LAUTERBACH A

Application Note
for the SNOOQOPer Trace

Application Note for the SNOOPer Trace

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
Trace Application NOTES ... e s e e s s mmmsmssssssssssssssssssnnsnnnns =
Lo A 1= T T r~
Application Note for the SNOOPEr TraCeccccccecmrrissiesmmriinsssssrisesss s ssmsss s sssmssnes 1
LT3 o 3

L £ oo LU T o o 4
SNOOPer Trace Configurationcccccciiiiismrinn s 6
EST=Ta 0] o [T T R =01V =T 4 Vo N 8
Logging a Single Variable 10
Logging only Data Changes 12
Logging Multiple Variables 13
Display the SNOOPer Trace Results 14

List of Recorded Samples 14
Graphical Display of SNOOPer Trace Results 16
Statistical Distributions 18
SNOOPer Trace Trigger 19
Sampling the Program COUNTErcccciiiirsmmmmniissssrisnsssss s ssssssss s snssssss s sssssssssssnsnses 20
Setup 21
Display Options 21
Sampling the Program Counter and the Current Task 24

Data Sampling via Debug Communication Channelccccviiiiiicmmnisnnncsnncsnnssnnnens 27
Sampling Benchmark COUNTErScccccciiiirmmmmminssmsrmnissss s sss s ssssssss s sssssssssssnnsanas 29
Sampling ETM COUNTEIScciiiicciriiiieiirinsssmsssssssssss s ssssssss s s sssssss s s s ssssssss sessssnssssssssamsmnssnsssas 33

LT V=R 1 T [N 1o T 37

©1989-2024 Lauterbach Application Note for the SNOOPer Trace | 2

Application Note for the SNOOPer Trace

Version 06-Jun-2024

History

14-Feb-2018 Mayor rework on application note.

©1989-2024 Lauterbach Application Note for the SNOOPer Trace | 3

Introduction

A TRACE32 PowerView for Arm o B]
File Edit View Var Break Run CPU Misc Trace Perf Cov STM32F3x Window Help
MM b efrnE 2R D HuR s @2
% B:SNOOPer.DRAW.Var %DEFault plotl plot2 o [-E- s | & B:sNoOPerstate o [@ [=
& setup.. |Lr1 Goto.... || #Find... || A chart || 0 In][0« out][K8 Full]| ©1n || S out|| E Fu state used SELect
\\demo_sram\Gobal\plotT B \\dero_sram\Global\plot2 ™
Clobzlin LAY I 0.00 DISable V.RANGE(plot1) V.RANGE(plot2) [c] [selectn
) ! . || @orF 45524,
40000. - Am SIZE TValue
E trigger 100000, [eee] [clear
30000. e
break
i Mode Mode Mode TOut
20000.
commands @) Fifo @) Memory AddressTrace | | (@) Trace
RESet Stack pee Changes Program
10000.
@ Init BMC V|stave PULSE
o & SnapShot Rate PC StopAndGo BUSA
£ List 1.000us PC+HMMU FAST
-10000.
/| AutoArm 1000000. ET™ ContextID TDelay
Autolnit max ETM32 0.
-20000.
- SelfArm 490.000us
4y 4 ’
£/ B:SNOOPer STATistic DistriB Data /Filter Address Var RANGE(plot2) = R e NOCRerhst R ies WA= Back S ETE
& setup...| 22 config...| R Goto... | E|Detailed|[A chart || Eprofile | & setup...| R Goto... || #iFind... || v Chart || o Draw || HiProfile |
pgell e 55763 record address var [t1. back i
items: 4. total: - ples: - 0000000021 SD:20000D26 plot2 = -25000 38.060us P
e T caigr_ax % i |[Q00000D| so:oonooad ploti = 7dio mpws L
Cother) | 51.872us| 51.872us [S1.872us| - O Q0% e -~ ||-0000000018 | 5D:20000024 plotl = -7440 38.460us m
dataz0x0| = 7.104ms) 7.104ms| 7.104ms| - 1.(1/0) | 0.398% 1+ -0000000017 | 5D:20000D26 plotz = -25000 38.320us
data=0x61A8 | 922.433ms | 306.085ms | 308.190ms | 307.478ms . \793% B oreeaT 2120000024 plotl = 7440 38 5000 ~
data=0x9E58 | B51.399ms | 307.246ms | 307.258ms | 425.699ms 3.0/1) | 47.802% = | 6000000015 120000026 plot? = -25000 38 3000
< i » 0000000014 SD:20000024 plotl = -7440 38.480us
-0000000013 50120000026 plot2 = -25000 38.340us
0000000012 SD:20000024 plotl = -7440 38.460us
™ B:SNOOPer Chart.VarState = || (= | 28 | ||-0000000011 5D:20000026 plot? = -25000 38.320us
0000000010 SD:20000024 plotl = -7500 38.740us
[setup...| 32 config...| 3 Goto... H 3‘1“"" H i Chart][1n J[+0¢ out [£3 Ful 0000000009 50:20000026 E ot2 = -25000 38.060us
-892.000ms -890. 000ms -889.000ms -888.000ms -887.000m -0000000008 5D:20000024 plotl = -7500 38.480us
rangefi . L L . 0000000007 5D120000026 plot? = 25000 38 340us
P[5 B e e — e — o — T R— T R— T B—— s — e — 0000000006 SD:20000024 plotl = -7500 38.460us =
Plot24(zsoto _ ||-o000000005 SD:20000026 plot? = -25000 38.320us =
0000000004 5D:20000024 plotl = -7500 38. 640us v
<y 4 1 »]
‘B::
[components| [trace | Data [var][st |[PeRF || system |[step |[Go [Break |[svmbol][Frame |[Register |[FPU other previous
ST:20000882 \\demo_sram\sieve\ancode+0x34 stopped MIX [P

The SNOOPer trace is part of TRACES2 trace framework and is designed to collect samples periodically

while the program execution is running.

The SNOOPer can be used for:

J Sampling the Memory: the SNOOPer trace allows to sample the content of up to 16 data items
while the program execution is running. This feature is especially useful for variable monitoring if
the on-chip trace logic can not generate data trace information or if the TRACES32 tool in use is just a

debugger with no trace capabilities.

The sampling works non-intrusively, thus without stopping the program execution, if the on-chip

debugging interface provides run-time memory access. Otherwise, the debugger will periodically
stop the program execution to read the selected memory (StopAndGo mode). Please refer to
“Run-time Memory Access” (glossary.pdf) and “StopAndGo Mode” (glossary.pdf).

Memory sampling is only recommended for variables whose sizes are smaller or equal to the core

data bus width and which change with a lower frequency than the achievable SNOOPer trace

frequency. Because of the low achievable sampling rates, the intrusive StopAndGo mode is not

recommended.

J Sampling the Program Counter: the SNOOPer trace allows to periodically sample the actual
program counter. This works non-intrusively if the on-chip debugging interface supports one of

the following characteristics:

- The program counter is memory-mapped and the on-chip debugging interface provides run-
time memory access (e.g. TriCore).

©1989-2024 Lauterbach

Application Note for the SNOOPer Trace

4

- The on-chip debugging interface provides the possibility to sample the program counter (e.g.
EDPCSR for Cortex-A/R (Armv8), Quick Access for RH850).

Otherwise, the SNOOPer trace will shortly stop the program execution to read the current
program counter and resume again.

. Data Sampling via Debug Communication Channel (DCC) if the on-chip debugging interface
includes DCC capability.

J Sampling Benchmark Counters if the target processor provides benchmark counters.
J Sampling ETM Counters for Arm processors with an Embedded Trace Macrocell.

J SFT Software Trace via LPD4 Debug Port for RH850 processors. Please refer to “RH850
Debugger and Trace” (debugger_rh850.pdf) for more information.

The sampling rate depends heavily on the sampling object (memory, PC...) and the target processor. If the
SNOOPer trace works non-intrusively then the rate is generally in the range of microseconds. The intrusive
StopAndGo mode is however much more slower with a sampling rate in the range of milliseconds. The
sampling rate might be increased by a higher JTAG clock (SYStem.JtagClock <frequency>). Please refer to
your processor/chip manual to find out what the maximum JTAG clock can be.

The collected data is stored with timestamp information into a buffer allocated by the TRACE32 PowerView
software on the host. The size of the buffer can be set up by the user and is only limited by the resources of
the host. To achieve high SNOOPer trace frequencies, the sampling is performed by the software running on
the TRACES32 Debug Module where the collected sampled are stored on a temporary buffer. The results are
streamed to the host during recording or read by TRACES32 PowerView after the recording is stopped.

©1989-2024 Lauterbach Application Note for the SNOOPer Trace | 5

SNOOPer Trace Configuration

The SNOOPer trace is part of the TRACES32 trace framework. To configure the SNOOPer trace:

1. On the TRACES32 main menu bar, choose Trace menu > Configuration:
A

File Edit View Var Break Run CPU Misc | Trace | Perf Cov CycloneVSOC Window Help

EEEEXEINNE IR oo I
B CTS Settings...

ETM Settings...
Trigger Dialeg...

2. Under METHOD, click the radio option SNOOPer.

2 B:Trace.state = =R
METHOD
(O Analyzer () Cinahyzer) Onchip O ART « |Omx OLa
Probe IProbe
state used SELect
(® DISable ...| [elect...
O Arm SIZE Tvalue
(O trigger 52428, ... | clear
(O break
Mode Mode Mode TOut
commands (®) Fifo (® Memory [AddressTrace (®) Trace
RESet (O stack DCC [l changes (O Program
@ Init BMC SLAVE (O PULSE
@ SnapShat Rate Opc []stopAndGo | | () BUSA
2 List 10.000ms I PC+MMU
AutoArm 100. TDehy
[AutoInit max 0.
[seffarm 0.000us

Or execute the following commands on the TRACE32 command line:

Trace.state
Trace.METHOD SNOOPer

Alternatively, execute the SNOOPer.state command:

SNOOPer.state

All commands relative to the SNOOPer trace can be executed using the Trace command group (e.g.
Trace.List) after selecting the SNOOPer method in the Trace.state window or using SNOOPer
command group (e.g. SNOOPer.List). The second form is especially useful if the SNOOPer trace
should be used together with a different trace method. In this application note, the SNOOPer command
group will be used.

