LAUTERBACH A

XC2000/XC16x/C166CBC
Debugger

XC2000/XC16x/C166CBC Debugger

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... s r—~
O TN =T T r=
XC2000/XC16X/C166CBC DEDUGUENooiiiiremrririssnmnrrissssmnsssssssamssssssssamsssssssssssssssssnmssssssssnns 1

L o T 11T o) 6
ICD/AICD 6

Brief Overview of Documents for New Users 6

Demo and Start-up Scripts 7
A5 T 0 1T ' 8

1V Lo 0 11 o] gl = (e U [= 9

L@ T Q3 - T 11
Quick Start for Tracing with MCDS On-chip Trace 13

1. Start and Stop Tracing 13

2. Specify Trace Source and Recording Options 13

3. Start and Stop Tracing 13

4. View the Results 13
=T 4 oL YA 0 o = T 14

CPU specific SYStem Commandscccccemmimiiiiiiiiiisssssccessrs e s ssssssssssssssssssssssessesssssssnnnes 15
SYStem.CPU Select the CPU 15
SYStem.JtagClock Define the JTAG frequency 16
SYStem.MemAccess Select run-time memory access method 16
SYStem.Mode Establish the communication with the CPU 17
SYStem.LOCK Lock and tristate the debug port 18
SYStem.CONFIG.state Display target configuration 18
SYStem.CONFIG Configure debugger according to target topology 19
Daisy-Chain Example 22
TapStates 23
SYStem.CONFIG.CORE Assign core to TRACE32 instance 24
SYStem.CONFIG.DAP Define mapping for DAP pins 25
SYStem.CONFIG.DAP.BreakPIN Define mapping of break pins 25
SYStem.CONFIG.DAP.DAPENable Enable DAP mode on PORST 25
©1989-2024 Lauterbach XC2000/XC16x/C166CBC Debugger 2

SYStem.CONFIG.DAP.USERnN Configure and set USER pins 26
SYStem.CONFIG.DEBUGPORTTYPE Set debug cable interface mode 26
SYStem.Option.DUALPORT Run-time memory access for all windows 27
SYStem.Option.IDLEFIX Periodically activate/deactivate JTAG connection 27
SYStem.Option.IMASKASM Disable interrupts while single stepping 27
SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 27
SYStem.Option.MonBase Define start address of debug monitor 28
SYStem.Option.PERSTOP Enable global peripheral suspend signal 28
SYStem.Option.PERSTOPFIX Break CPU via ONCHIP break register 28
SYStem.Option.BRKOUT Activates BRKOUT signal 29
SYStem.Option. WATCHDOG Disable or serve watchdog 29
SYStem.Option.TRACEENABLE Disable traceport 29
SYStem.Option.DebugLevel Debug level 29
SYStem.Option.BootModelndex BootModelndex 30
SYStem.Option.ICFLUSH Flush instruction cache 31
SYStem.Option.IDLEDEBUG Debug in IDLE state 31
SYStem.Option.WaitReset Delay between PORST and JTAG shifts 31
11100 02230 4 Uod o 1 o a0 - T S 32
MCDS Onchip Trace Features 32
Supported Features 32
Trace Control 32
Simple Trace Control 32
Examples 33

== g Lo 11T F= T (0o T U o (=T 36
BMC.CNTx.EVENT Configure the performance monitor 36
Useful FEAtUIreSccciiiiiiceiiiiiiems s s e e s e amn e e e 37
2 = 14 o Lo 1 1 | SN 38
Software Breakpoints on Instructions 38
On-chip Breakpoints 38
On-chip Breakpoints in FLASH/ROM 38
Example for Breakpoints 39
TrONChip COMMANMScoiiiiiiiieiiir i s sn s s e s s e e an s e an e s annmnnnaan 41
TrOnchip.state Display on-chip trigger window 41
TrOnchip.CONVert Adjust range breakpoint in on-chip resource 41
TrOnchip.RESet Set on-chip trigger to default state 41
TrOnchip.TEnable Set filter for the trace 42
TrOnchip. TOFF Switch the sampling to the trace to OFF 42
TrOnchip.TON Switch the sampling to the trace to “ON” 42
TrOnchip.TTrigger Set a trigger for the trace 42
TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource 43
TrOnchip.Address Define address selector 43
TrOnchip.CYcle Define access type 43
©1989-2024 Lauterbach XC2000/XC16x/C166CBC Debugger 3

TrOnchip.Data Define data selector 44

TrOnchip.NoMatch Define match or nomatch comparison 44
TrOnchip.TaskID Define task ID comparison 44
Lo 41 1= o o T N 45
JTAG Connector 45
DAP Connector 46
QLo 18] o == 0 Lo To 1] oV . 47
SYStem.Up Errors 47
£ 47
JLICET e T LT T 7 - 48
Operation Voltage 48

©1989-2024 Lauterbach XC2000/XC16x/C166CBC Debugger | 4

XC2000/XC16x/C166CBC Debugger

Version 06-Jun-2024

©1989-2024 Lauterbach XC2000/XC16x/C166CBC Debugger | 5

Introduction

This document describes the processor specific settings and features for the debugger ICD-166CBC and
the debugger ICD-166SV2. (You can find the description of ROM Monitors for 80C166 family at “C166
Monitor” (monitor_c166.pdf)

ICD-166CBC supports processors based on the C166CBC and C166SV1 core, like PMB2850 (E-GOLD),
PMB6850 (E-GOLD+), PMB7850 (E-GOLD+V3), SDA6000 (M2), INKA, C165UTAH, C161U, PEF20580
(DOLCE), ...

ICD-166SV2 supports processors based on the C166SV2 core, like XC161CJ, XC164CS, ...

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

ICD/AICD

In the following we use the short form ICD (In-Circuit Debugger) for debug systems running on the debug
box “Debug Interface” and AICD (Active In-Circuit Debugger) for debug systems running on the debug box
“Power Debug Interface”, “Power Debug Ethernet” and “Power Trace”.

For installation and to make you familiar with the main features of the debugger see the manual “Quick
Installation and Tutorial”.

Brief Overview of Documents for New Users

Architecture-independent information:

J “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

J “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

©1989-2024 Lauterbach XC2000/XC16x/C166CBC Debugger | 6

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known XC2000/XC16x/C166CBC based hardware.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:
J Type at the command line: WELCOME.SCRIPTS

. or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/c166/ subfolder of the system directory of TRACES32.

©1989-2024 Lauterbach XC2000/XC16x/C166CBC Debugger | 7

Warning

WARNING:

To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1.

N o o A~

Disconnect the Debug Cable from the target while the target power is
off.

Connect the host system, the TRACES32 hardware and the Debug
Cable.

Power ON the TRACE32 hardware.

Start the TRACE32 software to load the debugger firmware.
Connect the Debug Cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:

1.

2
3.
4

Switch off the target power.

Disconnect the Debug Cable from the target.
Close the TRACES32 software.

Power OFF the TRACES32 hardware.

