LAUTERBACH A

API for Remote Control
and JTAG Access in C

API for Remote Control and JTAG Access in C

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACES2 DOCUMENTESuiiiiiiiiiieiiiiissseseennnanenmsnssssssssssssssssssesesesemmsnsnsnsmsmsmsmssssssssssssssssssssessensnsnnnnnnnn r—
T r—~
API for Remote Control and JTAG ACCESS iN Coooieiicicmrrrsrccerrrsssmme e e s s e e sesssssme e s e s smmennes 1
L 1= (o 6
T2 =T L] T I I =T 1 = 7
Lo To 11T 7T o 7
Release Information 7
Compatibility 8
Related Tutorials 8
System Configuration Overview 9
Restrictions in Demo Mode 9
Interfaces 10
Operation of APl Requests 12
Conventions for Target Memory Access 12
Building an Application With APl ... 15
API Files 15
Connecting API and Application 15
Logging the API Calls 16
CommUNICAtION SETUP ...eeeiiiiiimir i 17
Preparing TRACE32 Software 17
Configuring the API 17
o I8 T T T (o o 18
Error Codes 18
Generic API Functions 18
T32_Config Configure Driver 18
T32_Init Initialize driver and connect 19
T32_Exit Close connection 21
T32_Attach Attach TRACE32 device 22
T32_Nop Send Empty Message 23
T32_Ping Send Ping Message 23
T32_Cmd Execute TRACE32 Command 24
T32_Cmd_f Execute PRACTICE Command Formatted 25
T32_CmdWin Execute PRACTICE Command (deprecated) 26
©1989-2024 Lauterbach API for Remote Control and JTAG Access in C 2

T32_ExecuteCommand Execute TRACE32 Command (with error reporting) 27
T32_ExecuteFunction Execute TRACES2 Function (with error reporting) 28
T32_ExecuteFunction_Double Execute TRACES32 Function (with error reporting) 29
T32_ExecuteFunction_UInt64 Execute TRACES2 Function (with error reporting) 30
T32_Printf Print Formatted to TRACE32 31
T32_Stop Stop PRACTICE script 32
T32_EvalGet Get Evaluation Result 33
T32_EvalGetString Get Evaluation String Result 34
T32_GetMessage Get Message Line Contents 35
T32_GetMessageString Get Message Line Contents 37
T32_Terminate Terminate TRACE32 instance 39
T32_GetPracticeState Check if a PRACTICE script is running 40
T32_SetMode Set Data.List display mode 40
T32_GetWindowContent Get the content of a TRACES32 window 41
T32_GetApiRevision Get revision number or API 42
T32_GetSocketHandle Get the handle of the TRACES32 socket 43
Functions for using the API with Multiple Debuggers 44
T32_GetChannelSize Get size of channel structure (deprecated) 44
T32_GetChannelDefaults Get default channel parameters (deprecated) 45
T32_RequestChannelNetAssist Create a NetAssist channel 46
T32_RequestChannelNetTcp Create a NetTcp channel 47
T32_SetChannel Set active channel 48
T32_ReleaseChannel Release channel 49
API Functions 50
T32_GetState Get State of Debugger 50
T32_GetCpulnfo Get Information about used CPU 51
T32_ResetCPU Prepare for Emulation 52
T32_ReadMemory Read Target Memory (deprecated) 53
T32_ReadMemoryQbj Read Target Memory Object 55
T32_WriteMemory Write to Target Memory (deprecated) 56
T32_WriteMemoryPipe Write to Target Memory pipelined (deprecated) 58
T32_WriteMemoryObj Write Target Memory Object 60
T32_TransferMemoryBundleObj Read/Write Target Memory Bundles 61
T32_SetMemoryAccessClass Set memory access class 63
T32_ReadRegister Read CPU Registers (deprecated) 64
T32_ReadRegisterByName Read Value of Register 65
T32_ReadRegisterObj Read CPU Register Object 66
T32_ReadRegisterSetObj Read CPU Register Set Object 67
T32_WriteRegister Write CPU Registers (deprecated) 68
T32_WriteRegisterByName Write Value of Register 69
T32_WriteRegisterObj Write CPU Register Object 70
T32_WriteRegisterSetObj Write CPU Register Set Object 71
T32_ReadPP Read Program Pointer 72
©1989-2024 Lauterbach API for Remote Control and JTAG Access in C 3

T32_ReadBreakpoint Read Breakpoints (deprecated) 73
T32_WriteBreakpoint Write Breakpoints (deprecated) 75
T32_GetBreakpointList Get Breakpoint List 77
T32_WriteBreakpointObj Write breakpoint object 78
T32_ReadBreakpointObj Read breakpoint object by address 79
T32_ReadBreakpointObjBylndex Read breakpoint object by index 80
T32_QueryBreakpointObjCount Query number of breakpoints 81
T32_Step Single Step 82
T32_StepMode Single Step with Mode Control 83
T32_Go Start real time 84
T32_Break Stop real time 85
T32_GetTriggerMessage Get Trigger Message Contents 86
T32_GetSymbol Get Symbol Information 87
T32_GetSymbolFromAddress Get symbol name from address 89
T32_QuerySymbolObj Query symbol object information 90
T32_QueryAddressObjMmuTranslation Query MMU address translation 92
T32_QueryAddressObjTargetSizeOfMau Query target MAU size 94
T32_ReadVariableValue Read value of variable 95
T32_WriteVariableValue Write value to variable 96
T32_ReadVariableString Read variable as string 97
T32_GetSource Get Source Filename and Line 98
T32_GetSelectedSource Get Source Filename and Line of Selection 99
T32_AnaStatusGet Get State of State Analyzer (deprecated) 100
T32_AnaRecordGet Get One Record of State Analyzer (deprecated) 102
T32_GetTraceState Get State of Trace 105
T32_ReadTrace Get n Trace Records 107
T32_NotifyStateEnable Register a function to be called at state change (deprecated) 110
T32_NotifyBreakEnable Register a function to be called when breaking 112
T32_NotifyEditEnable Register a function to be called when editing 113
T32_NotifyBreakConfigEnable Register a function to be called when changing BPs 114
T32_NotifyErrorEnable Register a function to be called on error notifications 115
T32_NotifyRTSTriggerEnable Register a function to be called on RTS trigger 116
T32_NotifyGoEnable Register function to be called when core state change to running 117
T32_NotifyEventEnable Register a function to be called at ON events 118
T32_CheckStateNotify Check message to receive for state notify 119
T32_APILock Acquire the Remote APl lock 121
T32_APIUnlock Release the Remote APl lock 122
ICD Direct Access API Functions 123
Bundled Accesses and Exclusive Access 125
T32_BundledAccessAlloc Retrieve a Handle for Bundled Access Mode 126
T32_BundledAccessFree Release Handle for Bundled Access Mode 127
T32_BundledAccessExecute Execute a Bundled Access 128
T32_DirectAccessRelease Unlock Debugger 129
©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 4

Configuration of instance parameters and independent parameters 130
T32_ParamFromUint32 Set instance parameter 130
T32_DirectAccessSetinfo Set instance parameter 130
T32_DirectAccessGetinfo Set instance parameter 131

Instance independent parameters and functions 133
T32_DirectAccessResetAll Reset configuration data of all instances 135

ICD TAP Access API Functions 136
T32_TAPAccessSetinfo Configure JTAG Interface 143
T32_TAPAccessShiftIR Shift Data to/from Instruction Register 145
T32_TAPAccessShiftDR Shift Data to/from Data Register 146
T32_TAPAccessDirect Direct JTAG Port Access 147
T32_TAPAccessJTAGResetWithTMS Reset JTAG TAP by TMS sequence 150
T32_TAPAccessJTAGResetWithTRST Reset JTAG TAP by TRST signal 151
T32_TAPAccessSetShiftPattern Define automated shift sequences 152
T32_TAPAccessShiftRaw RAW JTAG Shifts 155

ICD User Signal API Functions 158
T32_DirectAccessUserSignal User Signal Access 159

DAP Access API Functions 163
T32_DAPAccessScan Access DAP registers 165
T32_DAPAccessInitSWD Initialize SWD Port 167

DAP Bus Access API Functions 169
T32_DAPAPAccessReadWrite Read/Write memory at bus 172

Remote Lua API Functions 175

W o 0. o =Y o B = T T |3 180

Buffer Object 181

Address Object 183

Bundle Object 188
Register Object 190
RegisterSet Object 195
Breakpoint Object 197

Symbol Object 203
Document Revision Information ... s 205
©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 5

API for Remote Control and JTAG Access in C

Version 06-Jun-2024

History

20-Jun-2023 Updated T32_APILock and T32_APIUnlock.

21-Dec-2022 Marked T32_ReadMemory, T32_WriteMemory, T32_ReadRegister, T32_WriteRegister,
T32_ReadBreakpoint, and T32_WriteBreakpoint as deprecated functions.

20-May-2022 New parameter T32_E_Go for the function T32_NotifyStateEnable.
New function T32_NotifyGoEnable.

14-Jul-2020 Remote API via TCP sockets.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 6

Licensing Terms

The TRACE32 Application Programming Interface for Remote Control and JTAG Access (“Remote API”)
contains source code for the client interface, which is copyright by Lauterbach. These licensing terms and
conditions apply to all files referred to in this document.

You may:

. share the original C source code of the TRACE32 Remote API with others (e.g. in a public
repository)

. use the original source code of the Remote API in your own software (commercial and non-
commercial)

. modify the original source code if necessary for compilation or integration into your product or a
library used by it

J port the Remote API source code to other computer languages

You may not:

. sell or sub-license the original source code of the TRACE32 Remote API

. modify the original source code, or any derived works, in a away that changes or extends the
APDUs (Application Protocol Data Units) that it produces

J distribute any modified source code to others

J implement the host/server part of the Lauterbach TRACE32 Remote API in your own product (if

you think you need this, please contact us to negotiate different licensing terms for this)

You have to:

. include these Licensing Terms in any derived works

. inform Lauterbach if you use the original source code, or any derived works, in a commercial
product

Disclaimer: The API source code is designed to remote-control Lauterbach TRACE32 software. We provide
this code “as is” without any implicit or explicit warranties, and without taking responsibility for its correctness
or for its fitness for a specific purpose.

Introduction

Release Information

Release 4.0, shipped from 01-SEP-2004, includes the ability to connect to several debuggers at once (multi-
core debugging).

The Remote API via TCP shipped from 01-SEP-2020 is always able to handle multiple clients.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 7

Compatibility

Lauterbach ensures backward compatibility of the API.

Backward compatibility means, that application built with one release of the API will remain working on both,
future versions of the API and future versions of the main TRACE32 software. Future releases of the API
and/or the TRACES32 software will extend or replace some functionality, but will not break previous
functionality.

The compatibility applies to:

. The C function interface.
The functions listed in this manual will keep their calling conventions and the functionality
described here.

. The socket stream.
The binary data sent over the socket connection will keep functioning.

The compatibility does not apply to:

. The composition of the API functions in the source files.
The coding of the function may change completely, keeping the above compatibilities.

J APl internal data structures and representations.
Variables and data structures, that are not exposed in the manual, may be changed without
further notice. When accessing data structures of the API, use only the access functions
mentioned herein.

Related Tutorials

For a video tutorial about the TRACE32 Remote API, visit:
support.lauterbach.com/kb/articles/trace32-remote-api

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC |

https://support.lauterbach.com/kb/articles/trace32-remote-api

System Configuration Overview

The TRACE32 PowerView software contains an external control interface. The TRACE32 Application
Programming Interface (further referred to as API) gives external applications the possibility to control the
debugger and the program run by the debugger.

The APl is built as a plain C source library with a C function interface to the controlling application.
Alternatively to the C source files, a prebuilt libraries for Linux and Windows, that export the same function
set, are available.

The APl communicates with the TRACE32 application (not with the TRACES32 debug interface itself!) using

a socket interface. Starting from the TRACES32 release 09.2020, the API supports per default TCP socket
streams. Previous TRACES32 versions only support a communication via UDP sockets.

This is the command chain using TRACE32 API:

Application ---> TRACE32 API ---> TRACE32 application --> TRACE32

(C Functions) (sockets) (HW interface)
Application
TRACE32 AP :
"
localhost/ (g TRACES2 Hardware
Socket Socket -1 display driver .. .| USB
Ethernet S L
Interface Interface |

Restrictions in Demo Mode

The TRACE32 Remote API is blocked in “demo mode”, i.e. if you do not have a valid TRACE32 license. You
will not be able to create successful connections between the APl and TRACES32.

If you need to evaluate the API without having a full license, contact Lauterbach for an evaluation license of
your TRACE32 system.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 9

Interfaces

Application --> TRACE32 API

Application

TRACE32 API

The application uses the API as ordinary C functions. The APl is linked to the application at the usual

linking stage. The API functions are not thread safe. If the application uses threads, it has to lock the

functions against reentrancy.

TRACES32 API --> TRACE32 display driver

Application

TRACES32 API

Socket
Interface

localhost/
Ethernet

Socket
Interface

TRACE32
| display driver |

fo v] s) e) (sstem) (sten [Go [o) (iem |
e

stopped

The communication to the TRACES32 software is implemented as a socket interface. The controlling
application (compiled/linked with the API) and the debugger software can reside on two different hosts, using
socket connections for communication.

©1989-2024 Lauterbach

API for Remote Control and JTAG Access in C

10

TRACE32 display driver --> TRACE32

TRACE32
display driver |..

TCP/IP
Socket

Ethernet
USB

Interface

nnnnnn

The TRACE32 PowerView debugger software processes and routes the API requests to the TRACE32

TRACE32
Hardware

hardware. This interface is the one, you chose for your debugger. E.g. it could be Ethernet or USB.

The answers for a request go exactly the opposite way, returning information to the application in passed

buffers.

©1989-2024 Lauterbach

API for Remote Control and JTAG Access in C

11

Operation of APl Requests

The API requests are executed just in parallel with normal TRACES32 operation. You can use both, the
TRACE32 user interface and the API simultaneously, although it is not recommended. The application will
not be informed about changes that are done via the user interface. Also, unpredictable errors may occur, if
e.g. an API request and a running PRACTICE file interfere.

Conventions for Target Memory Access

When using Remote API functions to read and write target memory (e.g. T32_ReadMemory (),
T32_WriteMemory ()), it is necessary to follow the TRACE32 conventions given below.

Byte-Addresses

If not explicitly changed (see below), the address parameter for reading and writing target memory always is
a “byte” (octet) address, independently of the target architecture’s native memory width. This implies that

J For machines that are byte-addressed (i.e. natively address single bytes like x86) the byte
address corresponds to the native address. On these machines incrementing the address by 1
yields the next byte in memory.

. For machines using word-addresses (i.e. natively address memory words like many DSPs) the
byte address for use with the TRACE32 remote APl is calculated multiplying the word address
with the native memory width (in bytes). On these machines incrementing the native address by
1 yields the next word in memory.

J Accessing peripheral registers or special purpose registers that are not byte addresses (e.g. Arm
CP15 or PowerPC SPR) need an address correction that multiplies the register number by the
byte width of the register access class. E.g. if Data.dump SPR:0x10 shows 32bit for each
register number (= SPR address), the corresponding API address is 0x10*4.

The address objects may be set to be used with other addressing modes, by setting the MAU (minimum
addressable unit) with T32_SetAddressObjSizeOfMau ().

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 12

Byte-Size

The size parameter is always given in bytes, independently of the target architectures native memory width.

Examples:

/7 1)
//

read 16 bytes from address D:0x100 on a byte-addressed machine
(e.g. x86, MicroBlaze, PPC,...)

uint8_ t buffer[l6];

error

/7 2)
//

= T32_ReadMemory (0x100, 0x0 /*D:*/, buffer, 16 /*bytes*/);

read 16 bytes from address D:0x100 on a word-addressed machine
using 16bit words (e.g. C2000)

uint8_ t buffer[l6];

error

/7 3)

= T32_ReadMemory (0x100 * 2 /*16bit*/, 0x0, buffer, 16 /*bytes*/);

reading CP1l5 register number 0x101 on Arm32

uint8_t buffer([4];

error
error

= T32_SetMemoryAccessClass ("C1l5") ;
= T32_ReadMemory (0x101 * 4 /*32bit*/, 0x0, buffer, 4 /*bytes*/);

Memory Access Class Specifiers:

The type of memory to access and the method to use are specified by so-called memory class specifiers.
Among other memories these allow to address data and program memory (especially in DSPs), debugger
virtual memory, bypass address translation (“absolute access”) etc.

In the functions for memory access, the access function parameteris only used, if the access class is not set
with T32_SetMemoryAccessClass (see there). Otherwise the access parameter is ignored and the access
class set with T32_SetMemoryAccessClass is used.

Please refer to the following (non-exhaustive) list for the codes of various memory class specifiers. For
additional information please contact Lauterbach support.

Generically used memory access class values (independent of CPU architecture):
0 Data access, D:

1 Program access, P:

12 AD:

13 AP:

15 USR:

16 VM:

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 13

Additional memory access class values for Arm CPUs

CPO

ICEbreaker

ETM

CP14

CP15

Arm logical

THUMB logical

2
3
4
5
6
7
8
9

Arm physical

10

THUMB physical

11

ETB

14

DAP:

Additional memory access class values for PowerPC CPUs:

SPR

DCR

TLB

PMR

P: real mode address

2
3
4
5
6
7

P: virtual mode address

Additional memory access class values for ARC CPUs:

2

AUX

Additional memory access class values for x86 CPUs:

2 D: linear address
3 P: linear address
4 10

5 MSR

©1989-2024 Lauterbach

API for Remote Control and JTAG Access in C

14

Building an Application with API

The main root of the API are the C source files, which are available in the TRACE32 system directory under
~~/demo/api/capi/src. Those are written to work with several compilers and operating systems, such
as Windows, Linux, etc.

Alternatively libraries are available, which are just a prebuilt version of the source files, and export the same
function sets. The libraries are located in the TRACE32 system directory under ~~/demo/api/capi/dll.

Lauterbach recommends to use the source files. This chapter describes how to build an APl based
application using the sources.

Demo applications using the API can be found under ~~/demo/api/capi/test. Please refer to the
readme. txt file for more information.

API Files

The API consists of the following source and header files:
. t32.h

This header file contains the necessary API definitions and function prototypes.
o hremote.c

All API functions are coded in this source file

L hlinknet.c
This file contains and handles the UDP socket interface to the TRACES32 debugger software.
o tcpsimple2.c, tcpsimple2.h, t32nettcp.c, t32nettcp.h
These files contain and handle the TCP socket interface to the TRACES32 debugger software.
These files are provided starting from TRACES32 release 09.2020.

tcpsimple2.[ch] and t32nettcp.[ch] are alternatives to hlinknet.c so either use hlinknet.c, so either use
tepsimple2.[ch], t32nettcp.[ch] or hlinknet.c.

Connecting APl and Application

Whenever a part of the application uses the API, the header file "t32 . h" must be included. The
corresponding C source file must contain the line

#include "t32.h"

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 15

before using any API definition or function. Please be aware, that the API calls are neither reentrant nor
thread-safe. When using parallel threads in your application, please ensure locking the API calls against
each other.

When compiling and linking the application, the API files must be handled as normal source components of
the application. Assuming that the application is coded in a file called "application.c" and your C
compiler is called "cc", compilation could look like this:

cc -c tcpsimple2.c
cc -c t32nettcp.c
cc -c hremote.c

cc -c application.c

The linker run is then invoked with:

1d -o application tcpsimple2.o tcpsimple2.o t32nettcp.o application.o

assuming the linker name is "13" and the object extension is "o".

Logging the API Calls

The API contains a log mechanism that allows to log all API calls to a dedicated file. To use this logging, the
API source code must be compiled with the preprocessor macro ENABLE_APILOG, €.g.:

cc -DENABLE_APILOG -c hremote.c

To activate the logging, set the environment variable T32APILOGFILE to the path and filename that should
collect the log. E.g.:

set T32APILOGFILE=C:\temp\t32apilog.txt

The log file contains a timestamp, the API call with its parameters and the return of the API call. The format
of the file is not fixed and may change slightly with different API versions.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 16

Communication Setup

Preparing TRACE32 Software

The TRACE32 Software has to be configured for use with a remote control, such as the API. To allow and
configure remote control, add the following lines between two empty lines to the TRACE32 configuration file,
e.g. "config.t32". If you are using Windows and T32Start application to start the TRAC32 software, you
need to open the configuration at “advanced settings” where you can select “Use Port: yes” in the “API Port”
folder. The automatically created configuration file (e.g. C: \temp\userT32_1000123. t32) will have the
necessary lines automatically.

<- mandatory blank line
;T32 API Access (UDP)
RCL=NETASSIST
PORT=20000
PACKLEN=1024
<- mandatory blank line
;T32 API Access (TCP)
RCL=NETTCP
PORT=20000
<- mandatory blank line

PACKLEN specifies the maximum package length in bytes for the UDP socket communication. It must not be
bigger than 1024 and must fit to the value defined by T32_Config().

The port number specifies the TCP/UDP port which is used to communicate with the API. The default port
number is 20000. If this port is already in use, try one higher than 20000.

See also “RCL Function” (ide_func.pdf).

Configuring the API

The API must be configured with the functions T32_Config(), T32_Init() and T32_Attach().

J T32_Config() takes two string arguments, usually the node name and the port number.
J T32_Init() then does a setup of the communication channel.
. T32_Attach() attaches to the actual instrument.

The T32_EXxit() function closes the connection and should always be called before terminating the
application.

See chapter "Generic APl Functions" for a detailed description of these functions.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 17

API Functions

Error Codes

If not otherwise specified, the TRACE32 Remote API functions return an error code. The error code is
copied into a global variable called T32_Errno. A return value of 0 encodes “no error” (T32_0K).

The error codes are listed in the £32 . h file, which can be found in the C source distribution of the AP files.
See “Building an Application with API”.

Generic API Functions

T32_Config Configure Driver

Prototype:

int T32_Config (const char *stringl, const char *string2);

Parameters:

stringl, string2 ; commands for ethernet interface

Returns:
0 for ok, otherwise Error value

The two strings are concatenated and the resulting command is sent to the communication driver of the API.
The following settings are available:

NODE= Defines on which host the TRACES32 display driver runs. Default is
“localhost".
PACKLEN= Specifies the maximum data package length used for UDP. The value must not

be bigger than 1024 and must fit to the value defined in the "config. £32" file.
No operation for TCP.

18

©1989-2024 Lauterbach API for Remote Control and JTAG Access in C

PORT= Defines the TCP/UDP port for sending. Default is 20000. Be sure that these
settings fit to the RCL settings in the "config. t32" file.

TIMEOUT= Timeout for UDP. Defines the communication timeout of API functions in
seconds. Default is 5s. If TRACE32 does not answer within this time, the
API function returns with T32_COM_RECEIVE_FAIL.
No operation for TCP.

HOSTPORT= Defines the UDP port for receiving. By default, this is assigned
automatically. Only use this setting if you really need to set a specific
receive port.

No operation for TCP.

Usually, the following commands will be used:

NODE=localhost

PORT=20000
Example:
error = T32_Config ("NODE=", "myhost");
error = T32_Config ("PORT=", "20010");
T32_Init Initialize driver and connect
Prototype:

int T32_Init (void);

Parameters:

none

Returns:

0 for ok, otherwise Error value

This function initializes the driver and establishes the connection to the TRACES32 display driver. If zero is
returned, the connection was set up successfully.

It is recommended to call T32_Attach() immediately after T32_Init() to have the full set of API functions
available.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 19

Example:

if ((error = T332 _Init())!'!=0) {
/* handle error */

}

if ((error = T32_Attach(T32_DEV_ICD) != 0) {
/* handle error */

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 20

T32_Exit Close connection

Prototype:

int T32_Exit (void);

Parameters:

none

Returns:

0 for ok, otherwise Error value

This function ends the connection to the TRACES32 display driver. This command should always be called
before ending the application.

Example:

error = T32_Exit ();

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 21

T32_Attach Attach TRACE32 device

Prototype:

int T32_Attach (int dev);

Parameters:

dev Device specifier

Returns:
0 for ok, otherwise Error value

This command attaches the control to the specified TRACE32 device. It is recommended to attach to
T32_DEV_ICE immediately after T32_Init(), to have access to all API funtions.

T32_DEV_OS Basic operating system of the TRACES32 ("::"),
disables all device specific commands (default)
T32_DEV_ICD Debugger ("B::"), including Basic OS commands
T32_DEV_ICE same as T32_DEV_ICD
Example:

error = T32_Attach (T32_DEV_ICD) ;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 22

T32_Nop Send Empty Message

Prototype:

int T32_Nop (void);

Parameters:

none

Returns:

0 for ok, otherwise Error value

Send an empty message to the TRACES32 display driver and wait for it's answer.
Example:

error = T32_Nop ();

T32_Ping Send Ping Message

Prototype:

int T32_Ping (void);

Parameters:

none

Returns:

0 for ok, otherwise Error value

Sends a "ping" message to the TRACES2.
Example:

error = T32_Ping () ;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 23

T32_ Cmd Execute TRACE32 Command

Prototype:

int T32 _Cmd (const char *command) ;

Parameters:

command ; TRACE32 command to execute

Returns:
0 for ok, otherwise Error value

With this function a TRACE32 command is passed to TRACE32 for execution. Any valid TRACE32
command is allowed, including the start of a *.cmm script via the DO command.

NOTE: When executing a script via the "DO" command, the function will return
immediately, not waiting for the end of the script. You may use
T32_GetPracticeState() to actively wait for the script ending.

Negative error values indicate a communication problem between the debugger and the API.

An positive error value indicates that the command was not accepted.

Errors caused while executing the command are not reported, to retrieve further error information, please
use the call T32_GetMessage() and check the message type.

Example:

error = T32_Cmd ("Data.Set %Long 0x12200 0x033FFC00") ;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 24

T32 Cmd_f Execute PRACTICE Command Formatted

Prototype:
int T32_Cmd_f (const char *command, ...);
Parameters:
command ; PRACTICE command to execute,
; with format specifiers
Returns:

0 for ok, otherwise Error value

With this function a PRACTICE command is passed to TRACES32 for execution. Any valid PRACTICE
command is allowed, including the start of a PRACTICE script (*.cmm) via the DO command.

The command string can contain format specifiers that are allowed by the host’s compiler for printf
commands (e.g. “%d” or “%s”). The parameter list must contain appropriate arguments to fulfil the format
specifiers requests.

NOTE: When executing a script via the "DO" command, the function will return
immediately, not waiting for the end of the script. You may use
T32_GetPracticeState() to actively wait for the script ending.

