
MANUAL

GTL Debug Back-End

GTL Debug Back-End

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 Debug Back-Ends .. 

 GTL Debug Back-End .. 1

 History .. 4

 Introduction ... 5

 Related Documents 5

 Contacting Support 5

 Abbreviations and Definitions ... 7

 System Architecture ... 8

 PowerView System Configurations ... 9

 Configuring the GTL Plug-in .. 12

 Keep the Graphical User Interface Responsive ... 16

 Timing Adaption .. 17

 Troubleshooting the GTL Back-End .. 18

 JTAG specific 18

 Command Reference .. 20

 SYStem.GTL Configure GTL debug port 20

 SYStem.GTL.ARMDAPNAME Configure name of DAP level transactor 20

 SYStem.GTL.CONNECT Connect to emulation or simulation 21

 SYStem.GTL.DISCONNECT Disconnect from emulation or simulation 21

 SYStem.GTL.DMANAME Name of DMA transactor 22

 SYStem.GTL.EXPLore Display plug-in capabilities 22

 SYStem.GTL.GPIONAME Name of GPIO transactor 24

 SYStem.GTL.JTAGPROBENAME Name of JTAG probe transactor 24

 SYStem.GTL.LIBname Name of 3rd-party plug-in library 24

 SYStem.GTL.MODELCOMMAND Execute command in plug-in 25

 SYStem.GTL.MODELCONFIG Configure emulation options 25

 SYStem.GTL.MODELNAME Select emulation 25

 SYStem.GTL.PREBUNDLE Configure call optimization 26

 SYStem.GTL.RESet Reset GTL settings 26

 SYStem.GTL.RESetRESistant Exempt GTL settings from reset commands 27

 SYStem.GTL.SERVERCONFIG Configure server options 27
GTL Debug Back-End | 2©1989-2024 Lauterbach

 SYStem.GTL.SHAREDMODEL Connect debug port to existing connection 28

 SYStem.GTL.SWDNAME Communicate with target via SWD 28

 SYStem.GTL.TRACENAME Name of trace transactor 29

 SYStem.GTL.TransactorConfig Preconfigure a certain transactor 29
GTL Debug Back-End | 3©1989-2024 Lauterbach

GTL Debug Back-End

Version 06-Jun-2024

History

26-Aug-13 Initial version.
GTL Debug Back-End | 4©1989-2024 Lauterbach

Introduction

The Generic Transactor Library (GTL) is used to interact with a RTL simulators or emulators. This document
describes how to load a GTL plug-in library and how to adapt TRACE32 for special use cases.

Related Documents

• “T32Start” (app_t32start.pdf): The T32Start application assists you in setting up multicore /
multiprocessor debug environments, and software-only debug environments. T32Start is only
available for Windows.

For more information about software-only debug environments, please refer to:
“Software-only Debugging (Host MCI)” (app_t32start.pdf).

Contacting Support

Use the Lauterbach Support Center: https://support.lauterbach.com

• To contact your local TRACE32 support team directly.

• To register and submit a support ticket to the TRACE32 global center.

• To log in and manage your support tickets.

• To benefit from the TRACE32 knowledgebase (FAQs, technical articles, tutorial videos) and our
tips & tricks around debugging.

Or send an email in the traditional way to support@lauterbach.com.

Be sure to include detailed system information about your TRACE32 configuration.

1. To generate a system information report, choose TRACE32 > Help > Support > Systeminfo.
GTL Debug Back-End | 5©1989-2024 Lauterbach

https://support.lauterbach.com

2. Preferred: click Save to File, and send the system information as an attachment to your e-mail.

3. Click Save to Clipboard, and then paste the system information into your e-mail.

NOTE: Please help to speed up processing of your support request. By filling out the
system information form completely and with correct data, you minimize the
number of additional questions and clarification request e-mails we need to
resolve your problem.
GTL Debug Back-End | 6©1989-2024 Lauterbach

Abbreviations and Definitions

AMP Asymmetric Multi-Processing

Back-end A back-end contain high performance multi-core debugger driver and the
interface to the simulator / emulator.

DUT Device Under Test. A DUT is the part of the model that is being tested.

