LAUTERBACH A

TRACES2 Debug Back-Ends

TRACE32 Debug Back-Ends

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
[T=T 10 T == Ve T r—~
TRACE32 Debug BaCK-ENAScccociiiimmiiimiiinninssnnsess s s ssssss s ssssss s ssms snssms s sssms snssmnnas 1

L 1= (o 3
Lo X o 11 T T o 4
PowerView System Configurations ..o s ane s 6
Supported Debug Back-ENdSccoiiiiieciiiiiiiiiiiss s nsssss s s s snssnnnes 9
CSWP Debug Back-End 9

GTL Debug Back-End 9
Sneakpeek Debug Back-End 10
Verilog Debug Back-End 10

XCP Debug Back-End 11
Infineon DAS Debug Back-End 11

Intel DCI Debug Back-End 11
Tessent Embedded Analytics Debug Back-End 12

©1989-2024 Lauterbach TRACES32 Debug Back-Ends | 2

TRACE32 Debug Back-Ends

Version 06-Jun-2024

History

22-Aug-23 Initial version of the manual.

©1989-2024 Lauterbach TRACES32 Debug Back-Ends | 3

Introduction

TRACE32 supports various debug back-ends to enable a low-level debug communication for debugging
and tracing:

. A target over a functional interface of the host computer such as USB or ethernet.
Low-level communication must be wrapped in a specified protocol.

L An RTL simulation or emulation system.

Inter-process communication is used here.

The low level communication is handled by the TRACE32 HostMCI library. While the back-ends are
responsible for the communication with the target/emulation system.The following block diagram gives an
overview of the TRACE32 system architecture when debug back-ends are deployed.

Host Computer

I TRACES2 Powerview - 0 x
File Edit View Vor Bresk Run CPU Mic Tace Perf Cov Peripherals Window Help

Mk A de[rn|E 2RO EuEB &S S L

5 BuListauto EreErE)
MStep || W Over | ADiverge | /Retwm | @ Up | B Go || M Bresk | I%Mode |6t 5| Find: [| sievec
addr/1ine source 1 0 =

Hook) (void) _attribute_ ((section (".data")) = 0;
“watchdogTrigger) (void);

ms
712 mcount+;

|B::
componeats || trace Data Var List PERF Sstem step Go other || previons
|57:20001248 \isieve ram_ thumb_ii.v7msieve\main stopped at breakpoint [08] | | HL[up
4)
HostMClI

L : J

________ IPC GTL Simulation/Emulation
System

USB3x :TCP/P

©1989-2024 Lauterbach TRACES32 Debug Back-Ends |

4

Debug communication is established in two steps.

1. Start a single or multiple TRACES32 instances (see chapter “PowerView System
Configurations”, page 6) that use the TRACE32 HostMCI library.

2. Select the appropriate debug back-end (see chapter “Supported Debug Back-Ends”, page 9).

©1989-2024 Lauterbach TRACE32 Debug Back-Ends | 5

PowerView System Configurations

The TRACES32 PowerView instances can be set up in different ways.
1. Setup 1: A single TRACES32 PowerView instance runs on the same host as the back-end.

The SneakPeek Debug Back-End supports setup 1 only. If you need setup 2 or 3, please contact us
via https://support.lauterbach.com/

2. Setup 2: Multiple TRACES32 PowerView instances run on the same host as the back-end.

3. Setup 3: The TRACES32 PowerView instances run on a dedicated workstation; the back-end runs on
another host.

The Lauterbach Debug Driver library (hostmci . so for Linux/Mac users and hostmci.dl1l for Windows
users) can be integrated into the TRACE32 PowerView application or run as a separate process, called
t32mciserver. Running it as a separate process provides two main benefits:

1. The MCI server can execute on one host, whilst one or more instances of TRACE32 PowerView
execute on another host.

2. Multiple instances of TRACE32 PowerView can execute on a single host, sharing the MCI
connection.
Setup 1

Setup with a single TRACE32 PowerView instance running on the same host as the back-end:

Workstation / Simulation Host
Linux / Windows

PowerView

hostmci.so/.dll

Modify the config.t32 file as follows:

PBI=MCILIB ; configure system to use hostmci.so

©1989-2024 Lauterbach TRACES32 Debug Back-Ends | 6

https://support.lauterbach.com/

Setup 2

Setup with multiple TRACE32 PowerView instances (AMP) running on the same host as the back-end:

Linux / Windows

Workstation / Simulation Host

PowerView 1

hostmci.so/.dll

PowerView 2

PowerView n

TCP

Modify the config.t32 as follows:

PBI=MCISERVER
PORT=30000
INSTANCE=AUTO

set up the usage of hostmci.so and open
server at 30000 for the first instance.
consecutive number of instance or AUTO

©1989-2024 Lauterbach

TRACES32 Debug Back-Ends

7

Setup 3

Setup with multiple TRACE32 PowerView instances (AMP) running on another host:

Workstation Simulation Host

Windows / Linux Linux / Windows
PowerView 1 t32mciserver
PowerView 2 TCP hostmci.so/.dll

PowerView n

Start t32mciserver on the simulation host:

./t32mciserver port=30000 ; start t32mciserver at port 30000

Modify the config.t32 file as follows:

PBI=MCISERVER ; set up connection to t32mciserver
NODE=192.168.0.1 ; connect to IP 192.168.0.1
PORT=30000 ; at port 30000

INSTANCE=AUTO ; consecutive number of instances
DEDICATED ; avoid to fall into Setup2 case

©1989-2024 Lauterbach TRACE32 Debug Back-Ends | 8

Supported Debug Back-Ends

CSWP Debug Back-End

The CSWP Debug Back-End provides debug and trace capabilities for targets that support the Arm
CoreSight Wire Protocol.