Negative error values indicate a communication problem between the debugger and the API.

An positive error value indicates that the command was not accepted.

Errors caused while executing the command are not reported, to retrieve further error information, please
use the call T32_GetMessage() and check the message type.

Example:
int error;
int address = 0x1234;
char* ascii = "text";
error = T32_Cmd_f ("Data.Set 0x%x \"%s\" ", address, ascii);

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 25

T32_CmdWin Execute PRACTICE Command (deprecated)

This function is deprecated.
Prototype:

int T32_CmdwWin (uint32_t WindowHandle, const char *command) ;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 26

T32_ExecuteCommand Execute TRACE32 Command (with error reporting)
[build 115801 - DVD 02/2020]

Prototype:

int T32_ExecuteCommand (const char *pCommand,
char* pBuffer,
uint32_t BufferSize);

Parameters:
pCommand ; TRACE32 command to execute
pBuffer ; pointer to error buffer
BufferSize ; size of buffer

Returns:

0 for ok, otherwise Error value

With this function a TRACE32 command is passed to TRACES32 for execution. Any valid TRACE32
command is allowed, including the start of a *.cmm script via the DO command.

NOTE: When executing a script via the "DO" command, the function will return
immediately, not waiting for the end of the script. You may use
T32_GetPracticeState() to actively wait for the script ending.

Negative error values indicate a communication problem between the debugger and the API.
An positive error value indicates that the command was not accepted.
In contrast to T32_Cmd() errors are reporting using the buffer provided by the caller.

Example:

char buffer[4096];
const char* cmd = "Data.Set %Long D:0x1234 0x033FFCO00";
error = T32_ExecuteCommand (cmd, buffer, 4096) ;
if (error)
printf ("Error: %s", 4096, buffer);

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 27

T32_ExecuteFunction

Execute TRACE32 Function (with error reporting)

Prototype:

int T32_ExecuteFunction

Parameters:

PExpression 5
pBuffer 7
BufferSize 7

pResultType 5

Returns:

0 for ok, otherwise Error value

(

[build 115801 - DVD 02/2020]

const char *pExpression,

char *pBuffer,
uint32_t BufferSize
uint32_t *pResultType) ;

TRACE32 function to execute
pointer to error/result buffer
size of buffer

result type

With this function a TRACES32 expression is passed to TRACES32 for execution. Any valid TRACE32

expression is allowed, see EVAL.

Negative error values indicate a communication problem between the debugger and the API.
An positive error value indicates that the expression was not accepted and the buffer holds the error string.

If no error occurred, the buffer holds the result in a string representation.

The meaning of the result type values is described in the documentation of function EVAL.TYPE().

Example:

const char* expr =
char buffer([4096];
uint32_t restype;

"Data.Long (D:0x1234)";

error = T32_ExecuteFunction (expr, buffer, 4096, &restype);
if (error)

printf ("Error: %s", 4096, buffer);
else

printf ("Result: %s", 4096, buffer);

©1989-2024 Lauterbach

API for Remote Control and JTAG AccessinC | 28

T32_ExecuteFunction_Double Execute TRACE32 Function (with error reporting)
[build 115801 - DVD 02/2020]

Prototype:

int T32_ExecuteFunction_Double (const char *pExpression,

char *pBuffer,
uint32_t BufferSize
double *pResult) ;
Parameters:
PExpression ; TRACE32 function to execute
pBuffer ; pointer to error buffer
BufferSize ; size of buffer
pResult ; pointer to result
Returns:

0 for ok, otherwise Error value
Similar to T32_ExecuteFunction() but the result is returned as a double-precision floating-point value.

Examples:

char buffer[4096];
double result;
error = T32_ExecuteFunction_Double ("FPU(FO0)", buffer, 4096, result);
if (error)
printf ("Error: %s", 4096, buffer);
else
printf ("Result: %$f", result);

const char* expr = "Data.Byte(SD:0x300)*1.0+Data.Byte(SD:0x300)*0.01"
char buffer[4096];
double result;
error = T32_ExecuteFunction_Double (expr, buffer, 4096, result);
if (error)
printf ("Error: %s", 4096, buffer);
else
printf ("Result: %$f Volt", result);

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 29

T32_ExecuteFunction_UInt64 Execute TRACE32 Function (with error reporting)
[build 115801 - DVD 02/2020]

Prototype:
int T32_ExecuteFunction_UInt64 (const char *pExpression,
char *pBuffer,
uint32_t BufferSize
uint64_t *pResult) ;
Parameters:
PExpression ; TRACE32 function to execute
pBuffer ; pointer to error buffer
BufferSize ; size of buffer
pResult ; pointer to result
Returns:

0 for ok, otherwise Error value
Similar to T32_ExecuteFunction() but the result is returned as a uint64_t and not a string.

Example:

const char* expr = "Register (R5)";
char buffer[4096];
uint64_t result;
error = T32_ExecuteFunction_UInt64 (expr, buffer, 4096, result);
if (error)
printf ("Error: %s", 4096, buffer);
else
printf ("Result: %i", result);

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 30

T32_Printf Print Formatted to TRACE32

Prototype:
int T32_Printf (const char *string, ...);
Parameters:
string ; text to print to TRACE32 AREA window,
; with format specifiers
Returns:

0 for ok, otherwise Error value
This function prints the given string onto the message line of TRACES32 and into the active AREA window.

The string can contain format specifiers that are allowed by the host's compiler for printf commands (e.g.
“%d” or “%s”). The parameter list must contain appropriate arguments to fulfil the format specifiers requests.

Example:
int error;
int result = 0;

error = T32_ Printf ("Last result was %d.\n", result);

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 31

T32_Stop Stop PRACTICE script

Prototype:

int T32_Stop (void);

Parameters:

none

Returns:

0 or 1 for ok, otherwise Error value

If a PRACTICE script is currently running, it is stopped. For stopping the target program use T32_Break().
Example:

error = T32_Stop ();

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 32

T32_EvalGet Get Evaluation Result

Prototype:

int T32_EvalGet (uint32_t *pEvalResult);

Parameters:

pEvalResult ; pointer to variable receiving the evaluation result

Returns:
0 for ok, otherwise Error value

Some PRACTICE commands (e.g. Eval) and other functions set a global variable to store return values,
evaluation results or error conditions. This value is always specific to the command used. The function
T32_EvalGet reads this value.

Example:

int error;
uint32_t result;
T32_Cmd ("EVAL VERSION.BUILD()") ;
error = T32_EvalGet (&result);
if (error == T32_OK)
printf ("Attached to TRACE32 build version %d.\n", result);
else
printf ("Error getting evaluation result: %d!\n", error);

NOTE: This function is only available when attached to a device (see T32_Attach).

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 33

T32_EvalGetString Get Evaluation String Result

Prototype:

int T32_EvalGetString (char* EvalString) ;

Parameters:
EvalString ; pointer to character array receiving the evaluation
result. The array must be at least 4096 bytes.
Returns:

0 for ok, otherwise Error value

Some PRACTICE commands (e.g. Eval) and other functions set a global variable to store return values,
evaluation results or error conditions. This value is always specific to the command used. The function
T32_EvalGetString reads the last evaluation result that returned a string.

Example:

int error;
char evalString[4096];
T32_Cmd ("EVAL \"hello\"+conv.char (0x20)+\"world\"") ;
error = T32_EvalGetString (evalString) ;
if (error == T32_OK)
printf ("EVAL returned string \"%s\".\n", evalString);
else
printf ("Error getting evaluation result: %d!\n", error);

NOTE: This function is only available when attached to a device (see T32_Attach).

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 34

T32_GetMessage

Get Message Line Contents

Prototype:

int T32_GetMessage

Parameters:

pMessageType

ArealMessage

Returns:

(char AreaMessage[256], uintl6_t *pMessageType) ;

ouT

ouT

0 for OK, otherwise Error value

pointer to a variable getting the status
information (see below) .

pointer to array of at least 256 characters.
Contents set by API, but is only valid, if
*pMessageType != 0

Most PRACTICE commands write messages to the message line and AREA window of TRACES32. This
function reads the contents of the message line and the type of the message.

NOTE: This call truncates the message length to 255 characters. If you need longer
messages, use T32_GetMessageString instead.
NOTE: The message length depends on the actual AREA size.

The message types are currently defined as following and can be combined:

Type Meaning
0 OK : the call was successful.
The returned message has to be ignored
1 General Information
2 Error
8 Status Information
16 Error Information

©1989-2024 Lauterbach

API for Remote Control and JTAG AccessinC | 35

32 Temporary Display

64 Temporary Information
Example:
char message[256] ;

uintl6_t type;

error = T32_Cmd ("print");

error = T32_Cmd ("print clock.date()");
error = T32_GetMessage (message, &type);
printf ("Message: %s\nType: %d\n", message, type);

/* delete previous outputs */

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 36

T32_GetMessageString

Get Message Line Contents

Prototype:

int T32_GetMessageString

Parameters:

ArealMessage

ArraySize

pMessageType

pMessagelen

Returns:

ouT

IN

ouT

ouT

0 for OK, otherwise Error value

char* AreaMessage,
uintlé6_t ArraySize,
uintl6_t *pMessageType,
uintlé6_t *pMessagelen) ;

pointer to an character array getting the
message. Only valid, if *pMessageType != 0

size of the AreaMessage character array

pointer to a variable getting the status
information (see below) .

pointer to a variable getting the original
length of the message.

Most PRACTICE commands write messages to the message line and AREA window of TRACE32. This
function reads the contents of the message line and the type of the message.

NOTE: The message length depends on the actual AREA size.

The message types are currently defined as following and can be combined:

Type Meaning
0 OK : the call was successful.
The returned message has to be ignored
1 General Information
2 Error
8 Status Information
16 Error Information

©1989-2024 Lauterbach

API for Remote Control and JTAG AccessinC | 37

32 Temporary Display

64 Temporary Information
Example:
char message[256] ;

uintl6_t type;
uintl6_t length;

error = T32_Cmd ("print");
error = T32_Cmd ("print clock.date()");

error = T32_GetMessageString (message, 256, &type, &length);
printf ("Message: %s\nType: %d\nLength: %d\n",
message, type, length);

/* delete previous outputs */

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 38

T32_Terminate Terminate TRACE32 instance

Prototype:
int T32 Terminate (int retval);
Parameters:
retval ; TRACE32 instance returns this value
; to the command shell when terminating
Returns:

0 for OK, otherwise Error value

Use this command to terminate the connected TRACE32 instance.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 39

T32_GetPracticeState Check if a PRACTICE script is running

Prototype:

int T32_GetPracticeState (int *pstate);

Parameters:
pstate ; output parameter, set by API
; 0: not running
; 1: running
; 2: dialog window open
Returns:

0 for OK, otherwise Error value

Returns the run-state of PRACTICE. Use this command to poll for the end of a PRACTICE script started via
T32_Cmd().

T32_SetMode Set Data.List display mode

Prototype:

int T32 SetMode (int mode) ;

Parameters:
mode ; display mode for Data.List windows:
; 0=ASM, 1=HLL, 2=MIX
Returns:

0 for OK, otherwise Error value

Sets the display mode for List windows.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 40

T32_GetWindowContent Get the content of a TRACE32 window

Prototype:
int T32_GetWindowContent (const char* command,
char * buffer,
uint32_t requested,
uint32_t offset,
uint32_t print_code) ;
Parameters:
command ; PRACTICE command to open the TRACE32 window
buffer ; output
requested ; number of bytes to read
offset ; offset to start read from
print_code ; print format
Returns:

-1 in case of error, otherwise the number of bytes received.

Get the content of a TRACES32 window in the selected print format specified by the print_code
parameter. Possible print code values are:

T32_PRINTCODE_ASCII
T32_PRINTCODE_ASCIIE
T32_PRINTCODE_ASCIIP
T32_PRINTCODE_CSV
T32_PRINTCODE_XML

Example:

char buf[1024];

uint32_t offset = 0, len;

uint32_t code = T32_PRINTCODE_ASCII;

const char * cmd = "List"; // get the content of the List window
do {

len = T32_GetWindowContent (cmd, buf, sizeof (buffer), offset, code);

if (len < 0)
break;
printf ("%$s", buf);
offset += len;
} while (len > 0);

©1989-2024 Lauterbach API for Remote Control and JTAG Access in C

| 41

T32_GetApiRevision Get revision number or API

Prototype:

int T32_GetApiRevision (uint32_t *pRevNum) ;

Parameters:

pRevNum ; pointer to variable receiving the revision number

Returns:
0 for OK, otherwise Error value

Returns the revision number of the Remote API (source files or library) at the application side. It does not
report the revision number of the TRACES32 software.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 42

T32_GetSocketHandle Get the handle of the TRACE32 socket

Prototype:

int T32 GetSocketHandle (int *soc);

Parameters:
soc ; pointer to the handle of the socket created by the API
; to communicate with TRACE32
Returns:

0 for ok, otherwise communication error value

This function returns a pointer to the handle of the socket created by the API to communicate with
TRACE32. It could be used for example to register asynchronous notification for sending or receiving data
on this socket.

Example:

Register the TRACES32 socket for asynchronous notification then a message is received on the socket.

int t32soc;

T32_GetSocketHandle (&t32soc) ;
if (nr)

WSAAsyncSelect ((SOCKET) t32soc, myHwnd, WM_ASYNC_SELECT, FD_READ) ;
else

WSAAsyncSelect ((SOCKET) t32soc, myHwnd, WM_ASYNC_SELECT, O0);

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 43

Functions for using the API with Multiple Debuggers

A single APl instance can be used with several TRACES32 debuggers (e.g. for Multi-Core debugging) by
creating a communication channel to each of the debuggers. Instead of passing the channel as parameter
each single API call, the whole APl is switched to a specific channel via T32_SetChannel().

A channel is created by allocating the required amount of memory (T32_GetChannelSize()), initializing this
memory by T32_GetChannelDefaults(), activating it via T32_SetChannel() and then using T32_Config(),
T32_Init() and T32_EXxit() as would be done on the default channel.

NOTE: Each debugger must be assigned a unique PORT address in its configuration file
(e.g- config.t32).

T32_GetChannelSize Get size of channel structure (deprecated)

This function is deprecated. Please use one of these functions instead:
o T32_RequestChannelNetAssist
o T32_RequestChannelNetTcp

Prototype:

int T32_ GetChannelSize (void) ;

Parameters:

none

Returns:

size_of channel structure

This function returns the size of a channel structure. Allocate memory with this size to be used for the
channel switching.

Example:

void* channel = malloc (T32_GetChannelSize()) ;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 44

T32_GetChannelDefaults Get default channel parameters (deprecated)

This function is deprecated. Please use one of these functions instead:
o T32_RequestChannelNetAssist
o T32_RequestChannelNetTcp

Prototype:

void T32_GetChannelDefaults (void *channel) ;

Parameters:

pointer to channel structure receiving the defaults

Returns:

none

Only necessary for multi-channel usage.

This function fills the channel structure with default values. This is mandatory if using multiple channels.

Example:

void* channel = malloc (T32_GetChannelSize()) ;
T32_GetChannelDefaults (channel) ;
T32_SetChannel (channel) ;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 45

T32_RequestChannelNetAssist Create a NetAssist channel
[build 142895 - DVD 02/2022]

Prototype:

int T32_RequestChannelNetAssist (void **channel) ;

Parameters:

Pointer to channel structure receiving the defaults.
Returns:

0 for ok, otherwise Error value

Creates a NETASSIST (UDP) channel. Can be configured later with T32_Config(). Requires
RCL=NETASSIST line in config. t32. For more details, please refer to “Preparing TRACE32 Software”,
page 17.

Example:

void *channel;
T32_RequestChannelNetAssist (&channel) ;
T32_SetChannel (channel) ;

Full example see at T32_SetChannel().

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 46

T32_RequestChannelNetTcp Create a NetTcp channel

[build 142895 - DVD 02/2022]

Prototype:

int T32_RequestChannelNetTcp (void **channel) ;

Parameters:

Pointer to channel structure receiving the defaults.
Returns:

0 for ok, otherwise Error value

Creates a NETTCP (TCP) channel. Can be configured later with T32_Config(). Requires RCL=NETTCP line
in config.t32. For more details, please refer to “Preparing TRACE32 Software”, page 17.

Example:

void *channel;
T32_RequestChannelNetTcp (&channel) ;
T32_SetChannel (channel) ;

Full example see at T32_SetChannel().

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 47

T32_SetChannel Set active channel

Prototype:

void T32_ SetChannel (void *channel) ;

Parameters:

Pointer to activating channel.

Returns:

none

This function sets the active channel to be used for further T32_* calls.
Example:

void *channel_1;

void *channel_2;
T32_RequestChannelNetAssist (&channel_1) ;
T32_RequestChannelNetTcp (&channel_2) ;
// switch to channel 1

T32_SetChannel (channel_1) ;
T32_Config("PORT=", "20000");
T32_Init();

T32_Attach(T32_DEV_ICE) ;

// switch to channel 2

T32_SetChannel (channel_2) ;

T32_Config ("PORT=", "20002");
T32_Init();

T32_Attach(T32_DEV_ICE) ;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 48

T32_ReleaseChannel Release channel
[build 142895 - DVD 02/2022]

Prototype:

int T32_ ReleaseChannel (void **channel) ;

Parameters:

Pointer to created channel.
Returns:

0 for ok, otherwise Error value
Example:

void *channel
T32_ReleaseChannel (&channel);

Full example see at T32_SetChannel().

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 49

API Functions

This chapter describes all available API functions. See T32_Attach() for how to specify a device.

T32_GetState Get State of Debugger

Prototype:

int T32_GetState (int *pstate);

Parameters:

pstate ; pointer to variable receiving the debugger state

Returns:

0 for ok, otherwise Error value. Note that pstate is not modified if an error has occurred.

Use this function to get the main state of the debugger. *pstate can have four different values:

0 Debug system is down

1 This value is returned in one situation:

. (Intel x86/x64 debugger only) Target is in bootstall

2 Target execution is stopped (Break)

3 Target execution is running (Go)
Example:

int state = -1;

error = T32_GetState (&state);

/* no error handling, but state preset to detect problems */
printf ("System is ");

switch (state)

{

case 0: printf ("down.\n"); break;
case 1: printf ("halted.\n"); break;
case 2: printf ("stopped.\n"); break;
case 3: printf ("running.\n"); break;
default: printf ("Error!\n");

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 50

T32_GetCpulinfo

Get Information about used CPU

Prototype:

int T32_GetCpulnfo

Parameters:

pstring

pfpu
pendian

ptype

Returns:

0 for ok, otherwise Error value

(

char ** pstring,
uintl6_t * pfpu,

uintl6_t * pendian,
uintl6_t * ptype);

; pointer to variable receiving a pointer
; to a string describing the CPU

; pointer to variable receiving the FPU type
; pointer to variable receiving the byte order

; additional internal information

This function gives information about the CPU type. *pstring will contain an ASCII string with the CPU
type and family. pfpu describes whether an FPU is present or not. This is currently not used and always
zero. pendian describes the byte order of the CPU: zero means big endian (12 34 becomes 1234),

otherwise little endian (12 34 becomes 3412). ptype is for internal information and useless to the user.

Example:
char *cpustring = "";
uintl6_t hasfpu, endian, tmp;
error = T32_GetCpulInfo (&cpustring, &hasfpu, &endian, &tmp) ;
printf ("CPU is %s.\n", cpustring) ;
printf ("Endian type i1s %s.\n", endian?"little":"big");
©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 51

T32_ResetCPU Prepare for Emulation

Prototype:

int T32_ResetCPU (void);

Parameters:

none

Returns:

0 for ok, otherwise Error value

Tries to reset the target CPU. This is done by executing the PRACTICE commands SYStem.UP and
Register.RESet. This function can also be used to get control after the target software has crashed.

Example:

error = T32_ResetCPU () ;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 52

T32_ReadMemory Read Target Memory (deprecated)

This function is deprecated, please use T32_ReadMemoryObj instead.
Prototype:

int T32_ ReadMemory (uint32_t DbyteAddress,

int access,
uint8_t *buffer,
int byteSize) ;
Parameters:
byteAddress ; target memory address to start read
access ; memory access specifier
buffer ; output
byteSize ; number of bytes to read
Returns:

0 for ok, otherwise Error value
Reads data from target memory. The size of the data block is not limited.

The access parameter defines the memory access class and access method:

Bit 0...4 Memory class, see “Conventions for Target Memory Access”

Bit 6 Set for emulation memory access (E:, dual port access)

For a more advanced version of the function to read memory, including 64bit addresses and several access
options, see T32_ReadMemoryOb;.

NOTE: See the section “Conventions for Target Memory Access” for important
conventions regarding the byteAddress, byteSize, and access parameters.

NOTE: The access parameter is only used, if the access class is not set with
T32_SetMemoryAccessClass (see there). Otherwise the access parameter is
ignored and the access class set with T32_SetMemoryAccessClass is used.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 53

Example:

// Read 16 bytes from address D:0x100

// 1) byte-addressed machine (e.g. x86, MicroBlaze, PPC)
uint8_t buffer[16];
error = T32_ReadMemory (0x100, 0x0 /*D:*/, buffer, 16 /*bytes*/);

// 2) word-addressed machine using 16bit words (e.g. C2000)
uint8_t buffer[l6];
error = T32_ReadMemory (0x100 * 2 /*16bit*/, 0x0, buffer, 16 /*bytes*/);

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 54

T32_ReadMemoryObj Read Target Memory Object

Prototype:

int T32_ReadMemoryObj (T32_BufferHandle bufferHandle,
const T32_AddressHandle addressHandle, const T32_Length length) ;

Parameters:
bufferHandle ; handle to buffer object where the read data
will be stored
addressHandle ; handle to address object containing the address
and access method where to read from
length ; number of bytes to read
Returns:

0 for ok, otherwise Error value
Reads data from target memory.

A “buffer handle” must be declared and requested by the application as shown in the example and
description below.

An “address handle” must be declared, requested and set by the application as shown in the example and
description below.

Example to read a buffer from a 32bit address:

uint32_t myAddress = 0x12345678L;
uint8 t LocalBuffer[32];

T32_BufferHandle myBufferHandle;
T32_AddressHandle myAddressHandle32;

T32_RequestBufferObj (&myBufferHandle, 0);
T32_RequestAddressObjA32 (&myAddressHandle32, myAddress) ;

T32_ReadMemoryObj (myBufferHandle, myAddressHandle32, 32);

T32_CopyDataFromBufferObj (LocalBuffer, 32, myBufferHandle) ;
T32_ReleaseBufferObj (&myBufferHandle); // release single object

/* read data is now stored in "LocalBuffer" */;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 55

Address Object handling: For a description of the address object, see chapter “Address Object”.

Buffer Object handling: For a description of the buffer object, see chapter “Buffer Object”.

T32_WriteMemory Write to Target Memory (deprecated)

This function is deprecated, please use T32_WriteMemoryObj instead.
Prototype:

int T32_WriteMemory (uint32_t byteAddress,

int access,
uint8_t *buffer,
int byteSize) ;
Parameters:
byteAddress ; target memory address to start write
access ; memory access specifier
buffer ; output
byteSize ; number of bytes to write
Returns:

0 for ok, otherwise Error value

Writes data to target memory. The size of the data block is not limited. This function should be used to
access variables and make other not time critical memory writes.

The access flags define the memory access class and access method:

Bit 0...4 Memory class, see “Conventions for Target Memory Access”
Bit 6 Set for emulation memory access (dual port access)
Bit 7 Set to enable verify after write

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 56

For a more advanced version of the function to write memory, including 64bit addresses and several access
options, see T32_WriteMemoryObj.

NOTE: See the section “Conventions for Target Memory Access” for important
conventions regarding the byteAddress, byteSize, and access parameters.

NOTE: The access parameter is only used, if the access class is not set with
T32_SetMemoryAccessClass (see there). Otherwise the access parameter is
ignored and the access class set with T32_SetMemoryAccessClass is used.

Example:

uint8_t buffer[16];

error = T32_WriteMemory (0x100, OxcO, buffer, 16);

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 57

T32_WriteMemoryPipe Write to Target Memory pipelined (deprecated)

This function is deprecated. Please use one of these functions instead:
. T32_WriteMemory
o T32_WriteMemoryObj

Prototype:

int T32 WriteMemoryPipe (uint32_t byteAddress,

int access,
uint8_t *buffer,
int byteSize) ;
Parameters:
byteAddress ; target memory address to start write
access ; memory access specifier
buffer ; output
byteSize ; number of bytes to write
NOTE: See the section “Conventions for Target Memory Access” for important
conventions regarding the byteAddress, byteSize, and access parameters.
Returns:

0 for ok, otherwise Error value

Writes data to target memory with pipelining. Pipelinig means that the memory write operation is done in
parallel to the downloading process. This speeds up the download.

The return value of the function always refers to the previous Write command. The result of the last write
command must be fetched by calling the function with byteSize=0. The size of the data block is not limited.

NOTE:] No other API calls are allowed between consecutive calls to
T32_WriteMemoryPipe().
. A sequence of T32_WriteMemoryPipe() calls must end with a call with
byteSize = 0.

The access flags define the memory access class and access method (see T32_WriteMemory).

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 58

Example:

uint8_t buffer[1024];

error = T32_WriteMemoryPipe (0x400, OxcO, buffer, 1024);

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 59

T32_WriteMemoryObj Write Target Memory Object

Prototype:

int T32_WriteMemoryObj (T32_BufferHandle bufferHandle,
const T32_AddressHandle addressHandle, const T32_Length length) ;

Parameters:
bufferHandle ; handle to buffer object containing the data
to write
addressHandle ; handle to address object containing the address
and access method where to write to
length ; number of bytes to write
Returns:

0 for ok, otherwise Error value
Writes data to target memory.

A “buffer handle” must be declared, requested and set by the application as shown in the example and
description below.

An “address handle” must be declared, requested and set by the application as shown in the example and

description below.
Example to write a buffer to a 64bit address:

uint8 t LocalBuffer[32];

T32_BufferHandle myBufferHandle;
T32_AddressHandle myAddressHandle64;

T32_RequestBufferObj (&myBufferHandle, O0);
T32_RequestAddressObjA64 (&myAddressHandle64, 0x2000200020002000LL) ;

/* copy data to write into the buffer */
T32_CopyDataToBufferObj (myBufferHandle, 8, "abcdefgh");

T32_WriteMemoryObj (myBufferHandle, myAddressHandle64, 8);

T32_ReleaseAllObjects () ; // release all T332 objects

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC |

60

Buffer Object handling: For a description of the buffer object, see chapter “Buffer Object”.