GTL Generic Transactor Library. A plug-in interface for the debuggers back-
end to access the transactors.

IPC Inter Process Communication. A method to communicate between multiple
processes of an Operating System e.g. Semaphores, Shared Memory, File
Pipes, TCP

RTL Register Transfer Level. Models of this level describe a digital system by
registers, signals and processes, not using a complete net list with timing
information.

Simulator A simulator executes a model on RTL level without using special
acceleration hardware.

SMP Symmetric Multi-Processing

Transactor A transactor is a part of a system that interacts with the DUT in order to
analyze and control the DUT by an external tool.
GTL Debug Back-End | 7©1989-2024 Lauterbach

System Architecture

The total system consists of two process groups. The debugger processes containing front-end and back-
end and the RTL simulation / emulation. The debuggers back-end (hostmci) contain the high performance
multicore debug driver that is also used together with real Lauterbach Hardware. The debuggers back-end is
extended by a third party GTL plug-in to access transactors within the simulator/emulator. The GTL plug-in
and the RTL simulator/emulator communicate by a proprietary protocol using Inter Process Communication
of the Operating System.

The debuggers back-end need to run with a low latency to the simulation/emulation due to the very high
amount of accesses to the transactors. Therefore the back-end and the RTL simulator/emulator should run
at the same machine.

The debuggers front-ends (PowerView) can run at a different machine. Multiple PowerView instances can be
connected to one back-end in oder to perform AMP debugging.

��������	�
���
	�����	�
�����
�	
������	
����

��������������������

�����
�
!�����	"���"���

#$��
	���������� �������

%�&

'$��(����	
���"�"���

$��
������
$��
������

$��
������
�)$

*��
��
����
�����+	��
GTL Debug Back-End | 8©1989-2024 Lauterbach

PowerView System Configurations

The TRACE32 PowerView instances can be set up in different ways.

1. A single TRACE32 PowerView instance runs on the same host as the back-end, see Setup 1. This
configuration can’t handle AMP debug scenarios.

2. Multiple TRACE32 PowerView instances run on the same host as the back-end, see Setup 2.

3. The TRACE32 PowerView instances run on a dedicated workstation; the back-end runs on another
host, see Setup 3.

The Lauterbach Debug Driver library (hostmci.so for Linux/Mac users and hostmci.dll for Windows
users) can be integrated into the TRACE32 PowerView application or run as a separate process, called
t32mciserver. Running it as a separate process provides two main benefits:

1. The MCI server can execute on one host, whilst one or more instances of TRACE32 PowerView
execute on another host.

2. Multiple instances of TRACE32 PowerView can execute on a single host, sharing the MCI
connection.

Setup 1

Setup with a single TRACE32 PowerView instance running on the same host as the back-end:

Modify the config.t32 file as follows:

PBI=MCILIB ; configure system to use hostmci.so

��������	�
���
	�����	�
�����
�	
������	
����

������	��

������	��������
GTL Debug Back-End | 9©1989-2024 Lauterbach

Setup 2

Setup with multiple TRACE32 PowerView instances (AMP) running on the same host as the back-end:

Modify the config.t32 as follows:

PBI=MCISERVER
PORT=30000
INSTANCE=AUTO

; set up the usage of hostmci.so and open
; server at 30000 for the first instance.
; consecutive number of instance or AUTO

��������	�
���
	�����	�
�����
�	
������	
����

������	����

������	��������

������	����

������	���

�	�
GTL Debug Back-End | 10©1989-2024 Lauterbach

Setup 3

Setup with multiple TRACE32 PowerView instances (AMP) running on another host:

Start t32mciserver on the simulation host:

Modify the config.t32 file as follows:

Linux example: To start TRACE32 PowerView with a specific config file, use e.g.:

./t32mciserver port=30000 ; start t32mciserver at port 30000

PBI=MCISERVER
NODE=192.168.0.1
PORT=30000
INSTANCE=AUTO
DEDICATED

; set up connection to t32mciserver
; connect to IP 192.168.0.1
; at port 30000
; consecutive number of instances
; avoid to fall into Setup2 case

bin/pc_linux/t32marm -c config.t32

���
������

���
������

���
������

��
��������
���������������

������	��
���
	
��
�������
���

	�����
�����

��
	����
���������
GTL Debug Back-End | 11©1989-2024 Lauterbach

Configuring the GTL Plug-in

A typical start sequence is shown below. This sequence can be written to a PRACTICE script file (*.cmm,
ASCII format) and executed with the command DO <file>.

