowTrace ON ; enable C166 program flow trace

Onchip.List ; show trace list window

Break.Set v.range(sieve) /Program
/Onchip /TraceEnable

; enable the trace as long as
; function sieve() is executed

MCDS.view ; show MCDS setup window

MCDS.SOURCE C166 FlowTrace ON ; enable C166 program flow trace

Onchip.List ; show trace list window

Break.Set sieve /Program /Onchip
/TraceON

; enable trace on entering
; function sieve()

Break.Set y.exit(sieve) /Program
/Onchip /TraceOFF

; disable trace on leaving
; function sieve()
XC2000/XC16x/C166CBC Debugger     |    33©1989-2024   Lauterbach                                                        



Example 3: Trace until

Stop tracing when end of function sieve() is reached, C166 keeps running.  Onchip.TDelay can be used 
to stop recording after a programmable period (percentage of the trace memory). See the Trace.Trigger 
command for more information.

Example 4: Trace write accesses to a variable

Trace all write accesses to variable flags with offset 0xc, Program Flow trace is disabled to save on-chip 
trace memory.

MCDS.view ; show MCDS setup window

MCDS.SOURCE C166 FlowTrace ON ; enable C166 program flow trace

Onchip.List ; show trace list window

Break.Set v.end(sieve) /Program 
/Onchip /TraceTrigger

; disable trace on leaving
; function sieve()

MCDS.view ; show MCDS setup window

MCDS.SOURCE C166 FlowTrace OFF ; disable C166 program flow
; trace

MCDS.SOURCE C166 WriteAddr ON
MCDS.SOURCE C166 WriteData ON

; enable C166 write address
; and write data trace

Onchip.List ; show trace list window

Break.Set flags+0x0C /Write /Onchip
/TraceEnable

; enable recording when C166
; writes to address flags+0x0C
XC2000/XC16x/C166CBC Debugger     |    34©1989-2024   Lauterbach                                                        



Example 5: Trace specific write accesses to a variable

Enable recording when TriCore writes 0x01 with an access width of 8 bits to address flags+0x0C. The code 
that triggered the write access is also recorded. Due to pipeline effects and internal delays the recorded 
code may not exactly match the write instruction.

Example 6: Trace specific write accesses to a variable

Enable recording when C166 writes 0x01 with an access width of 8 bits to address flags+0x0C while 
executing function sieve() (excluding sub-function). The code that triggered the write access is also 
recorded. Due to pipeline effects and internal delays the recorded code may not exactly match the write 
instruction.

MCDS.view ; show MCDS setup window

MCDS.SOURCE C166 FlowTrace ON ; enable C166 program flow trace

MCDS.SOURCE C166 WriteAddr ON
MCDS.SOURCE C166 WriteData ON

; enable C166 write address
; and write data trace

Onchip.List ; show trace list window

Break.Set flags+0x0C /Write
/Data.Byte 0x01 /Onchip
/TraceEnable

; enable recording when C166
; writes 0x01 to address flags+0x0C

MCDS.view ; show MCDS setup window

MCDS.SOURCE C166 FlowTrace ON ; enable C166 program flow trace

MCDS.SOURCE C166 WriteAddr ON
MCDS.SOURCE C166 WriteData ON

; enable C166 write address
; and write data trace

Onchip.List ; show trace list window

Break.Set v.range(sieve)
/MemoryWrite flags+0x0C
/Data.Byte 0x01 /Onchip
/TraceEnable

; enable recording when C166
; writes 0x01 to address flags+0x0C 
while executing function sieve()
XC2000/XC16x/C166CBC Debugger     |    35©1989-2024   Lauterbach                                                        



BenchMarkCounter

The BenchMarkCounter are only available with a XC2000ED device.

For information about architecture-independent BMC commands, refer to “BMC” (general_ref_b.pdf). 

For information about architecture-specific BMC commands, see command descriptions below.

BMC.CNTx.EVENT     Configure the performance monitor

Format: BMC.CNT0 | CNT1 … CNT7.EVENT <event>

<option>: NONE
Delta
Echo
NINST
IDLE
STALL
IRA
SYNC_RQ

NONE Switch off the performance monitor

Delta Counts hits of the Delta-Marker, if specified.

Echo Counts hits of the Echo-Marker, if specified.

NINST Counts the number of instructions. 

IDLE Counts the number of idle cycles.

STALL Counts the number of stall cycles.

