LAUTERBACH A

GTL Debug Back-End

GTL Debug Back-End

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
[T=T 10 T == Ve T r—~
GTL Debug BacCK-ENdccccoiiiiiiiiiiiirnissnnsess s ssss s s s s s snsmn s s ss s s samssasmns sassms snssmnnas 1
L 1= (o 4
L o o LT o 5
Related Documents 5
Contacting Support 5
Abbreviations and DefinitioNsccccccciiiiirssmrnnirsr s ———— 7
System ArchiteCtUre ... s smmm s s e s e e e e sen s s nnnns 8
PowerView System Configurations ... s sssmss s 9
Configuring the GTL PIUG-in ... eess s ss s s ss s s s s s mmn e s 12
Keep the Graphical User Interface ReSpoNnSivecccccivcmmmiminnmminnnssssnnnsssssssssssssssnns 16
Timing Adaplion ... 17
Troubleshooting the GTL Back-End ... 18
JTAG specific 18
Command RefEreNCeccciiciiiiiiiiiii s e s s ssms s an e s amn e am e e a e nnnnns 20
SYStem.GTL Configure GTL debug port 20
SYStem.GTL.ARMDAPNAME Configure name of DAP level transactor 20
SYStem.GTL.CONNECT Connect to emulation or simulation 21
SYStem.GTL.DISCONNECT Disconnect from emulation or simulation 21
SYStem.GTL.DMANAME Name of DMA transactor 22
SYStem.GTL.EXPLore Display plug-in capabilites 22
SYStem.GTL.GPIONAME Name of GPIO transactor 24
SYStem.GTL.JTAGPROBENAME Name of JTAG probe transactor 24
SYStem.GTL.LIBname Name of 3rd-party plug-in library 24
SYStem.GTL.MODELCOMMAND Execute command in plug-in 25
SYStem.GTL.MODELCONFIG Configure emulation options 25
SYStem.GTL.MODELNAME Select emulation 25
SYStem.GTL.PREBUNDLE Configure call optimization 26
SYStem.GTL.RESet Reset GTL settings 26
SYStem.GTL.RESetRESistant Exempt GTL settings from reset commands 27
SYStem.GTL.SERVERCONFIG Configure server options 27
©1989-2024 Lauterbach GTL Debug Back-End 2

SYStem.GTL.SHAREDMODEL Connect debug port to existing connection 28

SYStem.GTL.SWDNAME Communicate with target via SWD 28
SYStem.GTL.TRACENAME Name of trace transactor 29
SYStem.GTL.TransactorConfig Preconfigure a certain transactor 29

©1989-2024 Lauterbach GTL Debug Back-End | 3

GTL Debug Back-End

Version 06-Jun-2024

History

26-Aug-13 Initial version.

©1989-2024 Lauterbach GTL Debug Back-End | 4

Introduction

The Generic Transactor Library (GTL) is used to interact with a RTL simulators or emulators. This document
describes how to load a GTL plug-in library and how to adapt TRACE32 for special use cases.

Related Documents

J “T32Start” (app_t32start.pdf): The T32Start application assists you in setting up multicore /
multiprocessor debug environments, and software-only debug environments. T32Start is only
available for Windows.

For more information about software-only debug environments, please refer to:
“Software-only Debugging (Host MCI)” (app_t32start.pdf).

Contacting Support

Use the Lauterbach Support Center: https://support.lauterbach.com

. To contact your local TRACES32 support team directly.

J To register and submit a support ticket to the TRACE32 global center.
. To log in and manage your support tickets.

o To benefit from the TRACES32 knowledgebase (FAQs, technical articles, tutorial videos) and our
tips & tricks around debugging.

Or send an email in the traditional way to support@ lauterbach.com.

Be sure to include detailed system information about your TRACE32 configuration.

1. To generate a system information report, choose TRACE32 > Help > Support > Systeminfo.

©1989-2024 Lauterbach GTL Debug Back-End | 5

https://support.lauterbach.com

Lauterbach Homepage
Support
N About TRACE32

b & System Information...
2 Update TRACE32...
B Technical Support Contacts

4 Contact Lauterbach &

Company:
Prefix:
Firstname:
Surname:
Street:
City:
Country:
Telephone:
eMail:

Product:

Compiler:

Generate TRACE32 Support Information

Lauterbach

Andrea

Martin

Altlaufstr, 40

Hoehenkirchen-Siegertsbr.

