
MANUAL

Application Note
for eMMC Analysis

Application Note for eMMC Analysis

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 Trace Application Notes ... 

 Trace Analysis .. 

 Application Note for eMMC Analysis ... 1

 History ... 3

 Introduction .. 4

 TRACE32-based eMMC Access Log Solution ... 5

 Implementation Example for Linux OS .. 8

 Comparison with the Software Method ftrace ... 11

 Conclusion .. 13

 References .. 14

 Appendix A: Source Code Example ... 15

 Appendix B: Time Details .. 18
Application Note for eMMC Analysis | 2©1989-2024 Lauterbach

Application Note for eMMC Analysis

Version 06-Jun-2024

History

17-Jan-2022 New manual.
Application Note for eMMC Analysis | 3©1989-2024 Lauterbach

Introduction

The widespread use of eMMC storage in many of today’s applications raises the issue of premature device
degradation or wear-out resulting from intensive memory usage. To study this possible problem, it is
necessary to record the accesses to an eMMC device in order to obtain the required information that can be
subsequently analyzed to improve stability and reliability over the device’s expected lifespan. From this kind
of analysis, it’s necessary to understand how your software application actually accesses a filesystem
mounted on an eMMC and if this can cause premature aging of the NAND-based memory device.

SD cards, eMMC and UFS memory chips are managed-NAND block devices, consisting of a NAND
controller, an internal firmware performing ECC operations, wear-levelling and bad-block management of
the raw NAND memory.

The specific architecture of a managed-NAND device can be extremely sensitive to certain read and write
access sequences performed by the host processor under the direction of the application software,
especially if these are frequently iterated.

A classic recording method (log) of these accesses requires the implementation of additional code that
captures information and saves it securely. The information can be saved on another permanent storage
device, for example an external USB drive. This software method is intrusive and in addition to the overhead
of monitoring the eMMC access, additional overhead is added in order to save the data.

This document proposes a different method of capturing and saving such information through the use of a
TRACE32 hardware-based trace tool. This can be done with minimal intrusion on the software and, in some
cases, almost zero. This tool captures the program and data trace transmitted by the cores of a SoC through
a dedicated trace port, and records it to its own dedicated memory.

HOST PROCESSOR

Driver

ECC

NAND CONTROLLER

Wear Leveling

Bad Block Management

NAND

Managed NAND Flash

UFS, e.MMC or SD IF
Application Note for eMMC Analysis | 4©1989-2024 Lauterbach

TRACE32-based eMMC Access Log Solution

In all operating systems or device drivers that manage an eMMC memory device, some functions are
provided for device access which incorporate the eMMC JEDEC standard commands. Long-term
monitoring of the execution of these commands and their parameters is the best way to collect the data
necessary for the access analysis. After accessing the eMMC device, a function or a code point is usually
available where the eMMC command is completed. Monitoring this code point allows the detection of
additional information, such as the execution time of the command.

The code points where eMMC accesses start and finish can be provided by a program trace.

In order to provide the eMMC details, a tiny amount of instrumentation to the source code is required.

• If data trace is available, the eMMC details can be written to a static data structure.

• If no data trace is available, the eMMC details can be written to a register. This register must
have the special property that a write to the register generates a trace message containing the
register contents. An example for such a register is the ContextID register of Arm CoreSight.

The following data is traced in the TRACE32-based log solution:

• at the beginning of eMMC access (ptrace):
- eMMC device id
- command executed and related flags
- access address
- number of accessed memory blocks and their size

• at the end of the eMMC access (ptrace):
- eMMC device id
- command executed
- result code and other return codes

Since all trace entries receive a timestamp, the access duration can also be analyzed.

A possible example of access monitoring is shown below:

Application Note for eMMC Analysis | 5©1989-2024 Lauterbach

This is, typically, a few trace records for each eMMC access. Stress tests have verified that logging an
eMMC access (functions mmc_start_request() and mmc_request_done() with related data)
requires about 416 trace records in the PowerTrace memory and these accesses occur on average every
4 mSec.

This corresponds to approximately 1GB/416 = 2.5 million eMMC logs, or approximately 10,000 seconds
(2h45min) for each gigabyte of trace storage. The PowerTrace family provides either 10 million eMMC
logs (11h) for a 4GB PowerTrace or 20 million (22h) for an 8GB module. By extending the trace duration with
trace streaming, the limit becomes the size of the computer hard-disk/SSD or the TRACE32 limit which is
1 Tera-frame, i.e., 2.5 billion eMMC logs (over 100 days!).