IRA Counts the number of interrupts acknowledged.

SYNCH_RQ The counter is incremented at the beginning of a new paragraph of the 
trace buffer memory.
XC2000/XC16x/C166CBC Debugger     |    36©1989-2024   Lauterbach                                                        



Useful Features

This chapter gives an overview on some useful features. Please consult the documentation of the 
corresponding commands for more information.

Runtime Measurement

Program BootModeIndex (only XC2xxxULE/LE)

This chapter describes the possibility to program the BootModeIndex via the Debug Cable

This is only possible if the LA-3815 Conv. 16 Pin JTAG to DAP is used.

MCDS.view ; show MCDS setup window

MCDS.SOURCE C166 FlowTrace OFF ; disable C166 program flow trace

MCDS.TimeStamp Relative ; sets relative timestamp messages

MCDS.Clock SYStem 80.MHz ; sets system clock 

Break.Set sieve /Program /Onchip
/TraceEnable

; enable trace on entering
; function sieve()

Break.Set y.exit(sieve) /Program
/Onchip /TraceEnable

; enable trace on leaving
; function sieve()

Break.SetFunc sieve ; sets marker Alpha at begin and 
marker Beta at end of function 
sieve()

Trace.STATistic.DURation ; analyze the time between sieve() 
entry and sieve() exit

SYStem.CPU XC2210U-8F ; select CPU

SYStem.CONFIG.DEBUGPORTTYPE DAP ; select DAP interface

SYStem.Option.BootModeIndex DAP1 ; select the desired Interface 

SYStem.JtagClock 9600. ; selects the ASC speed 9600 BAUD

SYStem.Mode Prepare ; programs the BootModeIndex 
XC2000/XC16x/C166CBC Debugger     |    37©1989-2024   Lauterbach                                                        



Breakpoints

There are two types of breakpoints available: Software breakpoints and on-chip breakpoints.

Software Breakpoints on Instructions

Software breakpoints are the default breakpoints. They can only be used in RAM areas.There is no 
restriction in the number of software breakpoints.

On-chip Breakpoints

The following list gives an overview of the usage of the on-chip breakpoints by 
TRACE32-ICD:

• On-chip breakpoints: Total amount of available on-chip breakpoints.

• Instruction breakpoints: Number of on-chip breakpoints that can be used for program and spot 
breakpoints

• Data breakpoints: Number of on-chip breakpoints that can be used as read or write 
breakpoints.

You can check your currently set breakpoints with the command Break.List

If no more on-chip breakpoints are available you will get a message on trying to set an on-chip breakpoint.

On-chip Breakpoints in FLASH/ROM

With the command MAP.BOnchip <range> it is possible to inform the debugger where you have ROM 
(FLASH,EPROM) on the target. If a breakpoint is set within the specified address range the debugger uses 
automatically the available on-chip breakpoints.

On-chip Breakpoints Instruction Breakpoints Data Breakpoints

4 up to 4 up to 4 write
up to 1 read
XC2000/XC16x/C166CBC Debugger     |    38©1989-2024   Lauterbach                                                        



Example for Breakpoints

Assume you have a target with FLASH from 0 to 0xFFFFF and RAM from 0x100000 to 0x11FFFF. The 
command to configure TRACE32 correctly for this configuration is: 

You inform the debugger that he shall use on-chip breakpoints instead of software breakpoints in the 
address range 0-7FFFH (though your flash is up to address FFFFFH).

Examples for instruction breakpoints:

Three instruction breakpoints are set. Software breakpoints are used.

Two instruction breakpoints are set. On-chip breakpoints are used, because of the MAP.BOnchip command.

A instruction breakpoint is set. On-chip breakpoint is used, because of the /Onchip option.

This causes an error, because the debugger tries to set a software breakpoint at this location. 

Breakpoint on an instruction range 8FFFF-900FFH will be set, even if this range is not declared by 
MAP.BOnchip command. The reason is that0 for range events always on-chip breakpoints will be used.

Examples for breakpoints on data:

Map.BOnchip 0x0--0x07FFFF

Break.Set 0x100000 /Program ; software breakpoint, instruction

Break.Set 0x101000 /Program ; software breakpoint, instruction

Break.Set 0xx /Program ; software breakpoint, instruction

Break.Set 0x100 /Program ; on-chip breakpoint, instruction

Break.Set 0x0ff00 /Program ; on-chip breakpoint, instruction

Break.Set 0x9FFFF /P /Onchip ; on-chip breakpoint, instruction

Break.Set 0x8FFFF /Program ; error message

Break.Set 0x8FFFF++0x100 /P ; on-chip breakpoint, instruction,
; range

Break.Set 0x100000 /Write ; on-chip Breakpoint, data write access
XC2000/XC16x/C166CBC Debugger     |    39©1989-2024   Lauterbach                                                        



Breakpoint on write access to 100000H. 

