
MANUAL

Application Note
for the LOGGER Trace

Application Note for the LOGGER Trace

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 Trace Application Notes ... 

 Software Traces .. 

 Application Note for the LOGGER Trace .. 1

 History ... 3

 Introduction .. 3

 Related Tutorials 3

 The LOGGER Trace Format ... 4

 LOGGER Description Block 4

 LOGGER Trace Records 5

 Address and Data Trace 5

 Program Flow Trace 6

 LOGGER Target Application ... 7

 LOGGER Functions 7

 T32_LoggerInit 7

 T32_TimerInit 8

 T32_TimerGet 8

 T32_LoggerData 8

 T32_LoggerDataFast 10

 T32_LoggerTrigger 10

 LOGGER Macros 11

 Data Cycles 11

 Cycle Types 11

 LOGGER Size 11

 LOGGER Trace Configuration ... 12

 Display of LOGGER Trace Contents .. 15

 List of Recorded Samples 16

 Graphical Display of LOGGER Trace Results 18

 Using the LOGGER for Task Switch Trace .. 19

 LOGGER Trace Trigger .. 20
Application Note for the LOGGER Trace | 2©1989-2024 Lauterbach

Application Note for the LOGGER Trace

Version 06-Jun-2024

History

22-Jan-21 New manual.

Introduction

LOGGER is a software trace method which requires a modification of the target application in order to write
specific trace information to the a reserved buffer on the target memory using a trace format provided by
LAUTERBACH. TRACE32 loads then the trace information from the target memory for display and
processing.

The trace method LOGGER is mainly used when no hardware based trace is available.

A description of the TRACE32 LOGGER commands can be found under “LOGGER” in General
Commands Reference Guide L, page 45 (general_ref_l.pdf).

Related Tutorials

For video tutorials about the LOGGER, visit:
support.lauterbach.com/kb/articles/trace32-logger-trace
Application Note for the LOGGER Trace | 3©1989-2024 Lauterbach

https://support.lauterbach.com/kb/articles/trace32-logger-trace

The LOGGER Trace Format

The LOGGER trace buffer includes a description block followed by the trace data.

LOGGER Description Block

The LOGGER description block has the following format:

Trace data start address
(32- or 64-bit)

Start address of the trace data in the target RAM. This is the start
of the LOGGER buffer plus the size of the logger header.
The command LOGGER.Mode 64Bit controls the size of the start
address:
OFF (default): 32-bit
ON : 64-bit

Size (32-bit) Number of trace records (trace packets). The format of a trace
record is described below.

Index (32-bit) Index of the next record that should be written by the trace.

Trigger counter (32-bit) Index of the trace record when the trigger was generated.

Trace start address

Size

Index

Trigger counter

LOGGER
description block

Flags from the host

Flags to the host

(currently not used)

(currently not used)

16-bit
flags

48-bit
timestamp

32/64-bit
address

32/64-bit
data

Target RAM

LOGGER
address
Application Note for the LOGGER Trace | 4©1989-2024 Lauterbach

LOGGER Trace Records

The software trace can work in 2 operation modes:

• Address/data trace

Address and data information is sampled.

• Flow trace

A flow trace is available on architectures which provide a ’branch trace’ capability like all
PowerPC families. For a flow trace all changes in the program flow are sampled. The TRACE32
software reconstructs and displays the complete program flow out of this information. This mode
is not documented in this manual. Refer to “MPC5xx/8xx Debugger and Trace”
(debugger_ppc.pdf) for more information.

Address and Data Trace

Flags from the host
(32-bit)

Bit 0: Arm (high active)
Bit 8: FIFO mode (low active), Stack mode (high active)

Flags to the host (32-bit) Bit 0: Overrun (high active)
Bit 8: Trigger (high active)
Bit 9: Break (high active)

Software Trace Record Description

Flags (16-bit) Bits 12 .. 15: trace packet type:

• Fetch (0x1)

• Data Read (0x2)

• Data Write (0x3)

Bits 8 .. 11: data width (1, 2, 4 or 8 bytes)

Bits 0 .. 7: core number for SMP trace.