©1989-2024 Lauterbach

XC2000/XC16x/C166CBC Debugger |

8

Monitor Routine

The monitor routine is required for ICD-166CBC, only. There is no monitor routine when using ICD-
166SV2.

The following resources are used by the debugger:
. Stack Memory: 8 bytes of memory on the current stack.
o Program Memory: 32 bytes of program memory for a exception routine.

J A TRAP vector (4 bytes) at 20H.

The exception routine will be loaded automatically by the debugger on a SYStem.Up at the address which is
selectable by the SYStem.Option.MONBASE command. Also the jump command will be written
automatically to 20H.

You must do all settings (e.g. BUSCON register) to make write access to these locations possible. If there is
ROM, you must place the exception routine and trap vector in the ROM yourself and you must inform the
debugger by using the SYStem.Option.MONBASE command about the location. Exception: see
SYStem.MODE Prepare.

The command sequence of the exception routine is depending on the option
SYStem.Option.WATCHDOG.

WATCHDOG = ON:

push r0

bset psw.0x6
loop: srvwdt

jb psw.0x6, loop
pop r0

push dpp3

mov dpp3, #0x3
atomic #4

mov dpp3:0x30fc, zeros
bclr tfr.0xc
pop dpp3

reti

The binary code is:

0xEC, OxFO, Ox6F, 0x88, 0xA7, 0x58, 0xA7, O0xA7,
0x8A, 0x88, O0xFC, 0x60, O0xFC, O0xFO0, OxEC, 0x03,
0xE6, 0x03, 0x03, 0x00, O0xD1l, 0x30, OxF6, Ox8E,
0xFC, OxFO0, OxCE, 0xD6, OxFC, 0x03, OxFB, 0x88

©1989-2024 Lauterbach XC2000/XC16x/C166CBC Debugger | 9

WATCHDOG = OFF:

push rO0

bset psw.0x6
loop: diswdt

jb psw.0x6, loop
pop r0

push dpp3

mov dpp3, #0x3
atomic #4

mov dpp3:0x30fc, zeros
bclr tfr.0xc
pop dpp3

reti

The binary code is:

0xEC, O0xF0, 0Ox6F, 0x88, 0xA5, 0x5A, 0xA5, 0xA5,
0x8A, 0x88, 0xFC, 0x60, OxFC, O0xFO0, OxEC, 0x03,
0xE6, 0x03, 0x03, 0x00, 0xDl, 0x30, OxF6, 0x8E,
0xFC, 0xF0, O0xCE, 0xD6, OxFC, 0x03, OxFB, 0x88

At the location 20H a jump to this function has to be placed (if address = 1FFFCOH):

jmps 0x1f,0x0ffcO

The binary code is (if address = 1FFFCOH):

Oxfa, Ox1f, OxcO0, Oxff

©1989-2024 Lauterbach XC2000/XC16x/C166CBC Debugger | 10

Quick Start

Check if there is a suitable script file for your hardware in ~~/demo/c166/etc/. Read the comments in the
script file.

After finishing the preparations (see Monitor) starting up the debugger is done as follows:

1. Select the device prompt B: for the ICD Debugger.

b:

If you are working with the PODPC card device b: : is already selected.

2. Select the CPU type to load the CPU specific settings.

SYStem.CPU PMB2850

If you are working with the PODPC card, the correct CPU family is selected automatically after start-
up.

3. Tell the debugger where’s ROM on the target.

MAP.BOnchip 0x100000++0x0fffff

This command is necessary for the use of on-chip breakpoints.

4. Enter debug mode

SYStem.Up

This command resets the CPU and enters debug mode. After this command is executed, it is possible
to access memory and registers.

5. Load your application program.

Data.LOAD.IEEE PROG166 ; IEEE specifies the format, PROGl66 is
; the file name

The option of the Data.LOAD command depends on the file format generated by the compiler. A
detailed description of the Data.LOAD command is given in the “General Commands Reference”.

©1989-2024 Lauterbach XC2000/XC16x/C166CBC Debugger | 11

The start-up can be automated using the programming language PRACTICE. An example of a start-up
sequence is shown below. This sequence can be written to a PRACTICE script file (*.cmm, ASCII format)

and executed with the command DO <file>.

EEN:

WinCLEAR

MAP.BOnchip 0x100000++0xQ0fffff
SYStem.cpu PMB2850

SYStem.Up

Data.LOAD.IEEE PROG166
Register.Set PC main
List.Mix

Register.view /SpotLight

Frame.view /Locals /Caller

Var.Watch %Spotlight flags ast

PER.view

Break.Set sieve

Break.Set 0x1000 /Program

Break.Set 0x101000 /Program

~e

Select the ICD device prompt
Clear all windows

Specify where’s ROM

Select the processor type

Reset the target and enter debug
mode

Load the application

Set the PC to function main

Open disassembly window 2
Open register window 2

Open the stack frame with
local variables @)

Open watch window for variables *)

Open window with peripheral register

*)
Set breakpoint to function sieve

Set software breakpoint to address
1000 (address 1000 is in RAM)

Set on-chip breakpoint to address
101000 (address 101000 is in ROM)
See restrictions in On-chip
Breakpoints.)

*) These commands open windows on the screen. The window position can be specified with the WinPOS

command.

©1989-2024 Lauterbach

XC2000/XC16x/C166CBC Debugger | 12

Quick Start for Tracing with MCDS On-chip Trace

It is assumed that you are tracing a XC2000ED.

1. Start and Stop Tracing

SYStem.CPU XC2000ED ; select XC2000ED CPU

Load your application and prepare for debug.

2. Specify Trace Source and Recording Options

Select the source what should be recorded (e.g. Program Flow and Timestamps). When enabling
Timestamps, the CPU clock has to be added also.

MCDS.SOURCE C166 FlowTrace ON ; enable TriCore program flow

; trace
MCDS.TimeStamp TICKS ; enable Ticks as timestamps
MCDS.CLOCK SYStem 80.0MHz ; configure CPU clock for correct

; timestamp evaluation

3. Start and Stop Tracing

Go ; start tracing

Break ; stop tracing

Note that tracing can also be stopped by a breakpoint.

4. View the Results

Onchip.List ; view recorded trace data

©1989-2024 Lauterbach XC2000/XC16x/C166CBC Debugger | 13

Memory Classes

The following memory classes are available:

Memory Class Description
P Program
D Data

Since C166CBC has von Neumann architecture there is no difference in the use of these memory classes.

If you use the memory classes E, EP or ED the memory is accessed even if the target CPU is running.
There is no difference in the use of E, EP and ED. The JTAG debugger use the Debug Peripheral Event
Controller (DPEC) to access memory. This acts like a cycle stealing DMA. If a Data.Dump window is opened
by using one of these memory classes, the window contents will also be refreshed while the processor is
running (see also SYStem.Option.DUALPORT). Please note that in this case the program will not be
executed at full speed.