Breakpoint if read access to 9FFFFH. For breakpoints on data always on-chip breakpoint will be used.

Break.Set 0x9FFFF /Read ; on-chip Breakpoint, data read access
XC2000/XC16x/C166CBC Debugger     |    40©1989-2024   Lauterbach                                                        



TrOnchip Commands

TrOnchip.state     Display on-chip trigger window

Opens the TrOnchip.state window.

TrOnchip.CONVert     Adjust range breakpoint in on-chip resource

The on-chip breakpoints can only cover specific ranges. If a range cannot be programmed into the 
breakpoint, it will automatically be converted into a single address breakpoint when this option is active. This 
is the default. Otherwise an error message is generated.   

TrOnchip.RESet     Set on-chip trigger to default state

Sets the TrOnchip settings and trigger module to the default settings.

Format: TrOnchip.state

Format: TrOnchip.CONVert [ON | OFF] (deprecated)
Use Break.CONFIG.InexactAddress instead

TrOnchip.CONVert ON
Break.Set 0x1000--0x17ff /Write
Break.Set 0x1001--0x17ff /Write
…

TrOnchip.CONVert OFF
Break.Set 0x1000--0x17ff /Write
Break.Set 0x1001--0x17ff /Write

; sets breakpoint at range
; 1000--17ff sets single breakpoint
; at address 1001

; sets breakpoint at range
; 1000--17ff
; gives an error message

Format: TrOnchip.RESet
XC2000/XC16x/C166CBC Debugger     |    41©1989-2024   Lauterbach                                                        



TrOnchip.TEnable     Set filter for the trace

Refer to the Break.Set command to set trace filters.

TrOnchip.TOFF     Switch the sampling to the trace to OFF

Refer to the Break.Set command to set trace filters.

TrOnchip.TON     Switch the sampling to the trace to “ON”

Refer to the Break.Set command to set trace filters.

TrOnchip.TTrigger     Set a trigger for the trace

Refer to the Break.Set command to set a trigger for the trace.

Format: TrOnchip.TEnable <par> (deprecated)

Format: TrOnchip.TOFF (deprecated)

Format: TrOnchip.TON EXT | Break (deprecated)

Format: TrOnchip.TTrigger <par> (deprecated)
XC2000/XC16x/C166CBC Debugger     |    42©1989-2024   Lauterbach                                                        



TrOnchip.VarCONVert     Adjust complex breakpoint in on-chip resource

The on-chip breakpoints can only cover specific ranges. If you want to set a marker or breakpoint to a 
complex variable, the on-chip break resources of the CPU may be not powerful enough to cover the whole 
structure. If the option TrOnchip.VarCONVert is set to ON, the breakpoint will automatically be converted 
into a single address breakpoint. This is the default setting. Otherwise an error message is generated. 

TrOnchip.Address     Define address selector

The address/range for an address selector can not be defined directly. Set an breakpoint of the type Alpha, 
Beta or Charly to the address/range.

TrOnchip.CYcle     Define access type

Defines on which cycle the program execution stops.   

Format: TrOnchip.VarCONVert [ON | OFF] (deprecated)
Use Break.CONFIG.VarConvert instead

Format: TrOnchip.Address Alpha | Beta | Charly | Delta | Echo

Break.Set 1000 /Alpha
/Onchip

; set an Alpha breakpoint to 1000
; use Alpha breakpoint as address
; selector for the TrOnchip unit

Format: TrOnchip.CYcle Read | Write | eXecute

Read Stop the program execution on a read access.

Write Stop the program execution on a write access.

eXecute Stop the program execution on an instruction is executed.
XC2000/XC16x/C166CBC Debugger     |    43©1989-2024   Lauterbach                                                        



TrOnchip.Data     Define data selector

TrOnchip.NoMatch     Define match or nomatch comparison

Default: OFF

TrOnchip.TaskID     Define task ID comparison

The application must write to the DTIDR (Task ID Register) at address D:0xF0D8. This register is intended 
to be used by advanced real time operating systems to store the task ID of the active task.