©1989-2024 Lauterbach Application Note for the SNOOPer Trace | 6

The following steps are needed to configure the SNOOPer trace:

1. Reset the SNOOPer trace to its default settings using the RESet button [A] from the
SNOOPer.state window or using the command SNOOPer.RESet.

/& B:SNOOPerstate E\@
state used SELect
@) DISable I:l select...

OFF
Arm SIZE alue
trigg 51150. I_l clear
break
Mode Mode Ivie TOut

commands Q) Fifo @) Memory AddressTrace @) Trace
RESet Stack Dcc Changes Program
& Init BMC V| SLAVE PULSE
& SnapShot Rate PC StopAndGo BUSA
£ List 1.000us PC+MMU
V| AutoArm 1000000, TDelay
Autolnit max 0.
SelfArm 0.000us E
2. You can increase the SNOOPer trace buffer size in the SIZE input box [B] or using the command

SNOOPer.SIZE. The size is specified in number of records (samples).

3. Select the Fifo or Stack mode [C]. This can also be set using the commands SNOOPer.Mode
Fifo or SNOOPer.Mode Stack. In Fifo mode, if the SNOOPer trace is full, new collected samples will
overwrite older records. Therefore the SNOOPer trace memory always contains the last samples
before stopping the trace. In Stack mode however, if the SNOOPer trace is full the recording will be
stopped so that the trace buffer always contains the first samples after starting the trace.

The SNOOPer trace operation mode is set per default to Fifo.

4. Set the SNOOPer trace sampling rate in the Rate input box [D] or using the command
SNOOPer.Rate. The rate can be specified as time interval (e.g. 10us) or as number of samples
per seconds.

The sampling rate is set per default set to 1.us (1000000 samples/s). The defined rate is however
not guaranteed.

5. Select the sampling object [E].

Further configurations may be needed depending on the selected sampling object. This will be explained in
details for each sampling object in the following chapters.

The settings done in the SNOOPer.state window can be saved in the format of a PRACTICE script to an
external file using the STOre command or to the clipboard using the ClipSTOre command.

STOre <file> SNOOP Create a batch to restore the SNOOPer trace settings
ClipSTOre SNOOP Provide the commands to restore the SNOOPer trace settings in the
cliptext

©1989-2024 Lauterbach Application Note for the SNOOPer Trace | 7

Sampling the Memory

The typical use case of the SNOOPer trace is variable monitoring. The SNOOPer trace can be used for this
purpose the on-chip trace logic can not generate data trace information or if the TRACES32 tool in use is just

a debugger with no trace capabilities. Up to 16 data items (e.g. HLL variables) can be monitored using the

-

| B:SNOOPer.DRAW /ZoomTrack

o || =] &

& setup..| [Goto..)(F3Find...][A chart [@ | 0« @Rl S 2 |[EFul

SNOOPer trace.
| B:SNOOPer.List Var Time.Back /.. | = || [|| &3 |
L&SeUJp...”Q Goto...|[#1 Find...|[Al Chart || 4l Draw | [H Profile]
record |var ti.back i
-0000000250 [mstati1cl = -450410872 38.680us
-0000000249 |mstaticl = -450410872 38.440us
-0000000248 [mstaticl = -450410872 38.700us |=
-0000000247 [mstaticl = -450410872 38.700us «
-0000000246 [mstaticl = -450410872 38.460us
-0000000245 [mstaticl = -450410872 38.440us =
-0000000244 [mstaticl = -450410872 38.680us
-0000000243 [mstaticl = 12 38.700us
-0000000242 [mstaticl = -659552286 38.700us
-0000000241 [mstaticl = -659552286 38.700us
-0000000240 [mstaticl = -659552286 38.680us
0000000239 [mstaticl = -659552286 38.700us [=
-0000000238 [mstaticl = -659552286 38.460us
-0000000237 [mstaticl = -659552286 38.460us ~
4 3

d. any

0.000ms -70.000ms

-60.000ms
| | |

6000000000,

5000000000.

4000000000.

3000000000.

2000000000.

1000000000.

0.

4 |l e 4 I r

4 (1] »

»

The memory sampling is non-intrusive if the following conditions are met:

J The processor architecture in use allows the debugger to read memory while the program
execution is running.

. Run-time memory access is enabled in TRACE32.

Depending on the above conditions, TRACES32 checks/un-checks the StopAndGo check box in the
SNOOPer.state window automatically as soon as a sampling address is selected.

state

(") DISable
(@) OFF
() Am

() trigger
(") break

commands

RESet
& SnapShot

AutoArm
[] Autolnit
[] selfarm

/& B:SNOOPerstate

used SELect
V.RANGE(mstatic1)
0.
SIZE TValue
51150.
Mode Mode Mode
(@) Fifo (@) Memory
(") stack DCC [|changes
BMC [7] 51 AVE
Rate @l
10.000ms) PC+MMU
100.
max
0.000us

E=R EoE ==
(-]

(o] [Lclear]

TOut

[|AddressTrace | | (@) Trace

(") Program
(CJPULSE

StopAndGo | | (0)BUsA

TDely
0.

It is not recommended to force the StopAndGo option when memory access on run-time is possible.

If the StopAndGo mode is used, a red S will then appear in the state line while recording.

©1989-2024 Lauterbach

Application Note for the SNOOPer Trace

8

SPE MMU | | TRANSaton | | CACHE CORE APU || FLASH ||FLASHFILE| | PER__ || other || previews |

-I—I'E[I—WW

©1989-2024 Lauterbach Application Note for the SNOOPer Trace | 9

Logging a Single Variable

To set up the SNOOPer trace for memory sampling, the Memory radio option [A] has to be selected under

Mode.

This option is selected per default after resetting the SNOOPer trace.

Moreover, the variable or memory address of interest needs to be specified under SELect [B]:

/& B:SNOOPerstate E\@

state used SELect

© Disable =
(C)0oFF

() Arm SIZE TValue

() trigger 51150. (o)
(") break

Mode Mode Mode TOut

commands (@) Fifo (@) Memory [AddressTrace @) Trace

(") stack DCC I | changes (") Program

BMC]sLave (C)PULSE

Rate ©rc || StopAndGo | | (0)BUSA

----- 1.000us () PC+MMU

[¥] AutoArm 1000000, TDelay
DAutUInit max 0.

[] selfarm 0.000us

In the SNOOPer.state window, click the select... button [C] to open the SNOOPer.SELect dialog.

In the SNOOPer.SELect dialog, click the button [E] to get a list of all variables.
W B:SMOOP.SEL /DIALOG EI@

SElect

~| [2]@Hu

g
Select the variable you are interested in from the Browse Symbols window.
& Browse Symbols EI@
WA (] (2] Type: Variables ~| [C]Source
symbol type address i
uncptr (int (%)) D:400040D4--400040D7 -

str2 (struct g D:40004438--40004448
stré (struct) D:40004450--4000445F
stral (structarra D:400041C8--4000428F
straz (struct struct D:40004290--4000441F -

The above steps can be achieved using the following command sequence:

SNOOPer .RESet ; Reset the SNOOPer configuration to

; its default settings

SNOOPer .Mode Memory ; Set the Memory mode
SNOOPer .SELect %Long mstaticl ; select the 32bit variable mstaticl

©1989-202

4 Lauterbach Application Note for the SNOOPer Trace

10

To inform the debugger about the width of the sampling address, you need to use the $<format> option:

SNOOPer .SELect %Word plotl ; select the 16bit variable plotl

Alternatively, you can use for variables the Var.RANGE PRACTICE function:

SNOOPer .SELect Var.RANGE (plotl)

If neither the $<format> option nor the Var.RANGE() PRACTICE function is used, the SNOOPer trace will
only sample one byte from the given sampling address. For more information, please refer to the
documentation of the SNOOPer.SELect command.

After selecting the sampling address, the SNOOPer trace will automatically switch to the OFF state which
means that it is ready for sampling.

9 BuSNOORP.List [::::]II!II[::::
[& Setup...” 1 Goto... ” $#3Find... ” ! Chart ” a5/ Draw ” B Profile]
record run |address cycle |data symbol ti.back
-0000000013 NSD:403031A8 snoop B0ECQEDOA '\\s1eve_arm\sieve'\mstaticl 275.720us
-0000000012 N5SD:403031A8 snoop 80ED8DOA ‘\sieve_arm'sieve'mstaticl 275.780us —
-0000000011 N5SD:403031A8 snoop 89A60F78 ‘\sieve_arm'sieve'mstaticl 275.680us |=
-0000000010 N5SD:403031A8 snoop EAZ22AA32 ‘\sieve_arm'sieve'mstaticl 275.700us
-0000000009 N5SD:403031A8 snoop EAZ22AA32 ‘\sieve_arm'sieve'mstaticl 277.060us
-0000000008 N5SD:403031A8 snoop 0F7D5030 ‘\\sieve_arm'sieve'mstaticl 275.700us =
-0000000007 N5SD:403031A8 snoop 0F7D5030 ‘\\sieve_arm'sieve'mstaticl 275.700us
-0000000006 N5SD:403031A8 snoop AAB2721A “\sieve_arm\sieve'mstaticl 275.720us
-0000000005 N5SD:403031A8 snoop 00000000 “\\sieve_arm'sieve‘mstaticl 277.060us
-0000000004 N5SD:403031A8 snoop 523AE728 ‘\sieve_arm\sieve'\mstaticl 275.700us
-0000000003 N5SD:403031A8 snoop 8887EEC2 ‘\sieve_arm'sieve'mstaticl 275.700us [=
-0000000002 N5SD:403031A8 snoop 8887EEC2 ‘\sieve_arm'sieve'mstaticl 275.720us
-0000000001 NSD:403031A8 snoop 883FDAZA ‘\\sieve_arm'sieve'mstaticl 16.145ms ™
4 3

The SNOOPer.List window displays the time between two consecutive samples which can give an idea
about the actual used sampling rate. Moreover, the longest sampling interval for the current trace contents is
displayed in the max field of the SNOOPer.state window.

©1989-2024 Lauterbach Application Note for the SNOOPer Trace | 11

Logging only Data Changes

The Mode Changes can be used, if the read variable content should only be stored to the SNOOPer trace

when it has changed.

