
MANUAL

TRACE32 Debug Back-Ends

TRACE32 Debug Back-Ends

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 Debug Back-Ends .. 

 TRACE32 Debug Back-Ends ... 1

 History .. 3

 Introduction ... 4

 PowerView System Configurations ... 6

 Supported Debug Back-Ends ... 9

 CSWP Debug Back-End 9

 GTL Debug Back-End 9

 Sneakpeek Debug Back-End 10

 Verilog Debug Back-End 10

 XCP Debug Back-End 11

 Infineon DAS Debug Back-End 11

 Intel DCI Debug Back-End 11

 Tessent Embedded Analytics Debug Back-End 12
TRACE32 Debug Back-Ends | 2©1989-2024 Lauterbach

TRACE32 Debug Back-Ends

Version 06-Jun-2024

History

22-Aug-23 Initial version of the manual.
TRACE32 Debug Back-Ends | 3©1989-2024 Lauterbach

Introduction

TRACE32 supports various debug back-ends to enable a low-level debug communication for debugging
and tracing:

• A target over a functional interface of the host computer such as USB or ethernet.

Low-level communication must be wrapped in a specified protocol.

• An RTL simulation or emulation system.

Inter-process communication is used here.

The low level communication is handled by the TRACE32 HostMCI library. While the back-ends are
responsible for the communication with the target/emulation system.The following block diagram gives an
overview of the TRACE32 system architecture when debug back-ends are deployed.

Host Computer

HostMCI

Sneakpeek
Back-End

GTL
Back-End

Hardware Abstraction Layer

Architecture Debug Driver

(Cortex-A/-R, Armv8/v9, TriCore ...)

GTL Simulation/Emulation
System

CSWP
Target

CSWP
Back-End

USB 3.x

Sneakpeek
Target

IPC

TCP/IP

MCI Framework
TRACE32 Debug Back-Ends | 4©1989-2024 Lauterbach

Debug communication is established in two steps.

1. Start a single or multiple TRACE32 instances (see chapter “PowerView System
Configurations”, page 6) that use the TRACE32 HostMCI library.

2. Select the appropriate debug back-end (see chapter “Supported Debug Back-Ends”, page 9).
TRACE32 Debug Back-Ends | 5©1989-2024 Lauterbach

PowerView System Configurations

The TRACE32 PowerView instances can be set up in different ways.

1. Setup 1: A single TRACE32 PowerView instance runs on the same host as the back-end.

The SneakPeek Debug Back-End supports setup 1 only. If you need setup 2 or 3, please contact us
via https://support.lauterbach.com/

2. Setup 2: Multiple TRACE32 PowerView instances run on the same host as the back-end.

3. Setup 3: The TRACE32 PowerView instances run on a dedicated workstation; the back-end runs on
another host.

The Lauterbach Debug Driver library (hostmci.so for Linux/Mac users and hostmci.dll for Windows
users) can be integrated into the TRACE32 PowerView application or run as a separate process, called
t32mciserver. Running it as a separate process provides two main benefits:

1. The MCI server can execute on one host, whilst one or more instances of TRACE32 PowerView
execute on another host.

2. Multiple instances of TRACE32 PowerView can execute on a single host, sharing the MCI
connection.

Setup 1

Setup with a single TRACE32 PowerView instance running on the same host as the back-end:

Modify the config.t32 file as follows:

PBI=MCILIB ; configure system to use hostmci.so

��������	�
���
	�����	�
�����
�	
������	
����

������	��

������	��������
TRACE32 Debug Back-Ends | 6©1989-2024 Lauterbach

https://support.lauterbach.com/

Setup 2

Setup with multiple TRACE32 PowerView instances (AMP) running on the same host as the back-end:

Modify the config.t32 as follows:

PBI=MCISERVER
PORT=30000
INSTANCE=AUTO

; set up the usage of hostmci.so and open
; server at 30000 for the first instance.
; consecutive number of instance or AUTO

��������	�
���
	�����	�
�����
�	
������	
����

������	����

������	��������

������	����

������	���

���
TRACE32 Debug Back-Ends | 7©1989-2024 Lauterbach

Setup 3

Setup with multiple TRACE32 PowerView instances (AMP) running on another host:

Start t32mciserver on the simulation host:

Modify the config.t32 file as follows:

./t32mciserver port=30000 ; start t32mciserver at port 30000

PBI=MCISERVER
NODE=192.168.0.1
PORT=30000
INSTANCE=AUTO
DEDICATED

; set up connection to t32mciserver
; connect to IP 192.168.0.1
; at port 30000
; consecutive number of instances
; avoid to fall into Setup2 case

�����	
����

�����	
���

�����	
����

��������
��
�
���������
���

�
�����������	�

�����
�������	

������	�����

��	�����	�
���� !�
TRACE32 Debug Back-Ends | 8©1989-2024 Lauterbach

Supported Debug Back-Ends

CSWP Debug Back-End

The CSWP Debug Back-End provides debug and trace capabilities for targets that support the Arm
CoreSight Wire Protocol.