Address Object handling: For a description of the address object, see chapter “Address Object”.

T32_TransferMemoryBundleObj Read/Write Target Memory Bundles

Prototype:

int T32_ TransferMemoryBundleObj (T32_ MemoryBundleHandle bundles) ;

Parameters:
bundles ; handle to bundle object containing the list of
buffers to be read or written
Returns:

0 for ok, otherwise Error value

Reads/writes a list of target memory buffers back-to-back. The purpose of this function is to allow for fast
transfer of many memory read and write operations.

A “buffer handle” must be declared, requested and set by the application as shown in the example below.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 61

Example showing the transfer of a bundle with one read buffer and one write buffer:

T32_Size bundleSize, 1i;
T32_AddressHandle addressHandle;
T32_BufferSynchStatus syncStatus;
T32_MemoryBundleHandle bundleHandle;

T32_RequestMemoryBundleObj (&bundleHandle, 0);
T32_RequestAddressObjA32 (&addressHandle, 0x10000) ;
T32_AddToBundleObjAddrLength (bundleHandle, addressHandle, 8);
T32_ReleaseAddressObj (&addressHandle) ;
T32_RequestAddressObjA32 (&addressHandle, 0x20000) ;
T32_AddToBundleObjAddrLengthByteArray (bundleHandle, addressHandle,
8, "abcdefgh") ;
T32_ReleaseAddressObj (&addressHandle) ;

T32_TransferMemoryBundleObj (bundleHandle) ;

T32_GetBundleObjSize (bundleHandle, &bundleSize) ;

for (i = 0; i < bundleSize; i++) {
T32_GetBundleObjSyncStatusByIndex (bundleHandle, &syncStatus, 1i);
if (syncStatus == T32_BUFFER_READ) {

uint8_t buf[8];
T32_CopyDataFromBundleObjByIndex (buf, 8, bundleHandle, 1i);

}
else if (syncStatus != T32_BUFFER_WRITTEN)
printf ("ERROR: Bundle buffer read/write error");

T32_ReleaseMemoryBundleObj (&bundleHandle) ;

Bundle Object handling: For a description of the bundle object, see chapter “Bundle Object”.

Address Object handling: For a description of the address object, see chapter “Address Object”.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 62

T32_SetMemoryAccessClass Set memory access class

Prototype:

int T32_SetMemoryAccessClass (const char* access);
Parameters:

access ; memory access class specifier as string
Returns:

0 for ok, otherwise Error value.

Sets the memory access class for all further memory accesses, e.g. with T32_ReadMemory or
T32_WriteMemory. The “access” parameter of those calls will then be ignored.

The memory access class must be given in a null-terminated string containing the access class specifier as
listed in the Processor Architecture Manuals without the colon.

Note: the access class is not validated. Wrong access classes will be accepted, but will give errors in the
subsequent memory accesses.

An empty string or NULL as parameter will disable this access class and re-enables the “access” parameter
of the memory read/write calls.

Example:

; read CP1l5 register of an Arm architecture:
error = T32_SetMemoryAccessClass ("C1l5");
error = T32_ReadMemory (0x4, 0, buffer, 4);

; read supervisor data
error = T32_SetMemoryAccessClass ("SD") ;
error = T32_ReadMemory (0x4, 0, buffer, 4);

; switch back and use access parameter of T32_ReadMemory
error = T32_SetMemoryAccessClass ("");
error = T32_ReadMemory (0x4, 0x40, buffer, 4);

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 63

T32_ReadRegister Read CPU Registers (deprecated)

This function is deprecated, please use T32_ReadRegisterObj instead.
Prototype:

int T32_ ReadRegister (uint32_t maskl,
uint32_t mask2,
uint32_t *buffer);

Parameters:

maskl, mask?2 ; register addressing mask

buffer ; pointer to host buffer receiving register data
Returns:

0 for ok, otherwise Error value

The two 32-bit values mask1 and mask2 form a 64-bit bitmask. Each bit corresponds with one CPU register.
Bit 0 of mask1 is register #0, bit 31 of mask2 is register #63. Registers are only read from the debugger, if
their corresponding bit is set. The values of the registers are written in an array. Array element O is register O,
element 63 is register 63. Contact Lauterbach to get a register map of a specific CPU.

For a more advanced version of the function to read registers, including 64bit accesses and core
specification, see T32_ReadRegisterObj.

Example:
uint32_t buffer[64];
/* define register array */

error = T32_ReadRegister (O0x3ff, 0x0, buffer);

/* read the first 10 registers */

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 64

T32_ReadRegisterByName Read Value of Register

Prototype:

int T32_ReadRegisterByName (const char *regname,

uint32_t *value,
uint32_t *hvalue)
Parameters:
regname ; pointer to register name
value ; pointer to variable receiving the value
hvalue ; pointer to variable receiving the upper 32bit
Returns:
0 forok,

>0 for access error (e.g. wrong register name)
<0 for communication error.

This function provides the value for a specified register.
If the size of the register is smaller or equal to 32bit, the value is stored in “value”.
If the size of the register is 64bit, the upper 32bit are stored in “hvalue”.

For a more advanced version of the function to read registers, including 64bit accesses and core
specification, see T32_ReadRegisterObj.

Example:

uint32_t wvalue, hvalue;
int state

state = T32_ReadRegisterByName ("R1", &value, &hvalue) ;

printf ("R1 = 0x%x, state = %d, %s\n",
value, state, state==0 ? "OK" : "NOK") ;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 65

T32_ReadRegisterObj Read CPU Register Object

Prototype:

int T32_ReadRegisterObj (T32_RegisterHandle registerHandle) ;

Parameters:
registerHandle ; handle to register object containing the register
where to read from with options
Returns:

0 for ok, otherwise Error value
Reads one register from the target CPU.

A “register handle” must be declared, requested and set by the application as shown in the example and
description below.

Example to read a 32bit register with a given name:

uint32_t regValue;

T32_RegisterHandle myRegisterHandle32;

T32_RequestRegisterObjR32Name (&myRegisterHandle32, "PC");
T32_ReadRegisterObj (myRegisterHandle32) ;

T32_GetRegisterObjValue32 (myRegisterHandle32, ®Value) ;
T32_ReleaseRegisterObj (&myRegisterHandle); // release single object

/* read register value is now stored in "regValue" */;

Register Object handling: For a description of the register object, see chapter “Register Object”.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 66

T32_ReadRegisterSetObj Read CPU Register Set Object

Prototype:

int T32_ReadRegisterSetObj (T32_RegisterSetHandle registerSetHandle) ;

Parameters:
registerSetHandle ; handle to register set object containing the
registers to read
Returns:

0 for ok, otherwise Error value
Reads a predefined register set from the target CPU.

A “register set handle” must be declared, requested and set by the application as shown in the example and
description below.

Example to read a 32bit register set:

const char *regNames[5] = {"RO", "R1", "R2", "R3", "PC"};
uint32_t regValues|[5];
int iz

T32_RegisterSetHandle regSetHandle;

T32_RequestRegisterSetObjR32 (®SetHandle, 5);
T32_SetRegisterSetObjNames (regSetHandle, regNames, 5);

T32_ReadRegisterSetObj (regSetHandle) ;

T32_GetRegisterSetObjValues32 (regSetHandle, regValues, 5);
T32_ReleaseRegisterSetObj (®SetHandle) ;

/* read register values are now stored in "regValues" array*/;
for (1 = 0; 1 < 5; i++)
printf ("Register %s = 0x%08x\n", regNames[i], regValues[i]);

RegisterSet Object handling: For a description of the register set object, see chapter “RegisterSet
Object”.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 67

T32_WriteRegister Write CPU Registers (deprecated)

This function is deprecated, please use T32_WriteRegisterObj instead.
Prototype:

int T32 WriteRegister (uint32_t maskl,
uint32_t mask?2,
uint32_t “*buffer);

Parameters:

maskl, mask?2 ; register addressing mask

buffer ; pointer to host buffer containing the register data
Returns:

0 for ok, otherwise Error value

The two 32-bit values mask1 and mask2 form a 64-bit bitmask. Each bit corresponds with one CPU register.
Bit 0 of mask1 is register #0, bit 31 of mask2 is register #63. Registers are only written if their corresponding
bit is set. The values of the registers are passed as an array. Array element 0 is register 0, element 63 is
register 63. Contact Lauterbach to get a register map of a specific CPU.

For a more advanced version of the function to write registers, including 64bit accesses and core
specification, see T32_WriteRegisterObj.

Example:

uint32_t buffer[64];
/* define register array */

buffer[l] = buffer [3] = 0x30f0;
error = T32_WriteRegister (0x0c, 0x0, buffer);

/* write register 1 and 3 */

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 68

T32_WriteRegisterByName Write Value of Register

Prototype:

int T32_WriteRegisterByName (const char *regname,

uint32_t value,
uint32_t hvalue)
Parameters:
regname ; pointer to register name
value ; value to write to the register
hvalue ; upper 32bit in case of 64bit register
Returns:
0 forok,

>0 for access error (e.g. wrong register name)
<0 for communication error.

This function sets the value of the specified register.
If the size of the register is smaller or equal to 32bit, it is set to the parameter “value”.
If the size of the register is 64bit, specify the upper 32bit in “hvalue”.

For a more advanced version of the function to write registers, including 64bit accesses and core
specification, see T32_WriteRegisterObj.

Example:

uint32_t wvalue, hvalue;

int state

value = 0x1234;

hvalue = 0;

state = T32_WriteRegisterByName ("R1", value, hvalue) ;

printf ("R1 is set to 0x%x, state = %d, %s\n",
value, state, state==0 ? "OK" : "NOK") ;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 69

T32_WriteRegisterObj Write CPU Register Object

Prototype:

int T32_WritRegisterObj (T32_RegisterHandle registerHandle) ;

Parameters:
registerHandle ; handle to register object containing the register
where to write to with options
Returns:

0 for ok, otherwise Error value
Writes to one register of the target CPU.

A “register handle” must be declared, requested and set by the application as shown in the example and
description below.

Example to write a 64bit value to a 64bit register:

/* write 0x2000200020002000 to the program counter */
T32_RegisterHandle myRegisterHandle64;

T32_RequestRegisterObjR64 (&myRegisterHandle64) ;
T32_SetRegisterObjName (myRegisterHandle64, "PC");
T32_SetRegisterObjValue64d (myRegisterHandle64, 0x2000200020002000LL) ;

T32_WriteRegisterObj (myRegisterHandleb64) ;

T32_ReleaseAllObjects () ; // release all T32 objects

Register Object handling: For a description of the register object, see chapter “Register Object”.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 70

T32_WriteRegisterSetObj Write CPU Register Set Object

Prototype:

int T32_WriteRegisterSetObj (T32_RegisterSetHandle registerSetHandle) ;

Parameters:
registerSetHandle ; handle to register set object containing the
registers to write
Returns:

0 for ok, otherwise Error value
Writes to a predefined register set from the target CPU.

A “register set handle” must be declared, requested and set by the application as shown in the example and
description below.

Example to write a 32bit register set:

{llROII, ||R1|I, IIR2||, IIRBII, IIPCII};
{0x10, 0x11, O0x12, O0x13, 0x20};

const char *regNames[5]
uint32_t regValues|[5]

T32_RegisterSetHandle regSetHandle;
T32_RequestRegisterSetObjR32 (®SetHandle, 5);
T32_SetRegisterSetObjNames (regSetHandle, regNames, 5);
T32_GSetRegisterSetObjValues32 (regSetHandle, regValues, 5);
T32_WriteRegisterSetObj (regSetHandle) ;
T32_ReleaseRegisterSetObj (®SetHandle) ;

RegisterSet Object handling: For a description of the register set object, see chapter “RegisterSet
Object”.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 71

T32_ReadPP Read Program Pointer

Prototype:

int T32_ReadPP (uint32_t *pp);

Parameters:
joje) ; pointer to variable receiving the program pointer
value

Returns:

0 for ok, otherwise Error value

This function reads the current value of the program pointer. It is only valid if the application is stopped (see
T32_GetState). The program pointer is a logical pointer to the address of the next executed assembler
line. Unlike T32_ReadRegister, this function is completely processor independent.

Example:

uint32_t pp;
error = T32_ReadPP (&pp);
printf ("Current Program Pointer: %x\n", pp);

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 72

T32_ReadBreakpoint Read Breakpoints (deprecated)

This function is deprecated, please use T32_ReadBreakpointObj instead.
Prototype:

int T32_ ReadBreakpoint (uint32_t address,

int access,
uintlé_t *buffer,
int size);
Parameters:
address ; address to begin reading breakpoints
access ; memory access flags
buffer ; pointer to host buffer receiving breakpoint data
size ; number of addresses to read
Returns:

0 for ok, otherwise Error value
Read breakpoint information from debugger.

The access variable defines the memory class and access method. See T32_ReadMemory for definitions
and other methods of specifying the access class.

The size of the range is not limited. The buffer contains 16-bit words in the following format:

Bit 0 execution breakpoint (Program)
Bit 1 HLL stepping breakpoint (HII)
Bit 2 spot breakpoint (Spot)

Bit 3 read access breakpoint (Read)
Bit 4 write access breakpoint (Write)
Bit 5 universal marker a (Alpha)

Bit 6 universal marker b (Beta)

Bit 7 universal marker ¢ (Charly)

Bit 8 marker d

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 73

Bit 9 marker e

Bit 10 implemented as ONCHIP
Bit 11 implemented as SOFT
Bit 12 implemented as HARD

For a more advanced version of the function to read breakpoints, including 64bit accesses and other
options, see T32_ReadBreakpointObj.

Example:

uintl6_t buffer[l6];
error = T32_ReadBreakpoint (0x100, 0x40, buffer, 16);

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 74

T32_WriteBreakpoint

Write Breakpoints (deprecated)

This function is deprecated, please use T32_WriteBreakpointObj instead.

Prototype:

int T32_ WriteBreakpoint (uint32_t address,

Parameters:

address
access
breakpoint
size
Returns:

0 for ok, otherwise Error value

Set or clear breakpoints.

int access,
int breakpoint,
int size);

; address to begin writing breakpoints
; memory access flags

; breakpoints to set or clear in area
; number of addresses to write

The access variable defines the memory class and access method. See T32_ReadMemory for definitions
and other methods of specifying the access class.

The size of the range is not limited. The breakpoint argument defines which breakpoints to set or clear over

the memory area:

Bit 0 execution breakpoint (Program)
Bit 1 HLL stepping breakpoint (HII)
Bit 2 spot breakpoint (Spot)

Bit 3 read access breakpoint (Read)
Bit 4 write access breakpoint (Write)
Bit 5 universal marker a (Alpha)

Bit 6 universal marker b (Beta)

Bit 7 universal marker ¢ (Charly)

Bit 8 Set to clear breakpoints

©1989-2024 Lauterbach

API for Remote Control and JTAG Access in C

75

For a more advanced version of the function to write breakpoints, including 64bit accesses and other
options, see T32_WriteBreakpointObj.

Example:

error = T32_WriteBreakpoint (0x100, 0x40, 0x19, 16);

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 76

T32_GetBreakpointList Get Breakpoint List

Prototype:
int T32_GetBreakpointList (int *numbps,
T32_Breakpoint *bps,
int max) ;
Parameters:
numbps ; pointer to variable receiving number of breakpoints
bps ; Structure array receiving the breakpoint list
max ; maximum number of array elements
Returns:

0 for ok, otherwise Error value

Read the breakpoint list of the debugger. The T32_Breakpoint structure contains the address, status and
type of the breakpoint:

address start address of the breakpoint
enabled 1 if breakpoint is enabled, 0 if disabled
type breakpoint type

auxtype auxilary breakpoints (e.g. temporary)

For a more advanced version of the function to get a breakpoint list, including 64bit accesses and other
options, see T32_ReadBreakpointObjByindex.

Example:

int i, num;
T32_Breakpoint bp[100];
T32_GetBreakpointList (&num, bp, 100);
printf ("number of breakpoints: %d\n", num) ;
for (i = 0; (i < num) && (i < 100); i++)
printf ("address = 0x%x, enable = %d, type = 0x%x\n",
bpli] .address, bpli].enabled, bplil].type);

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 77

T32_WriteBreakpointObj Write breakpoint object

Prototype:

int T32_WriteBreakpointObj (T32_BreakpointHandle bpHandle, int set);

Parameters:

bpHandle ; handle to breakpoint object

set 1: set breakpoint, 0: delete breakpoint
Returns:

0 for ok, otherwise Error value
This function sets or deletes a breakpoint in TRACES32.

A “breakpoint handle” must be declared, requested and set by the application as shown in the example and
description below.

Example to write a software breakpoint onto a 32bit address:

T32_AddressHandle myAddressHandle = NULL;
T32_BreakpointHandle myBpHandle = NULL;

T32_RequestAddressObjA32 (&myAddr, 0x12345678L) ;
T32_RequestBreakpointObjAddr (&myBpHandle, myAddr) ;

T32_SetBreakpointObjImpl (myBpHandle, T32_BP_IMPL_SOFT)
T32_WriteBreakpointObj (myBpHandle, 1) ;

T32_ReleaseAllObjects () ; // release all T32 objects

Address Object handling: For a description of the address object, see chapter “Address Object”.

Breakpoint Object handling: For a description of the breakpoint object, see chapter “Breakpoint Object”.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 78

T32_ReadBreakpointObj Read breakpoint object by address

Prototype:

int T32ReadBreakpointObj (T32_BreakpointHandle bpHandle) ;

Parameters:

bpHandle ; handle to breakpoint object

Returns:
0 for ok, otherwise Error value

This function reads the characteristics of a breakpoint in TRACES32. The breakpoint to read is specified by
the address given in the breakpoint handle.

A “breakpoint handle” must be declared, requested and set by the application as shown in the example and
description below.

Example to read the breakpoint characteristics of a 32bit address:

uint32_t address;
T32_AddressHandle myAddrHandle = NULL;
T32_BreakpointHandle myBpHandle NULL;

T32_RequestAddressObjA32 (&myAddrHandle, 0x12345678L) ;
T32_RequestBreakpointObjAddr (&myBpHandle, myAddrHandle) ;

T32_ReadBreakpointObj (myBpHandle) ;
T32_GetBreakpointObjAddress (myBpHandle, &myAddrHandle) ;
T32_GetAddressObjAddr32 (myAddrHandle, &address) ;
T32_GetBreakpointObjType (myBpHandle, &type);

T32_ReleaseAllObjects () ; // release all T32 objects

/* breakpoint address is now in "addr" and type in "type" */

Address Object handling: For a description of the address object, see “Address Object”.

Breakpoint Object handling: For a description of the breakpoint object, see “Breakpoint Object”.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 79

T32_ReadBreakpointObjBylndex Read breakpoint object by index

Prototype:

int T32ReadBreakpointObjByIndex (T32_BreakpointHandle bpHandle
uint32_t index) ;

Parameters:

bpHandle ; handle to breakpoint object

index index of breakpoint in breakpoint list
Returns:

0 for ok, otherwise Error value

This function reads the characteristics of a breakpoint in TRACES2. The breakpoint to read is specified by
the index value. The index starts at 0 and ends with the number of breakpoints in TRACE32 minus one. The
number of current breakpoints can be retrieved with T32_QueryBreakpointObjCount.

A “breakpoint handle” must be declared, requested and set by the application as shown in the example and
description below.

Example to read the breakpoint characteristics of the second breakpoint in the breakpoint list:

uint32_t address;
T32_AddressHandle myAddrHandle
T32_BreakpointHandle myBpHandle

NULL;
NULL;

T32_RequestBreakpointObj (&myBpHandle) ;
T32_ReadBreakpointObjByIndex (myBpHandle, 1) ;
T32_GetBreakpointObjAddress (myBpHandle, &myAddrHandle) ;
T32_GetAddressObjAddr32 (myAddrHandle, &address);
T32_GetBreakpointObjType (myBpHandle, &type);

T32_ReleaseAllObjects () ; // release all T32 objects

/* breakpoint address is now in "addr" and type in "type" */

Address Object handling: For a description of the address object, see “Address Object”.

Breakpoint Object handling: For a description of the breakpoint object, see “Breakpoint Object”.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 80

T32_QueryBreakpointObjCount Query number of breakpoints

Prototype:

int T32_QueryBreakpointObjCount (uint32_t* pCount) ;

Parameters:

pCount variable to receive the number of breakpoints

Returns:
0 for ok, otherwise Error value

This function retrieves the number of breakpoints set in TRACES32. Use T32_ReadBreakpointObjBylndex
to iterate and read the breakpoints then.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 81

T32_Step Single Step

Prototype:

int T32_Step (void);

Parameters:

none

Returns:

0 for ok, otherwise Error value
Executes one single step.
Example:

error = T32_Step ();

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 82

T32_StepMode Single Step with Mode Control

Prototype:

int T32_StepMode (int mode) ;

Parameters:

mode ; Stepping mode

Returns:
0 for ok, otherwise Error value

Executes one step. The mode parameter controls the stepping mode:

0 assembler step
1 HLL step
2 mixed = assembler step with HLL display

Bit 7 of mode defines step into or step over a function call
Example:

error = T32_StepMode (0x81) ;

Steps over a function call, halting on the next HLL line.

©1989-2024 Lauterbach API for Remote Control and JTAG Access in C

83

T32_Go Start real time

Prototype:

int T32 _Go (void);

Parameters:

none

Returns:

0 for ok, otherwise Error value

Start target (or start real-time emulation). The function will return immediately after the emulation has been
started. The T32_GetState function can be used to wait for the next breakpoint. All other commands are
allowed while the emulation is running.

Example:

error = T32_Go ();

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 84

T32_Break Stop real time

Prototype:

int T32_Break (void);

Parameters:

none

Returns:

0 for ok, otherwise Error value

Break into target (or stop the real-time emulation asynchronously).
Example:

error = T32_Break ();

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 85

T32_GetTriggerMessage Get Trigger Message Contents

Prototype:

int T32_GetTriggerMessage (char message[256]);

Parameters:

message ; pointer to an array of 256 characters receiving the message

Returns:
0 for ok, otherwise communication error value

When stopping on a read or write breakpoint (or equivalent), the trigger system generates an appropriate
message. This message (as shown in the “Trigger” window), can be read with this function.

"message" must be an user allocated character array of at least 256 elements.
Example:

char message[256] ;

error = T32_GetTriggerMessage (message) ;
printf ("Trigger system reports: %$s\n", message) ;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 86

T32_GetSymbol

Get Symbol Information

Prototype:

int T32_GetSymbol (const char *symbol,

uint32_t *address,
uint32_t *size,
uint32_t *reserved) ;
Parameters:
symbol ; pointer to symbol name
address ; pointer to variable receiving the symbol address
size ; pointer to variable receiving the symbol size
reserved ; pointer to variable (reserved)
Returns:

0 for ok, otherwise communication error value.

This function returns the symbol information for a specified symbol name. If the specified symbol was not
found, address and size contain (uint32_t)-1.

This function can also be used to get the address of a source line.

Note: It is not possible to get the information of non-static local variables (as they have no address).

Example:

uint32_t address, size, reserved;

char* symname = "variable";

/* search for a variable called "variable" */

char* srcline "\\file\\12";

/* search for line 12 in file "file.c" */

error = T32_GetSymbol (symname, &address, &size, &reserved);

/* get information about a variable */

printf ("Symbol %s is located at 0x%x,\n", symname, address);

printf ("with a size of %d bytes.",

size) ;

(i1f any)

©1989-2024 Lauterbach

API for Remote Control and JTAG Access in C

87

error = T32_GetSymbol (srcline, &address, &size, &reserved);
/* get information about a source line */

printf ("Line 12 of file ‘file.c’ is located at 0x%x,\n", address);
printf ("the line is compiled occupying %d bytes of code.", size);

Actual workaround example for more complex symbols:

char message[256] ;
uintl6é_t mode;
int address;

T32_Cmd ("print address.offset(v.address(ast.left))");
T32_GetMessage (message, &mode) ;

sscanf (message, "%x", &address) ;

printf ("ast.left = %$8x\n", address);

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 88

T32_GetSymbolFromAddress Get symbol name from address

Prototype:

int T32_GetSymbolFromAddress (char *symbol,
uint32_t address,

int stringlength) ;
Parameters:
symbol ; pointer to char array receiving the symbol name
address ; symbol address
stringlength ; maximum size symbol name (size of character array)
Returns:

0 for ok, otherwise communication error value.

This function returns the symbol name for a specified address.

Use T32_SetMemoryAccessClass if you need the symbol for a specific access class.
Example:

uint32_t address;
int error;
char symbol [256] ;

/* search symbol on address 0x1234 */
address = 0x1234;
error = T32_GetSymbolFromAddress (symbol, address, 256);

printf ("Symbol at address 0x%x is %s\n", address, symbol) ;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 89

T32_QuerySymbolObj Query symbol object information

Prototype:

int T32_QuerySymbolObj (T32_SymbolHandle symbolHandle) ;

Parameters:

symbolHandle ; handle to symbol object

Returns:
0 for ok, otherwise Error value

Queries information about a symbol.

If the symbol object is initialized with a symbol name, T32_QuerySymbolObj () fills the object with further
information like symbol address.

If the symbol object is initialized with an address, T32_QuerySymbolObj () fills the object with further
information like symbol name.

A “symbol handle” must be declared, requested and set by the application as shown in the example and
description below.

Example to get a 32bit address of a given symbol name:

uint32_t myAddress;

T32_SymbolHandle mySymbolHandle NULL;
T32_AddressHandle myAddressHandle = NULL;

T32_RequestSymbolObjName (&mySymbolHandle, "main") ;
T32_QuerySymbolObj (mySymbolHandle) ;

T32_GetSymbolObjAddress (mySymbolHandle, &myAddressHandle) ;
T32_GetAddressObjAddr32 (myAddressHandle, &myAddress) ;

T32_ReleaseAllObjects () ; // release all T32 objects

/* symbol address is now in "myAddress" */

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 90

Example to get a symbol name of a given 32bit address:

char symName[64];

T32_SymbolHandle mySymbolHandle;
T32_AddressHandle myAddressHandle;

T32_RequestAddressObjA32 (&myAddressHandle, 0x1234);
T32_RequestSymbolObjAddr (&mySymbolHandle, myAddressHandle) ;

T32_QuerySymbolObj (mySymbolHandle) ;
T32_GetSymbolObjName (mySymbolHandle, symName, 64);
T32_ReleaseAllObjects () ; // release all T32 objects

/* symbol name is now in "symName" */

Address Object handling: For a description of the address object, see “Address Object”.