W B::SMOOPer.state

Lo O sl

state used SELect

© DISable [V.RANGE(mstatic1) i)

@ OFF 16101.

) Arm SIZE TValue

© trigger 500000. i)

) break

Mode Mode Mode TOut

commands @ Fifo @ Memory "] AddressTrace @ Trace

() Stack pcc ~) Program

BMC [/ SLAVE © PULSE

Rate ®rc [] stopandGo) BUSA

j 1 0001 (1 PC+MMLL

[AutoArm |12 B-SNOOPer.List =N R <"

) Automit (& setup...|[A Goto... || #Find... || vichart || 4elDraw || E Profile |

[l selfarm record run |address cycle |data symbol ti.back i
-0000000021 SD:20000D84 snoop 0000000C % \demo_sram'sieveymstaticl 577.310us L
-0000000020 SD:20000084 snoop AB7DB722 ‘\demo_sram‘sieve'\mstaticl 38.870us —
-0000000019 SD:20000084 snoop 0000000C “\\demo_sram‘sieve‘mstaticl 576.860us |[=
-0000000018 SD:20000084 snoop 3D66DESD ‘\‘\demo_sram'sieve'\mstaticl 38.360us +
-0000000017 SD:20000084 snoop 0000000C “\\demo_sram‘sieve‘mstaticl 577.080us
-0000000016 SD:20000084 snoop A36BEFB8A ‘\demo_sram‘sieve'\mstaticl 38.620us #
-0000000015 SD:20000084 snoop 0000000C “\\demo_sram‘sieve‘mstaticl 577.880us
-0000000014 SD:20000084 snoop 059F2AF8 ‘\demo_sram'sieve'mstaticl 38.600us
-0000000013 SD:20000084 snoop 0000000C “\\demo_sram‘sieve‘mstaticl 576.980us
-0000000012 SD:20000084 snoop 3DD6DBE2 ‘\\demo_sram'sieve'\mstaticl 38.620us
-0000000011 SD:20000084 snoop 0000000C “\\demo_sram‘sieve‘mstaticl 576.720us
-0000000010 SD:20000084 snoop A83B4FBO “\demo_sram‘sieve'\mstaticl 38.600us
-0000000009 SD:20000084 snoop 0000000C “\\demo_sram‘sieve‘mstaticl 576.760us [=
-0000000008 SD:20000084 snoop 3ABCHCIA “\‘\demo_sram'sieve'\mstaticl 38. 840us
-0000000007 SD:20000084 snoop 0000000C “\\demo_sram‘sieve‘mstaticl 577.180us

)

I SNOOPer.Mode Changes ON

©1989-2024 Lauterbach

Application Note for the SNOOPer Trace |

12

Logging Multiple Variables

If you use the Add button in the SNOOPer.SELect dialog, additional variables can be selected.

W B:SNOOP.SEL /DIALOG EI@
SElLect

plot2 T E]HLL
e[| [P

This can be achieved by specifying multiple variables in series using the SNOOPer.SELect command:

; select the 16bit variables plotl and plot2
SNOOPer .SELect %$Word plot2 %Word plot2

BzSNOOPer List =N R <"

[& Setup...” 1 Goto... ” $#3Find... ” ! Chart ” a5/ Draw ” B Profile]
record run |address cycle |data symbol ti.back
-0000000015 | O NSD:40302EEC snoop 9ESE \\s1eve_ram_arm_v7\Globalplot2 275.752us .
-0000000014 | O NSD:40302E5C snoop 2940 ‘\\sieve_ram_arm_v7\Globalplotl 275.600us —
-0000000013 | O NSD:40302EBC snoop 9E58 \\sieve_ram_arm_v7\Global\plot2 275.280us |=
-0000000012 | O NSD:40302E5C snoop 28C8 \\sieve_ram_arm_v7\Globalplotl 275.460us +
-0000000011 | O NSD:40302EBC snoop 9E58 \\sieve_ram_arm_v7\Global\plot2 275.760us
-0000000010 | O NSD:40302E5C snoop 2850 ‘\\sieve_ram_arm_v7\Globalplotl 275.700us =
-0000000009 | O NSD:40302EBC snoop 9E58 \\sieve_ram_arm_v7\Global\plot2 275.260us
-0000000008 | O NSD:40302E5C snoop 27D8 ‘\\sieve_ram_arm_v7\Globalplotl 275.648us
-0000000007 | O NSD:40302EBC snoop 9E58 ‘\\sieve_ram_arm_v7\Global\plot2 275.452us
-0000000006 | O NSD:40302E5C snoop 2760 ‘\sieve_ram_arm_v7\Global\plotl 275.720us [=
-0000000005 | O NSD:40302EBC snoop 9E58 \\sieve_ram_arm_v7\Global\plot2 275.000us
-0000000004 | O NSD:40302E5C snoop 26E8 ‘\\sieve_ram_arm_v7\Global\plotl 275.640us ¥
4 3

Please be aware that the debugger reads one variable after the other. As a result the maximum sampling
rate is always a multiple of the variables logged e.g. 3 variable, 3 times of max. sampling rate. Moreover,

losses are inevitable if the monitored data items are changed at a higher rate by the application

program.

©1989-2024 Lauterbach

Application Note for the SNOOPer Trace

13

Display the SNOOPer Trace Resulits

List of Recorded Samples

Open the SNOOPer.List window to display a list of the recorded samples. The SNOOPer.List window can
be opened using the List button from the SNOOPer.state window or using the command.

SNOOPer .List

BzSNOOPer List =N R <"
|&Setup...|| 1 Goto... || $#3Find... || ! Chart || a5/ Draw || B Profile |
record run |address cycle |data symbol ti.back
-0000000013 | O NSD:40302EB4 snoop 00000022 ‘\\s1eve_ram_arm_v/\s51eve\mstatic2 275.320us ,
-0000000012 | O N5SD:40302EB0 snoop 1354A968 \\sieve_ram_arm_v7\sjeve'mstaticl 275.680us —
-0000000011 | ¢ N5SD:40302EB4 snoop 00000022 \\sieve_ram_arm_v7\sjeve'\mstatic2 276.760us | =
-0000000010 | ¢ N5SD:40302EB0 snoop 0AB138D2 \\sieve_ram_arm_v7\sjeve'mstaticl 275.600us +
-0000000009 | (N5SD:40302EB4 snoop 00000396 \\sieve_ram_arm_v7\sjeve'\mstatic2 275.320us
-0000000008 | (N5SD:40302EB0 snoop 812CCCEA \\sieve_ram_arm_v7\sjeve'mstaticl 275.680us =
-0000000007 | (N5SD:40302EB4 snoop 00000022 \\sieve_ram_arm_v7\sjeve'mstatic2 275.280us
-0000000006 | O N5SD:40302EB0 snoop 0E2CDB12 \\sieve_ram_arm_v7\sjeve'mstaticl 275.520us
-0000000005 | O N5SD:40302EB4 snoop 00000022 \\sieve_ram_arm_v7\sieve'mstatic2 276.320us
-0000000004 | O N5SD:40302EB0 snoop B3338BFA \\sieve_ram_arm_v7\sjeve'mstaticl 277.380us [=
-0000000003 | (N5SD:40302EB4 snoop 00000022 \\sieve_ram_arm_v7\sjeve'mstatic2 275.240us
-0000000002 | | NSD:40302EB0 snoop C708AEDA ‘\\sieve_ram_arm_v7\sieve\mstaticl 21.359ms
4 3

The SNOOPer.List window displays per default for each recorded sample the following information:

. run: displays the core number for SMP systems. This column is empty for single core
processors.

J address: this column displays the sampling address.

J cycle: the cycle type is always snoop.

J data: the sampled data value in hexadecimal.

J symbol: symbolic information with path and offset of the sampled address.

. ti.back: time relative to the previous record.

The ti.back values can give an idea about the actual used sampling rate. Moreover, the longest sampling
interval for the current trace contents is displayed in the max field of the SNOOPer.state window. Please
note that in case the sampling has been started just after resuming the execution, the first ti.back values
can be especially large. The same thing applies for the last ti.back value if the sampling has been
stopped when halting the CPU. These values are thus not used when computing the longest sampling
rate.

The different columns in the window can be rearranged by changing the order of the SNOOPer.List
parameters. Moreover, other columns can be added to the window. You can use for example the keyword
Var to display the recorded variable in its HLL representation or TIme.Zero to display the time relative to the
start of the sampling. Please refer to the documentation of the SNOOPer.List command for a complete list
of the different possible parameters.

©1989-2024 Lauterbach Application Note for the SNOOPer Trace | 14

Using the following command for instance, the recorded variable is listed it its HLL representation together

with the time relative to the previous record:

SNOOPer .List Var TIme.Back ; list the recorded variable in
; 1ts HLL representation together
; with the time relative to the
; previous record

B::SMOOPer.List Var TIme.Back

(& setup.... [13 Goto... || F3Find... || Aeichart || Adpraw || EProfile |
record |var ti.back

-0000000006 [vdoubTe = -6.5500286323999 97.980us -
-0000000005 |vdouble = 1.60000000000000 97.760us 1
-0000000004 |vdouble = 754.058470600000 1.157ms
-0000000003 |vdouble = 2.26217540859999 97.440us
-0000000002 |vdouble = 4.52435081560000 97.720us j
-0000000001 |vdouble = 7.54058469160000 97.640us

Fl 3

You can rearrange the column layout by changing the order of the parameters:

SNOOPer.List TIme.Back Var Data ; rearrange the column layout to

; fit your requirements

£ B:SNOOPer.List Time.Back Var Data o3|
(& setup... || 11 Goto... || #iFind... || Adchart || Adbraw || EFrofile |
record [ti.back var data

-0000000005 97.760us vdoubTe = 1.6000000000000001 JFF999999999999a .
-0000000004 1.157ms vdouble = 754.05847060000002e+6 41C67902734CCCCD |2
-0000000003 97.440us vdouble = 2.2621754085999999%e+9 41EODACID6133333 _
-0000000002 97.720us vdouble = 4.5243508156000004e+9 41F0DACID5F9999A
-0000000001 97.640us vdouble = 7.5405846916000004e+9 41FC17430F39999a =
TO000000000 97.180us vdouble = 1.6000000000000001 JFF999999999999a -~