Additional Commands to Configure ARM Bus Transactors

; select GTL as back-end and a certain port
SYStem.CONFIG.DEBUGPORT GTL0

; (optional) tell the system how to connect to the simulation server
SYStem.GTL.SERVERCONFIG "server1:10000"

; (optional) pass configuration option to connect to the model
SYStem.GTL.MODELCONFIG "OPTION1=0|OPTION2=1"

; (optional) tell the system to connect to a certain DUT
SYStem.GTL.MODELNAME "MODEL_JTAG"

; tell the system the usage of transactors
SYStem.GTL.JTAGPROBENAME "JTAGPROBE0"

; library name of GTL plug-in
SYStem.GTL.LIBname "gtlplugin.so"

; configure usage of model time base instead host base to avoid timeouts
; while the emulation is paused.
SYStem.VirtualTiming.TimeinTargetTime ON
SYStem.VirtualTiming.PauseinTargetTime ON

; continue with CPU configuration
SYStem.CPU CortexM3 ; select CPU
SYStem.JtagClock 1Mhz ; setup JTAG frequency
SYStem.Up ; connect to the emulation

SYStem.GTL.ARMDAPNAME Configure system wide DAP transactor

SYStem.CONFIG.DAPNAME Configure and override DAP transactor for
core DAP instance 1 accesses

SYStem.CONFIG.DAP2NAME Configure and override second DAP
transactor for core DAP instance 2 accesses

SYStem.CONFIG.DEBUGBUSNAME Configure APB transactor to debug registers
of the core

SYStem.CONFIG.APBNAME Configure APB transactor for APB: memory
class

SYStem.CONFIG.DAP2DEBUGBUSNAME Configure APB bus used for DAP2: memory
class
GTL Debug Back-End | 12©1989-2024 Lauterbach

In case the JTAG probe transactor is not used, it is recommended to configure an additional GPIO transactor
to modify and sense the system reset signal.

GTL Functions

For a description of the GTL functions, see “SYStem.GTL.CONNECTED() Connection status”
(general_func.pdf).

SYStem.CONFIG.DAP2APBNAME Configure APB transactor for APB2:
memory class

SYStem.CONFIG.MEMORYBUSNAME Configure AHB transactor that is used for E:
access when the CPU is running

SYStem.CONFIG.AHBNAME Configure AHB transactor that is used for
AHB: memory class

SYStem.CONFIG.DAP2MEMORYBUSNAME (currently not in use)

SYStem.CONFIG.DAP2AHBNAME Configure AHB transactor that is used for
AHB2: memory class

SYStem.CONFIG.AXINAME Configure AXI transactor that is used for
AXI: memory class

SYStem.CONFIG.DAP2AXINAME Configure second AXI transactor that is
used for AXI2: memory class

SYStem.GTL.GPIONAME Configure GPIO transactor to access extra
signals as system reset when jtag probe
transactor is not used.
GTL Debug Back-End | 13©1989-2024 Lauterbach

Shared Models

The DUT can contain multiple debug ports that are independent and provide a different complete feature set
as the reset signal or the control of a certain JTAG chain. The way to connect to those asymmetric multi-core
systems is to start multiple PowerView instances with individual debug ports that share the same Model of
the loaded GTL plug-in. The following picture illustrate the scenario:

�����������
�����

����������	
����

�	�
�����������������

�	�
���
��	

��
	�

�	�
���
��	

��
	�

�	�
����
�
����

�	�
����
�
����

�����
��	� �����
��	�

���
	�����	�����	��

������
��%�

������
�������

���� ���� ���
��% ��!

��"#�$"�#��%

��
	�
$,",�

������
�������

���- ���. ���/
��% ��!