Germany

Press the following button to get help on how to generate Support Information:

Department:

P.O.Box:

ZIP Code: 85635

(+49) 8102-9876-555

andrea.martin@lauterbach.com

PowerTrace PX

Target CPU:

ARMS40T

Hostsystem:

Windows 10 v

Arm

Realtime05:

MNeno

Generate Support Information:

Safe Mode: O

Save to Clipboard ||

Save to File

NOTE: Please help to speed up processing of your support request. By filling out the
system information form completely and with correct data, you minimize the
number of additional questions and clarification request e-mails we need to
resolve your problem.

2. Preferred: click Save to File, and send the system information as an attachment to your e-mail.
3. Click Save to Clipboard, and then paste the system information into your e-mail.

©1989-2024 Lauterbach

GTL Debug Back-End | 6

Abbreviations and Definitions

AMP Asymmetric Multi-Processing

Back-end A back-end contain high performance multi-core debugger driver and the
interface to the simulator / emulator.

DUT Device Under Test. A DUT is the part of the model that is being tested.

GTL Generic Transactor Library. A plug-in interface for the debuggers back-
end to access the transactors.

IPC Inter Process Communication. A method to communicate between multiple
processes of an Operating System e.g. Semaphores, Shared Memory, File
Pipes, TCP

RTL Register Transfer Level. Models of this level describe a digital system by
registers, signals and processes, not using a complete net list with timing
information.

Simulator A simulator executes a model on RTL level without using special
acceleration hardware.

SMP Symmetric Multi-Processing

Transactor A transactor is a part of a system that interacts with the DUT in order to
analyze and control the DUT by an external tool.

©1989-2024 Lauterbach

GTL Debug Back-End |

7

System Architecture

The total system consists of two process groups. The debugger processes containing front-end and back-
end and the RTL simulation / emulation. The debuggers back-end (hostmci) contain the high performance
multicore debug driver that is also used together with real Lauterbach Hardware. The debuggers back-end is
extended by a third party GTL plug-in to access transactors within the simulator/emulator. The GTL plug-in
and the RTL simulator/emulator communicate by a proprietary protocol using Inter Process Communication
of the Operating System.

Workstation / Simulation Host
Linux / Windows

Debugger Process(es) RTL Simulator / Emulator

Front-End(s) I
PowerView DUT

Transactor /

Back-End
hostmci.so/.dll

GTL plug-in so./.dll /

The debuggers back-end need to run with a low latency to the simulation/emulation due to the very high
amount of accesses to the transactors. Therefore the back-end and the RTL simulator/emulator should run
at the same machine.

The debuggers front-ends (PowerView) can run at a different machine. Multiple PowerView instances can be
connected to one back-end in oder to perform AMP debugging.

©1989-2024 Lauterbach GTL Debug Back-End | 8

PowerView System Configurations

The TRACES32 PowerView instances can be set up in different ways.

1. A single TRACE32 PowerView instance runs on the same host as the back-end, see Setup 1. This
configuration can’t handle AMP debug scenarios.

2. Multiple TRACES32 PowerView instances run on the same host as the back-end, see Setup 2.

3. The TRACE32 PowerView instances run on a dedicated workstation; the back-end runs on another

host, see Setup 3.

The Lauterbach Debug Driver library (hostmci . so for Linux/Mac users and hostmci.dl1l for Windows
users) can be integrated into the TRACE32 PowerView application or run as a separate process, called
t32mciserver. Running it as a separate process provides two main benefits:

1. The MCI server can execute on one host, whilst one or more instances of TRACE32 PowerView
execute on another host.

2. Multiple instances of TRACE32 PowerView can execute on a single host, sharing the MCI
connection.
Setup 1

Setup with a single TRACE32 PowerView instance running on the same host as the back-end:

Workstation / Simulation Host
Linux / Windows

PowerView

hostmci.so/.dll

Modify the config.t32 file as follows:

PBI=MCILIB ; configure system to use hostmci.so

©1989-2024 Lauterbach GTL Debug Back-End | 9

Setup 2

Setup with multiple TRACE32 PowerView instances (AMP) running on the same host as the back-end:

Linux / Windows

Workstation / Simulation Host

PowerView 1

hostmci.so/.dll

PowerView 2

PowerView n

TCP

Modify the config.t32 as follows:

PBI=MCISERVER
PORT=30000
INSTANCE=AUTO

set up the usage of hostmci.so and open
server at 30000 for the first instance.
consecutive number of instance or AUTO

©1989-2024 Lauterbach

GTL Debug Back-End

10

Setup 3

Setup with multiple TRACE32 PowerView instances (AMP) running on another host:

Workstation Simulation Host

Windows / Linux Linux / Windows
PowerView 1 t32mciserver
PowerView 2 TCP hostmci.so/.dll

PowerView n

Start t32mciserver on the simulation host:

./t32mciserver port=30000 ; start t32mciserver at port 30000

Modify the config.t32 file as follows:

PBI=MCISERVER ; set up connection to t32mciserver
NODE=192.168.0.1 ; connect to IP 192.168.0.1
PORT=30000 ; at port 30000

INSTANCE=AUTO ; consecutive number of instances
DEDICATED ; avoid to fall into Setup2 case

Linux example: To start TRACES32 PowerView with a specific config file, use e.g.:

bin/pc_linux/t32marm -c config.t32

©1989-2024 Lauterbach GTL Debug Back-End | 11

Configuring the GTL Plug-in

A typical start sequence is shown below. This sequence can be written to a PRACTICE script file (*.cmm,
ASCII format) and executed with the command DO <file>.

; select GTL as back-end and a certain port
SYStem.CONFIG.DEBUGPORT GTLO

; (optional) tell the system how to connect to the simulation server
SYStem.GTL.SERVERCONFIG "serverl:10000"

; (optional) pass configuration option to connect to the model
SYStem.GTL.MODELCONFIG "OPTIONlZOlOPTIONZZl"

; (optional) tell the system to connect to a certain DUT
SYStem.GTL.MODELNAME "MODEL_JTAG"

; tell the system the usage of transactors
SYStem.GTL.JTAGPROBENAME "JTAGPROBEOQ"

; library name of GTL plug-in
SYStem.GTL.LIBname "gtlplugin.so"

; configure usage of model time base instead host base to avoid timeouts
; while the emulation is paused.

SYStem.VirtualTiming.TimeinTargetTime ON
SYStem.VirtualTiming.PauseinTargetTime ON

continue with CPU configuration

7

SYStem.CPU CortexM3 ; select CPU
SYStem.JtagClock 1Mhz ; setup JTAG frequency
SYStem.Up ; connect to the emulation

Additional Commands to Configure ARM Bus Transactors

SYStem.GTL.ARMDAPNAME Configure system wide DAP transactor

SYStem.CONFIG.DAPNAME Configure and override DAP transactor for
core DAP instance 1 accesses

SYStem.CONFIG.DAP2NAME Configure and override second DAP
transactor for core DAP instance 2 accesses

SYStem.CONFIG.DEBUGBUSNAME Configure APB transactor to debug registers
of the core

SYStem.CONFIG.APBNAME Configure APB transactor for APB: memory
class

SYStem.CONFIG.DAP2DEBUGBUSNAME Configure APB bus used for DAP2: memory
class

©1989-2024 Lauterbach GTL Debug Back-End | 12

SYStem.CONFIG.DAP2APBNAME

SYStem.CONFIG.MEMORYBUSNAME

SYStem.CONFIG.AHBNAME

SYStem.CONFIG.DAP2AHBNAME

SYStem.CONFIG.AXINAME

SYStem.CONFIG.DAP2AXINAME

SYStem.CONFIG.DAP2MEMORYBUSNAME

Configure APB transactor for APB2:
memory class

Configure AHB transactor that is used for E:
access when the CPU is running

Configure AHB transactor that is used for
AHB: memory class

(currently not in use)

Configure AHB transactor that is used for
AHB2: memory class

Configure AXI transactor that is used for
AXI: memory class

Configure second AXI transactor that is
used for AXI2: memory class

In case the JTAG probe transactor is not used, it is recommended to configure an additional GPIO transactor

to modify and sense the system reset signal.

SYStem.GTL.GPIONAME

GTL Functions

Configure GPIO transactor to access extra
signals as system reset when jtag probe
transactor is not used.

For a description of the GTL functions, see “SYStem.GTL.CONNECTED() Connection status”

(general_func.pdf).