Symbol Object handling: For a description of the symbol object, see “Symbol Object”.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 91

T32_QueryAddressObjMmuTranslation Query MMU address translation

Prototype:

int T32_QueryAddressObjMmuTranslation (T32_AddressHandle handle,
uintl6_t translation) ;

Parameters:
handle ; handle to address object
translation ; type of translation
Returns:

0 for ok, otherwise Error value
Queries an MMU translation for a given address object.

handle specifies a fully qualified address object for which you want the translation. For a description of the
address object, see “Address Object”.

translation specifies the type of translation that will be performed:

T32_MMUTRANSLATION_TO_PHYSICAL translate to physical address
T32_MMUTRANSLATION_TO_LOGICAL translate to logical (virtual) ddress
T32_MMUTRANSLATION_TO_LINEAR translate to linear address (only x86/x64)

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 92

Example to translate a virtual address to physical address:

uint32_t log _address = 0x12345678L;
char log_access[16] = "D";

uint32_t phys_address;

char phys_access[32];
T32_AddressHandle myAddressHandle32;

T32_RequestAddressObjA32 (&myAddressHandle32, log_address) ;
T32_SetAddressObjAccessString (myAddressHandle32, log_access) ;

T32_QueryAddressObjMmuTranslation (myAddressHandle32,
T32_MMUTRANSLATION_TO_PHYSICAL) ;

T32_GetAddressObjAddr32 (myAddressHandle32, &phys_address) ;
T32_GetAddressObjAccessString (myAddressHandle32, phys_access, 32);

printf ("logical %s:%08x <==> physical %s:%08x\n",
log_access, log_address, phys_access, phys_address) ;

T32_ReleaseAllObjects () ; // release all T32 objects

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 93

T32_QueryAddressObjTargetSizeOfMau Query target MAU size

Prototype:

int T32_QueryAddressObjTargetSizeOfMau (T32_AddressHandle handle) ;

Parameters:

handle ; handle to address object

Returns:
0 for ok, otherwise Error value
Queries the MAU (minimum addressable unit) of a target address in bits.

handle specifies a fully qualified address object for which you want the MAU size. For a description of the
address object, see “Address Object”.

This function sets an attribute in the object with the number if bits that a single address in the target system
addresses. For “normal” memory, this will be 8 bits, but for special accesses (e.g. Arm CP15 registers), this
may be different. Use T32_GetAddressObjTargetSizeOfMau to get the target MAU size of the address
object.

NOTE: This function only queries the target MAU size, it does not change the MAU
addressing of the address object. If you want to change the addressing
behavior of the address object when reading/writing the target, use
T32_SetAddressObjSizeOfMau

Example to get the target MAU size of the Arm CP15 register area:

uint32_t mau;
T32_AddressHandle myAddressHandle;

T32_RequestAddressObjA32 (&myAddressHandle, 0) ;
T32_SetAddressObjAccessString (myAddressHandle, "C15");

T32_QueryAddressObjTargetSizeOfMau (myAddressHandle) ;
T32_GetAddressObjTargetSizeOfMau (myAddressHandle, &mau) ;
printf ("target MAU size in bits for C15: %d.\n", mau) ;

T32_ReleaseAllObjects () ; // release all T32 objects

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 94

T32_ReadVariableValue Read value of variable

Prototype:

int T32_ReadVariableValue (const char *symbol,

uint32_t *value,
uint32_t *hvalue) ;
Parameters:
symbol ; pointer to variable name
value ; pointer to variable receiving the value
hvalue ; pointer to variable receiving the upper 32bit
Returns:
0 forok,

>0 for access error (e.g. symbol not found)
<0 for communication error.

This function provides the integer value for a specified variable name.
If the size of the variable is smaller or equal to 32bit, the value is stored in “value”.
If the size of the variable is 64bit, the upper 32bit are stored in “hvalue”.

Example:

uint32_t wvalue, hvalue;

int state
state = T32_ReadVariablevalue ("i", &value, &hvalue) ;
printf ("i = %d, state = %d, %s\n",

value, state, state==0 ? "OK" : "NOK") ;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 95

T32_WriteVariableValue Write value to variable

Prototype:

int T32_WriteVariableValue (const char *symbol,

uint32_t value,
uint32_t hvalue);
Parameters:
symbol ; pointer to variable name
value ; value to be written (lower 32bit)
hvalue ; upper 32bit of value to be written
Returns:
0 forok,

>0 for access error (e.g. symbol not found)
<0 for communication error.

This function sets the integer value for a specified variable name.
If the value does not fit into the variable, it is truncated to the size of the variable.

Example:

error = T32 WriteVariableValue ("i", 5, 0);

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 96

T32_ReadVariableString Read variable as string

Prototype:

int T32_ReadVariableString (const char *symbol,

char *string,
int maxlen) ;
Parameters:
symbol ; pointer to variable name
string ; pointer to character array receiving the string
maxlen ; maximum length of string (including zero termination)
Returns:
0 forok,

>0 for access error (e.g. symbol not found)
<0 for communication error.

This function provides the content for a specified variable name as string.
Notes:

The lenght of the variable name is limited to 250 characters.
Example:

char string[256];
int state

state = T32_ReadVariableString ("i", string, sizeof (string));

printf ("i = \"%s\", state = %d, %s\n",
string, state, state==0 ? "OK" : "NOK") ;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 97

T32_GetSource Get Source Filename and Line

Prototype:

int T32_ GetSource (uint32_ t address,
char filename[256],
uint32_t *line);

Parameters:
address ; address for which file and line are requested
filename ; output parameter, set by API function
line ; output parameter, set by API function

Returns:

0 for ok, otherwise Error value

With a given target address, this function calculates and gets the corresponding source filename and source
line. filename must be an array of characters with at least 256 elements.

Example:

char filename[256] ;
uint32_t line, curr_addr;

error = T32_ReadPP (&curr_addr); /* get program pointer */
error = T32_GetSource (curr_addr, filename, &line);
printf ("Current Source: %s at line %d\n", filename, line);

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 98

T32_GetSelectedSource Get Source Filename and Line of Selection

Prototype:

int T32_GetSelectedSource (char filename[256], uint32_t *1line);

Parameters:
filename ; output parameter, set by API function
line ; output parameter, set by API function
Returns:

0 for ok, otherwise Error value

This function requests the source filename and line number of a selected source line in
TRACE32/PowerView. The source line can be selected in any TRACE32 PowerView window containing
source (e.g. "A.List" or"Data.List").

If no previous selection was done, or if no source line is selected, the function returns with £ilename set to
an empty string (filename[0]=="\0").

filename must be an array of characters with at least 256 elements.

Example:

char filename[256] ;
uint32_t line;

error = T32_GetSelectedSource (filename, &line);
if (strlen (filename))

printf ("Selected Source: %s at line %d\n", filename, line);
else

printf ("No source line selected.\n");

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 99

T32_AnaStatusGet Get State of State Analyzer (deprecated)

This function is deprecated. Please use this function instead:

o T32_GetTraceState

Prototype:

int T32_AnaStatusGet (uint8_t *state,
int32_t *size,
int32_t *min,
int32_t *max);

Parameters:
state ; pointer to variable receiving the current analyzer
state size ; pointer to variable receiving the trace buffer size
min number ; pointer to variable receiving the minimum record
max number ; pointer to variable receiving the maximum record
Returns:

0 for ok, otherwise communication error value

This function requests the state of the TRACE32 State Analyzer.
“state” contains the current analyzer state:

0 analyzer is switched off

1 analyzer is armed

2 analyzer is triggered

3 analyzer recording broken

“size” contains the trace buffer size. It specifies the amount of records, which can be recorded, not the
amount of records, which are actually stored in the buffer.

“min”, “max” contain the minimum and the maximum record number stored in the trace buffer. Note that the
record numbers can be negative or positive.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 100

Example:

uint8 t state;
int32_t size, min, max;

error = T32_AnaStatusGet (&state, &size, &min, &max) ;

printf ("State: %$s\n", !state ? "off" : ((state == 1) ? "armed"
((state == 3) ? "breaked" : "unknown")));

printf ("Buffer size = %d records\n", size);

printf ("Minimum/Maximum record number: %d4d/%d\n", min, max) ;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 101

T32_AnaRecordGet Get One Record of State Analyzer (deprecated)

This function is deprecated. Please use this function instead:

° T32_ReadTrace

Prototype:

int T32_ AnaRecordGet (int32_t recordnr,
uint8_t *buffer,

int length);
Parameters:
recordnr ; record number of record to read
buffer ; byte array to catch the record information
length ; number of bytes to read from record
Returns:

0 for ok, otherwise communication error value

This function reads the record information of one record of the Analyzer trace buffer.

“recordnr” specifies the record number to read.

“buf fer” contains the read record information (see below).

“length” specifies the number of bytes to read from the information into the buffer. This can be used to limit
the amount of bytes transmitted and written into the buffer. If you specify “0”, all information will be
transmitted; in this case allocate an array with 256 bytes at least.

The buffer will contain the following data:

index content
0 return value: 0=0k
-1 = no analyzer present
-2 = invalid record number
1 reserved

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 102

2 physical access class: lower 4 bits: 1=Data

2=Program
higher 4bits: 3=First Cycle

4=res.
5=Breakpoint Cycle
6=res.
7=Write Cycle
8=0pfetch1 Cycle

3 reserved

4-7 physical address (little endian)

8-15 bus data (max. 8 bytes, depending on bus data width)

16 bus data width

17 bus access cycle (read/write/fetch, processor dependant)

18-19 status lines, processor dependant

20-27 timestamp (one bit equals 20/256 ns)

28/29 external trigger A/B inputs

30 logical access class:

1=Data
2=Program

31 reserved

32-35 logical address

rest reserved

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 103

Example:

int e

int32_t recordnr = 100;
uint64_t time;

uint8_t buffer[256];

error = T32_AnaRecordGet (recordnr, buffer, 0);
if (l!error && !buffer[0]) /* no error Y/
{
printf ("Address = 0x%02x%02x%02x%02x\n",
buffer[7], buffer([6], buffer[5], buffer[4]);
printf ("Data = 0x");
for (i = 0; i < buffer[1l6]; i++)
printf ("%02x", buffer[8+i]) ;
printf ("\n");

printf ("Time = 0x");
time = 0;

for (i = 7; 1 >= 0; i--)
{

printf ("%02x", buffer[20+i]) ;
time += (uint64_t) buffer[20+i] << 1i*8;

}

printf ("\n");

time = time * 625 / 8000; /* calculate nanoseconds =4
printf (" = %u s, %u ms, %u us, %u ns\n",

(time / 1000000000L),

(% 1000000000 / 1000000L),
(time % 1000000L / 1000L),

(% 1000L)) ;

unsigned int)
unsigned int)
unsigned int)
unsigned int)

(
(
(
(

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 104

T32_GetTraceState

Get State of Trace

Prototype:

int T32_ GetTraceState (int
int
int32_t *size,
int32_t *min,
int32_t *max);

Parameters:

tracetype
state

size

min number
max number

Returns:

0 for ok, otherwise communication error value

type of
pointer
pointer
pointer
pointer

tracetype,
*state,

trace and interpretation

to
to
to
to

variable receiving current trace state
variable receiving trace buffer size
variable receiving minimum record number
variable receiving maximum record number

This function requests the state of the selected Trace.

“tracetype” contains the trace method selection.

0 Trace (the Trace selected with Trace. METHOD command)

1 Powerlntegrator

2 Trace raw data (same as 0, but no interpretation of trace data)

3 Trace funneled data (same as 0, but only decoding of funneled data for one source)
4 PowerProbe

5 Snooper

6 DTM

“state” contains the current trace state:

0 analyzer is switched off

1 analyzer is armed

©1989-2024 Lauterbach

API for Remote Control and JTAG AccessinC |

105

2 analyzer triggered

3 analyzer recording breaked

“size” contains the trace buffer size. It specifies the amount of records, which can be recorded, not the
amount of records, which are actually stored in the buffer.

“min”, “max” contain the minimum and the maximum record number stored in the trace buffer. Note that the
record numbers can be negative or positive.

Example:

int state;
uint32_t size, min, max;

error = T32_GetTraceState (0, &state, &size, &min, &max) ;

printf ("State: %s\n", !state ? "off" : ((state == 1) ? "armed"
((state == 3) ? "breaked" : "unknown")));
printf ("Buffer size = %d records\n", size);

printf ("Minimum/Maximum record number: %$d4d/%d\n", min, max) ;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 106

T32_ReadTrace

Get n Trace Records

Prototype:

int T32_ReadTrace

Parameters:

tracetype
record

n

mask
buffer

Returns:

(

int tracetype,
int32_t record,
int n,

uint32_t mask,
uint8_t *buffer);

type of trace and interpretation

record number of record to start reading from
number of records to read

type of data to extract from the trace

byte array to catch the record information

0 for ok, otherwise communication error value

This function reads the information of one or more records from the trace buffer.

“tracetype” contains the trace method selection. See T32_GetTraceState for the encoding.
“record” specifies the record number to read.

“n” is the number of records to read.

“mask” defines which information should be extracted. Each bit is related to a four byte chunk of data.
“buf fer” contains the read record information. All data is stored in little endian format.

The buffer will contain the following data:

bit group byte content

0 0 return value: 0=0k
-1=no analyzer present
-2=invalid record number

0 1 reserved

0 2 reserved

0 3 reserved

1 0 external trace data O

or flow trace data byte (only ETM V3, only row or funnel trace source)

©1989-2024 Lauterbach

API for Remote Control and JTAG AccessinC | 107

1 external trace data 1
or flow trace control byte (only ETM V3, only row or funnel trace
source)
bit 2: TCNTL
1 trigger level
1 trigger flags
2 timestamp lower 32 bits (little endian)
0x40 -> 5ns
0x80 -> 10ns
0x100 -> 20ns
0x500 -> 100ns
3 timestamp upper 32 bits (little endian)
4 physical address (little endian)
5 physical address upper 32 bits (little endian)
6 physical access class and segment
7 reserved
8 logical address (little endian)
9 logical address upper 32 bits (little endian)
10 logical access class and segment
11 reserved
12 data 0...3
13 data 4...7
14 data bus mask (byte enables)
14 cycle type information: bit 0 = Data
bit 1 = Program
bit 2 = First Cycle
bit 3 = reserved
bit 4 = Breakpoint Cycle
bit 5 = reserved
bit 6 = Write Cycle
bit 7 = reserved
14 data bus width
14 reserved

©1989-2024 Lauterbach

API for Remote Control and JTAG AccessinC |

108

15 0...3 reserved
16...31 0...3 logical analyzer or port channel data
Example:
int i;
int32_t recordnr = 100;
uint64_t time;
uint8_t buffer[256];
error = T32_ReadTrace (0, recordnr, 1, 0x710c, buffer);
if (!error && !buffer[0]) /* no error */
{
printf ("Address = 0x%02x%02x%02x%02x\n", buffer[1l1l], buffer[10],
buffer[9], buffer[8]);
printf ("Data = 0x");
for (i = 0; i < buffer[22]; 1i++)
printf ("%02x", buffer[12+i]) ;
printf ("\n");
printf ("Time = 0x");
time = 0;
for (i = 7; 1 >= 0; i--)
{
printf ("%02x", buffer[0+i]);
time += (uint64_t) buffer[0+1] << 1*8;
}
printf ("\n");
time = time * 625 / 8000; /* calculate nanoseconds */
printf (" = %u s, %u ms, %u us, %u ns\n",
(unsigned int) (time / 1000000000L),
(unsigned int) (time % 1000000000L / 1000000L),
(unsigned int) (time % 1000000L / 1000L),
(unsigned int) (time % 1000L)) ;
}

©1989-2024 Lauterbach

API for Remote Control and JTAG Access in C

109

T32_NotifyStateEnable Register a function to be called at state change (deprecated)

This call function is deprecated. Please use one of these functions instead:
. T32_NotifyBreakEnable

o T32_NotifyEditEnable

o T32_NotifyBreakConfigEnable

. T32_NotifyErrorEnable

o T32_NotifyRTSTriggerEnable

o T32_NotifyGoEnable

Prototype:

int T32_NotifyStateEnable (int event, void (*function) ());
Parameters:

event ; number of the event to react on

function ; pointer to callback function
Returns:

0 for ok, otherwise communication error value

This function registers a callback function with the API that will be called by the APl when the specified event
occurs.

For this mechanism to work, the user must ensure that the function T32_CheckStateNotify is called
periodically (e.g. in the windows main loop) because that will make the API re-evaluate accumulated events.

“event” specifies the event type.
“function” points to a function that is called when the event occurred.
The following table shows the events and which callback function declarations are expected:
T32_E_BREAK Core halted, e.g. on breakpoint
void callbackFunction (int parameter, uint64_t pc, uint64_t reason);
T32_E_EDIT Remote APl is called to open a file in an editor

void callbackFunction (int parameter, int lineNr, char* fileName) ;

T32_E_BREAKPOINTCONFIG Breakpoints were changed

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 110

void callbackFunction (int parameter) ;
T32_E_RTSTRIGGER An RTS trigger event occurred
(for internal use only)

T32_E_ERROR An error occurred

void callbackFunction (int parameter, int code, char* message) ;
T32_E_GO Core state changed to running

void callbackFunction (int parameter) ;

See also T32_NotifyEventEnable .

NOTE: Compile the API sources with ENABLE_NOTIFICATION defined to use
notifications.

Example:

Register the function targetHalted to be called whenever the debugger goes into state “break” (stopped).

void targetHalted (int parameter, uint64_t pc, uint64_t reason)

{

printf ("notifyStateBreak: target halted\n") ;
}

void enableEvent (void) {

if (T32_NotifyStateEnable(T32_E_BREAK, targetHalted))
printf ("Notify Break: Could not initialize! \n");
else

printf ("Notify Break Enable.\n");

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 111

T32_NotifyBreakEnable Register a function to be called when breaking

Prototype:

int T32_NotifyBreakEnable (
void (*function) (int parameter, uint64_t pc, uint64_t reason));

Parameters:
function pointer to callback function that is called when the
event occurs
Returns:

0 for ok, otherwise communication error value

This function registers a callback function with the API that will be called by the APl when a break happens

on the target (either running on a breakpoint, or a manual halt).
For this mechanism to work, the user must ensure that the function T32_CheckStateNotify is called

periodically (e.g. in the windows main loop) because that will make the API re-evaluate accumulated events.

See also T32_NotifyEventEnable .

NOTE: Compile the API sources with ENABLE_NOTIFICATION defined to use
notifications.

Example:
Register the function targetHalted to be called whenever the debugger goes into state “break” (stopped).

void targetHalted (int parameter, uint64_t pc, uint64_t reason)
{
printf ("Notification: target halted on address %1lx\n", pc);

3

void enableEvent (void) {
if (T32_NotifyBreakEnable (targetHalted))
printf ("Notification: Could not initialize! \n");
else
printf ("Notification enabled.\n") ;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC |

112

T32_NotifyEditEnable Register a function to be called when editing

Prototype:

int T32_NotifyEditEnable (
void (*function) (int parameter, int lineNr, const char* fileName));

Parameters:
function pointer to callback function that is called when the
event occurs
Returns:

0 for ok, otherwise communication error value

This function registers a callback function with the API that will be called by the API when the user wants to
edit a file within TRACE32.

For this mechanism to work, the user must ensure that the function T32_CheckStateNotify is called
periodically (e.g. in the windows main loop) because that will make the API re-evaluate accumulated events.

See also T32_NotifyEventEnable .

NOTE: Compile the API sources with ENABLE_NOTIFICATION defined to use
notifications.

Example:
Register the function editRequest to be called whenever the user wants to edit a file within TRACES32.

void editRequest (int parameter, int line, const char* file)
{
printf ("Notification: edit request on line %d, file %s\n",
line, file);
}

void enableEvent (void) {
if (T32_NotifyEditEnable (editRequest))
printf ("Notification: Could not initialize! \n");
else
printf ("Notification enabled.\n") ;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 113

T32_NotifyBreakConfigEnable Register a function to be called when changing BPs

Prototype:

int T32_NotifyBreakConfigEnable (void (*function) (int parameter));

Parameters:
function pointer to callback function that is called when the
event occurs
Returns:

0 for ok, otherwise communication error value

This function registers a callback function with the API that will be called by the APl when the breakpoint
configuration is changed.

For this mechanism to work, the user must ensure that the function T32_CheckStateNotify is called
periodically (e.g. in the windows main loop) because that will make the API re-evaluate accumulated events.

See also T32_NotifyEventEnable .

NOTE: Compile the API sources with ENABLE_NOTIFICATION defined to use
notifications.

Example:
Register the function breakConfig to be called whenever the breakpoint configuration is changed.

void breakConfig (int parameter)
{
printf ("Notification: breakpoint configuration\n") ;

3

void enableEvent (void) {
if (T32_NotifyBreakConfigEnable (breakConfig))
printf ("Notification: Could not initialize! \n");
else
printf ("Notification enabled.\n") ;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 114

T32_NotifyErrorEnable Register a function to be called on error notifications

Prototype:

int T32_NotifyErrorEnable (
void (*function) (int parameter, int code, const char* message));

Parameters:
function pointer to callback function that is called when the
event occurs
Returns:

0 for ok, otherwise communication error value

This function registers a callback function with the API that will be called by the APl when TRACE32 emits
an error message.

For this mechanism to work, the user must ensure that the function T32_CheckStateNotify is called
periodically (e.g. in the windows main loop) because that will make the API re-evaluate accumulated events.

See also T32_NotifyEventEnable .

NOTE: Compile the API sources with ENABLE_NOTIFICATION defined to use
notifications.

Example:
Register the function errorMessage to be called whenever TRACES32 emits an error message.

void errorMessage (int parameter, int code, const char* message)
{
printf ("Notification: error message: %s\n", message) ;

3

void enableEvent (void) {
if (T32_NotifyErrorEnable (errorMessage))
printf ("Notification: Could not initialize! \n");
else
printf ("Notification enabled.\n") ;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 115

T32_NotifyRTSTriggerEnable Register a function to be called on RTS trigger

Prototype:

int T32_NotifyRTSTriggerEnable (
void (*function) (int parameter,
uint64_t resl, uint64_t res2, uint64d_t res3));

Parameters:
function pointer to callback function that is called when the
event occurs
Returns:

0 for ok, otherwise communication error value

For internal use only

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 116

T32_NotifyGoEnable Register function to be called when core state change to running

Prototype:

int T32_NotifyGoEnable (void (*function) (int parameter)) ;

Parameters:
function pointer to callback function that is called when the
event occurs
Returns:

0 for ok, otherwise communication error value

This function registers a callback function with the API that will be called by the API when the core state is
changed to running.

For this mechanism to work, the user must ensure that the function T32_CheckStateNotify is called
periodically (e.g. in the windows main loop) because that will make the API re-evaluate accumulated events.

See also T32_NotifyEventEnable .

NOTE: Compile the API sources with ENABLE_NOTIFICATION defined to use
notifications.

Example:
Register the function Go to be called whenever the core state is changed to running.

void Go (int parameter)
{
printf ("Notification: Core State changed to running\n") ;

3

void enableEvent (void) {
if (T32_NotifyGoEnable (Go))
printf ("Notification: Could not initialize! \n");
else
printf ("Notification enabled.\n") ;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 117

T32_NotifyEventEnable Register a function to be called at ON events

Prototype:

int T32_NotifyEventEnable (char* event, void (*function) (int));

Parameters:

event ; name of "ON" event to react on

function ; pointer to callback function, NULL for unregister
Returns:

0 for ok, otherwise communication error value

This function registers a callback function with the API that will be called by the APl when the specified event
occurs. All events that are available with the ON command are allowed.

For this mechanism to work, the user must ensure that the function T32_CheckStateNotify is called
periodically (e.g. in the windows main loop) because that will make the API re-evaluate accumulated events.

“event” specifies the event name as available with the ON command, e.g. “PBREAK”.
“function” points to a function that is called when the event takes place.
The parameter passed to the callback function is the parameter given to T32_CheckStateNotify.

See also T32_NotifyStateEnable .

NOTE: Compile the API sources with ENABLE_NOTIFICATION defined to use
notifications.

Example:
Register the function sysupEvent to be called whenever the debugger goes into “System Up” state.

void sysupEvent (int arg) {
printf ("--- SYSUP event happened ---\n");
}

int main () {

if (T32_NotifyEventEnable ("SYSUP", sysupEvent))
printf ("Notify Sysup: registration failed! \n");
else
printf ("Sysup notificiation initialized.\n");

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 118

T32_CheckStateNotify Check message to receive for state notify

Prototype:

int T32_CheckStateNotify (unsigned paraml) ;

Parameters:

paraml ; parameter 1 of registered func at T32_NotifyStateEnable

Returns:
0 for OK, otherwise communication error value

This function makes the API re-evaluate events accumulated since the last call to T32_CheckStateNotify.

If a callback function for any of these events was registered with T32_NotifyStateEnable or
T32_NotifyEventEnable, the appropriate callback function is executed as callback(param1). The parameter
is used independently of the event type and is intended for passing generic parameters like application
handles etc.

As the CAPI does not have its own thread, it is the application program’s responsibility to
periodically call this function.

When compiling the API sources with ENABLE_AUTONOTIFY defined, all high-level API functions call
T32_CheckStateNotify (0) atthe end of the function call, thus enabling an automatic evaluation of the
events without manually calling T32_CheckStateNotify. However, the callbacks are still only called if API
functions are used; as long as no API functions are called, no callback function will be called either.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 119

Example:

The typical Windows callback routine for an application which also handles the asynchronous natification of
a socket.

long CALLBACK MainWndProc (hWnd, message, wParam, lParam)

HWND hwWwnd; /* window handle =/
UINT message; /* type of message W)
WPARAM wParam; /* additional information LY
LPARAM 1Param; /* additional information LY

{

switch (message)

{

case WM_COMMAND : /* message: command from application menu */
break;

case WM_ASYNC_SELECT:
if (WSAGETSELECTERROR (1Param) != 0)

break;// error receiving select notification
switch (WSAGETSELECTEVENT (lParam))
{
case FD_READ:

T32_CheckStateNotify (&apphandle) ;

break;
}
break;
case WM_DESTROY: /* message: window being destroyed 2y
break;
default: /* Passes it on if unproccessed 2y

return (DefWindowProc (hWwnd, message, wParam, lParam)) ;

}

return (0);

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 120

T32_APILock Acquire the Remote API lock

Prototype:

int T32_APILock (int Timeout) ;

Parameters:

Timeout ; timeout of lock command in milliseconds

Returns:

T32_OK or error code. When the system is already locked by other client, the function returns
T32_ERR_STD_LOCKED.