The recorded trace data can be filtered and saved to a file, and then converted into a more suitable format
for analysis using a PRACTICE or Python script, or an external conversion program.

The trace information for a single eMMC access can, for example, be converted into the format shown
below, which is more suitable for importing into specific eMMC analysis tools:

These tools perform a complete analysis of the eMMC device application accesses, in terms of addresses
accessed, frequency and access methods.

The end-goal is calculating the Write Amplification (WA) seen by the eMMC (or by any other managed-
NAND block device). Write Amplification (WA) is defined as the ratio of NAND physical writes and the host
induced writes (WA = NAND writes / Host Writes).

When the host writes logical sectors of the eMMC, the internal MMC controller erases and re-programs
physical pages of the NAND device. This could cause a management overhead. Large sequential writes
aligned to physical page boundaries typically result in minimal overhead and optimal NAND write activity
(WA=~1). Small-chunks of random writes could result in a higher overhead (WA>>1).

24.228827980 mmc_start_req_cmd:
host=mmc1
CMD25
arg=01620910
flags=000000B5
blksz=00000200
blks=00000010

24.231239610 mmc_request_done:
host=mmc1
CMD25
err=00000000
resp1=00000900
resp2=00000000
Application Note for eMMC Analysis | 6©1989-2024 Lauterbach

This becomes important when considering the life of the raw-NAND memory inside the eMMC, which has a
finite number of program/erase cycles. See the table below:

To estimate the WA for any particular eMMC device, and hence its expected lifetime on your application, you
can capture the log file of the activity.

Once a log is obtained, it’s recommended to contact your eMMC vendor to get more information about the
log analysis tools required for analyzing the specific eMMC product.

Item Value

Device Capacity 8GB

Write Endurance 2K Program/Erase Cycles

Data Written Per Day to Device 2GB

Expected Life w/ WA=1 =(8x2000)/(2*1) 8,000 days

Expected Life w/ WA=5 =(8x2000)/(2*5) 1,600 days
Application Note for eMMC Analysis | 7©1989-2024 Lauterbach

Implementation Example for Linux OS

Below is an example of how the TRACE32-based log method can be applied to a Linux system. The solution
is based on light instrumentation of the mmc_start_request() and mmc_request_done() functions
defined in the Linux “drivers/mmc/core/core.c” source code file. Relevant eMMC device accesses are
captured through the instrumentation code and they are written to a static data structure making them
immediately traceable if data trace is available in the SoC. If data trace is not possible, the instrumentation
code writes the data to the Arm CoreSight Context ID register.

The solution was successfully tested on the DAVE Embedded Systems “MITO 8M Evaluation Kit” (see
https://www.dave.eu/en/solutions/system-on-modules/mito-8m). The kit consists of three boards: SoM,
SBCX carrier board, adapter board. This setup provides off-chip trace via a parallel trace port or a PCIe
interface. The SoM is equipped with the NXP i.MX8M processor based on the Quad Core Arm Cortex-A53
CPU. The Linux kernel version used is 4.14.98.

The instrumentation code is provided in “Appendix A: Source Code Example”, page 15 or in the
~~/demo/etc/trace/emmc/ folder. The zero initialization of the T32_mmc structure is guaranteed by
Linux, since this variable is allocated in the bss section. The instrumentation is normally disabled but can be
enabled by writing the value "1" in the enable field of the T32_mmc structure. The identifier of the eMMC
device to be traced must be written in the dev field. Both of these operations can be performed from a
TRACE32 script via the Var.set command:

The infoBit field can be written as follows:

In order to distinguish between data written in the Context ID register by the instrumentation code from those
written by Linux for task switches, the range of values used by the instrumentation code must be reserved so
that they are not interpreted as task switch identifiers. The command ETM.ReserveContextID can be used
for this:

The cycle type task is assigned to Linux task switches, the cycle type info is assigned to the
instrumented code.

It’s important to note that the Linux kernel must be compiled for debug (see “Training Linux Debugging”
(training_rtos_linux.pdf)).

Var.set T32_mmc.enable = 1
Var.set ((char*)&T32_mmc.dev) = "mmc0"

Var.set T32_mmc.infoBit = 0x80000000

ETM.ReserveContextID 0x80000000--0xffffffff
Application Note for eMMC Analysis | 8©1989-2024 Lauterbach

https://www.dave.eu/en/solutions/system-on-modules/mito-8m

To reduce the amount of trace information generated by the target and to allow long-term trace via
TRACE32 streaming (Trace.Mode STREAM), filters can be applied to isolate the eMMC code and its writes
to the Context ID register. The Break.Set command can be used for this purpose:

Where the filters marked as /TraceOFF are mapped to program addresses immediately after the
instrumentation.