Timestamp (48-bit) Timestamp from a timer, counter etc. from the target

Address (32- or 64-bit) Fetch or data address.
This field is 32- or 64-bit depending on LOGGER.Mode 64Bit.

Data (32- or 64-bit) Data value.
This field is 32- or 64-bit depending on LOGGER.Mode 64Bit.
Application Note for the LOGGER Trace | 5©1989-2024 Lauterbach

Program Flow Trace

Software Trace Record Description FlowTrace (e.g. PowerPC, SH4)

Flags (16-bit) 0xF00x: Flow trace record

Timestamp (48-bit) Timestamp from a timer, counter etc. from the target

Address (32-bit) Address 1

Address (32-bit) Address 2
Application Note for the LOGGER Trace | 6©1989-2024 Lauterbach

LOGGER Target Application

C and C++ source and header files for using the TRACE32 LOGGER are available in TRACE32 system
directory under ~~/demo/etc/logger:

• logger.h / logger.hpp

This header file contains the necessary type and macro definitions as well as function
prototypes.

• logger.c / logger.cpp

Contains the LOGGER functions.

Whenever a part of the application uses the LOGGER, the header file "logger.h"/"logger.hpp" must be
included.

LOGGER Functions

T32_LoggerInit

Prototype:

Initializes the LOGGER internal data structures and calls T32_TimerInit(). This routine must be called
before using any other LOGGER related routines.

When using the C++ LOGGER files, this function is called in the constructor of the T32_LoggerC class.

The LOGGER.Init command has to be executed after calling this function in order to read the LOGGER
buffer size.

If the LOGGER is used in 64-bit mode, the macro LOGGER_64BIT has to be
defined.

If the LOGGER is used in SMP mode, the macro LOGGER_SMP has to be defined.

void T32_LoggerInit ();
void T32_LoggerC::T32_LoggerInit();
Application Note for the LOGGER Trace | 7©1989-2024 Lauterbach

T32_TimerInit

Prototype:

Initializes the architecture specific timer. This routine is architecture specific and must be implemented by the
user.

T32_TimerGet

Prototype:

Returns current timestamp of architecture specific timer (48-bit width). This routine is architecture specific
and must be implemented by the user.

Example for PowerPC using the TBL register:

T32_LoggerData

Prototype:

Single core mode (LOGGER_SMP undefined):

SMP mode (LOGGER_SMP defined):

void T32_TimerInit ();
void T32_LoggerC::T32_TimerInit();

unsigned long long T32_TimerGet ();
unsigned long long T32_LoggerC::T32_TimerGet()

unsigned long long T32_TimerGet ()
{
 unsigned long tb;
 asm volatile ("mftb %0": "=r" (tb));
 return tb;
}

void T32_LoggerData (int cycletype, void* address, data_t data);

void T32_LoggerData (int cycletype, void* address, data_t data,int core);
Application Note for the LOGGER Trace | 8©1989-2024 Lauterbach

C++:

Adds a new event to the LOGGER.

Parameters:

Examples (single core):

Examples (SMP):

void T32_LoggerC::T32_LoggerData(int cycletype, void* address,
 data_t data, int core=0)

cycletype ; Type of the event e.g. T32_FETCH or
; (T32_DATA_READ|T32_LONG).

address ; Address of the event. This is an instruction
; address in case of T32_FETCH and T32_EXECUTE,
; otherwise a data address.

data ; Data related to the event.

core ; Core number for SMP systems.