This function can be used to create a critical section when multiple clients access one instance of TRACE32.
Note that all clients must use this function. Clients not using this function can access the Remote API as
usual. Note that the lock is automatically released after 2 seconds, which can be extended by calling
T32_APILock again.

Timeout can have different values:

0 Lock if RemoteAPI server is not in use or return
T32_ERR_STD_LOCKED to indicate that the system is locked already
by another client.

n Wait n ms to get the lock. Returns T32_ERR_STD_LOCKED if the
command was not successful. The TIMEOUT= setting must be
increased to a value greater n.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 121

T32_APIUnlock Release the Remote API lock

Prototype:

int T32_APIUnlock (void);

Parameters:

none

Returns:
0 for OK, otherwise error value.
Release the Remote API lock acquired by calling T32_APILock.

Example:
With 2 clients. Each client has its own port number..

;client 1

while ((1)) {
T32_APILock(10000) ;
T32_Cmd ("print 1.");
T32_Cmd ("print 2.");
T32_Cmd ("print 3.")
T32_APIUnlock () ;

¥

7

;client 2

while ((1)) {
T32_APILock(10000) ;
T32_Cmd ("print 4.");
T32_Cmd("print 5.");
T32_Cmd ("print 6.")
T32_APIUnlock() ;

¥

;This will print
8cooooo ,4,5,6,1,2,3,4,5,6,1,2,3,4,5,6,1,2,3,4,5,6,....
;in the area window when both clients run.

7

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 122

ICD Direct Access API Functions

The Direct Access API Functions are used to access IP blocks of the target that are not handled by the
debugger. The API provides functions at different abstraction level to minimize the communication overhead.
So it is possible to toggle certain pin of the debuggers probe, program complete JTAG shifts or modify
registers on a certain bus. The API functions are divided into functions that set parameters and functions
that execute actions based to the previously set parameters to save communication time. Multiple sets of
parameters are possible, because there are multiple IP block in the target. These sets are called Instances.
Depending to the accessed IP blocks there are different instance types that can be used.

JTAG-TAP DAP AHB Bus APB Bus AXI Bus
Instance 0 Instance 0 Instance 0 Instance O Instance 0
Instance 1 Instance 1 Instance 1 Instance 1 Instance 1
Instance 2 Instance 2 Instance 2 Instance 2 Instance 2
< <Instance Type>>
Instance 0
Parameters
Actions
Following instance types can be used:
Instance Identifier Meaning
Type
JTAG-TAP T32_DIRECTACCESS_INSTANCETY JTAG-TAP that can be accessed by
PE_TAP debugger probe or by target internal
source e.g. JTAG-AP of a DAP
DAP T32_DIRECTACCESS_INSTANCETY Arm Debug Access Port that can be
PE_DAP accessed by JTAG or Serial Wire
Debug (SWD).
AHB Bus T32_DIRECTACCESS_INSTANCETY Arm AHB Bus that can be accessed by
PE_AHB a DAP.

©1989-2024 Lauterbach

API for Remote Control and JTAG AccessinC |

123

APB Bus T32_DIRECTACCESS_INSTANCETY Arm APB Bus that can be accessed by
PE_APB a DAP.

AXI Bus T32_DIRECTACCESS_INSTANCETY Arm AXI Bus that can be accessed by
PE_AXI a DAP.

In the target system the IP-Blocks are interconnected with the result that the communication protocols are
encapsulated along the connection path from the physical pins to a certain IP-Block. To model these
interconnections the API can also interconnect its instances by setting parameters.

AHB Bus
Instance 0
Instance 1
JTAG-TAP DAP
Instance 2
Instance 0 — Instance 0
Instance 1 Instance 1
Instance 2 Instance 2 JTAG-TAP DAP AHB Bus
Instance 0 Instance 0 Instance 0
‘ i
Instance 1 Instance 1 [Instance 1
Instance 2 Instance 2 Instance 2

Most of the parameters can be read by T32_DirectAccessGetInfo or written by
T32_DirectAccessSetInfo. To speed to the communication the API functions allow bundle accesses
by T32_BundledAccess functions.

Many parameters of the debug port are not handled by API parameters and functions. They must be
configured by T32_Cmd as done in the PRACTICE scripts e.g.:

T32_Cmd("SYStem.JtagClock 10Mhz"); //Setup JTAG clock for API calls

Before any function can access to the target it is necessary to enable the output driver of the debug port:

uint8_t cmd;
cmd = T32_ TAPACCESS_ nENOUT | T32_ TAPACCESS_SET O0;
T32_TAPAccessDirect (T32_DIRECTACCESS_HOLD, 1, &cmd, NULL) ;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 124

Bundled Accesses and Exclusive Access

There are two possible modes to access the debug port,
. the Single Access Mode and

. the Bundled Access Mode.

For a sequence of accesses (e.g. to read memory on a lower abstraction level), the Bundled Access Mode is
recommended.

For Single Access Mode, two predefined Handles are available, which control the behavior of the debugger
after the APl access:

Handle for Single Access Mode Effect

T32_DIRECTACCESS_HOLD All debugger actions concerning the debug port will be
suspended. The API has exclusive access to the debug
port.

T32_DIRECTACCESS_RELEASE Allows the debugger to access the debug port after this
APl access

For Bundled Access Mode, the access handle must be acquired by calling T32_BundledAccessAlloc.
All accesses will be stored, instead of being executed immediately. Those bundled accesses are executed
with a call to T32_BundledAccessExecute in the given order. While a bundled access is executed, the
API holds exclusive access to the debug port. T32_BundledAccessExecute can be called multiple
times, but finally T32_BundledAccessFree must be called to free the allocated memory.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 125

T32_BundledAccessAlloc Retrieve a Handle for Bundled Access Mode

Prototype:

T32_BUNDLEDACCESS_HANDLE T32_ BundledAccessAlloc (void);

Parameters:

none

Returns:

Handle for bundled accesses

Use this function to retrieve a handle for bundled accesses. The execution sequence associated with a
handle can be used multiple times.

Example:

uint8_ t status;
uint8_t pvrnr[4];
uint8_t tap_instr = TAP_COP_PVR;

T32_BUNDLEDACCESS_HANDLE handle = T32_BundledAccessAlloc ();
T32_TAPAccessShiftIR (handle, 8, &tap_instr, &status);
T32_TAPAccessShiftDR (handle, 32, NULL, pvrnr) ;

T32_TAPAccessExecute (handle, T32_DIRECTACCESS_RELEASE) ;

T32_BundledAccessFree (handle) ;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 126

T32_BundledAccessFree Release Handle for Bundled Access Mode

Prototype:

int T32_ BundledAccessFree (T32_BUNDLEDACCESS_HANDLE connection) ;

Parameters:

connection ; access handle

Returns:
0 for ok, otherwise Error value

Use this function to release the handle returned by T32_BundledAccessAlloc when it is no longer
needed.

Example:

see T32_BundledAccessAlloc for an example

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 127

T32_BundledAccessExecute Execute a Bundled Access

Prototype:

int T32_ BundledAccessExecute (T32_BUNDLEDACCESS_HANDLE connection,
T32_ BUNDLEDACCESS HANDLE connectionhold) ;

Parameters:
connection ; Handle for a bundled access
connectionhold ; access handle

Returns:

0 for ok, otherwise Error value
Use this function, to execute all actions associated with given handle.
Example:

see T32_BundledAccessAlloc for an example

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 128

T32_DirectAccessRelease Unlock Debugger

Prototype:

int T32_ DirectAccessRelease (void);

Parameters:

none

Returns:

0 for ok, otherwise Error value

If debugger accesses are suspended due to direct access or the T32_BundledAccessExecute call with
the access handle T32_DIRECTACCESS_HOLD, use this function to resume debugger accesses.

Example:

// Retrieve the PVR value (PowerPC)
uint8_t status;

uint8_t pvrnr[4];

uint8_t tap_instr = TAP_COP_PVR;

T32_TAPAccessShiftIR (T32_DIRECTACCESS_HOLD, 8, &tap_instr, &status);
T32_TAPAccessShiftDR (T32_DIRECTACCESS_HOLD, 32, NULL, pvrnr) ;

// At this point, the debugger is still locked

T32 DirectAccessRelease () ;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 129

Configuration of instance parameters and independent parameters

T32_ParamFromUint32 Set instance parameter

Prototype:

T32 Param T32_ ParamFromUint32 (uint32_t wvalue) ;

Parameters:

value initialization value

Returns:
union containing the data for the passed value.

The function is used to create T32_Param union that can be passed to functions without the need of
temporary variables.

Example:

//Set IRPRE 4 of a JTAG-TAP instance index 2

T32 DirectAccessSetInfo(
T32_DIRECTACCESS_HOLD, T32_DIRECTACCESS_INSTANCETYPE_ TAP, 2,
T32_DIRECTACCESS_TAP_IRPRE_UINT32, T32_ParamFromUint32 (4));

T32_DirectAccessSetinfo Set instance parameter

Prototype:

int T32 DirectAccessSetInfo (
T32_BUNDLEDACCESS_HANDLE Handle,
int nInstanceType,
unsigned int nInstance,
int nInfolD,
T32_Param value) ;

Parameters:

Handle bundled access handle

nInstanceType instance type. see Instance Types Identifier.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 130

nInstance instance index.

nInfoID Instance type depended parameter ID.
value new value for parameter
Returns:

0 for ok, otherwise Error value
Use this function to configure parameters of a certain instance.
Example:

//Set IRPRE 4 of a JTAG-TAP instance index 2
T32_DirectAccessSetInfo (
T32_DIRECTACCESS_HOLD, T32_DIRECTACCESS_INSTANCETYPE_TAP, 2,
T32_ DIRECTACCESS_TAP_IRPRE_UINT32, T332 ParamFromUint32(4)) ;

T32_DirectAccessGetinfo Set instance parameter

Prototype:

int T32_DirectAccessGetInfo(
T32_BUNDLEDACCESS_HANDLE Handle,
int nInstanceType,
unsigned int nInstance,
int nInfolID,
T32_Param *value) ;

Parameters:

Handle bundled access handle

nInstanceType instance type. see Instance Types ldentifier.

nInstance instance index.
nInfoID Instance type depended parameter ID.
value return value for parameter

Returns:

0 for ok, otherwise Error value

Use this function get parameters of a certain instance.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 131

Example:

//Get IRPRE of a JTAG-TAP instance index 2

T32_Param res;

T32_DirectAccessSetInfo (
T32_ DIRECTACCESS_HOLD, T32 DIRECTACCESS_ INSTANCETYPE_ TAP, 2,

T32_DIRECTACCESS_TAP_ IRPRE_UINT32, &res);
printf ("result was %d", res.uint32);

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 132

Instance independent parameters and functions

Parameter: automatic Tristate

o Identifier: T32_DIRECTACCESS_TRISTATE_UINT32
o Set: Yes, Get: No

. Type: UINT32

Values Effect
0 no action
1 In multi-debugger mode, this parameter specifies the

state of the debug port, which is expected when the
debugger takes control and set before the debugger
switches to Tristate mode. This value has to be identical
for all debuggers connected to this debug port.

. Default: 0

Parameter: Debug Port is in Serial Wire Mode

. Identifier: T32_DIRECTACCESS_SWD_UNIT32
o Set: No, Get: Yes

. Type: UINT32

Values Effect
0 SYStem.CONFIG.DebugPortType is not SWD
1 SYStem.CONFIG.DebugPortType is SWD

o Effect: In SWD mode the function T32_DAPAccessScan has a different behavior. See

T32_DAPAccessScan.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 133

Parameter: Instance exists

o Identifier: T32_DIRECTACCESS_INSTANCE_EXISTS_UNIT32
o Set: No, Get: Yes

. Type: UINT32

Values Effect

0 instance is not configured

1 instance is configured by a previous call of
T32_DirectAccessSetInfo

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 134

T32_DirectAccessResetAll Reset configuration data of all instances

Prototype:

int T32_DirectAccessResetAll (T32_TAPACCESS_HANDLE Handle) ;

Parameters:

Handle TAP access handle

Returns:
0 for ok, otherwise Error value
Effect:

All parameter data and instances will be reset to the state before any API call was made.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 135

ICD TAP Access API Functions

This chapter describes all functions available for direct access to the JTAG TAP controller.
Before calling any of the JTAG access functions described below, enable the debugger’s trace port:

//Enable output of debug port driver

buffer[0] = T32_TAPACCESS_nENOUT | T32_TAPACCESS_SET_O0;

if (T32_TAPAccessDirect (T32_DIRECTACCESS_HOLD, 1, buffer, NULL))
goto error;

The functions T32_TAPAccessShiftIR, T32_TAPAccessShiftDR and T32_TAPAccessDirect are
provided for JTAG access. These functions need a handle to access the TAP controller.

Parameter: IRPRE, IRPOST, DRPRE, DRPOST

. Identifier: T32_DIRECTACCESS_TAP_IRPRE_UINT32,
T32_DIRECTACCESS_TAP_IRPOST_UINT32, T32_DIRECTACCESS_TAP_DRPRE_UINT32,
T32_DIRECTACCESS_TAP_DRPOST_UINT32

. Type: UINT32
o Set: Yes, Get: Yes

J Effect: Configures the position of the TAP controller within the JTAG Chain. The IR parameters
describe the instruction register width, the DR parameters are used for the data register width
when the BYPASS instruction was issued. Usually the data register of one TAP has a width of
one in this case. The PRE parameters are used to describe the amount of bits that are shifted
before the data of the accesses TAP controller is shifted in order to complete the shift. The POST

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 136

parameters are used to define how many bits are shifted after the data of the accessed TAP
controller. The TAP position is used for higher level shift functions that are dedicated to the
accessed TAPs instruction or data register.

IRPOST IRPRE
\ JTAG-TAP JAG-TAP JAG-TAP /
- IR Length |——b| IR Length |——b| IR Length TDO
—>
DRBYPASS | | g DRBYPASS || Bl DRBYPASS
Length (1) Length (1) Length (1)
DRPOST DRPRE
Parameter: Parking TAP state after register shift
J Identifier: T32_DIRECTACCESS_TAP_PARKSTATE_UINT32
. Set: Yes, Get: Yes
. Type: UINT32
Values Parking state
T32_TAPSTATE_RUN_TEST_IDLE RUN-TEST-IDLE
T32_TAPSTATE_SELECT_DR_SCAN SELECT-DR-SCAN. Shifts will be more efficient, but
the RUN-TEST-IDLE state will never be reached.

. Default: depend to architecture of started TRACE32 executable.

. Effect: configure to which TAP state the state machine shall be driven after an access to an DR
or IR register is done. The option will reset all shift pattern defined by
T32_TAPAccessSetShiftPattern.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 137

Parameter: Multi-Core TAP state

Identifier: T32_DIRECTACCESS_TAP_MCTAPSTATE_UINT32
Set: Yes, Get: Yes

. Type: UINT32
Values Parking state
T32_TAPSTATE_RUN_TEST_IDLE RUN-TEST-IDLE
T32_TAPSTATE_SELECT_DR_SCAN SELECT-DR-SCAN

Default: depends to the option SYStem.CONFIG.TAPSTATE

Effect: The multi-core TAP state is used to allow other components to continue operation from a
certain TAP state without re-initializing the TAP controller. When another TAP controller instance
is accessed the TAP state changes from the parking state to the multi-core TAP state and then
from the multi-core TAP state to the new specific park state. See also parameter
T32_DIRECTACCESS_TAP_AUTO_MULTICORETAPSTATE_UINT32. The TAP state changing is
done by an empty data register path shift. Therefore it's recommended to shift the BYPASS
instruction before the access is switched from the current TAP controller instance to another one.

Parameter: electrical TCK pin configuration

Identifier: T32_DIRECTACCESS_TAP_MCTCKLEVEL_UINT32
Set: Yes, Get: Yes

Type: UINT32

Values Parking state

0

TCK has no pull-up resistor

1

TCK has a pull-up resistor

Default: depends to SYStem.CONFIG.TCKLevel

Effect: When the state machine changes from multi-core tap state to park tap state the extra TCK
cycle is considered that was generated by the pull-up resistor when the debug port changes to
tristate.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 138

Parameter: Switch for Multi-Core TAP state behavior

Identifier: T32_DIRECTACCESS_TAP_AUTO_MULTICORETAPSTATE_UINT32
o Set: Yes, Get: No

. Type: UINT32

Values Parking state
0 inactive
1 active
. Default: active
. Effect: When the option is active the API will enter/leave the multi-core TAP state automatically

when the access to this TAP controller instance is switched. The Multi-core TAP state is only
necessary for IP blocks that are accessed by different multiple tools or software parts. It is
recommended to set the option to inactive in case the API is the only component that
accesses this TAP controller. It is also possible to set the option to inactive and do this actions
by regular API calls.

Parameter: Select TAP controller instance for next commands

. Identifier: T32_DIRECTACCESS_TAP_SELECT_SHIFT_PATTERN_UINT32
o Set: Yes, Get: No

. Type: UINT32

J Default: 0

J Effect: The parameter set up the TAP controller instance for the commands
T32_TAPAccessSetInfo, T32 TAPAccessShiftRaw, T32_ TAPAccessShiftIR,
T32_ TAPAccessShiftDR.

Parameter: Select predefined shift pattern

. Identifier: T32_DIRECTACCESS_TAP_SELECT_SHIFT_PATTERN_UINT32
. Set: Yes, Get: No

. Type: UINT32

J Default: 0

. Effect: Select pattern that was configured by T32_TAPAccessSetShiftPattern to be used
for the next T32_TAPAccessShiftIR or T32_TAPAccessShiftDR commands.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 139

Parameter: Configure JTAG TAP behind DAP

Identifier: T32_DIRECTACCESS_TAP_DAP_INSTANCE_UINT32
o Set: Yes, Get: No

. Type: UINT32

Values Parking state
OxFFFFFFFF No DAP instance selected
0..n Used DAP instance

Default: OxFFFFFFFF

o Effect: When this parameter is set, the JTAG TAP instance is behind a JTAG-AP of a DAP
controller.

Parameter: DAP access port

. Identifier: T32_DIRECTACCESS_TAP_DAP_ACCESSPORT_UINT32
o Set: Yes, Get: No

. Type: UINT32

J Default: 0

J Effect: Set the used DAP access port for the JTAG-AP

Parameter: JTAG port of JAG-AP of DAP access port

Identifier: T32_DIRECTACCESS_TAP_DAP_JTAGACCESSPORTINDEX_UINT32
. Set: Yes, Get: No

. Type: UINT32

J Default: 0

J Effect: Set the JTAG port of the JTAG-AP of the DAP

Example:

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 140

//Shift Bypass pattern on JTAG-AP Tap

//Configuration
#define PRIMARY_TAP_ INSTANCE_INDEX 0
#define JTAGAP_TAP_ INSTANCE_INDEX 1
#define DAP_INSTANCE_INDEX 0
//analoge to setting SYStem.CONFIG.JTAGACCESSPORT 2.
#define JTAGAP_ACCESSPORT 2
//analoge to setting SYStem.CONFIG.COREJTAGPORT 6.
#define JTAGAP_ACCESSPORT_INDEX 5

//Setup Debug Port
if (T32_Cmd("SYStem.JtagClock 1Mhz"))
goto error;

//Reset previous configuration
if (T32_DirectAccessResetAll (T32_DIRECTACCESS_HOLD))
goto error;

/=== ——————— Configure Primary JTAG - —————————————————(——~————————

//set park state to Select-DR-Scan

if (T32_DirectAccessSetInfo (T32_ DIRECTACCESS HOLD,
T32_DIRECTACCESS_INSTANCETYPE_TAP, PRIMARY TAP_ INSTANCE_INDEX,
T32_DIRECTACCESS_TAP_ PARKSTATE_UINT32,
T32_ParamFromUint32 (T32_TAPSTATE_SELECT_DR_SCAN))) goto error;

[=== Comfilguire DAP ====s=s=sss====s=c=ssc====c===s======

//set JTAG TAP instance

if (T32_DirectAccessSetInfo (T32_DIRECTACCESS_ HOLD,
T32_DIRECTACCESS_INSTANCETYPE_DAP, DAP_INSTANCE_INDEX,
T32_DIRECTACCESS_DAP_TAP_INSTANCE_UINT32,
T32_ParamFromUint32 (PRIMARY_ TAP_INSTANCE_INDEX))) goto error;

[=== ==== Configure JTAG-AP - ———————————————————m

//set DAP instance

if (T32_DirectAccessSetInfo (T32_DIRECTACCESS_HOLD,
T32_DIRECTACCESS_INSTANCETYPE_TAP, JTAGAP_TAP_INSTANCE_INDEX,
T32_DIRECTACCESS_TAP_ DAP_ INSTANCE_UINT32,
T32_ParamFromUint32 (DAP_INSTANCE_INDEX))) goto error;

//set JTAG Access Port

if (T32_DirectAccessSetInfo (T32_DIRECTACCESS_HOLD,
T32_DIRECTACCESS_INSTANCETYPE_TAP, JTAGAP_TAP_INSTANCE_INDEX,
T32_DIRECTACCESS_TAP_ DAP ACCESSPORT_UINT32,
T32_ParamFromUint32 (JTAGAP_ACCESSPORT))) goto error;

//set JTAG Access Port

if (T32_DirectAccessSetInfo (T32_DIRECTACCESS_HOLD,
T32_DIRECTACCESS_INSTANCETYPE_TAP, JTAGAP_TAP_INSTANCE_INDEX,
T32_DIRECTACCESS_TAP DAP JTAGACCESSPORTINDEX_ UINT32,
T32_ParamFromUint32 (JTAGAP_ACCESSPORT INDEX))) goto error;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 141

) ==mmmmmmmmmmem==== Start ACtlieng =====s=ssssssssssscscssssssosososos=
//Enable output of debug port driver
buffer[0] = T32_TAPACCESS_nENOUT | T32_TAPACCESS_SET_O0;
if (T32_TAPAccessDirect (T32_DIRECTACCESS HOLD, 1, buffer, NULL))
goto error;

//Reset Primary JTAG

if (T32_TAPAccessJTAGResetWithTMS (T32_DIRECTACCESS_HOLD,
PRIMARY_TAP_ INSTANCE_INDEX))
goto error;

//Select Secondary JTAG for further operations that don't provide the
instance parameter
if (T32_DirectAccessSetInfo (T32_DIRECTACCESS_HOLD,
T32_DIRECTACCESS_INSTANCETYPE_TAP, JTAGAP_TAP_INSTANCE_INDEX,
T32_DIRECTACCESS_TAP_ CURRENTINSTANCE_UINT32,
T32_ParamFromUint32 (JTAGAP_TAP_INSTANCE_INDEX)))

goto error;

//Reset Secondary JTAG

if (T32_TAPAccessJTAGResetWithTMS (T32_DIRECTACCESS_HOLD,
JTAGAP_TAP_INSTANCE_INDEX))
goto error;

//Execute Shift IR BYPASS command for 32bit JTAG-AP TAP

buffer[0]=0xFF; buffer[1]=0xFF; buffer[2]=0xFF; buffer[3]=0xXFF;

if (T32_TAPAccessShiftIR(T32_DIRECTACCESS_HOLD, 32, buffer, NULL))
goto error;

error:
//Release Direct Access API
T32 DirectAccessRelease() ;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 142

T32_TAPAccessSetinfo Configure JTAG Interface

Prototype:

int T32_ TAPAccessSetInfo (int irpre,

Parameters:

irpre

irpost

drpre

drpost

tristate

tapstate

tcklevel

reserved

int irpost,

int drpre,

int drpost,

int tristate,
int tapstate,
int tcklevel,
int reserved);

Number of instruction register bits of all cores in the JTAG chain between the dedicated
core and the TDO signal pin. The setting is the same as
T32_DIRECTACCESS_TAP_IRPRE_UINT32.

Number of instruction register bits of all cores in the JTAG chain between TDI signal and
the dedicated core. The setting is the same as
T32_DIRECTACCESS_TAP_IRPOST_UINT32.

Number of cores in the JTAG chain between the dedicated core and the TDO signal (one
data register bit per core which is in BYPASS mode. The setting is the same as
T32_DIRECTACCESS_TAP_DRPRE_UINT32.

Number of cores in the JTAG chain between the TDI signal and the dedicated core (one
data register bit per core which is in BYPASS mode). The setting is the same as
T32_DIRECTACCESS_TAP_DRPOST_UINT32.

TRUE, if more than one debugger is connected to JTAG port. With this option, the
debugger switches to tristate mode after each access. The setting is the same as
T32_DIRECTACCESS_TRISTATE UINT32.

In multi-debugger mode, this parameter specifies the state of the TAP controller, which
is expected when the debugger takes control and set before the debugger switches to
tristate mode. This value has to be identical for all debuggers connected to this JTAG
port. The setting is the same as T32_DIRECTACCESS_TAP_MCTAPSTATE_UINT32.