Tracing task switch information is not required for the eMMC analysis, but if you want that task switch data
generated by the OS is included in the filtered trace flow, add an additional filter to the __switch_to()
function (arch/arm64/kernel/process.c) where it calls the static inline
contextidr_thread_switch() function:

The recorded trace data can be filtered and saved to a file, and then converted into a more suitable format
for analysis using a PRACTICE or Python script, or an external conversion program.

Break.RESet
Break.Set mmc_request_done /Program /TraceON
Break.Set mmc_request_done\94 /Program /TraceOFF
Break.Set mmc_start_request /Program /TraceON
Break.Set mmc_start_request\38 /Program /TraceOFF

Break.Set __switch_to+0x74 /Program /TraceON
Break.Set __switch_to+0x80 /Program /TraceOFF
Application Note for eMMC Analysis | 9©1989-2024 Lauterbach

Use the command Trace.FindALL to filter and format trace data required for the eMMC analysis.

If the trace data are available as required, they can be saved in a file using the PRinTer.File command and
the command prefix WinPrint.

Trace.FindAll , Address ADDRESS.OFFSET(mmc_start_request) \
OR Address ADDRESS.OFFSET(mmc_request_done) \
OR CYcle info OR CYcle task \
/List Run CYcle sYmbol %TimeFixed TIme.Zero Data

NOTE: ‘OR Cycle task’ is optional.

PRinTer.FILE mmclog.txt ASCIIE

WinPrint.Trace.FindAll , Address mmc_start_request OR \
Address mmc_request_done OR CYcle info \
/List Run CYcle sYmbol Data %TimeFixed TIme.Zero
Application Note for eMMC Analysis | 10©1989-2024 Lauterbach

Comparison with the Software Method ftrace

In Linux, eMMC access log solutions based on purely software methods are already available. The ftrace
framework provides this capability, as well as being able to log many other events. The term “ftrace” stands
for “function tracer” and basically allows you to examine and record the execution flow of kernel functions.
The dynamic tracing mode of ftrace is implemented through dynamic probes injected into the code, which
allow runtime definition of the code to be traced. When tracing is enabled, all the collected data is stored by
ftrace in a circular memory buffer. In the framework there is a virtual filesystem called tracefs (usually
mounted in /sys/kernel/tracing) which is used to configure ftrace and collect the trace data. All
management is done with simple operations on the files in this directory.

Comparative tests performed on the DAVE Embedded Systems “MITO 8M Evaluation Kit” target showed
that the ftrace impact compared to the TRACE32-based log solution is considerably higher in several
respects. This is understandable, considering that ftrace is a general-purpose trace framework designed to
trace many possible events, while the instrumentation required for the TRACE32 log method is specific and
limited to the pertinent functions. Moreover, ftrace requires some buffering (ring buffer) and saving data to a
permanent memory, while the solution based on TRACE32 uses off-chip trace to save the data externally in
real time. The following tables show a comparison between ftrace and the TRACE32 solution.

Instrumentation size

(*) ftrace instrumentation applies to the whole Linux kernel. TRACE32 instrumentation applies to the
functions mmc_start_request() and mmc_request_done() only.

(**) the actual size of the ftrace ring buffer can be configured during runtime but is typically between
10-100MB.

In the ftrace-based solution, an increase in kernel size of approximately 15% (code) and 9% (data) is
observed compared to the kernel without ftrace. During the execution of ftrace it’s also necessary to reserve
additional memory for the ring buffer. The number of source files used in building the kernel increases by
18% when the ftrace framework is included. The weight of the instrumentation required by TRACE32, on the
other hand, is practically negligible both in terms of code and data.

vmlinux
code size

vmlinux
data

vmlinux
source
files

instrumentation
code size (*)

instrumentation
data size (*)

Clean 12.79MB 10.78MB 4640

TRACE32 12.79MB
(+0%)

10.78MB
(+0%)

+0
(41source
code lines
in mmc
driver)

+372 byte +64 byte

ftrace 14.78MB
(+15.6%)

11.77MB
(+9%)

+836
(+18%)

+1.99MB +0.99MB+??MB
ring buffer (**)
Application Note for eMMC Analysis | 11©1989-2024 Lauterbach

Instrumentation time intrusion

(*) measuring points are the part of functions where the instrumentation is added.

The functions average duration analysis of eMMC accesses highlights the greater weight required by ftrace.
The tests were performed under the following conditions.