©1989-2024 Lauterbach

GTL Debug Back-End | 13

Shared Models

The DUT can contain multiple debug ports that are independent and provide a different complete feature set
as the reset signal or the control of a certain JTAG chain. The way to connect to those asymmetric multi-core
systems is to start multiple PowerView instances with individual debug ports that share the same Model of
the loaded GTL plug-in. The following picture illustrate the scenario:

PowerView 1 PowerView 2

CoreA CoreB
t32mciserver / hostmci

Debug Driver Debug Driver
CoreA CoreB

Debug Port Debug Port
GTLO GTL1

GTL Plug-In
shared Model Model0
JTAGProbe0 JTAGProbel

7 N
DUT Model0 / \

JTAG Transactor

JTAG Transactor

TMS, TRST,TCK TMS, TRST,TCK

TAP1 |— TAP2 TAP3 TAP4 |— TAPS TAP6
TDI TDO TDI TDO

RESET RESET
CoreA CoreB

Configuration for TRACE32 PowerView 1

; select GTL as back-end and a certain port
SYStem.CONFIG.DEBUGPORT GTLO

; (optional) tell the system to connect to a certain DUT
SYStem.GTL.MODELNAME "MODEL_JTAG"

; tell the system the usage of transactors
SYStem.GTL .JTAGPROBENAME "JTAGPROBEOQ"

; library name of GTL plug-in
SYStem.GTL.LIBname "gtlplugin.so"

; connect to transactors
SYStem.GTL.CONNECT

Configuration TRACE32 PowerView 2:

; select GTL as back-end and a certain port
SYStem.CONFIG.DEBUGPORT GTL1

; share the plug-in and Model as for debug port GTLO
SYStem.GTL.SHAREDMODEL GTLO

; tell the system the usage of transactors
SYStem.GTL.JTAGPROBENAME "JTAGPROBE1l"

; connect to additional transactors
SYStem.GTL.CONNECT

Influence of configuration commands

System options can be shared by the whole system, the debug port or are individual for one PowerView
instance. The sharing level is classified by the command path:

SYStem.GTL.* Affects the current selected GTL debug port is shared by all
PowerView instances

SYStem.CONFIG.* Affects only the current PowerView instance

SYStem.VirtualTiming.* Affects the whole system

©1989-2024 Lauterbach GTL Debug Back-End | 15

Keep the Graphical User Interface Responsive

Due to slow RTL simulation, small operations such as reading the state or showing memory dumps take a
long time. This chapter describes how to adjust the virtual time scale to ultra-slow simulators and how to
reduce screen flicker caused by slow RTL simulation. To keep the user interface smooth multiple tuning
options can be set.

The most important setting is SETUP.URATE to configure the update rate of the TRACE32 windows. The
processors state is also polled by this rate.

SETUP.URATE 10s ; screen will be updated every 10s

To avoid screen update while PRACTICE scripts are running:

SCREEN.OFF ; switch off update of the windows when
; a PRACTICE script is executed

SCREEN ; trigger a manual update of the windows
; inside a PRACTICE script

To switch off state polling when the CPU is stopped, the command SYStem.POLLING can be used, but the
debugger can’t detect when another CPU changes the state from stopped to running e.g. by soft reset.

SYStem.POLLING DEF OFF ; disable processor state polling when
; stopped

The command MAP.UpdateOnce can be used to read memory regions only one time after a break is
detected.

MAP.UpdateOnce 0x0++0x1000 ; read memory of regions 0x0--0x1000
; only one time after break

For analysis and data display purposes it is recommended that you use the code from the TRACE32 virtual
memory (VM:) instead of the code from the target memory. Therefore, the code needs to be copied to the
virtual memory when an *.elf file is being loaded.

Data.Load.ELF *.elf /VM ; download code to target and copy it to
; VM:

Data.List VM: ; open source window, but use VM: memory

Onchip.Access VM ; use VM memory for trace analysis

©1989-2024 Lauterbach GTL Debug Back-End | 16

Timing Adaption

TRACE32 software includes of a set of efficient low-level driver routines to access the target. These routines
have a certain timing that must be adjusted to ultra-slow simulators that can be million times slower than real
silicon. In general, there are code parts that pause the execution, wait until a time-out is reached or just use
a certain point of time.