See table below for a list of possible states

In multi-debugger mode, this is the level of the TCK signal when all debuggers are
tristated. The setting is the same as
T32_DIRECTACCESS_TAP MCTCKLEVEL_UINT32.

no effect. leave 0.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 143

Returns:
0 for ok, otherwise Error value

Values for tapstate:

0 Exit2-DR 8 Exit2-IR

1 Exit1-DR 9 Exit1-IR

2 Shift-DR 10 Shift-IR

3 Pause-DR 11 Pause-IR

4 Select-IR-Scan 12 Run-Test/Idle

5 Update-DR 13 Update-IR

6 Capture-DR 14 Capture-IR

7 Select-DR-Scan 15 Test-Logic-Reset
Example:

TDI ---> TAP_A ---> TAP_B ---> MyTAP ---> TAP_C ---> TDO

IRLEN(TAP_A) = 3 bits

IRLEN(TAP_B) = 5 bits

IRLEN(TAP_C) = 6 bits

IRPRE = IRLEN(TAP_C) = 6

IRPOST = IRLEN

(TAP_A) + IRLEN (TAP_B)

©1989-2024 Lauterbach

API for Remote Control and JTAG Access in C

144

T32_TAPAccessShiftIR Shift Data to/from Instruction Register

Prototype:

int T32 TAPAccessShiftIR (T32_ _TAPACCESS_HANDLE handle,

int numberofbits,
uint8_t *poutbits,
uint8_t *pinbits) ;
Parameters:
handle TAP access handle

numberofbits amount of bits to scan
poutbits buffer containing data scanned into the TAP controller, or NULL to scan in Zeros

pinbits buffer for data to be scanned out of the TAP controller, or NULL to discard the
received data

Returns:

0 for ok, otherwise Error value

Use this function to scan data through the Instruction Register
Example:

uint8_t status;
uint8_t tap_instr = TAP_STATUS;

T32_TAPAccessShiftIR (T32_DIRECTACCESS_RELEASE, 8, &tap_instr, &status);

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 145

T32_TAPAccessShiftDR Shift Data to/from Data Register

Prototype:

int T32_ TAPAccessShiftDR (handle connection,

int numberofbits,
uint8_t *poutbits,
uint8_t *pinbits) ;
Parameters:
handle TAP access handle

numberofbits amount of bits to scan
poutbits buffer containing data scanned into the TAP controller, or NULL to scan in Zeros

pinbits buffer for data to be scanned out of the TAP controller, or NULL to discard the
received data

Returns:

0 for ok, otherwise Error value

Use this function to scan data through the Data Register
Example:

// Retrieve the PVR value (PowerPC)
uint8_t status;

uint8_t pvrnr([4];

uint8_t tap_instr = TAP_COP_PVR;

T32_TAPAccessShiftIR (T32_DIRECTACCESS_HOLD, 8, &tap_instr, &status);
T32_TAPAccessShiftDR (T32_DIRECTACCESS_RELEASE, 32, NULL, pvrnr);
// Write Zeros

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 146

T32_TAPAccessDirect Direct JTAG Port Access

Prototype:

int T32_ TAPAccessDirect (T32_TAPACCESS_HANDLE handle,

int nbytes,
uint8_t *poutbytes,
uint8_t *pinbytes) ;
Parameters:
handle TAP access handle
nbytes size in bytes of the array poutbytes
poutbytes array containing direct access commands
pinbytes array receiving the results of the direct access commands
Returns:

0 for ok, otherwise Error value

The primary use of this function is to directly access the JTAG port, such as toggling HRESET or reading
TDO, via a variety of commands.

The poutbytes buffer can also contain multiple commands. Any command consists of one or more bytes.
The size of the return value is always identical with the command size.

For a direct access to the JTAG port pins, commands can be generically generated. All commands for read
accesses are predefined:

JTAG signals:
T32_TAPACCESS_TDO T32_TAPACCESS_TDI
T32_TAPACCESS_TMS T32_TAPACCESS_TCK

T32_TAPACCESS_nTRST

System signals:

T32_TAPACCESS_nRESET T32_TAPACCESS_nRESET_LATCH
T32_TAPACCESS_VTREF T32_TAPACCESS_VTREF_LATCH
Debugger related signals:

T32_TAPACCESS_nENOUT

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 147

The two latches display any occurrence of RESET/VTREF fail since the last check. The functionality of read
accesses depends on the used debugger and target.

nENOUT enables the output driver of the debug cable (negative logic).

Write accesses are generated by OR-ing the corresponding read command with one of the following values:

T32_TAPACCESS_SET_O Sets Signal to logical LOW
T32_TAPACCESS_SET_LOW

T32_TAPACCESS_SET_1 Sets Signal to logical HIGH
T32_TAPACCESS_SET_HIGH

T32_TAPACCESS_SET(x) Sets Signal to value x

The returned result of a write command is identical with that of the corresponding read command.

Additional Commands:

Command (Byte 0) Cmd. Size Byte1

in Bytes
T32_TAPACCESS_SLEEP_MS 2 Time in msec
T32_TAPACCESS_SLEEP_US 2 Time in usec
T32_TAPACCESS_SLEEP_HALF_CLOCK 1 No parameter. The debugger

waits for an half JTAG clock cycle.
NOTE: This command does not
work with return clock from target
(RTCK). Clock accurate arbitrary
shifts should be done by
“T32_TAPAccessShiftRaw RAW
JTAG Shifts” (api_remote_c.pdf).

NOTE: Availability and functionality of direct access commands depends on the used debugger and/or
target hardware.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 148

Example:

// reset target
uint8_t commands[8];
uint8_t result[8];
uint8_t hreset_state;

T32_TAPAccessDirect

hreset_state

T32_TAPACCESS_nENOUT
T32_TAPACCESS_nRESET

| T32_TAPACCESS_SET 0;
| T32_TAPACCESS_SET 0;

T32_TAPACCESS_SLEEP_MS;

50; // Wait 50 ms
T32_TAPACCESS_nRESET

| T32_TAPACCESS_SET 1;

T32_TAPACCESS_SLEEP_MS;

50; // Wait 50 ms
T32_TAPACCESS_nRESET;

result[7];

(T32_DIRECTACCESS_RELEASE, 8, commands, result);

©1989-2024 Lauterbach

API for Remote Control and JTAG Access in C

149

T32_TAPAccessJTAGResetWithTMS Reset JTAG TAP by TMS sequence

Prototype:

int T32_ TAPAccessJTAGResetWithTMS (T32_ TAPACCESS_HANDLE Handle,
unsigned int nTapInstance) ;

Parameters:

Handle TAP access handle

nTapInstance JTAG Tap instance index

Returns:
0 for ok, otherwise Error value
Effect:

The function drives the JTAG state machine through Test-Logic-Rest and enter the park state defined by
parameter T32_DIRECTACCESS_TAP_PARKSTATE_UINT32. The function must be used in case in
case the JTAG Tap behind a JTAG-AP of a DAP.

Example:

//Enable output of debug port driver

buffer[0] = T32_TAPACCESS_nENOUT | T32_TAPACCESS_SET_O0;

if (T32_TAPAccessDirect (T32_DIRECTACCESS_HOLD, 1, buffer, NULL))
goto error;

//Reset JTAG
if (T32_TAPAccessJTAGResetWithTMS (T32_DIRECTACCESS_HOLD,0))
goto error;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 150

T32_TAPAccessJTAGResetWithTRST Reset JTAG TAP by TRST signal

Prototype:

int T32_TAPAccessJTAGResetWithTRST (T32_TAPACCESS_HANDLE Handle,
unsigned int nTapInstance,
int32_t nTRSTAssertTimeUS,
int32_t nDelayAfterTRSTReleaseUS) ;

Parameters:
Handle TAP access handle
nTapInstance JTAG Tap instance index
nTRSTAssertTimeUS Duration of TRST signal is asserted:
-1 :10[us] + 1 JTAG clock cycle
O<=t<=n:t[us]
nDelayAfterTRSTReleaseUS Pause time after TRST is de-asserted
-1 :20[us] + 1 JTAG clock cycle
O<=t<=n:t[us]
Returns:

0 for ok, otherwise Error value
Effect:

The function uses the TRST signal to set the JTAG state Test-Logic-Rest and enter the park state defined by
parameter T32_DIRECTACCESS_TAP_PARKSTATE_UINT32 finally. The function must be used in case
in case the JTAG Tap behind a JTAG-AP of a DAP.

Example:

//Enable output of debug port driver

buffer[0] = T32_TAPACCESS_nENOUT | T32_TAPACCESS_SET_O0;

if (T32_TAPAccessDirect (T32_DIRECTACCESS_HOLD, 1, buffer, NULL))
goto error;

//Reset JTAG
if (T32_TAPAccessJTAGResetWithTRST (T32_ DIRECTACCESS HOLD,0,-1,-1))
goto error;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 151

T32_TAPAccessSetShiftPattern Define automated shift sequences

Prototype:

int T32_ TAPAccessSetShiftPattern (T32_TAPACCESS_HANDLE handle,

Parameters:

handle
nTapInstance
nReturnIRCount
nReturnDRCount
nGotoIRCount
nGotoDRCount
nReturnIR
nReturnDR
nGotoIR
nGotoDR

nPattern

Returns:

unsigned int nTapInstance,
uint32_t nReturnIRCount,
uint32_t nReturnDRCount,
uint32_t nGotoIRCount,
uint32_t nGotoDRCount,
uint32_t nReturnIR,
uint32_t nReturnDR,
uint32_t nGotolR,

uint32_t nGotoDR,
unsigned int nPattern)

TAP access handle

JTAG TAP instance

Number of bits shifted from Exit1-IR to the park state
Number of bits shifted from Exit1-DR to the park state
Number of bits shifted from the park state to Shift-IR.
Number of bits shifted from the park state to Shift-DR.
Pattern used to shift from Exit1-IR to the park state
Pattern used to shift from Exit1-DR to the park state
Pattern used to shift from the park state to Shift-IR
Pattern used to shift from the park state to Shift-DR

Pattern index to specify which parameter set is changed. Up to 16 parameter
sets can be used that can be selected by parameter
T32_DIRECTACCESS_TAP_SELECT SHIFT PATTERN_UINT3?2 later.

0 for ok, otherwise Error value

The function is used to define how the functions T32_TAPAccessShiftIR and
T32_TAPAccessShiftDR enter and the shift TAP state Shift-IR or Shift-DR from the parking state and
how the TAP state is changed from Exit1-IR/Exit1-DR to the park state. The parameters that describe the

©1989-2024 Lauterbach

API for Remote Control and JTAG AccessinC | 152

pattern are used starting by the least significant bit e.9. when nReturnDRCount is 0x5 and nReturnDR is
0x1, then the TAP states Update-DR (1), Run-Test-Idle (0), Run-Test-Idle (0), Run-Test-Idle (0), Run-Test-
Idle (0) are driven.

The parameter T32_DIRECTACCESS_TAP_PARKSTATE_UINT32 resets all values defined by this
function to the following defaults:

Parameter / Park state Run-Test-ldle Select-DR-Scan
nReturnIRCount 2 2
nReturnDRCount 2 2
nGotoIRCount 4 3
nGotoDRCount 3 2
nReturnIR 1 3
nReturnDR 1 3
nGotoIR 3 1
nGotoDR 1 1

Example:

//Enable output of debug port driver

buffer[0] = T32_TAPACCESS_nENOUT | T32_TAPACCESS_SET_O0;

if (T32_TAPAccessDirect (T32_DIRECTACCESS_HOLD, 1, buffer, NULL))
goto error;

//Initialize all patterns by default and set park state to Select-DR-Scan
if (T32_DirectAccessSetInfo (T32_DIRECTACCESS_HOLD,
T32_DIRECTACCESS_INSTANCETYPE_TAP, 3 /*Instance*/,
T32_DIRECTACCESS_TAP_ PARKSTATE_UINT32,
T32_ParamFromUint32 (T32_TAPSTATE_SELECT_DR_SCAN)))

goto error;

//Reset JTAG
if (T32_TAPAccessJTAGResetWithTRST (T32_DIRECTACCESS_HOLD, 3,-1,-1))
goto error;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 153

//Reconfigure pattern with index 5 to execute 3 Run-Test-Idle cycles

if (T32_TAPAccessSetShiftPattern (T32 DIRECTACCESS HOLD, 3 /*Instance*/,
/* nReturnIRCount*/ 5,

/* nReturnDRCount*/ 5,

/* nGotoIRCount*/ 3,

/* nGotoDRCount*/ 2,

/* nReturnIR*/ 0x11,//-> Update-IR -> 3*Run-Test-Idle -> Select-DR-Scan
/* nReturnDR*/ 0x11,//-> Update-DR -> 3*Run-Test-Idle -> Select-DR-Scan
/* nGotoIR*/ 1,

/* nGotoDR*/ 1,

/* pattern*/ 5)) goto error;

//Select pattern 5 for TAP instance 3
if (T32_DirectAccessSetInfo (T32_DIRECTACCESS_HOLD,
T32_DIRECTACCESS_INSTANCETYPE_TAP, 3 /*Instance*/,
T32_DIRECTACCESS_TAP_ SELECT_SHIFT_ PATTERN_UINT32,
T32_ParamFromUint32(5)))

goto error;

//Select TAP instance 3 for the next access of T32_TAPAccessShiftIR
if (T32_DirectAccessSetInfo (T32_DIRECTACCESS_HOLD,
T32_DIRECTACCESS_INSTANCETYPE_TAP, 3 /*Instance*/,
T32_DIRECTACCESS_TAP_CURRENTINSTANCE_UINT32,
T32 ParamFromUint32(3)))

goto error;

//Execute Shift IR BYPASS command for 32bit TAP

buffer[0]=0xFF; buffer[l]=0xFF; buffer[2]=0xFF; buffer[3]=0xXFF;

if (T32_TAPAccessShiftIR(T32_DIRECTACCESS_ HOLD, 32, buffer, NULL))
goto error;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 154

T32_TAPAccessShiftRaw RAW JTAG Shifts

Prototype:

int T32_ TAPAccessShiftRaw (T32_TAPACCESS_HANDLE handle,

int numberofbits,
uint8_t *pTMSBits,
uint8_t *pTDIBits,
uint8_t *pTDOBits,
int options) ;
Parameters:
handle TAP access handle

numberofbits defines how many TCK clock cycles the shift is long

PTMSBits TMS bit pattern. May be NULL in case no specific pattern shall be shifted
pTDIBits TDI bit pattern. May be NULL in case no specific pattern shall be shifted
PTDOBits array to store TDO answer. May be NULL if the result shall not be recorded
options shift option bit mask (see below)

Returns:

0 for ok, otherwise Error value

This function is used to send/receive arbitrary TDI/TMS/TDO patterns. The buffers are considered bit wise
beginning with the first byte e.g. pTDIBits = 0x03 0x04 will shiftout11 0000000010000 0 for TDI.

It is possible to pass a NULL pointer for any of the pT? ?Bits parameters. The advantage of this method is
that less data needs to be transferred between debug box and API. By setting all communication arrays to
NULL the amount of shifted bits is not limited. The receive/send data pattern size are limited to a size of
(T32_TAPACCESS_MAXBITS - 64) bits. If TMS and TDI are both transferred the maximum pattern size is
limited to 1/2 * (T32_TAPACCESS_MAXBITS - 64). If TDI or TMS are omitted, the pattern can be defined by
the options parameter:

For a direct access to the JTAG port pins, commands can be generically generated. All commands for read
accesses are predefined:

Pattern Options TMS:

1l
o

SHIFTRAW_OPTION_TMS_ZERO Shifts TMS

I}
=

SHIFTRAW_OPTION_TMS_ONE Shifts TMS

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 155

SHIFTRAW_OPTION_LASTTMS_ONE

Pattern Options TDI:
SHIFTRAW_OPTION_TDI_ZERO
SHIFTRAW_OPTION_TDI_ONE

SHIFTRAW_OPTION_TDI_LASTTDO

Example 1:

int TAPAccessShiftRaw_Test_Hold()
{
uint8_t
uint8_t
uint8_t
int

7

pTDI[1];
PTMS[1];
pPTDO[1]

err = 0;

7

/*Drive
PTMS[0] =
if (err =
0 , 0, SHIFTRAW_OPTION_NONE))
goto error;

0x3;

from Run/Test Idle to Shift/IR (

T32_TAPAccessShiftRaw(T32_DIRECTACCESS_HOLD , 4 ,

Shifts TMS = 0, except for the last cycle where
TMS =1

Shifts TDI

1]
o

I
i

Shifts TDI

Shifts TDI pattern that equals last read back
TDO (where pTDOBIts where defined). Please
ask LAUTERBACH support if that feature shall
be extended.

1100)%*/

pTMS,

/*Shift 0x5 / 5-Bit TAP and read back response - Drive to Exitl-IR*/

pPTDI[0] = 0x6;

if (err = T32_TAPAccessShiftRaw(T32_DIRECTACCESS_HOLD , 5 , 0, pTDI ,
pTDO, SHIFTRAW_OPTION_LASTTMS_ONE))

goto error;

/*Drive From Exitl-IR to RUN-Test/Idle (1 0)*/

pPTMS[0] = 0x1;

if (err = T32_TAPAccessShiftRaw(T32_DIRECTACCESS_HOLD , 2 , pTMS,
0 , 0, SHIFTRAW_OPTION_NONE))

goto error;

error:
T32_DirectAccessRelease() ;
return err;

The T32_TAPAccessShiftRaw function can be combined with the T32_TAPAccessExecute
mechanism to speed up multiple pattern calls. Make sure that the pTDOBits pointer is valid until

T32_TAPAccessExecute is called.

©1989-2024 Lauterbach

API for Remote Control and JTAG AccessinC | 156

Example 2:

int TAPAccessShiftRaw_Test_ Execute()
{
uint8_t pTDI[1]
uint8_t pTMS[1];
uint8_t pTDO[1];
int err = 0

7

7

T32_BUNDLEDACCESS_HANDLE handle = T32_BunledAccessAlloc ();
/*Drive from Run/Test Idle to Shift/IR (1 1 0 0)*/
PTMS[0] = 0x3;
if (err = T32_TAPAccessShiftRaw(handle , 4 , pTMS, 0 , O,
SHIFTRAW_OPTION_NONE))
goto error;
/*Shift 0x5 / 5-Bit Tap and read back response - Drive to Exitl-IR*/
pPTDI[0] = 0x6;
if (err = T32_TAPAccessShiftRaw(handle , 5 , 0, pTDI , pPTDO,
SHIFTRAW_OPTION_LASTTMS_ONE))
goto error;
/*Drive From Exitl-IR to RUN-Test/Idle (1 0)*/
pPTMS[0] = 0x1;
if (err = T32_TAPAccessShiftRaw(handle , 2 , pTMS, 0 , O,
SHIFTRAW_OPTION_NONE))
goto error;

if (err = T32_BundledAccessExecute (handle,T32 DIRECTACCESS_HOLD))
goto error;
error:
T32_DirectAccessRelease() ;
T32_BundledAccessFree (handle) ;
return err;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 157

ICD User Signal API Functions

The user signal API function provides access to specific signals of the debug hardware.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 158

T32_DirectAccessUserSignal User Signal Access

Prototype:

int T32_DirectAccessUserSignal (T32_TAPACCESS_HANDLE handle,
int NumberOfAccesses,
const uint32_t *pOutAccesses,
uint32_t *pInAccesses) ;

Parameters:
handle bundled access handle
NumberOfAccesses amount of entries in pOutAccesses and pInAccesses
pOutAccesses array containing user signal access commands
pInAccesses array receiving the results of the user signal access commands
Returns:

0 for ok, otherwise Error value

The primary use of this function is to directly access the lines of the debug cable that are not handled by
T32_TAPAccessDirect. The pOutAccesses buffer can also contain multiple commands. Any command-word
consists of one word that is created by the signal name and command. The size of the return value is always
identical with the command size.

For a direct access to the debug cable signals, commands can be generically generated. Basically the
supported signals are:

System signals:
T32_DIRECTACCESS_USERSIGNAL_POWER

T32_DIRECTACCESS_USERSIGNAL_RESET

Additional confidential signals can be available in separate header files

The signals are ORed with the commands and passed in an array by parameter pOutAccesses. Possible
commands are :

Signal Access Commands:
T32_DIRECTACCESS_USERSIGNAL_SET_ON assert signal

T32_DIRECTACCESS_USERSIGNAL_SET_ OFF de-assert signal

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 159

T32_DIRECTACCESS_USERSIGNAL_GET

T32_DIRECTACCESS_USERSIGNAL_WAS_TRIGGER

read current state of signal

read latch of signal. some
signal can have a latch to
find pulses on the line in
time.

The T32_DirectAccessUserSignal function support also the creation of asynchronous events on rising or
falling edge of a signal. The events are checked by every call to TRACES32 and indicated by the return value
of T32_USERSIGNALEVENT. Once that return value is received by calling any other function of the Direct
Access API part the events must be retrieved by the command
T32_DIRECTACCESS_USERSIGNAL_GET_NEXT_EVENT. In case an error was preempted by that

mechanism the preempted error can be retrieved by

T32_DIRECTACCESS_USERSIGNAL_GET_LAST_ERROR.

Signal Event Generator Commands:

T32_DIRECTACCESS_USERSIGNAL_ENABLE_EV
ENT_RISING

T32_DIRECTACCESS_USERSIGNAL_ENABLE_EV
ENT_FALLING

T32_DIRECTACCESS_USERSIGNAL_DISABLE_E
VENT_RISING

T32_DIRECTACCESS_USERSIGNAL_DISABBLE_
EVENT_FALLING

T32_DIRECTACCESS_USERSIGNAL_GET_EVENT
_COUNT

T32_DIRECTACCESS_USERSIGNAL_GET_ NEXT__
EVENT

T32_DIRECTACCESS_USERSIGNAL_CLEAR_ALL
_EVENTS

T32_DIRECTACCESS_USERSIGNAL_CLEAR_EVE
NT

install event generator for
event. poll a signal and
generate an event when the
signal changes to the asserted
state

install event generator for
event. poll a signal and
generate an event when the
signal changes to the de-
asserted state

remove event generator for event

remove event generator for event

retrieve the amount of queued
events

retrieve a queued event from the
FIFO. The response of the
command is the command that was
used to install the event
generator for that event or 0 in
case no event is queued.

remove all collected events from
the event FIFO.

remove all collected events of a
certain signal from the event
FIFO.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 160

T32_DIRECTACCESS_USERSIGNAL_DISABLE_A disable all event generators and
ND_CLEAR_ALL_EVENTS remove all events from the FIFO.

T32_DIRECTACCESS_USERSIGNAL_POLL_EVEN execute all event generators to

TS generate new events if the
conditions are true in between a
bundled call.

T32_DIRECTACCESS_USERSIGNAL_GET_LAST_ retrieve preempted error.
ERROR

Example:

//reset and install event generators for Power and Reset signals

uint32_t commands[5] = {
T32_DIRECTACCESS_USERSIGNAL_DISABLE_AND_CLEAR_ALL_EVENTS|
T32_DIRECTACCESS_USERSIGNAL_ENABLE_EVENT_RISING|
T32_DIRECTACCESS_USERSIGNAL_POWER,
T32_DIRECTACCESS_USERSIGNAL_ENABLE_EVENT_FALLING|
T32_DIRECTACCESS_USERSIGNAL_POWER,
T32_DIRECTACCESS_USERSIGNAL_ENABLE_EVENT_RISING|
T32_DIRECTACCESS_USERSIGNAL_RESET,
T32_DIRECTACCESS_USERSIGNAL_ENABLE_EVENT_FALLING|
T32_DIRECTACCESS_USERSIGNAL_RESET };

::T32_DirectAccessUserSignal (T32_DIRECTACCESS_HOLD, sizeof (commands) /4,
commands, NULL) ;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 161

Example:

//routine to retrieve events
static int CheckForEvents (int result) {
if (result == T32_USERSIGNALEVENT) {
int err;
int preempted_error;
uint32_t out[100];
uint32_t in[100];
uint32_t count;
out[0] = T32_DIRECTACCESS_USERSIGNAL_GET_ LAST_ERROR;
out[1l] = T32_DIRECTACCESS_USERSIGNAL_GET_EVENT_COUNT;
err = ::T32_DirectAccessUserSignal (T32_DIRECTACCESS_HOLD,
2, out, in);
if (err != 0 && err != T32_USERSIGNALEVENT)
return err;
preempted_error = in[0];
count = in[1l];
printf ("CheckForEvent: event count: %d\n", count);
while (count > 0) {
int next = (count > 100)?100:count;
int ev;
for (ev = 0; ev < next ; ++ev)
out[ev] = T32_DIRECTACCESS_USERSIGNAL_GET NEXT_EVENT;
err = result = ::T32_DirectAccessUserSignal (
T32_DIRECTACCESS_HOLD, next, out, in);
if (err != 0 && err != T32_USERSIGNALEVENT)
return err;
for (ev = 0; ev < next; ++ev)
printf ("CheckForEvent: event : command 0x%x signal
0x%x\n", in[ev] & OxFFFF0000, in[ev] & O0x0000FFFF) ;
count -= next;
}
return preempted_error;
} else
return result;

//do JTAG access and check for events
int res;
res = CheckForEvents (::T32_TAPAccessShiftRaw(T32_DIRECTACCESS_HOLD,

NULL, NULL, NULL, 100,
SHIFTRAW_OPTION_TMS_ZERO|GTL JTAG PROBE_SHIFT RAW_TDI ONE));

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 162

DAP Access API Functions

The DAP access functions and parameters are used to access the Arm DAP at low level by DAP scan calls
and to provide an instance node for DAP dependent instances as AHB,APB,AXI busses or JTAG behind
DAP by a JTAG-AP.

In case the DAP is JTAG based it requires to have the park state on Select-DR-Scan, e.g.:

T32_DirectAccessSetInfo (T32_DIRECTACCESS_HOLD,
T32_DIRECTACCESS_INSTANCETYPE_TAP, O,
T32_DIRECTACCESS_TAP PARKSTATE UINT32,
T32_ParamFromUint32 (T32_TAPSTATE_SELECT_DR_SCAN))

Parameter: JTAG TAP Controller

o Identifier: T32_DIRECTACCESS_DAP_TAP_INSTANCE_UINT32
o Set: Yes, Get: No

. Type: UINT32

Values Parking state

OxFFFFFFFF No JTAG TAP instance selected. This makes only
sense in case of Serial Wire Debug.

0..n Used JTAG TAP instance.

J Default: OxFFFFFFFF
Effect: Defines which JTAG TAP controller is used to access the Arm DAP.

Parameter: Serial Wire Debug TARGETSEL

o Identifier: T32_DIRECTACCESS_DAP_SWDP_TARGETSEL_UINT32
o Set: Yes, Get: No

. Type: UINT32

Values Effect
OxFFFFFFFF no TARGETSEL instruction is executed
O<=p<=n select SWD port p by TARGETSEL instruction

« Default: OXFFFFFFFF

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 163

Effect: In case of Serial Wire Debug mode, the end point can be selected.

Parameter: Timeout

. Identifier: T32_DIRECTACCESS_DAP_TIMEOUT_UINT32
. Set: Yes, Get: No

. Type: UINT32

J Values: timeout of operations in milliseconds

. Default: 50 [ms]

Effect: Configure timeout of operations done by the scan function and higher level functions of busses
or JTAG-AP that use the scan function finally.

Parameter: Option field for T32_DAPAccessScan

o Identifier: T32_DIRECTACCESS_DAP_SCAN_DAP_OPTION_UINT32
o Set: Yes, Get: No

. Type: UINT32

Values Effect

T32_SCAN_DAP_OPTION_OUTBUFFE T32_DAPAccessScan returns the output data
R_IMMEDIATELY immediately. In case of JTAG this requires extra shift.

T32_SCAN_DAP_OPTION_OUTBUFFE T32_DAPAccessScan returns the output data by the
R_DELAYED next call of T32_DAPAccessScan.

T32_SCAN_DAP_OPTION_OUTBUFFE T32_DAPAccessScan returns the output matching to
R_DEPEND_TO_CONFIG the physical interface. In case of JTAG the output data
is delayed by one call of T32_DAPAccessScan. In
case of Serial Wire Debug the output data is returned
immediately.