Or display the default parameters together with the time relative to the start to the sampling:

SNOOPer .List DEFault TIme.Zero

B:SNOOPer.List DEFault TIme.Zero

ESRECE X"

[& Setup...][1 Goto...][$#3Find...][! Chart][a5/ Draw][B Profile]
record run |address cycle |data symbol ti.back ti.zero
-0000021142 SD:20000D84 snoop 00000C36 %\ \demo_sram'sieveymstaticl 38.400us 15.164s ~
-0000021141 SD:20000084 snoop 00001452 “\demo_sram'sieve‘mstaticl 38.660us 15.164s il
-0000021140 SD:20000084 snoop 00001452 “\demo_sram'sieve‘mstaticl 38.420us 15.164s =
-0000021139 SD:20000084 snoop 00001452 “\demo_sram'sieve‘mstaticl 38.420us 15.164s =
-0000021138 SD:20000084 snoop 00001452 “\demo_sram'sieve‘mstaticl 38.660us 15.164s
-0000021137 SD:20000084 snoop 00001452 “\demo_sram'sieve‘mstaticl 38.400us 15.164s &
-0000021136 SD:20000084 snoop 00001452 “\demo_sram'sieve‘mstaticl 38.420us 15.164s 3
-0000021135 SD:20000084 snoop 00001452 “\demo_sram'sieve‘mstaticl 38.420us 15.164s
-0000021134 SD:20000084 snoop 00001452 “\demo_sram'sieve‘mstaticl 38.420us 15.164s &2
4

©1989-2024 Lauterbach

Application Note for the SNOOPer Trace

15

Graphical Display of SNOOPer Trace Results

You can use the Draw button from the SNOOPer.List window to display the sampled data values

graphically. Please refer to the documentation of the <trace>.DRAW command group for more information.

----- 4 B:SNOOP.List Var o | = [w3s]| % B:SNOOPerDRAW == EoE <"

[&fﬂup...][a Goto.. [#3Find... [Char| [4ol Draw]| |E Profile] | (2 Setup..)[A Goto...|[#3Find... |[M chart |[<0 In |[»D¢ out|[E2 Full]| S 1n || S out|[El Full
record |var — | oms -20.000ms -10.000ms

~0000000017 [mstaticl = -1657364150 , d.any ! !

-0000000016 [mstaticl = -1657364150 i ,

-0000000015 [mstaticl = -1657364150 E 7000000000. i

-0000000014 [mstaticl = -1657364150 - E

-0000000013 [mstaticl = -1051136456 6000000000. m

-0000000012 [mstaticl = -1051136456 a

-0000000011 |mstaticl = -1051136456 5000000000. -

-0000000010 [mstaticl = -1051136456

-0000000009 |mstaticl = 1322400882 4000000000.

-0000000008 [mstaticl = 1322400882

-0000000007 |[mstaticl = 1322400882 3000000000.

-0000000006 |mstaticl = 1322400882

-0000000005 [mstaticl = 1661507824 2000000000.

-0000000004 [mstaticl = 1661507824

-0000000003 |mstaticl = 1661507824 = 1000000000.

-0000000002 |[mstaticl = 1661507824

-0000000001 |mstaticl = 1661507824 v L T . I -

4 [} 4 ([» 4 1 P

The SNOOPer.DRAW.Var command visualizes e.g. one or more HLL variables in one graphical chart.
Using this command, you do not need to specify the display format and the access width of the variables.

Moreover, you can superimpose multiple variable in one single graph.

Example: If we display now the results of the plot1 and plot2 variables using the SNOOPer.DRAW.Var

command, we get the following graph:

SNOOPer .DRAW. Var

$DEFault plotl plot2 2

superimpose variables

4 B:SNOOPer.DRAW.Var %DEFault plotl plot2

ESRECE X"

(& setup...| A Goto... |[F3Find... || Adchart |[O 1n][0 out|[& Full][1n |[S out|[B Full]

M ‘sieve_arm\Global'plotl
400s -1.200s

-1.000s

M ‘\sieve_arm\Global'plot2
—800 000ms -600.000ms -400.000ms -200.000ms

0. 000

60000,

40000.

20000.

-20000.

I g g

4 (1] »

»

4 ([l »r <

©1989-2024 Lauterbach

Application Note for the SNOOPer Trace | 16

Displaying all variables in one single graph doesn’t always make sense, especially if they have different
value ranges. In this case, it makes more sense to display each variable in a separate window. By adding the
1ZoomTrack Option to the SNOOPer.DRAW.Var command, a time and zoom synchronisation can be

established between the graphical display windows:

the option ZoomTrack
establishes time- and
zoom-synchronisation
between display windows

SNOOPer .DRAW.Var $%$DEFault plotl /ZoomTrack g

SNOOPer .DRAW.Var %$DEFault plot2 /ZoomTrack

Active window

| B:SNOOPer. DRAW.Var %DEFault plotl /ZoomTrack ===

(& setup... [13 Goto... || FiFind... || fichart || 4 In || p4out | WHFul| £ |[X out|[F Full]
-25.000s -20.000s -15.000s -10.000s -5.000s 0.000us

/\ NAANA AR AN
S TATRTATATATATATATATATA R

J< [» <

Windows with the option /ZZoomTrack are time- and zoom-synchronized to the cursor
in the active window

| B::SNOOPer. DRAW.Var %DEFault plot2 /ZoomTrack (= ®@]=]
(& setup... [13 Goto... || F3Find... || fichart || 4»In || p4out|[MnFul| £ |[X out|[Z Full]
-25.000s -20.000s -15.000= -10.000= -5.000s 0.000us

| | | | | | |

20000.

-20000.

4yl o4

©1989-2024 Lauterbach Application Note for the SNOOPer Trace | 17

Statistical Distributions

TRACES32 additionally allows to display the SNOOPer trace results as statistical distributions.

Using the SNOOPer.STATistic.DistriB command it is possible to display a distribution statistic of the
sampled data values.

Example: We sample the element with index three of the flags array of type char (flags[3]). We can use the
following command to display a statistical distribution of the sampled data values:

display the statistical distribution of a variable value over the time
Data advise the command to analyze the recorded data information

; Address informs the command for which address the data

; should be analyzed

SNOOPer.STATistic.DistriB Data /Filter Address Var.RANGE(flags[3])

I

I

£ B:SNOOPer STATistic.DistriB Data /Filter Address Var.RANGE(flags[3]) =N R <"
(& setup...|[22 Config...][R Goto... || =|Detailed]|[fichart |[E Profile |
items: 3. total: 1.481s samples: 37250.
class [total min max avr count ratio¥% [1% 2% 5% 10% 20% i
(other) 0.000us 0.000us - - 0. 0.000% -
data=0x0 1.416s 359.914us | 20.284ms | 871.312us 1627. | 95.624%
data=0x1 | 64.788ms 38.180us | 407.696us 39. 845us 1626. 4. 3755 | me— "
] 11l »

These results can also be displayed as time chart using the command SNOOPer.Chart.DistriB e.g.:

; display a time chart of the variable values
SNOOPer .Chart.DistriB Data /Filter Address Var.RANGE (flags[3])

i B:SNOOPer.Chart DistriB Data /Filter Address Var.RANGE(flags[3]) =N R <"
(& setup... | jif Groups... | 22 Config...][R Goto... || A Goto... |[#Find... |[€ 1n |0« out)[& Full]
s -760.000ms -750.000ms -740.000ms -730.000ms -720.000ms
class | ! ! I I I I
(other)iy) L L I -
data=0x0k

) T A s A O B N WA |
L R I 0O L O A A

4 UL+ 4 11} 2

Using the command SNOOPer.Chart.VarState, you can additionally have a graphical representation in time
for the taking values of the sampled addresses.

ot B:SNOOPer.Chart VarState = =R
B ... | 88 @nfig... | 1Y Goto... || #3Find... || Mdchart || 4»In || p40ut|[MMFul
-250.000ms -200.000ms -150.000ms -100.000ms -50.000ms 0.000
rangeus) , 1 1 [— 1 1 1 |
plotlp| T=Esss — ——————— T — Tesgsma —— ———————— — pzze= ———
plot2fl==soon———————————— [soooressong __————————————— [rsoop
< > < >

©1989-2024 Lauterbach Application Note for the SNOOPer Trace | 18

SNOOPer Trace Trigger

The SNOOPer trace can be used to trigger an action on a specific data value. The trigger can be set by

specifying a trigger value and a trigger. Please be aware that the time interval between the trigger event
(program writes specified data value to variable) and the triggering by TRACES32 is relatively large. At least

max. sampling rate plus reactions time by TRACE32. Thus the trigger can only indicate that the trigger event
has taken place. Which instruction initiated the trigger event can not usually be determined.

& B:SNOOPer
state
() DISable
@) OFF
©)Arm
(" trigger
(") break

commands

RESet
& SnapShot

AutoArm

[] AutoTnit
[] selfarm

To stop for instance the program execution when a certain data value is sampled by the SNOOPer Trace:

used SElLect
V.RANGE(mstatic1)
0.
SIZE TValue
51150. X0
Mode Mode Mode
(@) Fifo (@) Memory [AddraseTrare
(") stack ®bce [l che
JBMC [v]sLave
Rate (@] StopAndGo
1.000us () PC+MMU [C]rasT
1000000, C)ET™ [] context
max JETM32
0.000us

E=m o~
=

(=) Cdear |

TOut

(") Trace
(@) Program
(C)PULSE
(C)BUSA

TDelay
0.

1. Enter the trigger value in the Tvalue field [A] of the SNOOPer.state window.

2. Select the trigger action Program under TOut [B].

3. Start the program execution.

The program execution will be stopped as soon as the given value is sampled by the SNOOPer trace.