Use this back-end to debug and trace CoreSight SoC-600 based SoCs via functional interfaces such as
USB.

The CSWP Debug Back-End manual is still under construction.

GTL Debug Back-End

The GTL Debug Back-End provides debug and trace capabilities through the Generic Transactor Library
(GTL), an API designed by Lauterbach.

Use this back-end to connect PowerView to emulation systems or RTL simulators, via custom GTL
transactors.

A detailed description of the setup for the GTL debug back-end can be found in “GTL Debug Back-End”
(backend_gtl.pdf).

SYStem.CONFIG.DEBUGPORT CSWP0

…

SYStem.CONFIG.DEBUGPORT GTL0

…

TRACE32 Debug Back-Ends | 9©1989-2024 Lauterbach

Sneakpeek Debug Back-End

The SneakPeek Debug Back-End provides debug capabilities, using the MIPI SneakPeek Protocol to
perform address-mapped read and write transactions.

Use this back-end to connect PowerView to SneakPeek-capable target systems over TCP/IP.

A detailed description of the setup for the Sneakpeek debug back-end can be found in “Sneakpeek Debug
Back-End” (backend_sneakpeek.pdf).

Verilog Debug Back-End

The Verilog Debug Back-End provides capabilities to debug an SoC running in a software Verilog RTL
Simulator via a Verilog Transactor. This transactor is provided for backwards compatibility. Please use the
GTL Debug Back-End for new developments.

Use the Verilog debug back-end to run low-level tests of the design along with TRACE32 instead of
debugging an application.

A detailed description of the setup for the Verilog debug back-end can be found in “Verilog Debug Back-
End” (backend_verilog.pdf).

SYStem.CONFIG.DEBUGPORT SNEAKPEEK0

…

SYStem.CONFIG.DEBUGPORT VerilogTransactor0

…

TRACE32 Debug Back-Ends | 10©1989-2024 Lauterbach

XCP Debug Back-End

The XCP Debug Back-End provides capabilities for debugging and using the on-chip trace through third-
party XCP slaves, e.g. calibration tools. The XCP communication is done via Ethernet connection, and
allows to share debug and trace ports between TRACE32 and the XCP slave.

Use the XCP Debug Back-End to debug target systems connected to an XCP slave, e.g. for in-field testing
and/or closed-chassis debugging.

A detailed description of the setup for the XCP debug back-end can be found in “XCP Debug Back-End”
(backend_xcp.pdf).

Infineon DAS Debug Back-End

The Infineon DAS Debug Back-End provides debug and on-chip trace capabilities via an Infineon DAS
Server.

Use the Infineon DAS Debug Back-End to connect to an emulation system connected to a DAS server

A detailed description of the setup can be found in “Debugging via Infineon DAS Server”
(backend_das.pdf).

Intel DCI Debug Back-End

The Intel DCI Debug Back-End provides debug and trace capabilities using the Intel DCI protocol.

Use the Intel DCI Debug Back-End to debug and trace for Intel® systems over USB.

A detailed description of the setup can be found in the chapter “DCI DbC” in Debugging via Intel® DCI
User´s Guide, page 7 (dci_intel_user.pdf).

SYStem.CONFIG.DEBUGPORT XCP0

…

SYStem.CONFIG.DEBUGPORT InfineonDAS0

…

SYStem.CONFIG.DEBUGPORT IntelUSB0

…

TRACE32 Debug Back-Ends | 11©1989-2024 Lauterbach

Tessent Embedded Analytics Debug Back-End

The Tessent Embedded Analytics Debug Back-End provides debug and trace capabilities to Tessent
Embedded Analytics enabled SoCs.

Use this back-end to debug and trace SoCs with Tessent Embedded Analytics ecosystem over USB.

The manual is confidential. It is subject to the terms of an agreement between you and Siemens Industry
Software Inc. (SISW).
TRACE32 Debug Back-Ends | 12©1989-2024 Lauterbach

	TRACE32 Debug Back-Ends
	History
	Introduction
	PowerView System Configurations
	Supported Debug Back-Ends
	CSWP Debug Back-End
	GTL Debug Back-End
	Sneakpeek Debug Back-End
	Verilog Debug Back-End
	XCP Debug Back-End
	Infineon DAS Debug Back-End
	Intel DCI Debug Back-End
	Tessent Embedded Analytics Debug Back-End