For example, when the simulation is 1,000,000 times slower than real time, these commands can be used to
adjust the timing in most cases:

; configure usage of model time base instead host base to avoid timeouts
; while the emulation is paused.

SYStem.VirtualTiming.TimeinTargetTime ON
SYStem.VirtualTiming.PauseinTargetTime ON

;make the pauses and timeouts 100 times shorter
SYStem.VirtualTiming.TimeScale 0.01

;this will limit any pause statements to 10us target time
SYStem.VirtualTiming.MaxPause 10us

;this will limit any small time-out to read register to lms
SYStem.VirtualTiming.MaxTimeout Ilms

The following timing SYStem commands are available:

SYStem.VirtualTiming.MaxPause Limit pause
SYStem.VirtualTiming.MaxTimeout Override time-outs
SYStem.VirtualTiming.PauseinTargetTime Set up pause time-base
SYStem.VirtualTiming.PauseScale Multiply pause with a factor
SYStem.VirtualTiming.TimeinTargetTime Set up general time-base
SYStem.VirtualTiming.TimeScale Multiply time-base with a factor
SYStem.VirtualTiming.HardwareTimeout Can disable hardware timeout
SYStem.VirtualTiming.HardwareTimeoutScale Multiply hardware timeout
SYStem.VirtualTiming.InternalClock Base for artificial time calculation
SYStem.VirtualTiming.OperationPause Insert a pause after each action to slow
down timing.

©1989-2024 Lauterbach GTL Debug Back-End | 17

Troubleshooting the GTL Back-End

Symptom Cause Remedy

HostMCI:GTL:Err different elf classes are used start compatible combinations of

or: can’t load for hostmci.so/.dll and the hostmci.so and the plug-in e.g. both must

library GTL plug-in be 32bit or 64bit. The elf class of hostmci is
the same as the elf-class of the process it

Status line shows TRACES2 can’t connect to Check that the simulation is running when
“power down” the simulator. TRACERS2 start to connect. View the AREA
window for any diagnostic messages.

Error “emulator Debug Driver algorithm took Increase the value of
subcore longer than expected SYStem.VirtualTiming.TimeScale or
communication SYStem.VirtualTiming.HardwareTimeoutS
timeout” cale.

JTAG specific

After the signals and parameters are connected with the TAP of the DUT, PowerView JTAG diagnostic
should run:

;show results and errors
AREA.view

;set up JTAG clock (simulation clock based)
SYStem.JtagClock 1Mhz

;analyze JTAG chain for testing purposes
SYStem.DETECT DAISYCHAIN

Symptom Cause Remedy

When the IR and Probably TDI is connected to connect TDI and TDO with the JTAG chain
DR length are both TDO without a DUT JTAG of the DUT.
“0” TAP between them.

©1989-2024 Lauterbach GTL Debug Back-End | 18

Symptom Cause Remedy

TDO stays TDO signal is not connected connect TDO correctly, check the signals

constantly high or or the DUT TAP does not around the JTAG chain in the

low work, e.g. is held in reset. simulation/emulation and find out why TDO

don’t toggle.

JTAG Chain JTAG frequency might be too Use SYStem.JtagClock to lower the JTAG

lengths cannot be high. frequency.

determined

NOTE: The maximum clock of the TAP can be determined by the command
SYStem.DETECT JtagClock, but the final frequency that can be used also
depends to model behind the TAP. The detected frequency is just the upper limit.
The optimal frequency depends to the state of the simulation and can change
during one debug session.

©1989-2024 Lauterbach

GTL Debug Back-End |

19

Command Reference

SYStem.GTL

Configure GTL debug port

Using the SYStem.GTL command group, you can configure a GTL debug port (GTL, Generic Transactor
Library). The command group is active after GTL has been selected as debug port. It allows to define and
configure the used transactors and GTL 3rd-party library. The settings are shared among the TRACE32
instances connected to a certain MCI Server.