��"#�$"�#��%

��
	�
$,",�

�0�����	��
GTL Debug Back-End | 14©1989-2024 Lauterbach

Configuration for TRACE32 PowerView 1

Configuration TRACE32 PowerView 2:

Influence of configuration commands

System options can be shared by the whole system, the debug port or are individual for one PowerView
instance. The sharing level is classified by the command path:

; select GTL as back-end and a certain port
SYStem.CONFIG.DEBUGPORT GTL0

; (optional) tell the system to connect to a certain DUT
SYStem.GTL.MODELNAME "MODEL_JTAG"

; tell the system the usage of transactors
SYStem.GTL.JTAGPROBENAME "JTAGPROBE0"

; library name of GTL plug-in
SYStem.GTL.LIBname "gtlplugin.so"

; connect to transactors
SYStem.GTL.CONNECT

; select GTL as back-end and a certain port
SYStem.CONFIG.DEBUGPORT GTL1

; share the plug-in and Model as for debug port GTL0
SYStem.GTL.SHAREDMODEL GTL0

; tell the system the usage of transactors
SYStem.GTL.JTAGPROBENAME "JTAGPROBE1"

; connect to additional transactors
SYStem.GTL.CONNECT

SYStem.GTL.* Affects the current selected GTL debug port is shared by all
PowerView instances

SYStem.CONFIG.* Affects only the current PowerView instance

SYStem.VirtualTiming.* Affects the whole system
GTL Debug Back-End | 15©1989-2024 Lauterbach

Keep the Graphical User Interface Responsive

Due to slow RTL simulation, small operations such as reading the state or showing memory dumps take a
long time. This chapter describes how to adjust the virtual time scale to ultra-slow simulators and how to
reduce screen flicker caused by slow RTL simulation. To keep the user interface smooth multiple tuning
options can be set.

The most important setting is SETUP.URATE to configure the update rate of the TRACE32 windows. The
processors state is also polled by this rate.

To avoid screen update while PRACTICE scripts are running:

To switch off state polling when the CPU is stopped, the command SYStem.POLLING can be used, but the
debugger can’t detect when another CPU changes the state from stopped to running e.g. by soft reset.

The command MAP.UpdateOnce can be used to read memory regions only one time after a break is
detected.

For analysis and data display purposes it is recommended that you use the code from the TRACE32 virtual
memory (VM:) instead of the code from the target memory. Therefore, the code needs to be copied to the
virtual memory when an *.elf file is being loaded.

SETUP.URATE 10s ; screen will be updated every 10s

SCREEN.OFF ; switch off update of the windows when
; a PRACTICE script is executed

SCREEN ; trigger a manual update of the windows
; inside a PRACTICE script

SYStem.POLLING DEF OFF ; disable processor state polling when
; stopped

MAP.UpdateOnce 0x0++0x1000 ; read memory of regions 0x0--0x1000
; only one time after break

Data.Load.ELF *.elf /VM

Data.List VM:

Onchip.Access VM

; download code to target and copy it to
; VM:
; open source window, but use VM: memory

; use VM memory for trace analysis
GTL Debug Back-End | 16©1989-2024 Lauterbach

Timing Adaption

TRACE32 software includes of a set of efficient low-level driver routines to access the target. These routines
have a certain timing that must be adjusted to ultra-slow simulators that can be million times slower than real
silicon. In general, there are code parts that pause the execution, wait until a time-out is reached or just use
a certain point of time.

For example, when the simulation is 1,000,000 times slower than real time, these commands can be used to
adjust the timing in most cases:

The following timing SYStem commands are available:

; configure usage of model time base instead host base to avoid timeouts
; while the emulation is paused.
SYStem.VirtualTiming.TimeinTargetTime ON
SYStem.VirtualTiming.PauseinTargetTime ON

;make the pauses and timeouts 100 times shorter
SYStem.VirtualTiming.TimeScale 0.01

;this will limit any pause statements to 10us target time
SYStem.VirtualTiming.MaxPause 10us

;this will limit any small time-out to read register to 1ms
SYStem.VirtualTiming.MaxTimeout 1ms