Use this back-end to debug and trace CoreSight SoC-600 based SoCs via functional interfaces such as
USB.

SYStem.CONFIG.DEBUGPORT CSWPO

The CSWP Debug Back-End manual is still under construction.

GTL Debug Back-End

The GTL Debug Back-End provides debug and trace capabilities through the Generic Transactor Library
(GTL), an API designed by Lauterbach.

Use this back-end to connect PowerView to emulation systems or RTL simulators, via custom GTL
transactors.

SYStem.CONFIG.DEBUGPORT GTLO

A detailed description of the setup for the GTL debug back-end can be found in “GTL Debug Back-End”
(backend_gtl.pdf).

©1989-2024 Lauterbach TRACES32 Debug Back-Ends | 9

Sneakpeek Debug Back-End

The SneakPeek Debug Back-End provides debug capabilities, using the MIPI SneakPeek Protocol to
perform address-mapped read and write transactions.

Use this back-end to connect PowerView to SneakPeek-capable target systems over TCP/IP.

SYStem.CONFIG.DEBUGPORT SNEAKPEEKO

A detailed description of the setup for the Sneakpeek debug back-end can be found in “Sneakpeek Debug
Back-End” (backend_sneakpeek.pdf).

Verilog Debug Back-End

The Verilog Debug Back-End provides capabilities to debug an SoC running in a software Verilog RTL
Simulator via a Verilog Transactor. This transactor is provided for backwards compatibility. Please use the
GTL Debug Back-End for new developments.

Use the Verilog debug back-end to run low-level tests of the design along with TRACE32 instead of
debugging an application.

SYStem.CONFIG.DEBUGPORT VerilogTransactor0

A detailed description of the setup for the Verilog debug back-end can be found in “Verilog Debug Back-
End” (backend_verilog.pdf).

©1989-2024 Lauterbach TRACE32 Debug Back-Ends | 10

XCP Debug Back-End

The XCP Debug Back-End provides capabilities for debugging and using the on-chip trace through third-
party XCP slaves, e.g. calibration tools. The XCP communication is done via Ethernet connection, and
allows to share debug and trace ports between TRACE32 and the XCP slave.

Use the XCP Debug Back-End to debug target systems connected to an XCP slave, e.g. for in-field testing
and/or closed-chassis debugging.

SYStem.CONFIG.DEBUGPORT XCPO

A detailed description of the setup for the XCP debug back-end can be found in “XCP Debug Back-End”
(backend_xcp.pdf).

Infineon DAS Debug Back-End

The Infineon DAS Debug Back-End provides debug and on-chip trace capabilities via an Infineon DAS
Server.

Use the Infineon DAS Debug Back-End to connect to an emulation system connected to a DAS server

SYStem.CONFIG.DEBUGPORT InfineonDASO

A detailed description of the setup can be found in “Debugging via Infineon DAS Server”
(backend_das.pdf).

Intel DCI Debug Back-End

The Intel DCI Debug Back-End provides debug and trace capabilities using the Intel DCI protocol.

Use the Intel DCI Debug Back-End to debug and trace for Intel® systems over USB.

SYStem.CONFIG.DEBUGPORT IntelUSBO

A detailed description of the setup can be found in the chapter “DCI DbC” in Debugging via Intel® DCI
User’s Guide, page 7 (dci_intel_user.pdf).

©1989-2024 Lauterbach TRACE32 Debug Back-Ends | 11

Tessent Embedded Analytics Debug Back-End

The Tessent Embedded Analytics Debug Back-End provides debug and trace capabilities to Tessent
Embedded Analytics enabled SoCs.

Use this back-end to debug and trace SoCs with Tessent Embedded Analytics ecosystem over USB.

The manual is confidential. It is subject to the terms of an agreement between you and Siemens Industry
Software Inc. (SISW).

©1989-2024 Lauterbach TRACE32 Debug Back-Ends | 12

	TRACE32 Debug Back-Ends
	History
	Introduction
	PowerView System Configurations
	Supported Debug Back-Ends
	CSWP Debug Back-End
	GTL Debug Back-End
	Sneakpeek Debug Back-End
	Verilog Debug Back-End
	XCP Debug Back-End
	Infineon DAS Debug Back-End
	Intel DCI Debug Back-End
	Tessent Embedded Analytics Debug Back-End