;optional step: open the SYStem.CONFIG dialog showing the DebugPort tab
SYStem.CONFIG.state /DebugPort

;selecting the GTL back-end activates the SYStem.GTL commands
SYStem.CONFIG.DEBUGPORT GTLO

See also

B SYStem.GTL.ARMDAPNAME B SYStem.GTL.CONNECT

B SYStem.GTL.DISCONNECT B SYStem.GTL.DMANAME

B SYStem.GTL.EXPLore B SYStem.GTL.GPIONAME

B SYStem.GTL.JTAGPROBENAME B SYStem.GTL.LIBname

B SYStem.GTL.MODELCOMMAND B SYStem.GTL.MODELCONFIG
B SYStem.GTL.MODELNAME B SYStem.GTL.PREBUNDLE
B SYStem.GTL.RESet B SYStem.GTL.RESetRESistant
B SYStem.GTL.SERVERCONFIG B SYStem.GTL.SHAREDMODEL
B SYStem.GTL.SWDNAME B SYStem.GTL.TRACENAME
B SYStem.GTL.TransactorConfig B SYStem.state

1 SYStem.GTL.CALLCOUNTER() 1 SYStem.GTL.CONNECTED()
1 SYStem.GTL.CYCLECOUNTER() 1 SYStem.GTL.LIBname()

1 SYStem.GTL.PLUGINVERSION() 1 SYStem.GTL.VENDORID()

0 SYStem.GTL.VERSION()

A ’Introduction’ in ’GTL Debug Back-End’

SYStem.GTL.ARMDAPNAME

Configure name of DAP level transactor

Format: SYStem.GTL.ARMDAPNAME <name>

By using SYStem.GTL.ARMDAPNAME the name for a DAP level transactor can be configured. This
transactor is active in all connected TRACE32 instances.

See also

B SYStem.GTL

©1989-2024 Lauterbach

GTL Debug Back-End | 20

SYStem.GTL.CONNECT Connect to emulation or simulation

Format: SYStem.GTL.CONNECT [/TRY]

Uses the settings previously configured with the SYStem.GTL commands to load the GTL library and
connect to the emulation or simulation.

TRY Forces the command to continue quietly when the connection could not be
established.

Example:

;selecting the GTL back-end activates the SYStem.GTL commands
SYStem.CONFIG.DEBUGPORT GTLO

;configure GTL
SYStem.GTL.JTAGPROBENAME "PROBEl"
SYStem.GTL.LIBname "gtllib.so"

;connect to the emulation or simulation
SYStem.GTL.CONNECT

See also
B SYStem.GTL

SYStem.GTL.DISCONNECT Disconnect from emulation or simulation

Format: SYStem.GTL.DISCONNECT ["<transactor_name>"] [/[UNUSED]

Disconnects from existing connection to the emulation or simulation and disables the periodic re-connection

tries.
<transactor_name> Disconnects a named transactor when it is not used anymore.
UNUSED Disconnects from all transactors that are not used anymore.
See also

B SYStem.GTL

©1989-2024 Lauterbach GTL Debug Back-End | 21

SYStem.GTL.DMANAME Name of DMA transactor

Format:

SYStem.GTL.DMANAME " <transactor_name>"

Configures name and usage of DMA transactor to have back-door memory access to the emulation or
simulation. The back-door access can be used by Data.LOAD command with the parameter /DMALOAD.

See also

B SYStem.GTL

SYStem.GTL.EXPLore

Display plug-in capabilities

Format:

<column>;

SYStem.GTL.EXPLore [<column>]

DEFault | Structure | Connected | tYpe | UsedByCommand | CoNFig

The dialog can show the available transactor interface instances of the plug-in, provided the optional
enumeration interface functions have been implemented by the plug-in.

DEFault

Structure

Connected

tYpe

UsedByCommand

CoNFig

Displays a pre-defined set of columns.

Contains a tree with the abstractions layers of the GTL API. The top level
enumerates all instances of the models or scenarios. The available
transactor interface instances are displayed below the model.

Displays whether TRACES32 has an active connection to a model or
transactor instance. Mainly the commands SYStem.GTL.CONNECT and
SYStem.GTL.DISCONNECT are used to change the connection state.

Type of the node, e.g. model or certain transactor type.

Displays a list of configuration commands that are active and point to the
transactor instance.

Displays the configuration string of the corresponding
SYStem.GTL.TransactorConfig command.

©1989-2024 Lauterbach

GTL Debug Back-End | 22

Example:

SYStem.GTL.EXPLore DEFault

See also
B SYStem.GTL

©1989-2024 Lauterbach GTL Debug Back-End | 23

SYStem.GTL.GPIONAME Name of GPIO transactor

Format: SYStem.GTL.GPIONAME " <transactor_name>"

Configures name and usage of a GPIO transactor. A GPIO transactor can provide a set of signals to access
the DUT, e.g. the Reset signal or the JTAG pins. A GPIO transactor can be used in case no JTAG probe
transactor is available or when it doesn’t implement those signals.