SYStem.VirtualTiming.MaxPause Limit pause

SYStem.VirtualTiming.MaxTimeout Override time-outs

SYStem.VirtualTiming.PauseinTargetTime Set up pause time-base

SYStem.VirtualTiming.PauseScale Multiply pause with a factor

SYStem.VirtualTiming.TimeinTargetTime Set up general time-base

SYStem.VirtualTiming.TimeScale Multiply time-base with a factor

SYStem.VirtualTiming.HardwareTimeout Can disable hardware timeout

SYStem.VirtualTiming.HardwareTimeoutScale Multiply hardware timeout

SYStem.VirtualTiming.InternalClock Base for artificial time calculation

SYStem.VirtualTiming.OperationPause Insert a pause after each action to slow
down timing.
GTL Debug Back-End | 17©1989-2024 Lauterbach

Troubleshooting the GTL Back-End

JTAG specific

After the signals and parameters are connected with the TAP of the DUT, PowerView JTAG diagnostic
should run:

Symptom Cause Remedy

HostMCI:GTL:Err
or : can’t load
library

different elf classes are used
for hostmci.so/.dll and the
GTL plug-in

start compatible combinations of
hostmci.so and the plug-in e.g. both must
be 32bit or 64bit. The elf class of hostmci is
the same as the elf-class of the process it
loads it (t32m????? or t32mciserver).

Status line shows
“power down”

TRACE32 can’t connect to
the simulator.

Check that the simulation is running when
TRACE32 start to connect. View the AREA
window for any diagnostic messages.

Error “emulator
subcore
communication
timeout”

Debug Driver algorithm took
longer than expected

Increase the value of
SYStem.VirtualTiming.TimeScale or
SYStem.VirtualTiming.HardwareTimeoutS
cale.

;show results and errors
AREA.view

;set up JTAG clock (simulation clock based)
SYStem.JtagClock 1Mhz

;analyze JTAG chain for testing purposes
SYStem.DETECT DAISYCHAIN

Symptom Cause Remedy

When the IR and
DR length are both
“0”

Probably TDI is connected to
TDO without a DUT JTAG
TAP between them.

connect TDI and TDO with the JTAG chain
of the DUT.
GTL Debug Back-End | 18©1989-2024 Lauterbach

TDO stays
constantly high or
low

TDO signal is not connected
or the DUT TAP does not
work, e.g. is held in reset.

connect TDO correctly, check the signals
around the JTAG chain in the
simulation/emulation and find out why TDO
don’t toggle.

JTAG Chain
lengths cannot be
determined

JTAG frequency might be too
high.

Use SYStem.JtagClock to lower the JTAG
frequency.

NOTE: The maximum clock of the TAP can be determined by the command
SYStem.DETECT JtagClock, but the final frequency that can be used also
depends to model behind the TAP. The detected frequency is just the upper limit.
The optimal frequency depends to the state of the simulation and can change
during one debug session.

Symptom Cause Remedy
GTL Debug Back-End | 19©1989-2024 Lauterbach

Command Reference

SYStem.GTL Configure GTL debug port

Using the SYStem.GTL command group, you can configure a GTL debug port (GTL, Generic Transactor
Library). The command group is active after GTL has been selected as debug port. It allows to define and
configure the used transactors and GTL 3rd-party library. The settings are shared among the TRACE32
instances connected to a certain MCI Server.

See also

■ SYStem.GTL.ARMDAPNAME ■ SYStem.GTL.CONNECT
■ SYStem.GTL.DISCONNECT ■ SYStem.GTL.DMANAME
■ SYStem.GTL.EXPLore ■ SYStem.GTL.GPIONAME
■ SYStem.GTL.JTAGPROBENAME ■ SYStem.GTL.LIBname
■ SYStem.GTL.MODELCOMMAND ■ SYStem.GTL.MODELCONFIG
■ SYStem.GTL.MODELNAME ■ SYStem.GTL.PREBUNDLE
■ SYStem.GTL.RESet ■ SYStem.GTL.RESetRESistant
■ SYStem.GTL.SERVERCONFIG ■ SYStem.GTL.SHAREDMODEL
■ SYStem.GTL.SWDNAME ■ SYStem.GTL.TRACENAME
■ SYStem.GTL.TransactorConfig ■ SYStem.state
❏ SYStem.GTL.CALLCOUNTER() ❏ SYStem.GTL.CONNECTED()
❏ SYStem.GTL.CYCLECOUNTER() ❏ SYStem.GTL.LIBname()
❏ SYStem.GTL.PLUGINVERSION() ❏ SYStem.GTL.VENDORID()
❏ SYStem.GTL.VERSION()

▲ ’Introduction’ in ’GTL Debug Back-End’

SYStem.GTL.ARMDAPNAME Configure name of DAP level transactor

By using SYStem.GTL.ARMDAPNAME the name for a DAP level transactor can be configured. This
transactor is active in all connected TRACE32 instances.