// add a write cycle of the 32-bit variable mcount to the LOGGER trace
T32_LoggerData (T32_DATA_WRITE|T32_LONG, &mcount, mcount);

// add a read cycle of the 8-bit variable vchar to the LOGGER trace
T32_LoggerData (T32_DATA_WRITE|T32_BYTE, &vchar, vchar);

// add a fetch cycle of the function func2 to the LOGGER trace
T32_LoggerData (T32_FETCH, func2, 0 /* unused */);

// add a write cycle of the 16-bit variable vshort to the LOGGER trace
// for core 1
T32_LoggerData (T32_DATA_WRITE|T32_WORD, &vshort, vshort, 1);

// add a fetch cycle of the function func1 to the LOGGER trace for
// core 0
T32_LoggerData (T32_FETCH, func1, 0 /* unused */, 0);
Application Note for the LOGGER Trace | 9©1989-2024 Lauterbach

T32_LoggerDataFast

Prototype:

Single core mode (LOGGER_SMP undefined):

SMP mode (LOGGER_SMP defined):

C++:

Adds a new event to the LOGGER. In comparison with T32_LoggerData(), this function

• does not write a timestamp

• does not check if the LOGGER is armed (LOGGER.Arm)

• does not support Stack mode (LOGGER.Mode Stack)

Refer to T32_LoggerData() for a description of the parameters.

T32_LoggerTrigger

Prototype:

Generates a LOGGER trigger.

void T32_LoggerDataFast (int cycletype, void* address, data_t data);

void T32_LoggerDataFast (int cycletype, void* address, data_t data,
 int core);

void T32_LoggerC::T32_LoggerDataFast(int cycletype, void* address,
 data_t data, int core=0);

void T32_LoggerTrigger();
void T32_LoggerC::T32_LoggerTrigger()
Application Note for the LOGGER Trace | 10©1989-2024 Lauterbach

LOGGER Macros

Data Cycles

Used together with T32_DATA_READ and T32_DATA_WRITE.

Cycle Types

LOGGER Size

T32_BYTE 8-bit access

T32_WORD 16-bit access

T32_LONG 32-bit access

T32_QUAD 64-bit access

T32_FETCH Adds a trace record for a program fetch cycle.

T32_EXECUTE Adds a trace record for a program execute cycle, data holds number of
executed bytes.

T32_DATA_READ Adds a trace record with a read transaction (load).

T32_DATA_WRITE Adds a trace record with a write transaction (store).

T32_LOGGER_SIZE Size of the LOGGER ring buffer, must be a power of 2.
Application Note for the LOGGER Trace | 11©1989-2024 Lauterbach

LOGGER Trace Configuration

 The LOGGER trace is part of the TRACE32 trace framework. To configure the LOGGER trace:

1. On the TRACE32 main menu bar, choose Trace menu > Configuration:

2. Under METHOD, click the radio option LOGGER.

Or execute the following commands on the TRACE32 command line:

Alternatively, execute the LOGGER.state command:

NOTE: In this chapter, we assume that the target application has already been
instrumented to include the LOGGER functionality.

Trace.state
Trace.METHOD LOGGER

LOGGER.state
Application Note for the LOGGER Trace | 12©1989-2024 Lauterbach

All commands relative to the LOGGER trace can be executed using the Trace command group (e.g.
Trace.List) after selecting the LOGGER method in the Trace.state window, or using the LOGGER
command group (e.g. LOGGER.List). The second form is especially useful if the LOGGER trace
should be used together with a different trace method. In this application note, the LOGGER command
group will be used.

The following steps are needed to configure the LOGGER trace:

1. Reset the LOGGER trace to its default settings using the command LOGGER.RESet.

2. Define the address of the LOGGER trace control block in memory using the ADDRESS field [A]
of the LOGGER.state window or using the command LOGGER.ADDRESS

3. Select the recording mode [C]. In Fifo mode, if the LOGGER trace buffer is full, new trace records
will overwrite older records. Therefore the LOGGER trace memory always contains the last cycles
before stopping the trace. In Stack mode however, if the LOGGER trace buffer is full the recording will
be stopped so that the trace buffer always contains the first records.

The recording mode can also be set using the commands LOGGER.Mode Fifo or
LOGGER.Mode Stack. The LOGGER trace recording mode is set per default to Fifo.