©1989-2024 Lauterbach XC2000/XC16x/C166CBC Debugger | 14

CPU specific SYStem Commands

SYStem.CPU Select the CPU
Format: SYStem.CPU <cpu>
<cpus: PMB2850 | PMB6850 | PMB7850 | PEF20580 | SDA6000 | C165UTAH | INKA

| ...(ICD-166CBC)
XC161CJ, ...,XC2287, ...XE167F, ... XC2000ED, ...(ICD-166SV2)

Default: PMB2850 (ICD-166CBC), C166SV2 (ICD-166SV2)
Selects the processor type.

©1989-2024 Lauterbach

XC2000/XC16x/C166CBC Debugger |

15

SYStem.JtagClock Define the JTAG frequency
Format: SYStem.JtagClock <rate>
SYStem.BdmClock (deprecated)
<rate>: EXT | 1000. ... 10000000. (ICD)
10000. ... 50000000. (AICD)

Default 5 MHz (ICD), 10 MHz (AICD).

Selects the frequency for the JTAG clock. This influences the speed of data transmission between target and

debugger.

EXT selects the clock on the pin CPUCLOCK of the JTAG connector as clock source.

Attention: The frequency of the JTAG clock must be lower than the system clock frequency!

Not all values in between the frequency range can be generated by the debugger. The debugger will select
and display the possible value if it can not generate the exact value.

SYStem.MemAccess Select run-time memory access method

Format:

SYStem.MemAccess Enable | StopAndGo | Denied
SYStem.ACCESS (deprecated)

Enable
CPU (deprecated)

Denied (default)

StopAndGo

Memory access during program execution to target is enabled.

Memory access during program execution to target is disabled.

Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

For more information, see below.

©1989-2024 Lauterbach

XC2000/XC16x/C166CBC Debugger | 16

SYStem.Mode Establish the communication with the CPU

Format: SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Attach
Down
Go
NoDebug
Prepare
StandBy
Up

Default: Down
Selects the target operating mode.

“Debug mode is active” means the communication channel via debug port (JTAG) is established. The
features of the “on-chip debug support” (OCDS) are enabled and available.

Attach User program remains running (no reset). Debug mode is active. This
mode can be entered from state “NoDebug”, if debugging should be
enabled without a target reset. After this command the user program can
be stopped with the break command or if any break condition occurs.
XC2xxx: Attach is only possible if a pull-up resistor is on TRST pin.

Down The CPU is in reset. Debug mode is not active. Default state and state
after fatal errors.

Go The user application is running. Debug mode is active. After this
command the program can be stopped with the break command or if any
break condition occurs.

NoDebug The user application is running. Debug mode is not active. Debug port is
tristate. In this mode the target should behave as if the debugger is not
connected.

Prepare ICD-166CBC: The CPU is halted. Communication to CPU is established.

In this mode memory access is possible, run control (step, go, break) is
not available. This command can be entered in the command line, only. A
valid user program after power on is not required.

See “~~/demo/c166/etc/egold/demo.cmm”.

ICD-166SV2: Behaves as UP

©1989-2024 Lauterbach XC2000/XC16x/C166CBC Debugger | 17

StandBy This mode is not supported.
Up The CPU runs in debug monitor routine (ICD-166CBC) or is in halt mode
(ICD-166SV2). Debug mode is active. In this mode the user application

can be started and stopped. This is the most typical way to activate
debugging.

If the mode “Go” or “Attach” or “Prepare” is selected, this mode will be entered, but the control button in the
SYStem window jumps to the mode “UP”.

The “Emulate” LED on the debug module is on when the debug mode is active and the CPU is running.

XC2xxx: If the routing of the JTAG pins is changed (Register DBGPRR), only mode “Attach” and “Go” are
possible.

SYStem.LOCK Lock and tristate the debug port

Format: SYStem.LOCK [ON | OFF]

Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give
debug access to another tool.

SYStem.CONFIG.state Display target configuration
Format: SYStem.CONFIG.state [/<tab>]
<tab>: DebugPort | Jtag

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are notincluded in the SYStem.CONFIG.state window.

©1989-2024 Lauterbach XC2000/XC16x/C166CBC Debugger | 18

<tab> Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.

DebugPort Informs the debugger about the debug connector type and the
communication protocol it shall use.

Jtag Informs the debugger about the position of the Test Access Ports (TAP) in
the JTAG chain which the debugger needs to talk to in order to access
the debug and trace facilities on the chip.

SYStem.CONFIG Configure debugger according to target topology

Format: SYStem.CONFIG <parameter> <number_or_address>

SYStem.MultiCore <parameter> <number_or_address> (deprecated)
<parameter>: CORE <core>

<parameter>: DRPRE <bits>

(JTAG): DRPOST <bits>

IRPRE <bits>
IRPOST <bits>
TAPState <state>
TCKLevel <level>
TriState [ON | OFF]
Slave [ON | OFF]

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger about the
TAP controller position in the JTAG chain, if there is more than one core in the JTAG chain (e.g. Arm + DSP).
The information is required before the debugger can be activated e.g. by a SYStem.Up. See Daisy-chain

Example.

For some CPU selections (SYStem.CPU) the above setting might be automatically included, since the
required system configuration of these CPUs is known.

©1989-2024 Lauterbach

XC2000/XC16x/C166CBC Debugger | 19

TriState has to be used if several debuggers (“via separate cables”) are connected to a common JTAG port
at the same time in order to ensure that always only one debugger drives the signal lines. TAPState and
TCKLevel define the TAP state and TCK level which is selected when the debugger switches to tristate
mode. Please note: nTRST must have a pull-up resistor on the target, TCK can have a pull-up or pull-down
resistor, other trigger inputs need to be kept in inactive state.

Multicore debugging is not supported for the DEBUG INTERFACE (LA-7701).

CORE

DRPRE

DRPOST

IRPRE

IRPOST

TAPState

TCKLevel

TriState

For multicore debugging one TRACE32 PowerView GUI has to be started
per core. To bundle several cores in one processor as required by the
system this command has to be used to define core and processor
coordinates within the system topology.

Further information can be found in SYStem.CONFIG.CORE.

(default: 0) <number> of TAPs in the JTAG chain between the core of
interest and the TDO signal of the debugger. If each core in the system
contributes only one TAP to the JTAG chain, DRPRE is the number of
cores between the core of interest and the TDO signal of the debugger.

(default: 0) <number> of TAPs in the JTAG chain between the TDI signal
of the debugger and the core of interest. If each core in the system
contributes only one TAP to the JTAG chain, DRPOST is the number of
cores between the TDI signal of the debugger and the core of interest.

(default: 0) <number> of instruction register bits in the JTAG chain
between the core of interest and the TDO signal of the debugger. This is
the sum of the instruction register length of all TAPs between the core of
interest and the TDO signal of the debugger.

(default: 0) <number> of instruction register bits in the JTAG chain
between the TDI signal and the core of interest. This is the sum of the
instruction register lengths of all TAPs between the TDI signal of the
debugger and the core of interest.

(default: 7 = Select-DR-Scan) This is the state of the TAP controller when
the debugger switches to tristate mode. All states of the JTAG TAP
controller are selectable.

(default: 0) Level of TCK signal when all debuggers are tristated.