1 BzSNOOP.List =N R <"
[& Setup...” 1 Goto... ” $#3Find... ” ! Chart ” a5/ Draw ” B Profile]

record run |address cycle |data symbol ti.back i
-0000000004 NSD:403031A8 snoop 4F3AD148 ‘\\s1eve_arm\sieve'mstaticl 276.420us
-0000000003 N5SD:403031A8 snoop 6786FE22 ‘\sieve_arm'sieve'mstaticl 278.100us —
-0000000002 N5SD:403031A8 snoop 6786FE22 ‘\sieve_arm'sieve'mstaticl 276.400us |=
-0000000001 NSD:403031A8 snoop 72CCEBBD “‘\sieve_arm‘sieve‘mstaticl 276.460us

NSD:403031A8 276.160us

4 3

The SNOOPer trigger can only indicate that the trigger event has been taken.
It is generally not possible to determine the instruction that initiated the
trigger event. The reaction time needed by the debugger to execute the

trigger action is approximately 2x the sampling rate.

©1989-2024 Lauterbach

Application Note for the SNOOPer Trace

19

Sampling the Program Counter

The SNOOPer trace allows to monitor the actual program counter. This mode can be used e.g. for

. Sample-based flat run-time analysis. Please also consider using the PERF command group for
this purpose.

. Post-mortem debugging: if the target system crashes, it is generally not possible to halt the
processor in order to find the location of the crash. However, it is often still possible in such
situations to sample the program counter. In this case, the SNOOPer trace can give valuable
information about the location of the crash.

£ B:SNOOPer STATistic.sYmbol =N R <"
|&Setup...” 1if Groups... || &8 Conﬁg...” 1} Goto... || g Detailed“ = Tree || ! Chart || B Profile |
items: 34. total: 4.516s samples: 117101.
address [total min max avr count ratio¥% [1% 2% 5% 10% i
(other) 0. 000us - - - 0. 0. 000% .l
main | 354.838ms - - - 9192. 7.857%
funcl0 1.356s - - - 35412. | 30.031%
func2l 8.779%ms - - - 231. 0.194% |+ L
subst | 233.813ms - - - 5979. 5.177% | ee— =
sieve | 699.123ms - - - 18319. | 15.481%
func2 | 167.000ms - - - 4368. 3. 698% |e—
func2d 93.705ms - - - 2455, 2.075% |——
initLinkedList | 314.223ms - - - 8120. 6.958%
funcd | 274.038ms - - - 6885. 6.068%
func9 97.995ms - - - 2548. 2.170% |————
funcl3 | 161.030ms - - - 4183. 3. 565% |e———————
encode | 304. 768ms - - - 7772, 6.748%
funcl 50.791ms - - - 1319. 1.124% |
func2b 90.012ms - - - 2373. 1.993% |——— -
« 1 b

Sampling the program counter works non-intrusively if the on-chip debugging interface supports one of the
following characteristics:

. The program counter is memory-mapped and the on-chip debugging interface provides real-time
memory access (e.g. TriCore)

. The on-chip debugging interface provides the possibility to sample the program counter on run-
time (e.g. EDPCSR for Cortex-A/R (Armv8), Quick Access for RH850).

Otherwise, the SNOOPer trace will shortly stop the program execution to read the current program counter
and resume again. A red S will then appear in the state line while recording.

SPE MML TRANStion CACHE CORE APU FLASH FLASHFILE PER other previous
= WL UP

©1989-2024 Lauterbach Application Note for the SNOOPer Trace | 20

Setup

To record the program counter with the SNOOPer trace, you only need to select the PC radio option [A] in

the SNOOPer.state window under Mode or execute the following command:

SNOOPer .Mode PC ; Set the PC mode

/& B:SNOOPerstate E\@
state used SELect
@) DISable I:l select...
OFF
Arm SIZE TValue
trigger 51150. I:l clear
break
Mode Mode Mode TOut
commands Q) Fifo @) Memory AddressTrace @) Trace
RESet Stack Dcc Changes Program
& Init BMC V| SLAVE PULSE
& SnapShot Rate PC StopAndGo BUSA
i 1.000us PC+MMU
V| AutoArm 1000000, TDelay
AutoInit max E 0.
Selfarm 0.000us

If sampling the program counter on run-time is not possible, the StopAndGo check box [B] will be
automatically selected in the SNOOPer.state window. Manually setting the StopAndGo option is not

recommended.

Display Options

The SNOOPer.List window displays a list of the recorded program counter values. The SNOOPer.List
window can be opened using the List button from the SNOOPer.state window or using the command

SNOOPer .List

BzSNOOPer List =N R <"

|&Setup...|| 1 Goto... || $#3Find... || ! Chart || a5/ Draw || B Profile |
record run |address cycle |data symbol ti.back
-0000000014 | O R:40300F20 snoop VhsTeve_ram_arm_v7 ysieveifuncl3 1.417ms
-0000000013 | 1 R:40301F10 snoop .m_arm_v7'\sieve\background+0x40 1.403ms —
-0000000012 | O R:40300754 snoop “Asieve_ram_arm_v7'\s1eve'\funcg 1.402ms |=
-0000000011 | 1 R:40301F10 snoop m_arm_v7\sieve'background+0x40 l.405ms:
-0000000010 | O R:40301514 snoop vhsTeve\init_Tinked_1ist+0xA8 1.407ms
-0000000009 | 1 R:40301F10 snoop .m_arm_v7'\sieve\background+0x40 1.402ms =
-0000000008 | O R:4030257C snoop rm_v7%Global__aeabi_dmul+0x20 1.400ms
-0000000007 | 1 R:40301F10 snoop ..nl_arm_v?\s‘ieve\back%}round+0x40 1.406ms
-0000000006 | O R:40301EE0 snoop Wve_ram_arm_v7\sieve\sieve+0x90 1.402ms
-0000000005 | 1 R:40301F10 snoop .m_arm_v7'\sieve\background+0x40 1.399ms [=
-0000000004 | O R:40301650 snoop “Asieve_ram_arm_v7'\sleve'\subst 1.402ms
-0000000003 | 1 R:40301F10 snoop m_arm_v7sieve'\background+0x40 1.404ms ™
4 3

©1989-2024 Lauterbach

Application Note for the SNOOPer Trace

21

The SNOOPer.List window displays per default for each recorded sample the following information:

J run: displays the core number for SMP systems. This column is empty for single core
processors.

. address: the sampled program counter value.

. cycle: snoop.

i data: this column is empty.

. symbol: the symbolic information with path and offset corresponding to the sampled program

counter value.

J ti.back: time relative to the previous record.

The ti.back values can give an idea about the actual used sampling rate. Moreover, the longest sampling
interval for the current trace contents is displayed in the max field of the SNOOPer.state window. Please
note that in case the sampling has been started just after resuming the execution, the first ti.back values
can be especially large. The same thing applies for the last ti.back value if the sampling has been
stopped when halting the CPU. These values are thus not used when computing the longest sampling
rate. Please also note that the used sampling rate in the example of the screen shot above is about
1.4ms although the sampling was non-intrusive. This is due to the fact that on some SMP systems the
PC sampling is slower than for single core.

The different columns in the window can be rearranged by changing the order of the SNOOPer.List
parameters. Moreover, other columns can be added to the window. You can use for example the keyword
TIme.Zero to display the time relative to the start of the sampling. Please refer to the documentation of the
SNOOPer.List command for a complete list of the different possible parameters.

Example:

SNOOPer .List TIme.Back Address sYmbol TIme.Zero

B:SMNOOPer.List TIme.Back Address sYmbol TIme.Zero E\@

|&Setup...|| 1 Goto... || $#3Find... || ! Chart || a5/ Draw || B Profile |

record [ti.back address symbol ti.zero i
-0000000009 | 442.940us T:000011D8 “sieve'sieve'encode+0x70 8.677s ~
-0000000008 | 442.900us T:000014EC “\sieve'sieve'\main+0x280 8.677s i
-0000000007 | 443.720us R:00003800 ‘\sjeve'\Global'__adddf3+0x25C 8.678s =
-0000000006 | 444.200us T:00000708 “\sieve'sieve'\func2d+0x48 8.678s =
-0000000005 | 441.980us R:00003A70 ..sieve\Global'__aeabi_dmul+0xBC 8.679s
-0000000004 | 444, 060us T:00000C08 “\\sieve'sieve'\funcl0+0x180 8.679s &
-0000000003 | 442.060us T:000011D8 ‘\sieve'sieve'encode+0x70 8.680s 3
-0000000002 | 444.300us T:00001620 ‘\sieve'sieve'sieve+Ox40 8.680s
-0000000001 | 11.286ms R:00003E68 ‘\\sieve\Global'_cmpdf2+0x8 8.691s &2

4 3

Additionally to the SNOOPer.List window, other display options are available. By selecting the Chart button
from the SNOOPer.List window, the SNOOPer trace results can be displayed as a time chart. The
corresponding command is SNOOPer.Chart.sYmbol.

©1989-2024 Lauterbach Application Note for the SNOOPer Trace | 22

i B:SNOOPer.ChartsYmbol =N R <"
(& setup... | jif Groups... | 22 Config...][R Goto... || A Goto... |[#Find... |[€ 1n |0« out)[& Full]
-2.262s -2.260s -2.258s -2.256s -2.254s -2.252s -2.25
address | | | | | | | | I
Cother)
maini o 1 . IR o e 1 mn 1 b e
funclOiE W N " B H B B E E B B E R BE R B R E |
Func21iy . : N . I . . . I
substiarl 1 1 1 Bl I n 1 1 1 [| 11 1 [I 1
Sievedy ® T ® ® 1 ® ® ® ® ® 1§ B ®B I ® 1 ® 1 (n m
Func2®| I] SRR I R IR i
|
b

nj »

func2d iy 1 | NI I RN 1 iy BN

Please be aware that the displayed charts are based on periodically collected
samples and thus not 100% accurate.

©1989-2024 Lauterbach Application Note for the SNOOPer Trace | 23

Sampling the Program Counter and the Current Task

If the target processor has a memory management unit (MMU) and a target operating system (e.g. Linux) is

used, several processes/tasks can run at the same logical addresses. In this scenario, the logical address

sampled by the SNOOPer trace is not sufficient to assign the sampled PC to a program location. For a clear

assignment, the information about the current task is also required. The PC+MMU mode can be used for

this purpose: with every sample, the SNOOPer trace will read the actual program counter and the memory
address containing the information about the current task. This mode is however always intrusive since the

current task and the program counter have to be read exactly at the same time which cannot be achieved

without stopping the program execution.