4. Initialize the LOGGER by pressing the Init button [B] or using the LOGGER.Init command. The
function T32_LoggerInit() should have been already executed before initializing the LOGGER,
for example:

After the initialization, the SIZE field contains the size of the LOGGER trace.

LOGGER.ADDRESS T32_LoggerStruct

Go sYmbol.EXIT(T32_LoggerInit)
LOGGER.Init

B

A

C

D

E

F

G

Application Note for the LOGGER Trace | 13©1989-2024 Lauterbach

Please note that it is also possible to use the debugger in order to initialize the LOGGER control block
instead of calling the T32_LoggerInit() function. This can be enabled by setting the LOGGER mode
Create [G] or executing the command LOGGER.Mode Create ON. It will be then possible to specify
the LOGGER size in TRACE32. You should however make sure in this case that the selected size is
reserved by the target application for the LOGGER buffer.

Example:

5. Configure the timestamp usage of the LOGGER trace [D]. Per default, timestamps are disabled
(OFF). This setting should be used if the LOGGER target code does not generate timestamp
information in the LOGGER trace records. Otherwise, Up should be selected if generated
timestamps are counting upwards and Down if generated timestamps are counting downwards.

If timestamps are used, their frequency (in ticks per second) has additionally to be specified using the
Rate field [E] or the LOGGER.TimeStamp.Rate command.

6. If the LOGGER operates in 64-bit mode, the 64Bit check box [F] has to be selected.
Alternatively, use the command LOGGER.Mode 64Bit.

The settings done in the LOGGER.state window can be saved in the format of a PRACTICE script to an
external file using the STOre command or to the clipboard using the ClipSTOre command.

Per default, the LOGGER automatically starts recording when the program execution is started and stops
recording when it is stopped. This behavior can be controlled using the command LOGGER.AutoArm or
the AutoArm check box from the LOGGER.state window. The trace recording can also be controlled
manually using the commands LOGGER.Arm and LOGGER.OFF, or the Arm and OFF radio buttons.

LOGGER.Mode Create ON
LOGGER.SIZE 1024
LOGGER.Init

STOre <file> LOGGER Create a PRACTICE script to restore the LOGGER trace settings

ClipSTOre LOGGER Provide the commands to restore the LOGGER trace settings in the
cliptext
Application Note for the LOGGER Trace | 14©1989-2024 Lauterbach

Display of LOGGER Trace Contents

The LOGGER trace contents can only be displayed after the recording has been stopped (state OFF or
break). A display of the trace contents while recording is not possible. Moreover, in order to read the trace
data, the debugger needs to access the memory. This means that either the program execution has to be
stopped or, if supported by the target processor, memory access on run-time needs to me enabled. Please
refer to the description of the command SYStem.MemAccess in your Processor Architecture Manual for
more information. The LOGGER dual port mode (LOGGER.Mode E ON) needs to be enabled if the
LOGGER should access the memory on run-time.

Example 1: display the LOGGER result after stopping the program execution

Example 2: display the LOGGER result on run-time without stopping the target processor:

LOGGER.AutoArm ON
; stop the program execution, trace recording will also be stopped:
Break
; display the trace recording
LOGGER.List

; enable memory access on run-time (if supported by the target processor)
; the command may differ depending on the target architecture
SYStem.MemAccess Enable

; enable LOGGER dual port mode
LOGGER.Mode E ON

; stop the trace recording
LOGGER.OFF

; display the trace recording
LOGGER.List
Application Note for the LOGGER Trace | 15©1989-2024 Lauterbach

List of Recorded Samples

The LOGGER trace contents can be displayed using the List button from the LOGGER.state window or
using the command LOGGER.List.