See also
B SYStem.GTL

SYStem.GTL.JTAGPROBENAME Name of JTAG probe transactor

Format: SYStem.GTL.JTAGPROBENAME "<transactor_name>"

Configures name and usage of a JTAG probe transactor. A JTAG probe transactor can interact with a whole
JTAG chain of the DUT.

See also
B SYStem.GTL
SYStem.GTL.LIBhame Name of 3rd-party plug-in library
Format: SYStem.GTL.LIBname "<transactor_name>"

Configures the 3rd-party GTL library that is used to access the emulation or simulation. This command
should be issued as the last configuration command.

See also
B SYStem.GTL

©1989-2024 Lauterbach GTL Debug Back-End | 24

SYStem.GTL.MODELCOMMAND Execute command in plug-in

Format: SYStem.GTL.MODELCOMMAND "<command>"

Executes a plug-in specific command.
Example:

SYStem.GTL.MODELCOMMAND "do something important"
LOCAL &result

&result=EVAL.STRing ()

PRINT "Result was: &result"

See also
B SYStem.GTL
SYStem.GTL.MODELCONFIG Configure emulation options
Format: SYStem.GTL.MODELCONFIG " <configuration>"

Configures the options to connect to the emulation or simulator. The particular options are defined by the
3rd-party plug-in.

See also
B SYStem.GTL
SYStem.GTL.MODELNAME Select emulation
Format: SYStem.GTL.MODELNAME "<model_name>"

Selects a certain emulation out of a set of emulations.

See also
B SYStem.GTL

©1989-2024 Lauterbach GTL Debug Back-End | 25

SYStem.GTL.PREBUNDLE Configure call optimization

Format: SYStem.GTL.PREBUNDLE [<option>]

<option>: AUTO | ON | OFF

Default: AUTO.

The option controls whether TRACES32 shall collect write accesses and perform them later on, or perform
them immediately. Collecting write accesses increases the performance but may cause problems with the
original error handling or introduce new effects in plug-in implementations.

(no parameter) Displays the current setting in the TRACE32 message line.
AUTO The setting depends on the plug-in and transactor interface.
ON Pre-bundling is active for all transactor interfaces.
OFF Pre-bundling is not active for all transactor interfaces.

See also

B SYStem.GTL

SYStem.GTL.RESet Reset GTL settings

Format: SYStem.GTL.RESet

Resets the connection to the transactor plug-in and the GTL configuration.

This command should only be used on the TRACE32 command line.

See also
B SYStem.GTL.RESetRESistant B SYStem.GTL

©1989-2024 Lauterbach GTL Debug Back-End | 26

SYStem.GTL.RESetRESistant Exempt GTL settings from reset commands

Format: SYStem.GTL.RESetRESistant [ON | OFF]

Controls the effect that the two reset commands RESet and SYStem.RESet have on the GTL settings.
ON The two reset commands have no effect on the configuration and the
connection to the transactor plug-in.

OFF The configuration and the connection to the transactor plug-in can be
reset by the two reset commands.

Example:

;selecting the GTL back-end activates the SYStem.GTL commands
SYStem.CONFIG.DEBUGPORT GTLO

;exempt the GTL settings from the two reset commands
SYStem.GTL.RESetRESistant ON

Joe e e

See also
B SYStem.GTL.RESet W SYStem.GTL
SYStem.GTL.SERVERCONFIG Configure server options
Format: SYStem.GTL.SERVERCONFIG " <configuration>"

Configures options to connect to the server knowing all emulations. The particular options are defined by the
3rd-party plug-in.

See also
B SYStem.GTL

©1989-2024 Lauterbach GTL Debug Back-End | 27

SYStem.GTL.SHAREDMODEL Connect debug port to existing connection

Format: SYStem.GTL.SHAREDMODEL <gtl_debug_port>

Links two GTL debug ports in order to share a connection to the DUT across multiple debug ports. More
information about the scenario can be found in the backend manual.