Format: TrOnchip.Data [<range> <value> <bitmask>]

Format: TrOnchip.NoMatch [ON | OFF]

Format: TrOnchip.TaskID [<value> <bitmask>]
XC2000/XC16x/C166CBC Debugger     |    44©1989-2024   Lauterbach                                                        



Connectors

JTAG Connector
  

A standard 2 x 8 pin header (pin-to-pin spacing: 0.1 inch = 2.54 mm) is required on the target.

Do not connect the “reserved” pins.

Do connect all GND pins for shielding purpose, though they are connected on the debugger. It is 
recommended to connect also the N/C pin to GND.

At least the signals TMS, VCCS, TDO, GND, TDI, /RESET, /TRST, TCLK are required.

CPUCLOCK is only necessary if it should be used as jtag clock source. It is not used on AICD. /BrkIN, 
/BrkOUT are used for trigger input / output feature.

VCCS is the processor power supply voltage. It is used to detect if target power is on and it is used to supply 
the output buffers of the debugger (it takes about 2 mA). That means the output voltage of the debugger 
signals (TMS, TDI, /TRST, TCLK, /BrkIN) depends directly on VCCS. VCCS can be 2.25 … 5.5 V.

/RESET is controlled by an open drain driver. (An external watchdog must be switched off if the In-Circuit 
Debugger is used.)

VIHmin = 2.0 V, VILmax = 0.8 V for the input pins VCCS, TDO, CPUCLOCK, /BrkOUT.

When having multiple JTAG TAP controllers in the chain, make sure that the C166 is the first device in the 
chain. It is not possible to have another XC2000, XC16x or TriCore in the same chain.

Signal Pin Pin Signal
TMS 1 2 VCCS
TDO 3 4 GND

CPUCLOCK 5 6 GND
TDI 7 8 RESET-

TRST- 9 10 BRKOUT-
TCLK 11 12 GND

BRKIN- 13 14 N/C
N/C 15 16 GND
XC2000/XC16x/C166CBC Debugger     |    45©1989-2024   Lauterbach                                                        



DAP Connector
  

Only possible with Whisker Debug Cable and LA-3815 Conv. 16 Pin JTAG to DAP

On the target board the standard connector is a 0.05 inch double row 10 pins micro terminal, which is 
available from many sources e.g. Samtec FTSH (SMT Mount) series. It is offered as a standard dual 
row header 1.27 mm x 1.27 mm with 0.4 mm square pins.

Signal Pin Pin Signal
VREF 1 2 DAP1
GND 3 4 DAP0
GND 5 6 USER0
GND 7 8 DAPEN- (TRST-)
GND 9 10 RESET- (PORST-)
XC2000/XC16x/C166CBC Debugger     |    46©1989-2024   Lauterbach                                                        



Troubleshooting

SYStem.Up Errors

The SYStem.Up command is the first command of a debug session where communication with the target is 
required. If you receive error messages while executing this command this may have the following reasons.

• The target has no power.

• ICD-166CBC only: The trap program routine is not available or the MONBASE address is not 
correct or the jump to this function at 20H is missing (see Monitor). Another restriction is that a 
valid program which disables the debugger must start after power on. If one of these conditions 
are not fulfilled (e.g. if there is no program on the target) it can be helpful to activate the debugger 
by SYStem.Mode Prepare to do some initialization with the debuggers help. See also the 
PRACTICE script files (*.cmm) in ~~/demo/c166/etc/.

• ICD-166CBC only: Unfortunately it is possible that a faulty user program which starts after power 
on produces a situation where it is not possible for the debugger to establish communication with 
the processor. To avoid this situation we recommend to place a endless loop (after disabling the 
watchdog and settings like stack and chip selects) at the begin of the user application. Then the 
debugger can establish the communication and you can step through the program to come closer 
to the faulty program part. It is also useful to have the possibility (jumper on chip select signal) to 
switch off the program memory on the target. Even if you already have the situation I described 
above, you can then use SYStem.Mode Prepare to establish communication and for example re-
program the program memory if it is placed in a flash device.

• External controlled /RESET line:

The debugger controls the processor reset and use the /RESET line to reset the CPU on most of 
the SYStem.Mode commands. Therefore only not active, open-drain driver may be connected to 
this /RESET signal.

• There are additional loads or capacities on the JTAG lines or the JTAG cable is elongated.