The LOGGER.List window displays per default for each recorded trace packet the following information:

LOGGER.List

run displays the core number for SMP systems if the LOGGER is used in SMP
mode. This column is empty otherwise.

address instruction address for fetch cycles or data load/store address for data cycles.
Application Note for the LOGGER Trace | 16©1989-2024 Lauterbach

The different columns in the window can be rearranged by changing the order of the LOGGER.List
parameters. Moreover, other columns can be added to the window. You can use for example the keyword
Var to display the recorded variable in its HLL representation or TIme.Zero to display the time relative to the
start of the recording. Please refer to the documentation of the LOGGER.List command for a complete list
of the different possible parameters.

Example:

cycle cycle type:

• fetch: program fetch cycle

• execute: program execute cycle

• wr-<width>: read transaction. <width>: byte, word, long or quad.

• rd-<width>: read transaction. <width>: byte, word, long or quad.

symbol symbolic information.

ti.back time relative to previous record. This column is empty if timestamps are not
enabled.

LOGGER.List address CYcle Var ti.back ti.zero VarSymbol
Application Note for the LOGGER Trace | 17©1989-2024 Lauterbach

Graphical Display of LOGGER Trace Results

You can use the command LOGGER.DRAW to display the recorded data values graphically. Please refer to
the documentation of the <trace>.DRAW command group for more information.

Example:

If fetch accesses are recorded for multiple function, then you can display the function activity chart using the
command LOGGER.Chart.sYmbol.

LOGGER.DRAW.Var %DEFault FastCount SlowCount
Application Note for the LOGGER Trace | 18©1989-2024 Lauterbach

Using the LOGGER for Task Switch Trace

If the used target processor does not provide an on-chip trace support for recording task switches, the
operating system can be patched with the LOGGER functions in order to write the task switch information to
a reserved buffer in the memory. The task switch information can be then displayed with the command
LOGGER.Chart.TASK

An example for the Linux kernel based on a kernel module is described under “Using the LOGGER for
Task Switch Trace” in Training Linux Debugging, page 51 (training_rtos_linux.pdf).
Application Note for the LOGGER Trace | 19©1989-2024 Lauterbach

LOGGER Trace Trigger

The TRACE32 LOGGER offers a basic triggering functionality. The target application can trigger the
LOGGER to stop recording on a specific event. The trigger can be generated by calling the function
T32_LoggerTrigger().

In order to react on the trigger, the debugger needs to access the LOGGER control data on run-time. The
LOGGER trigger can thus only work if memory access on run-time is possible and enabled
(SYStem.MemAccess). Moreover, the LOGGER dual port access needs to be enabled using the
command LOGGER.Mode E ON.

Depending on the speed of the memory access on run-time, there could be a delay before the debugger
reacts on the trigger.

Example: generate a trigger in order to stop the trace recording when the variable mcount gets the value 5

You can see in the following screen shot that the trigger was generated after 5 records (T00000000) but the
debugger reacted after 12 additional records.

...
T32_LoggerData(T32_DATA_WRITE | T32_LONG, &mcount, mcount, 0);
mcount++;
if (mcount == 5) {
 T32_LoggerTrigger();
 T32_LoggerStruct.oflags |= T32LOGGERDATA_OFLAG_BREAK;
}
...
Application Note for the LOGGER Trace | 20©1989-2024 Lauterbach

	Application Note for the LOGGER Trace
	History
	Introduction
	Related Tutorials

	The LOGGER Trace Format
	LOGGER Description Block
	LOGGER Trace Records
	Address and Data Trace
	Program Flow Trace

	LOGGER Target Application
	LOGGER Functions
	T32_LoggerInit
	T32_TimerInit
	T32_TimerGet
	T32_LoggerData
	T32_LoggerDataFast
	T32_LoggerTrigger

	LOGGER Macros
	Data Cycles
	Cycle Types
	LOGGER Size

	LOGGER Trace Configuration
	Display of LOGGER Trace Contents
	List of Recorded Samples
	Graphical Display of LOGGER Trace Results

	Using the LOGGER for Task Switch Trace
	LOGGER Trace Trigger