Test scenario: R/W access to mmc0 with command:

Results in /mnt/mmc0 (16MB)

Setup for ftrace

Please note that the ftrace pipe is saved to a file on a different memory device (mmc1).

Additional, more detailed charts are provided in “Appendix B: Time Details”, page 18, which show that
using ftrace also involves a greater dispersion of the runtime durations compared to both the kernel without
ftrace and the kernel instrumented only with the code for TRACE32. In particular, the functions
mmc_start_request() and mmc_request_done() have a few us constant execution time without
ftrace, and show a very variable execution time with ftrace, with a maximum time up to 279us and 285us
respectively.

Average duration at
measuring points
(*)

No ftrace
No TRACE32 instr.

No ftrace
With TRACE32 instr.

With ftrace
No TRACE32 instr.

mmc_start_request 6.950us 8.108us (+1.158us) 36.875us

mmc_request_done 0.770us 1.364us (+0.594us) 63.031us

stressapptest -s 20 -f /mnt/mmc0/file1 -f /mnt/mmc0/file2 ;duration = 20s

-rw-r--r-- 1 root root 8388608 Dec 3 16:30 file1
-rw-r--r-- 1 root root 8388608 Dec 3 16:30 file2

echo 1 > /sys/kernel/debug/tracing/tracing_on
echo 1 > /sys/kernel/debug/tracing/events/mmc/enable
echo 20000 > /sys/kernel/debug/tracing/buffer_size_kb ; 20MB buffer size
echo > /sys/kernel/debug/tracing/trace
cat /sys/kernel/debug/tracing/trace_pipe > /home/root/test/ftrace.txt
Application Note for eMMC Analysis | 12©1989-2024 Lauterbach

Conclusion

TRACE32 hardware-based trace tools provide the same log data as recorded by ftrace but with minimal
changes to the kernel (a few lines in a file) and a tiny time penalty. It also does not use any additional
memory (ram and file system) and allows for extremely long measurement times.

The following table summarizes the advantages and disadvantages of the two considered solutions:
TRACE32 and ftrace.

Please contact your eMMC vendor to obtain more information on how TRACE32 logs can be used to
calculate your application lifespan. This is very important milestone to improve the storage performance
stability of your platform and for making sure the expected reliability requirements are met.

TRACE32 + Light kernel instrumentation
+ No additional memory required
+ Long-term analysis (few hours up to
 over 100 days)
+ Can be ported to other OS / eMMC
 device drivers

— HW-based solution: requires a
 debug and trace tool and offchip-
 trace capable processor and
 target

ftrace + SW-based solution — Available for Linux kernel only
— Heavy kernel instrumentation
— Time intrusion in eMMC
 operation
— Kernel program and data size
 increase
— 10-100 MB of ram required for ring
 buffer
— Additional storage device to save
 the ring buffer
— For each eMMC operation ftrace
 saves roughly 876 byte of log
 information
Application Note for eMMC Analysis | 13©1989-2024 Lauterbach

References

Design Considerations for Embedded Products, Western Digital Corporation, 2018

https://link.westerndigital.com/content/dam/customer-
portal/en_us/external/public/cps/p/White_Paper_Design_Considerations_v1.0.pdf

Automotive Workload Analysis, Western Digital Corporation, September 2021

https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-
digital/collateral/white-paper/white-paper-automotive-workload-analysis.pdf
Application Note for eMMC Analysis | 14©1989-2024 Lauterbach

https://link.westerndigital.com/content/dam/customer-portal/en_us/external/public/cps/p/White_Paper_Design_Considerations_v1.0.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/collateral/white-paper/white-paper-automotive-workload-analysis.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/collateral/white-paper/white-paper-automotive-workload-analysis.pdf

Appendix A: Source Code Example

static struct T32_mmc_struct {
 unsigned int enable;
 unsigned int infoBit;
 unsigned int dev;
 unsigned int * pHost;
 unsigned int cmd;
 unsigned int arg;
 unsigned int flags;
 unsigned int blksz;
 unsigned int blocks;
 unsigned int err;
 unsigned int resp0;
 unsigned int resp1;
 unsigned int resp2;
 unsigned int resp3;
} T32_mmc;

int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
{
 int err;

 mmc_retune_hold(host);

 if (mmc_card_removed(host->card))
 return -ENOMEDIUM;

 mmc_mrq_pr_debug(host, mrq, false);