(default: OFF) If several debuggers share the same debug port, this
option is required. The debugger switches to tristate mode after each
debug port access. Then other debuggers can access the port. JTAG:
This option must be used, if the JTAG line of multiple debug boxes are
connected by a JTAG joiner adapter to access a single JTAG chain.

©1989-2024 Lauterbach

XC2000/XC16x/C166CBC Debugger | 20

Slave (default: OFF) If more than one debugger share the same debug port, all
except one must have this option active.
JTAG: Only one debugger - the “master” - is allowed to control the signals
nTRST and nSRST (nRESET).

©1989-2024 Lauterbach XC2000/XC16x/C166CBC Debugger | 21

Daisy-Chain Example

TDl——-® Core A —Core B p Core C—» Core D +—» TDO

Chip 0 Chip 1

Below, configuration for core C.

Instruction register length of
. Core A: 3 bit
. Core B: 5 bit
. Core D: 6 bit

SYStem.CONFIG.IRPRE 6. ; IR Core D

SYStem.CONFIG.IRPOST 8. ; IR Core A + B
SYStem.CONFIG.DRPRE 1. ; DR Core D

SYStem.CONFIG.DRPOST 2. ; DR Core A + B

SYStem.CONFIG.CORE 0. 1. ; Target Core C i1s Core 0 in Chip 1

©1989-2024 Lauterbach XC2000/XC16x/C166CBC Debugger | 22

TapStates

0 Exit2-DR
Exit1-DR
Shift-DR
Pause-DR
Select-IR-Scan
Update-DR
Capture-DR
Select-DR-Scan
Exit2-IR
Exit1-IR
Shift-IR
Pause-IR
Run-Test/Idle
Update-IR
Capture-IR

© 00 N o 0o~ W N =

—_ - e e —d
a A~ WO N = O

Test-Logic-Reset

©1989-2024 Lauterbach XC2000/XC16x/C166CBC Debugger | 23

SYStem.CONFIG.CORE Assign core to TRACE32 instance

Format: SYStem.CONFIG.CORE <core_index> <chip_index>
SYStem.MultiCore.CORE <core_index> <chip_index> (deprecated)

<chip_index>: 1.0

<core_index>: 1...k

Default core_index: depends on the CPU, usually 1. for generic chips

Default chip_index: derived from CORE= parameter of the configuration file (config.t32). The CORE
parameter is defined according to the start order of the GUI in T32Start with ascending values.

To provide proper interaction between different parts of the debugger, the systems topology must be
mapped to the debugger’s topology model. The debugger model abstracts chips and sub cores of these
chips. Every GUI must be connect to one unused core entry in the debugger topology model. Once the
SYStem.CPU is selected, a generic chip or non-generic chip is created at the default chip_index.

Non-generic Chips
Non-generic chips have a fixed number of sub cores, each with a fixed CPU type.

Initially, all GUIs are configured with different chip_index values. Therefore, you have to assign the
core_index and the chip_index for every core. Usually, the debugger does not need further information to
access cores in non-generic chips, once the setup is correct.

Generic Chips

Generic chips can accommodate an arbitrary amount of sub-cores. The debugger still needs information
how to connect to the individual cores e.g. by setting the JTAG chain coordinates.

Start-up Process

The debug system must not have an invalid state where a GUI is connected to a wrong core type of a non-
generic chip, two GUIs are connected to the same coordinate or a GUI is not connected to a core. The initial
state of the system is valid since every new GUI uses a new chip_index according to its CORE= parameter
of the configuration file (config.t32). If the system contains fewer chips than initially assumed, the chips must
be merged by calling SYStem.CONFIG.CORE.

©1989-2024 Lauterbach XC2000/XC16x/C166CBC Debugger | 24

SYStem.CONFIG.DAP Define mapping for DAP pins

The SYStem.CONFIG.DAP commands are used to map the unused JTAG pins for additional features.

SYStem.CONFIG.DAP.BreakPIN Define mapping of break pins

Format: SYStem.CONFIG.DAP.BPIN [PortPort | TdiPort | PortiTdo | TdiTdo]

Default: PortONLY.

This command maps a Break Bus to either a GPIO port pin or an unused JTAG pin. It is dependent on the
selected debug port type which Break Bus can be mapped to which pin:

Break Bus 0 Break Bus 1
PortPort GPIO port pin GPIO port pin
TdiPort TDI pin GPIO port pin
PortTDO GPIO port pin TDO pin
TdiTdo TDI pin TDO pin
SYStem.CONFIG.DAP.DAPENable Enable DAP mode on PORST
Format: SYStem.CONFIG.DAP.DAPEN [TARGET | ON | OFF]

Default: TARGET.

Defines if the DAP Interface of the CPU is enabled during a Power On Reset (PORST). This command
requires that the debugger DAP Interface is enabled by SYStem.CONFIG.DEBUGPORTTYPE before.

For target boards where a pull-up resistor on nTRST line permanently enables the DAP Interface the
TARGET setting is required.

In case the CPU DAP Interface should not be enabled although a debugger is attached to the target board,
the OFF setting is recommended. When performing a SYStem.Mode Go or SYStem.Mode Up, the
debugger enables the CPU DAP Interface automatically when performing the PORST. Note that a
SYStem.Mode Attach is not possible in this case.

©1989-2024 Lauterbach XC2000/XC16x/C166CBC Debugger | 25

If the CPU DAP Interface should be enabled as long as the debugger is attached, the ON setting is required.
All SYStem.Mode options are possible in this case, including hot attach.

See “Application Note Debug Cable TriCore” (app_tricore_ocds.pdf) for details.

SYStem.CONFIG.DAP.USERN Configure and set USER pins

Format: SYStem.CONFIG.DAP.USERO [In | Out | Set </evel>]
SYStem.CONFIG.DAP.USER1 [In | Out | Set </eve/>]

<level>: Low | High

o Default for USERO: In.
o Default for USER1: Out and Low.

Configures the USER0 and USER1 pins of the 10 pin DAP Debug Connector as input or output. The output
level can be Low or High.

Use the functions DAP.USERO() and DAP.USER1() for reading the current status.

The availability of the USER pins depends on the Debug Cable, the selected Interface Mode and the DAP
Enabling Mode. See “Application Note Debug Cable TriCore” (app_tricore_ocds.pdf) for details.

SYStem.CONFIG.DEBUGPORTTYPE Set debug cable interface mode

Format: SYStem.CONFIG.DEBUGPORTTYPE [JTAG | DAP2 | SPD]
SYStem.CONFIG.Interface [JTAG | DAP2 | SPD (deprecated)

Default: JTAG.

This command is used to configure the Interface Mode used by the Debugger. Both CPU and Debug Cable
must support this mode, see “Application Note Debug Cable TriCore” (app_tricore_ocds.pdf) for details.

©1989-2024 Lauterbach XC2000/XC16x/C166CBC Debugger | 26

SYStem.Option.DUALPORT Run-time memory access for all windows

Format: SYStem.Option.DUALPORT [ON | OFF]

Default: OFF.