/& B:SNOOPerstate
state used
@) DISable
OFF
Arm SIZE
trigger 51150.
break
Mode
commands Q) Fifo
RESet Stack
@ Init
& SnapShot Rate
A List 1.000us
v | AutoArm 1000000,
AutoInit max
Selfarm 0.000us

SElect

TValue

Mode

Q@) Memory

DCC
BMC
P

PC+MMU

=N Wl =X
I:l select...
I:l clear
Mode TOut
AddressTrace @) Trace
Changes Program
V| SLAVE PULSE
StopAndGo BUSA
TDelay

0.

Example: A Linux OS is running on a target with a Cortex-A9 core. The sampled program counter values

are in the user space. Due to the fact that different user tasks can run on the same virtual addresses, these
addresses cannot be assigned to distinct program addresses.

9 BuSNOORP.List E\@
|&Setup...|| 1 Goto... || $#3Find... || ! Chart || a5/ Draw || B Profile |

record |run |address cycle |data symbol ti.back
-0000000014 R:0000:00009890 snoop 395.140us .
-0000000013 R:0000:00009864 snoop 394.300us —
-0000000012 R:0000:00009864 snoop 395.680us |=
-0000000011 R:0000:000097F4 snoop 393.820us +
-0000000010 R:0000:0000983C snoop 393.720us
-0000000009 R:0000:00009864 snoop 395.320us #
-0000000008 R:0000:000097F4 snoop 393. 880us
-0000000007 R:0000:00009890 snoop 394. 800us
-0000000006 R:0000:000097F4 snoop 394.140us
-0000000005 R:0000:000097F4 snoop 393. 800us
-0000000004 R:0000:0000989C snoop 394.920us
-0000000003 R:0000:00009890 snoop 393.820us [=
-0000000002 R:0000:000097F4 snoop 395.680us
-0000000001 R:0000:0000988C snoop 15.323ms 7

The PC+MMU mode will be used to additionally read the current task with every sampled program counter.
Since an OS Awareness is loaded in TRACE32, the SNOOPer trace automatically knows how to sample the

current task.

SNOOPer .Mode PC+MMU

; Sample the PC and the current task

©1989-2024 Lauterbach

Application Note for the SNOOPer Trace

24

The sampled program counter values are now assigned to the process symbols. The OS Awareness gets
the space ID (e.g. 0x5F in the screenshot below) and thus the process from the sampled task identifier, the
so-called task magic number.

----- 4 BzSNOOP List =N R <"
[& Setup...” 1 Goto... ” FiFind... ” il Chart ” o Draw ” B Profile]
record |run |address cycle |data T¥_bo1 ti.back
-0000000015 NUR:005F : 00009864 snoop rocesslisieve'sieve+0x94 31.842ms
-0000000014 NUR:005F : 00009880 snoop processl\s1eve\s1eve+0xBO 32.008ms —
-0000000013 NUR:005F : 0000981C snoop ‘processlisieve\sieve+OxdC 31.980ms |=
-0000000012 NUR:005F : 0000981C snoop ‘processlisieve\sieve+OxdC 31.947ms «
-0000000011 NUR:005F : 000097F& snoop ‘\processlisieve\sieve+Ox28 32.528ms
-0000000010 NUR:005F : 000097F& snoop ‘\processlisieve\sieve+Ox28 32.061ms
-0000000009 NUR:005F : 00009844 snoop ‘processlisieve\sieve+Ox74 34.667ms
-0000000008 NUR:005F : 0000983C snoop ‘processlisieve\sieve+Ox6C 31.918ms
-0000000007 NUR:005F : 000098A4 snoop ‘\processlisieve\sieve+OxD4 31.961ms
-0000000006 NUR:005F : 00009830 snoop ‘\processlisieve\sieve+Ox60 31.432ms
-0000000005 NUR:005F : 000098A0 snoop ‘\processlisieve\sieve+OxDO 32.158ms
-0000000004 NUR:005F : 00009854 snoop “\processlisieve\sieve+Ox84 31.475ms
-0000000003 NUR:005F : 00009860 snoop ‘processlisieve\sieve+0x90 31.828ms =
-0000000002 NUR:005F : 00009838 snoop ‘\processlisieve\sieve+Ox68 32.613ms
-0000000001 NUR:005F : 0000980C snoop “\processlisieve\sieve+Ox3C 32.038ms 7
4 2

The intrusive StopAndGo mode is used. This can be clearly seen by comparing the ti.back values between
the first and second screen shot of the SNOOPer.List windows.

Sampling the Context ID Register

For Arm processors supporting reading the Context ID register on run-time (e.g. Cortex-A15), by enabling

the SNOOPer.Mode ContextlD mode, the Context ID register can be sampled instead of the memory

address containing the current task identifier (task magic number). This way, the sampling can be achieved
without disturbing the program run-time.

Example:

SNOOPer .Mode PC+MMU

SNOOPer .Mode ContextID ON

Sample the Context ID register

Sample the PC and the current task

©1989-2024 Lauterbach

Application Note for the SNOOPer Trace

25

The SNOOPer.List window displays in the data column for each record the magic of the task corresponding
to the sampled program counter. The magic number is task unique identifier used by the OS Awareness and
is generally the address of the task control block. The magic numbers of all running tasks care displayed in
the TASK List.tasks window. In case no OS Awareness is loaded, the value of the sampled Context ID
register is displayed in the data column.

BzSNOOPer List =N R <"
[& Setup...][1 Goto...][$#3Find...][! Chart][a5/ Draw][B Profile]

record |run |address cycle |data symbol ti.back i
00000000 R:02D6:00008034 owner ED9 0 ..\Global_aeabi_dmuT+0x84 490.580us il
0000000087 R:02D6:00009028 owner EDIDAOCD ..Globaly__aeabi_ddiwv+0x10C 490.400us il
0000000086 R:02D6:00009008 owner ED9DAOCO N\Globaly__aeabi_ddiv+0xEC 490.000us =)
0000000085 R:02D6:00008FBE owner ED9DAOCO N\Globaly__aeabi_ddiv+0x9C 490.420us =
0000000084 R:02D6:00008FD& owner ED9DAOCO \Globaly__aeabi_ddiv+0xBC 491.280us
0000000083 R:02D6:00008FAS owner EDBE1Z2BCO .\Globaly__aeabi_ddiv+0x8C 490.740us &
0000000082 R:02D6:00008FES owner EDBE12BCO .\Globaly__aeabi_ddiv+0xCC 488. 860us
0000000081 R:02D6:000089B8 owner EDBE12BCO ..eads‘\Global'__adddf3+0xB4 491.900us
0000000080 R:02D6:00008FES owner EDBE12BCO .\Globaly__aeabi_ddiv+0xCC 489.140us
0000000079 R:02D6:00008FD& owner EDBE12BCO .M\Globaly__aeabi_ddiv+0xBC 490.420us
0000000078 R:02D6:000089F0 owner EDBE12BCO ..eads‘\Global'__adddf3+0xEC 486.940us E
0000000077 R:02D6:00008CB0 owner EDBEL12BCO ..reads‘\Global'__aeabi_dmul 492.940us o
000000007 6 R:02D6:00008FBE owner EDBE1Z2BCO .\Globaly__aeabi_ddiv+0x9C 490.700us &2

q)

©1989-2024 Lauterbach Application Note for the SNOOPer Trace | 26

Data Sampling via Debug Communication Channel

The Debug Communication Channel - short DCC - is a characteristic of the on-chip debugging support. It
allows to pass information between the application program on the target and the debugger. For details refer
to your CPU manual.

If the SNOOPer trace uses the DCC, the following basic steps are required:

. The application program on the target writes a 32 bit information to the corresponding registers of
the DCC.
. The debugger on the other side checks the DCC registers in a defined sampling rate and enters

the received information into the SNOOPer trace buffer.

Application
| Write 32bit data of interest to DCC

TRACE32

PowerView

Debugger] N
ICD usB

ETH

DCC Register

PC or
Workstation

Target

In order to check whether your CPU provides a DCC, check if the DCC radio option is available under Mode
in the SNOOPer.state window and that it can be selected:

& B:SNOOPerstate =N R <"
— state — used — SELect
(©) Disable | (o)
@) OFF 0.
~JArm — SIZE — TValue
() trigger 51150. (o)
(") break
— Mode Mode — Mode — TOut
— commands —— | (@) Fifo r_ [| AddressTrace @) Trace
(") stack ["|changes (") Program
SLAVE) PULSE
~ Rate StopAndGo | | (@) BUSA
2 List 1.000us [CIFasT
AutoArm 1000000, [] contextmn — TDelay
[] AutoTnit — max 0.
[] selfarm 0.000us

or enter the following command:

SNOOPer .Mode DCC

; If your debugger accepts this command, DCC
; 1s provided by your CPU

©1989-2024 Lauterbach

Application Note for the SNOOPer Trace

The application program has to provide the data of interest. This requires that special code is added to the

application program. An example for the Arm architecture can be found in the TRACE32 demo folder under
~~/demo/arm/etc/snooper_dcc. You can also get this demo by sending an e-mail to
support@lauterbach.com.

The data that should be sampled by the SNOOPer trace is written to the DCC registers using the following

function:

/* SnoopData may be called by the application */
void SnoopData (unsigned int data)

while

(T32_TsMon_SendStatus ()) ;

T32_TsMon_SendWord (data) ;

{

//get status of the com-channel

//1if it‘'s free, send data to channel

If you plan to use the SNOOPer via DCC, you have to be aware of the following:

1. New information can only be passed by the application program to the DCC if the debugger has
already read the previous written information. The function T32_TsMon_SendStatus () in the
above example checks the status of the DCC. This behavior allows the user to select one of the
following strategies:

- If DCC is not ready for the next 32 bit information, the application program can wait until DCC
is ready and pass the information then. This way no information is lost, but waiting will
consume CPU time.

- If DCC is not ready for the next 32 bit information, the application program can ignore the

current 32 bit information and continue the program execution. This way information might be
lost, but the CPU doesn't spend CPU time to wait until DCC is ready.

The fastest possible sampling rate by the debugger is approximately 50 ps.

2. For an SMP system, the demo code that writes to the DCC registers has to run on the first core.

The SNOOPer.List window displays for each recorded sample the sampled data value together with the
time relative to the last record.