. Default: T32_SCAN_DAP_OPTION_OUTBUFFER_IMMEDIATELY

Effect: Defines how the T32_DaAPAccessScan functions works.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 164

T32_DAPAccessScan

Access DAP registers

Prototype:

int T32_ DAPAccessScan (T32_BUNDLEDACCESS_ HANDLE handle,

Parameters:

handle
nDapInstance

nRegisterSet

nRW

nRegisterAddress
nDataln

pDatalOut

Returns:

0 for ok, otherwise Error value

unsigned int nDapInstance,
int nRegisterSet,

int nRW,

uint32_t nRegisterAddress,
uint32_t nDataln,

uint32_t *pDatalOut)

TAP access handle
DAP instance index

Register set used by the access.
T32_DAPACCESS_REGISTERSET_DP: access to the DP registers

T32_DAPACCESS_REGISTERSET_AP: access to the AP registers

Access type used by the access.
T32_DAPACCESS_RW_READ: read access

T32_DAPACCESS_RW_READWRITE: read and write access
Register address.

Data written to the register.

Data read from the register. May be NULL if no return data is expected.

Use this function to access an AP or DP register of a DAP.

©1989-2024 Lauterbach

API for Remote Control and JTAG AccessinC |

165

Example:

T32_DAPAccessScan (/*Handle*/ T32_DIRECTACCESS_HOLD,
/*nDapInstance*/ 0,
/*nRegisterSet*/ T32_DAPACCESS_REGISTERSET DP,
/*nRW*/ T32_DAPACCESS_RW_READWRITE,
/*nRegisterAddress*/ 0xl /*CTRLSTAT*/,
/*nDataIn*/ 0x54000020 /*Debug Reset Request*/,
/*pDataOut*/ NULL) ;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 166

T32_DAPAccessInitSWD Initialize SWD Port

Prototype:

int T32_ DAPAccessInitSWD (T32_BUNDLEDACCESS_HANDLE Handle,
unsigned int nDapInstance) ;

Parameters:
handle TAP access handle
nDapInstance DAP instance index
Returns:

0 for ok, otherwise Error value

Use this function to initialize the Serial Wire Debug port before any other DAP access is done.
Example:

#define DAP_INSTANCE_INDEX 0

//Configure debug port

if (T32_Cmd("SYStem.JtagClock 1Mhz"))
goto error;

if (T32_Cmd("SYStem.CONFIG.DEBUGPORTTYPE SWD"))
goto error;

//Reset previous configuration
if (T32_DirectAccessResetAll (T32_DIRECTACCESS_HOLD))
goto error;

//Setup TARGETSEL mechanism

if (T32_DirectAccessSetInfo (T32_DIRECTACCESS_HOLD,

T32_DIRECTACCESS_INSTANCETYPE_DAP, DAP_INSTANCE_INDEX,

T32_DIRECTACCESS_DAP_SWDP_TARGETSEL_UINT32,

T32_ParamFromUint32 (0XFFFFFFFF /*no TARGETSEL used*/))
goto error;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 167

//Enable output of debug port driver
buffer[0] = T32_TAPACCESS_nENOUT | T32_TAPACCESS_SET_O0;
if (T32_TAPAccessDirect (T32_DIRECTACCESS HOLD, 1, buffer, NULL))

goto error;

//Initialize SWD port

if (T32_DAPAccessInitSWD (T32_DIRECTACCESS_HOLD, DAP_INSTANCE_INDEX))
goto error;

printf ("Init SWD Done\n") ;

error:
//Release Direct Access API

T32 DirectAccessRelease() ;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 168

DAP Bus Access API Functions

The DAP bus access functions and parameters are used to access the AHB, APB or AXI busses behind a

DAP.

Parameter: used DAP instance

. Identifier: T32_DIRECTACCESS_AHB_DAP_INSTANCE_UINT32,
T32_DIRECTACCESS_APB_DAP_INSTANCE_UINT32,
T32_DIRECTACCESS_AXI_DAP_INSTANCE_UINT32

o Set: Yes, Get: No

. Type: UINT32

Values Parking state
OxFFFFFFFF No DAP instance selected
0..n Used DAP instance

e Default: OXFFFFFFFF

Effect: The parameter must be set in order to configure which DAP is connected to the bus.

Parameter: DAP access port

. Identifier: T32_DIRECTACCESS_AHB_DAPACCESSPORT_UINT32,
T32_DIRECTACCESS_APB_DAPACCESSPORT_UINT32,
T32_DIRECTACCESS_AXI_DAPACCESSPORT_UINT32

o Set: Yes, Get: No

. Type: UINT32

Bus Type

Default

T32_DIRECTACCESS_INSTANCETYPE_AHB 0

T32_DIRECTACCESS_INSTANCETYPE_APB 1

T32_DIRECTACCESS_INSTANCETYPE_AXI 3

Effect: Set the used DAP access port for the bus.

©1989-2024 Lauterbach

API for Remote Control and JTAG Access in C

169

Parameter: Bus endianness

. Identifier: T32_DIRECTACCESS_AHB_BIGENDIAN_UINT32,
T32_DIRECTACCESS_APB_BIGENDIAN_UINT32,
T32_DIRECTACCESS_AXI_BIGENDIAN_UINT32

o Set: Yes, Get: No

. Type: UINT32

Values Endianness
0 Little
1 Big

. Default: 0

Effect: rearrange bytes of read/written of T32_DAPAPAccessReadWrite in order to work with a data

buffer independent of the used access width.

Parameter:

. Identifier: T32_DIRECTACCESS_AHB_SYSPOWERUPREQ_UINT32,
T32_DIRECTACCESS_APB_SYSPOWERUPREQ_UINT32,
T32_DIRECTACCESS_AXI_SYSPOWERUPREQ_UINT32

o Set: Yes, Get: No

. Type: UINT32

Values Effect
1 request power
0 do not request power

o Default: 1

Effect: Set the system power request control signals for every access by

T32_DAPAPAccessReadWrite.

©1989-2024 Lauterbach

API for Remote Control and JTAG AccessinC |

170

Parameter: Use special access for Cortex-M AHB Bus

o Identifier: T32_DIRECTACCESS_AHB_CORTEXM_UINT32
o Set: Yes, Get: No

. Type: UINT32

Values Special access
1 yes
0 no

J Default: 0

Effect: In case of an Cortex-M device the is only one AHB bus connected to the DAP. This AHB bus
needs to be accessed in a special way by T32_DAPAPAccessReadWrite.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 171

T32_DAPAPAccessReadWrite Read/Write memory at bus

Prototype:

int T32_DAPAPAccessReadWrite (T32_BUNDLEDACCESS_HANDLE Handle,
int nAPType,
unsigned int nInstance,
int nRW,
uint64_t nAddress,
uint8_t * pbData,
unsigned int nByteWidth,
unsigned int nByteSize,
int bNonIncrement,
uint32_t nHProtFlags) ;

Parameters:

handle TAP access handle

nAPType Bus Type.
T32_DIRECTACCESS_INSTANCETYPE_AHB: AHB Bus
T32_DIRECTACCESS_INSTANCETYPE_APB: APB Bus
T32_DIRECTACCESS_INSTANCETYPE_AXI: AXI Bus

nInstance Bus instance index.

nRW Access Type.
T32_DAPAPACCESS_RW_READ: read access
T32_DAPAPACCESS_RW_WRITE: write access

nAddress Memory address.

pData Pointer to read/write data.

nByteWidth Width of access.

1: 1 byte wide access
2: 2 byte wide access
4: 4 byte wide access

8: 8 byte wide access

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 172

nByteSize Size of read or written data in bytes.

bNonIncrement Address incremental control.
0: increment addresses

1: multiple read/write at one single address

nHProtFlags HProt-Flags matching to the bus type.

Returns:
0 for ok, otherwise Error value

Use this function to access the memory on an APB, AHB or AXI bus.
Example:

//Read Arm Coresight ETM ID registers when ETM is located at
//JTAG -> DAP -> APB -> ADR:0x8011C000

//Configuration

#define TAP_INSTANCE_INDEX 0
#define DAP_INSTANCE_INDEX 0
#define APB_INSTANCE_INDEX 0

//Setup Debug Port
if (T32_Cmd("SYStem.JtagClock 1Mhz"))
goto error;

//Reset previous configuration
if (T32_DirectAccessResetAll (T32_DIRECTACCESS_HOLD))
goto error;

//Configure JTAG

//set park state to Select-DR-Scan

if (T32_DirectAccessSetInfo (T32_DIRECTACCESS_HOLD,
T32_DIRECTACCESS_INSTANCETYPE_TAP, TAP_INSTANCE_INDEX,
T32_DIRECTACCESS_TAP_ PARKSTATE_UINT32,
T32_ParamFromUint32 (T32_TAPSTATE_SELECT_DR_SCAN))) goto error;

//Configure DAP

//set JTAG TAP instance

if (T32_DirectAccessSetInfo (T32_DIRECTACCESS_ HOLD,
T32_DIRECTACCESS_INSTANCETYPE_DAP, DAP_INSTANCE_INDEX,
T32_DIRECTACCESS_DAP_TAP_INSTANCE_UINT32,
T32_ParamFromUint32 (TAP_INSTANCE_INDEX))) goto error;

©1989-2024 Lauterbach API for Remote Control and JTAG Access in C

173

//Configure APB

//set DAP instance

if (T32_DirectAccessSetInfo (T32_DIRECTACCESS_ HOLD,
T32_DIRECTACCESS_INSTANCETYPE_APB, APB_INSTANCE_INDEX,
T32_DIRECTACCESS_AHB_DAP_INSTANCE_UINT32,
T32_ParamFromUint32 (DAP_INSTANCE_INDEX))) goto error;

//Enable output of debug port driver

buffer[0] = T32_TAPACCESS_nENOUT | T32_TAPACCESS_SET_O0;

if (T32_TAPAccessDirect (T32_DIRECTACCESS HOLD, 1, buffer, NULL))
goto error;

//Reset JTAG

if (T32_TAPAccessJTAGResetWithTMS (T32_DIRECTACCESS_HOLD,
TAP_INSTANCE_INDEX))
goto error;

//Read IDs at APB bus
if (T32_DAPAPAccessReadWrite (T32_DIRECTACCESS_HOLD,
/*Instance Type*/ T32_DIRECTACCESS_INSTANCETYPE_APB,
/*Instance*/ APB_INSTANCE_INDEX,
/*Read/Write*/ T32_ DAPAPACCESS_RW_READ,
/*Address*/ 0x8011CFFO,
/*Data*/ buffer,
/*Access Width*/ 4,
/*Access Length*/ 4*4,
/*NoneIncrement*/ 0,
/*HProt*/ 0x0))
goto error;
printf ("ETM IDs : 0x%x 0x%x O0x%x 0x%x\n", buffer([0], buffer[4],
buffer[8], buffer[12]);

error:
//Release Direct Access API
T32_DirectAccessRelease() ;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 174

Remote Lua API Functions

The TRACE32 Lua API allows the user to load and execute Lua scripts directly in the debugger. This feature
can be used to accelerate execution of certain debug commands by avoiding the interaction between the
T32 host SW and the debug driver. A Lua interpreter is built into the debugger, supporting the complete Lua
language. In addition, Lauterbach has extended the Lua language with a set of T32 specific libraries, which
allow the user to, for example, use the JTAG shift interface directly from the Lua script. Please refer to
“TRACE32 Lua Library” (lua_library.pdf) for more details.

This section describes functions to load/execute Lua scripts using the remote API. Refer to the Lua
command group for using the Lua in the command line.

T32_ExecuteLua

Loads/executes a Lua script in single access mode. If the Lua script involves TAP access, the default
settings are used.

Prototype:

int T32 ExecutelLua (const char* filename,
int mode,
const uint8_t* inputBuf,
int inputBufLen,
uint8_t* ouputBuf,
int outputBufLen) ;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 175

Parameters:

filename

mode

inputBuf

inputBufLen

ouputBuf

outputBuflLen

Path to the Lua script to be loaded.

Mode of execution:

bit O:

- 0: do not execute the Lua script.

- 1: execute the Lua script.

bit 1:

- 0: do not force to replace the Lua script if exists aleady.
- 1:force to replace the Lua script if exsits already.
bit 2:

- 0: do not load the script to the target.

- 1:load the script to the target.

bit [31:3]: unused.

Example:

- Ox1: no load, only execute the script if exist already.
- 0x4: only load the script.

- 0x7: load and execute the script.

Pointer to input buffer. The data in the input buffer will be send to the debugger

together with the script itself. Inside the Lua script, functions from the

“TRACE32 Lua Library” (lua_library.pdf) can be used to retrieve data from the
input buffer.

Length of input buffer, must be smaller than 0x1000 bytes. If you have data size
more than this, define it directly in your Lua script.

Pointer to output buffer. Inside the Lua script, functions from the “TRACE32 Lua
Library” (lua_library.pdf) can be used to write data to the output buffer. The data

written by the Lua script is automatically transferred back to the user.

Length of output buffer, must be smaller than 0x1000 bytes.

©1989-2024 Lauterbach

API for Remote Control and JTAG Access in C

176

Example:

;load the script jtag.lua, no input/output buffer specified
T32_ExecuteLua ("C:\\lua\\jtag.lua", 0x4,NULL, 0,NULL, 0) ;

;overwrite the script
T32_ExecuteLua ("C:\\lua\\jtag.lua", 0x6,input, 8, output, 0x220) ;

;execute the script (it is loaded already)
T32_ExecuteLua ("C:\\lua\\jtag.lua", 0xl, input, 8, output, 0x220) ;

;do everything in one shot
T32_ExecuteLua ("C:\\lua\\jtag.lua", 0x7,input, 8, output, 0x220) ;

T32_DirectAccessExecuteLua

Loads/executes a Lua script in bundle mode. If the Lua script involves TAP access, it shared the
configuration previously done for the bundle.

Prototype:

int T32 DirectAccessExecutelLua (T32_BUNDLEDACCESS HANDLE Handle,
const char* filename,
int mode,
const uint8_t* inputBuf,
int inputBufLen,
uint8_t* ouputBuf,
int outputBufLen) ;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 177

Parameters:

handle
filename

mode

inputBuf

inputBufLen

ouputBuf

outputBufLen

TAP access handle

Path to the Lua script to be loaded.

Mode of execution:

bit 0:

- 0: do not execute the Lua script.

- 1: execute the Lua script.

bit 1:

- 0: do not force to replace the Lua script if exists aleady.
- 1:force to replace the Lua script if exsits already.
bit 2:

- 0: do not load the script to the target.

- 1:load the script to the target.

bit [31:3]: unused.

Example:

- 0x1: no load, only execute the script if exist already.
- 0x4: only load the script.

- 0x7: load and execute the script.

Pointer to input buffer. The data in the input buffer will be send to the debugger

together with the script itself. Inside the Lua script, functions from the

“TRACE32 Lua Library” (lua_library.pdf) can be used to retrieve data from the
input buffer.

Length of input buffer, must be smaller than 0x1000 bytes. If you have data size
more than this, define it directly in your Lua script.

Pointer to output buffer. Inside the Lua script, functions from the “TRACE32 Lua
Library” (lua_library.pdf) can be used to write data to the output buffer. The data

written by the Lua script is automatically transferred back to the user.

Length of output buffer, must be smaller than 0x1000 bytes.

©1989-2024 Lauterbach

API for Remote Control and JTAG Access in C

178

Example:

; allocate a handle
handlel = T32_BundledAccessAlloc () ;
; do TAP configurations as introduced above

7

; now use the Lua feature
T32_DirectAccessExecuteLua (handlel, "C:\\lua\\jtag.lua", 0x7, input, 8, outpu

t,0x22);
; execute the bundle
T32_TAPAccessExecute (handlel, T32_ _DIRECTACCESS_RELEASE) ;

T32_BundledAccessFree (handlel) ;

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 179

API Object Handling

This chapter describes the data objects used by the object oriented API functions:

Buffer Object
Address Object
Bundle Object
Register Object
RegisterSet Object
Breakpoint Object
Symbol Object

The object oriented API follows a specific naming convention shown in the following table.

Object types
Object handle types

Allocating objects

Reallocating objects

Freeing objects

Getting object attributes
Setting object attributes
Copying existing object
Copying from/into objects
Reading from target
Reading by signifier
Writing to target

Getting info from TRACE32
Sending info to TRACES32

T32_<objtype>0bj
T32_<objtype>Handle

T32_Request<objtype>0bj
T32_Request<objtype>Obj<initial>

T32_Resize<objtype>

T32_Release<objtype>0bj
T32_ReleaseAllObjects

T32_Get<objtype>Obj<attribute>
T32_Set<objtype>Obj<attribute>
T32_Copy<objtype>0bj
T32_Copy<what>From/To<objtype>0bj
T32_Read<objtype>0bj
T32_Read<objtype>0ObjBy<signifier>
T32_Write<objtype>0bj
T32_Query<objtype>0bj
T32_Send<objtype>0bj

©1989-2024 Lauterbach

API for Remote Control and JTAG Access in C

180

Buffer Object

A buffer object holds a memory buffer allocated in the API. See an usage example in
T32_ReadMemoryObj.

Object handle:

T32_BufferHandle myBufferHandle;

Declares a buffer handle. No buffer object is yet created.

Object functions:

int T32_RequestBufferObj (T32_BufferHandle *pHandle,
const int initial_size);

Creates (allocates) a buffer object.

pHandle points to the declared buffer handle.

initial_size specifies the number of bytes in initially allocate. It may be zero. The buffer object is
resized if its size is not sufficient for its usage.

int T32_ReleaseBufferObj (T32_BufferHandle *pHandle) ;

Releases (frees) a buffer object.
pHandle points to the buffer handle to release. It's contents is no longer valid then.

int T32_ResizeBufferObj (T32_BufferHandle handle, const int size);

Resizes the allocated storage of the buffer object.
handle specifies the buffer object to resize.
s1ize specifies the new size of the buffer object.

int T32_CopyDataFromBufferObj (uint8_t *localbuffer,
int lbsize, T32_BufferHandle handle) ;

Copies the data of a buffer object into a byte array.

localbuf fer points to the byte array where the data is copied to.
1bsize specifies the size of the byte array.

handle specifies the buffer object to copy the data from.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 181

int T32_CopyDataToBufferObj (T32_BufferHandle handle,
int size, uint8_t *localbuffer) ;

Copies the data of a byte array into the buffer object.

handle specifies the buffer object to copy the data to.

size is the number of bytes to copy.

localbuf fer points to a byte array where to copy the data from.

int T32_GetBufferObjStoragePointer (
uint8_t** ppointer, T32_BufferHandle handle) ;

Get a byte array pointer that points to the buffer object internal storage.

Note: this function exposes API internal data is not guaranteed to be compatible with future API releases!
ppointer will get the pointer to the internal data storage.

handle specifies the buffer object.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 182

Address Object

An address object holds the attributes of a target address, that are:

J Target address

. Target access class

. Memory access width
. Core ID

. Space ID

o Attributes

. Size of MAU (minimum addressable unit)
See an usage example in T32_ReadMemoryObj.

Object handle:

T32_AddressHandle myAddressHandle;

Declares an address handle. No address object is yet created.

Object functions:

int T32_ RequestAddressObj (T32_AddressHandle *pHandle,
const T32_AddressObjType addrType) ;

Creates (allocates) a target address object.

Note: only for advanced usage. Please use one of the dedicated requests below.
pHandle points to the declared address handle.

addrType specifies the type of address object to be created.

int T32_RequestAddressObjA32 (T32_AddressHandle *pHandle,
const uint32_t address) ;

Creates (allocates) a target address object with a 32bit address.
pHandle points to the declared address handle.
address specifies an initial target address for this address object.

int T32_RequestAddressObjA64 (T32_AddressHandle *pHandle,
const uint64_t address) ;

Creates (allocates) a target address object with a 64bit address.
pHandle points to the declared address handle.
address specifies an initial target address for this address object.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 183

int T32_ReleaseAddressObj (T32_AddressHandle *pHandle) ;

Releases (frees) an address object.
pHandle points to the address handle to release. It’s contents is no longer valid then.

int T32_SetAddressObjAddr32 (T32_AddressHandle handle,
uint32_t address) ;

Set the 32bit target address of an address object.

handle specifies the address object.

address specifies the new target address.

The address is byte- (octet-) oriented, if not explicitly changed with T32_SetAddressObjSizeOfMau ().
See also Conventions for Target Memory Access.

int T32_GetAddressObjAddr32 (T32_AddressHandle handle,
uint32_t *pAddress) ;

Get the 32bit target address of an address object.

handle specifies the address object.

pAddress points to the variable getting the target address.

The address is byte- (octet-) oriented, if not explicitly changed with T32_SetAddressObjSizeOfMau ().
See also Conventions for Target Memory Access.

int T32_ SetAddressObjAddr64 (T32_AddressHandle handle,
uint64_t address) ;

Set the 64bit target address of an address object.

handle specifies the address object.

address specifies the new target address.

The address is byte- (octet-) oriented, if not explicitly changed with T32_SetAddressObjSizeOfMau ().
See also Conventions for Target Memory Access.

int T32_GetAddressObjAddr64 (T32_AddressHandle handle,
uint64_t *pAddress) ;

Get the 64bit target address of an address object.

handle specifies the address object.

pAddress points to the variable getting the target address.

The address is byte- (octet-) oriented, if not explicitly changed with T32_SetAddress0ObjSizeOfMau ().
See also Conventions for Target Memory Access.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 184

int T32_SetAddressObjAccessString (T32_AddressHandle handle,
const char* accessString) ;

Set the access class of an address object.

handle specifies the address object.

accessString points a null-terminated string containing the access class specifier as listed in the
Processor Architecture Manuals without the colon.

int T32_GetAddressObjAccessString (T32_AddressHandle handle,
char* accessString, uint8_t maxlen) ;

Get the access class of an address object.

handle specifies the address object.

accessString points to a character array allocated by the user.

maxlen specifies the maximum length of the character array.

The character array will receive a string containing an access class specifier as listed in the Processor
Architecture Manuals without the colon.

int T32_SetAddressObjwidth (T32_AddressHandle handle, uintlé6_t width) ;

Set the access width of an address object.
handle specifies the address object.
width specifies the access width in bytes, with which the debugger tries to access this address.

int T32_ SetAddressObjCore (T32_AddressHandle handle, uintlé6_t core);

Set the core ID of an address object.
handle specifies the address object.
core specifies the core ID in multicore systems, with which the debugger tries to access this address.

int T32_SetAddressObjSpaceId (T32_AddressHandle handle,
uint32_t spaceid) ;

Set the space ID of an address object.

handle specifies the address object.

spaceid specifies the space ID in MMU spaced systems, with which the debugger tries to access this
address.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 185

int T32_SetAddressObjAttr (T32_AddressHandle handle,
uint32_t attributes) ;

Set attributes of an address object.
handle specifies the address object.

attributes are ored bit patterns that specify special access attributes:

T32_ADDROBJATTR_EACCESS Use run-time memory access (Access class E:)
T32_ADDROBJATTR_VERIFY Verify if write access succeeded (by reading value
back)

T32_ADDROBJATTR_RTSTRIGGERACK Acknowledge RTS trigger to resume RTS
processing. (use after receiving notification
T32_E_RTSTRIGGER)

T32_ADDROBJATTR_GO Start core after this access.
T32_ADDROBJATTR_BREAK Halt core after this access.

T32ADDROBJATTR_EACCESS: read dual ported from this address (“emulation access”).
T32ADDROBJATTR_VERIFY; verify after write to this address

int T32_SetAddressObjSizeOfMau (T32_AddressHandle handle,
T32_SizeOfMauType SizeOfMau) ;

Set the MAU size of an address object.
handle specifies the address object.
Size0OfMau contains the MAU size to set.

When a MAU (minimum addressable unit) size is set, all read and write operations using this address object
will calculate the address according to the MAU size. E.g. if you set a 16bit MAU size, each address refers to
a 16bit unit. Address “1” will then point to the 16th bit in memory.

Valid values as MAU size are:

T32_SIZEOFMAU_NOTSET MAU is not set; default is 8bit
T32_SIZEOFMAU_TARGET MAU of target is used
T32_SIZEOFMAU_8BIT MAU is 8bit
T32_SIZEOFMAU_12BIT MAU is 12bit
T32_SIZEOFMAU_16BIT MAU is 16bit
T32_SIZEOFMAU_24BIT MAU is 24bit

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 186

T32_SIZEOFMAU_32BIT MAU is 32bit

T32_SIZEOFMAU_64BIT MAU is 64bit
T32_SIZEOFMAU_128BIT MAU is 128bit
T32_SIZEOFMAU_256BIT MAU is 256Dbit

int T32_GetAddressObjSizeOfMau (T32_AddressHandle handle,
T32_SizeOfMauType* pSizeOfMau) ;

Get the MAU size of an address object.
handle specifies the address object.
pSizeOfMau points to the variable getting the MAU size.

See description of T32_SetAddressObjSizeOfMau.

int T32_ GetAddressObjTargetSizeOfMau (T32_AddressHandle handle,
T32_SizeOfMauType* pTargetSizeOfMau) ;

Get the target MAU size of an address object.
handle specifies the address object.
pTargetSizeOfMau points to the variable getting the MAU size.

The target MAU (minimum addressable uint) size must be queried previously with the function
T32_QueryAddressObjTargetSizeOfMau.
For valid values as MAU size see T32_SetAddressObjSizeOfMau.

NOTE: See the section “Conventions for Target Memory Access” for important
conventions regarding the byte addresses and accesses.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 187

Bundile Object

A memory bundle object holds a list of memory buffers with associated addresses allocated in the API. See
a usage example in T32_TransferMemoryBundleObj.

Object handle:

T32_MemoryBundleHandle myBundleHandle;

Declares a bundle handle. No bundle object is yet created.

Object functions:

int T32_RequestMemoryBundleObj (T32_MemoryBundleHandle *pHandle,
const int initial_ size);

Creates (allocates) a bundle object.

pHandle points to the declared bundle handle.

initial_size specifies the number of buffer objects initially allocated. It may be zero. The bundle object
is resized if its size is not sufficient for its usage.

int T32_ReleaseMemoryBundleObj (T32_MemoryBundleHandle *pHandle) ;

Releases (frees) a bundle object.
pHandle points to the bundle handle to release. It's contents is no longer valid thereafter.

int T32_AddToBundleObjAddrLength (T32_MemoryBundleHandle bundleHandle,
const T32_AddressHandle addrHandle, const T32_Length length);

Adds an ‘empty’ buffer to a bundle object.

bundleHandle is the handle to the memory bundle object to add to.
addrHandle specifies the address of the buffer.

length specifies the size in byte of the buffer.