The JTAG debugger use the Debug Peripheral Event Controller (DPEC) to access memory. This acts like a
cycle stealing DMA. Therefore memory access can be done even while the CPU is running. On activating
this option the opened data windows will also be refreshed while a user program is running. Please consider
that in this mode the user program will not be executed at full speed.

SYStem.Option.IDLEFIX Periodically activate/deactivate JTAG connection

Format: SYStem.Option.IDLEFIX [ON | OFF]

Default: OFF.

This is a bug fix for PMB7850 which is only available on obsolete ICD hardware. The permanent JTAG
connection did not allow the processor to switch to idle mode which was required for flash programming.

SYStem.Option.IMASKASM Disable interrupts while single stepping
Format: SYStem.Option.IMASKASM [ON | OFF]
Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After single step the interrupt mask bits are
restored to the value before the step.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
Format: SYStem.Option.IMASKHLL [ON | OFF]
Default: OFF.

©1989-2024 Lauterbach XC2000/XC16x/C166CBC Debugger | 27

If enabled, the interrupt mask bits of the CPU will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After single step the interrupt mask bits are restored to
the value before the step.

SYStem.Option.MonBase Define start address of debug monitor

Format: SYStem.Option.MonBase <start _address>

ICD-166CBC only. Default: 0x1fffcO.

This is the start address where the exception routine is or will be loaded. The size of the exception routine is
at the moment 32/48 (ICD/AICD) bytes.

SYStem.Option.PERSTOP Enable global peripheral suspend signal
Format: SYStem.Option.PERSTOP [ON | OFF]
Default: OFF.

This controls the operation mode of the peripherals (e.g. timer), when a debug event is raised. A debug
event causes the peripherals to suspend, if this option is activated and the suspend enable bit in the
peripheral module is set.

SYStem.Option.PERSTOPFIX Break CPU via ONCHIP break register
Format: SYStem.Option.PERSTOPFIX [ON | OFF]
Default: OFF.

If asynchronous Break is used and SYStem.Option.PERSTOP is set, then this option should be set, too.
Workaround to use complete functionality of peripheral suspend (XC2xxx and XC16x)

©1989-2024 Lauterbach XC2000/XC16x/C166CBC Debugger | 28

SYStem.Option.BRKOUT Activates BRKOUT signal

Format: SYStem.Option.BRKOUT [ON | OFF]

Default: OFF.

Activates the BRKOUT signal on the DEBUG connector. Must be connected to the CPU pin.

SYStem.Option.WATCHDOG Disable or serve watchdog
Format: SYStem.Option.WATCHDOG [ON | OFF]
Default: OFF.

This controls if the watchdog is active (on) during the debug session or not (off). See also chapter Monitor

Routine.
SYStem.Option.TRACEENABLE Disable traceport
Format: SYStem.Option.TRACEENABLE [ON | OFF]

Only PMB7890 and XGOLD110.
Default: OFF with Debugger. ON with Combiprobe

Disable/enable trace port from the PMB7890 and XGOLD110.

SYStem.Option.DebugLevel Debug level
Format: SYStem.Option.DebugLevel </evel>
<levels: 1. ... 15. TRAP ATOMIC

Only CPUs with C166SV2 core

©1989-2024 Lauterbach XC2000/XC16x/C166CBC Debugger | 29

Default: TRAP

The CPU can be interrupted. The debug level defined the level, where all lower and equal level interrupts are

breaked.

SYStem.Option.BootModelndex

BootModelndex

Format:

SYStem.Option.BootModelndex <interface>

<interface>: JTAG1 | JTAG2 | JTAG3 | JTAG4 | JTAGS | JTAG6 | JTAG? | JTAGS |

DAP1 | DAP2 | SPD

Only XC2xxxLE and XC2xxxULE CPUs

Selects the Debug Interface which is programmed via ASC with the SYStem.Mode Prepare

JTAG1 Mode:

JTAG2 Mode:

JTAG3 Mode:

JTAG4 Mode:

JTAG5 Mode:

JTAG6 Mode:

JTAG7 Mode:

JTAG8 Mode:

TCK=P2.9 TMS=P5.4 TDI=P5.2 TDO=P10.12

TCK=P2.9 TMS=P5.4 TDI=P10.10 TDO=P10.12

TCK=P2.9 TMS=P10.11 TDI=P5.2 TDO=P10.12

TCK=P2.9 TMS=P10.11 TDI=P10.10 TDO=P10.12

TCK=P10.9 TMS=P5.4 TDI=P5.2 TDO=P10.12

TCK=P10.9 TMS=P5.4 TDI=P10.10 TDO=P10.12

TCK=P10.9 TMS=P10.11 TDI=P5.2 TDO=P10.12

TCK=P10.9 TMS=P10.11 TDI=P10.10 TDO=P10.12

DAP1 Mode: DAP0=P2.9 DAP1=P10.12

DAP2 Mode: DAP0=P10.9 DAP1=P10.12

SPD Mode: at P10.12

©1989-2024 Lauterbach XC2000/XC16x/C166CBC Debugger

30

SYStem.Option.ICFLUSH Flush instruction cache

Format: SYStem.Option.ICFLUSH [ON | OFF]

Default: ON.

If enabled, the InstructionCache will be flushed before GO or Step operations. This is required to enforce
consistency between cache and external program memory when the program memory was updated (e.g.
for setting software breakpoints). Typically the option shall be left enabled except when debugging cache
consistency problems in the target. The option is only relevant for XC22xxI, XC23xxE and XC27x8X
because they have a program cache.

SYStem.Option.IDLEDEBUG Debug in IDLE state

Format: SYStem.Option.IDLEDEBUG [ON | OFF]

Only XGOLD110 ES2

If enabled, it is possible to break the aplication if the CPU is in IDLE state. Access to the peripheral register
via real-time access is also possible.

SYStem.Option.WaitReset Delay between PORST and JTAG shifts
Format: SYStem.Option.WaitReset <time>
<time>: 800.ms ... 5000.ms
Only XC2xxx and XE16x.

Default: 1750.ms.

Change the delay between the rising edge of the POST line and the first shifts from the Debugger. Only
necessary to change the delay if a SYStem.Mode Up does not stop at the reset vector.

©1989-2024 Lauterbach XC2000/XC16x/C166CBC Debugger | 31

MCDS Onchip Trace

MCDS Onchip Trace Features

Onchip tracing is only possible with an Infineon Emulation Device (ED), offering the MCDS (MultiCore
Debug Solution) for implementing trace triggers, filters and generation of trace messages (MCDS
messages).

Use Trace.METHOD Onchip for selecting the onchip trace.

Supported Features

J Program Flow Trace
. Data Trace

J Ownership Trace

. Timestamps

o Simple Trace Control

See the Onchip.Mode commands for a general setup of the on-chip trace, and the MCDS commands for a
detailed setup of the on-chip MCDS resources.

Trace Control

The On-chip settings can be done with the Onchip commands, e.g. from the Onchip.view window. .

Simple Trace Control

Additionally triggers and filters on data address and data value can be configured.

. Trace all

. Trace to

J Trace from

. Trace from to
. Trigger

J Enable

©1989-2024 Lauterbach XC2000/XC16x/C166CBC Debugger | 32

trace messages.