% B:SNOOPer.List E\@
|&Setup...|| 1 Goto... || $#3Find... || ! Chart || a5/ Draw || B Profile |
record run |address cycle |data symbol ti.back i
-0000000012 C:00000000 snoop 00000F80 749.120us
-0000000011 C:00000000 snoop 00000F81 749, 346us —
-0000000010 C:00000000 snoop 00000F82 750. 334us |=
-0000000009 C:00000000 snoop 00000FE3 748.100us +
-0000000008 C:00000000 snoop 00000F 84 749, 340us
-0000000007 C:00000000 snoop 00000F85 748.226us *
-0000000006 C:00000000 snoop 00000F86 750.094us
-0000000005 C:00000000 snoop 00000F87 749, 640us
-0000000004 C:00000000 snoop 00000FE8 750. 266us
-0000000003 C:00000000 snoop 00000F89 748.400us (=
-0000000002 C:00000000 snoop 00000F8A 750.100us
-0000000001 C:00000000 snoop 00000F 8B 750.734us T
3

©1989-2024 Lauterbach

Application Note for the SNOOPer Trace |

28

Sampling Benchmark Counters

Benchmark counters are on-chip counters that count specific hardware events e.g. the number of executed
instructions or number of cache misses. Please refer to your Processor Architecture Manual to check if
your target processor supports benchmark counters.

The SNOOPer trace can be used to record benchmark counters periodically. This is done non-intrusively if
the target system allows to read these counters while the program execution is running. Otherwise, the
intrusive StopAndGo mode is used. Several benchmark counters can be sampled at the same time. All
counters are read simultaneously in one step.

The benchmark counters can be configured in TRACE32 using the BMC (BenchMark Counter) command
group.

To configure the SNOOPer trace for benchmark counter sampling, the following steps need to be
done:

1. Open the BMC.state window from the TRACE32 menu Perf > Benchmark Counters. This menu
is only visible if benchmark counters are provided by the selected chip.

/A TRACE32 PowerView i -

File Edit View Var Break Run CPU Misc Trace Cov Cortex-A8 Window Help

[M A3 | » || 28D E B {2 Perf Configuration...
= Perf List N
& Perf List Dynamic
Function Runtime ’
Distribution ’
Duration Ato B ’
Distance trace records ’
& Benchmark Counters
Reset
2. Select the counters that should be sampled from the BMC.state window. You can select one or
several counters.
@ B:BMCstate E\@
control profile snoop SELect CLOCK
RESet Il PROfile | | | [& snooPer | | st ||| [pmno ~| [=|tree |
@ Init [] AutoInit [|snoopSet [EEPROfilechart) | | [EEsYmbol | [=|symbol |
counter name |event size value ratio ratio value [0
T = o~ O .
I— PMNO ICMISS (Instruction Cache Misses)) 32BIT 0| OFF
[T S NI Sa T DEIICt Gl R L o 32BIT OFF
& PMN2 OFF (Disable Benchmarkcounter) 32BIT OFF
& PMN3 OFF (Disable Benchmarkcounter) 32BIT OFF
= PMN4 OFF (Disable Benchmarkcounter) 32BIT OFF
& PMNS OFF (Disable Benchmarkcounter) 32BIT OFF
= ETM1 OFF (Disable Benchmarkcounter) 16BIT OFF
= ETM2 OFF (Disable Benchmarkcounter) 16BIT OFF
@ L2CNTO OFF (Disable Benchmarkcounter) 32BIT OFF
® L2CNTL OFF (Disable Benchmarkcounter) 32BIT OFF S
« 1 b

©1989-2024 Lauterbach Application Note for the SNOOPer Trace | 29

Alternatively, you can assign the event of interest to the benchmark counter using the following
PRACTICE commands.

BMC.<counterl> <eventl> ; assign event of interest to
; the event counter

BMC.<counter2> <event2> ; several assignments possible

The syntax of the commands is architecture-specific. Please refer to your Processor
Architecture Manual for more information.

Example (Arm):

BMC.PMNO ICMISS ; assign instruction cache miss
; counter to first event counter

BMC.PMNO DCMISS ; assign data cache miss counter to
; second event counter

3. Configure the SNOOPer trace for benchmark counter recording by selecting the SnoopSet
check box in the BMC.state window or by selecting the BMC mode from the SNOOPer.state
window. When the SnoopSet option is selected in BMC.state, the BMC mode is automatically
selected in SNOOPer.state and vice-versa.

© B:BMCstate E=0 ol ™
control profile snoop SELect CLOCK
RESet I PROfile | | | [& snooper | | ist_ || | [pvnio ~| [=|tree |
[Autotnit I SnoopSet I [EErROfilechart] | | [B symbol | [Elsvmbol |
counter name event
—@® CLOCKS &2 BzSNOOPer =N R <"
—® PMNO ICMISS (Instruction
® PMNL OFF (Disable Benchma| | State used SElect
OFF (Disable Benchmal | 7 pisable select
OFF (Disable Benchma| | — E]
OFF (Disable Benchma| | (@ OFF 0.
OFF (Disable Benchmal | —,
OFF (Disable Benchma .:.Arm SIEE aliie
OFF (Disable Benchma| | (trigger 51150. E]
—® L2CNTO OFF (Disable Benchma @ break
@ L2CNTL OFF (Disable Benchmaf | -/Prea
< Mode Mode Maode TOut
commands (@) Fifo () Memory [AddressTrace @) Trace
RESet (") stack [@T]ele] ["|changes (") Program
@) BMC SLAVE (C)PULSE
€ SnapShot Rate C)PC [stopandGo (C)BUSA
L 1.000us () PCHMMU [ClrAsT
AutoArm 1000000, JETM [] context TDelay
[] AutoTnit max (CIETM32 0.
[] selfarm 0.000us

The respective TRACE32 commands are

BMC . SnoopSet ON

©1989-2024 Lauterbach

Application Note for the SNOOPer Trace |

30

and

SNOOPer .Mode BMC

Example (TriCore): We can use the following PRACTCE script to sample data cache / data buffer hits and
misses on a TriCore processor:

BMC.RESet

BMC.M1CNT DATA_X_ HIT

BMC .M2CNT DATA_X_CLEAN

BMC. SnoopSet ON

; reset BMC configuration

; count data cache / data buffer

; hits

; count data cache / data buffer

; misses

; configure the SNOOPer trace for

; event counter recording

The SNOOPer.List window displays for each sample the following information:

. core: core number. This column is only visible for SMP systems.

. <counter>: sampled counter values where <counter> is

- bmc<x>: benchmark counter with index <x> e.g. bmc0, bmc1...

- fbmc<x>: delta bmc<x> divided by delta time.

- architecture specific counter name e.g. micnt, m2cnt, m3cnt for TriCore

. ti.back: time relative to the previous sample.
1 BzSNOOPer.List =N R <"
|&Setup...|| 1 Goto... || $#3Find... || ! Chart || a5/ Draw || B Profile |

record |core |bmcQ bmcl bmc2 bmc3 fhmc0 thmcl thmc2 thmc3 ti.back
-0000000019 (1 2FEBE31D 12F1FC45 0000235E 0003A6BE ODG6FA4EC 054EDO16 00000000 00000000 460.140us L
-0000000018 (0 0003171D 0000EA3QC 00002848 00004FE6 00000000 00000000 00000000 00000000 458.440us —
-0000000017 (1 2FEB70AF 12F29BAS5 0000235B 0003A6BE OD705ED3 054EAS547 00000000 00000000 458.220us |[=
-0000000016 (0 0003171D O000EA30 00002B48 00004FE6 00000000 00000000 00000000 00000000 458.480us -
-0000000015 (1 2FEAQCE5 12F33BEF 0000235B 0003A6BE 0D702A20 054EBAGE 00000000 00000000 460.820us
-0000000014 (0 0003171D O00OEA30 00002B48 00004FE6 00000000 00000000 00000000 00000000 460.820us
-0000000013 (1 2FEBAO48 12F3DB6B 0000235B 0003A6BE ODGFE6GGF 054EBF6C 00000000 00000000 458.500us
-0000000012 (0 0003171D O00QEA30 00002B48 00004FE6 00000000 00000000 00000000 00000000 459.000us
-0000000011 (1 2FED35AC 12F47BED 0000235B 0003A6BE ODGFACBD 054EB379 00000000 00000000 460.380us
-0000000010 (0 0003171D O00OEA30 00002B48 00004FE6 00000000 00000000 00000000 00000000 459.260us
-0000000009 (1 2FEECBED 12F51AD1 00002358 0003A6BS8 00701353 054EAS7E 00000000 00000000 457.900us [=
-0000000008 (0 0003171D O00OEA30 00002B48 00004FE6 00000000 00000000 00000000 00000000 458.760us
-0000000007 (1 2FFO5E24 12F5BADF 00002358 0003A6B8 0D702017 054ECE3A 00000000 00000000 460.120us ™
4 3

If you change the number of the assigned benchmark counters, then you need to refresh the SNOOPer.List
window so that it gets adjusted to the new configuration.

Please be aware that the debugger reads all counters at once. So the number of read counter has nearly no
impact on the maximum sampling rate.

©1989-2024 Lauterbach

Application Note for the SNOOPer Trace

31

The SNOOPer.PROfileChart. COUNTER command can be used to display a graphical profile statistic of the
sampled benchmark counter values. The result is a stacked graph i.e. the total number of events/s at a given
time represent the sum of the events for all counters at that time.

I B:SNOOPer.PROfileChart COUNTER =N R <"
& Setup... | iii Groups... || 38 Config...|[/A Goto... || #3Find... |[0 in |[»0¢ out|[K8 Full]| & 1n |[= out|[& Full][Fine |[Coarse|
10.000ms |Ji] DCMISS:0 [DCACCESS:0 [DCMISS:1 [DCACCESS:1
-1.400s -1.200s -1.000s -800.000ms -600.000ms -400.000ms -200.000ms
events/sec L L L L L L L =
500.0e+6 ~
El
400.0e+6 =
-
300.0e+6
200.0e+6 ‘E‘
100.0e+6
0.0 | NS <
Jam»

©1989-2024 Lauterbach Application Note for the SNOOPer Trace | 32

Sampling ETM Counters

The TRACE32 SNOOPer trace allows to sample Embedded Trace Macrocell (ETM) counters on Arm

processors.