<gtl_debug_port> Can be GTLO...GTL<n>
See also
B SYStem.GTL
SYStem.GTL.SWDNAME Communicate with target via SWD
Format: SYStem.GTL.SWDNAME "<name>"

Configures the transactor <name> that is used to perform raw SWD communication with the target (SWD =
(serial wire debug).

Usually the name is the same as configured by SYStem.GTL.JTAGPROBENAME because the raw SWD
communication is an extension of the JTAG transactor interface and one single transactor instance is used.
When SYStem.GTL.JTAGPROBENAME and SYStem.GTL.SWDNAME have been configured, then the
command SYStem.CONFIG.DEBUGPORTTYPE can switch between JTAG and SWD.

Example:

; configure JTAG/SWD mixed mode
SYStem.GTL.JTAGPROBENAME "JTAGSWDXTOR"
SYStem.GTL.SWDNAME "JTAGSWDXTOR"

; switch to SWD
SYStem.CONFIG.DEBUGPORTTYPE SWD

; connect to the CPU using SWD
SYStem.Up

See also
B SYStem.GTL

©1989-2024 Lauterbach GTL Debug Back-End | 28

SYStem.GTL. TRACENAME Name of trace transactor

Format: SYStem.GTL.TRACENAME " <transactor_name>"

Configures name and usage of a Trace transactor. A Trace transactor can record off-chip trace data.

Example:

;select name for Trace transactor
SYStem.GTL.TRACENAME "TRACEQO"

;connect to emulation or simulation
SYStem.GTL.CONNECT

;select trace method, initialize the trace and show control the window

Trace.METHOD Analyzer
Analyzer.Init
Analyzer.state

See also
W SYStem.GTL
SYStem.GTL.TransactorConfig Preconfigure a certain transactor
Format: SYStem.GTL.TransactorConfig " <transactor_name>" " <configuration>"

Sets up a configuration string that is passed to the GTL plug-in when the transactor is connected. When the
configuration string for a certain transactor changes the transactor need to be disconnected. It is
recommended to pass the configuration before the transactors are defined, because this avoids

unnecessary reconnections.

<transactor_name> Name of the transactor that shall be configured.
<configuration> Specific configuration string passed to the GTL plug-in.
See also

B SYStem.GTL

©1989-2024 Lauterbach GTL Debug Back-End | 29

Example:

;pass TARGETSEL option to SWD transactor
SYStem.GTL.TransactorConfig "SWD_DAPl1" "TARGETSEL=1"

;use DAP level transactor by debugger
SYStem.Config.DAPName "SWD_DAP1"

;connect to emulation or simulation
SYStem.GTL.CONNECT

©1989-2024 Lauterbach GTL Debug Back-End | 30

	GTL Debug Back-End
	History
	Introduction
	Related Documents
	Contacting Support

	Abbreviations and Definitions
	System Architecture
	PowerView System Configurations
	Configuring the GTL Plug-in
	Keep the Graphical User Interface Responsive
	Timing Adaption
	Troubleshooting the GTL Back-End
	JTAG specific

	Command Reference
	SYStem.GTL Configure GTL debug port
	SYStem.GTL.ARMDAPNAME Configure name of DAP level transactor
	SYStem.GTL.CONNECT Connect to emulation or simulation
	SYStem.GTL.DISCONNECT Disconnect from emulation or simulation
	SYStem.GTL.DMANAME Name of DMA transactor
	SYStem.GTL.EXPLore Display plug-in capabilities
	SYStem.GTL.GPIONAME Name of GPIO transactor
	SYStem.GTL.JTAGPROBENAME Name of JTAG probe transactor
	SYStem.GTL.LIBname Name of 3rd-party plug-in library
	SYStem.GTL.MODELCOMMAND Execute command in plug-in
	SYStem.GTL.MODELCONFIG Configure emulation options
	SYStem.GTL.MODELNAME Select emulation
	SYStem.GTL.PREBUNDLE Configure call optimization
	SYStem.GTL.RESet Reset GTL settings
	SYStem.GTL.RESetRESistant Exempt GTL settings from reset commands
	SYStem.GTL.SERVERCONFIG Configure server options
	SYStem.GTL.SHAREDMODEL Connect debug port to existing connection
	SYStem.GTL.SWDNAME Communicate with target via SWD
	SYStem.GTL.TRACENAME Name of trace transactor
	SYStem.GTL.TransactorConfig Preconfigure a certain transactor