MCDS uses compression to efficiently use the limited amount of on-chip trace
memory. TRACE32 requires a synchronization point to decode all consecutive

Examples

A successfully loaded target application is needed for the following examples.

Example 1: Trace function sieve() only

MCDS.view
MCDS.SOURCE Cl166 FlowTrace ON 8
Onchip.List

Break.Set v.range(sieve) /Program g
/Onchip /TraceEnable 9

Enable the trace as long as the function sieve() is executed.

Example 2: Trace function sieve() and sub-functions

show MCDS setup window
enable Cl66 program flow trace
show trace list window

enable the trace as long as
function sieve() is executed

Execution in sub-functions is not recorded.

MCDS.view
MCDS.SOURCE C166 FlowTrace ON 9
Onchip.List

Break.Set sieve /Program /Onchip 9
/TraceON

Break.Set y.exit(sieve) /Program 5
/Onchip /TraceOFF ;

show MCDS setup window
enable Cl66 program flow trace
show trace list window

enable trace on entering
function sieve()

disable trace on leaving
function sieve()

Trace the complete function sieve(), including execution in any sub-function.

©1989-2024 Lauterbach

XC2000/XC16x/C166CBC Debugger |

33

Example 3: Trace until

MCDS.view
MCDS.SOURCE C166 FlowTrace ON
Onchip.List

Break.Set v.end(sieve) /Program
/Onchip /TraceTrigger

show MCDS setup window
enable Cl66 program flow trace
show trace list window

disable trace on leaving
function sieve()

Stop tracing when end of function sieve() is reached, C166 keeps running. Onchip.TDelay can be used
to stop recording after a programmable period (percentage of the trace memory). See the Trace.Trigger

command for more information.

Example 4: Trace write accesses to a variable

MCDS.view

MCDS.SOURCE C1l66 FlowTrace OFF

MCDS.SOURCE C166 WriteAddr ON
MCDS.SOURCE C166 WriteData ON

Onchip.List

Break.Set flags+0x0C /Write /Onchip
/TraceEnable

7

show MCDS setup window

disable C166 program flow
trace

enable Cl66 write address
and write data trace

show trace list window

enable recording when Cl166
writes to address flags+0x0C

Trace all write accesses to variable flags with offset Oxc, Program Flow trace is disabled to save on-chip

trace memory.

©1989-2024 Lauterbach

XC2000/XC16x/C166CBC Debugger |

34

Example 5: Trace specific write accesses to a variable

MCDS.view
MCDS.SOURCE C166 FlowTrace ON

MCDS.SOURCE C166 WriteAddr ON
MCDS.SOURCE C166 WriteData ON

Onchip.List

Break.Set flags+0x0C /Write
/Data.Byte 0x01 /Onchip
/TraceEnable

show MCDS setup window
enable Cl66 program flow trace

enable Cl66 write address
and write data trace

show trace list window

enable recording when C166
writes 0x01 to address flags+0x0C

Enable recording when TriCore writes 0x01 with an access width of 8 bits to address flags+0x0C. The code
that triggered the write access is also recorded. Due to pipeline effects and internal delays the recorded
code may not exactly match the write instruction.

Example 6: Trace specific write accesses to a variable

MCDS.view
MCDS.SOURCE C166 FlowTrace ON

MCDS.SOURCE C166 WriteAddr ON
MCDS.SOURCE C166 WriteData ON

Onchip.List

show MCDS setup window
enable Cl66 program flow trace

enable Cl66 write address
and write data trace

show trace list window

Break.Set v.range (sieve) ; enable recording when C166
/MemoryWrite flags+0x0C ; writes 0x01 to address flags+0x0C
/Data.Byte 0x01 /Onchip while executing function sieve /()
/TraceEnable

Enable recording when C166 writes 0x01 with an access width of 8 bits to address flags+0x0C while
executing function sieve() (excluding sub-function). The code that triggered the write access is also
recorded. Due to pipeline effects and internal delays the recorded code may not exactly match the write
instruction.

©1989-2024 Lauterbach XC2000/XC16x/C166CBC Debugger | 35

BenchMarkCounter

The BenchMarkCounter are only available with a XC2000ED device.

For information about architecture-independent BMC commands, refer to “BMC” (general_ref_b.pdf).

For information about architecture-specific BMC commands, see command descriptions below.

BMC.CNTx.EVENT Configure the performance monitor
Format: BMC.CNTO | CNT1 ... CNT7.EVENT <event>
<option>: NONE
Delta
Echo
NINST
IDLE
STALL
IRA
SYNC_RQ
NONE Switch off the performance monitor
Delta Counts hits of the Delta-Marker, if specified.
Echo Counts hits of the Echo-Marker, if specified.
NINST Counts the number of instructions.
IDLE Counts the number of idle cycles.
STALL Counts the number of stall cycles.
IRA Counts the number of interrupts acknowledged.
SYNCH_RQ The counter is incremented at the beginning of a new paragraph of the

trace buffer memory.

©1989-2024 Lauterbach

XC2000/XC16x/C166CBC Debugger |

36

Useful Features

This chapter gives an overview on some useful features. Please consult the documentation of the
corresponding commands for more information.

Runtime Measurement

MCDS.view

MCDS.SOURCE Cl166 FlowTrace OFF
MCDS.TimeStamp Relative
MCDS.Clock SYStem 80.MHz

Break.Set sieve /Program /Onchip
/TraceEnable

Break.Set y.exit(sieve) /Program
/Onchip /TraceEnable

Break.SetFunc sieve

Trace.STATistic.DURation

Program BootModelndex (only XC2xxxULE/LE)

’

show MCDS setup window

disable Cl66 program flow trace
sets relative timestamp messages
sets system clock

enable trace on entering
function sieve()

enable trace on leaving
function sieve()

sets marker Alpha at begin and

marker Beta at end of function
sieve ()

I

analyze the time between sieve()

entry and sieve() exit

SYStem.CPU XC2210U-8F
SYStem.CONFIG.DEBUGPORTTYPE DAP
SYStem.Option.BootModeIndex DAP1
SYStem.JtagClock 9600.

SYStem.Mode Prepare

select CPU

select DAP interface

select the desired Interface
selects the ASC speed 9600 BAUD

programs the BootModeIndex

This chapter describes the possibility to program the BootModelndex via the Debug Cable

This is only possible if the LA-3815 Conv. 16 Pin JTAG to DAP is used.

©1989-2024 Lauterbach XC2000/XC16x/C166CBC Debugger | 37

Breakpoints

There are two types of breakpoints available: Software breakpoints and on-chip breakpoints.

Software Breakpoints on Instructions

Software breakpoints are the default breakpoints. They can only be used in RAM areas.There is no
restriction in the number of software breakpoints.

On-chip Breakpoints

The following list gives an overview of the usage of the on-chip breakpoints by
TRACES32-ICD:

. On-chip breakpoints: Total amount of available on-chip breakpoints.