See also

■ SYStem.GTL

;optional step: open the SYStem.CONFIG dialog showing the DebugPort tab
SYStem.CONFIG.state /DebugPort

;selecting the GTL back-end activates the SYStem.GTL commands
SYStem.CONFIG.DEBUGPORT GTL0

Format: SYStem.GTL.ARMDAPNAME <name>
GTL Debug Back-End | 20©1989-2024 Lauterbach

SYStem.GTL.CONNECT Connect to emulation or simulation

Uses the settings previously configured with the SYStem.GTL commands to load the GTL library and
connect to the emulation or simulation.

Example:

See also

■ SYStem.GTL

SYStem.GTL.DISCONNECT Disconnect from emulation or simulation

Disconnects from existing connection to the emulation or simulation and disables the periodic re-connection
tries.

See also

■ SYStem.GTL

Format: SYStem.GTL.CONNECT [/TRY]

TRY Forces the command to continue quietly when the connection could not be
established.

;selecting the GTL back-end activates the SYStem.GTL commands
SYStem.CONFIG.DEBUGPORT GTL0

;configure GTL
SYStem.GTL.JTAGPROBENAME "PROBE1"
SYStem.GTL.LIBname "gtllib.so"

;connect to the emulation or simulation
SYStem.GTL.CONNECT

Format: SYStem.GTL.DISCONNECT ["<transactor_name>"] [/UNUSED]

<transactor_name> Disconnects a named transactor when it is not used anymore.

UNUSED Disconnects from all transactors that are not used anymore.
GTL Debug Back-End | 21©1989-2024 Lauterbach

SYStem.GTL.DMANAME Name of DMA transactor

Configures name and usage of DMA transactor to have back-door memory access to the emulation or
simulation. The back-door access can be used by Data.LOAD command with the parameter /DMALOAD.

See also

■ SYStem.GTL

SYStem.GTL.EXPLore Display plug-in capabilities

The dialog can show the available transactor interface instances of the plug-in, provided the optional
enumeration interface functions have been implemented by the plug-in.

Format: SYStem.GTL.DMANAME "<transactor_name>"

Format: SYStem.GTL.EXPLore [<column>]

<column>: DEFault | Structure | Connected | tYpe | UsedByCommand | CoNFig

DEFault Displays a pre-defined set of columns.

Structure Contains a tree with the abstractions layers of the GTL API. The top level
enumerates all instances of the models or scenarios. The available
transactor interface instances are displayed below the model.

Connected Displays whether TRACE32 has an active connection to a model or
transactor instance. Mainly the commands SYStem.GTL.CONNECT and
SYStem.GTL.DISCONNECT are used to change the connection state.

tYpe Type of the node, e.g. model or certain transactor type.

UsedByCommand Displays a list of configuration commands that are active and point to the
transactor instance.

CoNFig Displays the configuration string of the corresponding
SYStem.GTL.TransactorConfig command.
GTL Debug Back-End | 22©1989-2024 Lauterbach

Example:

See also

■ SYStem.GTL

SYStem.GTL.EXPLore DEFault
GTL Debug Back-End | 23©1989-2024 Lauterbach

SYStem.GTL.GPIONAME Name of GPIO transactor

Configures name and usage of a GPIO transactor. A GPIO transactor can provide a set of signals to access
the DUT, e.g. the Reset signal or the JTAG pins. A GPIO transactor can be used in case no JTAG probe
transactor is available or when it doesn’t implement those signals.

See also

■ SYStem.GTL

SYStem.GTL.JTAGPROBENAME Name of JTAG probe transactor

Configures name and usage of a JTAG probe transactor. A JTAG probe transactor can interact with a whole
JTAG chain of the DUT.