FAQ

Please refer to https://support.lauterbach.com/kb.
XC2000/XC16x/C166CBC Debugger     |    47©1989-2024   Lauterbach                                                        

https://support.lauterbach.com/kb


Technical Data

Operation Voltage
  

  

Adapter OrderNo Voltage Range

OCDS Debugger for C166CBC (ICD) LA-7755 2.5 .. 5.2 V

Adapter OrderNo Voltage Range

OCDS Debugger for XC2000/C166S V2 (ICD) LA-7759 2.5 .. 5.2 V
XC2000/XC16x/C166CBC Debugger     |    48©1989-2024   Lauterbach                                                        


	XC2000/XC16x/C166CBC Debugger
	Introduction
	ICD/AICD
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Warning
	Monitor Routine
	Quick Start
	Quick Start for Tracing with MCDS On-chip Trace
	1. Start and Stop Tracing
	2. Specify Trace Source and Recording Options
	3. Start and Stop Tracing
	4. View the Results


	Memory Classes
	CPU specific SYStem Commands
	SYStem.CPU      Select the CPU
	SYStem.JtagClock      Define the JTAG frequency
	SYStem.MemAccess      Select run-time memory access method
	SYStem.Mode      Establish the communication with the CPU
	SYStem.LOCK      Lock and tristate the debug port
	SYStem.CONFIG.state      Display target configuration
	SYStem.CONFIG      Configure debugger according to target topology
	Daisy-Chain Example
	TapStates

	SYStem.CONFIG.CORE      Assign core to TRACE32 instance
	SYStem.CONFIG.DAP      Define mapping for DAP pins
	SYStem.CONFIG.DAP.BreakPIN      Define mapping of break pins
	SYStem.CONFIG.DAP.DAPENable      Enable DAP mode on PORST
	SYStem.CONFIG.DAP.USERn      Configure and set USER pins
	SYStem.CONFIG.DEBUGPORTTYPE      Set debug cable interface mode
	SYStem.Option.DUALPORT      Run-time memory access for all windows
	SYStem.Option.IDLEFIX      Periodically activate/deactivate JTAG connection
	SYStem.Option.IMASKASM      Disable interrupts while single stepping
	SYStem.Option.IMASKHLL      Disable interrupts while HLL single stepping
	SYStem.Option.MonBase      Define start address of debug monitor
	SYStem.Option.PERSTOP      Enable global peripheral suspend signal
	SYStem.Option.PERSTOPFIX      Break CPU via ONCHIP break register
	SYStem.Option.BRKOUT      Activates BRKOUT signal
	SYStem.Option.WATCHDOG      Disable or serve watchdog
	SYStem.Option.TRACEENABLE      Disable traceport
	SYStem.Option.DebugLevel      Debug level
	SYStem.Option.BootModeIndex      BootModeIndex
	SYStem.Option.ICFLUSH      Flush instruction cache
	SYStem.Option.IDLEDEBUG      Debug in IDLE state
	SYStem.Option.WaitReset      Delay between PORST and JTAG shifts

	MCDS Onchip Trace
	MCDS Onchip Trace Features
	Supported Features
	Trace Control
	Simple Trace Control
	Examples


	BenchMarkCounter
	BMC.CNTx.EVENT      Configure the performance monitor

	Useful Features
	Breakpoints
	Software Breakpoints on Instructions
	On-chip Breakpoints
	On-chip Breakpoints in FLASH/ROM
	Example for Breakpoints

	TrOnchip Commands
	TrOnchip.state      Display on-chip trigger window
	TrOnchip.CONVert      Adjust range breakpoint in on-chip resource
	TrOnchip.RESet      Set on-chip trigger to default state
	TrOnchip.TEnable      Set filter for the trace
	TrOnchip.TOFF      Switch the sampling to the trace to OFF
	TrOnchip.TON      Switch the sampling to the trace to “ON”
	TrOnchip.TTrigger      Set a trigger for the trace
	TrOnchip.VarCONVert      Adjust complex breakpoint in on-chip resource
	TrOnchip.Address      Define address selector
	TrOnchip.CYcle      Define access type
	TrOnchip.Data      Define data selector
	TrOnchip.NoMatch      Define match or nomatch comparison
	TrOnchip.TaskID      Define task ID comparison

	Connectors
	JTAG Connector
	DAP Connector

	Troubleshooting
	SYStem.Up Errors

	FAQ
	Technical Data
	Operation Voltage