J Instruction breakpoints: Number of on-chip breakpoints that can be used for program and spot
breakpoints

J Data breakpoints: Number of on-chip breakpoints that can be used as read or write
breakpoints.

On-chip Breakpoints Instruction Breakpoints Data Breakpoints
4 upto4 up to 4 write
up to 1 read

You can check your currently set breakpoints with the command Break.List

If no more on-chip breakpoints are available you will get a message on trying to set an on-chip breakpoint.

On-chip Breakpoints in FLASH/ROM

With the command MAP.BOnchip <range> it is possible to inform the debugger where you have ROM
(FLASH,EPROM) on the target. If a breakpoint is set within the specified address range the debugger uses
automatically the available on-chip breakpoints.

©1989-2024 Lauterbach XC2000/XC16x/C166CBC Debugger | 38

Example for Breakpoints

Assume you have a target with FLASH from 0 to 0xFFFFF and RAM from 0x100000 to 0x11FFFF. The
command to configure TRACES32 correctly for this configuration is:

Map.BOnchip 0x0--0x07FFFF

You inform the debugger that he shall use on-chip breakpoints instead of software breakpoints in the
address range 0-7FFFH (though your flash is up to address FFFFFH).

Examples for instruction breakpoints:

Break.Set 0x100000 /Program ; software breakpoint, instruction
Break.Set 0x101000 /Program ; software breakpoint, instruction
Break.Set Oxx /Program ; software breakpoint, instruction

Three instruction breakpoints are set. Software breakpoints are used.

Break.Set 0x100 /Program ; on-chip breakpoint, instruction

Break.Set 0x0ff00 /Program ; on-chip breakpoint, instruction

Two instruction breakpoints are set. On-chip breakpoints are used, because of the MAP.BOnchip command.

Break.Set Ox9FFFF /P /Onchip ; on-chip breakpoint, instruction

A instruction breakpoint is set. On-chip breakpoint is used, because of the /Onchip option.

Break.Set O0x8FFFF /Program ; error message

This causes an error, because the debugger tries to set a software breakpoint at this location.

Break.Set O0x8FFFF++0x100 /P ; on-chip breakpoint, instruction,
; range

Breakpoint on an instruction range 8FFFF-900FFH will be set, even if this range is not declared by
MAP.BOnchip command. The reason is thatO for range events always on-chip breakpoints will be used.

Examples for breakpoints on data:

Break.Set 0x100000 /Write ; on-chip Breakpoint, data write access

©1989-2024 Lauterbach XC2000/XC16x/C166CBC Debugger | 39

Breakpoint on write access to 100000H.

Break.Set O0x9FFFF /Read ; on-chip Breakpoint, data read access

Breakpoint if read access to 9FFFFH. For breakpoints on data always on-chip breakpoint will be used.

©1989-2024 Lauterbach XC2000/XC16x/C166CBC Debugger | 40

TrOnchip Commands

TrOnchip.state

Display on-chip trigger window

Format: TrOnchip.state

Opens the TrOnchip.state window.

TrOnchip.CONVert Adjust range breakpoint in on-chip resource

Format: TrOnchip.CONVert [ON | OFF] (deprecated)
Use Break.CONFIG.InexactAddress instead

The on-chip breakpoints can only cover specific ranges. If a range cannot be programmed into the
breakpoint, it will automatically be converted into a single address breakpoint when this option is active. This

is the default. Otherwise an error message is generated.

TrOnchip.CONVert ON
Break.Set 0x1000--0x17ff /Write
Break.Set 0x1001--0x17ff /Write

TrOnchip.CONVert OFF
Break.Set 0x1000--0x17ff /Write
Break.Set 0x1001--0x17ff /Write

TrOnchip.RESet

; sets breakpoint at range
; 1000--17ff sets single breakpoint
; at address 1001

; sets breakpoint at range

; 1000--17ff
; gives an error message

Set on-chip trigger to default state

Format: TrOnchip.RESet

Sets the TrOnchip settings and trigger module to the default settings.

©1989-2024 Lauterbach

XC2000/XC16x/C166CBC Debugger | 41

TrOnchip.TEnable Set filter for the trace

Format: TrOnchip.TEnable <par> (deprecated)

Refer to the Break.Set command to set trace filters.

TrOnchip.TOFF Switch the sampling to the trace to OFF

Format: TrOnchip.TOFF (deprecated)

Refer to the Break.Set command to set trace filters.

TrOnchip.TON Switch the sampling to the trace to “ON”

Format: TrOnchip.TON EXT | Break (deprecated)

Refer to the Break.Set command to set trace filters.

TrOnchip.TTrigger Set a trigger for the trace

Format: TrOnchip.TTrigger <par> (deprecated)

Refer to the Break.Set command to set a trigger for the trace.

©1989-2024 Lauterbach XC2000/XC16x/C166CBC Debugger | 42

TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource

Format: TrOnchip.VarCONVert [ON | OFF] (deprecated)
Use Break.CONFIG.VarConvert instead

The on-chip breakpoints can only cover specific ranges. If you want to set a marker or breakpoint to a
complex variable, the on-chip break resources of the CPU may be not powerful enough to cover the whole
structure. If the option TrOnchip.VarCONVert is set to ON, the breakpoint will automatically be converted
into a single address breakpoint. This is the default setting. Otherwise an error message is generated.

TrOnchip.Address Define address selector

Format: TrOnchip.Address Alpha | Beta | Charly | Delta | Echo

The address/range for an address selector can not be defined directly. Set an breakpoint of the type Alpha,
Beta or Charly to the address/range.

Break.Set 1000 /Alpha ; set an Alpha breakpoint to 1000
/Onchip ; use Alpha breakpoint as address
; selector for the TrOnchip unit

TrOnchip.CYcle Define access type

Format: TrOnchip.CYcle Read | Write | eXecute

Defines on which cycle the program execution stops.

Read Stop the program execution on a read access.
Write Stop the program execution on a write access.
eXecute Stop the program execution on an instruction is executed.

©1989-2024 Lauterbach XC2000/XC16x/C166CBC Debugger | 43

TrOnchip.Data Define data selector

Format: TrOnchip.Data [<range> <value> <bitmask>]
TrOnchip.NoMatch Define match or nomatch comparison
Format: TrOnchip.NoMatch [ON | OFF]
Default: OFF
TrOnchip.TaskiD Define task ID comparison
Format: TrOnchip.TaskID [<value> <bitmask>]

The application must write to the DTIDR (Task ID Register) at address D:0xFOD8. This register is intended
to be used by advanced real time operating systems to store the task ID of the active task.

©1989-2024 Lauterbach XC2000/XC16x/C166CBC Debugger | 44

Connectors

JTAG Connector
Signal Pin Pin Signal
TMS 1 2 VCCS
TDO 3 4 GND
CPUCLOCK 5 6 GND
TDI 7 8 RESET-
TRST- 9 10 BRKOUT-
TCLK 11 12 GND
BRKIN- 13 14 N/C
N/C 15 16 GND

A standard 2 x 8 pin header (pin-to-pin spacing: 0.1 inch = 2.54 mm) is required on the target.
Do not connect the “reserved” pins.