The number of available ETM counters [A] is displayed in the ETM.state window that can be accessed from
the TRACES32 PowerView menu Trace > ETM Settings.

2 B-ETMstate

E

etm control trace

(C)0oFF [¥]Trace ["eeC

@on [|oeGrg [ReturnStack
D'i-m ngBrEPoinls |:|_|mes‘ta mpsTrace

commands

trigger STALL

@

Dﬁe.cotzta"ace

ContextID

v

i ® [vmmD

counter
Ox1E8

TImeMode
OFF -

[| cydeacaurate

CLOCK

DTimeStamps
TimeSampdOXK

E=R EoE ==

resources

AComp:
DComp:
CComp:

4.-1.

1.

Counter: 2.

Seq:
ExtIn:
ExtInBus:
ExtOut:
Version:

Yes
4.

2(29.

Fen

P10

¥ advanced

The ETM.state window also displays the current values of the ETM counters [B].

You can display the ETM counter registers from the ETM.state window using the Register button [C] or
using the command

ETM.Register "Counter"

Please do not change the register values manually since they are programmed by the debugger.

= B:ETM.Register

ESRECE X

-~

m

0000FFFF

00DOFFFF ¢

UNT OODOFFFF
COUNT OOOOFFFF

(1L}

00023787 ECOND yes EBEF A RE external RES 16 RA acomp RAS 8
000037C0 EF A RE external RES 16 RA counter RAS 1
0000FFFF COUNT OQOOFFFF
0000FFFF COUNT OOOOFFFF
000207C0O ECOND yes EBEF A RE acomp RES 16 RA counter RAS 1
000037C1 EF A RE external RES 16 RA counter RAS 2

©1989-2024 Lauterbach

Application Note for the SNOOPer Trace |

33

The SNOOPer trace can be used to sample periodically the values of the ETM counters. Two special modes

are provided for this purpose:

. ETM: sample the 16bit value of the first ETM counter.

. ETM32: two ETM counters are used to have a 32bit counter.
/& B:SNOOPerstate E\@
state used SELect
DISable I:l select...
Q) OFF 0.
Arm SIZE TValue
trigger 51150. I:l clear
break
Mode Mode Mode TOut
commands Q) Fifo Memory AddressTrace @) Trace
RESet Stack pDcc Changes Program
& Init BMC V| SLAVE PULSE
& SnapShot Rate PC StopAndGo BUSA
£ List 1.000us PC+MMU FAST
V| AutoArm 1000000, Q@ ETM ContextID TDelay
AutoInit max ETM32 0.
Selfarm 0.000us

You can assign an ETM counter to a breakpoint using the Break.Set option /BusCount. On a breakpoint hit,

instead of stopping the program execution, the ETM counter will then be increased. This can be used for

instance to count the number of calls of a certain HLL function or program address:

Break.Set <address> /BusCount

The SNOOPer trace will then give you a statical distribution of the function calls over the time.

Sampling the ETM counters can be set up using the following PRACTICE script:

SNOOPer .RESet

SNOOPer .Mode ETM

; SNOOPer .Mode ETM32

Break.Set myFunc /BusCount

7

I

reset the SNOOPer

select mode ETM or ETM32

The SNOOPer.List window displays the following information:

. core: core number. This column is only visible for SMP systems

o etm1: value of the ETM counter

J fetm1: delta etm1 divided by delta time

J ti.back: time relative to the previous sample

©1989-2024 Lauterbach

Application Note for the SNOOPer Trace

34

1 BzSNOOPer.List =N R <"
(& setup...|[A Goto...|[#3Find... |[#l Chart [! Draw |[H Profile
record |core |etml fetml ti.back i
-0000000014 (0 00000081 00000000 446.280us
-0000000013 |1 0000014D 00000000 446.200us —
-0000000012 |0 00000081 00000000 447.960us |i|
-0000000011 |1 0000014D 00000000 448.020us +
-0000000010 (0 00000081 00000000 446.920us
-0000000009 |1 0000014D 00000000 447.400us =
0000000008 |0 Q00000081 00000000 448.920us
-0000000007 |1 0000014D 00000000 449.180us
-0000000006 |0 00000081 00000000 446.600us |_E
-0000000005 |1 0000014D 00000000 445.900us ——
-0000000004 |0 00000081 00000000 447.340us
4 ;

The SNOOPer.PROfileChart. COUNTER command can be used to display a graphical profile statistic of the
sampled counter values over the time. The window displays per default the values of fetm1.

I B:SNOOPer.PROfileChart COUNTER =N R <"

(2 setup...[jif Groups... | 22 Config...| & Goto... || #3Find... || 0 n |[»D«out|[E¥ Full[& In |[S out|[E] Full]| Fine |[coarse]

M etml:0 etml:1
-3.500s -3.000s -2.500s -2.000s -1.500s -1.000s
events/sec ! ! ! I I I I
3000.0 n
2500.0 E
N T S B
1500.0
1000.0 S S |E|
soo.0) . . | S l S

0.0 .A_i“ Jl.l. i e u;ii R
NIRRT | 1 | b

You can display the etm1 values instead using the following command

SNOOPer .PROfileChart .COUNTER etml

©1989-2024 Lauterbach Application Note for the SNOOPer Trace | 35

I B:SNOOPer.PROfileChart COUNTER etm1l =N R <"
& Setup... | iii Groups... || 38 Config...|[/A Goto... || #3Find... |[0 in |[»0¢ out|[K8 Full]| & 1n |[= out|[& Full][Fine |[Coarse|
M etml:0 etml:1 ‘
4.000s -3.500s -3.000s -2.500s -2.000s -1.500s -1.000s -500.
events/sec || I I I I I I (=
1500000.0] N
=l
1000000.01 - -
500000.0/ . |E|
J el «f 1l | b

NOTE:

Advanced setup of the ETM counters is possible using the ETM Programming
dialog accessible from the TRACE32 menu Trace > Trigger Dialog...

Please refer to “Arm ETM Programming Dialog” (trace_arm_etm_dialog.pdf)
for detailed information.

©1989-2024 Lauterbach

Application Note for the SNOOPer Trace |

36

Save and Load

It is possible to save the SNOOPer trace results to a file for postprocessing using the command
SNOOPer.SAVE e.g.

SNOOPer .SAVE file.ad

The file can then be loaded in TRACES32 PowerView using the command SNOOPer.LOAD:

SNOOPer .LOAD file.ad

The SNOOPer.List window will display the loaded SNOOPer trace data. The message “LOAD” is displayed
in red at the lower left of the window to indicate that the displayed data is loaded from a file.

| B:SNOOPer.List =N R <"
|&Setup...|| 1 Goto... || $#3Find... || ! Chart || a5/ Draw || B Profile |

rec run |address cycle |data symbol ti.back
-0025 R:0000093C snoop s1eve'ysievewTunc8+0xD0 99.908ms .
-0024 R:00001396 snoop “Wsievesieveimain+0x12A 110.457ms —
-0023 R:00001080 snoop velsieve\init_linked_list+0x44 70.281ms |=
-0022 R:00001618 snoop \\s1eve\s1eve\s1eve+0x38 1.424s -
-0021 R:00001080 snoop .ve\s1eve\1n1t linked_list+0x44 74.476ms
-0020 R:000015F8 snoop \\s1eve\s1eve\s1eve+0x18 100.984ms =
-0019 R:000010CE snoop .ve\s1eve\1n1t Tlinked_1ist+0x92 110.239ms
-0018 R:00003644 snoop \\s1eve\G1oba1\ adddf 3+0xA0 109.915ms
-0017 R:00000D02 snoop YAsievelsieve\funcl3+0x56 109. 958ms
-0016 R:000011BE snoop \\s1eve\s1eve\encode+0x56 109. 834ms
-0015 R:00001108 snoop .ve\s1eve\1n1t Tlinked_list+0xCC 110.156ms
-0014 R:00000636 snoop \\sieve\sieve\Func2c+0x36 109.744ms
-0013 R:00003450 snoop “Wsieve\Globaly__divsi3+0x0C 110.185ms
-0012 R:00000E3E snoop “Wsieve'sieve\func22+0x2 109.963ms
-0011 R:000034F8 snoop “Wsieve\Globaly__divsi3+0xB4 110.048ms
-0010 R:00000998 snoop “Asieve'sievefunc8+0x12C 100.015ms
-0009 R:00001290 snoop “A\sieve'sievemain+0x24 110.061ms |=
-0008 R:00001614 snoop ‘Asieve\sieve\sieve+rOx34 109.987ms
-0007 R:00000BCA snoop \\s1eve\s1eve\Func10+0xl42 109.932ms
-0006 R:00001616 snoop \\s1eve\s1eve\s1eve+0x36 110.044ms
-0005 R:0000106A snoop wvelsieve\init_linked_1ist+0x2E 109.975ms
-0004 R:00003618 snoop “Asieve\Globaly__adddf3+0x74 109.852ms
-0003 R:000013E8 snoop “Wsieve'sieve\main+0x17C 109.993ms
-0002 R:00000D012 snoop ‘Asievelsieve\funcld+0x6 110.339ms
Sl R:00001506 snoop \\s1eve\s1eve\ma1n+0x29A 70.325ms T

AD | IR ’

The SNOOPer trace results can also be exported to a file as comma-separated values using the following

commands:
PRinTer.FILE snoop_plotl.lst ; specify documentation file name
PRinTer.FileType CSV ; specify comma-separated value as
; output format
WinPrint.SNOOPer.List ; save result of the command

; SNOOPer.List to file

©1989-2024 Lauterbach Application Note for the SNOOPer Trace | 37

	Application Note for the SNOOPer Trace
	History
	Introduction
	SNOOPer Trace Configuration
	Sampling the Memory
	Logging a Single Variable
	Logging only Data Changes
	Logging Multiple Variables
	Display the SNOOPer Trace Results
	List of Recorded Samples
	Graphical Display of SNOOPer Trace Results
	Statistical Distributions

	SNOOPer Trace Trigger

	Sampling the Program Counter
	Setup
	Display Options
	Sampling the Program Counter and the Current Task

	Data Sampling via Debug Communication Channel
	Sampling Benchmark Counters
	Sampling ETM Counters
	Save and Load