See also

■ SYStem.GTL

SYStem.GTL.LIBname Name of 3rd-party plug-in library

Configures the 3rd-party GTL library that is used to access the emulation or simulation. This command
should be issued as the last configuration command.

See also

■ SYStem.GTL

Format: SYStem.GTL.GPIONAME "<transactor_name>"

Format: SYStem.GTL.JTAGPROBENAME "<transactor_name>"

Format: SYStem.GTL.LIBname "<transactor_name>"
GTL Debug Back-End | 24©1989-2024 Lauterbach

SYStem.GTL.MODELCOMMAND Execute command in plug-in

Executes a plug-in specific command.

Example:

See also

■ SYStem.GTL

SYStem.GTL.MODELCONFIG Configure emulation options

Configures the options to connect to the emulation or simulator. The particular options are defined by the
3rd-party plug-in.

See also

■ SYStem.GTL

SYStem.GTL.MODELNAME Select emulation

Selects a certain emulation out of a set of emulations.

See also

■ SYStem.GTL

Format: SYStem.GTL.MODELCOMMAND "<command>"

SYStem.GTL.MODELCOMMAND "do something important"
LOCAL &result
&result=EVAL.STRing()
PRINT "Result was: &result"

Format: SYStem.GTL.MODELCONFIG "<configuration>"

Format: SYStem.GTL.MODELNAME "<model_name>"
GTL Debug Back-End | 25©1989-2024 Lauterbach

SYStem.GTL.PREBUNDLE Configure call optimization

Default: AUTO.

The option controls whether TRACE32 shall collect write accesses and perform them later on, or perform
them immediately. Collecting write accesses increases the performance but may cause problems with the
original error handling or introduce new effects in plug-in implementations.

See also

■ SYStem.GTL

SYStem.GTL.RESet Reset GTL settings

Resets the connection to the transactor plug-in and the GTL configuration.

This command should only be used on the TRACE32 command line.

See also

■ SYStem.GTL.RESetRESistant ■ SYStem.GTL

Format: SYStem.GTL.PREBUNDLE [<option>]

<option>: AUTO | ON | OFF

(no parameter) Displays the current setting in the TRACE32 message line.

AUTO The setting depends on the plug-in and transactor interface.

ON Pre-bundling is active for all transactor interfaces.

OFF Pre-bundling is not active for all transactor interfaces.

Format: SYStem.GTL.RESet
GTL Debug Back-End | 26©1989-2024 Lauterbach

SYStem.GTL.RESetRESistant Exempt GTL settings from reset commands

Controls the effect that the two reset commands RESet and SYStem.RESet have on the GTL settings.

Example:

See also

■ SYStem.GTL.RESet ■ SYStem.GTL

SYStem.GTL.SERVERCONFIG Configure server options

Configures options to connect to the server knowing all emulations. The particular options are defined by the
3rd-party plug-in.

See also

■ SYStem.GTL

Format: SYStem.GTL.RESetRESistant [ON | OFF]

ON The two reset commands have no effect on the configuration and the
connection to the transactor plug-in.

OFF The configuration and the connection to the transactor plug-in can be
reset by the two reset commands.

;selecting the GTL back-end activates the SYStem.GTL commands
SYStem.CONFIG.DEBUGPORT GTL0

;exempt the GTL settings from the two reset commands
SYStem.GTL.RESetRESistant ON
;...

Format: SYStem.GTL.SERVERCONFIG "<configuration>"
GTL Debug Back-End | 27©1989-2024 Lauterbach

SYStem.GTL.SHAREDMODEL Connect debug port to existing connection

Links two GTL debug ports in order to share a connection to the DUT across multiple debug ports. More
information about the scenario can be found in the backend manual.

See also

■ SYStem.GTL

SYStem.GTL.SWDNAME Communicate with target via SWD

Configures the transactor <name> that is used to perform raw SWD communication with the target (SWD =
(serial wire debug).