Do connect all GND pins for shielding purpose, though they are connected on the debugger. It is
recommended to connect also the N/C pin to GND.

At least the signals TMS, VCCS, TDO, GND, TDI, /RESET, /TRST, TCLK are required.

CPUCLOCK is only necessary if it should be used as jtag clock source. It is not used on AICD. /BrkIN,
/BrkOUT are used for trigger input / output feature.

VCCS is the processor power supply voltage. It is used to detect if target power is on and it is used to supply
the output buffers of the debugger (it takes about 2 mA). That means the output voltage of the debugger
signals (TMS, TDI, /TRST, TCLK, /BrkIN) depends directly on VCCS. VCCS can be 2.25 ... 5.5 V.

/RESET is controlled by an open drain driver. (An external watchdog must be switched off if the In-Circuit
Debugger is used.)

VIHmin = 2.0V, VILmax = 0.8 V for the input pins VCCS, TDO, CPUCLOCK, /BrkOUT.

When having multiple JTAG TAP controllers in the chain, make sure that the C166 is the first device in the
chain. It is not possible to have another XC2000, XC16x or TriCore in the same chain.

©1989-2024 Lauterbach XC2000/XC16x/C166CBC Debugger | 45

DAP Connector

Signal Pin Pin Signal
VREF 1 2 DAP1
GND 3 4 DAPO
GND 5 6 USERO
GND 7 8 DAPEN- (TRST-)
GND 9 10 RESET- (PORST-)

Only possible with Whisker Debug Cable and LA-3815 Conv. 16 Pin JTAG to DAP

On the target board the standard connector is a 0.05 inch double row 10 pins micro terminal, which is
available from many sources e.g. Samtec FTSH (SMT Mount) series. It is offered as a standard dual
row header 1.27 mm x 1.27 mm with 0.4 mm square pins.

©1989-2024 Lauterbach XC2000/XC16x/C166CBC Debugger | 46

Troubleshooting

SYStem.Up Errors

The SYStem.Up command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command this may have the following reasons.

FAQ

The target has no power.

ICD-166CBC only: The trap program routine is not available or the MONBASE address is not
correct or the jump to this function at 20H is missing (see Monitor). Another restriction is that a
valid program which disables the debugger must start after power on. If one of these conditions
are not fulfilled (e.g. if there is no program on the target) it can be helpful to activate the debugger
by SYStem.Mode Prepare to do some initialization with the debuggers help. See also the
PRACTICE script files (*.cmm) in ~~/demo/c166/etc/.

ICD-166CBC only: Unfortunately it is possible that a faulty user program which starts after power
on produces a situation where it is not possible for the debugger to establish communication with
the processor. To avoid this situation we recommend to place a endless loop (after disabling the
watchdog and settings like stack and chip selects) at the begin of the user application. Then the
debugger can establish the communication and you can step through the program to come closer
to the faulty program part. It is also useful to have the possibility (jumper on chip select signal) to
switch off the program memory on the target. Even if you already have the situation | described
above, you can then use SYStem.Mode Prepare to establish communication and for example re-
program the program memory if it is placed in a flash device.

External controlled /RESET line:

The debugger controls the processor reset and use the /RESET line to reset the CPU on most of
the SYStem.Mode commands. Therefore only not active, open-drain driver may be connected to
this /RESET signal.

There are additional loads or capacities on the JTAG lines or the JTAG cable is elongated.

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach XC2000/XC16x/C166CBC Debugger | 47

https://support.lauterbach.com/kb

Technical Data

Operation Voltage

Adapter OrderNo Voltage Range
OCDS Debugger for C166CBC (ICD) LA-7755 25.52V
Adapter OrderNo Voltage Range
OCDS Debugger for XC2000/C166S V2 (ICD) LA-7759 25..52V

©1989-2024 Lauterbach

XC2000/XC16x/C166CBC Debugger

48

	XC2000/XC16x/C166CBC Debugger
	Introduction
	ICD/AICD
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Warning
	Monitor Routine
	Quick Start
	Quick Start for Tracing with MCDS On-chip Trace
	1. Start and Stop Tracing
	2. Specify Trace Source and Recording Options
	3. Start and Stop Tracing
	4. View the Results

	Memory Classes
	CPU specific SYStem Commands
	SYStem.CPU Select the CPU
	SYStem.JtagClock Define the JTAG frequency
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the CPU
	SYStem.LOCK Lock and tristate the debug port
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	Daisy-Chain Example
	TapStates

	SYStem.CONFIG.CORE Assign core to TRACE32 instance
	SYStem.CONFIG.DAP Define mapping for DAP pins
	SYStem.CONFIG.DAP.BreakPIN Define mapping of break pins
	SYStem.CONFIG.DAP.DAPENable Enable DAP mode on PORST
	SYStem.CONFIG.DAP.USERn Configure and set USER pins
	SYStem.CONFIG.DEBUGPORTTYPE Set debug cable interface mode
	SYStem.Option.DUALPORT Run-time memory access for all windows
	SYStem.Option.IDLEFIX Periodically activate/deactivate JTAG connection
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.MonBase Define start address of debug monitor
	SYStem.Option.PERSTOP Enable global peripheral suspend signal
	SYStem.Option.PERSTOPFIX Break CPU via ONCHIP break register
	SYStem.Option.BRKOUT Activates BRKOUT signal
	SYStem.Option.WATCHDOG Disable or serve watchdog
	SYStem.Option.TRACEENABLE Disable traceport
	SYStem.Option.DebugLevel Debug level
	SYStem.Option.BootModeIndex BootModeIndex
	SYStem.Option.ICFLUSH Flush instruction cache
	SYStem.Option.IDLEDEBUG Debug in IDLE state
	SYStem.Option.WaitReset Delay between PORST and JTAG shifts

	MCDS Onchip Trace
	MCDS Onchip Trace Features
	Supported Features
	Trace Control
	Simple Trace Control
	Examples

	BenchMarkCounter
	BMC.CNTx.EVENT Configure the performance monitor

	Useful Features
	Breakpoints
	Software Breakpoints on Instructions
	On-chip Breakpoints
	On-chip Breakpoints in FLASH/ROM
	Example for Breakpoints

	TrOnchip Commands
	TrOnchip.state Display on-chip trigger window
	TrOnchip.CONVert Adjust range breakpoint in on-chip resource
	TrOnchip.RESet Set on-chip trigger to default state
	TrOnchip.TEnable Set filter for the trace
	TrOnchip.TOFF Switch the sampling to the trace to OFF
	TrOnchip.TON Switch the sampling to the trace to “ON”
	TrOnchip.TTrigger Set a trigger for the trace
	TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource
	TrOnchip.Address Define address selector
	TrOnchip.CYcle Define access type
	TrOnchip.Data Define data selector
	TrOnchip.NoMatch Define match or nomatch comparison
	TrOnchip.TaskID Define task ID comparison

	Connectors
	JTAG Connector
	DAP Connector

	Troubleshooting
	SYStem.Up Errors

	FAQ
	Technical Data
	Operation Voltage