 WARN_ON(!host->claimed);

 if (T32_mmc.enable) {
 T32_mmc.pHost = (unsigned int *)mmc_hostname(host);
 if ((*T32_mmc.pHost)==T32_mmc.dev) {
 if (mrq->cmd) {
 write_sysreg((*T32_mmc.pHost)|T32_mmc.infoBit,
 contextidr_el1);
 isb();
 T32_mmc.cmd = (mrq->cmd->opcode)|T32_mmc.infoBit;
 write_sysreg(T32_mmc.cmd, contextidr_el1);
 isb();
 T32_mmc.arg = (mrq->cmd->arg)|T32_mmc.infoBit;
 write_sysreg(T32_mmc.arg, contextidr_el1);
 isb();
 T32_mmc.flags = (mrq->cmd->flags)|T32_mmc.infoBit;
 write_sysreg(T32_mmc.flags, contextidr_el1);
 isb();
 }
Application Note for eMMC Analysis | 15©1989-2024 Lauterbach

 if (mrq->data) {
 T32_mmc.blksz = (mrq->data->blksz)|T32_mmc.infoBit;
 write_sysreg(T32_mmc.blksz, contextidr_el1);
 isb();
 T32_mmc.blocks = (mrq->data->blocks)|T32_mmc.infoBit;
 write_sysreg(T32_mmc.blocks, contextidr_el1);
 isb();
 }
 }

 }

 err = mmc_mrq_prep(host, mrq);
 if (err)
 return err;
...

void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
{
 struct mmc_command *cmd = mrq->cmd;
 int err = cmd->error;
...

...

 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
 mmc_should_fail_request(host, mrq);

 if (!host->ongoing_mrq)
 led_trigger_event(host->led, LED_OFF);

 if (mrq->sbc) {
 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
 mmc_hostname(host), mrq->sbc->opcode,
 mrq->sbc->error,
 mrq->sbc->resp[0], mrq->sbc->resp[1],
 mrq->sbc->resp[2], mrq->sbc->resp[3]);
 }

 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 mmc_hostname(host), cmd->opcode, err,
 cmd->resp[0], cmd->resp[1],
 cmd->resp[2], cmd->resp[3]);

 if (mrq->data) {
 pr_debug("%s: %d bytes transferred: %d\n",
 mmc_hostname(host),
 mrq->data->bytes_xfered, mrq->data->error);
 }
Application Note for eMMC Analysis | 16©1989-2024 Lauterbach

 if (mrq->stop) {
 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
 mmc_hostname(host), mrq->stop->opcode,
 mrq->stop->error,
 mrq->stop->resp[0], mrq->stop->resp[1],
 mrq->stop->resp[2], mrq->stop->resp[3]);
 }

 if (T32_mmc.enable) {
 T32_mmc.pHost = (unsigned int *)mmc_hostname(host);
 if ((*T32_mmc.pHost)==T32_mmc.dev) {
 write_sysreg((*T32_mmc.pHost)|T32_mmc.infoBit,
 contextidr_el1);
 isb();
 T32_mmc.cmd = (cmd->opcode)|T32_mmc.infoBit;
 write_sysreg(T32_mmc.cmd, contextidr_el1);
 isb();
 T32_mmc.err = (err)|T32_mmc.infoBit;
 write_sysreg(T32_mmc.err, contextidr_el1);
 isb();
 T32_mmc.resp0 = (cmd->resp[0])|T32_mmc.infoBit;
 write_sysreg(T32_mmc.resp0, contextidr_el1);
 isb();
 }
 }
 }
 /*
 * Request starter must handle retries - see
 * mmc_wait_for_req_done().
 */
 if (mrq->done)
 mrq->done(mrq);
}

Application Note for eMMC Analysis | 17©1989-2024 Lauterbach

Appendix B: Time Details

The Trace.STATistic.AddressDURation command was used for all time measurements.

1. Time duration analysis: mmc_start_request

No ftrace, no TRACE32 instrumentation

No ftrace, with TRACE32 instrumentation

Application Note for eMMC Analysis | 18©1989-2024 Lauterbach

With ftrace, no TRACE32 instrumentation

Application Note for eMMC Analysis | 19©1989-2024 Lauterbach

2. Time duration analysis: mmc_request_done

No ftrace, no TRACE32 instrumentation

No ftrace, with TRACE32 instrumentation

Application Note for eMMC Analysis | 20©1989-2024 Lauterbach

With ftrace, no TRACE32 instrumentation

Application Note for eMMC Analysis | 21©1989-2024 Lauterbach

	Application Note for eMMC Analysis
	History
	Introduction
	TRACE32-based eMMC Access Log Solution
	Implementation Example for Linux OS
	Comparison with the Software Method ftrace
	Conclusion
	References
	Appendix A: Source Code Example
	Appendix B: Time Details