Usually the name is the same as configured by SYStem.GTL.JTAGPROBENAME because the raw SWD
communication is an extension of the JTAG transactor interface and one single transactor instance is used.
When SYStem.GTL.JTAGPROBENAME and SYStem.GTL.SWDNAME have been configured, then the
command SYStem.CONFIG.DEBUGPORTTYPE can switch between JTAG and SWD.

Example:

See also

■ SYStem.GTL

Format: SYStem.GTL.SHAREDMODEL <gtl_debug_port>

<gtl_debug_port> Can be GTL0...GTL<n>

Format: SYStem.GTL.SWDNAME "<name>"

; configure JTAG/SWD mixed mode
SYStem.GTL.JTAGPROBENAME "JTAGSWDXTOR"
SYStem.GTL.SWDNAME "JTAGSWDXTOR"

; switch to SWD
SYStem.CONFIG.DEBUGPORTTYPE SWD

; connect to the CPU using SWD
SYStem.Up
GTL Debug Back-End | 28©1989-2024 Lauterbach

SYStem.GTL.TRACENAME Name of trace transactor

Configures name and usage of a Trace transactor. A Trace transactor can record off-chip trace data.

Example:

See also

■ SYStem.GTL

SYStem.GTL.TransactorConfig Preconfigure a certain transactor

Sets up a configuration string that is passed to the GTL plug-in when the transactor is connected. When the
configuration string for a certain transactor changes the transactor need to be disconnected. It is
recommended to pass the configuration before the transactors are defined, because this avoids
unnecessary reconnections.

See also

■ SYStem.GTL

Format: SYStem.GTL.TRACENAME "<transactor_name>"

;select name for Trace transactor
SYStem.GTL.TRACENAME "TRACE0"

;connect to emulation or simulation
SYStem.GTL.CONNECT

;select trace method, initialize the trace and show control the window
Trace.METHOD Analyzer
Analyzer.Init
Analyzer.state

Format: SYStem.GTL.TransactorConfig "<transactor_name>" "<configuration>"

<transactor_name> Name of the transactor that shall be configured.

<configuration> Specific configuration string passed to the GTL plug-in.
GTL Debug Back-End | 29©1989-2024 Lauterbach

Example:

;pass TARGETSEL option to SWD transactor
SYStem.GTL.TransactorConfig "SWD_DAP1" "TARGETSEL=1"

;use DAP level transactor by debugger
SYStem.Config.DAPName "SWD_DAP1"

;connect to emulation or simulation
SYStem.GTL.CONNECT
GTL Debug Back-End | 30©1989-2024 Lauterbach

	GTL Debug Back-End
	History
	Introduction
	Related Documents
	Contacting Support

	Abbreviations and Definitions
	System Architecture
	PowerView System Configurations
	Configuring the GTL Plug-in
	Keep the Graphical User Interface Responsive
	Timing Adaption
	Troubleshooting the GTL Back-End
	JTAG specific

	Command Reference
	SYStem.GTL Configure GTL debug port
	SYStem.GTL.ARMDAPNAME Configure name of DAP level transactor
	SYStem.GTL.CONNECT Connect to emulation or simulation
	SYStem.GTL.DISCONNECT Disconnect from emulation or simulation
	SYStem.GTL.DMANAME Name of DMA transactor
	SYStem.GTL.EXPLore Display plug-in capabilities
	SYStem.GTL.GPIONAME Name of GPIO transactor
	SYStem.GTL.JTAGPROBENAME Name of JTAG probe transactor
	SYStem.GTL.LIBname Name of 3rd-party plug-in library
	SYStem.GTL.MODELCOMMAND Execute command in plug-in
	SYStem.GTL.MODELCONFIG Configure emulation options
	SYStem.GTL.MODELNAME Select emulation
	SYStem.GTL.PREBUNDLE Configure call optimization
	SYStem.GTL.RESet Reset GTL settings
	SYStem.GTL.RESetRESistant Exempt GTL settings from reset commands
	SYStem.GTL.SERVERCONFIG Configure server options
	SYStem.GTL.SHAREDMODEL Connect debug port to existing connection
	SYStem.GTL.SWDNAME Communicate with target via SWD
	SYStem.GTL.TRACENAME Name of trace transactor
	SYStem.GTL.TransactorConfig Preconfigure a certain transactor