This function is for adding a buffer to be used for reading memory.

int T32_AddToBundleObjAddrLengthByteArray (
T32_MemoryBundleHandle bundleHandle,
const T32_AddressHandle addrHandle, const T32_Length length,
uint8 t *localbuffer) ;

Adds a ‘illed’ buffer to a bundle object.
bundleHandle is the handle to the memory bundle object to add to.
addrHandle specifies the address of the buffer.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 188

length specifies the size in byte of the buffer.
localbuf fer points to a byte array where to copy the data from to fill the bundle buffer.
This function is for adding a buffer to be used for writing memory.

int T32_GetBundleObjSize (T32_MemoryBundleHandle bundleHandle,
T32_Size *size);

Gets the number of buffers in a memory bundle object.
bundleHandle is the handle to the memory bundle to get the size of.
size points to the bundle size after the call.

int T32_GetBundleObjSyncStatusByIndex (
T32_MemoryBundleHandle bundleHandle,
T32_BufferSynchStatus *pSyncStatus, T32_Index index) ;

Gets the status of a bundle buffer.

bundleHandle is the handle to the memory bundle containing the buffer to get the status of.
pSyncStatus points to the status of the buffer after the call. See below.

index is the index of the buffer in the bundle to get the status of. The index must be less than the bundle
size.

T32_BufferSynchStatus can have one of the following values:

T32_BUFFER_NOTSYNCHED, // buffer not synchronized with target
T32_BUFFER_READ, // buffer was read from target
T32_BUFFER_WRITTEN, // buffer war written to target
T32_BUFFER_ERROR // error while transferring this buffer

int T32_ CopyDataFromBundleObjByIndex (uint8_t* localbuffer, int lbsize,
T32_MemoryBundleHandle bundleHandle, T32_Index index) ;

Copies the contents of a bundle buffer to a local buffer.

localbuf fer points to a byte array where to copy the buffer data to.

1bsize is the number of bytes to copy.

bundleHandle is the handle to the memory bundle containing the buffer to copy from.

index is the index of the buffer in the bundle to copy from. The index must be less than the bundle size.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 189

Register Object

A register object holds the attributes of a target register, that are:
J Register name

. Register ID

. Value
. Size
o Core ID

See an usage example in T32_ReadRegisterObj.

Object handle:

T32_RegisterHandle myRegisterHandle;

Declares a register handle. No register object is yet created.

Object functions:

int T32_RequestRegisterObj (T32_RegisterHandle *pHandle,
const T32_RegisterObjType regType) ;

Creates (allocates) a register object.

Note: only for advanced usage. Please use one of the dedicated requests below.
pHandle points to the declared register handle.

regType specifies the type of register object to be created.

int T32_RequestRegisterObjR32 (T32_RegisterHandle *pHandle) ;

Creates (allocates) a register object for a 32bit register.
pHandle points to the declared register handle.

int T32_RequestRegisterObjR64 (T32_RegisterHandle *pHandle) ;

Creates (allocates) a register object for a 64bit register.
pHandle points to the declared register handle.

int T32_RequestRegisterObjR128 (T32_RegisterHandle *pHandle) ;

Creates (allocates) a register object for an 128bit register.
pHandle points to the declared register handle.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 190

int T32_RequestRegisterObjR256 (T32_RegisterHandle *pHandle) ;

Creates (allocates) a register object for an 256bit register.
pHandle points to the declared register handle.

int T32_RequestRegisterObjR512 (T32_RegisterHandle *pHandle) ;

Creates (allocates) a register object for an 512bit register.
pHandle points to the declared register handle.

int T32_RequestRegisterObjR32Name (T32_RegisterHandle *pHandle,
const char* regName) ;

Creates (allocates) a register object for a 32bit register.
pHandle points to the declared register handle.
regName specifies an initial register name for this register object.

int T32_ RequestRegisterObjR64Name (T32_RegisterHandle *pHandle,
const char* regName) ;

Creates (allocates) a register object for a 64bit register.
pHandle points to the declared register handle.
regName specifies an initial register name for this register object.

int T32_RequestRegisterObjR128Name (T32_RegisterHandle *pHandle,
const char* regName) ;

Creates (allocates) a register object for an 128bit register.
pHandle points to the declared register handle.
regName specifies an initial register name for this register object.

int T32_RequestRegisterObjR256Name (T32_RegisterHandle *pHandle,
const char* regName) ;

Creates (allocates) a register object for an 256bit register.
pHandle points to the declared register handle.
regName specifies an initial register name for this register object.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 191

int T32_RequestRegisterObjR512Name (T32_RegisterHandle *pHandle,
const char* regName) ;

Creates (allocates) a register object for an 512bit register.
pHandle points to the declared register handle.
regName specifies an initial register name for this register object.

int T32_RequestRegisterObjR32Id (T32_RegisterHandle *pHandle,
uint32_t regId) ;

Creates (allocates) a register object for a 32bit register.

pHandle points to the declared register handle.

regId specifies an initial register ID for this register object. Contact Lauterbach if you need a mapping of the
register IDs for your CPU.

int T32_RequestRegisterObjR64Id (T32_RegisterHandle *pHandle,
uint32_t regId) ;

Creates (allocates) a register object for a 64bit register.

pHandle points to the declared register handle.

regId specifies an initial register ID for this register object. Contact Lauterbach if you need a mapping of the
register IDs for your CPU.

int T32_ ReleaseRegisterObj (T32_RegisterHandle *pHandle) ;

Releases (frees) a register object.
pHandle points to the register handle to release. It's contents is no longer valid then.

int T32_SetRegisterObjName (T32_RegisterHandle handle,
const char* regName) ;

Set the register name of a register object.
handle specifies the register object.
regName specifies the new register name.

int T32_GetRegisterObjName (T32_RegisterHandle handle,
char* regName, uint8_t maxlen) ;

Get the register name of a register object.

handle specifies the register object.

regName points to a character array allocated by the user.
maxlen specifies the maximum length of the character array.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 192

int T32_SetRegisterObjId (T32_RegisterHandle handle,
uint32_t regId);

Set the register ID of a register object.
handle specifies the register object.
regId specifies the new register ID.

int T32_GetRegisterObjId (T32_RegisterHandle handle,
uint32_t *pRegId) ;

Get the register ID of a register object.
handle specifies the register object.
pRegId points to the variable getting the register ID.

int T32_SetRegisterObjValue32 (T32_RegisterHandle handle,
uint32_t wvalue) ;

Set the 32bit value of a register object (not the register on the target).
handle specifies the register object.
value specifies the new register object value.

int T32_GetRegisterObjValuel32 (T32_RegisterHandle handle,
uint32_t *pVvalue) ;

Get the 32bit value of a register object (not the register on the target).
handle specifies the register object.
pValue points to the variable getting the register object value.

int T32_SetRegisterObjValue64 (T32_RegisterHandle handle,
uint64_t wvalue) ;

Set the 64bit value of a register object (not the register on the target).
handle specifies the register object.
value specifies the new register object value.

int T32_GetRegisterObjValue64 (T32_RegisterHandle handle,
uint64_t *pvalue) ;

Get the 64bit value of a register object (not the register on the target).
handle specifies the register object.
pValue points to the variable getting the register object value.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 193

int T32_SetRegisterObjValueArray (T32_RegisterHandle handle,
uint8_t *pArray, uint8_t maxlen) ;

Set the value of a register object (not the register on the target) by a byte array. Array element 0 is the least
significant byte, the last byte in the array is the most significant byte.

handle specifies the register object.

pArray specifies the array holding the new register value as a byte array.

maxlen specifies the length of the byte array.

int T32_GetRegisterObjValueArray (T32_RegisterHandle handle,
uint8_t *pArray, uint8_t maxlen) ;

Write the value of a register object (not the register on the target) into a byte array. Array element 0 gets the
least significant byte, the last byte in the array gets the most significant byte.

handle specifies the register object.

pArray specifies the array receiving the new register value as a byte array.

max1en specifies the length of the byte array.

Example:

int 1i;
uint8_t regValuel[l6];
T32_RegisterHandle handle;
T32_RequestRegisterObjR128Name (&handle, "XMMO") ;
T32_ReadRegisterObj (myRegisterHandle) ;
T32_GetRegisterObjValueArray (handle, regValue, 16);
for (i = 0; i < 16; i++)

printf ("%02x", regValuel[l5-1]);
T32_ReleaseRegisterObj (&handle) ;

int T32_SetRegisterObjCore (T32_RegisterHandle handle, uintlé6_t core);

Set the core ID of a register object.
handle specifies the register object.
core specifies the core ID in multicore systems, with which the debugger tries to access this register.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 194

RegisterSet Object

A register set object is a container of several register objects and holds:
. number of registers in set

J all the registers in set
See an usage example in T32_ReadRegisterSetObj.

Object handle:

T32_RegisterSetHandle myRegisterSetHandle;

Declares a register set handle. No register set object is yet created.

Object functions:

int T32_RequestRegisterSetObj (T32_RegisterSetHandle *pHandle,
int numRegisters, RegisterObjType regType) ;

Creates (allocates) a register set object.

Note: only for advanced usage. Please use one of the dedicated requests below.
pHandle points to the declared register handle.

numRegisters specifies the initial number of registers in set.

regType specifies the type of the initial registers.

int T32_RequestRegisterSetObjR32 (T32_RegisterSetHandle *pHandle,
int numRegisters) ;

Creates (allocates) a register set object holding 32bit registers.
pHandle points to the declared register handle.
numRegisters specifies the initial number of registers in set.

int T32_RequestRegisterSetObjR64 (T32_RegisterSetHandle *pHandle,
int numRegisters) ;

Creates (allocates) a register set object holding 64bit registers.
pHandle points to the declared register handle.
numRegisters specifies the initial number of registers in set.

int T32_ReleaseRegisterSetObj (T32_RegisterSetHandle *pHandle) ;

Releases (frees) a register set object and all its held registers.
pHandle points to the register set handle to release. It's contents is no longer valid then.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 195

int T32_SetRegisterSetObjNames (T32_RegisterSetHandle handle,
const char** names, int numNames) ;

Set the register names of the registers within a register set object.
handle specifies the register set object.

names points to a string array holding the register names to set
numNames specifies the number of names to set.

int T32_SetRegisterSetObjValues32 (T32_RegisterSetHandle handle,
const uint32_t *values, int numValues) ;

Set the 32bit values of the registers within a register set object (not the registers on the target).
handle specifies the register set object.

values points to an 32bit integer array holding the values to set.

numValues specifies the number of values to set.

int T32_GetRegisterSetObjValues32 (T32_RegisterHandle handle,
uint32_t *values, int numValues) ;

Get the 32bit values of the registers within a register set object (not the register on the target).
handle specifies the register object.

values points to an 32bit integer array getting the values.

numValues specifies the number of values to get.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 196

Breakpoint Object

A breakpoint object holds the attributes of a breakpoint, that are:

. breakpoint address (range)

J breakpoint type (program, read, write)

. breakpoint implementation (soft, onchip, marker, “auto”)

J breakpoint action (stop, spot, alpha, beta, charlie, delta, echo)
o enabled status

o optional core

See an usage example in T32_WriteBreakpointObj.

Object handle:

T32_BreakpointHandle myBpHandle;

Declares a breakpoint handle. No breakpoint object is yet created.

Object functions:

int T32_RequestBreakpointObj (T32_BreakpointHandle *pHandle) ;

Creates (allocates) a breakpoint object.
pHandle points to the declared breakpoint handle.

int T32_RequestBreakpointObjAddr (T32_BreakpointHandle *pHandle,
const T32AddressHandle addrHandle) ;

Creates (allocates) a breakpoint object.
pHandle points to the declared breakpoint handle.
addrHandle specifies an initial address object for this breakpoint object.

int T32_ ReleaseBreakpointObj (T32_BreakpointHandle *pHandle) ;

Releases (frees) a breakpoint object.
pHandle points to the breakpoint handle to release. It's contents is no longer valid then.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 197

Breakpoint Address

int T32_SetBreakpointObjAddress (T32_BreakpointHandle handle,
T32_AddressHandle addrHandle) ;

Set the address of a breakpoint object.
handle specifies the breakpoint object.
addrHandle specifies the new address.

int T32_GetBreakpointObjAddress (T32_BreakpointHandle handle,
T32_AddressHandle* pAddrHandle) ;

Get the address of a breakpoint object.
handle specifies the breakpoint object.
pAddrHandle points to the address handle receiving the breakpoint address.

Breakpoint Type

int T32_SetBreakpointObjType (T32_ BreakpointHandle handle,
uint32_t type);

Set the breakpoint type of a breakpoint object.
handle specifies the breakpoint object.
type specifies the new breakpoint type by one of these constants:

T32_BP_TYPE_PROGRAM Program breakpoint
T32_BP_TYPE_READ Read access breakpoint
T32_BP_TYPE_WRITE Write access breakpoint
T32_BP_TYPE_RW Read/Write access breakpoint

int T32_GetBreakpointObjType (T32_BreakpointHandle handle,
uint32_t* pType) ;

Get the breakpoint type of a breakpoint object.
handle specifies the breakpoint object.
pType points to the variable receiving the breakpoint type as mentioned above.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 198

Breakpoint Implementation

int T32_SetBreakpointObjImpl (T32_BreakpointHandle handle,
uint32_t impl) ;

Set the breakpoint implementation of a breakpoint object.
handle specifies the breakpoint object.
impl specifies the new breakpoint implementation by one of these constants:

T32_BP_IMPL_SOFT Software breakpoint

T32_BP_IMPL_ONCHIP Onchip breakpoint

int T32_GetBreakpointObjImpl (T32_BreakpointHandle handle,
uint32_t* pImpl) ;

Get the breakpoint implementation of a breakpoint object.
handle specifies the breakpoint object.
pImpl points to the variable receiving the breakpoint implementation by one of these constants:

T32_BP_IMPL_AUTO Automatic breakpoint (not active)
T32_BP_IMPL_SOFT Software breakpoint
T32_BP_IMPL_ONCHIP Onchip breakpoint
T32_BP_IMPL_MARK Marker

If the breakpoint is active (not disabled), a breakpoint read operation will return the actual used
implementation. If the breakpoint is disabled, a breakpoint read operation will return the implementation that
was specified when setting the breakpoint.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 199

Breakpoint Action

int T32_SetBreakpointObjAction (T32_BreakpointHandle handle,
uint32_t act);

Set the breakpoint action of a breakpoint object.
handle specifies the breakpoint object.
act specifies the new breakpoint action by one of these constants:

T32_BP_ACTION_STOP Stop breakpoint
T32_BP_ACTION_SPOT Spot breakpoint
T32_BP_ACTION_ALPHA Alpha breakpoint
T32_BP_ACTION_BETA Beta breakpoint
T32_BP_ACTION_CHARLIE Charlie breakpoint
T32_BP_ACTION_DELTA Delta breakpoint
T32_BP_ACTION_ECHO Echo breakpoint

Alpha, Beta, Charlie, Delta and Echo are only possible for Stop breakpoints.

int T32_GetBreakpointObjAction (T32_BreakpointHandle handle,
uint32_t* pAct) ;

Get the breakpoint action of a breakpoint object.
handle specifies the breakpoint object.
pAct points to the variable receiving the breakpoint action.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 200

Enabled Status

int T32_SetBreakpointObjEnable (T32_BreakpointHandle handle,
uint8_t enable) ;

Enable or disable a breakpoint. The default of a breakpoint object is “enabled”.
handle specifies the breakpoint object.
enable: if set to 0, the breakpoint is disabled, else enabled.

NOTE: This function sets only the attribute in the object, without any setting in the
debugger. To enable/disable breakpoints in the debugger, use a subsequent
T32_WriteBreakpointObj.

int T32_GetBreakpointObjEnable (T32_BreakpointHandle handle,
uint8_t* pEnable) ;

Get the enabled status of a breakpoint object.

handle specifies the breakpoint object.

pEnable points to the variable receiving the enabled status. If set to 0, the breakpoint is disabled, else
enabled.

NOTE: This function reads only the attribute in the object, without querying the
debugger. To read the enabled status of a breakpoint in the debugger, use a
preceding T32_ReadBreakpointOb;.

Optional Core

int T32_SetBreakpointObjCore (T32_ BreakpointHandle bpHandle,
uintl6_t core) ;

Specify the core where you want to set the breakpoint. The breakpoint action, such as stop, takes effect only
if the program is executed on the specified core.

handle specifies the breakpoint object.

core: core to be set as core attribute of the breakpoint handle

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 201

int T32_GetBreakpointObjCore (T32_BreakpointHandle bpHandle,
uintl6_t* pCore) ;

Get the core attribute of a breakpoint object.
handle specifies the breakpoint object.
pCore points to the variable receiving the breakpoint core.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 202

Symbol Object

A symbol object holds the attributes of a target application symbol, that are:
. symbol name

J symbol path (\\program\module\symbol)

. address

. size
See an usage example in T32_QuerySymbolObj.

Object handle:

T32_SymbolHandle mySymbolHandle;

Declares a symbol handle. No symbol object is yet created.

Object functions:

int T32_ RequestSymbolObj (T32_SymbolHandle *pHandle) ;

Creates (allocates) a symbol object.
pHandle points to the declared symbol handle.

int T32_RequestSymbolObjName (T32_SymbolHandle *pHandle,
const char* symName) ;

Creates (allocates) a symbol object.
pHandle points to the declared symbol handle.
symName specifies an initial symbol name for this symbol object.

int T32_RequestSymbolObjAddr (T32_SymbolHandle *pHandle,
const T32AddressHandle addrHandle) ;

Creates (allocates) a symbol object.
pHandle points to the declared symbol handle.
addrHandle specifies an initial address object for this symbol object.

int T32_ReleaseSymbolObj (T32_SymbolHandle *pHandle) ;

Releases (frees) a symbol object.
pHandle points to the symbol handle to release. It's contents is no longer valid then.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 203

int T32_SetSymbolObjName (T32_SymbolHandle handle,
const char* symName) ;

Set the symbol name of a symbol object. The symbol address within the symbol object is invalidated.
handle specifies the symbol object.
symName specifies the new symbol name.

int T32_GetSymbolObjName (T32_SymbolHandle handle,
char* symName, uint8_t maxlen) ;

Get the symbol name of a symbol object.

handle specifies the symbol object.

symName points to a character array allocated by the user.
maxlen specifies the maximum length of the character array.

int T32_SetSymbolObjAddress (T32_SymbolHandle symHandle,
T32_AddressHandle addrHandle) ;

Set the address of a symbol object. The symbol name within the symbol object is invalidated.
symHandle specifies the symbol object.
addrHandle specifies the new address.

int T32_ GetSymbolObjAddress (T32_SymbolHandle symHandle,
T32_AddressHandle* pAddrHandle) ;

Get the address of a symbol object.
symHandle specifies the symbol object.
pAddrHandle points to the address handle receiving the symbol address.

int T32_GetSymbolObjSize (T32_SymbolHandle symHandle, uint64_t* pSize);

Get the size of a symbol object.
symHand1e specifies the symbol object.
pSize points to the variable receiving the symbol size.

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 204

Document Revision Information

Version Date Change

4.9 19.06.15 Revised to better show “API Object Handling”

4.8 07.03.14 Added TRACE32 Lua Remote API functions.

4.7 10.12.13 New function T32_DirectAccessUserSignal().

4.6 05.03.13 New functions T32_SetMemoryAccessClass() and
T32_WriteRegisterByName()

4.5 07.02.13 ExteSnd TAP Access API to support Arm DAP, AHB, APB, AXI, JTAG-
AP, SWD.

New functions: T32_DirectAccessResetAll(),
T32_DirectAccessSetinfo(),
T32_DirectAccessGetinfo(),
T32_TAPAccessJTAGResetWithTMS(),
T32_TAPAccessJTAGResetWithTRST(),
T32_TAPAccessSetShiftPattern(),
T32_DAPAccessScan(),
T32_DAPAccessInitSWD(),
T32_DAPAPAccessReadWrite()

4.4 14.12.10 T32_Terminate(), T32_SetMode() documented. Buffer size corrections
for T32_GetMessage() / T32_GetTriggerMessage()

4.3 05.11.10 New functions: T32_ReadVariableValue(), T32_ReadVariableString(),
T32_ReadRegisterByName(), T32_GetBreakpointList()

©1989-2024 Lauterbach API for Remote Control and JTAG AccessinC | 205

	API for Remote Control and JTAG Access in C
	History
	Licensing Terms
	Introduction
	Release Information
	Compatibility
	Related Tutorials
	System Configuration Overview
	Restrictions in Demo Mode
	Interfaces
	Operation of API Requests
	Conventions for Target Memory Access

	Building an Application with API
	API Files
	Connecting API and Application
	Logging the API Calls

	Communication Setup
	Preparing TRACE32 Software
	Configuring the API

	API Functions
	Error Codes
	Generic API Functions
	T32_Config Configure Driver
	T32_Init Initialize driver and connect
	T32_Exit Close connection
	T32_Attach Attach TRACE32 device
	T32_Nop Send Empty Message
	T32_Ping Send Ping Message
	T32_Cmd Execute TRACE32 Command
	T32_Cmd_f Execute PRACTICE Command Formatted
	T32_CmdWin Execute PRACTICE Command (deprecated)
	T32_ExecuteCommand Execute TRACE32 Command (with error reporting)
	T32_ExecuteFunction Execute TRACE32 Function (with error reporting)
	T32_ExecuteFunction_Double Execute TRACE32 Function (with error reporting)
	T32_ExecuteFunction_UInt64 Execute TRACE32 Function (with error reporting)
	T32_Printf Print Formatted to TRACE32
	T32_Stop Stop PRACTICE script
	T32_EvalGet Get Evaluation Result
	T32_EvalGetString Get Evaluation String Result
	T32_GetMessage Get Message Line Contents
	T32_GetMessageString Get Message Line Contents
	T32_Terminate Terminate TRACE32 instance
	T32_GetPracticeState Check if a PRACTICE script is running
	T32_SetMode Set Data.List display mode
	T32_GetWindowContent Get the content of a TRACE32 window
	T32_GetApiRevision Get revision number or API
	T32_GetSocketHandle Get the handle of the TRACE32 socket

	Functions for using the API with Multiple Debuggers
	T32_GetChannelSize Get size of channel structure (deprecated)
	T32_GetChannelDefaults Get default channel parameters (deprecated)
	T32_RequestChannelNetAssist Create a NetAssist channel
	T32_RequestChannelNetTcp Create a NetTcp channel
	T32_SetChannel Set active channel
	T32_ReleaseChannel Release channel

	API Functions
	T32_GetState Get State of Debugger
	T32_GetCpuInfo Get Information about used CPU
	T32_ResetCPU Prepare for Emulation
	T32_ReadMemory Read Target Memory (deprecated)
	T32_ReadMemoryObj Read Target Memory Object
	T32_WriteMemory Write to Target Memory (deprecated)
	T32_WriteMemoryPipe Write to Target Memory pipelined (deprecated)
	T32_WriteMemoryObj Write Target Memory Object
	T32_TransferMemoryBundleObj Read/Write Target Memory Bundles
	T32_SetMemoryAccessClass Set memory access class
	T32_ReadRegister Read CPU Registers (deprecated)
	T32_ReadRegisterByName Read Value of Register
	T32_ReadRegisterObj Read CPU Register Object
	T32_ReadRegisterSetObj Read CPU Register Set Object
	T32_WriteRegister Write CPU Registers (deprecated)
	T32_WriteRegisterByName Write Value of Register
	T32_WriteRegisterObj Write CPU Register Object
	T32_WriteRegisterSetObj Write CPU Register Set Object
	T32_ReadPP Read Program Pointer
	T32_ReadBreakpoint Read Breakpoints (deprecated)
	T32_WriteBreakpoint Write Breakpoints (deprecated)
	T32_GetBreakpointList Get Breakpoint List
	T32_WriteBreakpointObj Write breakpoint object
	T32_ReadBreakpointObj Read breakpoint object by address
	T32_ReadBreakpointObjByIndex Read breakpoint object by index
	T32_QueryBreakpointObjCount Query number of breakpoints
	T32_Step Single Step
	T32_StepMode Single Step with Mode Control
	T32_Go Start real time
	T32_Break Stop real time
	T32_GetTriggerMessage Get Trigger Message Contents
	T32_GetSymbol Get Symbol Information
	T32_GetSymbolFromAddress Get symbol name from address
	T32_QuerySymbolObj Query symbol object information
	T32_QueryAddressObjMmuTranslation Query MMU address translation
	T32_QueryAddressObjTargetSizeOfMau Query target MAU size
	T32_ReadVariableValue Read value of variable
	T32_WriteVariableValue Write value to variable
	T32_ReadVariableString Read variable as string
	T32_GetSource Get Source Filename and Line
	T32_GetSelectedSource Get Source Filename and Line of Selection
	T32_AnaStatusGet Get State of State Analyzer (deprecated)
	T32_AnaRecordGet Get One Record of State Analyzer (deprecated)
	T32_GetTraceState Get State of Trace
	T32_ReadTrace Get n Trace Records
	T32_NotifyStateEnable Register a function to be called at state change (deprecated)
	T32_NotifyBreakEnable Register a function to be called when breaking
	T32_NotifyEditEnable Register a function to be called when editing
	T32_NotifyBreakConfigEnable Register a function to be called when changing BPs
	T32_NotifyErrorEnable Register a function to be called on error notifications
	T32_NotifyRTSTriggerEnable Register a function to be called on RTS trigger
	T32_NotifyGoEnable Register function to be called when core state change to running
	T32_NotifyEventEnable Register a function to be called at ON events
	T32_CheckStateNotify Check message to receive for state notify
	T32_APILock Acquire the Remote API lock
	T32_APIUnlock Release the Remote API lock

	ICD Direct Access API Functions
	Bundled Accesses and Exclusive Access
	Configuration of instance parameters and independent parameters
	T32_ParamFromUint32 Set instance parameter
	T32_DirectAccessSetInfo Set instance parameter
	T32_DirectAccessGetInfo Set instance parameter

	Instance independent parameters and functions
	ICD TAP Access API Functions
	ICD User Signal API Functions
	DAP Access API Functions
	DAP Bus Access API Functions
	Remote Lua API Functions

	API Object Handling
	Buffer Object
	Address Object
	Bundle Object
	Register Object
	RegisterSet Object
	Breakpoint Object
	Symbol Object

	Document Revision Information

